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ABSTRACT 
 

OntoSoar: Using Language to Find Genealogy Facts 
 

Peter Lindes 
Department of Linguistics and English Language, BYU 

Master of Arts 
 

There is a need to have an automated system that can read family 
history books or other historical texts and extract as many genealogy facts as 
possible from them. Embley and others have applied traditional information 
extraction techniques to this problem in a system called OntoES with a 
reasonable amount of success. In parallel much linguistic theory has been 
developed in the past decades, and Lonsdale and others have built 
computational embodiments of some of these theories using Soar. In this thesis 
we introduce a system called OntoSoar which combines the Link Grammar 
Parser using a grammar customized for family history texts with an innovative 
semantic analyzer inspired by construction grammars to extract genealogical 
facts from family history books and use them to populate a conceptual model 
compatible with OntoES with facts derived from the text.  The system produces 
good results on the texts tested so far, and shows promise of being able to do 
even better with further development. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: information extraction, genealogy, linguistic theory, cognitive 
semantics, construction grammar, cognitive architectures  
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1. Introduction 

Thus, intelligence is the ability to bring to bear all the 
knowledge that one has in service of one’s goals. 

Newell (1990), p. 90 

There is a great demand for genealogical data so that people can 

understand and document their family history.  There is also a great supply of 

historical documents containing such data, but most were generated long 

before modern digital technology was available.  This thesis addresses the 

problem of how we can extract this information from these historical 

documents in a digital form it so it can be searchable. 

Approaches to this general problem vary greatly depending upon the type 

of document involved.  Census records, for example, are very structured by 

columns and rows with certain information always found in the same column.  

For this type of document the main problem is reading the handwritten data.  

This can be done, as it was done recently for the 1940 US census, by human 

indexers reading the handwritten text and typing it into a computerized form.  

An approach like this works well for documents of this type. 

Another type of document available is a large set of family history books 

written before the digital age.  Over 100,000 such books, many with several 

hundred pages each, have already been digitized by scanning them into PDF 

files and using OCR algorithms to extract the raw text.  Of course the OCR 

process introduces a sizable number of errors.  Dealing with OCR errors is 

beyond the scope of this project, although a few simple errors are corrected 

while preprocessing the text. 
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Once a book has been digitized, manual methods somewhat like those 

used for census records can be applied.  Tools exist for showing each page on a 

screen so a user can go through and laboriously fill out forms for different 

kinds of information by clicking on the data values in the page of displayed text.  

However, this is an enormous task, both because of the millions of pages of 

text involved and because the text is not structured like a census form or any 

other kind of form.  Extracting this kind of information, even when no 

handwriting is involved, is a much more complicated endeavor.  Some way of 

automating this whole process would be of enormous benefit.  This thesis 

presents one way of addressing this problem. 

Here are two examples of text from these books.  Sample 1 in Figure 1 is 

part of page 419 of an 830-page book (Vanderpoel, 1902).   

 

Figure 1:  Sample 1 of Genealogy Text: from Vanderpoel (1902), p. 419 

Many parts of this book have information in a fairly structured form, as 

can be seen in the list of children in Figure 1.  However, much of the rest of the 

text, except for the paragraph markings and identifying numbers for people like 
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243314., is only structured by English grammar rules.  Not only that, but the 

text is often not standard English, having been greatly abbreviated, both 

lexically and syntactically.  Also, there is much information that goes beyond 

simple names, dates, and places to involve information like how someone’s 

intelligence can qualify her for a position of official historian in some 

organization. 

Sample 2 in Figure 2 comes from a 197-page book (Harwood, 1911) 

which uses a much more free-flowing style in its text. 

 

Figure 2:  Sample 2: from Harwood (1911), p. 84 

Automatically extracting information from books like these does not have 

to address handwriting analysis, but does depend on higher-level knowledge.  
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Using the insight from Allen Newell quoted at the beginning of this chapter, 

and with a bit of introspection about how we ourselves get information out of 

text, we can see that several different kinds of knowledge can be brought to 

bear on this problem.  The levels of knowledge that would be useful are at least: 

textual, syntactic, lexical, semantic, pragmatic, and world knowledge.  This 

thesis is about building a system we call OntoSoar in an attempt to apply all 

these levels of knowledge to the problem of extracting information from 

genealogy books. 

Once information has been extracted from the text, we need to output it 

to a searchable database.  One part of OntoSoar will read in a user-defined 

knowledge representation structure and map the information extracted into 

that format.  Then the resulting data in the terms of this conceptual model will 

be written out as the final product of processing a given text. 

In the remaining chapters we first summarize related work that has been 

done in several fields, following this with a statement of the hypothesis we hope 

to prove.  We then outline in detail the methods used by OntoSoar.  In the 

results chapter we show how well the system works for the two sample texts 

given above, as well as on a set of test texts randomly selected from a large 

corpus of family history books.  We then discuss what these results mean.  We 

don’t expect to solve the whole problem in one master’s thesis, but we do hope 

to show the viability of an approach that can then be further built upon.  We 

end with some conclusions and ideas for future work. 
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2. Related Work 

To address the problem of finding genealogy facts in family history books 

we draw on extensive research over several decades in both linguistics and 

computer science.  In linguistics we have the long tradition of generative 

linguistics with its concentration on evolving theories of syntax and related 

theories of formal semantics.  Formal semantics is closely related to theories in 

computer science regarding conceptual models and using them to extract 

information from text.  This in turn involves natural language processing, 

which draws to some degree on linguistic theory. 

As we shall see, both these streams of research have a common 

limitation: they are trying to understand words in terms of other words without 

being grounded1 in the real world.  Our pursuit of genealogy facts, however, 

requires models of meaning grounded in world knowledge related to the lives of 

people and their family relationships.  Both generative linguistics and 

traditional natural language processing fall short of providing grounded 

meaning that will allow us to build reasoning power into the system which can 

make inferences like: a widow is a woman who was married to a man who has 

died.  Where can we get this grounding? 

More recent branches of research in both linguistics and computer 

science have begun to address this problem.  Ever since Lakoff and Johnson 

(1980a, summarized in 1980b) we have a stream of research in linguistics, 

1 By not being grounded we mean these approaches do not include any connection between 
words and their meaning in the outside world. 
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often called cognitive linguistics, which attempts to ground the meaning of 

linguistic expressions in human perception and experience.  Some computer 

scientists have begun to use this kind of approach to build systems for 

understanding human language, as exemplified by Feldman (2006) and related 

work.  Another branch of computer science has tried to build models of human 

cognition, called cognitive architectures.  These theories draw heavily on 

experimental evidence from psychology and measurements of how the brain 

processes information.  Anderson (2007) gives a good introduction to this field. 

This thesis is based on the proposition that these various streams of 

research are now ready to merge into a larger river, and that we can begin to 

build systems such as OntoSoar by combining some of the best ideas from 

several of these fields. 

Our solution draws on previous work in data extraction2 and in using the 

Soar3 architecture to process natural language.  Both the Link Grammar 

Parser4 and Soar are fundamental components of the OntoSoar system.  

Finally, the innovative semantic analyzer built here is based on a number of 

ideas derived from the literature on cognitive semantics and construction 

grammar.  In this chapter we will review related work that has been done in all 

these areas. 

2 The focus of research of the Data Extraction Group at BYU.  See Embley et al. (2011) and 
discussion of OntoES below. 

3 Soar is a cognitive architecture capable of complex reasoning.  See discussion below. 
4 The Link Grammar Parser is an open-source parsing algorithm that is both robust and 

flexible (Sleator and Temperley 1991, 1993).  See discussion below. 
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Information extraction from text 

Much research has been done on ways of extracting useful information 

from various kinds of texts.  Various amounts of linguistic knowledge have 

been used in different systems. 

In his ambitious work, Cimiano (2006) addresses not only populating an 

ontology 5 from text, but also using text to learn ontologies for given domains.  

Ontology learning is beyond the scope of this thesis.  Nevertheless, Cimiano 

gives an excellent review of what ontologies are, how they can be represented, 

and how available natural language processing techniques can be used to 

extract information from text.  However, Cimiano’s focus is on the ontologies, 

and the language knowledge involved is rather superficial and inadequate for 

the needs of the current project. 

With regard to natural language processing, Jurafsky and Martin (2008) 

have published a classic textbook on the subject.  It examines in detail how 

various techniques from computer science, such as regular expressions, 

hidden Markov models, etc., can be applied to language processing.  Many of 

these techniques can be useful in the current project to some degree, but again 

the emphasis is on the mathematical algorithms and not on the complexities of 

real natural language.  

Buitelaar et al. (2009) present an approach to linguistic grounding of 

ontologies they call LexInfo.  They argue that “currently available data-models 

are not sufficient … without linguistic grounding or structure … .”  Although 

5 The term ontology is often used in the information extraction literature to mean a 
computerized conceptual model that can be populated with facts.  See Embley et al. (2011). 
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this moves in the direction of attaching some language features to ontologies, it 

does not seriously consider the complexity of constructing meaning from 

natural language. 

Sarawagi (2008) reviews the whole field of information extraction.  It 

surveys “techniques from machine learning, databases, information retrieval, 

and computational linguistics for various aspects of the information extraction 

problem.”  Notably absent from this list is anything addressing a deep 

understanding of language. 

Akbik and Bross (2009) present a very interesting approach to extracting 

semantic relations from text using what they call “deep linguistic patterns.”  

They use the Link Grammar Parser and look for paths through the linkages 

between entity references to discover relations between these entities.  Since 

OntoSoar also uses the Link Grammar Parser, many of the details are quite 

related.  However, this work is not directly applicable to our problem since the 

relations are identified just by the words they contain as strings of text without 

any understanding of what those words actually mean. 

Another approach sometimes called “machine reading” is discussed in 

depth by Hruschka (2013).  He reviews in depth three systems for building 

knowledge bases by machine reading the web: YAGO, KnowItAll, and NELL.  

Each system starts with some seed knowledge and uses various techniques to 

make both the accumulated set of facts and the underlying ontology grow by 

reading large amounts of knowledge from the web.  However, these systems 

still have fairly low accuracy in extracting individual facts and are not tuned to 

8 
 



the special sublanguages of English used in many family history books.  In 

addition, all these systems are relating words to other words; there is no 

external grounding anywhere.  Without such grounding there is no 

understanding of the true meaning of anything, and thus no basis for drawing 

inferences based on world knowledge. 

Two groups at BYU have worked on problems closely related to this 

thesis, the Data Extraction Group (Embley et al., 2011) and the NL-Soar 

Research Group (Lonsdale et al., 2008).  More detail will be given below on 

these efforts. 

Ontology matching 

One of the features of OntoSoar is its ability to take extracted 

information in its internal representation of the meaning of input text and 

transform that information to populate an ontology provided by the user.  This 

amounts to a special case of the general problem of ontology matching, for 

which there is also a large literature. 

An overview and survey of this field is given by Euzenat and Shvaiko 

(2007).  They discuss at great length the applications, techniques, and systems 

in this field.  Bleiholder and Naumann (2008) and Mitra et al. (2004), as well as 

many others, discuss specific approaches in more detail.  Most of this literature 

deals with how to map information from the Internet from one web site to 

another, or onto some pre-defined ontology.  Fortunately for us our ontology 

mapping problem is much simpler since we are working within a well 

understood domain. 
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Formal semantics 

Much of the work on understanding the meaning of linguistic 

expressions has been done in the field of formal semantics.  This field is 

summarized well by Chierchia and McConnell-Ginet (2000).  Here we see 

predicate calculus and model-theoretic semantics used to explain the meanings 

of sentences.  However, as we shall see when we discuss LG-Soar, this 

approach does not provide a model rich enough to support the reasoning 

needed to accomplish our task. 

Cognitive semantics 

For OntoSoar to work, we need a way of representing, manipulating, and 

drawing inferences from the meaning of our input text.  Soar provides a tool for 

doing this sort of thing, but we still need to design the data structures needed 

to represent meaning as well as the algorithms for processing these structures.  

All this together must produce a deep understanding of the text being 

processed, which means a deep understanding of the language used in the text. 

In parallel with the progress in information extraction there has been 

over the last several decades a tremendous growth in linguistic theory that can 

explain syntactic, semantic, and other linguistic phenomena over a wide range 

of the world’s languages.  Most of this work has been done according to the 

generative linguistics paradigm first applied to language by Chomsky (1957).  In 

recent years the generative approach has spawned Chomsky’s Minimalist 

Program (Chomsky, 1995) for syntax and Jackendoff’s theory of Conceptual 

Semantics (Jackendoff, 1990, 1996, 2002, and 2003).  Unfortunately, these 
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approaches have been centered on syntax and formal semantics without either 

representing human language processing or being very useful for finding the 

meanings we need for our project.  In addition, there has not been a great deal 

of practical application of these linguistic theories to building information 

extraction systems.  

Starting a few decades ago another line of research called cognitive 

linguistics began.  This approach does attempt to model how human beings 

process language and the deep semantic structures needed to understand 

meaning.  Lakoff and Johnson (1980a) launched an approach to meaning 

describing how metaphor is used at every level to map our direct perceptual 

experience into higher level abstractions.  Johnson (1987) develops one aspect 

of this theory with the concept of what he calls image schemata, data 

structures which can form a bridge between direct perception and symbolic 

representations of meaning.  Lakoff (1987) explored much further how 

metaphor is used to build up complex meaning categories. 

Johnson (1987) builds a theory of image schemata that are rooted in 

bodily experience and then extended by analogy and metaphor to provide 

structure to more abstract meanings.  He argues this approach has much 

greater explanatory power than ordinary formal semantics: 

… on the view I am advancing, neither image schemata nor their 
metaphorical extensions exist only as propositions.  They can be 
propositionally represented, but this does not capture their full reality as 
structures of our embodied understanding. 

Johnson (1987) p. 103 
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This is a key point for this thesis.  The semantic analyzer we present here 

depends on using schemas similar to those described by Johnson to build an 

internal representation of the meaning of each sentence or sentence fragment.  

This rich schematic representation of meaning can then be used to reason 

about those meanings to produce a great deal of inferred data that would not 

otherwise be possible to derive.  Then we can project these rich meaning 

structures onto a conceptual model based on formal semantics.  However, 

without the richer intermediate representation, the number of facts that could 

be derived and the flexibility in projecting them would be greatly limited. 

Furthermore, this rich internal structure makes it possible to build 

meaning structures that can represent important concepts in the same way 

despite a great deal of variation in the surface structure of the language used to 

represent them.  Johnson makes this point as follows: 

Thus, the hypothesis of underlying metaphorical systems of understanding 
makes it possible to explain what has hitherto remained unexplained, 
namely, the systematic clustering of literal expressions associated with a 
single concept. 

Johnson (1987) p. 106 

Shortly we will see examples of this idea at work. 

More recently this line of cognitive semantics research has been turned 

into concrete language processing systems by a group at UC Berkeley headed 

by Jerome Feldman and George Lakoff.  Feldman (2006) summarizes this 

approach, and much of its substance is amplified by Bryant (2008), Chang 

(2009), and several other dissertations.  A central component of this research is 

a grammatical theory called Embodied Construction Grammar (Bergen and 
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Chang, 2003 and 2013).  ECG has been used as one model for the semantic 

analyzer used in OntoSoar. 

Construction grammar 

A number of linguists have pursued the idea of construction grammar, 

which fits well into the cognitive linguistics tradition.  Hoffman and Trousdale 

(2013) give a good overview of this field.  In Chapter 2 of this handbook Adele E. 

Goldberg states concerning constructionist approaches: 

Most of the approaches represented in this volume share important 
underlying assumptions that position the entirety of these approaches at a 
far remove from mainstream generative grammar. 

Hoffman and Trousdale (2013) p. 15 

She outlines the main common tenets shared by a variety of construction 

grammar approaches.  Briefly, these are: that a construction is a learned 

pairing of form and function; that semantics is associated directly with surface 

form without any transformational or derivational component; that 

constructions are related in a network that includes inheritance links; that 

there is a great deal of variation across languages; and that knowledge of 

language is usage-based, including both specific items and generalizations.  

Tomasello (2003) applies this usage-based approach to language acquisition. 

As mentioned above, Feldman’s group has applied the idea of 

construction grammar to a computer implementation that they call ECG.  

Many of the ideas from their work, especially those discussed by Bergen and 

Chang (2013) and Bryant (2008) have been drawn from and adapted to produce 

the semantic analyzer presented in this thesis. 
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OntoES 

The Data Extraction Group at Brigham Young University has been 

developing for some time a system called OntoES that extracts data from a 

variety of text types, including family history books.  The basic approach used 

by OntoES is to start with a conceptual model or ontology (Embley et al., 1992), 

and augment the ontology with recognizers.  A recognizer is a formula including 

a regular expression plus references to lexicon files that can be applied to a 

text to extract references to a certain type of entity or relationship. 

The complete OntoES system consists of a number of useful tools.  

Conceptual models can be represented in XML in a format called OSMX, which 

contains the object and relationship sets of the ontology as well as various 

augmentations such as recognizers and facts extracted from a text to populate 

the ontology.  There is a tool called the Workbench which is a Java program 

that allows a user to build ontologies graphically and examine any data they 

have been populated with.  There is also an Annotator tool which allows a user 

to annotate a text with respect to a given conceptual model. 

OntoSoar fits into this overall OntoES system by reading in a user 

ontology in OSMX form and outputting a modified OSMX file which contains 

the facts it found in a given input text.  In addition, OntoSoar can be evaluated 

by using the Workbench to compare the facts found by OntoSoar with those 

found by a human annotator in the same text. 
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Link Grammar Parser 

A key part of the linguistic analysis needed for OntoSoar is syntactic 

parsing.  We need a parser that is both robust enough to cover a wide range of 

English syntax, flexible enough to be adapted to the non-standard English 

found in the text of family history books, and available in a form that we can 

use. 

Several general purpose parsers for English are available as open source 

tools.  The Stanford Parser6 is the best known of these.  It is a statistical parser 

which has been trained on a large annotated corpus of news wires.  It can 

produce phrase structure trees or typed dependencies for standard English.  

However, the only way to get it to work for our non-standard English would be 

to manually annotate a large corpus of family history text and retrain the 

parser on that corpus.  Many other easily available parsers use the same 

approach and even produce output in the same format as the Stanford Parser. 

A good alternative is the Link Grammar Parser (Sleator and Temperley, 

1991 and 1993).  Rather than a statistical parser trained on an annotated 

corpus, this parser uses a large dictionary of word classes and rules for linking 

words together in a sentence.  It produces an output called a linkage, which is 

a labeled, undirected graph showing links between words.  As well as being 

very robust, this parser can easily be adapted to the non-standard forms we 

need to deal with by modifying its dictionary.  Therefore this is the parser 

chosen for use in OntoSoar. 

6 See description at http://nlp.stanford.edu/software/lex-parser.shtml. 
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Soar 

Our goal for OntoSoar is to understand the meaning of the text we are 

processing so that we can transform that meaning into facts to populate a 

searchable ontology.  This requires a way of representing the semantics of the 

input in a complex meaning graph and a reasoning engine of some sort that 

can construct this graph, perform inferences on it to derive implicit information, 

and transform it into a form that can be used to populate the target ontology. 

For many years there has been research into cognitive architectures, 

attempts at building computational models of how human beings think.  

Anderson (2007) gives an excellent explanation of what a cognitive architecture 

is and an overview of one particular exemplar called ACT-R.  He does not 

address the question of how to use these architectures to process natural 

language, but does quote from Marcus (2001) with regard to what Marcus calls 

the “symbol manipulation hypothesis.”  Marcus shows how abstract relations 

between variables, recursively structured representations, and mental 

representations of individuals and kinds are essential to how the human mind 

works, and also speculates on how these things might be represented by neural 

networks. 

Another prominent cognitive architecture is called Soar (Newell, 1990; 

Laird, 2012).  We have decided to use Soar as our system for representing 

meaning and performing reasoning on it.  Soar is a powerful tool for building 

complex knowledge structures and performing reasoning on them.  It has been 

applied to many application areas, including robotics and language processing. 
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Soar and language 

Language processing using Soar was pioneered by Richard Lewis (1993).  

He built a system called NL-Soar which can parse sentences using methods 

inspired by psycholinguistic research on how humans do sentence processing. 

Lonsdale and others have moved forward in this area by applying the 

Soar cognitive architecture to build the LG-Soar and XNL-Soar systems 

(Lonsdale et al., 2008).  Melby (1995a, 1995b) has also shown the necessity of 

agency to be able to achieve machine understanding of natural language.  Soar 

is a good candidate to fill the role of an agent for language understandin. 

The LG-Soar system is of particular interest here since it uses the Link 

Grammar Parser along with a semantic interpreter developed inside Soar to 

extract meaning from input sentences.  LG-Soar has been used for information 

extraction applications (Tustison, 2004) and in a robotics system that can learn 

new linguistic constructions (Mohan et al., 2102 and 2013).  OntoSoar has 

been derived from this approach, but with an innovative form of semantic 

analyzer. 

The use of Soar for this project has been motivated theoretically in part 

by the fact that Soar is intended to model human cognition (Newell, 1990) and 

by the importance of agency in understanding language (Melby, 1995a and 

1995b).  However, in this work we make no attempt to claim cognitive 

plausibility for the particular approach used to apply Soar to language. 
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3. Thesis Statement 

The primary hypothesis we hope to prove with this thesis is the following: 

We can use modern lexical, syntactic, and semantic analysis tools to 

develop an algorithm that extracts information from genealogy texts and 

matches that data to a conceptual model of the family history domain 

provided by a user so as to populate that model with facts found in the 

text. 
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4. Method 

This chapter presents a description of the tools and algorithms used to 

make OntoSoar work.  First we address what is needed for a couple of specific 

examples, then we look at the overall architecture of OntoSoar, and finally we 

discuss in some detail each major component of the system. 

Before digging into the details, we must consider what kind of 

information we’re looking for.  For the purposes of this thesis we will limit 

ourselves to the basics of genealogical data: identifying unique individual 

persons along with their names, gender, birth and death dates, and direct 

family relationships such as marriages and parent/child relationships.  We will 

not try to deal with places or with other life information such as employment or 

religion.  We will also make some simplifying assumptions about family 

relationships, such as that a marriage is between a man and a woman, and 

that parent/child relationships are only for biological parents.  These 

limitations and assumptions can be relaxed in future work. 

Examples 

In the Introduction we stated that automatically extracting information 

from family history books depends on using higher-level semantic, syntactic, 

and world knowledge.  In this section we present an informal analysis of some 

examples to get an intuitive idea of what knowledge might be needed and how 

it could be applied.  We will consider two examples, one taken from Sample 1 

(called CCL) and one from Sample 2 (called Myra). 
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To begin, consider the first sentence fragment in Sample 1 (CCL), which 

looks like this: 

(1) Charles Christopher Lathrop, N. Y. City, b. 1817, d. 1865, son of Mary 
Ely and Gerard Lathrop ; 

This is not quite normal English.  In order to meet normal rules for written 

grammar, we would need to paraphrase it somehow, perhaps like this: 

(2) Charles Christopher Lathrop, who lived in N. Y. City, was born in 1817, 
died in 1865, and was a son of Mary Ely and Gerard Lathrop. 

The system to be discussed here will not do any paraphrasing of this sort, but 

it will need to somehow interpret text in a form like (1) to produce the same 

results as if it had been written in a form like (2). 

As an English-speaking human being looking at the fragment in (1), what 

information can we extract?  First we easily see that it is dealing with a person 

whose name is Charles Christopher Lathrop.  He lived in New York City, 

but it is not clear in what part of his life this was true.  Assuming that we can 

infer b. as meaning was born in and d. as meaning died in, we can derive that 

he was born in 1817 and died in 1865.  There is a couple, presumably married, 

whose names are Mary Ely and Gerard Lathrop, and our primary person is 

their son. 

We might conclude that Mary Ely is the mother and that Gerard 

Lathrop is the father, but how could a computer system know this?  There are 

a couple of possibilities: use lexical knowledge or inference with pragmatic and 

world knowledge.  A dictionary of first names could determine that Mary is 

almost certainly a woman’s name and Gerard is very likely a man’s name.  The 
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assumption that a set of parents must include a man and a woman could help 

deduce one gender if the other is known. 

In the absence of any name dictionaries, or if the names we’re working 

with are not in the dictionaries, we could do some inferencing with pragmatic 

and world knowledge.  If we know how surnames are passed down and used in 

the English-speaking world, the fact that Charles Christopher Lathrop and 

Gerard Lathrop have the same last name while Mary Ely’s last name is 

different allows us to deduce that Gerard Lathrop is the father and Mary Ely 

is the mother.  These parents are also additional individuals to add to our 

database, even though at the moment we have no more information about 

them. 

Thus far from (1) we have identified three individuals along with birth 

and death dates for one of them and some family relationships.  We can 

represent this information graphically, as in Figure 3. 

Person
 gender: M
 name: “Gerard Lathrop”
 birth:
 death: 

Person
 gender: M
 name: “Gerard Lathrop”
 birth:
 death: 

Person
 gender: M
 name: “Charles C. Lathrop”
 birth: “1817”
 death: “1865”

Person
 gender: M
 name: “Charles C. Lathrop”
 birth: “1817”
 death: “1865”

Person
 gender: F
 name: “Mary Ely”
 birth: 
 death: 

Person
 gender: F
 name: “Mary Ely”
 birth: 
 death: 

Couple
married: 

wifehusband

child parents

father

son son

mother

Charles Christopher Lathrop, N. Y. City, b. 1817, d. 1865, son 
of Mary Ely and Gerard Lathrop ;

 

Figure 3:  Meanings Derived from CCL Example 
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This diagram represents the meaning of fragment (1), at least as far as 

we have analyzed it so far.  The diagram leaves open slots for additional 

information that is not now available but might be discovered later on. 

How did we know that the names Charles Christopher Lathrop 

(abbreviated somewhat in Figure 3), Mary Ely, and Gerard Lathrop identify 

persons?  Two kinds of knowledge might help.  Lexical knowledge can be 

applied to the names themselves, either by looking up the words in dictionaries 

as mentioned or by using a much more sophisticated named entity recognizer 

of some sort. 

There is another approach, however, using syntactic and semantic 

knowledge.  An English syntactic parser can identify proper names, but not 

whether they represent a person, a place, an organization, or something else.  

Further syntactic knowledge can determine that a name is the subject or object 

of a verb like born, died, or married, or of some other predicate like son of.  The 

semantics of these predicates plus the fact that we are working in the domain 

of human genealogy allow us to conclude these names refer to persons.  

Similar reasoning with a relation like son of can determine the gender of the 

subject. 

The fragment in (3), taken from Sample 2 (Myra), gives a more complex 

example. 

(3) his widow married JONATHAN SQUIRES, who was born in Ohio, July 25, 1823, 
by whom she had one son, J. Wilbur, born June 16, 1865, in DeKalb county, 
Ind. 
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This passage is a lot more challenging.  The language here is much more 

complex, but we consider what processing is possible. 

This starts with the noun phrase his widow, which we cannot resolve 

from this fragment itself without wider discourse information.  In (4) we see 

selections from the previous text of the paragraph: 

(4) MYRA, born July 26,1835, in Eden, Vt. She married ELIJAH SPENCER, Dec. 
25, 1851. … Elijah Spencer died in the Union army in 1863, and his widow 
married … . 

Several reasoning steps will show that his likely refers to Elijah 

Spencer since he is the salient male at that point, that the noun widow refers 

to a woman whose husband has died, and that the she in She married refers 

back to MYRA.  Since Myra married Elijah Spencer and Elijah Spencer died, his 

widow must therefore be Myra.  The heading at the top of Sample 2 shows that 

we are discussing the children of James Harwood, so that Myra’s maiden name 

must be Myra Harwood, again using the rules of surname inheritance in 

English. 

Returning to our text in (3), we now know that it was Myra Harwood who 

married Jonathan Squires.   Ignoring for the moment the details of Jonathan’s 

birth presented here, we now skip to the part that says: by whom she had one 

son, J. Wilbur, born June 16, 1865.  This gives us an individual named 

J. Wilbur who was born on June 16, 1865. 

Notice, however, that the family relationships are described here by 

much different language than the son of A and B form we saw in (1).  Instead 

we have the phrase by whom she had one son.  To understand this we have to 
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identify the antecedents of the pronouns whom and she, the preposition by, 

and the verb had when its subject is a woman and its object is one son.  This 

requires using lexical, syntactic, semantic, and pragmatic knowledge. 

The result of this process for the fragment in (3), augmented by the 

contextual information that precedes it, will be a meaning diagram like this: 

Person
 gender: M
 name: “Jonathan Squires”
 birth: “July 25, 1823”
 death: 

Person
 gender: M
 name: “Jonathan Squires”
 birth: “July 25, 1823”
 death: 

Person
 gender: M
 name: “J. Wilbur Squires”
 birth: “June 16, 1865”
 death: 

Person
 gender: M
 name: “J. Wilbur Squires”
 birth: “June 16, 1865”
 death: 

Person
 gender: F
 name: “Myra Harwood”
 birth: 
 death: 

Person
 gender: F
 name: “Myra Harwood”
 birth: 
 death: 

Couple
married: 

wifehusband

child parents

father

son son

mother

his widow married JONATHAN SQUIRES, …, by whom she had one 
son, J. Wilbur, born June 16, 1865, … .

 

Figure 4:  Meanings Derived from Myra Example 

The surface linguistic form of the fragments in (1) and (3) is quite 

different, yet the meaning structures in Figures 3 and 4 are exactly the same 

except for the names and dates.  This shows how human language can employ 

a wide range of forms to represent any given idea or set of ideas.  The one used 

in a particular situation depends on the context of the discourse and the goals 

of the speaker or author.  This is why natural language understanding is hard. 

One key to a possible solution is the fact that we are working in a very 

limited, well understood domain7.  Within this domain there are many 

simplifying assumptions we can make, such as that the subject of the verb 

7 See Melby (1995) for comments on domain-specific vs. general language processing. 
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born is going to be a person and not either a giraffe or a nation.  The 

constraints of this domain make it feasible to think we could assemble enough 

textual, lexical, syntactic, semantic, pragmatic, and world knowledge to do a 

reasonably good job of extracting the information we want from the family 

history book texts.  The OntoSoar project draws on much previous work and 

adds some original contributions to produce a system that looks promising for 

this specific problem within the much larger field of extracting information 

from text. 

Target ontologies 

Up to this point we have considered a couple of specific examples of the 

input texts we plan to deal with, and given some intuitive ideas of how we 

might approach the problem of extracting useful information from them.  We 

have not yet considered how that information can be represented in a form that 

would allow it to be inserted into a database where it could be searched and 

queried by users.  We now address this question. 

The Onto part of OntoSoar is short for OntoES, a system which has been 

under development by the Data Extraction Group (DEG) at BYU for several 

years.  In part OntoES draws on a large body of literature on conceptual 

modeling to produce a model called OSMX capable of representing a wide 

variety of conceptual models and populating them with data (see Embley et al., 

1992).  OntoES includes tools for creating and manipulating these models 

graphically.  A given conceptual model represented in the OSMX form, with our 

without being populated with facts, we will refer to as an ontology. 
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OntoSoar, then, in addition to the family history book text inputs we 

have been discussing, has another type of input: an OSMX ontology 

representing the conceptual model that the user wants the extracted 

information to be mapped onto.  Thus OntoSoar reads in two files, a text file 

and an OSMX ontology file, does all the reasoning necessary to derive the 

meaning of the text, and then maps its internal meaning representation onto 

the user-provided ontology.  The end result is to write out a new OSMX file in 

which the ontology is populated by all the facts derived from the text.  This 

populated ontology can then be added to a searchable database to make the 

information available to anyone who wants to search it. 

Figure 5 gives a simple example of what an ontology for genealogy 

information might look like as represented graphically by the OntoES tools. 

 
Figure 5:  Ontology Example 1 

This model is very simple, designed only to identify people by their names and 

represent their birth and death dates.  A more complex example that shows 

one possible way of modeling family relationships is given in Figure 6. 
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Figure 6:  Ontology Example 2 

This ontology, or other similar ones, has often been used in other work 

done with the OntoES system.  It represents family relationships by using 

subsets of the Person class.  Other representations where family relationships 

are first class objects in themselves are also possible.  The goal of this thesis 

includes showing how to map to a number of possible ontologies of this sort. 

Levels of knowledge 

Applying Allen Newell’s insight quoted in Chapter 1 to our goals here, we 

see that several levels of knowledge can be brought to bear: textual, syntactic, 

lexical, semantic, pragmatic, and world knowledge.  We now look briefly at each 

of these. 

There are many possibilities for using knowledge at the textual level.  

First of all, it should not be difficult to make rules to correct some of the OCR 

errors that appear in the raw text we get from scanned historical documents.  
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For example, in our sample texts we can correct i860 to 1860 and Nov. 

2,1879 to Nov 2, 1879.  We can also divide the text into tokens and categorize 

tokens as words, numbers, or punctuation.   A preprocessor could identify 

phrases that are likely to be names of people, places, organizations, etc. either 

by simply looking up words in lexicons or by using one of the available named 

entity recognition systems.  Another key element at the textual level is knowing 

how to break up the running text into segments that correspond roughly to 

sentences so that these segments can be processed reasonably by the syntactic 

part of the system. 

Lexical knowledge consists of knowing about individual words, which 

could include their spelling, their pronunciation, their parts of speech, and 

what they mean. 

Syntactic analysis usually consists of both identifying the part of speech 

of each word and building parse trees of the syntactic structure of each 

sentence.  This type of analysis usually finds constituents like noun phrases, 

verbs with their subjects and objects, and other kinds of modifying phrases 

and clauses.  This kind of knowledge is very useful in understanding the 

structure of the language in the text and how different words and phrases 

relate to each other structurally.  However, it gives very little information on 

what a segment of text actually means. 

Semantics involves using both syntactic and lexical knowledge to derive a 

representation of the meaning of a given linguistic unit.  The literature on 

formal semantics attempts to represent meaning in terms of mathematical 
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models that abstract away from the mental processes of a speaker or writer 

and a hearer or reader.  Cognitive semantics tries to understand meaning in 

terms of how it relates to experience in the minds of real human beings. 

Often semantics, when used as a technical term, deals with the meaning 

of one particular sentence at a time.  However, much of meaning comes from 

the ongoing discourse made up of many sentences and from knowledge of the 

world in general or the particular domain or situation being discussed 

independent of anything in the language itself.  This level of knowledge is 

generally called pragmatics, and it is necessary to find what entities pronouns 

and other noun phrases that are not proper names refer to.  For example, in (3) 

we need to consider the knowledge from previous sentences to know who the 

phrase his widow refers to. 

The system built for this thesis uses tools at all these levels of knowledge.  

Incoming texts will first be processed by a textual preprocessor which will 

segment the text into sentence-like fragments that the syntactic parser can 

handle, as well as correcting as many OCR errors as possible and replacing 

many abbreviations for key words, such as replacing b. with born and d. with 

died.  Syntactic analysis is done by the open source Link Grammar Parser, 

with its grammar modified somewhat to deal with the idiosyncrasies of the text 

found in genealogy books.  Both semantic and pragmatic knowledge are 

applied by a meaning engine built using the Soar cognitive architecture, which 

will also map the meanings found from the text onto the conceptual model 

provided by a user ontology for a particular domain.  This meaning engine, as 
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well as the programmatic glue needed to make all these elements work together 

smoothly, is the main contribution of this work. 

System architecture 

OntoSoar is built using Java components, some Java libraries, some 

custom Java components, the LG parser, the Soar system, and much Soar 

code that implements all the semantic components.  Figure 7 shows a block 

diagram of the system, showing the main flow of data.  In addition to the 

blocks shown, the overall Java application manages the flow of data through 

the system and the interactions between Soar and the rest of the world. 

PDF TextPDF Text Populated
User

Ontology
(OSMX)

Populated
User

Ontology
(OSMX)

SegmenterSegmenter LG ParserLG Parser Meaning 
Builder

Meaning 
Builder

Conceptual 
Semantic 
Analyzer

Conceptual 
Semantic 
Analyzer

MapperMapper

Segment 
Rules

Segment 
Rules

Link 
Grammar

Link 
Grammar

Construction 
Grammar

Construction 
Grammar

Inference 
Rules

Inference 
Rules

TextText SegmentsSegments LinkagesLinkages Meaning 
Schemas
Meaning 
Schemas

Enriched 
Schemas
Enriched 
Schemas FactsFacts

User 
Ontology 
(OSMX)

User 
Ontology 
(OSMX)

Soar

OntoES
Tool Set
OntoES
Tool Set

 

Figure 7:  OntoSoar Block Diagram 

Figure 7 shows a pipeline where the raw text extracted from a PDF file by 

an OCR engine enters at the left and the data is transformed by several 

components to get to the form called Enriched Schemas in the figure.  At this 

30 
 



point the Mapper component takes a conceptual model in the form of an OSMX 

file, populates it with facts derived from the internal meaning structures, and 

outputs the populated ontology as a new OSMX file.  This output file can then 

be viewed, evaluated, or imported into a database by tools from the OntoES 

tool set. 

The Soar components called Meaning Builder, Conceptual Semantic 

Analyzer, and Mapper will be often referred to collectively as the Semantic 

Analyzer in what follows. 

Segmentation 

The block called Segmenter in Figure 7 is actually a preprocessor that 

does several kinds of text processing to transform the raw OCR’d text into a 

form that the LG Parser can work with.  The LG Parser and the rest of the 

pipeline process the text one segment at a time.  A segment is roughly 

equivalent to a short sentence.  However, the input text often has several 

clauses run together into a much longer sentence.  The LG Parser tends to get 

very confused and produce bad results when it gets several clauses run 

together, so the main job of the Segmenter is to break the text up into 

sentence-like segments that can be processed well by the parser.  It also makes 

some corrections at the individual token level to reduce OCR errors and similar 

anomalies. 

The Segmenter starts by combining the entire input text into a single 

string with all groups of white space characters condensed into single spaces, 

then splitting this string into tokens based on those spaces.  It then makes 
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some corrections at the token level: it makes sure there is a space after every 

comma (sometimes the OCR deletes a space after a comma), it changes ‘i’ to ‘1’ 

in a sequence of digits (another common OCR error), and replaces a string like 

Rosa E., with Rosa E, since the period and comma together greatly confuse 

the LG Parser.  In addition, tokens that represent abbreviations commonly 

used in family history texts are replaced with the full word they represent, such 

as born for b., died for d., daughter for dau., etc. 

Once the tokens have been cleaned up, the preprocessor proceeds to 

divide the text into segments by marking each token according to whether or 

not it should be the end of a segment.  This marking is done by comparing 

each token against all the rules in a file of segment rules.  Each rule specifies a 

pattern to be matched and whether to mark a token that matches that pattern 

as an end-of-segment marker or not.  Basically the rules say that any token 

that ends with a period, a colon, or a semicolon should be considered a 

segment marker.  However, there are a number of rules to recognize 

abbreviations that are frequently used in domain texts and not mark the end of 

a segment based on the period in those abbreviations. 

It was found that using these rules based on punctuation did a 

reasonable job, but we still often had many segments that were too long and 

confused the parser.  Solving this problem required being smarter about 

commas.  Many commas should not end a segment, but also the texts include 

many commas that really do separate different clauses.  So a heuristic that 

works reasonably well was added: whenever a comma is followed by one of a 
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list of specific words, break the segment at that point and replace that comma 

with a period.  The words used to indicate a new segment should begin are: 

and, who, by, Mr., Mrs., Miss, he, she, they, had, have, and married. 

Generally speaking these words indicate a new clause.  However, the last 

three are verbs whose subjects will have been left behind in the previous 

segment that was broken off.  This problem is solved by inserting the token GP, 

standing for Generic Pronoun, in front of the verb to start the new segment.  

Thus when the system resolves the reference for this pronoun the verb will 

connect with its subject again.  The examples below will show how this works. 

The following two figures show the results of the segmenter for each of 

our two sample texts, which we will refer to by short names for their principal 

characters as CCL for Sample 1 and Myra for Sample 2. 

The segmented text for the CCL sample is given in (5): 

(5) 1: 243314.  '.' 
2: Charles Christopher Lathrop, N. Y. City, born 1817, died 1865, son of Mary 
Ely and Gerard Lathrop ;  ';' 
3: GP married 1856, Mary Augusta Andruss, 992 Broad St., Newark, N. J.  ',' 
4: who was born 1825, daughter of Judge Caleb Halstead Andruss and Emma 
Sutherland Goble.  '.' 
5: Mrs. Lathrop died at her home, 992 Broad St., Newark, N. J, Friday morning, 
Nov. 4, 1898.  '.' 
6: The funeral services were held at her residence on Monday, Nov. 7, 1898, at 
half-past two o'clock P. M. Their children:  ':' 
7: 1.  '.' 
8: Charles Halstead, born 1857, died 1861.  '.' 
9: 2.  '.' 
10: William Gerard, born 1858, died 1861.  '.' 
11: 3.  '.' 
12: Theodore Andruss, born 1860.  '.' 
13: 4.  '.' 
14: Emma Goble, born 1862.  '.' 
15: Miss Emma Goble Lathrop, official historian of the New York Chapter of the 
Daughters of the American Revolution, is one of the youngest members to hold 
office, but one whose intelligence and capability qualify her for such 
distinction.  '.' 
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An image of this part of the original PDF file is in Figure 1.  Figure 2 has an 

image of the Myra sample, whose segmented form is given in (6). 

(6) 1: Children of JAMES HARWOOD, NO. 103.  '.' 
2: 229.  '.' 
3: MYRA, born July 26, 1835, in Eden, Vt.  '.' 
4: She married ELIJAH SPENCER, Dec. 25, 1851.  '.' 
5: They had five children:  ':' 
6: Arvilla, born in 1852, is not living;  ';' 
7: Mariette, born Dec. 25, 1854.  ',' 
8: GP married Jonathan Snyder.  ',' 
9: GP have a family;  ';' 
10: Leverett, born Feb. 6, 1857.  ',' 
11: GP married Cora Smith, Nov. 2, 1879.  ',' 
12: GP had two children, Perry F. and Ida I. Leverett died May 21, 1910;  ';' 
13: Rosa E, born Jan. 13, 1860.  ',' 
14: GP married Emmett Byers.  ',' 
15: and have children;  ';' 
16: and Harrison, born about 1862, is not living.  '.' 
17: Elijah Spencer died in the Union army in 1863.  ',' 
18: and his widow married JONATHAN SQUIRES.  ',' 
19: who was born in Ohio, July 25, 1823.  ',' 
20: by whom she had one son, J. Wilbur, born June 16, 1865, in DeKalb county, 
Ind..  ',' 
21: GP married Cora M. Thomas, Aug. 24, 1887.  ',' 
22: they reside in St. Joseph, Mich., five children.  ',' 
23: Mrs. Myra Squires died in Allen county, Ind., Feb. 13, 1874.  '.' 

These printouts show three parts for each segment.  First there is a 

segment number followed by a colon, then the actual text of the segment as it 

will be submitted to the parser, and finally a single punctuation mark in single 

quotes.  This punctuation mark is the one that was originally at the end of the 

segment before the algorithm put a period at the end to help the parser.  Later 

semantic analysis will need to know this original terminator because it affects 

pronoun resolution.  

We can see that most segments now have just one or two verbs, which 

the parser can handle well.  We also see several segments that begin with a 

pronoun, especially the synthetic pronoun GP.  Later we will see that resolving 

the referents for these pronouns is important for overall system performance. 
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Parsing 

The Link Grammar Parser provides our syntactic analysis component, 

and runs as a black box to take in the text of one segment at a time and 

produce a parse result called a linkage for that segment.  One of the great 

advantages of the LG Parser is that its grammar is accessible and easy to 

modify.  As mentioned earlier and shown in our text samples, family history 

books are often written in a much abbreviated English style.  Many function 

words are omitted completely, causing a parser that only works with standard 

English grammar to fail.  We have modified the grammar in several small 

details so that it works well on our texts. 

In (7) we see several examples of linkages produced by the CCL text.  

Some are wrapped across multiple lines in this thesis format.  Each link 

between words is marked with a primary type in upper case and sometimes a 

secondary type in lower case.  Some of the meanings of the main link types are: 

S subject of a verb, O object of a verb, G proper noun, J object of a preposition, 

IN date, MX appositive, and X punctuation. 

If we look at (7a), we see that the verb born is attached with an MX link 

to N. Y. City, not to its real subject Charles Christopher Lathrop.  The 

semantic processor deals with this by seeing that there is a second MX link 

which does connect to the real subject, and assuming that an appositive 

modifying another appositive should really modify the same thing as the first 

appositive.  Without this we would get N. Y. City being born in 1817. 
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(7) a. 2: Charles Christopher Lathrop, N. Y. City, born 1817, died 1865, son of 
Mary Ely and Gerard Lathrop ;  ';' 

                         +-----------------Ss-------------- 
                       +------MX------+-------Xc-------+  
                       |    +----Xd---+--MX*p-+---Xca--+  
   +----G----+----G----+    |  +-G+-G-+  +-Xd-+--IN-+  |  
   |         |         |    |  |  |   |  |    |     |  |  
Charles Christopher Lathrop , N. Y. City , born.v 1817 ,  
 
 
        ---+            +---------------------Xc--------------------+ 
           |            |    +-----------Js-----------+             | 
           |     +--MX--+    +---Js--+                |             | 
           +--IN-+  +-Xd+-Mp-+   +-G-+         +---G--+             | 
           |     |  |   |    |   |   |         |      |             | 
        died.v 1865 , son.n of Mary Ely and Gerard Lathrop [;] RIGHT-WALL 

 b. 3: GP married 1856, Mary Augusta Andruss, 992 Broad St., Newark, N. J.  ',' 

                 +-------------------MX------ 
               +---------MX---------+    +- 
               |  +--------Xd-------+    |  
 +--Ss-+---IN--+  |   +--G--+---G---+-Xca+  
 |     |       |  |   |     |       |    |  
GP married.v 1856 , Mary Augusta Andruss ,  
 
 
                    +------------Xc------------+ 
        ------------+         +-------Xca------+  
        -----Xd-----+         +----MX---+      | 
         +---Dmcn---+----MX---+   +--Xd-+      |  
         |    +--G--+Xi+ +-Xd-+   |  +-G+--Xca-+ 
         |    |     |  | |    |   |  |  |      | 
        992 Broad St.y . , Newark , N. J. RIGHT-WALL 
 

 c. 8: Charles Halstead, born 1857, died 1861.  '.' 

      +------------------------Xp------------------------+ 
    |                 +-----------Ss----------+        | 
    +--------Wd-------+---MX*p--+---Xc---+    |        | 
    |        +----G---+    +-Xd-+--IN-+  |    +--IN-+  | 
    |        |        |    |    |     |  |    |     |  | 
LEFT-WALL Charles Halstead , born.v 1857 , died.v 1861 . 
 
 

In (8) shows some linkages from the Myra text.  In (8d) we see a 

limitation of our segmentation algorithm.  When it sees an abbreviation like I. 

it knows this is an abbreviation, but it has no way of knowing if that period 

might also indicate the end of a sentence.  This is an ambiguity in English 
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orthography.  The Segmenter assumes this is not the end of a sentence, which 

is the correct choice most of the time.  In this particular case, however, it is the 

wrong answer and causes the second Leverett to get an incorrect name. 

(8) a. 3: MYRA, born July 26, 1835, in Eden, Vt.  '.' 

              +-------------MX*x------------+                   
            |       +--------Xca-------+  +--------Xc-------+ 
            +--MX*p-+     +----TY---+  |  |   +--MX-+       | 
    +---Wf--+  +-Xd-+--IN-+-TM+ +-Xd+Xc+Xd+-Js+  +Xd+--Xca--+ 
    |       |  |    |     |   | |   |  |  |   |  |  |       | 
LEFT-WALL MYRA , born.v July 26 , 1835 , in Eden , Vt. RIGHT-WALL 
 

 b. 4: She married ELIJAH SPENCER, Dec. 25, 1851.  '.' 

          +---------MVp--------+                       
        +-------Os------+    |   +------TY------+    
 +--Ss--+        +---G--+    +-IN+---TM---+ +-Xd+Xc+ 
 |      |        |      |    |   |        | |   |  | 
she married.v ELIJAH SPENCER , Dec.x [.] 25 , 1851 . 
 

 c. 6: Arvilla, born in 1852, is not living;  ';' 

     +------------Ss-----------+                    
   +---MX*p--+-----Xc----+   +----Ost---+      
   |    +-Xd-+-MVp+-IN+  |   +EBm+      |      
   |    |    |    |   |  |   |   |      |       
Arvilla , born.v in 1852 , is.v not living.n [;] 
 

 d. 12: GP had two children, Perry F. and Ida I. Leverett died May 21, 1910;  
';' 

       +-----Op-----+---MXp- 
 +-Ss+    +--Dmc--+     +- 
 |   |    |       |     |  
GP had.v two children.n ,  
 
 
          +----------------------------Xc----------------------------+ 
        --+                                   +----TY----+           | 
        Xd+    +-----G----+--G--+---Ss--+--IN-+-TM-+ +-Xd+----Xca----+ 
          |    |          |     |       |     |    | |   |           | 
        Perry F. and Ida I. Leverett died.v May.i 21 , 1910 [;] RIGHT-WALL 
 

 e. 17: Elijah Spencer died in the Union army in 1863.  ',' 
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      +---------------------------Xp--------------------------+ 
    |                       +-----------MVp----------+      |  
    |                       |    +------Js------+    |      |  
    +-------Wd------+       |    |  +-----Ds----+    |      |  
    |        +---G--+---Ss--+-MVp+  |    +--AN--+    +-IN+  |  
    |        |      |       |    |  |    |      |    |   |  | 
LEFT-WALL Elijah Spencer died.v in the Union army.n in 1863 . 
 

 f. 18: and his widow married JONATHAN SQUIRES.  ',' 

      +-----------------------Xp-----------------------+  
    |      +---Wdc---+        +--------Os-------+    |  
    +--Wc--+   +--Ds-+---Ss---+         +---G---+    | 
    |      |   |     |        |         |       |    | 
LEFT-WALL and his widow.n married.v JONATHAN SQUIRES . 
 

 g. 19: who was born in Ohio, July 25, 1823.  ',' 

                         +----MVp----+   +----TY---+    
    +--Ws--+Ss*w+--Pv--+-MVp+-Js+  +-IN+-TM+ +-Xd+Xc+ 
    |      |    |      |    |   |  |   |   | |   |  | 
LEFT-WALL who was.v born.v in Ohio , July 25 , 1823 . 
 

 h. 20: by whom she had one son, J. Wilbur, born June 16, 1865, in DeKalb 
county, Ind..  ',' 

                +-------------------------MVp----------------------- 
              |         +--------MXsp--------+                     
              |         +----MXs----+        +--------Xc--------+  
 +---CO--+    +----Os---+   +---Xd--+        |     +----TY---+  |  
 +-Jw+   +-Ss-+    +-Ds-+   |  +--G-+Xca+-Xd-+--IN-+-TM+ +-Xd+Xc+  
 |   |   |    |    |    |   |  |    |   |    |     |   | |   |  |  
by whom she had.v one son.n , J. Wilbur , born.v June 16 , 1865 ,  
 
 
        -+                          
         |                          
         |                          
         +-----Js-----+---MXs--+    
         |    +---AN--+    +-Xd+Xc+ 
         |    |       |    |   |  | 
        in DeKalb county.n , Ind. . 
 

 i. 21: GP married Cora M. Thomas, Aug. 24, 1887.  ',' 

         +---------MVp--------+                       
       +--------O-------+   |   +------TY------+    
 +--Ss-+       +-G-+--G-+   +-IN+---TM---+ +-Xd+Xc+ 
 |     |       |   |    |   |   |        | |   |  | 
GP married.v Cora M. Thomas , Aug.x [.] 24 , 1887 . 
 

 j. 22: they reside in St. Joseph, Mich., five children.  ',' 
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                 +-----Js----+-----------MX----------+      - 
               |   +---G---+---MX--+   +-----Xd----+      - 
  +--Sp--+-MVp-+   +Xi+    |   +-Xd+Xca+   +--Dmc--+--Xc-+- 
  |      |     |   |  |    |   |   |   |   |       |     | 
they reside.v in St.x . Joseph , Mich. , five children.n . 
 

 k. 23: Mrs. Myra Squires died in Allen county, Ind., Feb. 13, 1874.  '.' 

                          +---------------IN------------- 
  +---G---+             |    +-----Js----+---MXs--+     
  +-Xi+   +--G--+---S---+-MVp+   +---AN--+    +-Xd+Xc+  
  |   |   |     |       |    |   |       |    |   |  |  
Mrs.x . Myra Squires died.v in Allen county.n , Ind. ,  
 
 
        --+                   
          +------TY------+    
          +---TM---+ +-Xd+Xc+ 
          |        | |   |  | 
        Feb.x [.] 13 , 1874 . 
 

Segments (8e-k) show a major advantage of the current segmentation 

algorithm.  With the original OCR’d text, a simple segmenter that only breaks 

on a period that’s not in an abbreviation would keep all seven of these 

segments as one huge sentence.  This is true even though if we look at Figure 2 

we see a clear period at the end of what we are calling segment Myra 22 

separating it from Myra 23.  However, the OCR engine interpreted that period 

as a comma.  When something like that is fed into the LG Parser it takes an 

enormous amount of time to run and produces a linkage with a lot of mistakes 

in it.   

Building meanings 

Figure 7 shows that the output of the LG Parser going into Soar, where 

three components eventually produce a set of facts in the user ontology.  These 

facts are output to the Java code, which puts them into a populated OSMX file.  
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The first of these three components is called the Meaning Builder, which we 

will discuss here. 

Conceptually this component is based on the Embodied Construction 

Grammar (ECG) ideas discussed by Bergen and Chang (2003, 2013), Bryant 

(2008), and Chang (2009).  They present both an intuitive explanation and a 

formalism for ECG.  Although these ideas have inspired the work done here, 

there are two fundamental differences. 

First, construction grammar in general and ECG in particular are 

designed to build constructions directly from an input text.  However, in 

OntoSoar we are building constructions from the linkages produced by the LG 

Parser.  Thus we have available not only the words themselves but also the 

links between them found by the parser. 

Second, Bryant (2008) presents a formal grammar for ECG, and his 

system includes a compiler to compile a grammar written in this ECG language 

into an internal form.  The construction grammar in OntoSoar, which we will 

call OCG, has been coded by hand into Soar productions.  Some of these 

simply build static data structures when the program initializes itself and thus 

can be thought of as declarative knowledge, while others are productions that 

fire as the semantic analysis is proceeding and thus are procedural knowledge.  

We will see examples below.  The knowledge and experience produced by the 

current project may enable a future effort to build a compiler to compile some 

form of OCG from a higher level representation into Soar code. 
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In the construction grammar paradigm, a construction is a structure that 

maps a part of the surface form if the input language into a meaning 

representation of some sort.  In ECG and OCG the two ends of this mapping 

are called the form pole and the meaning pole.  In OntoSoar the declarative part 

of the grammar created at system initialization contains descriptions of 

constructions that will be attached dynamically to parts of the input stream, as 

well as meaning schemas that these constructions map to. 

To illustrate this concept, Figure 8 gives an example for a portion of the 

CCL 2 segment. 

+-----------Ss----------+          
+---MX*p--+---Xc---+    |          

+----G----+----G----+    +-Xd-+--IN-+  |    +--IN-+    
|         |         |    |    |     |  |    |     |    

Charles Christopher Lathrop , born.v 1817 , died.v 1865 [,]

PROPER-NAME

REF-EXPR

LE-VERB LE-VERBDATE DATE

LIFE-EVENT

LIFE-EVENT

 
Figure 8:  Construction Example 1 

Here we see the linkage for this partial segment and a set of blue 

rectangles and arrows that represent the constructions recognized from this 

segment.  The lower level rectangles have arrows pointing to the words that 

make up the form pole of each of those constructions.  The drawing somewhat 

simplifies the complexity of the full set of constructions.  Though not shown, 

each of these constructions is recognized based not only on the words it 
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contains but also on the links from each word going toward its left.  Only 

leftward links are considered because the Soar part of OntoSoar works 

incrementally one word at a time, as opposed to the LG Parser which considers 

a whole segment at once. 

Figure 8 shows the form pole of each construction.  However, every 

construction also has its meaning pole.  In Figure 9 we see the same diagram 

with meaning structures added. 

+-----------Ss----------+          
+---MX*p--+---Xc---+    |          

+----G----+----G----+    +-Xd-+--IN-+  |    +--IN-+    
|         |         |    |    |     |  |    |     |    

Charles Christopher Lathrop , born.v 1817 , died.v 1865 [,]

DateDate

NameName

PersonPerson DateDate

LifeEventLifeEvent

LifeEventLifeEvent

PROPER-NAME

REF-EXPR

LE-VERB LE-VERBDATE DATE

LIFE-EVENT

LIFE-EVENT

 
Figure 9: Construction Example 1 with Meanings 

The root structures of this meaning network are the LifeEvent structures.  

Each requires a Person subject, and the Person is shown here with a Name.  

Date structures are also connected to each LifeEvent, but these are optional. 

This drawing has a couple of simplifications of what the real meaning 

structures look like.  First of all, each meaning structure has a number of 

internal slots to hold values of properties or references to other meaning 

structures.  In ECG terminology these slots are called roles.  For example, the 
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drawing shows a LifeEvent as having a subject role to be filled with a Person 

and a date role to be filled by a Date.  A Person is shown as having a name role 

filled by a Name, but it also has birth and death roles which point to LifeEvents, 

if filled. 

Another major simplification in this drawing has to do with referring 

expressions.  These include proper nouns, pronouns, and other noun phrases 

that refer to an entity of some sort.  The current OntoSoar only considers 

Person entities, but the structure is there to handle places, organizations, and 

other entity types. 

The main construction for a referring expression is called REF-EXPR.  It 

must have a single child which is some more specific type of expression.  The 

only one shown here is a PROPER-NAME.  However, the primary meaning 

structure associated with a REF-EXPR is something called a RefDesc (short for 

Referent Descriptor).  A RefDesc has a number of roles to keep track of things 

like the number and gender of the referent, as well as a role called referent 

which points to the meaning structure for the actual entity referred to.  The 

RefDesc structures are not shown in these drawings just to keep the drawing 

from being too cluttered.  Instead we show the meaning structure for the entity 

referred to, which can be thought of as a merger of a Person and a RefDesc. 

The purpose of the RefDesc structures is to allow for several referring 

expressions to refer to the same entity.  For example, in Figure 9 we see an 

example of where the REF-EXPR is a PROPER-NAME, in which case the 

referent of the RefDesc is a Person structure created right there.  However, in 
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segment CCL 3 we have a GP pronoun which should refer to this same person.  

This is accomplished by having a RefDesc based on that pronoun whose 

referent will eventually be filled in as being the Person built from Charles 

Christopher Lathrop.  Thus every REF-EXPR construction has its own 

unique RefDesc structure, but several RefDescs may point to the same referent. 

Another example extracted from the same CCL 2 segment is shown in 

Figure 10. 

PROPER-NAMEPROPER-NAME

+-----------Js-----------+
+---MX---+    +---Js--+                |

+----G----+----G----+    +-Xd+-Mp-+   +-G-+         +---G--+
|         |         |    |   |    |   |   |         |      |

Charles Christopher Lathrop , son.n of Mary Ely and Gerard Lathrop

PROPER-NAMEPROPER-NAME PROPER-NAMEPROPER-NAME

REF-EXPRREF-EXPR REF-EXPRREF-EXPR REF-EXPRREF-EXPRSON-OFSON-OF

SON-OFSON-OF

NameName

PersonPerson

NameName

PersonPerson

NameName

PersonPerson

SonOfSonOf

SonOfSonOf

 
Figure 10: Construction Example 2 with Meanings 

Here we see three Persons built from three PROPER-NAMEs.  We also see 

a different kind of predicate.  The predicates in Figures 8 and 9 were built from 

LIFE-EVENT constructions built from verbs.  Here we have SonOf relations 

built from SON-OF constructions built from the noun son, a noun which 

represents a relationship.  Of course many other relations of this sort based on 

nouns are possible, including one based on the phrase his widow which we see 

in the Myra 18 segment. 
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Time and space do not permit going into all the details of how meaning 

structures are built, but we can show some representative pieces.  In (9) and 

(10) we will show both the construction and the meaning schema for proper 

names.  These are shown in a format that is modeled after the ECG formalism 

of Bryant (2008), but adapted somewhat for OntoSoar.  The current version of 

OntoSoar does not actually use this notation directly, but the structures shown 

in (9) and (10), and similar structures for other constructions and schemas, 

have been hand-coded as Soar productions. 

(9) construction PROPER-NAME-CXN 
subcase of REF-EXPR 
constituents 
 w : WORD 
 pn : PROPER-NAME-CXN 
form 
 constraints 

(1) pn –G– w 
(2) w 

meaning : ProperName 
 constraints 

(1) self.m.value <- concat(pn.value, w.text) 
(2) self.m.value <- w.text 

 

This construction shows that it is a subcase of REF-EXPR and that its 

meaning pole is a ProperName schema.  This declarative knowledge is used by 

a proper-name Soar operator that has the procedural knowledge necessary to 

build an instance of a PROPER-NAME from one or more unknown words 

connected by G links.  Then the ProperName schema is used to build 

ProperName meaning structures (called simply Names in our drawings).  The 

schema is shown in (10). 
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(10) schema ProperName 
subcase of RefDesc 
roles 
 value : string 
 gender : { M | F | N } 
 number : { S | P } 
 person : { 1 | 2 | 3 } 
 case : { N | D | P } 
 givenness : {  NAMED | ANAPHOR } 
matching 
keywords : name 
lexical : true 
 

Here we see that a ProperName is a subcase of RefDesc.  It has a role 

unique to ProperName called value, and also the gender, number, person, 

case, and givenness roles that are used to fill in the corresponding roles in 

RefDesc.  These roles become very important later on in resolving pronouns 

and inferring gender. 

To give a general idea of how the building of meanings is carried out, 

here is an abbreviated Soar trace for building the basic meaning structures for 

the phrase Charles Christopher Lathrop: 

(11)       37:    O: O32 (comprehend-word) 
    39:       O: O33 (setup-word) 
 [Charles] G -> 2 
    40:       O: O34 (lexical-construction) 
Building a WORD construction for 'Charles'. 
    41:       O: O35 (word-done) 
Top of stack is WORD, nothing below it. 
    42:    O: O36 (comprehend-word) 
1 -> G [Christopher] G -> 3 
    45:       O: O38 (lexical-construction) 
Building a WORD construction for 'Christopher'. 
    46:       O: O40 (proper-name) 
    47:       O: O42 (build-meaning) 
    49:          O: O43 (get-schema) 
Built a ProperName schema. 
    50:          O: O44 (fill-defaults) 
    51:          O: O46 (add-roles) 
Add roles to a ProperName schema. 
    52:          O: O47 (fill-roles) 
    53:          O: O48 (mark-ref-features) 
    54:          O: O45 (meaning-done) 
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Attaching a ProperName schema to a PROPER-NAME construction. 
    55:       O: O49 (generalize-cxn) 
Generalizing a PROPER-NAME construction to a REF-EXPR construction. 
    56:       O: O50 (build-meaning) 
    58:          O: O51 (get-schema) 
Built a RefDesc schema. 
    59:          O: O52 (fill-defaults) 
    60:          O: O54 (add-roles) 
Add roles to a RefDesc schema. 
    61:          O: O55 (fill-roles) 
    62:          O: O53 (meaning-done) 
Attaching a RefDesc schema to a REF-EXPR construction. 
    63:       O: O39 (word-done) 
Top of stack is REF-EXPR, nothing below it. 
    64:    O: O56 (comprehend-word) 
    65:    ==>S: S22 (operator no-change) 
    66:       O: O57 (setup-word) 
0 -> Wd 2 -> G [Lathrop] MXp -> 5 Ss -> 8 
    67:       O: O58 (lexical-construction) 
Building a WORD construction for 'Lathrop'. 
    68:       O: O60 (proper-name) 
    69:       O: O62 (build-meaning) 
      71:          O: O63 (get-schema) 
Built a ProperName schema. 
    72:          O: O64 (fill-defaults) 
    73:          O: O66 (add-roles) 
Add roles to a ProperName schema. 
    74:          O: O67 (fill-roles) 
    75:          O: O68 (mark-ref-features) 
    76:          O: O65 (meaning-done) 
Attaching a ProperName schema to a PROPER-NAME construction. 
    77:       O: O69 (generalize-cxn) 
Generalizing a PROPER-NAME construction to a REF-EXPR construction. 
    78:       O: O70 (build-meaning) 
    80:          O: O71 (get-schema) 
Built a RefDesc schema. 
    81:          O: O72 (fill-defaults) 
    82:          O: O74 (add-roles) 
Add roles to a RefDesc schema. 
    83:          O: O75 (fill-roles) 
    84:          O: O73 (meaning-done) 
Attaching a RefDesc schema to a REF-EXPR construction. 
    85:       O: O59 (word-done) 
Top of stack is REF-EXPR, nothing below it. 
 
Here we can see that for each input word there is a comprehend-word 

operator.  It in turn causes the build-meaning operator to execute.  We also 

see a lexical-construction operator firing for each word, as well as proper-

name operator and many others. 
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One key concept in the Meaning Builder is how entity types are 

determined.  For example, in the CCL 2 segment, how do we know that 

Charles Christopher Lathrop is a Person and N. Y. City is not?  The 

answer is that a RefDesc built from a ProperName does not have its category 

role filled until it is assigned as the subject or object of some predicate.  We 

assume here that each predicate, such as born or son of, knows the types of its 

arguments.  So when a RefDesc is assigned to an argument slot of a predicate 

its category (ie. its entity type) is assigned according to the type of that 

argument.  This approach allows OntoSoar to know which proper names refer 

to people and which do not without having any kind of name dictionary or 

other sophisticated way of deriving entity types just from their names. 

This should give something of the flavor of how the Meaning Builder 

works.  In the end it builds a network of meaning structures with their roles, 

many of which are not yet filled.  This network provides the basis for further 

semantic analysis. 

Semantic analysis 

The next component in the pipeline shown in Figure 7 is called the 

Conceptual Semantic Analyzer.  It takes the meaning structures supplied by 

the Meaning Builder and expands and enhances them using inference rules 

implemented as Soar productions.  The best way to see how this works is with 

some examples. 
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Figure 11 shows how the meaning structures shown schematically in 

Figures 9 and 10 can be used to build a set of populated schemas like the ones 

we saw in Figures 3 and 4. 

Person
 gender: M
 name: “Gerard Lathrop”
 birth:
 death: 

Person
 gender: M
 name: “Gerard Lathrop”
 birth:
 death: 

Person
 gender: M
 name: “Charles C. Lathrop”
 birth: “1817”
 death: “1865”

Person
 gender: M
 name: “Charles C. Lathrop”
 birth: “1817”
 death: “1865”

Person
 gender: F
 name: “Mary Ely”
 birth: 
 death: 

Person
 gender: F
 name: “Mary Ely”
 birth: 
 death: 

Couple
married: 

wifehusband

NameName

PersonPerson

Name

Person

NameName

PersonPerson

Date

Date

SonOfSonOf SonOfSonOf

Gerard Lathrop Mary Ely

Charles C. Lathrop 1817

1865

child parents

LifeEvent

LifeEvent

father

son son

mother

 

Figure 11:  Semantic Analysis of CCL 2 

Here we see lexical values for in green and blue boxes and light orange 

arrows showing how the different meaning structures connect to each other.  

The darker orange arrows show how the simplified Person shown in a green 

oval is actually a full structure with a number of internal roles. 

A somewhat different view for the structures derived from a simplified 

version of Myra 18-20 is given in Figure 12.  Here we see the input text 

segment, the parse, and the final meaning structures.  The green boxes on the 

parse indicate referential expressions that are not proper nouns, and the pink 

boxes show predicates that can be used to derive information about some of 

the family relationships. 

49 
 



Person
 gender: M
 name: “Jonathan Squires”
 birth: “July 25, 1823”
 death: 

Person
 gender: M
 name: “Jonathan Squires”
 birth: “July 25, 1823”
 death: 

Person
 gender: M
 name: “J. Wilbur Squires”
 birth: “June 16, 1865”
 death: 

Person
 gender: M
 name: “J. Wilbur Squires”
 birth: “June 16, 1865”
 death: 

Person
 gender: F
 name: “Myra Harwood”
 birth: 
 death: 

Person
 gender: F
 name: “Myra Harwood”
 birth: 
 death: 

Couple
married: 

wifehusband

child parents

father

son son

mother

+--------MXsp--------+
+----MXs----+        +--------Xc--------+

+--------Os-------+--MX*x-+            +----Os---+   +---Xd--+        |     +----TY---+  |
+--Ds-+---Ss---+         +---G---+    +Xd+-Jr+-Cr+-Ss-+    +-Ds-+   |  +--G-+Xca+-Xd-+--IN-+-TM+ +-Xd+Xc+
|     |        |         |       |    |  |   |   |    |    |    |   |  |    |   |    |     |   | |   |  |

his widow.n married.v JONATHAN SQUIRES , by whom she had.v one son.n , J. Wilbur , born.v June 16 , 1865 ,

his widow married JONATHAN SQUIRES, …, by whom she had one son, J. Wilbur, born June 
16, 1865, … .

 
Figure 12:  Meanings Derived from Myra 18-20 

One feature of how the Semantic Analyzer works is not shown in these 

diagrams.  When we have a phrase like is not living in the text we create a 

death event for the subject person, and also a Date schema with its value set to 

UNKNOWN.  This allows us to distinguish between a situation in which the death 

is not reported at all from one in which it is reported without a date being 

specified.  Similarly, for a segment like Children of JAMES HARWOOD in CCL 1, 

we can deduce that there as a couple with a partner for James, but we don’t 

know the name or anything else about that second person.  In this case we will 

report a second person whose name is UNKNOWN. 

Another feature of the Semantic Analyzer is a reference resolver to find 

concrete referents for every RefDesc.  When the RefDesc is a ProperName and 

we have determined that it fills an argument slot that needs a person, then we 

simply create a Person object for it.  If it is a Pronoun or some other noun 

phrase we have to search backward in the context for an appropriate referent.  
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This is implemented with an operator called resolve-reference.  At this time 

it works well enough to find the correct referent for a number of the cases in 

our two samples, but it still makes mistakes since it doesn’t yet take advantage 

of gender and number agreement or the specific meanings of nouns like widow. 

At this writing only part of the semantic analysis has been implemented, 

enough to produce the results we will see later on.  Several more parts remain 

to be built or need more work.  One of the most important is reference 

resolution, which is especially important because of the additional pronouns 

introduced by the segmentation procedure discussed above.  As we shall see in 

the Results chapter, it works reasonably well but needs more improvement. 

Nevertheless, the Semantic Analyzer is a key part of OntoSoar which can 

be built on in the future.  It provides a structure within which it should be 

fairly easy to implement inference rules not only for reference resolution but 

also for such things as deducing surnames and finding cases of multiple 

names that refer to the same person.  One example of the power of this 

approach is given in Figure 13, only partially implemented at present. 

Here we see our Sample 2 or Myra text in its original form with several 

things overlaid on top of it.  The green boxes are referring expressions, the blue 

boxes are dates, the yellow are life event verbs, and the pink are relationship 

phrases.  The red dots and arrows show an inferencing chain that allows us to 

infer that the Mrs. Myra Squires, whose death is mentioned at the end of the 

paragraph, is the same person as the MYRA whose birth is at the beginning. 
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Figure 13:  An Example of Inferencing 

The reasoning chain goes as follows.  First we see that MYRA is a child of 

JAMES HARWOOD, so her full name at birth must have been Myra Harwood.  

Then we see that She married ELIJAH SPENCER, giving her a married name of 

Myra Spencer.  Then Elijah Spencer died … in 1863, making her his 

widow.  As a widow she married JONATHAN SQUIRES, giving her the new 

married name of Myra Squires.  Thus it seems highly likely (OntoSoar does not 

presently have any provision for assigning probabilities to these associations) 

that Mrs. Myra Squires is the same person as MYRA.  We also infer from the 

phrase by whom she had one son that J. Wilbur is the son of the Squires. 
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The design of OntoSoar makes it possible to build inferencing of this sort.  

One of the key concepts that enables this inferencing power is the meaning 

schemas that we have modeled after the concept of image schemas, an idea 

dating back in the literature to at least Johnson (1987).  He says: 

… image schemata … are rich enough in internal structure to constrain our 
understanding and to generate definite patterns of inference. 

Johnson (1987) p. 137 

In OntoSoar the meaning schemas we define are not quite the same as 

Johnson’s image schemata since they are not connected to perception in any 

direct way.  Nevertheless the structure of having one schema with roles that 

connect to other schemas in a network provides declarative knowledge that 

enables adding the procedural knowledge that does inferencing.  An important 

part of the meaning of things is built into the structures of these schemas.  

This contrasts with a system like LG-Soar which produces simple predicates 

without any of the additional knowledge required to know what these 

predicates actually mean.  As more is added to OntoSoar’s Semantic Analyzer, 

in both declarative and procedural knowledge, we expect the power of this 

approach will become ever more apparent. 

Ontology matching 

Once we have analyzed an input segment to build our internal meaning 

structures, the final step is to project those meanings onto the ontology 

provided by the user.  This work is done in two steps.  Since both the internal 

meaning schemas of OCG and the user ontology are static, we can find object 

and relationship sets in the ontology that match parts of our schemas statically 
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before we have seen any input data.  Then when a segment has been 

completely analyzed, we can use these matches to map the specific meanings 

found in the segment onto facts in the ontology.  In Figure 7 both these steps 

are grouped together into a single component called the Mapper. 

The matching operation is performed at the beginning of a run right after 

the ontology input file has been read in by a Soar operator called find-

matches.  In (12) we see the Soar trace for the matching part of a run using our 

example Ontology 2 from Figure 6. 

(12)      7:    O: O6 (find-matches) 
     10:       O: O12 (match-lexical) 
Lexical schema 'ProperName' matches lexical object set 'Name'. 
    11:       O: O14 (match-person) 
Person matches object set 'Person'(osmx5) in the ontology. 
Person-to-ProperName matches rel set 'identified by'(osmx37) in the 
ontology. 
    12:       O: O15 (match-couple) 
Couple matches rel set'married'(osmx304) in the ontology. 
    13:       O: O9 (match-lexical) 
Lexical schema 'Date' matches lexical object set 'Date'. 
    14:       O: O8 (match-lexical) 
Lexical schema 'Date' matches lexical object set 'MarriageDate'. 
    15:       O: O11 (match-lexical) 
Lexical schema 'Date' matches lexical object set 'BirthDate'. 
    16:       O: O10 (match-lexical) 
Lexical schema 'Date' matches lexical object set 'DeathDate'. 
    17:       O: O16 (match-children) 
Found 'Son' specializing 'Person' by Q24. 
Found 'Daughter' specializing 'Person' by Q25. 
Found 'Child' specializing 'Person' by Q26. 
    18:       O: O18 (match-life-event) 
Person role 'death' connects Person(osmx5) to DeathDate(osmx8) via died 
on(osmx49) in the ontology. 
    19:       O: O17 (match-life-event) 
Person role 'birth' connects Person(osmx5) to BirthDate(osmx7) via born 
on(osmx43) in the ontology. 

20:       O: O13 (find-matches-done) 
     

In general the matching operators work by matching keywords coded into 

the internal schemas with words taken from the names of the sets in the 

ontology.  A lexical schema will match against any lexical object set that has a 
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word in its name matching one of the keywords coded on the schema.  The 

Person schema matches to any object set regardless of its name as long as it 

has a relationship set connecting to a lexical object set that matches 

ProperName. 

The Couple schema will match against a pattern with a relationship set 

with three or more arguments connecting the object set that matches Person 

with one of its specializations and a third argument that matches Date if that 

relationship set also has married in its name.  This is a good example of how 

the matching process looks for words in the names in the ontology and also 

structural patterns that match up. 

In the case of the FamilyRelationship schema, its matching algorithm 

looks for specializations of the object set which matches Person whose names 

contain the keywords son, daughter, or child. 

The LifeEvent schema looks for matches to relationship sets where the 

name of the relationship set has a word that matches one of the verbs that can 

generate a LifeEvent.  These matches are recorded according to the verb that 

matches, so that the general LifeEvent schema will match several relationship 

sets, with the correct match being chosen later on according to the specific 

verb present.  This matching also connects to the correct role of Person, as 

shown in (12). 

Extraction of facts 

When the semantic analysis of a given segment has been completed, the 

extract-facts Soar operator runs to project as many facts as possible from 
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the meanings found for the segment into the user ontology.  Separate sub-

operators extract facts according to the various types of matches found 

previously.  This fact extraction process is fairly straightforward since we have 

already done the hard part in the matching. 

In (13) we see the results for CCL 2, showing a person with a birth, a 

death, and two parents.  In (13a) we have the input text, in (13b) a Soar trace 

of the process of extracting the facts for that segment, and in (13c) we have the 

console report generated by the Java code as it puts the facts into the actual 

OSMX file.  The Xn and Yn symbols are Soar internal symbols, while the 

osmxnnn symbols are OSMX identifiers.  This example shows how the reference 

resolver can find the subject of the son of predicate and connect the son to his 

parents. 

(13) a. 2: Charles Christopher Lathrop, N. Y. City, born 1817, died 1865, 
son of Mary Ely and Gerard Lathrop ;  ';' 

 b.    403: O: O358 (extract-facts) 
   404: ==>S: S120 (operator no-change) 
   405:    O: O359 (setup-for-facts) 
   406:    O: O360 (person-facts) 
Extracting facts from Person(M131) 'Charles Christopher Lathrop'. 
Extracting facts from Person(M202) 'Mary Ely'. 
Extracting facts from Person(M229) 'Gerard Lathrop'. 
   407:    O: O362 (life-event-facts) 
Extracting facts from LifeEvent(M124) 'Charles Christopher Lathrop 
born'. 
Extracting facts from LifeEvent(M146) 'Charles Christopher Lathrop 
died'. 
   408:    O: O363 (couple-facts) 
   409:    O: O364 (children-facts) 
Extracting facts from FamilyRelation(M176) 'son' s(X1), o1(X3), 
o2(X5). 
   410:    O: O365 (generalize-objects) 
   411:    O: O361 (make-report) 
   412:    O: O366 (extract-facts-done) 
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 c. Facts extracted: 
  Reporting 8 objects: 
    X2: Name(osmx327, "Charles Christopher Lathrop") 
    X1: Son(osmx331) 
    X1: Person(osmx331) 
    X4: Name(osmx336, "Mary Ely") 
    X3: Person(osmx339) 
    X6: Name(osmx342, "Gerard Lathrop") 
    X5: Person(osmx345) 
    X7: Date(osmx349, "1817") 
    X7: BirthDate(osmx349, "1817") 
    X8: Date(osmx354, "1865") 
    X8: DeathDate(osmx354, "1865") 
  Reporting 7 relations: 
    Y1(osmx359): Person(osmx331) identified by Name(osmx327) 
    Y2(osmx362): Person(osmx339) identified by Name(osmx336) 
    Y3(osmx365): Person(osmx345) identified by Name(osmx342) 
    Y4(osmx368): Person(osmx331) born on BirthDate(osmx349) 
    Y5(osmx371): Person(osmx331) died on DeathDate(osmx354) 
    Y7(osmx374): Son(osmx331) of Person(osmx345) 
    Y6(osmx377): Son(osmx331) of Person(osmx339) 

 
It is interesting that the facts extracted in (13) include populating both 

the object set and the relationship set associated with the son of relation.  Part 

of this process involves entering an entity like oxmx331 as both a member of 

Person and of Son in the ontology, since Son is a specialization of Person. 

Final output 

We just saw something of how extract-facts works and the results it 

produces for CCL 2.  Now we look at the final fact listings for several other 

segments from our sample texts to see where the system does well and where it 

fails. 

In (14) we see the results for the CCL 3 segment, which shows a marriage 

relation.  This example shows the ability of the Mapper to handle relationship 

sets with an arity greater than 2.  It also shows the ability of the reference 

resolver to find the antecedent for the GP at the beginning of CCL 3 all the way 

back in the subject of CCL 2. 
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(14) a. 3: GP married 1856, Mary Augusta Andruss, 992 Broad St., Newark, N. 
J.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X10: Name(osmx380, "Mary Augusta Andruss") 
    X9: Spouse(osmx384) 
    X9: Person(osmx384) 
    X11: Date(osmx388, "1856") 
    X11: MarriageDate(osmx388, "1856") 
  Reporting 2 relations: 
    Y8(osmx393): Person(osmx384) identified by Name(osmx380) 
    Y9(osmx396): Person(osmx331) married Spouse(osmx384) 
MarriageDate(osmx388) 
 

In (15) we see a more complex use of reference resolution.  The pronoun 

who in CCL 4 is matched to the object in CCL 3, and then other relations are 

attached to that referent. 

(15) a. 4: who was born 1825, daughter of Judge Caleb Halstead Andruss and 
Emma Sutherland Goble.  '.' 

 b. Facts extracted: 
  Reporting 5 objects: 
    X13: Name(osmx400, "Judge Caleb Halstead Andruss") 
    X12: Person(osmx403) 
    X15: Name(osmx406, "Emma Sutherland Goble") 
    X14: Person(osmx409) 
    X16: Date(osmx412, "1825") 
    X16: BirthDate(osmx412, "1825") 
  Reporting 5 relations: 
    Y10(osmx416): Person(osmx403) identified by Name(osmx400) 
    Y11(osmx419): Person(osmx409) identified by Name(osmx406) 
    Y12(osmx422): Person(osmx384) born on BirthDate(osmx412) 
    Y14(osmx425): Daughter(osmx384) of Person(osmx409) 
    Y13(osmx428): Daughter(osmx384) of Person(osmx403) 
 

Finally for CCL we see in (16)  an example of how the OntoSoar syntactic 

and semantic analyzers combine to attach a death date to the proper person 

even over a large distance in the surface form of the sentence. 

(16) a. 5: Mrs. Lathrop died at her home, 992 Broad St., Newark, N. J, 
Friday morning, Nov. 4, 1898.  '.' 
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 b. Facts extracted: 
  Reporting 3 objects: 
    X18: Name(osmx431, "Mrs Lathrop") 
    X17: Person(osmx434) 
    X19: Date(osmx437, "Nov 4 1898") 
    X19: DeathDate(osmx437, "Nov 4 1898") 
  Reporting 2 relations: 
    Y15(osmx441): Person(osmx434) identified by Name(osmx431) 
    Y16(osmx444): Person(osmx434) died on DeathDate(osmx437) 
 

Many of the segments in the Myra sample show similar good results.  

However, since the Myra sample uses much more complex linguistic structures 

the current limitations of the Semantic Analyzer are manifest in several 

mistakes it makes. 

In (17-19) we see three consecutive segments from Myra 10-12.  The first 

two work correctly, but the third has problems. 

(17) a. 10: Leverett, born Feb. 6, 1857.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X17: Name(osmx416, "Leverett") 
    X16: Person(osmx419) 
    X18: Date(osmx422, "Feb 6 1857") 
    X18: BirthDate(osmx422, "Feb 6 1857") 
  Reporting 2 relations: 
    Y11(osmx426): Person(osmx419) identified by Name(osmx416) 
    Y12(osmx429): Person(osmx419) born on BirthDate(osmx422) 
 

(18) a. 11: GP married Cora Smith, Nov. 2, 1879.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X20: Name(osmx432, "Cora Smith") 
    X19: Spouse(osmx435) 
    X19: Person(osmx435) 
    X21: Date(osmx439, "Nov 2 1879") 
    X21: MarriageDate(osmx439, "Nov 2 1879") 
  Reporting 2 relations: 
    Y13(osmx443): Person(osmx435) identified by Name(osmx432) 
    Y14(osmx446): Person(osmx419) married Spouse(osmx435) 
MarriageDate(osmx439) 
 

Instead of seeing that the couple represented by the GP in (19) had two 

children named Perry F. and Ida I., it thinks it found a person called Ida I. 

Leverett.  A human being looking at this segment may also find it difficult to 
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understand it, but can figure out that Leverett is the first name of the same 

person mentioned in Myra 10.  The real problem here is a serious ambiguity in 

the meaning of the period at the end of Ida I.  Is it simply the period marking 

an abbreviation, or is it also the end of a sentence?  It should really be the end 

of the sentence, but the OntoSoar architecture is not capable of understanding 

this.  It would have to try doing syntactic and semantic analysis, find it doesn’t 

work, and then go back and change the segmentation and start over. 

(19) a. 12: GP had two children, Perry F. and Ida I. Leverett died May 21, 
1910;  ';' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X23: Name(osmx450, "Ida I. Leverett") 
    X22: Person(osmx453) 
    X24: Date(osmx456, "May 21 1910") 
    X24: DeathDate(osmx456, "May 21 1910") 
  Reporting 2 relations: 
    Y15(osmx461): Person(osmx453) identified by Name(osmx450) 
    Y16(osmx464): Person(osmx453) died on DeathDate(osmx456) 
 

Another limitation seen in (19) is that OntoSoar currently does not 

understand the {x} had {n} children construction.  This, however, can be fixed 

with additional logic along the same lines as what is already there. 

In Figure 13 we saw a complex line of reasoning to conclude who was 

who in the Myra sample.  In (20-24) we see what the current OntoSoar does 

with this. 

(20) a. 17: Elijah Spencer died in the Union army in 1863.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X35: Name(osmx517, "Elijah Spencer") 
    X34: Person(osmx520) 
    X36: Date(osmx523, "1863") 
    X36: DeathDate(osmx523, "1863") 
  Reporting 2 relations: 
    Y23(osmx527): Person(osmx520) identified by Name(osmx517) 

Y24(osmx530): Person(osmx520) died on DeathDate(osmx523) 
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Here in (20) the system has no problem analyzing Elijah Spencer and 

his death date, but it does not yet have any logic to discover that he is probably 

the same person as the ELIJAH SPENCER in Myra 4 who married MYRA. 

(21) a. 18: and his widow married JONATHAN SQUIRES.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X38: Name(osmx533, "JONATHAN SQUIRES") 
    X37: Spouse(osmx536) 
    X37: Person(osmx536) 
    X39: Date(osmx540, "UNKOWN") 
    X39: MarriageDate(osmx540, "UNKOWN") 
  Reporting 2 relations: 
    Y25(osmx544): Person(osmx536) identified by Name(osmx533) 

Y26(osmx547): Person(osmx520) married Spouse(osmx536) 
MarriageDate(osmx540) 

 
Now in (21) we really go beyond what OntoSoar is now capable of.  It 

does not have a construction to match his widow yet, nor the intelligence in 

the reference resolver to use gender cues and marriage relationships to 

discover that this refers to the original MYRA.  As a result it decides that the 

subject of the marriage here is Elijah Spencer, person osmx520, which is 

clearly not correct. 

(22) a. 19: who was born in Ohio, July 25, 1823.  ',' 

 b. Facts extracted: 
  Reporting 1 objects: 
    X40: Date(osmx551, "July 25 1823") 
    X40: BirthDate(osmx551, "July 25 1823") 
  Reporting 1 relations: 
    Y27(osmx555): Person(osmx536) born on BirthDate(osmx551) 
 

Next in (22) the reference resolver correctly resolves who to JONATHAN 

SQUIRES, person osmx536. 

(23) a. 20: by whom she had one son, J. Wilbur, born June 16, 1865, in 
DeKalb county, Ind..  ',' 
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 b. Facts extracted: 
  Reporting 1 objects: 
    X41: Date(osmx558, "June 16 1865") 
    X41: BirthDate(osmx558, "June 16 1865") 
  Reporting 1 relations: 
    Y28(osmx562): Person(osmx536) born on BirthDate(osmx558) 
 

Then in (23) things get really complicated.  The current system does not 

understand either the by whom or had one son constructions, nor does it know 

how to attach J. Wilbur to one son as an appositive and therefore the subject 

of born.  As a result it looks clear back to JONATHAN SQUIRES to find the 

subject of this born, not noticing that he already has a birth date. 

(24) a. 21: GP married Cora M. Thomas, Aug. 24, 1887.  ',' 

 b. Facts extracted: 
  Reporting 3 objects: 
    X43: Name(osmx565, "Cora M. Thomas") 
    X42: Spouse(osmx568) 
    X42: Person(osmx568) 
    X44: Date(osmx572, "Aug 24 1887") 
    X44: MarriageDate(osmx572, "Aug 24 1887") 
  Reporting 2 relations: 
    Y29(osmx576): Person(osmx568) identified by Name(osmx565) 

Y30(osmx579): Person(osmx536) married Spouse(osmx568) 
MarriageDate(osmx572) 

 
Finally, since so many other pieces were missed, the system tells us in 

(24) that it was also JONATHAN SQUIRES who got married here, again.  All this 

illustrates that the reference resolver needs a lot more constraints to keep it 

from making these false attachments, and that we need to implement more 

complex constructions so that examples such as these can be resolved properly. 

Thus we see that OntoSoar is still a work in progress, but all these errors 

it makes currently, with the exception of the Ida I. Leverett one, can be 

corrected within the current architecture. 
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5. Results 

In this chapter we examine the accuracy of the facts extracted by 

OntoSoar from various texts, starting with a detailed analysis of the results for 

the two samples given in Figures 1 and 2.  Next we will look at each of the 

errors the system made and what would be needed to correct those errors.  

Then we quantify what happens when we apply the system to several samples 

taken from different family history books.  Finally we examine how well the 

system responds to using different user ontologies. 

Results for the two samples 

The working OntoSoar code8 was applied to our two main sample texts 

shown in Figures 1 and 2, using the ontology shown in Figure 6.  For each 

sample text an output OSMX file was produced which contained facts 

populating the ontology with persons identified by names, birth and death 

dates, and marriages.  We discuss its performance on each of these types of 

facts. 

Persons 

Tables 1 and 2 show the results for Persons on the two samples.  The 

system requires two pieces of information to create a Person: there must be a 

proper name, and that name must be the grammatical subject or object of a 

predicate which applies to people, such as born, married, or son of. 

 

8 All results reported here were obtained using the version of code as of 8 May 2014, change 
number 808. 
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CCL Example 
P Id Osmx Id Person by Name OntoSoar Correct Reason 

1 osmx331 Charles Christopher Lathrop 1 1 
 2 osmx339 Mary Ely 1 1 
 3 osmx345 Gerard Lathrop 1 1 
 4 osmx384 Mary Augusta Andruss 1 1 
 5 osmx403 Judge Caleb Halstead Andruss 1 1 
 6 osmx409 Emma Sutherland Goble 1 1 
 7 osmx434 Mrs. Lathrop 1 1 
 8 osmx450 Charles Halstead 1 1 
 9 osmx473 William Gerard 1 1 
 10 osmx496 Theodore Andruss 1 1 
 11 osmx512 Emma Goble 1 1 
 12 

 
Miss Emma Goble Lathrop 0 0 5 

 12   Totals 11/12 11/11   

Table 1:  Person Facts for Sample 1 

 

Myra Example 
P Id Osmx Id Person by Name OntoSoar Correct Reason 

1 
 

JAMES HARWOOD 0 0 7A 
2 osmx331 MYRA 1 1 

 3 osmx350 ELIJAH SPENCER 1 1 
 4 osmx369 Arvilla 1 1 
 5 osmx385 Jonathan Snyder 1 1 
 6 osmx401 Mariette 1 1 
 7 osmx419 Leverett 1 1 
 8 osmx435 Cora Smith 1 1 
 9 

 
Perry F. 0 0 2A, 6 

10 
 

Ida I. 0 0 2A, 6 
11 osmx453 Leverett 1 0 6 
12 osmx470 Rosa E. 1 1 

 13 osmx486 Emmett Byers 1 1 
 14 osmx504 Harrison 1 1 
 15 osmx520 Elijah Spencer 1 1 
 16 osmx536 JONATHAN SQUIRES 1 1 
 17 

 
J. Wilbur 0 0 4 

18 osmx568 Cora M. Thomas 1 1 
 19 osmx586 Mrs. Myra Squires 1 1 
 19    Totals 15/19 14/15   

Table 2:  Person Facts for Sample 2 
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Each row in these and the other results tables represents a fact found by 

a human being.  The various columns in these tables are defined as follows:    

P Id is simply a number applied after the fact to easily identify which person 

we’re talking about, Osmx Id, if present, is the unique identifier the OSMX file 

logic applies to this entity, Person by Name is the name from the original text 

that identifies this person, OntoSoar states 1 or 0 whether the OntoSoar system 

found this fact, Correct indicates whether the OntoSoar result was correct or 

not, and Reason gives a code number to be explained shortly for why OntoSoar 

did not get a correct answer where this is true.   

From these two tables we see that there are six people mentioned in the 

texts that OntoSoar did not find correctly.  In the CCL example the only missed 

person is Miss Emma Goble Lathrop.  She is missed because segment CCL 15 

does not have any predicates that the current OntoSoar understands.  

The Myra 12 segment mentions three people, Perry F., Ida I., and 

Leverett, all of whom could be deduced by a human to have the last name 

Harwood.  However, the first two are not found at all and the third is found 

incorrectly as Ida I. Leverett.  All these errors are caused by a serious 

segmentation problem in Myra 12 due to the ambiguous period in Ida I. 

J. Wilbur is not found because the entire semantic analysis of Myra 17-

21 is crippled by the fact that the system does not yet understand three 

important constructions here: his widow, she had one son, and the use of J. 

Wilbur as an appositive.  This lack of understanding causes errors in reference 

resolution as well, and thus some other facts are found incorrectly. 
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Births and Deaths 

In Tables 3 and 4 we show the results for births, and in Tables 5 and 6 

those for deaths.  In all four of these tables the rows have been removed for 

persons that do not have that event indicated in the text.  The system finds 

every birth event, but the one for J. Wilbur is assigned to the wrong person. 

CCL Example 
P Id Osmx Id Person by Name Birth OntoSoar Correct Reason 

1 osmx331 Charles Christopher Lathrop 1817 1 1 
 4 osmx384 Mary Augusta Andruss 1825 1 1 
 8 osmx450 Charles Halstead 1857 1 1 
 9 osmx473 William Gerard 1858 1 1 
 10 osmx496 Theodore Andruss 1860 1 1 
 11 osmx512 Emma Goble 1862 1 1 
  6   Totals   6/6 6/6   

Table 3:  Births for Sample 1 

 

Myra Example 
P Id Osmx Id Person by Name Birth OntoSoar Correct Reason 

2 osmx331 MYRA July 26, 1835 1 1 
 4 osmx369 Arvilla 1852 1 1 
 6 osmx385 Mariette Dec 25, 1854 1 1 
 7 osmx419 Leverett Feb 6, 1857 1 1 
 12 osmx470 Rosa E. Jan 13, 1860 1 1 
 14 osmx504 Harrison abt. 1862 1 1 
 16 osmx536 JONATHAN SQUIRES July 25, 1823 1 1 1 

17 
 

J. Wilbur June 16, 1865 1 0 4 
8   Totals   8/8 7/8   

Table 4:  Births for Sample 2 

For the deaths, shown in Tables 5 and 6, some dates are marked as 

UNKNOWN.  This indication is used where the English text states that a person 

died, in these cases with the phrase is not living, but does not specify the 
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date.  The is not living construction has not yet been programmed into 

OntoSoar.  Other than these, all the other death dates were found correctly. 

 

CCL Example 
P Id Osmx Id Person by Name Death OntoSoar Correct Reason 

1 osmx331 Charles Christopher Lathrop 1865 1 1 
 7 osmx434 Mrs. Lathrop Nov 4, 1898 1 1 
 8 osmx450 Charles Halstead 1861 1 1 
 9 osmx473 William Gerard 1861 1 1 
  4   Totals   4/4 4/4   

Table 5:  Deaths for Sample 1 

 

Myra Example 
P Id Osmx Id Person by Name Death OntoSoar Correct Reason 

4 osmx369 Arvilla UNKNOWN 0 0 2B 
11 osmx453 Leverett May 21, 1910 1 1 

 14 osmx504 Harrison UNKNOWN 0 0 2B 
15 osmx520 Elijah Spencer 1863 1 1 

 19 osmx586 Mrs. Myra Squires Feb 13, 1874 1 1 
 5    Totals   3/5 3/3   

Table 6:  Deaths for Sample 2 

Marriages 

Next we’ll look at marriages, as shown in Tables 7 and 8.  There is one 

marriage in the Sample 1 text, and six in Sample 2.  OntoSoar finds all these 

marriages, but in two cases in Sample 2 it attaches the wrong subject to them.  

Both these errors are due to the problems with not understanding parts of the 

Myra 17-21 segments, as mentioned above. 
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CCL Example 
P Id Osmx Id Person by Name Spouse OntoSoar Correct Reason 

1 osmx331 Charles Christopher Lathrop Mary Augusta Andruss 1 1 
 1    Totals   1/1 1/1   

Table 7:  Marriages for Sample 1 

 

Myra Example 
P Id Osmx Id Person by Name Spouse OntoSoar Correct Reason 

2 osmx331 MYRA ELIJAH SPENCER 1 1 
 

   
JONATHAN SQUIRES 1 0 1, 2C 

6 osmx385 Mariette Jonathan Snyder 1 1  
7 osmx419 Leverett Cora Smith 1 1  

12 osmx470 Rosa E. Emmett Byers 1 1  
17 

 
J. Wilbur Cora M. Thomas 1 0 1 

6   Totals   4/6 4/6   

Table 8:  Marriages for Sample 2 

Sons and Daughters 

So far the constructions for son of and daughter of have been 

implemented in OntoSoar.  These are fairly straightforward to implement.  

However, many of the parent child relationships in these sample texts, and in 

many other texts as well, are represented as lists of children introduced by 

phrases like Children of {person}:, Their children:, or They had {n} children:.  

OntoSoar does not yet implement any of these constructions for lists of 

children.  Tables 9 and 10 show the results for parent/child relationships with 

the current system.  In these two tables the OntoSoar column has been deleted 

to make the table fit on the page.  We see that in the CCL example both parents 

were identified for both children connected to their parents with the 

constructions the system understands, but the rest of the parent/child 
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relations in CCL and all those in Myra are not found since they use 

constructions the system does not yet understand. 

 

CCL Example 
P Id Person by Name Parent 1 Parent 2 Correct Reason 

1 Charles Christopher Lathrop 
Mary Ely Gerard Lathrop 

1 
 

4 Mary Augusta Andruss 
Judge Caleb Halstead 
Andruss 

Emma 
Sutherland Goble 1 

 
8 Charles Halstead 

Charles Christopher 
Lathrop 

Mary Augusta 
Andruss 0 7B 

9 William Gerard 
Charles Christopher 
Lathrop 

Mary Augusta 
Andruss 0 7B 

10 Theodore Andruss 
Charles Christopher 
Lathrop 

Mary Augusta 
Andruss 0 7B 

11 Emma Goble 
Charles Christopher 
Lathrop 

Mary Augusta 
Andruss 0 7B 

12 Miss Emma Goble Lathrop 
Charles Christopher 
Lathrop 

Mary Augusta 
Andruss 0 7B 

7  Totals     2/7   

Table 9:  Sons and Daughters for Sample 1 

 

Myra Example 
P 
Id Person by Name Parent 1 Parent 2 Correct Reason 
2 MYRA JAMES HARWOOD 

 
0 7A 

4 Arvilla MYRA ELIJAH SPENCER 0 7C 
6 Mariette MYRA ELIJAH SPENCER 0 7C 
7 Leverett MYRA ELIJAH SPENCER 0 7C 
9 Perry F. Leverett Cora Smith 0 2A, 6 

10 Ida I. Leverett Cora Smith 0 2A, 6 
12 Rosa E. MYRA ELIJAH SPENCER 0 7C 
14 Harrison MYRA ELIJAH SPENCER 0 7C 
17 J. Wilbur MYRA JONATHAN SQUIRES 0 2A, 4 
9  Totals     0/9   

Table 10:  Sons and Daughters for Sample 1 
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Accuracy measures 

Tables 11 and 12 present the precision, recall, and F-measure for all the 

result types shown in Tables 1-10 for Samples 1 and 2, respectively.  Table 13 

combines these numbers into a single overall result set. 

 

Accuracy Sample 1 
Category Exist Found Correct P Errors R Errors P R F 

Persons 12 11 11 0 1 100.0% 91.7% 95.7% 
Births 6 6 6 0 0 100.0% 100.0% 100.0% 

Deaths 4 4 4 0 0 100.0% 100.0% 100.0% 
Marriages 1 1 1 0 0 100.0% 100.0% 100.0% 

Sons & Daughters 7 2 2 0 5 100.0% 28.6% 44.4% 
Totals/Average 30 24 24 0 6 100.0% 80.0% 88.9% 

Table 11:  Accuracy Measures for Sample 1 

 

Accuracy Sample 2 
Category Exist Found Correct P Errors R Errors P R F 

Persons 19 15 14 1 4 93.3% 73.7% 82.4% 
Births 8 8 7 1 0 87.5% 87.5% 87.5% 

Deaths 5 3 3 0 2 100.0% 60.0% 75.0% 
Marriages 6 6 4 2 0 66.7% 66.7% 66.7% 

Sons & Daughters 9 0 0 0 9 N/A 0.0% 0.0% 
Totals/Average 47 32 28 4 15 87.5% 59.6% 70.9% 

Table 12:  Accuracy Measures for Sample 2 

 

Combined Accuracy for Samples 1 and 2 
Category Exist Found Correct P Errors R Errors P R F 

Persons 31 26 25 1 5 96.2% 80.6% 87.7% 
Births 14 14 13 1 0 92.9% 92.9% 92.9% 

Deaths 9 7 7 0 2 100.0% 77.8% 87.5% 
Marriages 7 7 5 2 0 71.4% 71.4% 71.4% 

Sons & Daughters 16 2 2 0 14 100.0% 12.5% 22.2% 
Totals/Average 77 56 52 4 21 92.9% 67.5% 78.2% 

Table 13:  Combined Accuracy Measures 
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Overall we see that the precision is quite high, but the recall is lower.  

The primary reason for all the errors is the lack of understanding of all the 

linguistic constructions used in the text. 

Analysis of errors 

In order to understand better the errors and omissions that OntoSoar 

makes, Tables 1-10 have a column on the right giving a reason code for every 

case in which OntoSoar did not get the correct answer.  Table 14 lists these 

codes and their meanings. 

Error Reason Codes 
Reason Description Count 
1 

 
Handling lists of children 12 

2 
 

Construction not yet implemented 11 

 
A {p} had {x} son/daughter/child/children 6 

 
B {p} is not living 2 

 
C his widow 2 

 
D {x} is {y} 1 

3 
 

Inability to segment on ambiguous period 5 
4 

 
Appositive not connected 3 

5 
 

Not finding alternative names 2 

Table 14:  Error Reason Codes 

Reason 1 summarizes all the cases where a construction that initiates a 

list of children is not yet understood, causing a total of 12 errors.  Recognizing 

these constructions is straightforward within the existing structure.  However, 

additional semantic logic is required to attach a new person to the current list 

of children that is being constructed.  This is complicated because we also have 

to detect when a given list has ended and we should not consider it anymore, 

and also because these lists can be nested, as shown in Myra 12. 
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There are several other constructions that appear in our two samples 

that are not yet understood, causing a total of 11 errors collected under Reason 

2.  All these can be implemented directly within the current structure, with the 

most complicated being 2C, his widow, since it requires applying both gender 

and relationship constraints. 

The marriage in segment Myra 18, described by his widow married 

JONATHAN SQUIRES, needs the pronoun his to be resolved to Elijah Spencer, 

which the reference resolver already does successfully.  However, this will not 

be enough until we also recognize the his widow construction and the 

semantics of widow, as Reason 2C says, and resolve that ELIJAH SPENCER and 

Elijah Spencer are the same person. 

Reason 3 is a problem that seems beyond the scope of this project to 

resolve.  Segment Myra 12 says: GP had two children, Perry F. and Ida 

I. Leverett died May 21, 1910;.  The problem is that the period in Ida I. 

might be just part of an abbreviation or it might indicate the end of a sentence, 

as it should here.  However, there’s no way to tell that without using higher-

level semantics to go back and change the way the segmentation was done so 

that the parser can get the right answer.  This backward flow in the system’s 

pipeline does not fit into the current OntoSoar architecture. 

Reason 4 also involves additional logic to connect appositives to the 

things they refer to, as in the case of J. Wilbur in Myra 20.  This logic can be 

patterned after the reference resolver that is already working. 
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Performing inferences on names is a fairly complex piece of logic 

summarized here as Reason 5.  The system should be able to deduce the 

various alternative surnames of women caused by marriage, determine that 

ELIJAH SPENCER and Elijah Spencer are the same person, and even discover 

that Mrs. Myra Squires is the same person as MYRA.  The meaning structures 

already built provide the framework in which additional inferencing logic can 

solve these problems. 

Results on additional samples 

We have seen that the current OntoSoar system does a pretty good job 

on our too sample texts, and looked in some detail at how the remaining 

problems could be solved within the existing architecture.  However, these are 

only two small samples.  Here we examine the results of applying the system to 

a larger sampling of texts from family history books. 

The BYU Data Extraction Group has access to a private repository of over 

a hundred thousand of such books.  Previous work by this group produced a 

randomized list of the books, and then selected 200 books from the beginning 

of this randomized list.  Another process randomly chose a sequence of three 

consecutive pages from each of these books.  The data reported here are based 

on building twelve text files from the three identified pages of twelve arbitrarily 

chosen books from the list of 200.  Each of these twelve text files, with three 

pages of data each, was run through OntoSoar and the results collected. 

As might be expected, the first time these twelve files were run through 

the system several issues were uncovered that caused OntoSoar to crash before 
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finishing a given file.  One issue was that some of the files had Unicode 

characters that the code could not handle, so the character set for the input 

reader was changed to resolve this.  A bug in the Java code of the LG Parser 

was found that caused an exception for certain unusual words, and this was 

fixed.  Improvements were made to the Segmenter to make it handle more 

abbreviations.  It was also changed to force a segment break after 40 tokens, 

since the time taken by the LG Parser can grow exponentially with the length of 

the segment, and some very long segments were taking many minutes to parse.  

Once all these changes were made, all twelve of the text files ran through 

OntoSoar with no problems. 

Doing a complete measure of the precision and recall of OntoSoar on this 

data would require manually annotating all the texts for all the relations of 

interest, which was beyond the scope of the available resources.  However, we 

have looked through all the output files to examine the facts that OntoSoar 

claims to have found and evaluated each claimed fact as correct or not.  The 

results are summarized in Table 15.  The OD in the file names stands for Other 

Data.  The numbers for the CCL and Myra samples are included as the first 

two rows in Table 15 for comparison, but the Totals row only includes the OD 

files, those below the double line.  

The analysis performed to get the results in Table 15 was rather complex 

and tedious.  Persons were considered correct if they were identified by at least 

a subset of the name given in the text with no extraneous material.  Births and 

deaths were considered correct if they were attached to a legitimate person and 
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the date was complete.  A marriage was considered correct if it connected the 

two correct people, even if the date was not found or incomplete.  A child was 

considered correct if a person of the right gender was connected as a son or 

daughter to at least one of the correct parents. 

 

Results for Other Data Files 

  Persons 
Births and 

Deaths Marriages Children Run Time 
File Segs Found Correct Found Correct Found Correct Found Correct Secs Segs/Sec 
CCL 15 11 100.00% 10 100.00% 1 100.00% 2 100.00% 15 1.000 

Myra 23 15 93.33% 11 100.00% 6 66.67% 0 0.00% 10 2.300 
OD1 174 82 76.83% 56 14.29% 20 70.00% 10 70.00% 296 0.588 
OD2 141 19 42.11% 13 61.54% 5 40.00% 0 N/A 119 1.185 
OD3 67 2 100.00% 0 N/A 0 N/A 0 N/A 126 0.532 
OD4 103 9 100.00% 0 N/A 0 N/A 0 N/A 106 0.972 
OD5 149 5 40.00% 4 50.00% 1 0.00% 0 N/A 153 0.974 
OD6 57 5 40.00% 0 N/A 0 N/A 2 50.00% 35 1.629 
OD7 57 55 80.00% 15 6.67% 2 50.00% 16 81.25% 65 0.877 
OD8 152 34 55.88% 6 50.00% 13 30.77% 2 100.00% 106 1.434 
OD9 174 44 90.91% 35 82.86% 11 45.45% 0 N/A 115 1.513 

OD10 256 32 78.13% 23 73.91% 13 46.15% 1 100.00% 212 1.208 
OD11 154 41 65.85% 24 12.50% 13 61.54% 0 N/A 124 1.242 
OD12 63 0 N/A 0 N/A 0 N/A 0 N/A 32 1.969 
Totals 1547 328 73.48% 176 40.34% 78 51.28% 31 77.42% 1489 1.039 

Table 15:  Precision Data for Additional Texts 

Table 15 only gives an estimate of precision, no attempt was made to 

measure either recall or F-measure.  In general, however, we can say that the 

overall recall for these twelve files is rather low.  If no facts were found in a 

particular case, the precision is marked as N/A. 

Many issues contribute to both recall and precision being much lower 

than for our original two samples.  Some, such as OCR errors, are mostly 

beyond the reach of OntoSoar to solve.  Other types of errors, however, could 
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be reduced substantially by further improvements to OntoSoar within the 

scope of its existing architecture. 

The OD files contain many instances of dates formatted like 25 June 

1823 or 6/25/1823.  At the moment OntoSoar does not understand either of 

these date formats, but that could be fixed with not too much effort.  Also, in 

the OD10 document many dates are listed as Private, presumably because 

the persons are still living.  The grammar of the LG Parser could be easily 

modified to interpret this as a date. 

Much of the lack of recall and many precision errors as well are caused 

by constructions that OntoSoar does not yet understand.  One example from 

OD7 of a pattern that appears in many of these files is shown in (25). 

(25) 1: (945) Gordon John Harris, son of John Phillip and Alice Adel 
(Billeter) Harris, was born 16 Aug 1937 in Gordon, Sheridan, 
Nebraska. 

 
The Semantic Analyzer currently does not know how to build the names of the 

two parents correctly here, especially dealing with the maiden name of the 

mother in parentheses.  It concludes the parents are John Phillip and Alice 

Adel, without any surnames.  It also concludes that Harris is another person, 

the one born on 16 Aug 1937.  Nevertheless, it succeeds in asserting that 

Gordon John Harris is the son of John Phillip and Alice Adel.  All this 

could be improved upon with more intelligent analysis of names and 

conjunctions. 
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Many of the OD files have various forms of list item labels, generation 

numbers as superscripts, and other extraneous information mixed in with the 

data.  In (26) we see some of these issues in a snippet from OD2. 

(26) 9: 13 15 I Tryntje Kool, Bapt.  '.' 
10: Mar. 25, 1724 at Hackensack N .  '.' 
11: J. II Saartje Kool, Bapt.  '.' 
12: Dec. 19, 1725 at Hackensack N. J. III Abram Kool, born Jan. 2, 
1729.  '.' 
 

Here we not only have extra numbers and roman numerals, but also the 

abbreviation Bapt., which OntoSoar doesn’t understand.  As a result of these 

problems and related segmentation errors, the only facts OntoSoar finds from 

these four segments are that Hackensack N. J. III Abram Kool is a person 

who was born on Jan 2 1729.  Well, it got the date right anyway.  Fixing errors 

of this sort will require improvements to the Segmenter, the LG Parser, and the 

Semantic Analyzer. 

 Table 15 shows clearly that each of the OD files has its own 

idiosyncrasies.  OD1 seems to have the best overall performance except for the 

birth and death dates, which are confused by a pattern of putting the place 

between the verb and the date.  OD3 is just a list of deaths, with no verbs to 

connect the names with the dates.  OntoSoar only manages to find two people 

in the whole file, which are found due to other constructions mixed in.  OD4 

gives very few facts since it uses abbreviations for our predicate words without 

any periods, and the Segmenter does not yet recognize these to expand them.  

OD7 gives good results for persons, sons, and daughters but not for any events.  

We get the highest performance for persons, births, and deaths on OD9, but 
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marriage accuracy is poor and we don’t find any sons or daughters.  It seems 

strange that we find no facts at all in OD12, but it turns out that this file, or at 

least the three pages chosen to process, is all text from legal documents.  A few 

names of people are mentioned, but without any of the genealogy relations we 

are looking for. 

The main takeaway from Table 15 is that each of these books has its own 

idiosyncratic style and that an effective information extractor for all of them 

must somehow cover or adapt to all these styles.  The approach that OntoSoar 

takes requires it to be provided with knowledge of the syntax and semantics of 

many different linguistic constructions, and new ones to for each new style.  It 

has the advantage, though, that the constructions it already knows don’t seem 

to cause much harm if they don’t fit a new style. 

Another general observation from looking at all this data is that the 

reference resolver works pretty well most of the time.  However, as in some 

cases in our Myra sample, when certain noun phrases are not understood it 

just skips over them and goes much too far, finally finding an incorrect referent.  

This could be improved by doing a better job of recognizing all the referring 

expressions, or by making the reference resolver smart enough to recognize 

that it is passing over an unrecognized reference and not go any further. 

As we saw with our two original samples, OntoSoar’s performance can be 

improved by giving it more knowledge at each of its processing levels. 
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Run time performance 

As well as precision data, Table 15 gives information on how fast 

OntoSoar is at processing data.  It is interesting to see that it goes 2.3 times as 

fast on the Myra sample than on the CCL sample, which seems surprising at 

first since the Myra sample has more complex language.  The reason for this is 

in the performance of the LG Parser.  The LG Parser carries the full weight of 

searching through a space of possible alternative parses, a task which tends to 

grow exponentially with the length of the input segment.  Thus the longer the 

segments the slower the parser goes.  CCL has fewer, longer segments than 

Myra, and thus takes longer to parse. 

Overall for this whole collection of data OntoSoar processes consistently 

at around one segment per second.  Considering that in this time it is not just 

reading and understanding the text, but also using what it understands to 

populate an ontology and output the facts in a very structured form, this is 

much faster than a human indexer could produce the same results. 

Results with different ontologies 

As one might expect, when OntoSoar is run using Ontology 1 (shown in 

Figure 5), it finds the same facts for persons, births, and deaths as mentioned 

above using Ontology 2 (from Figure 6).  It is interesting to note that when 

using Ontology 1 it succeeds in finding a number of persons who are connected 

by relations that are not in the ontology.  For instance, in the first few 

segments of the CCL text, it finds the four parents that are objects of the son of 

and daughter of relations even though the ontology cannot represent these 
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relations.  Thus OntoSoar reports the existence of these four individuals 

without being able to connect them up to anything else.  This shows how the 

internal meaning representations in OntoSoar are richer than the ontologies we 

are using. 

Figure 14 gives another interesting ontology for this domain. 

 

Figure 14:  Ontology Example 3 

When the system is run with this ontology it finds all the same facts as 

were found with Ontology 2, except for sons and daughters.  At the present 

time OntoSoar has no way of knowing that a son is also a child, and Ontology 3 

has no specific object sets for sons and daughters.  When more inference rules 

for reasoning about all the possible arrangements of family relationships are 

added, this problem should be solved. 
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6. Conclusions and Future Work 

In this chapter we examine what has been demonstrated by this work, 

both positively and negatively, with respect to our Thesis Statement.  Then we 

consider possible improvements that could be made to the existing system, 

some incremental and some more major.  Finally we look at possible future 

research directions that are suggested by this work above and beyond the 

current OntoSoar architecture. 

What has been demonstrated 

This thesis has demonstrated a number of important points that relate to 

our Thesis Statement: 

• Linguistic analysis can find genealogy facts. 

• The Link Grammar Parser can be modified to adapt to domain-

specific language variations. 

• A fairly simple preprocessor can segment an input text into 

segments that are reasonable for the LG Parser to process as 

individual chunks. 

• A construction grammar approach can extract useful meaning 

structures from LG Parser linkages using built-in rules. 

• Meaning structures built using construction grammar can be 

mapped onto ontologies to populate a conceptual model read from 

an input file with facts found in the text being processed. 
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• The Soar architecture can support the above processes as well as 

providing a basis for more extensive inferencing for reference 

resolution, name inferencing, and duplicate identification. 

• Inference rules written in Soar code can find referents for 

pronouns and other referential expressions with an accuracy that 

depends on correctly recognizing the referential expressions 

themselves. 

In addition to these positive results, several limitation of the existing 

system have been identified: 

• Knowledge about the syntactic structure and meaning of every 

word and grammatical construction that the system should 

recognize must be built in by hand in Soar of Java code. 

• OCR errors, different usages of punctuation, unknown 

abbreviations, and other additional textual items such as list item 

labels can confuse the system and make it either not find 

important facts or find them incorrectly. 

• In general all the books looked at here use a highly abbreviated 

form of English.  However, the style of representing genealogy facts 

varies considerably from one book to another.  To cover a wide 

range of books a wide range of possible representations of facts 

must by built into the system’s internal knowledge. 
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Possible incremental improvements 

OntoSoar can be improved incrementally by adding or modifying rules in 

several parts of the system: the Segmenter can be made to recognize and 

expand new abbreviations such as b, dau, and Bapt., the grammar of the LG 

Parser can be augmented to understand different date formats, and the 

constructions in the Semantic Analyzer can be expanded to recognize phrases 

like his widow and she had one son, as well as a host of others that can be 

found in family history books. 

Possible major additions 

Adding new rules at various levels can improve OntoSoar considerably, 

but some things will be difficult to accomplish in this way.  More major 

changes or additions could be beneficial. 

One thing that causes considerable difficulty in some of the texts we 

have looked at is that the LG Parser often has great difficulty in properly 

parsing place names.  Also, the system often confuses place names with person 

names.  A good named entity recognizer might help considerably.  Suppose the 

input text were first run through a named entity recognizer, probably even 

before segmentation, that could accurately identify which phrases are names of 

people, which are names of places, which are dates or time expressions of some 

sort, and which are names of organizations or other entities.  Then the input to 

the LG Parser could simply be a single unique identifier for each entity 

recognized, and the phrases these identifiers represent could enter the system 

in parallel and be used to provide real lexical strings farther downstream.  This 
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would greatly simplify the job of the parser, and help the Semantic Analyzer 

match up entities with argument slots in the predicates that are found.  This 

has the potential of improving considerably the overall accuracy of the system 

and the difficulty of writing the constructions and inference rules the system 

needs. 

Many of the texts we have seen contain structures that the current 

OntoSoar does not understand at all.  These include the child numbers seen in 

our CCL sample and similar things in many other documents, as well as 

indentation and paragraph markings.  If we had a preprocessor of some sort 

that could analyze the text to find these structures, this could help 

segmentation and help the reference resolver know where important contextual 

boundaries fall.  Also things like list item labels could be associated with 

regions of text without being included in the segments the parser sees, greatly 

reducing confusion in the parser. 

The biggest obstacle to expanding the coverage of OntoSoar to a much 

wider range of texts is the time required to write and debug the Soar 

productions that implement the system’s understanding of a wider range of 

grammatical constructions.  It should be possible to design a higher-level 

language, patterned partly after the ECG formalism given in Bryant (2008), to 

represent construction recognizers, meaning schemas, and inference rules.  

Then a compiler could be written to compile this language into Soar code.  This 

idea was considered early in this project, but at that time it was felt that we 

didn’t yet know enough about the nature of these various rules and the Soar 
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code required to implement them until a reasonable set of concrete examples 

had been built and debugged.  With OntoSoar as it is today, it is ripe for 

undertaking such a project. 

Evaluating the performance of the current OntoSoar system is very 

tedious and time consuming.  The OntoES tool set has an Annotator tool that 

allows a human being to annotate a given text easily in a graphical interface 

without having any technical knowledge of the internals of the system.  There 

is also a tool that can compare the output of this human annotation with the 

output of OntoSoar for the same input text.  However, the usefulness of such 

an approach is somewhat limited by the fact that the Annotator keeps track of 

the exact physical location in the original PDF file of every string it captures, 

whereas OntoSoar does not.  OntoSoar currently does keep track of the 

segment and range of tokens that each construction represents, and this could 

be augmented with the additional information needed to provide the exact 

physical locations for comparison. 

Future research directions 

As a master’s thesis project, OntoSoar is naturally rather limited in scope.  

Its successes, however, can point the direction for more ambitious research in 

at least three areas: parsing, learning from human interaction, and deeper 

learning of the semantics of words and phrases. 

One major limitation of the OntoSoar architecture is its pipeline 

approach to the problem.  The Segmenter operates on a whole text file as a 

single unit, producing a list of segments before any have been processed by the 
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rest of the system.  Similarly, the LG Parser processes an entire segment as a 

single unit before the Semantic Analyzer has a chance to see any of it.  The 

Semantic Analyzer does work incrementally one word at a time, but it is limited 

be the constraints imposed by the upstream components.  There is no way for 

the semantics to feed information back to the parser, or for the syntax and 

semantics to feed information back to the segmenter. 

Another approach would be to have the whole system work on an 

incremental basis.  As each new word comes in it can be looked up in a lexicon 

and its related syntactic and semantic roles used to recognize grammatical 

constructions, what they mean, and where one ends and the next begins.  

Then the search through a space of alternative parses would not be limited to 

just using syntactic knowledge, but semantic and textual knowledge as well.  It 

might seem that this would make the search space explode even more, but 

actually the constraints supplied by the additional knowledge available at each 

step of the process could actually reduce the number of alternatives at each 

point. 

Even better than developing a high-level language to program rules into 

the system would be having a way that the system can learn the rules itself in 

some way.  One possible approach to this problem would be to use human 

interaction to help the system learn.  For example, suppose a human annotator 

uses something looking like the existing Annotator to start marking up a text, 

but behind the scenes the system is analyzing the human’s decisions and 

building construction patterns and inference rules to produce those same 
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results.  Then the system can use its new hypothesized rules to label a lot more 

data, with these hypothetical results being presented to the user for further 

refinement.  In this way the system could learn until it can provide adequate 

performance without any further human input.  It may be necessary to have 

some of this human input for each new book to be processed. 

Another possible approach to learning would be to have a system that 

really learns from scratch a large amount of linguistic knowledge in a way 

similar to the way humans learn a new language, either as children or adults.  

Tomasello (2003) describes a good deal of empirical evidence of how children 

learn words, simple phrases, and then abstract language through social 

engagement with adult language users.  A system that could learn a large 

amount of a given language in this manner, and then be refined to learn the 

specifics of a particular domain like family history, could probably be much 

more flexible and robust than a system like OntoSoar based on programmed or 

learned domain-specific rules. 

Some of these ideas are very ambitious dreams at this point in time.  

Nevertheless, OntoSoar has pioneered a new approach to extracting 

information from text which can inspire a lot of further research.  We look 

forward to participating in that endeavor. 
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