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ABSTRACT 

 
 

Molly M. Leeper 
Trends in Toxin Profiles of Human Shiga Toxin-Producing Escherchia coli (STEC) 
O157 Strains, United States, 1996-2008 
(Under the direction of Dr. Karen Gieseker, faculty member) 
 

 
Shiga toxin-producing E. coli (STEC) cause diarrhea, hemorrhagic colitis, and 

hemolytic uremic syndrome (HUS). All STEC produce one or both of two Shiga toxins, 

Stx1 and Stx2. STEC strains that produce Stx2 are more strongly associated with HUS 

than strains that produce Stx1 or both Stx1 and Stx2. Epidemiologic evidence indicates a 

recent increase in the rate of HUS among STEC outbreaks. The increasing rate of HUS 

could be explained by a shift in the toxin profiles of STEC strains. The purpose of this 

study was to examine trends in toxin profiles of human STEC O157 isolates from 1996 to 

2008 and to assess whether an increase in the number of Stx2-only-producing strains 

could be correlated with a recent increase in HUS cases. Data from three independent 

datasets, collected from PulseNet, eFORS and NARMS, were used. Additionally, trends 

such as seasonal variations, geographical variations, gender differences, and age 

differences were examined for each toxin profile. Results from this study show a shift in 

the toxin profile of human STEC O157 strains in the United States, in that the proportion 

of Stx2-only producing strains has increased dramatically since 1996. 

 
 
INDEX WORDS: E. coli O157:H7, Shiga toxin-producing E. coli (STEC), Hemolytic 
Uremic Syndrome (HUS), Shiga Toxin 
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CHAPTER I: INTRODUCTION 
 
 
Background: 
 

Escherichia coli are a group of bacteria whose members are typically non-

pathogenic normal microflora of the intestinal tract of humans and animals. However, 

certain strains of this bacterial species have acquired genes that enable them to cause 

intestinal disease. The E. coli that cause enteric disease have been divided into pathotypes 

based on their virulence factors and mechanisms by which they cause disease. One of 

these pathogens, called Shiga toxin-producing E. coli, refers to those strains of E. coli 

that produce at least one member of a class of potent cytotoxins called Shiga toxins 

(Gyles 2006).  

During the past two decades, an increasing number of human foodborne illness 

outbreaks have been traced to consumption of undercooked ground beef and other beef 

products contaminated with Shiga toxin-producing Escherichia coli O157 (STEC). 

STEC, also referred to as Verocytotoxin-producing E. coli (VTEC) are causes of major, 

potentially fatal, zoonotic food-borne illness whose clinical spectrum includes diarrhea, 

hemorrhagic colitis, and hemolytic uremic syndrome (HUS) (Karmali 2003). STEC 

infections are considered a public health problem in both developed and developing 

countries because of the severity of the disease they cause and the global nature of the 

food supply (Brando 2008). 

 Shiga toxin-producing Escherichia coli (STEC) is a major cause of foodborne 

illness in the United States, and is usually acquired by ingestion of contaminated food or 

water, contact with animals, or by person-to-person transmission. Sources of STEC

 

1 
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infection in humans include foods of animal origin such as meats (especially ground 

beef), unpasteurized milk, and other vehicles that have been contaminated with STEC, 

such as fresh-pressed apple cider, yogurt, and vegetables such as alfalfa sprouts, lettuce, 

and other leafy greens. Waterborne transmission and contact with infected animals are 

two routes of transmission that are becoming increasingly recognized. In addition to 

large, widespread outbreaks in the United States, outbreaks of STEC infection have been 

documented in at least 14 countries in a variety of settings, including households, daycare 

centers, schools, restaurants, nursing homes, and prisons (Karmali 2003). 

STEC causes severe gastroenteritis and may cause life-threatening HUS, the most 

serious complication of STEC infection. Most patients with HUS in developed countries 

have evidence of exposure to Shiga toxin-producing E. coli (O'Brien 1998). HUS is a 

leading cause of acute renal failure in children and occurs in about 6% of patients with 

STEC infection (Griffin 1998). Up to 40% of patients with HUS develop long-term renal 

dysfunction and about 3-5% of patients die during the acute phase of the disease (Karmali 

2003). 

 Although the main virulence factor of STEC is the production of one or more type 

of Shiga toxin (Stx1, Stx2, or both), adherence to the intestinal epithelium and 

colonization of the gut are also important components of the disease. Although STEC is 

not typically invasive and is restricted to the lumen of the gut, in some circumstances 

Shiga toxin (Stx) produced within the intestinal tract is able to cross the epithelial border 

and enter the bloodstream. Both Stx1 and Stx2 are capable of crossing epithelial borders 

via an energy-requiring process, and the toxin that moves across the border retains its 

biological activity. Stx targets the endothelium of susceptible tissues, resulting in 
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intestinal as well as systemic dysfunction (Brando 2008). While the route that the toxin 

uses to pass across epithelial cell barriers is not well understood, it appears to take a 

transcellular route. This notion is based on the observation that toxin movement is energy 

dependent and directional, with greater toxin movement in the apical-to-basolateral 

direction than vice versa (Acheson 1998).  

Molecular subtyping, such as pulsed-field gel electrophoresis (PFGE), is critical 

in linking widely dispersed outbreaks of STEC. Subtyping can link seemingly sporadic 

cases so that a vehicle can be implicated and public health officials and consumers can 

advocate for changes to make food safer. Molecular subtyping has had several major 

impacts on public health, including increasing the ability to identify outbreaks that would 

otherwise be missed, increasing the specificity of the definition of outbreaks, and 

allowing outbreaks to be detected and controlled at an earlier stage (Tauxe 2006). 

To facilitate epidemiologic investigations, the Centers for Disease Control and 

Prevention (CDC) established a national molecular suptyping network for foodborne 

disease surveillance in the United States, known as PulseNet. Since its inception in 1996, 

PulseNet has been instrumental in the detection, investigation, and control of numerous 

outbreaks caused by STEC and other foodborne disease-causing bacteria. A server 

housed at the CDC holds a national database of STEC isolates submitted by state and 

local health departments in the United States. By rapidly detecting clusters of STEC 

infections, the E. coli national database is a key tool in the recognition and investigation 

of outbreaks (Gerner-Smidt 2006). 

Additionally, since 1973, CDC has maintained a collaborative surveillance 

program for collection and periodic reporting of data on the occurrence and causes of 
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foodborne-disease outbreaks (FBDOs) in the United States. The Foodborne Disease 

Outbreak Surveillance System reviews data on FDBOs, defined as the occurrence of two 

or more cases of a similar illness resulting from the ingestion of a common food. State 

and local public health departments have the primary responsibility for identifying and 

investigation FDBOs. These departments use a standard form to report these outbreaks. 

Since 2001, reports of FDBOs are submitted through a web application on the internet 

called the Electronic Foodborne Outbreak Reporting System (eFORS) (Lynch 2006). 

In 2007 the eFORS system began undergoing developmental changes, and will soon be 

replaced by the National Outbreak Reporting System (NORS). While eFORS collects 

outbreak data on foodborne outbreaks, NORS will integrate foodborne, waterborne, 

zoonotic, and person-to-person enteric disease outbreaks. It is estimated that NORS will 

be deployed in early 2009 (Ayers 2008). 

 

Study Rationale: 

The motivation for this study comes from an observed increase in the number of 

E. coli O157:H7 outbreaks in the United States population and the increased rate of HUS 

within these outbreaks. Epidemiologic evidence in Europe shows a recent increase in the 

rate of HUS among cases involved in STEC outbreaks (Werber 2003). The increasing 

rate of HUS could be explained by a shift in the toxin profiles (Stx1, Stx2, and Stx1+2) of 

STEC strains.  

The purpose of this study is to examine trends in toxin profiles (Stx1, Stx2, or 

both) of human STEC O157 isolates from 1999 to 2008 and to assess whether an increase 
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in the number of Stx2-producing strains is correlated with the recent increase in HUS 

cases in outbreaks.  

 

Research Questions: 

 From initial observations and review of the literature, the following research 

questions were formulated: 

1) Has there been an increase in the number of STEC O157:H7 outbreaks within 

the time period observed (1999-2008)? If so, what factors could be affecting these 

numbers? 

2) Has there been an increase in the number of STEC O157:H7 strains that 

produce Shiga toxin 2-only within the time period observed (1999-2008)? If such 

an increase exists, have there been any changes in toxin testing practices? 

3) Has there been an increase in the rate of HUS among STEC outbreaks 

occurring in the United States from the time period observed (1999-2008)? 

4) Are there any other observable trends in the number of STEC O157:H7 

outbreaks and HUS rates within the time period observed (1999-2008), including 

demographic, seasonal, or geographic trends? 

5) Could trends in HUS rates be due to shifts in the toxin profiles produced by 

STEC O157:H7 strains? 

6) Are certain PFGE patterns associated with certain toxin profiles in STEC 

O157:H7 strains? 

7) Are certain toxin profiles associated with non-O157 STEC strains? 
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Hypotheses: 

 The following hypotheses were generated from the questions proposed, general 

observations, the literature reviewed, and the data collected: 

1) HO: There has not been a change in the number of foodborne outbreaks caused by 

STEC O157:H7 reported during the time period of 1999-2008. 

HA: There has been an increase in the number of foodborne outbreaks caused by 

STEC O157:H7 reported from the time period of 1999-2008. 

2) HO:  There has not been a relative increase in the number of STEC O157:H7 

strains that produce Shiga toxin 2-only from the time period of 1999-2008. 

HA: There has been a relative increase in the number of STEC O157:H7 strains 

that produce Shiga toxin 2-only from the time period of 1999-2008. 

3) HO: There has not been an increase in the rate of HUS among STEC O157 

outbreaks reported in the United States from the time period observed (1999-

2008). 

HA: There has been an increase in the rate of HUS among STEC O157 outbreaks 

in the United States from the time period observed (1999-2008). 

4) HO:  There are no other observable trends in the number of STEC O157:H7 

outbreaks and HUS rates within the time period observed (1999-2008), including 

demographic, seasonal, or geographic trends. 

HA: There are other observable trends in the number of STEC O157:H7 outbreaks 

and HUS rates within the time period observed (1999-2008), including 

demographic, seasonal, or geographic trends. Trends in age and gender include 

higher rates of STEC O157:H7 infections among young children (<5 years of age) 
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and those of female gender. STEC O157:H7. Seasonal trends include higher rates 

of STEC O157:H7 infection in summer and fall months, for each toxin type. 

Geographic trends include higher concentrations of STEC O157:H7 cases in mid-

western and mountain states. 

5) HO: PFGE patterns do not correlate with the toxin profile of STEC O157:H7 

strains. 

HA: PFGE patterns correlate with the toxin profile of STEC O157:H7 strains. 

6) HO: Non-O157 STEC strains are not more likely to be associated with the toxin 

profile Stx1-only than the other two toxin profiles. 

HA: Non-O157 STEC strains are more likely to be associated with the toxin 

profile Stx1-only than the other two toxin profiles 

   
 



 
 

 
 

CHAPTER II: LITERATURE REVIEW 
 
 

 
Public Health Significance of STEC O157:H7 Infections  
 
   The occurrence of massive outbreaks of STEC infection, especially resulting 

from the most common serotype, E. coli O157:H7, and the risk of developing HUS, the 

leading cause of acute renal failure in children, make STEC infection a public health 

problem of serious concern (Karmali 2003). Since the first outbreak caused by E. coli 

O157:H7 in 1982, this agent has emerged as a foodborne pathogen leading to 

hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS) and thrombocytopenic 

purpura (TTP) (O'Brien 1998). The main virulence factor of STEC is the production of 

one or more type of Shiga toxin, (Stx1, Stx2, or both).  

 Recent epidemiologic evidence indicates that the incidence of infections with 

STEC O157:H7 and other strains has increased in the 1980s and 1990s. In 1999, it was 

estimated that STEC O157:H7 causes approximately 73,000 illnesses and 61 deaths 

annually in the United States (Mead, 1999). The Foodborne Diseases Active Surveillance 

Network (FoodNet) of CDC's Emerging Infections Program collects data from 10 states 

regarding diseases caused by pathogens commonly transmitted through food. FoodNet 

quantifies and monitors the incidence of these infections by conducting active, 

population-based surveillance for laboratory-confirmed infections. In 2007, 545 cases of 

STEC O157 were identified in FoodNet surveillance areas, yielding an incidence of 1.20 

cases per a population of 100,000 with large geographical variation. The highest 

incidence for STEC O157 infections was among children aged <5 years (3.66 cases per a 
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population of 100,000). In 2006, FoodNet identified 82 cases of post-diarrheal HUS in 

persons aged <18 years (0.78 cases per 100,000 children); 58 (0.7%) cases occurred in 

children aged <5 years (2.01 cases per 100,000 children). Table 1 shows the 2007 

incidence of laboratory-confirmed STEC O157 infections and post-diarrheal HUS by 

FoodNet site, as compared to the Healthy People 2010 Objective for food safety (CDC 

2008). 

 

Table 1: Incidence* of laboratory-confirmed bacterial and parasitic infections in 
2007 and post-diarrheal hemolytic uremic syndrome (HUS) in 2006, by site and 
pathogen, compared with national health objectives┼. Source: MMWR 2008. 
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The relative rates of laboratory-confirmed infections of STEC O157 and other foodborne 

pathogens (Campylobacter, Listeria, Salmonella, and Vibrio) from 1996-2007 according 

to data collected by FoodNet is shown in Figure 1. 

 

Figure 1: Relative rates of laboratory-confirmed infections with Campylobacter, 
STEC* O157, Listeria, Salmonella, and Vibrio compared with 1996-1998 rates, by 
year. Foodborne Diseases Active Surveillance Network, United States, 1996-2007┼. 
Source: MMWR 2008. 
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Although significant declines in the incidence of certain foodborne pathogens 

have occurred since 1996, these declines mainly occurred before 2004. Declines in the 

incidence of STEC O157 infections in 2003 and 2004 have not been maintained. 
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Although the United States Department of Agriculture Food Safety and Inspection 

Service (USDA-FSIS) and the beef processing industry have implemented interventions 

to reduce ground beef contamination, 21 beef product recalls for possible contamination 

with STEC O157 were issued in 2007, of which 10 were illness associated, an increase 

compared to previous years. USDA-FSIS launched an STEC O157 initiative in fall 2007 

and hosted a public meeting in spring 2008 to explore solutions to the challenges the 

pathogen presents (CDC 2008).  

 

Shiga Toxin Nomenclature and Verotoxins 
 

In 1898, Kiosha Shiga described the agent of epidemic bacterial dysentery, 

Shigella dysenteriae type 1 (Shiga’s bacillus). Shiga’s bacillus was later found to produce 

Shiga toxins. In 1972, Keusch and colleagues found that Stx alone caused fluid 

accumulation and enteritis in rabbit intestines, revealing that Stx can contribute to bloody 

diarrhea. In 1977, Konowalchuck and colleagues made the critical finding that certain 

diarrheagenic E. coli stains make a cytotoxin that can kill Vero cells (cells derived from 

the kidney epithelial cells of the African green monkey), hence the name verotoxin. In 

1983, O’Brien and colleagues reported that a Shiga-like toxin was produced by the E. coli 

O157:H7 strain that had caused an outbreak of hemorrhagic colitis in the United States, 

and that this toxin was the same as the verotoxin produced by E. coli O157:H7. Thus, in 

1983, the paths of research on Shiga toxins and verotoxins merged. Following these 

significant findings, the mid to late 1980s heralded the era of the molecular 

characterization of the genes encoding the Stx family members and it was shown that the 

Shiga toxin from Shigella dysenteriae belonged to the Shiga toxin type (O'Brien 1998). 
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Two main categories of Shiga toxins have been distinguished, E. coli Shiga toxin 1 (Stx1) 

is almost identical to the Shiga toxin of Shigella dysenteriae in amino acid sequence, 

whereas Shiga toxin 2 (Stx2) is less related to the Shiga toxin of Shigella and is not 

neutralized by antibodies to either Stx1 or Shiga toxin from S. dysenteriae (Boerlin 

1998).                  

 

Human Illness 

 In outbreaks of STEC O157:H7, the mode of transmission is most often food, 

followed by animal contact, person-to-person spread, recreational water, and drinking 

water. STEC infection typically occurs in the summer and fall and mostly affects young 

children, but the elderly also have an increased risk of infection. The infectious dose is 

very low, estimated to be less than 100 to a few hundred organisms (Griffin 1998). The 

sequence of events of STEC O157:H7 infection begins with the ingestion of the 

organism, followed typically by a 3-4 day incubation period while it colonizes the large 

bowel and multiplies. Illness then begins with non-bloody diarrhea and abdominal 

cramps. Most persons who come to medical attention develop bloody diarrhea, typically 

in the 2nd or 3rd day of illness. Illness usually resolves within a week, but in about 6% of 

patients HUS occurs. Fever and vomiting are not prominent features (Griffin 1998). 

Approximately 10% of patients with STEC O157:H7 infections do not experience bloody 

diarrhea, however, patients with non-bloody diarrhea have the same risk of developing 

HUS as do patients with hemorrhagic colitis, and they are as severely affected in terms of 

abdominal pain and other symptoms (Tarr 1998). Figure 2 illustrates the range in 
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symptomatology of STEC disease from asymptomatic infection to death, and the 

potential symptoms along its progression. 

 
 
 
 
Figure 2: STEC O157 pathway of disease. Source: STEC – Role of Clinical and 
Public Health Microbiologists in Testing and Outbreak Situations. Source: STEC – 
Role of Clinical and Public Health Microbiologists in Testing and Outbreaks. 
Presented by Dr. Peter Gerner-Smidt, 108th ASM General Meeting, Boston 2008 
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Animal Illness 

 Healthy dairy and beef cattle are the major reservoir of a diverse group of STEC 

that infects humans through contamination of food and water, as well as through direct 

contact (Gyles 2006). Naturally acquired STEC infections have also been detected in a 

wide spectrum of animal species (sheep, goat, deer, moose, swine, horse, dog, cat, 

pigeon, chicken, turkey). Several of these animal hosts, particularly ruminants, have been 

identified as major reservoirs of STEC strains that are highly virulent in the human host, 

including STEC O157:H7 (Wieler 2003) .  

However, in contrast to the human host, most STEC infections of animals remain 

clinically inapparent. Even in ruminant species, where high shedding rates have been 

reported, the clinical significance of STEC infections appears to be rather limited. Calves 
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are infected soon after birth through fecally contaminated milk and surroundings. Studies 

show that STEC O157 strains are only pathogenic for animals younger than 3 weeks, a 

finding pointing toward a possible age-dependent expression of STEC-specific intestinal 

receptors in animals. Similar to the diagnostic approach in human STEC infection, a 

definitive diagnosis in animals is based on the isolation of the bacteria from fecal 

specimens and subsequent confirmation by the demonstration of virulence factors or their 

genes (Wieler 2003). 

 

Hemolytic Uremic Syndrome (HUS) 

HUS, which was first described in 1955 by Gasser et al. in Switzerland, is defined 

by a triad of clinical features that include renal failure, thrombocytopenia, and 

microangiopathic hemolytic anemia. Before 1983, most nephrologists thought HUS was a 

multifactorial disease that could result from a number of initiating events. Because HUS 

occasionally occurred in outbreaks, an infectious agent was sought. The strongest 

documented linkage between HUS and a microorganism was the association of Shigella 

dysenteriae type 1. Several studies had noted that many, if not the majority, of HUS cases 

were preceded by diarrhea. The key event in the linkage of HUS and STEC was the 

report by Karmali et al. in 1983 that sporadic cases of HUS were linked to the presence of 

Stx and/or E. coli that produced Stx in patients’ stools. This initial report was confirmed 

by a prospective controlled study that linked cases of HUS with isolation from the stools 

of patients with STEC infections belonging to at least 6 different O serogroups (O26, 

O111, O113, O121, O145, and O157). Subsequent reports also noted an association 

between STEC and post-diarrheal TTP, a syndrome more commonly found in adults that 
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shares many features of HUS (O'Brien 1998). The development of HUS is thought to be 

related to the translocation of Stx into the bloodstream, although the precise mechanism 

for this is unknown (Karmali 2003). 

The severity of HUS varies from an incomplete or mild clinical picture to severe 

and fulminating disease with multiple organ involvement, including the bowel, heart, 

lungs, pancreas, and central nervous system (Karmali 2003). Neurological complications 

such as seizures, stroke, cerebral edema, or coma may occur in HUS, but there is little 

information on the pathophysiology of the central nervous system (O'Brien 1998). 

Approximately two-thirds of children with HUS require dialysis, and about one-third 

have milder renal involvement without the need for dialysis. The use of anti-motility 

agents and antibiotics, having bloody diarrhea, fever, vomiting, elevated serum leukocyte 

count, being of a young age (<5 years) and of female gender have been associated with 

increased risk for HUS following STEC infection in some studies (Scheiring 2008).  

HUS has been reported to occur with a frequency of about 8% in several 

outbreaks of E. coli O157:H7, although in one outbreak among elderly nursing home 

residents, it was as high as 22%. Recently, a large, well-publicized multistate outbreak 

associated with fresh spinach consumption occurred in September 2006 across 26 states 

with approximately 200 illnesses and 3 deaths. The HUS rate for this outbreak was found 

to be 15.6% (CDC 2006).  

The incidence of HUS in North America is about three cases per 100,000 children 

under 5 years of age per year; the rate among older children is somewhat lower, and the 

rate among adults is not known (Mahon 1997). This is in contrast to a roughly 10-fold 

higher incidence (consistently) in children under 5 years of age in Argentina. In South 
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Africa and the US, HUS appears to be more common in white than in black children. In 

Argentina, HUS occurs more commonly in upper-income than in lower-income groups. 

Reasons for these differences are unknown (Karmali 2003).  

 

Treatment and Prevention 

 In an outbreak setting, rapid diagnosis of cases and immediate notification of 

health authorities is essential for effective intervention. The presentation to medical care 

of a child with definite or possible E. coli O157:H7 infection but before HUS ensues 

affords a potential opportunity to ameliorate the course of subsequent renal failure. HUS 

can be categorized as either oligoanuric (which probably signifies acute tubular necrosis) 

or nonoligoanuric. Children with oligoanuric renal failure during HUS generally require 

dialysis, have more complicated courses, and are probably at increased risk for chronic 

sequelae than are children who experience nonoligoanuric HUS (Ake 2005). A 

prospective study on 29 children with HUS that was confirmed microbiologically to be 

caused by E. coli O157:H7 was performed by Ake et al. This study found that early 

recognition and parenteral volume expansion during E. coli O157:H7 infections, well 

before HUS develops, is associated with attenuated renal failure. Parenteral hydration in 

children who are possibly infected with E. coli O157:H7, at the time of presentation with 

bloody diarrhea and in advance of culture results, is a practice that can accelerate the start 

of volume expansion during the important pre-HUS interval. Rapid assessment of stools 

for E. coli O157:H7 by microbiologists and reporting of presumptive positives 

immediately can alert practitioners that patients are at risk for developing HUS and can 

prompt volume expansion in children (Ake 2005).     
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 The use of antibiotics to treat patients with STEC infection has been quite 

controversial. Most clinicians experienced in the management of STEC infections in the 

US and Canada have found that antimicrobial agents have little clinical effect and 

occasionally seem to increase the chances of HUS, however this finding is still in debate. 

A less controversial treatment that is being followed is the use of Synsorb-Pk, which is an 

investigational new drug that has been promoted as safe and effective for the treatment of 

HUS in children infected by E. coli. This drug is intended to absorb the toxin in the 

intestine before it reaches the bloodstream. There have been improvements in the 

treatment of renal failure, however the biggest challenge facing clinicians is to develop 

interventions to prevent renal involvement (O’Brien 1998). 

Another area of investigation is the development of vaccines against STEC. 

Successful vaccination of pigs against edema disease, using Stx2e toxoids, (bacterial 

toxins whose toxicity has been weakened or suppressed by chemical or heat treatments), 

offers hope for human vaccines (O’Brien 1998). Anti-Shiga toxin antibodies have been 

shown to prevent HUS in animals. In December 2005, the US Food and Drug 

Administration (FDA) approved orphan drug status for two chimeric anti-Shiga toxin 

antibodies (caStx1 and caStx2, made by Caprion Pharmaceuticals, Inc.) in the treatment 

of STEC infections. The antibodies are intended to neutralize circulating Stx1 and Stx2, 

thereby preventing serious complications such as bloody diarrhea, destruction of red 

blood cells and platelets, and HUS. The product is being evaluated for preventing HUS in 

a dose-escalating, phase 1, US clinical trial of STEC infected pediatric patients (Scheiring 

2008). 
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Detection and Isolation of STEC  

 Timely and accurate diagnosis of STEC infections is extremely important from 

both a public health and a clinical management perspective. Several days may occur 

between the point at which the patient is exposed to the pathogen and when he/she is 

included as a case in an outbreak. These include the time it takes for the patient to 

become ill after ingesting the contaminated food (3-4 days), the time it takes for the 

patient to contact the healthcare system (1-5 days), the time it takes to diagnose the 

infection after a stool sample is collected (1-3 days), the time it takes for the patient’s 

specimen to be shipped from the clinical laboratory to the public health laboratory (1-7 

days), and the time it takes for the public health laboratory to perform molecular testing 

on the patient’s specimen to confirm the case as part of an outbreak (2-10 days). In cases 

of HUS, the typical clinical signs usually become apparent within two weeks after the 

onset of gastrointestinal (GI) symptoms, by which time the numbers of the causative 

STEC may be very low, or diarrhea may no longer be present. 

For these reasons, STEC detection methods need to be very sensitive. Diagnostic 

methods are based on the detection of the presence of either Stx genes in fecal extracts or 

fecal cultures and/or isolation of the STEC itself. These procedures differ in complexity, 

speed, sensitivity, specificity, and cost, therefore diagnostic strategies must be tailored to 

the clinical circumstances and resources available (Paton J. 2003). Culture on Sorbitol-

MacConkey agar (SMAC) or the more selective cefixime and tellurite sorbitol-

MacConkey (CT-SMAC) agar has been the most commonly used method for isolation of 

STEC O157. This is because unlike the majority of fecal E. coli strains, most O157:H7 

and O157:H- STEC are unable to ferment sorbitol. SMAC or CT-SMAC plates are 
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inoculated with the fecal specimen and examined after 18-24 hours of incubation for the 

presence of colorless, sorbitol-negative colonies. Individual colonies can then be tested 

by slide or tube agglutination with commercially available O157-and H7-specific antisera 

or latex reagents (Paton A. 2003). Although screening fecal cultures on SMAC or CT-

SMAC is inexpensive and involves minimal labor and equipment, it is serotype-specific 

in that it will only detect STEC O157. 

 Immunomagnetic separation (IMS) is a powerful concentration technique for the 

isolation of STEC from low-abundance specimens. This procedure involves coating 

magnetic beads with anti-LPS (lipopolysaccharide) and mixing them with broth cultures 

or suspensions of feces or food samples. The beads and bound bacteria are then trapped 

in a magnetic field, any unbound suspension is decanted, and the beads are washed. After 

additional binding and washing cycles, the beads are plated and the resultant colonies are 

tested for Shiga toxin production. IMS is an extremely valuable technique in 

circumstances where deliberate targeting of STEC O157 is justifiable, such as for 

analysis of food samples that have been epidemiologically linked to human cases of 

STEC, and for analysis of stool cultures from patients with HUS (Paton A. 2003). IMS is 

also valuable for detection of the most common non-O157 STEC serotypes for which 

antibodies are available, e.g. O111, O26, O103, and O45. 

 

Shiga Toxins and Adherence to Epithelial Cell Surfaces 

   Once STEC has been ingested, they are able to survive the acidity of the 

stomach in sufficient numbers to colonize portions of the lower GI tract. Once the 

organisms are in the lower portion of the intestine, the bacteria adhere to, and interact 
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PAI 

with, the epithelial cell surface by using a variety of virulence factors, some of which are 

encoded by genes present on a pathogenicity island (PAI) known as the locus of 

enterocyte effacement (LEE). A PAI is a stretch of foreign DNA that is incorporated into 

the genome of pathogenic microorganisms and carries genes encoding one or more 

virulence factors, including toxins (Figure 3). The GC content of a PAI differs from that 

of the rest of the genome, indicating that at some point in history the pathogen has 

acquired the DNA located on the PAI from an outside source (Hacker 2000). 

Figure 3: Illustration of the LEE pathogenicity island (PAI) within STEC O157 
strain. The PAI contains genes which encode various virulence factors for the 
organism. Source: STEC – Role of Clinical and Public Health Microbiologists in 
Testing and Outbreaks. Presented by Dr. Peter Gerner-Smidt, 108th ASM General 
Meeting, Boston 2008 

 

 

 

 

Nearly all O157 strains contain the E. coli attaching and effacing (eae) gene, 

which mediates the attachment to and destruction of the microvilli of the intestinal 

epithelial cells (Bulte 2003). Once the organism adheres to the epithelial cell surface, it 

then produces Shiga toxins, which are capable of causing damage both locally and 

systemically (Acheson 1998). Figure 4 illustrates this component of STEC pathogenesis.  
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Figure 4: Adherence of STEC O157 bacteria to intestinal epithelial cell and delivery 
of Shiga toxin inside the cell. Source: Nataro and Kaper, 1998. Clinical 
Microbiological Review 11: 142-201. 
 

    

 

It is well established that certain patients develop endothelial cell damage in sites 

that are at a distance from the GI tract following infection. This is thought to be due, to 

some degree, to the direct action of the toxins (Acheson 1998). Shiga toxin is toxic to 

cells at picomolar concentrations, and they are among the most potent biological 

substances known (Karmali 2003). 

The toxins share a polypeptide subunit structure consisting of an enzymatically 

active A-subunit that is linked to a pentamer of B-subunits. The A-B subunit structure 

binds to a specific receptor on the surface of eukaryotic cells (Nataro and Kaper 1998). 

Figure 5 illustrates the structure of the toxin. After binding to a receptor on the eukaryotic 

cell, the toxins are internalized by endocytosis. Once inside the cell, the A subunit is split 

and becomes activated, and the toxins target the endoplasmic reticulum by a process 

called “retrograde transport”, where they interact with subcellular components, resulting 

in the inhibition of protein synthesis and cell death. Although the endothelial cell appears 

to be the main target for Stx action, there is evidence that the toxins may also mediate 

biological effects by interacting with other cell types such as renal tubular cells and 
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monocytes (Karmali 2003). Endothelial cell damage is central to the pathogenesis of 

HUS, and damage is normally caused in the renal cells, but may also occur in the gastro-

intestinal tract, as well as other organs including the pancreas, lungs, and brain. 

 
 
 
 
 
 
 
 
 
Figure 5: The toxin has two subunits, designated A and B. The B subunit is a 
pentamer that binds to specific glycolipids on the host cell, specifically 
globotriaosylceramide (Gb3). Source: STEC – Role of Clinical and Public Health 
Microbiologists in Testing and Outbreaks. Presented by Dr. Peter Gerner-Smidt, 
108th ASM General Meeting, Boston 2008 
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Differences in Toxin Types 

Two types of Shiga toxins exist: Stx1 and Stx2. Some studies have suggested that 

STEC strains producing Stx2 may be more closely associated with severe disease and 

HUS than strains producing Stx1-only. In a study from the United States, patients 

infected with STEC O157 possessing Stx2 but not Stx1 were significantly more likely to 

develop systemic sequelae, including HUS, than were patients infected with STEC O157 

harboring Stx1 alone or Stx1 and Stx2 (Ostroff 1989). 

   
 



23 
 

In 2004, Ethelberg et al. conducted an analysis of strain and patient factors 

associated with the development of bloody diarrhea and HUS among STEC patients 

registered in Denmark in a 6-year period. This study found that a major risk factor for 

bloody diarrhea and HUS was the presence of the Stx2 and eae genes (Ethelberg 2004). A 

study conducted in 1999 by Boerlin et al. revealed a strong statistical association 

(OR=4.95; p=0.0038) between the Stx2 gene and severity of disease for a set of 112 

human isolates from eight major serotypes (Boerlin 1999).  

One possible explanation for this is that Stx2 moves across the intestinal epithelial 

cell barrier to a greater extent that does Stx1. One study found that Stx1 binds with higher 

affinity than Stx2 in a number of epithelial and endothelial cells. One speculation is that 

if Stx1 is binding to many of the available receptors with higher affinity, it may be more 

likely to be “held up” in the intestine, preventing it from entering the bloodstream. It is 

not clear if Stx1 and Stx2 are moving across the intestinal epithelial cells via the same 

pathway, although it is highly probably that they are (Acheson 1998). Each Stx type may 

be present alone or in combination in STEC. The pathogenicity of STEC infection in 

humans depends on many bacterial virulence factors including among others, Stx, 

enterohemolysin, intimin (encoded by the eae gene), and host factors such as age.  

 

Toxin Subtypes 

Each Stx type (Stx1 and Stx2) may be further divided into several subtypes. For 

example, Stx1 may be divided into 4 subtypes, Stx1a, Stx1b, Stx1c, and Stx1d, and Stx2 

may be divided into 7 subtypes, Stx2a-g. Stx2e typically is associated with pig edema 

disease and has been rarely detected in STEC of human origin (Friedrich 2002). The 
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Stx2a subtype is also called the Stx2 subtype by some investigators, in order to avoid 

confusion with the A subunit of the toxin. 

 The Stx subtype may be associated with the clinical presentation and severity of 

illness among STEC infections. A number of studies have documented that types Stx2a 

and Stx2c are more often associated with HUS than the other Stx2 subtypes, but Stx2d 

and Stx2e-containing strains have also been isolated from humans with HUS. These data 

suggest that some Stx2 subtypes augment the ability of STEC to cause serious human 

disease (Friedrich 2002). Polymerase Chain Reaction- Restriction Fragment Length 

Polymorphism (PCR-RFLP) has been the preferred tool for subtyping Stx2 genes. This 

method is, however, vulnerable to single-nucleotide changes and is difficult to interpret if 

the strain contains more than one subtype or if the fragments generated are small or of 

similar sizes (Persson 2007). Figures 6 and 7 illustrate the similarity of the different 

subtypes of each toxin type, Stx1 and Stx2, and how certain STEC serotypes group 

among the subtypes of each type. These dendrograms are amino acid sequences 

translated from the partial sequences of the Stx1 and Stx2 genes. 

Figure 6: Stx1: 4 subtypes (Stx1a-d); 7 variants. Source: F. Scheutz, USDA, FDA, 
CDC: Public non-O157 meeting, Washington DC 2007.  
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Figure 7: Stx2:7 subtypes (Stx2a-g); 35 variants 
Source: F. Scheutz, USDA, FDA, CDC: Public non-O157 meeting, Washington DC 
2007. 

P ai rw ise  (O G :1 0 0% ,U G :0 % ) (F AS T :2,1 0 ) G a pc os t :0 %  D isc .  un k.
v t x_ T R A N S L

10
0

999897969594939291908988878685848382

v t x 2 d- O 15 7- 72 79

v tx 2 d- O 17 4- E C 1 7 20 a
v tx 2 d- O 91 -a -B 2F 1

v tx 2 d- O 91 -b -B 2F 1

v tx 2 d- O 8- C 46 6- 01 B

v tx 2 d- C _f r eu nd ii- LM 7 6 ..

v t x 2 d- O 6- N V 2 06

v tx 2 d- O 22 -K Y - O 19

v tx 2 d- O 73 -C 1 65 -0 2

v tx 2 a- O 15 7- E D L 9 33
v tx 2 a- O 26 -F D 9 30

v tx 2 a- O 15 7- S F

v tx 2 a- O 48 -9 4C

v tx 2 a- O 26 -1 26 81 4

v tx 2 a- E _ c lo ac a e- 95 M V 2

v tx 2 c -O 1 57 -E 32 51 1
v tx 2 c -O 1 57 -F L Y 1 6

v tx 2 c -O 1 57 -C 3 94 -0 3

v tx 2 c -O 1 57 -4 69

v tx 2 c -O 1 74 -b -0 31

v tx 2 g- O 2- 7v

v tx 2 g- O 2- S 8 6

v tx 2 g- O ut -S -8
v tx 2 b- O 11 1- S - 3

v tx 2 b- O 96 -S -6

v tx 2 b- O 22 -3 14 3- 97

v tx 2 b- O N T -5 29 3- 98

v tx 2 b- O 11 8- E H 2 5 0

v tx 2 b- O 16 -6 45 1- 98

v tx 2 b- O 17 4- a - 03 1
v tx 2 b- O 11 1- P H

v tx 2 e- O 13 9- 41 2

v tx 2 e- O 22 -3 61 5- 99

v tx 2 e- O 10 1- E - D 43

v tx 2 f -O 12 8 -T 4 -9 7

dd

a

ff

bb

gg
cc

a

ee

 

   
 



26 
 

STEC Serotypes 
 

Serotyping is an important basis for differentiating STEC and is often the starting 

point in the characterization of STEC strains. The serotype of an E. coli isolate is based 

on the O-antigen determined by the polysaccharide portion of cell wall 

lipopolysaccharide (LPS), and the H antigen due to flagella protein. There are 174 O-

antigens and 53 H-antigens (Scheutz 2004) described so far in the international 

serotyping scheme, with E. coli isolates having various combinations of O and H 

antigens. A high percentage of STEC serotypes are nonmotile (NM) mutants of strains 

without an H antigen, but these strains are capable of causing illness as severe as STEC 

O157:H7 (Gyles 2006).  

Severe disease and outbreaks are most commonly due to serotype O157:H7. 

Because of the importance of serotype O157:H7 in human disease and the ease in which 

STEC infections are detected and diagnosed, it is common to consider STEC serotypes in 

two major categories: O157 and non-O157. The most widely used methods for isolating 

STEC O157 are serotype and sorbitol fermentation specific and do not detect non-O157 

strains. For this reason, the number of documented infections with STEC strains other 

than non-sorbitol-fermenting STEC O157 is underestimated (Strockbine 1998).  

STEC strains are often considered as a group but there may be important 

differences between serotypes. Different serotypes may have differences in clinical 

features. Non-bloody diarrhea is more commonly reported among persons infected with 

non-O157 strains. Isolates from blood and urine are also more commonly seen among 

persons with non-O157 infections, therefore the spectrum of illness with non-O157 STEC 

may be wider than that for O157.  
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E. coli O157 seems to be the predominant serotype of STEC in the US, Canada, 

the UK, and Japan, but in continental Europe, Latin America, and Australia, non-O157s 

are much more common. However, the clinical presentation is not independently related 

to the serotype. Rather than the serotype or O group, the combined presence of the eae 

and Stx2 genes is an important predictor of HUS (Ethelberg 2004). 

With the introduction of diagnostic methods targeting Stx or the Stx genes, more 

non-O157 infections are now being diagnosed in all countries, including the United 

States, Canada, the UK, and Japan. In Germany, where STEC infection is statutorily 

notifiable regardless of serotype, non-O157 STEC infections account for almost 80% of 

reported gastroenteritis cases, and approximately a third of STEC-associated HUS cases 

(Frank 2008). In addition to STEC O157:H7, other serotypes that have caused major 

outbreaks in the United States include O26:H11, O103:H2, O111:H-, O111:H8, O121:H-, 

and O145:H- (Bulte 2003). Table 2 provides the toxin profiles of fifteen of the most 

prevalent non-O157 STEC serotypes isolated from humans in the United States during 

1983-2002.
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Table 2: Toxin profiles and virulence factors of most prevalent non-O157 STEC 
serotypes isolated from humans, United States, 1983-2002. Source: Brooks et al. 
Journal of Infectious Diseases 2005: 192; 1422-1429 
 

 

 

 

 

 

 

 

 

 

 

 

Molecular Subtyping and PulseNet 

In order to investigate the relatedness of STEC strains isolated from outbreaks or 

sporadic cases, the gold standard method of strain typing that is used is pulsed-field gel 

electrophoresis (PFGE). PFGE is a Restriction Fragment Length Polymorphism (RFLP) 

method that uses restriction enzymes to generate a relatively small number of large DNA 

fragments. Such fragments are too large to separate by conventional electrophoresis but 

can be separated when subjected to a changing (pulsed) electrical field. The greatest 

difficulty in interpreting PFGE results comes in deciding whether or not patterns are 

indistinguishable. Such difficulties in interpreting subtyping results should serve as a 
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reminder that subtyping is an adjunct to, not a replacement for, a thorough 

epidemiological investigation (Strockbine 1998). For STEC O157 strains, restriction 

enzymes XbaI and BlnI are used as the primary and secondary enzymes, respectively 

(Figure 8). 

Figure 8: PFGE Gel Image of STEC O157 Isolates Restricted with XbaI (lanes 2 and 
3) and BlnI (lane 5); Molecular Size Standard Salmonella Braenderup in lanes 1, 4, 
and 6. Source: PulseNet E. coli national database, 2009 
 

 

 

 

 

 

 

 

PFGE has worked effectively to identify STEC isolates from multiple cases that 

were epidemiologically related (Watanabe 2003). Subtyping is critical in linking cases in 

widely dispersed outbreaks. The role of subtyping is illustrated by the investigation of 

clusters of O157 infections in June and July 1997 that occurred hundreds of miles apart in 

Virginia and Michigan. Among the 70 ill persons identified, 97% had bloody diarrhea 

and 51% were hospitalized. Independent investigations linked both outbreaks to alfalfa 

sprouts. Strains from patients in the two states were compared and revealed 

indistinguishable PFGE patterns. Traceback of seeds from which the sprouts were grown 

revealed that they had only been shipped to these two states; all remaining seeds were 

removed from the market.  
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Subtyping has been an important adjunct to many other outbreaks of O157 

(Griffin 1998). In the spinach outbreak in 2006, PFGE linked 183 cases in 26 states 

(CDC 2006). In an outbreak in 2007, PFGE linked 38 cases in 8 states to contaminated 

ground beef, resulting in a recall of 21.7 million pounds of ground beef products. Also in 

2007, PFGE was used to link 21 cases in 10 states to frozen pepperoni pizza, resulting in 

a voluntary recall by the company. In 2008, PFGE was used to detect an outbreak 

involving 14 cases associated with a daycare center, 36 cases exposed to contaminated 

iceberg lettuce served at a university, an outbreak involving 17 cases associated with a 

college event, and an outbreak of 66 cases from 8 states associated with ground beef from 

a major supermarket chain, among many others. 

To facilitate epidemiologic investigations, the Centers for Disease Control and 

Prevention (CDC), established a National Network for Molecular Subtyping for 

Foodborne Disease Surveillance called PulseNet in 1996. Since its inception in 1996, it 

has been instrumental in the detection, investigation, and control of numerous outbreaks 

caused by STEC O157:H7, Salmonella enterica, Listeria monocytogenes, Shigella spp., 

and Campylobacter. The PulseNet network is now being replicated in different ways in 

Canada, Europe, the Asia Pacific region, Latin America and the Caribbean, and the 

Middle East. These independent networks will allow public health officials to share 

molecular epidemiologic information in real-time, and will enable rapid recognition and 

investigation of multi-national foodborne disease outbreaks (Tauxe 2006). 

Public health laboratories use standardized procedures for performance and 

interpretation of PFGE and share the data electronically. PFGE is used as the subtyping 

method in the network because it is accessible for many laboratories as well as being 
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highly discriminatory and reproducible for many pathogens. National databases at the 

CDC contain STEC O157 PFGE patterns, as well as other STEC serotypes, which public 

health laboratories can access to compare with local PFGE patterns (Swaminathan 2001, 

Gerner-Smidt 2006). Sharing of subtyping data on a national level has proved invaluable 

in determining the extent of foodborne outbreaks and identifying diffuse outbreaks that 

could not be detected by surveillance alone.  

 

Electronic Foodborne Outbreaks Reporting System (eFORS) 

Since 1973, the CDC has maintained a collaborative surveillance program for the 

collection and periodic reporting of data on the occurrence and causes of foodborne 

disease outbreaks (FBDOs) in the US. The Foodborne Disease Outbreak Surveillance 

System reviews data on FBDOs, defined as the occurrence of two or more cases of a 

similar illness resulting from the ingestion of a common food. State and local public 

health departments have primary responsibility for identifying and investigating FBDOs. 

State, local, and territorial health departments use a standard form to report these 

outbreaks to the CDC. A revised form became available in 1999. The revised form 

expanded the range of food items, places, and contributing factors that could be reported 

(Lynch 2006).  

Since 2001, reports of FBDOs are submitted through a web application on the 

internet called the electronic Foodborne Outbreak Reporting System (eFORS). These 

reports summarize data collected with both the paper and web-based forms. The majority 

of forms are submitted by state, local, and territorial health departments, however, they 

can also be submitted by federal agencies and other sources. Reporting officials use 
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published criteria to determine whether a specific etiologic agent has been confirmed for 

an outbreak and submit reasons that reported food vehicles were implicated (Lynch 

2006). In eFORS, data collection after 1998 is considered “Enhanced Surveillance”. Prior 

to 1998, about 500 outbreaks per year were reported, and after 1998, the average number 

of outbreaks reported increased to 1,250 outbreaks per year (Ayers 2008).   

 

National Outbreak Reporting System (NORS) 

In 2007, eFORS began undergoing developmental changes which led to the 

development of the National Outbreak Reporting System (NORS). NORS is being 

developed by the Division of Foodborne, Bacterial, and Mycotic Diseases (DFBMD) in 

collaboration with the Division of Parasitic Diseases, Division of Viral Diseases, 

Division of Viral Hepatitis, and National Center for Environmental Health within the 

CDC, and is expected to be deployed in 2009. This system will continue to monitor the 

overall burden and trends of foodborne diseases, as eFORS, but will integrate the 

reporting of foodborne, waterborne, zoonotic, and person-to person enteric disease 

outbreaks. NORS data will also be used for human illness attribution studies, which aim 

to attribute human cases of illness to specific sources, such as particular food 

commodities or animal reservoirs (Ayers 2008).  

 

National Antimicrobial Resistance Monitoring System (NARMS) 

The National Antimicrobial Resistance Monitoring System (NARMS) for enteric 

bacteria was established in 1996 and is a collaboration between the CDC and the USDA. 

Participating health departments forward every twentieth non-Typhi Salmonella isolate, 
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every Salmonella Typhi, every twentieth Shigella isolate, and every twentieth E. coli 

O157 isolate received at their public health laboratories to the CDC for antibiotic 

susceptibility testing. Because NARMS data have been collected continually since 1996, 

the data can be used to show trends that provide useful information about patterns of 

emerging resistance. Additionally, antimicrobial resistance data from humans provided 

by NARMS are important for the development of public health regulatory policy for the 

use of drugs in food-producing animals (CDC-NARMS 2008). 

 

STEC in the Food Chain 

An area of current exploration concerns how STEC enters the food chain. This 

begins with the ecology of STEC in animals and in the environment. An essential 

element to the full understanding of E. coli O157:H7 ecology is to determine whether 

cattle are typically transiently colonized (subsequently reinfected) or if the microbe is 

part of the normal flora and shed only periodically. It is likely that there are non-O157 

strains that colonize cattle and do not cause disease in humans, but that cattle nonetheless 

are a significant reservoir for human pathogenic non-O157 STEC. One study suggests 

that living in a cattle-raising region appears to imply risk not only for STEC O157, but 

also for most non-O157 serogroups, and that cattle density is positively associated with 

overall STEC incidence (Frank 2008). In addition, some studies suggest that certain 

cattle, designated as “supershedders” have greater E. coli O157:H7 transmission potential 

than other cattle, whether through greater incidence or persistence of excretion, excretion 

of greater concentrations of E. coli O157:H7, or a combination of these factors (Cobbold 

2007). 

   
 



34 
 

The USDA-FSIS and beef processing industry have implemented interventions to 

reduce contamination of ground beef, and the FDA has approved the use of irradiation of 

ground beef in the US. The success of this and other on-the-farm and slaughterhouse 

procedures offers promise for reducing meat-borne infections, but an even greater 

challenge is to prevent STEC contamination of water and vegetables.  

Produce-associated outbreaks accounted for 21% of all foodborne outbreaks of E. 

coli O157:H7 from 1982 to 2002. Thirty outbreaks associated with leafy greens have 

been reported to the CDC through 2006. With more centralized production and wider 

distribution of produce including leafy greens, the propensity for large multistate 

outbreaks has increased. Such outbreaks have greatly influenced industry practices and 

FDA policy. However, for successful public health interventions to occur, mechanisms of 

produce contamination need to be successfully identified and understood (Sodha, 2008). 

Additionally, preventing foodborne disease depends in large part on engineering 

production systems for safety. Detecting and investigating outbreaks is an important way 

to determine the pathways that are most problematic (Tauxe 2006).  

Conclusions  

The study of the pathogenesis of STEC infections encompasses many different 

disciplines, including clinical microbiology, public health, diagnostics, animal ecology, 

and food safety, as well as cellular microbiology and the mechanisms of toxin action 

(Philpott 2003). This study will attempt to identify trends in the number of foodborne 

outbreaks caused by STEC O157 strains in the U.S. during 1999-2008 in addition to 

trends in the toxin profiles of those strains and HUS rates of STEC outbreaks. The 

number of STEC O157 isolates within the PulseNet national database and their 
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corresponding toxin profiles will be compared for each year to identify any existing 

trends. Two additional independent datasets, including a dataset collected from eFORS 

reports, and a dataset containing a collection of NARMS isolates will be examined for the 

same trends, in order to confirm trends observed in the PulseNet dataset. These trends 

will be compared to the HUS rates of recent STEC outbreaks in the United States, in an 

attempt to identify a direct correlation between an increase in Stx2-only producing strains 

and an increase in HUS rates. 

   
 



 
 

 
 

CHAPTER III: METHODS 
 
 

Institutional Review Board Application 
 

The protocol title “Trends in Toxin Profiles of Human O157 Strains Using the 

PulseNet E. coli National Database and Electronic Foodborne Outbreak Reporting 

System (eFORS), 1999-2008” was approved by the Georgia State University Institutional 

Review Board on September 16, 2008. Protocol number is H09100. 

 

Description of Datasets 

 An isolate is a sample of bacteria retrieved from an infected or contaminated 

source. Three independent datasets, each containing Shiga toxin-producing E. coli 

(STEC) isolates, were used for this study. These datasets include a collection of STEC 

isolates from within the PulseNet E. coli national database, a collection of STEC 

outbreaks from eFORS reports, and a random sample of isolates collected by the National 

Antimicrobial Resistance Monitoring System (NARMS). 

 

PulseNet Dataset 

 The PulseNet E. coli national database contains PFGE profiles and toxin 

information for E. coli isolates of all serotypes from human and non-human sources. 

PulseNet participants (state, county, and city public health laboratories as well as federal 

food regulatory agency laboratories and the CDC) subtype all Shiga toxin-producing E. 

coli using at least the primary restriction enzyme (XbaI) immediately when they receive 

them from diagnostic laboratories. The PFGE profiles (DNA fingerprints) are then 
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uploaded to the PulseNet national database along with demographic information (age, 

gender, source type, geographic location) of the source. As of December, 2008, the 

PulseNet STEC database contained over 35,000 STEC isolates, however the dataset used 

in this study contains only human STEC O157 isolates from the USA, uploaded to the 

PulseNet database between 1999 and December 15, 2008, for which toxin information is 

known, which yielded a sample of 4,402 isolates. 

 The 4,402 isolates included in this dataset were categorized into three subsets 

according to their toxin profile (Stx1-only, Stx2-only, and Stx1+Stx2). The Stx1-only 

subset contained 69 isolates, the Stx2-only contained 2,057 isolates, and the Stx1+Stx2 

subset contained 2,276 isolates. The number of isolates within each subset was compared 

for each year during the time period 1999 to 2008.  

In the field of epidemiology, an outbreak is generally defined as the occurrence of 

disease that is greater than would otherwise be expected in a particular time and place. 

PulseNet identifies clusters, and a cluster is defined as a group of isolates with 

indistinguishable PFGE patterns limited in time and occurring at a frequency clearly 

above the historical baseline for that PFGE pattern. PulseNet clusters are communicated 

to state and CDC epidemiologists for investigation. All communication between PulseNet 

participants, epidemiologists, and other stake-holders in outbreak investigations related to 

PFGE patterns must be precise. Therefore, PulseNet database managers at the CDC 

assign a unique outbreak code to all clusters investigated. In this document, a PulseNet 

outbreak is defined as a cluster of isolates that has been given an outbreak code. The 

basic code is as follows: (YY)(MM)(LabID)(serotype code of the organism)-(number of 

cluster in the month). The first four digits of the outbreak code indicate the year and 
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month in which the cluster was detected. The LabID is the two-to four-letter PulseNet lab 

identifier for the laboratory that initially recognized the cluster (usually the state postal 

abbreviation code). The serotype code of the organism identifies which organism is 

involved in the cluster. The digit that follows the organism code denotes the number of 

cluster caused by that organism within that month and year in that state (Gerner-Smidt 

2006). For example, the PulseNet-assigned outbreak code for the first outbreak of E. coli 

O157:H7 seen in January 2009 in Georgia would be 0901GAEXH-1. PulseNet began 

assigning outbreak codes in 2002. 

Within the PulseNet dataset, toxin profiles were compared for each year of the 

time period 1999-2008 for all isolates in the dataset. Then, using the PulseNet-assigned 

outbreak code, outbreak isolates were separated from sporadic isolates to determine if 

trends were consistent. Those isolates given an outbreak code were considered as 

outbreak isolates and those isolates without outbreak codes were considered to be 

sporadic. Because outbreak codes were not used in PulseNet until 2002, outbreak and 

sporadic isolates were only separated for isolates occurring during 2002-2008. 

In the PulseNet dataset, the outbreak code was also used to determine if there had 

been an increase in the number of STEC O157 outbreaks from the time period observed. 

Using the outbreak code, the number of outbreaks was calculated for each year, for the 

time period 2002-2008. 

 

Age and Gender Trends in the PulseNet Dataset 

 When isolates of STEC O157 are submitted to the PulseNet national database, 

certain demographic information relating to the infected patient is linked to the PFGE 
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pattern, and both the PFGE pattern(s) and demographic information for an isolate are 

submitted to the national database as one entry. The demographic information that is 

submitted includes but is not limited to the patient’s age, gender, source site (stool, blood, 

etc), and geographical location where the patient’s specimen was collected. Patient and 

company names are not submitted to the PulseNet database to protect the privacy of those 

individuals and entities.  

 Using the PulseNet dataset, trends in age and gender distribution were examined 

in this study, to determine if certain toxin profiles are more predominantly seen among 

certain ages and genders in the population. To determine trends in age distribution, only 

isolates submitted with age information were included in this portion of the study. 

Likewise, to determine gender distributions, only isolates submitted with gender 

information (male or female) were included. The age and gender information was 

examined for each of the three toxin profile subsets (Stx1-only, Stx2-only, Stx1+Stx2) 

and trends were evaluated for the time period observed. 

 

Seasonal and Geographic Trends in PulseNet Dataset 

 As previously mentioned, the geographical location where the patient’s specimen 

was collected is submitted to the PulseNet national database, and this information may 

include the source country, source state, source county, and/or source city. Additionally, 

each isolate that is submitted to the PulseNet national database automatically receives a 

computer-generated upload date on the date that the isolate was submitted, and this 

upload date is linked to the isolate. In addition to the upload date, submitting public 

health laboratories may also submit an isolate date (typically the date the specimen was 
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received in the clinical laboratory), and a received date (the date the PFGE department in 

the public health laboratory received the isolate to perform PFGE on it). Either or both of 

these dates (isolate date and received date) may be submitted to the PulseNet national 

database when this information is available. An upload date is always available for every 

isolate, as it is a computer-generated date that automatically populates the database when 

isolates are submitted. In general, there is about one week between the isolate date and 

received date, and another week between the received date and upload date; i.e. the 

isolate date generally occurs about two weeks prior to the upload date. 

 In this study, each of the three subsets of toxin profiles were examined for 

geographical and seasonal distributions, using the source location (state) and upload date 

information available in the PulseNet database. Geographical distributions were mapped 

for each toxin profile on a template of the United States. One map was created for each of 

the three toxin profiles and showed the geographical distribution of all isolates with that 

toxin profile for 1999-2008. Seasonal distributions were identified by graphing the 

number of submissions and upload dates (using three-month intervals) for all isolates in 

each of the three toxin profile subsets.  

 

Electronic Foodborne Outbreak Reporting System (eFORS) Dataset 

 The Electronic Foodborne Outbreak Reporting System (eFORS) provided a 

second dataset for this study. This dataset was compiled from reports of foodborne 

outbreaks and their implicated vehicles submitted to eFORS by state, local, and territorial 

health departments, as well as federal agencies. This dataset contained information for 

233 STEC O157 outbreaks occurring in the US between 1998 and 2006 and was provided 
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by OutbreakNet, the network of epidemiologists at the CDC and in state laboratories 

working with foodborne infections. Information within this dataset included (when 

available) the reporting state, the estimated number of cases in each outbreak, 

transmission type (food, person-to-person, etc), implicated vehicle, number of HUS 

cases, number of hospitalized cases, and number of deaths.   

 

HUS Rates in eFORS Dataset 

HUS rates were known for 166 (71.2%) of the 233 outbreaks in the eFORS 

dataset and were compared for each year during 1998 to 2006 to determine trends. HUS 

rates were determined by dividing the number of HUS cases in the outbreak by the total 

number of cases in the outbreak in which HUS status was known. The average HUS rate 

for all outbreaks was calculated for each year. 

Toxin information was only available for 43 (25.9%) of the 166 outbreaks with 

known HUS rates. Toxin information is not routinely reported in eFORS, therefore, the 

outbreaks in the eFORS dataset were matched to the PulseNet database using as much 

information as was available in the eFORS dataset in order to obtain the toxin profiles of 

the eFORS outbreaks. For those outbreaks in which an HUS rate and toxin profile was 

available, trends were noted to determine if higher HUS rates corresponded to a particular 

toxin type.  

 

National Antimicrobial Resistance Monitoring System (NARMS) Dataset 

 NARMS data provided a third dataset for this study. When NARMS began 

surveillance in 1996, there were 14 participating health departments, known as “original 
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sites”. In 2003, NARMS participation achieved national coverage with 54 sites. For this 

dataset, a simple random sampling scheme was devised, as follows: 

1) From the original 14 NARMS sites, a simple random sample of 2 samples per site per 

year, (providing a total of 28 samples per year; encompassing 1996-2005) was sampled. 

2) Starting with 2003, the year where NARMS increased to 54 sites, a simple random 

sample of 4 samples per site for 10 of the 54 sites (these 10 sites were selected randomly) 

per year, (providing an additional 40 samples per year; encompassing 2003-2005) was 

sampled.   

 The purpose of the random sampling to create the NARMS dataset was to confirm 

any trends seen in the PulseNet and eFORS datasets, by using a more random selection of 

isolates than in the latter two data sources. Additionally, NARMS data may be more 

representative of STEC O157 in the population, as PulseNet and eFORS are biased 

toward outbreak cases.  

 

Toxin Types of Isolates within NARMS Dataset 

The sum total of isolates in the NARMS dataset was 363 isolates. Random 

sampling of NARMS isolates was performed in order to confirm any trends seen in the 

PulseNet and eFORS datasets. For all NARMS isolates, toxin types were determined by 

PCR of the toxin genes for Stx1 and Stx2 using a published primer set (Paton 1998), and 

PFGE was performed. Both laboratory tests were performed at the CDC. Toxin profiles 

and PFGE patterns were evaluated to determine any trends during the time period 1996-

2005. 

 

    
 



43 
 

Microbiological Methods: PCR Testing and PFGE Analysis 

 The PulseNet dataset included only isolates with known toxin information. To 

obtain toxin information, PCR analysis was performed and results were submitted to the 

PulseNet E. coli National Database by the submitting laboratory. PCR was also 

conducted by laboratorians at the CDC on isolates within the NARMS dataset, using the 

Paton primer set. This is a two-tiered approach to PCR analysis of fecal samples from 

patients with suspected STEC infection. Fecal culture extracts are initially screened for 

the presence of Stx genes using a pair of redundant oligonucleotide primers capable of 

detecting the amplification of a product from either Stx1 or Stx2 (including all known 

Stx2 subtypes associated with human disease). Any extracts yielding a positive result are 

subjected to a second round of analysis using two multiplex PCR assays, which provide 

confirmation of the presence of Stx genes (Paton A. 2003). 

 PFGE patterns submitted to the PulseNet national database by PulseNet certified 

laboratorians are prepared using a standardized protocol (Ribot 2006). In this procedure 

genomic DNA is prepared by embedding cells in agarose plugs and lysing the cells using 

lysozyme, sarcosyl, and deoxycholate with subsequent washes in a buffer solution. The 

DNA is digested in the agarose using the restriction enzyme XbaI. The plugs are placed 

in a 1.2% agarose gel. The restricted fragments are separated by PFGE using 0.5 X Tris-

borated-EDTA buffer at 14 degree Celsius and Chef Dr III (Bio-Rad; Hercules, 

California, U.S.) gel apparatus. Conditions for electrophoresis is as follows: initial switch 

time, 2.2 seconds, final switch time, 63.8 seconds at an angle of 120 degrees at 6 

Volts/centimeter for 20 hours. Restriction fragments are visualized using an ethidium 

bromide stain under ultra-violet light, and the PFGE pattern is photographed, digitized, 
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and saved as Tagged Image File Format (TIFF). These TIFFs are then analyzed using a 

customized software program called BioNumerics (Applied Maths, Saint-Martens Latem, 

Belgium).  

By standardizing subtyping protocols and analysis tools, the patterns generated in 

the PulseNet network may be compared between laboratories. An essential feature of the 

PulseNet system is the use of a universal standard by all participants, which is run in 

every fourth to fifth lane in all gels, thus allowing for reliable normalization of the 

patterns of the isolates in the adjoining lanes. This standard, comprised of XbaI restriction 

fragments of Salmonella Braenderup strain H9812 is used as a reference DNA fragment 

size standard for all pathogens under surveillance in PulseNet (Hunter et al., 2005). 

 All PFGE profiles are assigned pattern names by PulseNet database managers. A 

PulseNet standardized pattern name consists of 11 characters in the format: 

XXXYYY.####. The first three characters (X) represent the organism (e.g., EXH is the 

code for STEC O157); the next three characters (Y) represent the restriction enzyme that 

was used to cut the DNA (e.g., X01 is the code that represents the enzyme XbaI); the four 

digits to the right of the decimal (#) are consecutive numbers assigned to new profiles as 

they are detected. This number ascends from 0001 and in no way indicates any kind of 

genetic relatedness between different patterns (Gerner-Smidt 2006).  

 

Correlation of PFGE Patterns with Toxin Types 

 In the PulseNet dataset, isolates were analyzed to determine if certain PFGE 

patterns correlated with specific toxin profiles. The top 10 PFGE patterns (XbaI) in the E. 

coli national database were identified, based on their frequency of occurrence in the 
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national database between 1999 and 2008 (Table 3). These top 10 patterns were 

compared across each of three groups of isolates, (classified by their toxin profile as 

Stx1-only, Stx2-only, and Stx1+Stx2), to determine if any of the top 10 patterns 

correlated with a specific toxin profile. 

 
Table 3: Top 10 PFGE patterns (XbaI) in the E. coli national database, based on 
their frequency of occurrence in the national database between 1999 and 2008. 
(Total XbaI patterns = 4,357)  
Source: CDC PulseNet E. coli national database, 2008 
 
 

PFGE-XbaI-pattern Occurrence Frequency 

EXHX01.0047 517 11.90% 

EXHX01.0074 202 4.60% 

EXHX01.0200 152 3.50% 

EXHX01.0224 150 3.40% 

EXHX01.1343 131 3.00% 

EXHX01.0124 121 2.80% 

EXHX01.0125 114 2.60% 

EXHX01.0087 102 2.30% 

EXHX01.0008 102 2.30% 

EXHX01.1486 84 1.90% 
 
 
 
 
Correlation of Non-O157 STEC Serotypes and Toxin Types 

In this study, the PulseNet dataset was comprised of STEC O157 isolates only. 

However, as of December 2008, approximately 18% of the PulseNet national database 

was comprised of non-O157 STEC isolates, and the number of non-O157 STEC isolates 

submitted to the database has increased tremendously in recent years as detection 

methods have changed in the clinical laboratories. All human non-O157 STEC isolates 

from the USA submitted to the PulseNet national database between 1999 and 2008 with 
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known toxin information were grouped into a separate subset of 1,422 isolates. The top 

six non-O157 serotypes were identified based on their frequency within this group of 

isolates. Toxin profiles were examined for the isolates belonging to the top six serotypes 

to determine if certain toxin profiles were more predominantly seen in common non-

O157 STEC serotypes than in isolates of STEC O157. 

 

Data Analysis 

 Data were analyzed in SAS 9.1 (SAS Institute, Inc., Cary, NC, USA). A Cochran-

Armitage test was used to test for an increase in Stx2-only producing strains over time.  

Trend analyses were performed for all isolates in the PulseNet dataset, as well as 

separately for outbreak and sporadic isolates. Trend analyses were also performed for all 

isolates in the NARMS dataset. The null hypothesis was that the proportion of Stx2-only 

strains did not increase over time. Because the alternative hypothesis was that the 

proportion of Stx2-only isolates increased over time, the one-sided p-value is reported.  

The Wilcoxon Rank-sum test was used to assess differences in median age. For 

categorical variables (i.e., gender), differences were examined using a Chi-Square test. 

 

    
 



 

 

CHAPTER IV: RESULTS 
 

I. PulseNet Dataset 
 

Distribution of Toxin Types: PulseNet Dataset 
  
 PFGE patterns of 4,402 STEC O157 isolates with known toxin information were 

submitted between 1999 and 2008 from public health laboratories and food regulatory 

agencies within the United States. Table 4 shows the number of isolates with each toxin 

type that was submitted per year. The percentage of isolates expressing Stx1-only was 

consistently low, and decreased from 2.3% in 1999 to 0.97% in 2008. The percentage of 

isolates expressing Stx1+Stx2 decreased from a high of 86.2% in 1999 to a low of 41.8% 

in 2008. The percentage of isolates expressing Stx2-only increased from a low of 11.5% 

in 1999 to a high of 57.2% in 2008 (Figure 9). (Cochran-Armitage trend test for increase 

in Stx2-only strains: Z=13.4; p<0.0001). 

 

Table 4: Distribution of Toxin Types, 1999-2008: [PulseNet Dataset, (n=4402)] 
 
 

  
Isolates with Stx1-only 

(%) 
Isolates with Stx1+Stx2 

(%) 
Isolates with 
Stx2-only (%) Total 

1999 2 (2.3%) 75 (86.2%) 10 (11.5%) 87 
2000 0 (0.0%) 38 (82.6%) 8 (17.4%) 46 
2001 3 (2.5%) 89 (73.6%) 29 (24.0%) 121 
2002 19 (7.9%) 168 (69.4%) 55 (22.7%) 242 
2003 1 (0.4%) 155 (62.8%) 91 (36.8%) 247 
2004 5 (1.0%) 267 (54.3%) 220 (44.7%) 492 
2005 9 (1.5%) 338 (54.6%) 272 (43.9%) 619 
2006 11 (1.3%) 375 (44.5%) 456 (54.2%) 842 
2007 10 (1.3%) 382 (49.2%) 384 (49.5%) 776 
2008 9 (0.97%) 389 (49.8%) 532 (57.2%) 930 
Total 69 2276 2057 4402 
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Figure 9: Distribution of Toxin Types (percentage of isolates), 1999-2008: [PulseNet 
Dataset, (n=4402)] 
Cochran-Armitage trend test for an increase in Stx2-only strains: Z=13.4; p<0.0001 
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Distribution of Toxin Types: Sporadic vs. Outbreak-Related Isolates 
 
 The isolates within the PulseNet dataset were separated into outbreak-related 

isolates and sporadic isolates using the PulseNet-assigned outbreak code, to assess 

whether similar trends in toxin types existed among both outbreak and sporadic isolates. 

2,519 isolates were classified as sporadic cases and 1,629 isolates were classified as 

outbreak-related cases. The distribution of toxin types was evaluated for both sets of 

isolates. Only isolates from 2002-2008 were included, as PulseNet did not utilize 

outbreak codes prior to 2002. The trends in toxin types for sporadic isolates are shown in 

Table 5 and Figure 10. The trends in toxin types for outbreak-related isolates are shown 

in tables 6 and Figure 11. (Cochran-Armitage trend test for increase in sporadic Stx2-only 

strains: Z=7.95; p<0.0001). (Cochran-Armitage trend test for increase in outbreak-related 

Stx2-only strains: Z=4.5; p<0.0001). 
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Table 5: Distribution of Toxin Types, Sporadic Isolates, 2002-2008: [PulseNet 
Dataset, (n=2519)] 
 
 

 
Isolates with Stx1-only 

(%) 
Isolates with Stx1+Stx2 

(%) 
Isolates with Stx2-

only (%) Total 
2002 15 (7.5%) 143 (71.5%) 43 (21.5%) 201 
2003 1 (0.5%) 130 (63.1%) 75 (36.4%) 206 
2004 5 (1.3%) 224 (59.4%) 148 (39.3%) 377 
2005 9 (3.4%) 135 (50.6%) 123 (46.1%) 267 
2006 9 (2.2%) 190 (45.8%) 216 (52.0%) 415 
2007 9 (1.9%) 258 (53.4%) 216 (44.7%) 483 
2008 9 (1.6%) 243 (42.6%) 318 (55.8%) 570 
Total 57 1323 1139 2519 

 
 
 
Figure 10: Distribution of Toxin Types, Sporadic Isolates (percentage of isolates), 
2002-2008: [PulseNet Dataset, (n=2519)] 
Cochran-Armitage trend test for an increase in Stx2-only strains: Z=7.9.5; p<0.0001 
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Table 6: Distribution of Toxin Types, Outbreak Isolates, 2002-2008: [PulseNet 
Dataset, (n=1629)] 
 

 
Isolates with Stx1-only 

(%) 
Isolates with Stx1+Stx2 

(%) 
Isolates with 
Stx2-only (%) Total 

2002 4 (9.5%) 25 (59.5%) 13 (31.0%) 42 
2003 0 (0.0%) 25 (61.0%) 16 (39.0%) 41 
2004 0 (0.0%) 43 (37.4%) 72 (62.6%) 115 
2005 0 (0.0%) 202 (57.5%) 149 (42.5%) 351 
2006 2 (0.5%) 185 (43.3%) 240 (56.2%) 427 
2007 1 (0.3%) 124 (42.3%) 168 (57.3%) 293 
2008 0 (0.0%) 146 (40.6%) 214 (59.4%) 360 
Total 7 750 872 1629 

 
 
 

Figure 11: Distribution of Toxin Types, Outbreak Isolates (percentage of isolates), 
2002-2008: [PulseNet Dataset, (n=1629)] 
Cochran-Armitage trend test for an increase in Stx2-only strains: Z=4.5; p<0.0001 
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Number of Outbreaks within PulseNet Dataset 

Using the PulseNet-assigned outbreak code, the number of outbreaks for each 

year was identified for the time period 2002-2008. The number of outbreaks was lowest 

in 2003, at 8 outbreaks, and highest in 2005, at 54 outbreaks. The mean number of 

outbreaks for all years was 33.1. The mean number of outbreaks for the first half of the 

time period (2002-2005) was almost half that of the second half of the time period (2005-

2008), at 25.3 and 46.3 outbreaks, respectively. The number of outbreaks per year, as 

seen in the PulseNet database, is shown in Figure 12. 

 
 
Figure 12: Number of STEC O157 Outbreaks per year, 2002-2008 and Average 
Number of Cases in Outbreaks (USA), 2002-2008 [PulseNet Dataset, (n=232 
outbreaks)] 
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Age Distribution of Toxin Types 
 

Age distributions of each toxin type were also examined using the PulseNet 

dataset. There were 3,714 human STEC O157 isolates with toxin and age information in 

the dataset. The median age was calculated for each of the toxin types (Stx1-only, 

Stx1+Stx2, and Stx2-only), for each year in the time period 1999-2008 (Tables 7-9). In 

1999 and 2000, the median age for all isolates with Stx1-only was unknown, as there 

were no known ages for any isolates with Stx1-only in these years. The median age for 

all isolates with Stx1-only ranged from a low of 1 year in 2003 to a high of 32 years in 

2006. The median age for all isolates with Stx1+Stx2 ranged from a low of 13 years in 

2007 to a high of 21 years in 2000. The median age for all isolates with Stx2-only ranged 

from a low of 5 in 1999 to a high of 40 in 2000. There were no differences in the age 

distribution of patients infected with Stx1-only, Stx1+Stx2, or Stx2-only strains, and 

there was no change in the age distribution during the time period observed.  

Differences in the median age for all years combined (1999-2008) were assessed 

for isolates with Stx1+Stx2 and Stx2-only using the Wilcoxon Two-Sample test. The 

median age for all isolates with Stx1+Stx2 was 24.3 years, and the median age for all 

isolates with Stx2-only was 21.4 years. This difference was found to be statistically 

significant (Z=4.9; p<0.0001). 

The PulseNet dataset was used to identify if more cases were seen among young 

children relative to other ages during 1999-2008. The 3,714 isolates with toxin and age 

information were categorized into different age intervals, with five years per interval. 

Age intervals ranged from 1-5 years old to 96-100 years old. Results showed that the 
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highest number of cases was among the age interval 1-5 years, followed by 6-10 years 

and 11-15 years for each toxin type (Figure 13).  

 
 
Figure 13: Number of STEC O157 Cases Among Age Intervals (USA), 1999-2008 
[PulseNet Dataset, (n=3714)] 
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Gender Distribution of Toxin Types 
 

3,645 human STEC O157 isolates in the PulseNet dataset contained toxin and 

gender information. To identify trends in gender distribution of toxin types using the 

PulseNet dataset, all human STEC O157 isolates with known toxin and gender 

information were classified into a group of 3,645 isolates. The percentage of female cases 

was calculated for each of the three toxin types, for each year in the time period 1999-

2008 (Tables 7-9). In 1999 and 2000, the percentage of female cases for all isolates with 

Stx1-only was unknown, as there was no gender information available for any isolates 
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with Stx1-only in these years. There was also no gender information available for isolates 

with Stx2-only in 1999. The percentage of female cases for all isolates with Stx1-only 

ranged from a low of 50% in 2002 to a high of 66.7% in 2001, 2004, and 2005. The 

percentage of female cases for all isolates with Stx1+Stx2 ranged from a low of 46.2% in 

2000 to a high of 62.0% in 2001. The percentage of female cases with Stx2-only ranged 

from a low of 47.8% in 2004 to a high of 65.4% in 2003. The average percentage of 

female cases for all isolates with Stx1-only, Stx1+Stx2, and Stx2-only (for all years in 

which gender information was available) was 57.9%, 53.7%, and 54.0%, respectively. 

Thus, the average percentage of female cases was above 50% for each of the toxin types 

for all years, indicating a slightly higher risk of infection among females. However, this 

difference was not found to be statistically significant as determined by a Chi-Square test 

(x2=1.37; p=0.2426). 

 
 
Table 7: Age and Gender Distribution (Age in Years) of Toxin Type Stx1-only, 
1999-2008 (USA) [PulseNet Dataset, (age n=51; gender n=54)] 
 
 Stx1-
only 

Total Isolates with 
Gender Information 

Age Distribution 
(Years) Median  

Gender 
Distribution  

  N  (25%- 75% quartiles) 
(Age in 
years) Total Female (%) 

1999 0 unknown unknown Unknown 
2000 0 unknown unknown Unknown 
2001 3 (6 - 28) 7 2 (66.7%) 
2002 16 (12 - 31) 27 8 (50.0%) 
2003 3 (1 - 1) 1 1 (33.3%) 
2004 6 (8.5 - 33) 13 4 (66.7%) 
2005 6 (2.25 - 12.75) 4.5 4 (66.7%) 
2006 5 (15 - 46) 32 3 (60.0%) 
2007 8 (6.5 - 29.25) 14 5 (63.0%) 
2008 7 (4.25 - 17.75) 15.5 4 (57.0%) 
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Table 8: Age and Gender Distribution (Age in Years) of Toxin Type Stx1+Stx2, 
1999-2008 (USA) [PulseNet Dataset, (age n=1844; gender n=1847)] 
 

Stx1+Stx2  
Total Isolates with 

Gender Information   
Age Distribution 

(Years) Median  
Gender 
Distribution 

  N 
(25%- 75% 
quartiles) 

(Age in 
Years) Total Female (%) 

1999 15 (3 - 56) 19 8 (53.3%) 
2000 39 (8 - 46) 21 18 (46.2%) 
2001 71 (7.5 - 45.25) 14 44 (62.0%) 
2002 146 (6.75 - 42) 18 71 (48.6%) 
2003 123 (6 - 51.75) 20.5 74 (60.2%) 
2004 241 (7 - 44) 14 132 (54.8%) 
2005 278 (6 - 47) 16 153 (55.0%) 
2006 271 (4 - 26) 15 142 (52.4%) 
2007 292 (5.5 - 34.5) 13 150 (51.4%) 
2008 371 (5 - 32) 17 196 (52.8%) 

 
 
 
 
Table 9: Age and Gender Distribution (Age in Years) of Toxin Type Stx2-only, 
1999-2008 (USA) [PulseNet Dataset, (age n=1819; gender n=1744)] 
 

Stx2-
only  

Total Isolates with 
Gender Information  

Age Distribution 
(Years) Median  

Gender 
Distribution 

  N (25%- 75% quartiles) 
(Age in 
Years) Total Female (%) 

1999 0 (5 - 5) 5 Unknown 
2000 8 (4.5 - 58) 40 4 (50.0%) 
2001 23 (5 - 24.5) 7 13 (56.5%) 
2002 46 (8 - 54) 20 29 (63.0%) 
2003 78 (3.5 - 25) 13 51 (65.4%) 
2004 180 (4 - 25) 12 86 (47.8%) 
2005 208 (3 - 29.25) 9 104 (50.0%) 
2006 356 (5 - 27.75) 13 187 (52.5%) 
2007 349 (4 - 25) 12 185 (53.0%) 
2008 496 (5 - 31) 13 240 (48.4%) 
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Seasonal Distribution of Toxin Types 
 

Seasonal distributions of toxin types were also evaluated using the PulseNet 

dataset. All isolates within the dataset contained an upload date, which served as the 

approximate date in which STEC was isolated from the patient. Epidemiologists at the 

CDC use PulseNet upload dates to approximate isolation dates in outbreak investigations. 

The isolation date is generally estimated to be 14 days earlier than the upload date. Using 

the upload date, all isolates were divided into a year-quarter, with quarters making up a 

three-month time frame. For example, the first quarter of 2000 comprised all isolates with 

an upload date of January 1, 2000 to March 31st, 2000. The seasonal distribution of all 

isolates in the dataset ranged from the third quarter of 1999 (no isolates existed in the 

database for the 1st or 2nd quarter of 1999) to the 4th quarter of 2008. Each toxin type was 

evaluated separately (Figure 14). There was a general seasonal increase between the 2nd 

quarter (Q2) and 3rd quarter (Q3) for each toxin type within every year and a general 

seasonal decrease between Q3 and the 4th quarter (Q4) for each toxin type within every 

year. The number of isolates was consistently lowest during the first quarter (Q1) for 

each toxin type and year. 
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Figure 14: Seasonal Distributions of Toxin Types by Quarter, 1999-2008 (USA) 
[PulseNet Dataset, (n=4312)] 
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Geographic Distribution of Toxin Types 
 
 Geographical distributions of toxin types were also evaluated using the PulseNet 

dataset. 4,374 isolates within the dataset contained a source state, and source states were 

considered to be the state in which the patient became infected with STEC O157:H7. One 

map was created for each of the three toxin profiles and showed the geographical 

distribution of all isolates with that toxin profile from 1999-2008. Figure 15 shows the 

overall geographical distribution of Stx1-only strains for 1999-2008. Figure 15A and 15B 

show the geographical distribution of Stx1-only strains in 1999 compared to 2008. Figure 

16 shows the overall geographical distribution of Stx1+Stx2 strains for 1999-2008. 

Figure 16A and 16B show the geographical distribution of Stx1+Stx2 strains in 1999 

compared to 2008. Figure 17 shows the overall geographical distribution of Stx2-only 

strains for 1999-2008. Figure 17A and 17B show the geographical distribution of Stx2-

only strains in 1999 compared to 2008. There were no clear differences between regions, 
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except that CA, MI, OH, and VA appeared to have the highest numbers of submissions 

for each of the toxin profiles. For isolates with Stx2-only, TX also appeared to have a 

higher number of submissions relative to other states. 

Figure 15: Overall Geographic Distribution of Isolates with Stx1-only, 1999-2008 
(USA) [PulseNet Dataset, (n=67)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15A and 16B: Geographic Distribution of Isolates with Stx1-only, 1999 and 
2008 (USA) [PulseNet Dataset, (1999 n=2; 2008 n=9)]  
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Figure 16: Overall Geographic Distribution of Isolates with Stx1+Stx2, 1999-2008 
(USA) [PulseNet Dataset, (n=2265)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16A and 16B: Geographic Distribution of Isolates with Stx1+Stx2, 1999 and 
2008 (USA) [PulseNet Dataset, (1999 n=74; 2008 n=389)] 
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Figure 17: Overall Geographic Distribution of Isolates with Stx2-only, 1999-2008 
(USA) [PulseNet Dataset, (n=2042)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17A and 17B: Geographic Distribution of Isolates with Stx2-only, 1999 and 
2008 (USA) [PulseNet Dataset, (1999 n=10; 2008 n=532)] 
 

 
 
 
 
 
 
Distribution of Toxin Types by PFGE 
 

The PulseNet dataset was also used to identify if certain toxin types were 

associated with particular PFGE patterns. The PulseNet-designated PFGE pattern name 

was used to make this assessment. The top ten XbaI patterns were identified based on 

their frequency of occurrence in the PulseNet dataset between 1999 and 2008. The 

percentage of isolates with each toxin type for each of the top ten patterns is shown in 
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Figure 18.  Figures 19 and 20 show the percentage of isolates with these ten patterns from 

1999-2003 and 2004-2008, respectively. For all patterns except EXHX01.1343 and 

EXHX01.0008, the percentage of Stx2-only strains increased from 1999-2003 to 2004-

2008. One hundred percent of isolates with pattern EXHX01.1486 had toxin type Stx2-

only. For patterns EXHX01.0047, EXHX01.0200, EXHX01.0224, EXHX01.0124, 

EXHX01.0125, there was a strong association between the toxin profile and PFGE 

pattern, as more than 90% of isolates with these patterns were associated Stx2-only. For 

patterns EXHX01.0074, EXHX01.1343, EXHX01.0087, and EXHX01.0008, more than 

80% of the isolates were associated with Stx1+Stx2. None of the patterns within the top 

ten were associated with Stx1-only. Therefore, there seems to be an association between 

PFGE pattern and toxin profile for most patterns, although this association is not 

absolute. 

Additionally, the top five PFGE patterns of isolates with Stx1-only were 

identified and were found to be EXHX01.0074, EXHX01.0079, EXHX01.0087, 

EXHX01.3417, and EXHX01.3138. When compared against the entire E. coli national 

database, the latter two PFGE patterns were only seen with toxin type Stx1-only. 

However, each of these patterns had only been seen twice in the entire database, so there 

was not a large enough sample to predict that these two patterns are exclusively 

associated with Stx1-only producing strains. 
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Figure 18: Top 10 E. coli PFGE patterns (XbaI) and their Toxin Types (USA), 1999-
2008, [PulseNet Dataset, (n=1676)] 
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Figure 19: Top 10 E. coli PFGE patterns (XbaI) and their Toxin Types (USA), 1999-
2003, [PulseNet Dataset, (n=188)] 
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Figure 20: Top 10 E. coli PFGE patterns (XbaI) and their Toxin Types (USA), 2004-
2008, [PulseNet Dataset, (n=1488) 
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Distribution of Toxin Types among Non-O157 STEC Isolates 
 

The PulseNet database was also used to evaluate whether certain toxin profiles 

were seen at higher frequencies among non-O157 STEC serotypes. The top six non-O157 

STEC serotypes were identified based on their frequency in the PulseNet national 

database for the time period 1999-2008 (Table 10). The percentage of isolates with each 

toxin type was identified for each of the top 6 non-O157 serotypes. For all serotypes, 

with the exception E. coli O121, the percentage of isolates with Stx1-only was higher 

than the percentage of isolates with Stx1+Stx2 or Stx2-only (Figure 21). The distribution 

of toxin types among isolates with E. coli O121 is shown in table 11. 
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Table 10: Number of Isolates with Top 6 Non-O157 STEC Serotypes (USA), 1999-
2008 [PulseNet Dataset, (n=1422)] 
 
 

Serotype Occurrence Frequency (n=1422) 
E. coli O26 249 17.5% 
E. coli O111 207 14.6% 
E. coli O103 157 11.0% 
E. coli O121 101 7.1% 
E. coli O45 91 6.4% 
E. coli O145 39 2.7% 

 
 
 
 
 
Figure 21: Distribution of Toxin Types among Top 6 Non-O157 STEC Serotypes 
(USA), 1999-2008 [PulseNet Dataset, (n=1422)] 
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Table 11: Distribution of Toxin Types among E. coli O121 isolates (USA), 2003-
2008* [PulseNet Dataset, (n=101)] 
 
 

 Stx1-only Stx1+Stx2 Stx2-only 
2003 0 0 6 
2004 1 0 8 
2005 0 0 4 
2006 1 1 14 
2007 0 0 47** 
2008 0 1 18 

 
 
*No E. coli O121 isolates with known toxin information were submitted to the PulseNet 
database prior to 2003 
 
**Number of isolates in 2007 with Stx2-only was elevated due to an outbreak in a prison 
 
 
 
II. eFORS Dataset 
 
Number of Outbreaks Within eFORS Dataset 
 
 The number of STEC outbreaks reported to eFORS was identified for the years 

1998-2006 (n=233) and is shown in figure 22. There were no observable trends seen in 

the number of outbreaks during this time period. The number of outbreaks ranged from a 

low of 17 outbreaks in 2004 to a high of 33 outbreaks in 2006. The average number of 

outbreaks for all years was 25.8.  
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Figure 22: Number of STEC O157 Outbreaks Reported to eFORS, 1998-2006 
[eFORS Dataset, (n=233 outbreaks)] 
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HUS Rates of Outbreaks and Toxin Types 
 

HUS rates were available for 166 (71.2%) of the 233 outbreaks in the eFORS 

dataset and were compared for each year during 1998 to 2006 to determine trends. HUS 

rates were calculated by dividing the number of HUS cases in the outbreak by the number 

of cases in the outbreak in which an HUS status was known. The number of outbreaks in 

the eFORS dataset with known HUS rates ranged from a low of 6 in 1998 to a high of 31 

in 2006 (Table 12). The average HUS rate was determined for all outbreaks occurring in 

each year (Figure 23). The average HUS rate ranged from a low of 0.40% in 1998 to a 

high of 16.1% in 2006.  

Toxin information was only available for 43 (25.9%) of the 166 outbreaks with 

known HUS rates. No toxin information was available for any outbreaks occurring prior 

to 2000. Three outbreaks were caused by Stx1-only producing strains; one in 2000 (HUS 

rate = 45.5%), one in 2002 (HUS rate unknown), and one in 2005 (HUS rate = 0.0%). 
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Seventeen outbreaks occurring between 2001 and 2006 were caused by Stx1+Stx2-

producing strains, and HUS rates for these outbreaks ranged from 0.0% to 50.0% (the 

outbreak with an HUS rate of 50.0% only contained three cases, of which two had an 

HUS status, one positive and one negative). There were 23 outbreaks with toxin type 

Stx2-only which were exclusively seen in 2005 and 2006, with the exception of two that 

occurred in 2003. The HUS rates for these outbreaks ranged from 0.0% to 50.0% (the 

outbreak with an HUS rate of 50.0% only contained 8 cases, of which all had an HUS 

status, 4 positive and 4 negative). These results are shown in table 13. 

 

Table 12: Number of STEC O157 Outbreaks Submitted to eFORS with Available 
HUS Rates, 1998-2006 [eFORS Dataset, (n=166)] 
 
 
 
 
 Number of Outbreaks 

Submitted with HUS Rates Year  
 1998 6 

 1999 14 

 2000 22 
 2001 14 
 2002 20 
 2003 18 
 2004 16 
 2005 25 
 2006 31 
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Figure 23: Average HUS Rates of STEC O157:H7 Outbreaks Submitted to eFORS, 
1998-2006 [eFORS Dataset, (n=166)] 
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Table 13: HUS Rates of STEC O157:H7 Outbreaks Submitted to eFORS with 
Available Toxin Information, 1998-2006 [eFORS Dataset, (n=43)] 
 

Year of 
Outbreak 

Month of 
Outbreak 

Estimated Total 
Cases 

Cases with Known 
HUS Information HUS Cases HUS Rate Toxin 

2000 Apr 15 11 5 45.5% stx1* 

2001 Oct 28 28 0 0.0% stx1+2 

2002 Aug 74 unknown 1 unknown stx1 

2002 Aug 16 unknown unknown unknown stx1+2 

2003 Aug 18 6 2 33.3% stx1+2 

2003 Apr 13 unknown 3 unknown stx2 

2003 Oct 16 unknown unknown unknown stx2 

2004 Apr 59 29 7 24.1% stx1+2 

2004 May 4 4 0 0.0% stx1+2 

2004 Nov 6 6 0 0.0% stx1+2 

2005 Aug 52 52 0 0.0% stx1 

2005 May 3 3 0 0.0% stx1+2 

2005 June 8 8 0 0.0% stx1+2 

2005 Aug 18 18 2 11.1% stx1+2 

2005 Sept 34 30 2 6.7% stx1+2 

2005 Oct 64 64 0 0.0% stx1+2 

2005 Oct 12 12 0 0.0% stx1+2 

2005 Jan 3 unknown unknown unknown stx2 

2005 Jan 2 2 0 0.0% stx2 

2005 Apr 60 60 8 13.3% stx2 

2005 Aug 6 6 0 0.0% stx2 

2005 Aug 5 5 0 0.0% stx2 

2005 Sept 14 14 1 7.1% stx2 

2005 Oct 4 4 0 0.0% stx2 

2005 Oct 9 7 0 0.0% stx2 

2005 Oct 3 3 0 0.0% stx2 

2005 Nov 18 15 3 20.0% stx2 

2006 Jan 2 2 0 0.0% stx1+2 

2006 Mar 2 2 0 0.0% stx1+2 

2006 May 3 2 1 50.0% stx1+2 

2006 Aug 5 5 0 0.0% stx1+2 

2006 Sept 6 6 2 33.3% stx1+2 

2006 Mar 6 6 1 16.7% stx2 

2006 Apr 7 7 1 14.3% stx2 

2006 May 4 4 1 25.0% stx2 

2006 June 5 5 1 20.0% stx2 

2006 June 3 3 1 33.3% stx2 

2006 June 2 2 0 0.0% stx2 

2006 Aug 4 4 1 25.0% stx2 

2006 Aug 8 8 4 50.0% stx2 

2006 Nov 3 3 0 0.0% stx2 

2006 Dec 21 21 0 0.0% stx2 

2006 Aug 3 3 1 33.3% stx2 

    
 



70 
 

* It is possible that the strain causing this outbreak originated with Stx1+Stx2, but subsequently lost the 
phage that produces the Stx2 toxin gene. 
 
 
III. NARMS Dataset  
 
Distribution of Toxin Types within NARMS Dataset 
 
 The NARMS dataset was used to identify trends in toxin profiles for the time 

period 1996-2005. The number and percentage of isolates with each toxin type was 

calculated for each year and are shown in table 14 and figure 24, respectively. The 

percentage of isolates with Stx1-only remained very low in all years. The percentage of 

isolates with Stx1+Stx2 decreased from a high of 79.2% in 1996 to 50.0% in 2005. The 

percentage of isolates with Stx2-only increased from 20.8% in 1996 to a high of 45.0% in 

2005. Cochran-Armitage trend test for an increase in Stx2-only strains: Z=2.32; 

p<0.0101. 

In all years except for 1996, 1997, and 1999, there was a small percentage of 

isolates in which the PCR reaction failed due to no amplification (na). These isolates 

were repeated with a different PCR assay, which differed from the original assay by 

targeting slightly different regions of the Stx genes. Some isolates still revealed no 

amplification, which may have been due to mutations in the toxin genes, or the organism 

being non-toxigenic O157, which would have led to the toxin genes being absent or too 

broken to be amplified.  
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Table 14: Number of Isolates with each Toxin Type (na: no amplification), 1996-
2005 [NARMS Dataset, (n=363)]  
 

 Isolates with Stx1-only Isolates with 
Stx1+stx2 

Isolates with 
Stx2-only 

na Total 

1996 0 (0.0%) 19 (79.2%) 5 (20.8%) 0 (0.0%) 24 
1997 0 (0.0%) 13 (56.5%) 10 (53.5%) 0 (0.0%) 23 
1998 0 (0.0%) 19 (73.1%) 5 (19.2%) 2 (7.7%) 26 
1999 0 (0.0%) 19 (70.4%) 8 (29.6%) 0 (0.0%) 27 
2000 0 (0.0%) 14 (50.0%) 12 (43.0%) 2 (7.1%) 28 
2001 0 (0.0%) 15 (53.6%) 12 (42.9%) 1 (3.6%) 28 
2002 1 (3.6%) 14 (50.0%) 10 (35.7%) 3 (10.7%) 28 
2003 0 (0.0%) 29 (50.0%) 21 (36.2%) 8 (13.8%) 58 
2004 3 (5.0%) 29 (48.3%) 21 (34.4%) 8 (13.3%) 61 
2005 1 (1.7%) 30 (50.0%) 27 (45.0%) 2 (3.3%) 60 
Total 5 201 131 26 363 

 
 
 
Figure 24: Distribution of Toxin Types (percentage of isolates), 1996-2005 [NARMS 
Dataset, (n=363)]  
Cochran-Armitage trend test for an increase in Stx2-only strains: Z=2.32; p<0.0101 
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Stx2 Toxin Subtypes within NARMS Dataset 
 

Stx2 toxin subtypes (a,c) were evaluated for all isolates in the NARMS dataset 

with either toxin type Stx1+Stx2 or Stx2-only. The percentage of isolates with each of the 

toxin subtypes Stx1+Stx2a, Stx1+Stx2c, Stx2a, and Stx2c were identified (Table15, 

Figure 25). The percentage of isolates with Stx1+Stx2a decreased from 75.0% in 1996 to 

45.0% in 2005. There were no significant trends in the percentage of isolates with 

Stx1+Stx2c or Stx2a between 1996 and 2005. The percentage of isolates with Stx2c 

increased from 4.2% to a high of 26.7% in 2005. Therefore, the decrease in the frequency 

of isolates with Stx1+Stx2 is almost exclusively a decrease in Stx1+Stx2a, whereas the 

increase in Stx2-only is mainly caused by an increase in Stx2c.  

 

Table 15: Stx2 Toxin Subtypes of STEC O157 Isolates (na: no amplification), 1996-
2005 [NARMS Dataset, (n=363)] 
 

  
Number of Isolates 

in Dataset Stx1+Stx2a Stx1+Stx2c Stx2a Stx2c na 
1996 24 18 (75.0%) 1 (4.2%) 4 (16.7%) 1 (4.2%) 0 (0.0%) 
1997 23 13 (56.5%) 0 (0.0%) 8 (34.8%) 2 (8.7%) 0 (0.0%) 
1998 26 19 (73.1%) 0 (0.0%) 2 (7.7%) 3 (11.5%) 2 (7.7%) 
1999 27 18 (66.7%) 1 (3.7%) 6 (22.2%) 2 (7.4%) 0 (0.0%) 
2000 28 12 (42.9%) 2 (7.1%) 11 (39.3%) 1 (3.6%) 2 (7.1%) 
2001 28 14 (50.0%) 1 (3.6%) 7 (25.0%) 5 (17.9%) 1 (3.6%) 
2002 28 14 (50.0%) 1 (3.6%) 4 (14.3%) 6 (21.4%) 3 (10.7%) 
2003 58 27 (46.6%) 3 (5.2%) 13 (22.4%) 8 (13.8%) 7 (12.1%) 
2004 61 26 (42.6%) 3 (4.9%) 7 (11.5%) 14 (23.0%) 11 (18.0%) 
2005 60 27 (45.0%) 3 (5.0%) 11 (18.3%) 16 (26.7%) 3 (5.0%) 
Total 363 188 15 73 58 29 
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Figure 25: Stx2 Toxin Subtypes of STEC O157 Isolates (percentage of isolates) (na: 
no amplification), 1996-2005 [NARMS Dataset, (n=363)] 
 
 

Stx2 Toxin Sub-types of STEC O157 Isolates (na: no amplification), 1996-2005 [NARMS 
Dataset (n=363)]

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

%
 o

f I
so

la
te

s Stx1+Stx2a

Stx1+Stx2c

Stx2a

Stx2c

NA

 

    
 



 

 
 
CHAPTER V: DISCUSSION  
 
 

Study Significance 
 

STEC O157:H7 is responsible for causing approximately 73,000 illnesses and 61 

deaths annually in the United States (Mead, 1999). All STEC produce one or both of two 

Shiga toxins, Stx1 and Stx2. Findings from previous studies indicate that STEC strains 

that produce Stx2 are more strongly associated with HUS than strains that produce both 

Stx1 and Stx2 or only Stx1. In recent years, CDC epidemiologists seem to have noticed a 

recent increase in the rate of HUS among STEC outbreaks. Such an increase could be due 

to a shift in the toxin type produced by STEC strains. In an effort to identify if such a 

shift exists, this study compares the toxin profiles of human STEC O157 strains within 

three independent datasets, collected by PulseNet, eFORS, and NARMS. The trends in 

HUS rates reported through eFORS were also studied. 

 

Important Study Findings 
 

It was hypothesized that 1) there has been an increase in the number of foodborne 

outbreaks caused by STEC O157:H7 during the time period 1999-2008 and 2) there has 

been an increase in the number of STEC O157:H7 strains that produce Shiga toxin 2-only 

during the time period of 1999-2008. The study findings discussed below illustrate that 

the first hypothesis is probably not true whereas the latter may be true according to the 

data analyzed. 

Results from the PulseNet dataset show that since 2002, the number of foodborne 

outbreaks caused by STEC O157:H7 has increased, whereas the number of outbreaks 
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reported through eFORS did not show any trends from 1998-2006, with an annual 

average reported number of 25.8 outbreaks. Fewer outbreaks were reported in PulseNet 

in 2002-2004 than in eFORS, whereas the number of outbreaks reported in PulseNet was 

higher than in eFORS for the years 2005-2006. This indicates that significant under-

reporting of outbreaks took place in PulseNet until 2004. It is to be expected that the 

number of outbreaks detected in PulseNet is higher than in eFORS, since the eFORS 

database only contains confirmed outbreaks whereas the PulseNet database also includes 

clusters that are not investigated epidemiologically. A reason for the under-reporting in 

PulseNet in 2002-2004 may be that during the early years following introduction of 

cluster codes, clusters were predominantly assigned cluster codes if they were 

investigated by epidemiologists. Since 2004, all clusters detected by PulseNet have been 

assigned a cluster code.  

In the PulseNet dataset, the number of outbreaks was lowest in 2003 at 8 

outbreaks and highest in 2005 at 54 outbreaks. However, after 2005, the number of 

outbreaks gradually decreased to a low of 39 outbreaks in 2008. The average number of 

outbreaks per year as seen in the PulseNet dataset was 33.1. The increase in the number 

of outbreaks per year in the PulseNet dataset may be artificial for the reason explained 

above and perhaps because of improved cluster detection and expansion of the PulseNet 

network. The number of outbreaks for 1999-2001 was not available, as PulseNet did not 

begin using outbreak codes until 2002.  

In contrast to the results found using the PulseNet dataset, there was not a gradual 

increase in the number of outbreaks reported to eFORS during the time period 1998-2006 

(data for 2007 and 2008 were not available). The number of outbreaks reported to eFORS 
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ranged from a low of 17 outbreaks in 2004 to a high of 33 outbreaks in 2006. The 

average number of outbreaks per year as seen in the eFORS dataset was 25.8.  

 Results from this study also show that since 1999, the number of STEC O157:H7 

strains that produce Shiga toxin 2-only has increased. The PulseNet dataset of 4,402 

isolates showed a gradual increase in the number of strains producing Stx2-only from 

1999 to 2008. The percentage of isolates producing Stx2-only increased from a low of 

11.5% in 1999 to a high of 57.2% in 2008. This increase was found to be statistically 

significant (p< 0.0001). This increase occurred in parallel to a gradual decrease in the 

percentage of isolates producing Stx1+Stx2.  

 When isolates within the PulseNet dataset were separated into outbreak isolates 

and sporadic isolates, the same trend was seen. Among the 1,629 outbreak isolates, the 

percentage of isolates producing Stx2-only increased from a low of 31.0% in 2002 to a 

high of 59.4% in 2008. Among the 2,519 sporadic isolates, the percentage of isolates 

producing Stx2-only increased from a low of 21.5% in 2002 to a high of 55.8% in 2008. 

These increases were found to be statistically significant (p<0.0001). 

 Results from the eFORS dataset also showed an increase in the number of 

outbreaks producing Stx2-only relative to the other toxin types for the time period 2000-

2006 (Figure 22). No toxin information was available for any of the outbreaks prior to 

2000. During 2000-2004, there were six outbreaks in which the toxin information was 

known, and none of these outbreaks were caused by Stx2-only producing strains. In 2005, 

there were 17 outbreaks with known toxin information, of which 10 (58.8%) were caused 

by Stx2-only producing strains. In 2006, there were 16 outbreaks with known toxin 

information, of which 11 (69.0%) were caused by Stx2-producing strains.  
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 Additionally, results from the NARMS dataset of 363 isolates showed a gradual 

increase in the number of isolates producing Stx2-only during the time period 1996-2005. 

The percentage of isolates producing Stx2-only increased from 20.8% in 1996 to 45.0% 

in 2005. This increase occurred in parallel to a gradual decrease in the percentage of 

isolates producing Stx1+Stx2. Isolates producing Stx1-only remained at a steady low for 

all years. This trend was found to be statistically significant (p<0.0101). 

 Further analysis of the NARMS dataset revealed trends in the Stx2 toxin subtypes 

of the isolates. Results in this dataset showed that the increase in Stx2-only producing 

strains is mainly caused by an increase in Stx2c. The percentage of isolates with Stx2c 

increased from 4.2% in 1996 to 26.7% in 2005. This increase occurred in parallel to a 

gradual decrease in the percentage of isolates producing Stx1+Stx2a, indicating that the 

decrease in frequency of isolates with Stx1+Stx2 is almost exclusively a decrease in 

Stx1+Stx2a.  

It was hypothesized that there would be observable trends in the demographic 

characteristics (including age and gender) of isolates belonging to each toxin profile for 

the time period 1999 to 2008. However, findings from this study show that in humans, 

there is no correlation between age and toxin profile of the infecting STEC O157 strain. 

Among the 3,714 isolates with a known patient age in the PulseNet dataset, there were no 

differences in the median age when the median ages were compared by year, but when 

the median age of all isolates were compared for all years combined, the median age of 

all isolates with Stx1+Stx2 was different from the median age of all isolates with Stx2-

only, and this difference was found to be statistically significant (p<0.0001). The median 
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ages of patients were compared instead of the mean ages, since the data in the PulseNet 

dataset is not normally distributed. 

Findings from previous studies specify young age as a risk factor for STEC O157 

infection, (Scheiring 2008), which was also found in this study. When the 3,714 isolates 

in the PulseNet dataset with toxin and age information were examined by age interval, 

the age intervals with the highest numbers of cases were 1-5 years, 6-10 years, and 11-15 

years, for each toxin type. Results from this study show that the prevalence of STEC 

O157:H7 is a major public health concern because contaminated products may be 

consumed by patients of all ages but that young age is a risk factor. 

This study also shows a slightly higher risk of infection among females when 

toxin profiles were compared between the two genders. In the 3,639 human STEC O157 

isolates with known gender information, the average percentage of female cases for all 

isolates with Stx1-only, Stx1+Stx2, and Stx2-only was 57.9%, 53.7%, and 54.0%, 

respectively. Thus, the percentage of female cases was slightly above 50% for each of the 

toxin types. This finding is consistent with results of previous studies that specify female 

gender as a risk factor for STEC O157 infections (Scheiring 2008), however, the 

difference was not found to be statistically significant in this study (p=0.243). 

As hypothesized, this study showed an observable seasonal trend in STEC O157 

infections during the time period 1999-2008. Findings showed a general seasonal 

increase between the second quarter (April-June) and third quarter (July-September) for 

each toxin type within every year, and a general seasonal decrease between the third 

quarter and fourth quarter (October-December) for each toxin type within every year. The 

number of isolates was consistently lowest during the first quarter (January-March) for 
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each toxin type and year. These data are consistent with results of previous studies that 

indicate a marked summer peak in prevalence of STEC O157:H7 (Crump 2003). This 

seasonality is unexplained, but is also observed for other bacterial enteric infections and 

may be due to ecological factors or increased exposures (ex: recreational water, 

undercooked foods served at barbecues, etc.) during warmer summer months. 

Results from this study did not illustrate any trends in the geographical 

distribution of toxin types. When all isolates from 1999-2008 were combined for each 

toxin profile, results showed the highest concentration of cases in California, Michigan, 

Ohio, and Virginia, regardless of toxin profile. When isolates of each toxin profile were 

compared in 1999 versus 2008, the same states had the highest concentrations of cases. 

Higher population densities, agricultural, ranching, and beef processing activities, and/or 

the presence of “supershedders” (cattle with greater E. coli O157:H7 transmission 

potential) may be contributing factors to the higher concentration of cases in these states. 

In addition, Michigan and Virginia serve as PulseNet Area Laboratories. In this role they 

provide surge capacity for surrounding states, which may attribute to a higher number of 

cases being submitted by these two states. Thus, the observed geographical distribution 

could possible be explained by differences in the public health laboratories’ capacity to 

perform Stx-type determination. 

In this study, PFGE data showed that certain toxin types were associated with 

particular PFGE patterns. This finding was based on the top ten PFGE patterns in the E. 

coli national database. One hundred percent of isolates with PFGE pattern EXHX01.1486 

produced Stx2-only. For patterns EXHX01.0047, EXHX01.0200, EXHX01.0224, 

EXHX01.0124, EXHX01.0125, there was a strong association between the toxin profile 
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and PFGE pattern, as more than 90% of isolates with these patterns produced Stx2-only. 

For patterns EXHX01.0074, EXHX01.1343, EXHX01.0087, and EXHX01.0008, more 

than 80% of the isolates produced Stx1+Stx2. None of the patterns among the top 10 

produced Stx1-only. This association between toxin type and PFGE pattern is noteworthy 

because it suggests that it may be possible to predict the toxin type associated with an 

outbreak based on the PFGE pattern of the isolates belonging to the outbreak.  

Among the top five PFGE patterns with Stx1-only, there were only two patterns 

(EXHX01.3417 and EXHX01.3138) that were exclusively seen with Stx1-only when 

compared against the entire E. coli national database; however each of these two patterns 

had only been seen twice in the entire database, therefore there was not a large enough 

sample to conclude that these patterns are always associated with Stx1-only producing 

strains. 

It was hypothesized that non-O157 strains would be associated with toxin type 

Stx1-only. This hypothesis was found to be true in general, as analysis of the distribution 

of toxin types among the top six non-O157 STEC serotypes showed that the percentage 

of isolates with Stx1-only was higher than the percentage of isolates with Stx1+Stx2 or 

Stx2-only. However, upon a closer look, serotype-specific differences were noticed. In E. 

coli O121 strains, the percentage of isolates with Stx2-only was significantly higher than 

the other toxin types. Strains of serotype O111 were almost evenly distributed between 

Stx1-only and Stx1+Stx2, and all three toxin profiles were almost evenly distributed in 

serotype O145. All serotypes contained strains with each toxin profile. These findings 

illustrate that outbreaks caused by E. coli O121 may be more severe than outbreaks 

caused by other non-O157 STEC serotypes due to the presence of the Stx2 toxin. 
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Additionally, the serotype alone should not be used in predicting the risk of severe illness 

caused by an STEC strain. As previous studies have indicated, the combined presence of 

the eae and Stx2 genes are essential in predicting the severity of illness, rather than the 

serotype.  

Results from this study do not indicate any trends in HUS rates among STEC 

O157 outbreaks in the United States from the time period 1998-2006. HUS rates were 

known for 166 (71.2%) of the 233 outbreaks in the eFORS dataset and the average HUS 

rate for all outbreaks ranged from 0.40% in 1998 to 16.1% in 2006. However, many of 

the HUS rates in the eFORS dataset were much higher than would be expected (as high 

as 50.0%), based on outbreaks investigated by CDC epidemiologists and information in 

the literature, therefore these data may be unreliable for identifying trends in HUS rates. 

Some reported outbreaks seemed to have been caused by strains containing Stx1-only. 

However, in many outbreaks, including one out of three Stx1-only producing outbreaks, 

the toxin profile was only determined from one strain. Shiga toxins are encoded on 

mobile genetic elements, called phages, that may be lost. The toxin profile of an outbreak 

strain should therefore be determined for several outbreak-related isolates. 

An explanation for the unusually high HUS rates seen in the eFORS dataset may 

be a systematic reporting error or bias toward preferentially reporting severe illness. 

Taking into account that the HUS rates reported to eFORS may be unreliable, no 

correlations between toxin profiles and HUS rates were made using this dataset.  
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Study Limitations 

It is important to discuss the limitations involved in this study. One limitation is 

that the PulseNet dataset is that E. coli national database mirrors the surveillance 

performed in the states, and sampling and reporting of STEC O157 isolates varies from 

state to state. Furthermore, the toxin type and demographic information is not submitted 

for every isolate uploaded to the PulseNet database, and therefore this study excludes 

isolates where this information was not available. This is a limitation because the dataset 

does not include every STEC O157 isolate submitted to the E. coli national database 

between 1999 and 2008. However, since over 70 U.S. public health laboratories and 

federal regulatory agencies regularly submit isolates to the PulseNet database, this study 

assumes isolates included in the PulseNet dataset represent the national trend of infection 

(Gerner-Smidt 2006).  Another limitation of the PulseNet dataset is that PulseNet data is 

biased toward outbreak isolates; therefore, the E. coli national database may not contain 

an accurate representation of trends among sporadic isolates. However, the trends seen in 

the PulseNet dataset were confirmed by the random sampling of the NARMS dataset. 

A limitation of the eFORS dataset is that only 71.2% of STEC outbreaks in the 

dataset contained HUS rates, and HUS information was not provided for all patients in 

every outbreak. Additionally, only a small percentage (25.9%) of these outbreaks could 

be linked to outbreaks in the PulseNet dataset with toxin information. Because HUS is a 

nationally notifiable disease, eFORS is biased toward HUS cases (CDC-DISSS 2009). 

This also showed up in many of the outbreaks in the eFORS dataset, where the HUS rates 

were unrealistically high and not representative of typical STEC O157 outbreaks.   
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A limitation of the NARMS dataset is that a small percentage of the isolates 

included in the dataset revealed no amplification following PCR testing. These isolates 

were repeated with a different PCR assay, which differed from the original assay by 

targeting slightly different regions of the Stx genes. Some isolates still revealed no 

amplification, which may have been due to mutations in the toxin genes, or the organism 

being non-toxigenic O157, which would have led to the toxin genes being absent or too 

broken to be amplified. However, since the number of non-amplifying isolates was low, 

this limitation would have little effect on the conclusions from this part of the study. 

Another limitation of the study was that the three datasets all contained isolates 

from slightly different time periods; the PulseNet dataset contained isolates from 1999-

2008, the eFORS dataset contained isolates from 1998-2006, and the NARMS dataset 

contained isolates from 1996-2005. The time frames for the PulseNet and eFORS dataset 

were defined to represent the most comprehensive information that was available in each 

dataset, while the time frame for the NARMS dataset was defined by a randomized 

sampling scheme of available isolates. The sample sizes of each dataset also differed for 

each dataset which may also be a limitation to this study.  

 

Recommendations and Future Studies 

 It is recommended to compare toxin profiles of STEC O157 strains to HUS rates 

from a different data source. The data source used in this study for capturing HUS rates 

was biased toward HUS cases, leading to unreliably high HUS rates among STEC O157 

outbreaks. Additionally, in this study, outbreaks in one dataset (eFORS) had to be linked 

with outbreaks in another dataset (PulseNet) to obtain the toxin profiles of those 
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outbreaks. It is recommended that state and public health laboratories submit as much 

information as possible to each of these data sources, allowing the data to be linked more 

efficiently.  

 Future studies could investigate trends in toxin profiles among non-human 

isolates; i.e. food sources and animal reservoirs. This study revealed an increase in the 

number of strains producing Stx2-only relative to strains producing Stx1-only and 

Stx1+Stx2, therefore it would be reasonable to assume that the same trend exists in the 

food commodities and animal reservoirs that are responsible for causing illness in 

humans. The data obtained from such a study could be used to understand if certain food 

commodities are associated with certain toxin profiles which may cause more severe 

illness in humans. Additionally, future studies could examine if the shift in toxin profiles 

seen in this study also exists in other countries. Because of the global nature of today’s 

food supply, it is likely that these trends are mirrored in other parts of the world. 

   
 



 
 

 
 
CHAPTER VI: CONCLUSIONS 

 
 

Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a major cause of 

foodborne illness in the United States and causes severe gastroenteritis and may cause 

life-threatening HUS, the most serious complication of STEC infection. One of the main 

virulence factors of STEC infections is the production of one or more type of Shiga toxin 

(Stx1, Stx2, or both).  

The first aim of this study was to determine if data collected from two 

independent datasets showed an increase in the number of outbreaks caused by STEC 

O157:H7 during the time period 1999-2008. Using the PulseNet E. coli national database 

and outbreaks reported to eFORS, the number of outbreaks occurring within each year 

was determined based on PulseNet-assigned outbreak codes. The overall conclusion is 

that there were no observable trends in the number of outbreaks occurring since 2002.  

The second aim of this study was to determine if data collected from three 

independent datasets showed an increase in the number of STEC O157:H7 strains that 

produce Shiga toxin 2-only. The PulseNet dataset showed a gradual increase in the 

number of strains producing Stx2-only from 1999 to 2008, in parallel to a gradual 

decrease in the percentage of isolates producing Stx1+Stx2. The same trend was seen 

when outbreak-related isolates were separated from sporadic isolates. The eFORS and 

NARMS datasets also showed an increase in the number of outbreaks producing Stx2-

only relative to the other toxin types for the time period observed. Further analysis of the 

NARMS dataset revealed that the increase in Stx2-only producing strains is mainly 
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caused by an increase in Stx2c, relative to Stx2a. Thus, a shift in the toxin profiles 

has changed during the study period. 

The third aim of this study was to determine if data collected from eFORS reports 

showed an increase in the HUS rates of STEC O157:H7 outbreaks during the time period 

observed. However, no conclusions could be made regarding trends in HUS rates based 

on the data available in the eFORS dataset since this surveillance system currently seems 

to be unreliable for HUS surveillance.  

Finally, this study attempted to identify any other observable trends among toxin 

profiles of STEC O157 strains. Demographic characteristics including patient age and 

gender were examined, in addition to geographical and seasonal trends. Results showed a 

higher number of cases among children (1-15 years old) and a slightly higher incidence 

of infection among females, regardless of toxin type. Seasonal trends were identified, as 

there was a general increase in cases between the second and third quarters of each year, 

for each of the three toxin types and a general decrease in cases between the third and 

fourth quarters of each year for each toxin type. Analysis of geographical trends revealed 

a higher concentration of cases in California, Michigan, Ohio, and Virginia, relative to 

other states, for all three toxin profiles, when the years 1999-2008 were combined. 

However, the reliability of this finding may be questioned. 

Overall, this analysis shows a dramatic shift over time in the toxin profiles of 

human STEC O157 strains in the United States towards strains that produce only Stx2. 

This shift was observed in three independent databases of mostly sporadic isolates and in 

outbreak isolates. No conclusions could be made regarding trends in HUS rates. A 

systematic and reliable reporting method of HUS cases among sporadic and outbreak 
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associated STEC infections in the United States is warranted in order to understand if a 

correlation exists between the severity of this disease and the virulence of the infecting 

strain. Further work is needed to determine if a similar trend in toxin profiles of STEC 

O157 strains has occurred in animal reservoirs, foods, and other countries. There is a 

great need to recognize the trends in toxin profiles of STEC O157 strains in order to fully 

understand their potential for causing human illness. 
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