
University of South Carolina
Scholar Commons

Theses and Dissertations

1-2013

Comparison of a Particle Filter and Other State
Estimation Methods for Prognostics of Lithium-
Ion Batteries
Eric Alan Walker
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

This Open Access Thesis is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Walker, E. A.(2013). Comparison of a Particle Filter and Other State Estimation Methods for Prognostics of Lithium-Ion Batteries. (Master's
thesis). Retrieved from http://scholarcommons.sc.edu/etd/2565

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/2565?utm_source=scholarcommons.sc.edu%2Fetd%2F2565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu

COMPARISON OF A PARTICLE FILTER AND OTHER STATE ESTIMATION METHODS

FOR PROGNOSTICS OF LITHIUM-ION BATTERIES

by

Eric A. Walker

Bachelor of Science

Georgia Institute of Technology, 2009

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Chemical Engineering

College of Engineering and Computing

University of South Carolina

2013

Accepted by:

Ralph E. White, Director of Thesis

Edward P. Gatzke, Reader

Sean C. Rayman, Reader

Gabriel A. Terejanu, Reader

John W. Weidner, Reader

Lacy Ford, Vice Provost and Dean of Graduate Studies

ii

© Copyright by Eric A. Walker, 2013

All Rights Reserved.

iii

ACKNOWLEDGEMENTS

 I would like to acknowledge Dr. White for his consistent leadership. I would like

to acknowledge Dr. Rayman for the countless hours he has worked to help me. Thank

you to research group members: Dr. Cai, Dr. Guo, Yiling, and former group member

Saeed, now Dr. Rahimian. I would like to acknowledge friends, my roommate Bryan,

Elina, and my parents.

iv

ABSTRACT

A particle filter (PF) is shown to be more accurate than non-linear least squares

(NLLS) and an unscented Kalman filter (UKF) for predicting the remaining useful life

(RUL) and time until end of discharge voltage (EODV) of a Lithium-ion battery. The

three algorithms track four states with correct initial guesses and 5% variation on the

initial guesses. The more accurate prediction performance of PF over NLLS and UKF is

reported for three Lithium-ion battery models: a data-driven empirical model, an

equivalent circuit model, and a physics-based single particle (SP) model.

v

TABLE OF CONTENTS

ABSTRACT .. iv

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS.. viii

LIST OF ABBREVIATIONS ... xi

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 COMPARISON OF A PARTICLE FILTER AND OTHER STATE ESTIMATION

 METHODS FOR PROGNOSTICS OF LITHIUM-ION BATTERIES 5

 1.1 HE, ET AL MODEL .. 11

 1.2 EQUIVALENT CIRCUIT MODEL ... 19

 1.3 SINGLE PARTICLE MODEL.. 22

 1.4 CONCLUSIONS ... 25

 1.5 TABLES AND FIGURES .. 26

REFERENCES .. 44

APPENDIX A – UNSCENTED KALMAN FILTER ... 46

APPENDIX B – MATLAB PROGRAMS ... 47

vi

LIST OF TABLES

Table 1.1 States in He, et al model .. 27

Table 1.2. States in ECM model ... 28

Table 1.3 States in SP model .. 29

Table 1.4 Matrix of models and methods .. 30

vii

LIST OF FIGURES

Figure 1.1 Capacity data set for RUL prediction .. 31

Figure 1.2 Tracking a different number of states .. 32

Figure 1.3 UKF RUL prediction for He, et al model .. 33

Figure 1.4 PF RUL prediction for He, et al model.. 34

Figure 1.5 Zoom on PF RUL prediction of He, et al model .. 35

Figure 1.6 ECM data set .. 36

Figure 1.7 Equivalent circuit representation of a Lithium-ion battery 37

Figure 1.8 ECM NLLS prediction ... 38

Figure 1.9 ECM UKF prediction ... 39

Figure 1.10 ECM PF prediction ... 40

Figure 1.11 SP NLLS prediction .. 41

Figure 1.12 SP UKF prediction.. 42

Figure 1.13 SP PF prediction ... 43

Figure 1.14 UKF algorithm flowchart .. 44

viii

LIST OF SYMBOLS

 state in He, et al model ()

 state in He, et al model (

)

 state in He, et al model ()

 electrode maximum solid phase Lithium concentration (

)

 Cholesky decomposition of / capacitance ()

 state in He, et al model (

)

 solid phase diffusion coefficient

 () state dynamic model

 Faraday’s constant (

) in which the moles are of moles equivalent electrons

 () He, et al model

 () measurement model

 current ()

 exchange current density for each electrode (

)

 cycle index ()

 cycle index () at end of useful life (EUL). indicates an experimental

 result.

 covariance matrix of the states

 cross covariance matrix

 measurement space covariance

ix

 process noise in unscented Kalman filter algorithm

 capacity at the end of useful life, the defined failure threshold

 capacity at cycle index ()

 cell resistance

 gas constant (

)

 particle radius in electrodes ()

 interfacial charge transfer resistance

 electroactive surface area ()

 electrode open circuit potential (),

 cell potential ()

 weight of particle

 matrix containing weights in unscented Kalman filter algorithm

 state vector estimate in particle filter algorithm

 ̂ state vector estimate in unscented Kalman filter algorithm

 ratio of the solid bulk concentration to the maximum solid phase concentration of

Lithium in the electrodes

 ratio of the solid surface concentration to the maximum solid phase concentration

of Lithium in the electrodes

 state of charge

 time ()

 input variables in unscented Kalman filter algorithm

 sensor noise, also called measurement noise

 measurements in particle filter algorithm

 matrix containing samples in unscented Kalman filter algorithm

 He, et al model state vector containing

x

 overpotentials ()

xi

LIST OF ABBREVIATIONS

ECM ..Equivalent Circuit Model

EKF ... Extended Kalman Filter

EODV ... End of Discharge Voltage

EUL ... End of Useful Life

EV.. Electric Vehicle

IG .. Initial Guess

MCMC ... Markov Chain Monte Carlo

NLLS ... Non-Linear Least Squares

PDF ..Probability Distribution Function

PF .. Particle Filter

RUL .. Remaining Useful Life

SOC .. State of Charge

SOL ... State of Life

SP ... Single Particle (Model)

UAV .. Unmanned Aerial Vehicle

UKF ... Unscented Kalman Filter

1

CHAPTER 1

INTRODUCTION

2

This thesis originated from an assignment to reproduce the results of a research

group at a separate university. My advisor was invited to speak at this other university

and my advisor later gave me the assignment to reproduce an article which is referenced

in this thesis and the corresponding journal article. This thesis is a reproduction or

adaptation of a separately published article, in which I am the first author, which is

permitted by the University of South Carolina.

In more plain language than the article, the contribution of this thesis is at least

two-fold. First, this thesis compares the work of the original work it cites to other

established methods to accomplish the same task. The application for this study can put

its contribution in perspective. The application is predicting the Remaining Useful Life

of a battery which can be inside a satellite or an electric vehicle or an unmanned aerial

vehicle. Therefore there are different methods to go about making predictions of the

Remaining Useful Life. The specific assumptions and setup for making predictions is

included in detail. Although the original article was the first to use the method called the

particle filter, this article makes a comparison to established methods in order to know

whether the Particle Filter is preferred. The results and findings of this thesis are indeed

it is.

The particle filter now has more evidence to support its use. Really the Particle

Filter is a departure from established methods because it is a probabilistic method based

upon Bayes’ Formula. In my opinion its implementation is easier than established

methods, which are typically deterministic. In my thesis defense, the superior accuracy

of the particle filter was attributed to its use of prior knowledge during the question and

answer session. Deterministic methods are provided with prior knowledge in the form of

3

an initial guess, but they tend to immediately ignore it once new data is available. Again

this use of prior knowledge arises from, I believe, the Particle Filter’s probabilistic

nature.

The second contribution of this thesis is taking the Particle Filter and applying it

with physics-based models of Li-ion batteries. The Particle Filter had not been

previously explored with physics-based models of Li-ion batteries and I was at the

advantage of having joined a research group specializing in physics-based models of Li-

ion batteries. This thesis considers two models besides the model of the original article,

and each additional model receives the same treatment as the first model by a Particle

Filter and comparison with established deterministic methods. This geometrically

increasing set of combinations led to a substantial amount of programming since each

model has its own particularities. The effort paid off because the first use of a particle

filter with a physics-based Li-ion battery model is reported now. The Particle Filter is

adaptable to many physics-based models, and it is based upon a simple yet powerful

equation and its prevalence will no doubt increase with increasing computational power.

The work of this thesis suggests future work, some of which is listed in the

conclusion. One aspect of the future work is combining a charge model with a

Remaining Useful Life model. The Remaining Useful Life model is like the one

suggested by the original article referenced in this thesis. A charge model is the physics-

based model which is newly reported in combination with the Particle Filter. The two

types of models are distinguished by what quantity they are predicting and they cannot be

compared like apples to apples. The charge model predicts the time until a battery needs

recharging and a Remaining Useful Life model predicts how many times the battery may

4

be recharged until it has reached its end of useful life. Combining the two models means

making a Remaining Useful Life Prediction and a charge prediction at the same time.

The information from the RUL model adjusts and helps out the charge model. Likewise,

the charge model can hand over intelligence, so to speak, to the Remaining Useful Life

prediction. As the Remaining Useful Life model stands, in this thesis and in literature to

the best of my knowledge, it waits until the point that the battery is recharged to update

the RUL model. Combining the models allows updates to the Remaining Useful Life

model with each new voltage measurement which are many and close between.

One comment which arose during my defense is the selection of the quantity of

deviation in the likelihood equation in the Particle Filter method. The likelihood equation

quantifies how likely a possible solution is based upon a data point. If the likelihood

deviation is broad, then lots of solutions are considered likely and not much knowledge is

gained from a data point. If the likelihood deviation is too small then one solution, no

solution, or a small number of solutions are quantified as likely. This outcome is worse

because it eliminates the diversity of solutions which are vital to the performance of the

Particle Filter.

My hope is that this is a step in the ongoing advancement of Lithium-ion battery

modeling knowledge. The work is a first of its kind in at least two ways which are

comparison of the Particle Filter to established methods for making predictions of

Remaining Useful Life and expanding the Particle Filter to physics-based Li-ion battery

models. Suggested future work is combining a charge model and a Remaining Useful

Life model and how to select the likelihood deviation in the Particle Filter.

5

CHAPTER 2

COMPARISON OF A PARTICLE FILTER AND OTHER STATE ESTIMATION

METHODS FOR PROGNOSTICS OF LITHIUM-ION BATTERIES
†

†
Eric A. Walker, Sean Rayman and Ralph E. White. To be submitted to the Journal of

 Power Sources.

6

INTRODUCTION

Lithium-ion batteries are utilized in spacecraft, aircraft, and electric vehicles. An

accurate prognosis for the remaining useful life (RUL) of Lithium-ion batteries and time

until end of discharge voltage (EODV) is desired for these applications. RUL is the

number of cycles remaining until the battery’s capacity falls below a predetermined

threshold, an event called end of useful life (EUL). Time until EODV is the time until

the battery voltage drops below a defined EODV threshold. The particle filter (PF) is

emerging as the preferred method for making these predictions about Lithium-ion

batteries
1-5

. In this work, a Lithium-ion battery is assumed to undergo constant, low-

current, complete discharge over cycling. RUL and time until EODV are predicted with

the above assumption using three models and three methods. For comparison, accuracies

for each method are reported.

Previous work on Lithium-ion battery prognostics with PF found PF accurate.

However, among the works considered, comparisons to other methods for Lithium-ion

battery prognostics were not made or a comparison made was to a less than optimal

prediction method
1-5

. Further, physics-based models of Lithium-ion batteries were not

incorporated into PF for prognostics. Physics-based models provide states with physical

meaning in the Lithium-ion battery, and are built from first-principles. In this work, three

models including a physics-based Lithium-ion battery model are implemented with PF

and tested for accuracy in predicting RUL or time until EODV.

7

Predicting the RUL by a data-driven model of a Lithium-ion battery undergoing

constant charge and discharge cycling was investigated by He, et al
1
. He, et al did not

consider predicting time until EODV for a discharge cycle during cycling. The batteries

were charged completely and discharged completely, for the cycling protocol. The

failure threshold for the RUL was defined as the battery’s capacity falling below 80% of

its original capacity. The capacity at each cycle was measured by the integral of current

over time. The capacity can be considered the size of a fuel tank for the case of

comparing EV’s to conventional vehicles. With this analogy the RUL is the number of

times the tank or battery can be refilled with fuel or recharged until it can no longer hold

a useful amount of fuel or charge. Although the size of a fuel tank does not generally

change with the number of times it is refilled, a Lithium-ion battery loses capacity to the

extent of losing usefulness
1,2,6

.

In He, et al the capacity of a Lithium-ion battery was predicted forward in cycles

until it dropped below the capacity at EUL, . When comparing prediction

algorithms He, et al found PF to be more accurate than an extended Kalman filter (EKF)

when predicting RUL. An underlying step in the EKF algorithm is using a Taylor series

expansion to linearize non-linear model equations. This linearization approximation can

be less than ideal if the problem is highly non-linear
7,8

.

In this work, non-linear least squares (NLLS) and an unscented Kalman filter

(UKF) are used for comparison, against a PF, for predicting RUL and time until EODV.

NLLS is a state estimation algorithm for non-linear problems which attempts to minimize

the sum of squared errors of a model and observations. UKF is a sampling-based Kalman

filter and has been shown to perform better than EKF for non-linear systems
7,8

. UKF

8

chooses samples of the states by the state covariance matrix. The sampling scheme in

this work is symmetric where is the number of states. In the UKF algorithm,

the samples are passed through model equations then re-evaluated for mean and variance

without linearizing model equations. He, et al’s model used a function with two

exponentials for their model equation of battery capacity as a function of cycle number.

Because the model equation was highly non-linear with respect to the states, EKF was

susceptible to error due to the linear approximation of the model. In this work, UKF is

compared against NLLS and PF with He, et al’s model.

He, et al’s model was data-driven and was not developed from first principles of

the physics occurring within the Lithium-ion battery. In this work, He, et al’s model is

tested, along with an equivalent circuit model (ECM) and physics-based single particle

(SP) model. ECM represents the battery as an electrical circuit with resisters, capacitors

and other elements to create an equivalent circuit to model the battery behavior. SP is

derived from first-principles of physics occurring within a Lithium-ion battery. Thus, the

SP parameters have a physical interpretation.

Xing, et al
2
 extended He, et al’s work by testing an empirical second-order

polynomial model for RUL predictions as well as He, et al’s model using PF. They

compared the two models and their results showed that He, et al’s model predicted RUL

more accurately than the polynomial model. Again, the new model was data-driven, and

its parameters did not have a physical interpretation. Saha, et al
3
 predicted the time until

EODV of a battery undergoing discharge. The application for their work was predicting

the flying time of an unmanned aerial vehicle (UAV). Without prognostics, the flying

time of the UAV was usually reduced to provide extra margin to prevent the UAV battery

9

from becoming over-discharged during flight. Saha, et al applied PF with an empirical

model in order to predict the time until EODV. The time until EODV was the difference

of the predicted time of EODV minus the time of prediction. Predictions were made at

multiple time points and the batteries were discharged until they experimentally reached

EODV. The empirical model used with PF included terms representing the battery’s

open circuit potential, Ohmic drop, activation polarization, and concentration

polarization. This model was based upon a high level of abstraction of the physics

occurring within the cell
3
. No other method was compared against PF for testing

prediction accuracy by Saha, et al although PF was supported due to the predictions

meeting prognostics metrics for accuracy
3
.

Jin, et al
4
 used a data-driven model with PF for the application of predicting the

residual life of Lithium-ion batteries in spacecraft. The residual life was the number of

cycles until a failure threshold was reached, essentially the same as RUL. The model was

not physics-based, and PF was not established as more accurate than other RUL

prediction methods. Pattipati, et al
5
 used a data-driven model to predict the RUL of a

battery. Their model was a modified Randles equivalent circuit. In their model they

considered other states besides predicted RUL such as the state of charge (SOC) of the

battery. However, their model was not physics-based. Also, they required that the

battery be taken offline for taking measurements.

Ramadesigan
9
, et al predicted the capacity fade of a Lithium-ion battery due to

aging using a power-fade law on six states of an electrochemical model. The states’

uncertainty was quantified by a Markov Chain Monte Carlo (MCMC) algorithm. Their

investigation supported the accuracy of MCMC state estimates. The states followed a

10

power law over cycling and the electrochemical model was simulated for the individual

cycles. MCMC is similar to PF. Both can make non-Gaussian, numerical estimates of

the states by approximating their probability distributions. Both are built upon Bayes’

rule for updating state probability distributions.

Ramadesigan, et al’s states had physical significance, and some insight into the

source of capacity fade was suggested, since the negative anode solid phase diffusivity

decreased by a statistically significant amount. Although Ramadesigan, et al utilized a

rigorous physics-based model, the states themselves followed power-law models. This

work incorporates the models themselves into a PF framework. Also, PF is compared for

prediction accuracy of some failure for a variety of models and methods to test whether

PF is the most accurate prognostics method or not. Ramadesigan’s work emphasized an

investigation of modeling capacity fade.

Outside of Lithium-ion battery applications, the PF has been used for prognostics.

Daigle, et al
10

 used a physics-based model of a centrifugal pump with PF for predicting

the failure of a pump. The PF was able to use a physics-based model to make predictions

about the pump, because the PF is generalizable to prognostics. Cadini, et al
12

 used PF to

predict the propagation of a crack in concrete. An, et al
6
 provided a tutorial in MATLAB

for prognostics using a PF. Their examples were crack growth and battery degradation,

using empirical models.

Although not investigated for prognostics, physics-based models of Lithium-ion

batteries have been investigated in literature. A physics-based, single particle (SP) model

of a Lithium-ion battery was compared against an empirical model by Rahimian, et al
11

11

for fitting cell voltage. The physics-based model performed better than the empirical

model in accuracy for fitting cell voltage under low constant current conditions. The

models in Rahimian, et al, have not been used for Lithium-ion battery prognostics. Their

SP model and ECM model are re-applied for predicting time until EODV in this work.

The empirical model, considered by Rahimian, et al, was an equivalent circuit model

(ECM), first reported by Verbrugge
15

, different from the equivalent circuit models of

Saha, et al or Pattipatti, et al.

The SP in Rahimian et al’s comparison was also used with Kalman filtering

approaches in a separate work
7
 for estimating the SOC of a Lithium-ion battery

undergoing low-earth-orbit cycling. The SP model included some extra states for

capacity fade effects. The comparison made in their work was between UKF and EKF,

for use with the SP model. The unscented Kalman filter (UKF) was the preferred type of

Kalman filter, in their work. Both the SP and ECM from Rahimian are applied to PF for

predicting time until EODV. Also, PF is compared against UKF, not EKF, for tests of

prediction accuracy.

This work compares, based on accuracy of predictions, PF with NLLS and UKF,

for prognostics of Lithium-ion batteries. First, RUL is predicted for a Lithium-ion

battery using the model of He, et al
1
 with NLLS, UKF, and PF. Next, the ECM model of

Verbrugge
15

 with NLLS, UKF and PF predicts the time until EODV of a Lithium-ion

battery. The predictions of RUL and time until EODV assume that the battery is

undergoing low constant current, complete discharge. The last model used to compare

the methods is the physics-based SP model, and NLLS, UKF and PF are compared for

predicting the time until EODV.

12

1.1 HE, ET AL MODEL

1.1.1 Data set explanation and objective

From the state estimates of He, et al
1
 a synthetic data set of capacity versus cycle

was made by adding zero-mean, random normal noise with a standard deviation of

 () to capacity. This data set is presented in Figure 1.1. The objective is to

predict the remaining useful life (RUL) of the battery, as the data becomes available.

When EUL is reached (the first capacity measurement which falls below the EUL failure

threshold) the predictions may be tested for accuracy, against the experimental result.

The EUL capacity failure threshold is specifically,

 (1)

 () is the capacity when is equal to one, the first cycle. () is the

capacity at the end of useful life (EUL). is the horizontal line in Figure 1.1. The

RUL is,

 (2)

 is the cycle when the capacity of the battery decreases below . is the cycle

when the RUL prediction is made. The RUL is calculated as the difference of the

predicted cycle of EUL and the cycle of prediction. In order to quantify accuracy,

is subtracted from
 , where the asterisk denotes the experimental result.

1.1.2 He, et al model

The empirical model of He, et al
1
 is

 () () () (3)

13

where

 [] (4)

 () is the model, k is the cycle index. () is capacity at cycle index ,

 () (

) () (

) are states, and is the state vector (one underbar, ,

denotes a vector). Once is estimated, may be solved for by,

 () () (5)

 is subtracted from
 , and the smaller number of cycles indicates a more accurate

prediction of RUL.

1.1.3 He, et al model non-linear least squares results

The first method to make predictions of RUL with the He, et al model is non-

linear least squares (NLLS). NLLS, which was used by Rahimian, et al
11

 for comparing

SP to ECM, estimates . With this estimate a prediction of may be made. White

and Subramanian
12

 explicitly provide a non-linear least squares (NLLS) algorithm for

state estimation for a general case. The first battery data set is synthesized from He, et

al’s states and displayed in Figure 1.1. A second battery data set from the same states

with different random noise is used for NLLS state estimation. For the first test of NLLS

prediction, three states are given the exact parameters, and the state is estimated by

NLLS with 50 data. The state is given the correct initial guess (IG). The IG’s from He,

et al are displayed in Table 1.1. The result is NLLS makes a very accurate prediction.

The second test is using NLLS to track the and state. The model is non-linear in the

 state which makes the estimation problem non-linear unlike tracking the single state .

14

The constraints are such that is positive and is negative. The fit for tracking two

states and predicting RUL is nearly on top of the fit of the state. If the other states are

the fixed, correct values, NLLS can make an accurate RUL prediction when tracking

and or only .

The next test is tracking the four states in the model. None of the states are fixed.

Correct IG’s are supplied to NLLS. Table 1.1 includes the parameters when four states

are estimated by NLLS. and are constrained negative, and and are constrained

positive which correspond to the correct signs. The results are in Figure 1.2. Unlike

tracking one or two states, tracking four states gives an inaccurate prediction of 88 cycles.

Without the knee (downward bend) in the later data, NLLS makes an inaccurate

prediction when tracking four states. The prediction does not show a knee. When NLLS

is constrained to 5% of the correct four states, the prediction is more accurate than

without constraints. With 5% constraint the error is 10 cycles.

1.1.4 Unscented Kalman filter

Rahimian, et al
11

 applied UKF and EKF with SP for estimating SOC and state of

life (SOL) for a Lithium-ion battery undergoing low-earth-orbit cycling. SOL is a

measure of the aging of the Lithium-ion battery. Rahimian, et al found UKF to be more

accurate than EKF based upon fitting voltage measurements. Plett
8
 provides an

explanation based upon the assumptions taken by EKF and UKF of why UKF is more

accurate for non-linear model problems. Plett’s explanation is, when calculating the

mean of a random variable,

 [()] ([]) (6)

15

where () is a non-linear model equation. The mean of the non-linear function of the

random variable, , is only approximately equal to the function of the mean of . This is

caused because () is linearized by a first-order Taylor series. Likewise, covariance

matrices can be inaccurate when passed through a linearized version of the model

equation.

UKF does not change model equations. Instead, deterministic samples are taken,

and the samples are propagated through the non-linear model equations. After being

propagated through, the samples provide a mean and covariance. The sampling scheme

used in this work is symmetric
13

 where is the number of states. During the

update step of Kalman filtering the states are changed by the experiment measurement.

The states are assumed to be Gaussian distributed. The UKF algorithm equations are

presented in the Appendix.

Four states in He, et al’s model are tracked by UKF. 50 data points are used to

track the states. NLLS made an inaccurate 88 cycle RUL prediction with 50 data points

when tracking four states. , the state covariance matrix is initialized by diagonalizing

the difference of the upper and lower bounds of the 95% confidence interval of He, et al’s

states and squaring the difference. The Cholesky decomposition takes the square roots of

the diagonal elements of a matrix. The diagonal elements of the Cholesky decomposition

are used to make samples. Table 1.1 lists the four state results from prediction alongside

the correct states, and is the only state to change by a noticeable amount. Figure 1.3

displays the prediction results of UKF which are less than accurate with an error of 19

cycles. The prediction results are more accurate than NLLS for tracking four states but

16

less accurate than when NLLS is constrained by 5% to the correct states which made an

error of 10 cycles.

1.1.5 Particle filter

PF makes stochastic, meaning random, estimates of states and adjusts their

weights from observable measurements. The method of particle filtering does not begin

with the assumption that there is a single, best prediction. On the other hand, PF assumes

that there are many possible predictions, and each prediction is associated with a weight,

or probability. PF is built upon Bayesian statistics, which is a paradigm shift from

deterministic methods. It parts from the notion that nature is deterministic and

predictable
17

.

PF makes a probability density function (PDF) approximation of capacity in the

case of He, et al for a PDF of . Particles approximate a probability distribution of

the state vector, , which can be transferred to , from the model. For He, et al’s

model is . PF begins with a model in state-space form.

 () (7)

 () (8)

 is an integer which is a discrete index e.g. cycle index for the He, et al model. () is

the dynamic model of how the states change with and is the measurement model

which predicts the measurement based on the values of states at . In He, et al’s model,

 is the measurement calculated from the states. is the measurement noise.

17

The particle filter estimates the state vector, , by a probability distribution,

 (|). (|) gives the probabilities for a domain of possible values of the true

state given all the observations at index and prior information from training data. PF

approximates the probability distribution of by a series of weighted particles.

represents one estimate of the states, , and
 is the associated probability of the

estimate. Together,
 and

 make one particle. is the total number of particles. In

this work, particles are uniformly varied around the correct or best IG’s. All of the

particles together make an approximation of the probability distribution of . The

weights are such that they sum to one.

∑

 (9)

The particles approximate the distribution of by

 (|) ∑
 (

)
 (10)

 () is the Dirac delta function. Equation (10) is a convention for particles making a

probability distribution. A simpler equation to express how particles make a distribution

is

 (
 |)

 (11)

Equation (11) is interpreted as the probability of any particle,
 , is its weight.

As advances, the posterior PDF becomes the prior PDF of the new with the

dynamic model, (). (|) is a posterior PDF () is a prior PDF.

18

 (|) ∑

 (
) (12)

Equation (12) generates the prior distribution of the parameters, . Once the prior

distribution of is available by Equation (12) the posterior distribution of is obtained

by
1,3,12,19

 (|
) (13)

 (|
) is the likelihood of

 . The likelihood is calculated by
6,17

 (|
)

 √
 [

* (
)+

] (14)

 is the standard deviation of the measurement noise, . Equation (14) requires the

assumption that measurement noise is Gaussian distributed with mean zero. From

Equation (14), the closer (
) is to the higher (|

) is and the higher the

likelihood is for
 . The result of Equation (14) plugs into Equation (13), and

 is

obtained. In order to satisfy that the weights sum to one (Equation (11)), normalization is

performed
1,12,14

.

∑

 (15)

The overbar in Equation (15) indicates a normalized weight. Essentially, several

possible particles of different states are generated. They can be visualized as curves with

units of capacity in He, et al’s model. These particles are more or less likely, from

Equation (14), based upon the distance from experimental measurements. Unlike NLLS

19

and UKF, the PF particle state estimates do not change in this work. The weights of the

particles change but not the state estimates of the particles.

Figure 1.4 displays PF results for He, et al’s model. The grey lines are particle

estimates of the states shaded by their weights. Figure 1.4 displays the PF results with

particles of five percent uniform variation above and below the correct states. The

prediction is more accurate than NLLS or UKF tracking four states. The number of

particles is 100. Although one prediction PDF is shown the particle shades shift due to

two later predictions. The figure reveals some effects of PF. Particles away from the

data are shaded less likely, which becomes more pronounced in later predictions. The

weights at the edge of the prediction PDF jump up and down. Figure 1.5 zooms in on the

prediction PDF’s. A spread of particles appears beginning around cycle 165, which is

packed together in earlier cycles. Therefore, the algorithm didn’t differentiate the

likelihoods in the bundle of particles, which is why the likelihood jumps around where

those particles cross the failure threshold. In this work the weighted sum of the particles

is used to report prediction accuracy of PF because a choice of the most likely particle

isn’t as meaningful due to the jumping around of weights. The weighted sum of particles

gives a prediction error of magnitude 0.82 cycles with He, et al’s model. PF makes the

most accurate prediction among the three algorithms considered when tracking all four

model states and given correct IG’s.

1.2 EQUIVALENT CIRCUIT MODEL

1.2.1 Data set explanation and objective

20

The data for the ECM and SP time until EODV predictions are from the NASA

Ames prognostics data repository
16

. Batteries are discharged at a constant current of

 () from a fully charged () to a EODV cutoff voltage of (). Assuming

constant current throughout discharge, the objective is to predict the time until the

EODV. Figure 1.6 displays the data set for time until EODV prediction.

The RUL predictions used the capacity of a discharge as one measurement. The

capacity results from many discharges of a battery undergoing charging and discharge

cycling were displayed in Figures 1.1-4. A single discharge is displayed, per plot, for

visualization of prediction of time until EODV for the remaining figures. For a complete

cycle, after EODV, the battery was charged to a fully charged (). The discharge

plots have axes with units of voltage versus time, instead of capacity versus cycle.

1.2.2 Equivalent circuit model

Verbrugge’s ECM is considered for a battery discharge cycle
11,15

. The data

assumes a constant current discharge, so the cell potential, () can be related to the

current, () by the following equation, according to the ECM model.

 ()

 (

) ((

))

 (16)

Unlike He, et al’s model, () is the measurement. The states are [], the cell

resistance, () the capacity of the cell, () the capacitance, and [] the

interfacial charge transfer resistance. () is the open circuit potential of the cell,

defined in Equation (17).

21

 ()

 () (17)

 () are open circuit potentials of the cathode and anode, respectively

20
. are the

states of charge of the electrodes.

 ()

(

)

 (18a)

 ()

 () () (18b)

 and are obtained by a linear interpolation of .

 (19)

 is governed by

 (20)

 () is time. Figure 1.7 displays the equivalent electric circuit representation of the

battery, which is the origin of Equation (16) of the ECM model. The model terms

representing battery effects are treated as resistors or capacitors in an electric circuit.

ECM is a widespread type of battery model
9
.

1.2.3 Equivalent circuit model results

Table 1.2 displays the training estimates from data. NLLS and ECM states from 50 data

are included for comparison. All four states are tracked. Figures 1.8 and 1.9 display the

prediction results of NLLS and UKF. With correct IG’s NLLS makes an inaccurate

22

prediction unless NLLS is constrained to 5% of the correct IG’s. UKF’s prediction is

inaccurate, but more accurate than NLLS unless NLLS is constrained to 5% of the correct

IG’s. In both methods, all four ECM states are tracked. NLLS 5% constrained has an

error of 396 seconds. The state covariance matrix, , of UKF is created by

diagonalizing 5% of the best ECM states from training data and squaring the matrix.

Figure 1.10 displays the PF prediction at the same time as NLLS and UKF. Although

one prediction PDF is shown the particle shades shift due to two later predictions. The

correct four states are uniformly varied by 5%. The weights move up and down because

the state particles are bundled together over the data until after the last prediction is made.

The weighted sum of particles gives an error of 25.62 seconds. The prediction of PF at

928.6 (s) is more accurate than the predictions of NLLS and UKF at that time when

tracking all four model states with best IG’s.

1.3 SINGLE PARTICLE MODEL

1.3.1 Single Particle model

The final model considered in this work is the single particle model (SP). SP is used for

time until EODV prediction. SP makes simplifying assumptions from more rigorous

physics-based models
7,11

. For the low constant-current discharging considered in this

work, the assumptions of SP are met. SP considers two electrodes to contain spherically

symmetric particles of solid active material. Lithium intercalates and de-intercalates at

the surface of the solid active material and diffuses. By treating the concentration profile

inside the solid active material spherical particles as a two-term polynomial, volume

averaging techniques create an average concentration for the bulk of the particle.

23

Reproduced from Rahimian, et al, SP equations are as follows
11

. Capacity fade effects

are removed. In the cathode and in the anode .

 (21)

 (22)

 (23)

 (24)

 is the exchange current density for each electrode *

+. is the ratio of the solid

bulk concentration to the maximum solid concentration of Lithium for each electrode.

is Faraday’s constant, 96485 in *

+. [] is the particle radius for each electrode.

 *

+ is the maximum solid phase concentration of Lithium for each electrode.

 [] is the electroactive surface area for each electrode. is the ratio of the solid

surface concentration to the maximum solid concentration for each electrode,

 . *

+ is the solid phase diffusion coefficient of Lithium for each electrode.

Butler-Volmer kinetics are used to describe the intercalation and de-intercalation

reactions of Lithium at the electrodes.

 ()

()

 [(

) (

)] (25)

24

 and are the anodic and cathodic transfer coefficients, respectively, for the

intercalation and deintercalation reactions. If , then Equation (25) can be

solved explicitly for , as shown in Equation (26). *

+ is the gas contant.

 (

((

)

)

 ()

()

) (26)

 Overpotentials, , are also

 (27)

 (28)

The open circuit potentials,
 , are the same as those defined in Equations (18a) and

(18b) for the ECM model with an exception. By finding an accurate fit to the

experimental data, the parameter which is .7222 has been changed to .8214 and the

parameter which is -4.656 has been changed to -4.8801. The difference of the electrode

potentials, , (with Equations (27) and (28) substituted) is the cell voltage.

 (

) (29)

Table 1.3 shows the best IG’s from literature and training data. Figure 1.11

displays the NLLS fit of SP. The best IG’s are provided for four states, and .

The prediction is very inaccurate unless NLLS is constrained to 5% of the best IG’s. The

UKF prediction, shown in Figure 1.12, is more accurate than NLLS unless NLLS is 5%

constrained. The error of NLLS 5% constrained is 272 seconds. The matrix of UKF

was made by diagonalizing 5% of the parameters squared. Figure 1.13 shows PF with

25

5% variation on the correct parameters. Although one prediction PDF is shown the

particle shades shift due to two later predictions. PF gives an error of 8.54 seconds for

the most accurate prediction. Table 1.4 includes a matrix of the prediction error of the

models and methods. The results indicate that the methods are of increasing accuracy

from NLLS to UKF to NLLS 5% constrained to PF across all three models.

1.4 CONCLUSIONS

The PF was compared to other algorithms for prediction accuracy using three

separate models. Fifty data points were used for predictions in all cases. Tracking the

parameter and/or the state with correct initial guesses and correct fixed states gave

good results with NLLS. Tracking four states did not unless NLLS was constrained to

5% of the correct or best initial guesses. UKF was more accurate given 5% variation on

the correct initial guesses of the states unless NLLS was 5% constrained. PF was most

accurate. PF used state estimates from training data creating a diversity of particles.

Adjustments were made to the weights of the particles, which affected the prediction

PDF, but the state estimates were not changed from data available for predictions. With

four states tracked and correct initial guesses varied by 5% PF performed more accurately

than UKF which performed more accurately than NLLS but less than NLLS 5%

constrained for all three models. The three models for prediction testing were a data-

driven model from He, et al, an equivalent circuit model, and a physics-based single

particle model. The physics-based model has the advantage over the other models in that

its parameters are physically meaningful and it is derived from first principles. The

predictions made of Lithium-ion ion batteries were the remaining useful life with He et

26

al’s model, and the time until end of discharge with the equivalent circuit model and the

single particle model.

Possible future work is increasing the complexity of assumptions for making

predictions, such as considering current loads other than constant current for predicting

time until end of discharge or using incorrect initial guesses. Less than accurate initial

guesses and non-constant current loading can require introducing resampling in the PF

algorithm. Other possible future work includes making remaining useful life predictions

by an equivalent circuit model or single particle model. States in the models may be

obtained from voltage measurements during a cycle and a particle filter may use these

states to make predictions about future cycles and the remaining useful life.

27

1.5 TABLES AND FIGURES

Table 1.1 States in He, et al model. The states returned by estimating four states with

NLLS with 50 available data and correct initial guesses are listed for comparison. UKF

states from 50 available data are listed for comparison.

Parameter Value Unit NLLS

estimates

with 50

available data

UKF

estimates

with 50

available

data

28

Table 1.2. States in ECM model. The states from NLLS and UKF estimation with 50

data points are listed for comparison.

Parameter Value Unit NLLS estimates

with 50 available

data

UKF estimates

with 50

available data

29

Table 1.3 States in SP model. Values are from training data.

Parameter Value Unit

30

Table 1.4 Matrix of models and methods. Prediction errors reported. Methods are

ordered by increasing accuracy.

 He, et al ECM SP

NLLS () () ()

UKF () () ()

NLLS 5%

constrained

 () () ()

PF (weighted

average)

 () () ()

31

Figure 1.1 Capacity data set for RUL prediction

32

Figure 1.2 Tracking a different number of states. Given the correct fixed states, a variety

of states are tracked for prediction. The first 50 data points are used for tracking.

Tracking four states gives an inaccurate prediction, unless the knee is in the available

data.

33

Figure 1.3 UKF RUL prediction for He, et al model

34

Figure 1.4 PF RUL prediction for He, et al model

35

Figure 1.5 Zoom on PF RUL prediction for He, et al model

36

Figure 1.6 ECM data set

37

Figure 1.7 Equivalent circuit representation of a Lithium-ion battery.

38

Figure 1.8 ECM NLLS prediction

39

Figure 1.9 ECM UKF prediction

40

Figure 1.10 ECM PF prediction

41

Figure 1.11 SP NLLS prediction

42

Figure 1.12 SP UKF prediction

43

Figure 1.13 SP PF prediction

44

REFERENCES

 [1] W. He, N. Williard, M. Osterman, M. Pecht, Journal of Power Sources 196 (2011)

 10314-10321.

[2] Y. Xing, E.W.M. Ma, K.L. Tsui, M. Pecht, Prognostics & System Health

 Management Conference (2012) Beijing.

[3] B. Saha, P. Quach, K. Goebel, Annual Conference of the Prognostics and Health

 Management Society (2011).

[4] G. Jin, D.E. Matthews, Z. Zhongbao, Reliability Engineering and System Safety

 23 v.196 (2011) 7-20.

[5] B. Pattipati, C. Sankavaram, K. R. Pattipati, IEEE Transactions on Systems, Man,

 and Cybernetics- Part C: Applications and Reviews 41 v.6 (2011) 869-884.

[6] D. An, J.H. Choi, N.H. Kim, Reliability Engineering and System Safety 115 (2013)

 161-169.

[7] S.K. Rahimian, S. Rayman, R.E. White, Journal of the Electrochemical Society

 159 (2012) A860-A872.

[8] G.L. Plett, Journal of Power Sources 161 (2006) 1356-1368.

[9] V. Ramadesigan, K. Chen, N. Burns, V. Boovaragavan, R. Braatz, V.R.

 Subramanian, Journal of the Electrochemical Society 158 (9) (2011) A1048-A1054.

[10] M. Daigle, B. Saha, K. Goebel, IEEE Aerospace Conference (2012).

[11] S.K. Rahimian, S. Rayman, R.E. White, Journal of Power Sources 20 (2011)

 8450-8462.

[12] F Cadini, E Zio, D Avram, Probabilistic Engineering Mechanics 24 (2009) 367-373.

[13] S.M. Grewal, A.P. Andrews, Kalman Filtering, John Wiley and Sons, Hoboken,

 2008.

45

[14] N.J. Gordon, D. J. Salmond, A.F.M. Smith, IEE Proceedings- F, 2 (1993) 107-

 113

[15] M.W. Verbrugge, Modern Aspects of Electrochemistry, Modeling and

 Numerical Simulations I, vol. 43, Springer, New York, 2009.

[16] B. Saha, K. Goebel, NASA Ames Prognostics Data Repository (2007)

 http://ti.arc.nasa.gov/project/prognostic-data-repository.

[17] K.J. Beers, Numerical Methods for Chemical Engineering, Cambridge University

 Press (2007).

[18] R.E. White, V. Subramanian, Computational Methods in Chemical Engineering

 with Maple, Springer, 2010.

[19] D. Simon, Optimal State Estimation, John Wiley and Sons, Hoboken, 2006.

[20] P. Ramadass, B. Haran, R.E. White, B.N. Popov, J. Power Sources 123 (2003)

 230.

46

APPENDIX A – UNSCENTED KALMAN FILTER

The unscented Kalman filter (UKF) is a deterministic, sample-based filter

method, used in online estimation applications. An updated state estimate is calculated at

each new measurement, as opposed to NLLS, which uses all measurements for making

state estimates. For non-linear models, UKF is preferred to EKF, among Kalman filters.

The UKF algorithm follows
13

: First, the state vector estimate, ̂ , and its covariance,
 ,

are initialized. For example, in He, et al’s model, ̂ is in fact , which contain .

 ̂ []
 *(̂)(̂)

+ (30)

The hat indicates an estimate. The next step in the algorithm is to create a

symmetric set of samples, with the Cholesky decomposition of
 . The symmetric

 sampling scheme is the sampling choice in this work
16

.

 (
) (31)

 ̂ ̂ √ ̂ √ (32)

 is the matrix that holds all the samples of the states. are the diagonals of the

Cholesky decomposition. is a tuning parameter, and is the number of state

variables. is an index which begins at one and continues to include , and is as long as

the number of states. The weights, , associated with the samples in are calculated,

√

[()]

[()]
 (33)

47

The above unscented transform gives the prior, , state estimate at index, .

[̂
] (̂ ()) (34)

 , the unscented transform, is the sampling scheme of Equations (32) and (33).

are the input variables. () is the state dynamic model. The He, et al model does not

have a state dynamic model, but other models may. Considering the same example

model, the input variable is for He, et al’s model. Next, the measurement update leads

to the posterior state estimate at .

 () (35)

 ̂
 ∑

 (36)

 ∑ (̂

)(̂
)

 (37)

 ∑ (̂)(̂)

 (38)

 is the measurement space covariance, and

 is the cross covariance. The update

step is completed after,

 (

)

 (39)

 ̂
 ̂

 (
 ̂

) (40)

 (41)

 is the process noise. The UKF algorithm is presented as a flowchart in Figure A.1 .

48

Figure A.1 UKF algorithm flowchart

49

APPENDIX B – MATLAB PROGRAMS

clc

clear all

close all

% Eric Walker

% M.S. thesis NLLS

%% He, et al

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\NASA'...

 ' Ames Data\B0005.mat']);

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\NASA'...

 ' Ames Data\B0007.mat']);

50

first_batt = (-9.86e-7)

 * exp(5.752e-2 * (1:200)) + (8.983e-1) * ...

 exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200);

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:300)) + (8.983e-1) *...

 exp((-8.340e-4) * (1:300)) + 0.005*randn(1,300);

% Present the data in Figure 1.

hold on % Show all plots on the same figure.

plot(1:length(first_batt), first_batt, 'ko')

plot([1,200],first_batt(1)*0.8*[1,1],'k-','linewidth',1.5)

text(25,first_batt(1)*0.81,'EUL failure threshold')

xlabel('Cycle number (k)')

ylabel('Capacity (Ah)')

ylim([0.65, 0.91])

51

axis square

box on

%NLLS

theta=[-9.86e-7,5.752e-2,8.983e-1,-8.34e-4];

[theta_50_one_st, resnorm] = lsqnonlin(@(t_1) (second_batt(1:50))...

 - (-9.86e-7*exp(5.752e-2*...

 (1:50)) + t_1 * exp(-8.34e-4*(1:50))),8.983e-1);

[theta_50_two_st, resnorm] = lsqnonlin(@(theta) (second_batt(1:50))...

 - (-9.86e-7*exp(5.752e-2*...

 (1:50)) + theta(1) * exp(theta(2)*(1:50))),[8.983e-1,-8.34e-4],...

 [0, -inf], [inf, 0]);

[theta_50_four_st, resnorm] = lsqnonlin(@(t_4) (second_batt(1:50)) ...

52

 - (t_4(1)*exp(t_4(2)*...

 (1:50)) + t_4(3) * exp(t_4(4)*(1:50))),[-9.86e-7,5.752e-2,...

 8.983e-1,-8.34e-4],[-inf, 0, 0, -inf], [0, inf, inf, 0]);

[theta_50_four_st_const, resnorm] = lsqnonlin(@(t_4_c) ...

 (second_batt(1:50)) - (t_4_c(1)*exp(t_4_c(2)*...

 (1:50)) + t_4_c(3) * exp(t_4_c(4)*(1:50))),[-9.86e-7,...

 5.752e-2,8.983e-1,-8.34e-4],[-9.86e-7*1.05, 5.752e-2*0.95,...

 8.983e-1*0.95, -8.34e-4*1.05], [-9.86e-7*0.95, 5.752e-2*1.05,...

 8.983e-1*1.05, -8.34e-4*0.95]);

figure % See three NLLS predictions

hold on

plot(1:200, (theta(1)*exp(theta(2)*...

 (1:200)) + theta_50_one_st * exp(theta(4)*(1:200))),'k-',...

 'linewidth',2)

53

plot(1:length(second_batt), (theta(1)*exp(theta(2)*...

 (1:length(second_batt))) + theta_50_two_st(1) * exp(...

 theta_50_two_st(2)*(1:length(second_batt)))),'k--',...

 'linewidth',2)

plot(1:length(second_batt), (theta_50_four_st(1)*exp(...

 theta_50_four_st(2)*...

 (1:length(second_batt))) + theta_50_four_st(3) * exp(...

 theta_50_four_st(4)*(1:length(second_batt)))),'k:',...

 'linewidth',2)

plot(1:length(second_batt), (theta_50_four_st_const(1)*exp(...

 theta_50_four_st_const(2)*...

 (1:length(second_batt))) + theta_50_four_st_const(3) * exp(...

 theta_50_four_st_const(4)*(1:length(second_batt)))),'k-.',...

 'linewidth',2)

plot(1:length(second_batt), second_batt, 'ko')

plot([1,250],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5)

text(25,second_batt(1)*0.81,'EUL failure threshold')

54

xlabel('Cycle number (k)')

ylabel('Capacity (Ah)')

ylim([0.65, 0.91])

axis square

box on

legend('c state tracked ','c and d state tracked',...

 'four states tracked','four states tracked 5% constrained',...

 'observations')

%% ECM

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'...

 'NASA Ames Data\B0006.mat']);

global first_discharge_time first_discharge_current...

 first_discharge_voltage;

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured...

55

 (3:end);

first_discharge_time = B0006.cycle(1,2).data.Time(3:end);

first_discharge_current = B0006.cycle(1,2).data.Current_measured...

 (3:end);

[ecm, resnorm, residuals] = lsqnonlin(@ecm_obj_fun,

[0.129635,2.0764,21.045,0.110328],[0 0 0 0], [1, 10, 2000, 1]);

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured...

 (3:end);

second_discharge_time = B0006.cycle(1,4).data.Time(3:end);

second_discharge_current = B0006.cycle(1,4).data.Current_measured...

 (3:end);

second_discharge_time = [second_discharge_time ...

 (second_discharge_time(1:100) + second_discharge_time(end))];

second_discharge_current = [second_discharge_current ...

 second_discharge_current(1:100)];

56

% Take the first forty data points for the NLLS prediction

first_discharge_voltage = second_discharge_voltage(1:50);

first_discharge_time = second_discharge_time(1:50);

first_discharge_current = second_discharge_current(1:50);

[ecm_2, resnorm, residuals] = lsqnonlin(@ecm_obj_fun, ecm,...

 [0 0 0 0], [1, 10, 2000, 1]);

R = ecm_2(1);

Q = ecm_2(2);

C = ecm_2(3);

R_ct = ecm_2(4);

SOC_cell = 1 + second_discharge_current ./ (Q*3600) .*...

 second_discharge_time;

57

SOC_n = 0.79.*SOC_cell + 0.01;

SOC_p = 0.97-0.51*SOC_cell;

x_nsurf = SOC_n;

x_psurf_set = SOC_p;

U_n = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -...

 .0172./x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984...

 * exp (...

 0.4465*x_nsurf - 0.4108);

U_p_set = (-4.656 + 88.669 * x_psurf_set.^2 - 401.119 *...

 x_psurf_set.^4 + 342.909 * ...

 x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *...

 x_psurf_set.^10) ./ ...

 (-1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +...

58

 37.311 * x_psurf_set.^6 ...

 - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10);

V_o = U_p_set - U_n ;

V_cell = V_o + second_discharge_current*R + Q./C .* exp(-...

 second_discharge_time./(R_ct * C))...

 + second_discharge_current.*R_ct.*(1-exp(-...

 second_discharge_time./(R_ct * C)));

% Now the constrained

[ecm_2_c, resnorm, residuals] = lsqnonlin(@ecm_obj_fun, ecm,...

 0.95*ecm, 1.05*ecm);

R = ecm_2_c(1);

59

Q = ecm_2_c(2);

C = ecm_2_c(3);

R_ct = ecm_2_c(4);

SOC_cell = 1 + second_discharge_current ./ (Q*3600) .*...

 second_discharge_time;

SOC_n = 0.79.*SOC_cell + 0.01;

SOC_p = 0.97-0.51*SOC_cell;

x_nsurf = SOC_n;

x_psurf_set = SOC_p;

U_n = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -...

 .0172./x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984...

 * exp (...

60

 0.4465*x_nsurf - 0.4108);

U_p_set = (-4.656 + 88.669 * x_psurf_set.^2 - 401.119 *...

 x_psurf_set.^4 + 342.909 * ...

 x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *...

 x_psurf_set.^10) ./ ...

 (-1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +...

 37.311 * x_psurf_set.^6 ...

 - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10);

V_o = U_p_set - U_n ;

V_cell_c = V_o + second_discharge_current*R + Q./C .* exp(-...

 second_discharge_time./(R_ct * C))...

 + second_discharge_current.*R_ct.*(1-exp(-...

 second_discharge_time./(R_ct * C)));

61

first_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured...

 (3:end);

first_discharge_time = B0006.cycle(1,4).data.Time(3:end);

for y = 1:length(V_cell)

 if V_cell(y) < 2.5

 break

 end

end

for z = 1:length(V_cell_c)

 if V_cell_c(z) < 2.5

 break

 end

end

V_cell = V_cell(1:y);

V_cell_c = V_cell_c(1:z);

figure

hold on

62

plot(second_discharge_time(1:length(V_cell)),V_cell,'k-',...

 'linewidth',2)

plot(second_discharge_time(1:length(V_cell_c)),V_cell_c,'k--',...

 'linewidth',2)

plot(second_discharge_time(1:length(second_discharge_voltage)),second_discharge_volt

age, 'ko',...

 'linewidth', 1.5)

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

axis([0 4250 2.4 4])

axis square

box on

xlabel('Time (s)')

ylabel('Voltage (V)')

legend('NLLS prediction 928.6 (s)', ...

 'NLLS prediction 928.6 (s) 5% constrained', 'observations')

% Reset the following three variables after the above nlls.

63

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured(3:end);

first_discharge_time = B0006.cycle(1,2).data.Time(3:end);

first_discharge_current = B0006.cycle(1,2).data.Current_measured(3:end);

[ecm, resnorm, residuals] = lsqnonlin(@ecm_obj_fun, ...

 [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 2.5, 2000, 1]);

%% NLLS Single Particle model

[S_x_avg,resnorm,res] = lsqnonlin(@SP_obj_fun, ...

 [0.2607, 0.2571, 0.9388, 0.5171]...

 ,[],[1 1 1],[],second_discharge_time(1:50),...

 second_discharge_current(1:50),second_discharge_voltage(1:50));

[S_x_avg_c,resnorm_c,res_c] = lsqnonlin(@SP_obj_fun, ...

 [0.2607, 0.2571, 0.9388, 0.5171]...

 ,[0.2607, 0.2571, 0.9388, 0.5171]*0.95,...

 [0.2607, 0.2571, 0.9388, 0.5171]*1.05,...

64

 [],second_discharge_time(1:50),...

 second_discharge_current(1:50),second_discharge_voltage(1:50));

[voltagePredi] = SP(S_x_avg,second_discharge_time,...

 second_discharge_current);

s = find(voltagePredi<2.4,1);

voltagePredi=voltagePredi(1:s);

[voltagePredi_c] = SP(S_x_avg_c,second_discharge_time,...

 second_discharge_current);

for z = 1:length(voltagePredi_c)

 if voltagePredi_c(z) < 2.4

 break

 end

end

voltagePredi_c = voltagePredi_c(1:z);

65

figure

axis([0 4250 2.4 4])

axis square

hold on

box on

xlabel('Time(s)');

ylabel('Voltage(V)');

plot(second_discharge_time(1:length(voltagePredi)),voltagePredi, 'k-',...

 'linewidth',2)

plot(second_discharge_time(1:length(voltagePredi_c)),voltagePredi_c, 'k--',...

 'linewidth',2)

plot(second_discharge_time(1:length(second_discharge_voltage))...

 ,second_discharge_voltage,'ko')

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

legend('NLLS prediction 928.6 (s)', ...

66

 'NLLS prediction 928.6 (s) 5% constrained', 'observations')

clc

clear all

close all

%Eric Walker

%M.S. thesis UKF

%% UKF He, et al

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) *...

 exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200);

theta=[-9.86e-7; 5.752e-2; 8.983e-1; -8.34e-4];

P = diag([(3.442e-8 - (-2.007e-6)), (6.221e-2 - 5.283e-2), ...

 (9.035e-1 - 8.931e-1), (-7.670e-4 - (-9.007e-4))])^2 ;...

 % 0.95 confidence from He, et al.

67

kappa = 0.5;

Q_storage = []

for i = 1:length(second_batt)

 C = chol(P);

 Chi(:,1) = theta;

 Chi(:,2) = theta + sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,3) = theta + sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,4) = theta + sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,5) = theta + sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 Chi(:,6) = theta - sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,7) = theta - sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,8) = theta - sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,9) = theta - sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 W(1) = kappa / sqrt(4 + kappa);

 W(2:9) = 1 / (2*(4+kappa));

 W = W/sum(W);

68

 Q_cap = Chi(1,:) .* exp(Chi(2,:) * i) + Chi(3,:) .* ...

 exp(Chi(4,:) * i);

 Q_hat = sum(W.*Q_cap);

 Q_storage = [Q_storage; Q_hat];

 if i < 51

 P_yy = sum(W.*((Q_cap).^2));

 P_xy = (Chi - repmat(theta,1,9)) .* [W;W;W;W] *(Q_cap...

 - Q_hat)';

 K_k = P_xy/(P_yy+0.05);

 egg = theta + K_k*(second_batt(i) - Q_hat);

 theta(1) = egg(1);

 theta(2) = egg(2);

 theta(3) = egg(3);

69

 theta(4) = egg(4);

 P = P - K_k * P_xy';

 end

end

figure

hold on

plot(1:length(second_batt), Q_storage, 'k-','linewidth',2)

plot(1:length(second_batt), second_batt,'ko','linewidth',1.5)

legend('UKF prediction k=50', 'observations')

plot([1,200],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5)

text(25,second_batt(1)*0.81,'EUL failure threshold')

ylim([0.65, 0.91])

xlabel('k, Cycle index (cycle)')

70

ylabel('Q, Capacity (Ah)')

axis square

box on

%% UKF ECM

clear all

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'...

 'NASA Ames Data\B0006.mat']);

global first_discharge_time first_discharge_current...

 first_discharge_voltage;

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured...

 (3:end);

first_discharge_time = B0006.cycle(1,2).data.Time(3:end);

first_discharge_current = B0006.cycle(1,2).data.Current_measured...

71

 (3:end);

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured...

 (3:end);

second_discharge_time = B0006.cycle(1,4).data.Time(3:end);

second_discharge_current = B0006.cycle(1,4).data.Current_measured...

 (3:end);

second_discharge_time = [second_discharge_time ...

 (second_discharge_time(1:30) + second_discharge_time(end))];

second_discharge_current = [second_discharge_current ...

 second_discharge_current(1:30)];

[ecm, resnorm, residuals] = lsqnonlin(@ecm_obj_fun, ...

 [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 10, 2000, 2]);

ecm=ecm'

sigma = 0.0015;

72

V_cell_storage = [];

R = ecm(1) %+ ecm(1)/4 * randn(1,50)%1795;

Q = ecm(2) % + ecm(2)/20*(randn(1,50))); % %2.0593;

C = ecm(3) %+ ecm(3)/4 * randn(1,50);%1.17e-8;

R_ct = ecm(4) %+ ecm(4)/4*randn(1,50) %0.1451;

P = (diag(ecm) / 20)^2;

ecm_orig= ecm;

kappa = 0.5;

for i = 1:length(second_discharge_voltage)

 C = chol(P);

 Chi(:,1) = ecm;

73

 Chi(:,2) = ecm + sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,3) = ecm + sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,4) = ecm + sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,5) = ecm + sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 Chi(:,6) = ecm - sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,7) = ecm - sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,8) = ecm - sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,9) = ecm - sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 W(1) = kappa / sqrt(4 + kappa);

 W(2:9) = 1 / (2*(4+kappa));

 W = W/sum(W);

 SOC_cell = 1 + second_discharge_current(i) ./ ...

 (Chi(2,:)*3600) .* second_discharge_time(i);

 SOC_n = 0.79.*SOC_cell + 0.01;

 SOC_p = 0.97-0.51*SOC_cell;

74

 x_nsurf = SOC_n;

 x_psurf_set = SOC_p;

 U_n = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -...

 .0172./x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -...

 .7984 * exp (...

 0.4465*x_nsurf - 0.4108);

 U_p_set = (-4.656 + 88.669 * x_psurf_set.^2 - 401.119 *...

 x_psurf_set.^4 + 342.909 * ...

 x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *...

 x_psurf_set.^10) ./ ...

 (-1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +...

 37.311 * x_psurf_set.^6 ...

75

 - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10);

 V_o = U_p_set - U_n ;

 V_cell = V_o + second_discharge_current(i)*Chi(1,:) + ...

 Chi(2,:)./Chi(3,:) .* exp(-second_discharge_time(i)./...

 (Chi(4,:) .* Chi(3,:)))...

 + second_discharge_current(i).*Chi(4,:).*(1-exp(...

 -second_discharge_time(i)./(Chi(4,:) .* Chi(3,:))));

 y_hat = sum(W.*V_cell);

 V_cell_storage = [V_cell_storage; y_hat];

 if i < 50

 P_yy = sum(W.*((V_cell).^2));

76

 P_xy = (Chi - repmat(ecm,1,9)) .* [W; W; W; W] *...

 (V_cell - y_hat)'; %P_xz is (1x1).

 K_k = P_xy/(P_yy+0.05);

 ecm = ecm + K_k*(second_discharge_voltage(i) - y_hat);

 err(i) = (second_discharge_voltage(i) - y_hat);

 P = P - K_k * P_xy';

 end

end

% This block of code is to stop the prediction when the

%voltage drops below 2.5 volts.

77

k=1

while V_cell_storage(k) > 2.5 && k < 195

 k = k+1;

end

V_cell_storage = V_cell_storage(1:k);

figure

hold on

plot(second_discharge_time(1:length(V_cell_storage)),...

 V_cell_storage,'k-','linewidth',2)

plot(second_discharge_time(1:length(second_discharge_voltage)),...

 second_discharge_voltage, 'ko', 'linewidth', 1.5)

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

axis([0 4250 2.4 4])

axis square

box on

78

xlabel('Time (s)')

ylabel('Voltage (V)')

legend('UKF prediction 928.6 (s)', 'observations')

%% UKF SP

S_n = 0.2604;

S_p = 0.2570;

k_n = 37.4312e-12;

k_p = 17.4733e-12;

R_n = 2e-6;

R_p = 2e-6;

D_n = 29.0798e-15;

D_p = 27.9034e-15;

c_nmax = 30074.5;

c_pmax = 51563.5;

c_e = 1000;

79

x_navg = 0.9401;

x_pavg = 0.5169;

T = 298.15;

R_g = 8.3143;

F = 96487;

alpha_a = 0.5;

alpha_c = 0.5;

P = (diag([S_n,S_p,x_navg,x_pavg]./20))^2;

C = P;

kappa = 0.2;

for i=1:length(second_discharge_time);

 C = chol(P);

 Chi(:,1) = [S_n; S_p; x_navg; x_pavg];

80

 Chi(:,2) = [S_n; S_p; x_navg; x_pavg] + ...

 sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,3) = [S_n; S_p; x_navg; x_pavg] + ...

 sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,4) = [S_n; S_p; x_navg; x_pavg] + ...

 sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,5) = [S_n; S_p; x_navg; x_pavg] + ...

 sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 Chi(:,6) = [S_n; S_p; x_navg; x_pavg] - ...

 sqrt(4 + kappa)*[C(1,1); 0; 0; 0];

 Chi(:,7) = [S_n; S_p; x_navg; x_pavg] - ...

 sqrt(4 + kappa)*[0; C(2,2); 0; 0];

 Chi(:,8) = [S_n; S_p; x_navg; x_pavg] - ...

 sqrt(4 + kappa)*[0; 0; C(3,3); 0];

 Chi(:,9) = [S_n; S_p; x_navg; x_pavg] - ...

 sqrt(4 + kappa)*[0; 0; 0; C(4,4)];

 W(1) = kappa / sqrt(4 + kappa);

81

 W(2:9) = 1 / (2*(4+kappa));

 W = W/sum(W);

 %%%%%Now the SP measurement model

 Iapp = second_discharge_current(i);

 J_n = -Iapp./Chi(1,:);

 J_p = Iapp./Chi(2,:);

 x_nsurf = Chi(3,:) - (J_n * R_n) / (5 * F * D_n * c_nmax);

 x_psurf = Chi(4,:) - (J_p * R_p) / (5 * F * D_p * c_pmax);

 U_n = .8214 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./...

 x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 ...

 * exp (...

 0.4465*x_nsurf - 0.4108);

82

 U_p = (-4.8801 + 88.669 * x_psurf.^2 - 401.119 * x_psurf.^4 ...

 + 342.909 * ...

 x_psurf.^6 - 462.471 * x_psurf.^8 + 433.434 * x_psurf.^10)...

 ./ ...

 (-1 + 18.933*x_psurf.^2 - 79.532 * x_psurf.^4 + 37.311 *...

 x_psurf.^6 ...

 - 73.083 * x_psurf.^8 + 95.96*x_psurf.^10);

 eta_n = R_g * T ./ (F * alpha_a) .* log((J_n + (-4*c_e*...

 F.^2*c_nmax.^2*k_n.^2.*x_nsurf.^2 ...

 + 4*c_e*F^2*c_nmax.^2*k_n.^2.*x_nsurf+J_n.^2).^0.5) ./ ...

 (2*F*c_e^0.5*k_n.*(c_nmax.*x_nsurf).^0.5 .* ...

 (c_nmax-c_nmax.*x_nsurf).^0.5));

 eta_p = R_g * T / (F * alpha_c) .* log((J_p + (-4*c_e...

 *F^2*c_pmax^2*k_p^2.*x_psurf.^2 ...

 + 4*c_e*F^2*c_pmax^2*k_p^2.*x_psurf+J_p.^2).^0.5) ./ ...

83

 (2*F*c_e^0.5*k_p.*(c_pmax.*x_psurf).^0.5 .* ...

 (c_pmax-c_pmax.*x_psurf).^0.5));

 zeta = U_p + eta_p - U_n - eta_n;

 y_hat = sum(W.*zeta);

 P_yy = sum(W.*((zeta-y_hat).^2));

 y_hat_storage(i) = y_hat;

 if i <= 50

 P_xy = (Chi - repmat([S_n; S_p; x_navg; x_pavg],1,9))...

 .* [W; W; W; W] *(zeta - y_hat)';

 K_k = P_xy/(P_yy+0.2);

 egg = [S_n; S_p; x_navg; x_pavg] + K_k*(...

 second_discharge_voltage(i) - y_hat);

 S_n = egg(1);

 S_p = egg(2);

 x_navg = egg(3);

84

 x_pavg = egg(4);

 Q = 0.4e-4 * ones(4,4);

 P = P - K_k * P_xy' + Q;

 end

 J_n = -Iapp./S_n;

 J_p = Iapp./S_p;

 x_navg = x_navg - 3 * J_n / (F * R_n * c_nmax) ;

 x_pavg = x_pavg - 3 * J_p / (F * R_p * c_pmax) ;

end

y_hat_storage = y_hat_storage(1:find(y_hat_storage<2.5,1));

figure

hold on

plot(second_discharge_time(1:length(y_hat_storage)), y_hat_storage,...

85

 'k-', 'linewidth', 2)

axis([0 4300 2.4 4])

xlabel('Time (s)')

ylabel('Voltage (V)')

legend('UKF prediction 928.6 (s)', 'observations')

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

plot(second_discharge_time(1:length(second_discharge_voltage)),...

 second_discharge_voltage,'ko')

axis square

box on

clc

clear all

close all

% Eric Walker

% M.S. thesis PF

86

%% PF He, et al model

%Load the data set.

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'...

 'NASA Ames Data\B0005.mat']);

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'...

 'NASA Ames Data\B0007.mat']);

theta=[-9.86e-7,5.752e-2,8.983e-1,-8.34e-4]';

first_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ...

 * exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200);

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ...

 * exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200);

87

%PF

theta_set=repmat(theta,1,100);

theta_set(1,1:100) = theta(1) + theta(1)/10 * (0.5-rand(100,1));

theta_set(2,1:100) = theta(2) + theta(2)/10 * (0.5-rand(100,1));

theta_set(3,1:100) = theta(3) + theta(3)/10 * (0.5-rand(100,1));

theta_set(4,1:100) = theta(4) + theta(4)/10 * (0.5-rand(100,1));

weights = 0.01 * ones(1,100);

tic

for j = 1:100

 choose_par(j,:) = theta_set(1,j) * exp(theta_set(2,j) * ...

 (1:250)) + theta_set(3,j) * exp(theta_set(4,j)*(1:250));

 RULs(j) = find(choose_par(j,:) <= 0.8*(second_batt(1)),1);

end

toc

88

tic

sigma = 0.1;

for i = 1:200

 if i ==50

 weights_50 = weights;

 end

 if i == 100

 weights_100 = weights;

 end

 if i == 150

 weights_150 = weights;

 end

 % Get the likelihood

 likelihood = 1/(sigma*sqrt(2*pi)) * exp(-1/2 * ...

 ((second_batt(i)) - (theta_set(1,:) .* exp(theta_set(2,:)...

 * i) + theta_set(3,:) .* exp(theta_set(4,:) * i))).^2 /...

 sigma^2);

89

 % Update the weights

 weights = weights .* likelihood;

 weights = weights / sum(weights);

end

toc

[RULs, ind] = sort(RULs);

weights_50s = weights_50(ind);

weights_100s = weights_100(ind);

weights_150s = weights_150(ind);

figure

xlabel('k, Cycle index (cycle)')

ylabel('Capacity (Ah)')

axis square

hold on

plot(RULs', weights_50s + 0.8*second_batt(1),'k-', 'linewidth', 2)

90

plot(1:length(second_batt), second_batt,'ko','linewidth',1.5)

% Make them range from 0 to 1, otherwise they will be light.

for j = 1:100

 plot(1:50,choose_par(j,1:50),'color',(1-weights_50(j)/max...

 (weights_50))*[1, 1, 1]); % Smaller numbers are darker.

 plot(50:100,choose_par(j,50:100),'color',(1-weights_50(j)/...

 max(weights_100))*[1, 1, 1]); % Smaller numbers are darker.

 plot(100:150,choose_par(j,100:150),'color',(1-weights_50(j)/...

 max(weights_150))*[1, 1, 1]); % Smaller numbers are darker.

 plot(150:200,choose_par(j,150:200), 'color',(1-weights_50(j)/max...

 (weights))*[1, 1, 1]);

end

plot(RULs', weights_50s + 0.8*second_batt(1),'k-', 'linewidth', 2)

plot(1:length(second_batt), second_batt,'ko','linewidth',1.5)

91

legend('PF prediction k=50', 'observations')

plot([1,200],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5)

text(25,second_batt(1)*0.81,'EUL failure threshold')

axis([0 200 0.65, 0.91])

%title('PF tracking four states, five percent particle variation')

xlabel('k, Cycle index (cycle)')

ylabel('Q, Capacity (Ah)')

axis square

box on

err_early = sum(weights_50s.*RULs)-190

err_late = sum(weights_100s.*RULs)-190

err_final = sum(weights_150s.*RULs)-190

sig_early = sqrt(sum(weights_50s.*(RULs - (err_early + 190)).^2))

sig_late = sqrt(sum(weights_100s.*(RULs - (err_late + 190)).^2))

sig_final = sqrt(sum(weights_150s.*(RULs - (err_final + 190)).^2))

92

%% PF Equivalent circuit model

clear all

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'...

 'NASA Ames Data\B0006.mat']);

global first_discharge_time first_discharge_current...

 first_discharge_voltage;

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured(3:end);

first_discharge_time = B0006.cycle(1,2).data.Time(3:end);

first_discharge_current = B0006.cycle(1,2).data.Current_measured(3:end);

[ecm, resnorm, residuals] = lsqnonlin(@ecm_obj_fun, ...

 [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 2.5, 2000, 1]);

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured(3:end);

second_discharge_time = B0006.cycle(1,4).data.Time(3:end);

second_discharge_current = B0006.cycle(1,4).data.Current_measured(3:end);

93

second_discharge_time = [second_discharge_time ...

 (second_discharge_time(1:30) + second_discharge_time(end))];

second_discharge_current = [second_discharge_current ...

 second_discharge_current(1:30)];

% PF

sigma = 0.0015;

%In the following lines, set the IG and variation percent.

R = ecm(1) + ecm(1)/10*(0.5-rand(1,50));

Q = ecm(2) + ecm(2)/10*(0.5-rand(1,50));

C = ecm(3) + ecm(3)/10*(0.5-rand(1,50));

R_ct = ecm(4) + ecm(4)/10*(0.5-rand(1,50));

weights = 0.02*ones(1,50);

94

V_cell_storage = [];

tic

for i = 1:224

 % Get the likelihood

 % Quantity inside the square, first

 SOC_cell = 1 + second_discharge_current(i) ./ (Q*3600) .* ...

 second_discharge_time(i);

 SOC_n = 0.79.*SOC_cell + 0.01;

 SOC_p = 0.97-0.51*SOC_cell;

 x_nsurf = SOC_n;

 x_psurf_set = SOC_p;

 U_n = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 - ...

 .0172./x_nsurf + .0019./x_nsurf.^1.5 + .2808 * exp(0.9-...

 15*x_nsurf) -.7984 * exp (0.4465*x_nsurf - 0.4108);

95

 U_p_set = (-4.656 + 88.669 * x_psurf_set.^2 - 401.119 * ...

 x_psurf_set.^4 + 342.909 * ...

 x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 * ...

 x_psurf_set.^10) ./ ...

 (-1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 + ...

 37.311 * x_psurf_set.^6 ...

 - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10);

 V_o = U_p_set - U_n ;

 V_cell = V_o + second_discharge_current(i)*R + Q./C .* ...

 exp(-second_discharge_time(i)./(R_ct .* C))...

 + second_discharge_current(i).*R_ct.*(1-exp(...

 -second_discharge_time(i)./(R_ct .* C)));

 V_cell_storage = [V_cell_storage; V_cell];

96

 if i<=194

 quantity = (second_discharge_voltage(i) - V_cell).^2;

 likelihood = 1./(sigma*sqrt(2*pi)) .* exp(-1/2 * ...

 (quantity).^2 ./ sigma^2);

 % Update the weights

 weights = weights .* likelihood;

 weights = weights/sum(weights);

 end

 if i == 50

 weights_50 = weights;

 end

 if i == 100

 weights_100 = weights;

 end

 if i == 150

 weights_150 = weights;

 end

97

end

toc

tic

for j = 1:50

 EODs(j) = find(V_cell_storage(:,j) <= 2.5,1);

 V_cell_storage(EODs(j):end,j) = 0;

end

toc

[EODs ind] = sort(EODs);

weights_50s = weights_50(ind);

weights_100s = weights_100(ind);

weights_150s = weights_150(ind);

figure

98

hold on

plot(second_discharge_time(EODs), weights_50s*5 + 2.5,...

 'k-','linewidth',2)

plot(second_discharge_time(1:length(second_discharge_voltage)),...

 second_discharge_voltage, 'ko', 'linewidth', 1.5)

axis([0 4250 2.4 4])

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

axis square

box on

%title('5 percent variation correct IG')

xlabel('Time (s)')

ylabel('Voltage (V)')

legend('PF prediction 928.6 (s)', 'observations')

for j=1:50

 plot(second_discharge_time(1:50), V_cell_storage(1:50,j),...

 'color', (1-weights_50(j)/max(weights_50))*[1,1,1])

99

 plot(second_discharge_time(50:100), V_cell_storage(50:100,j),...

 'color', (1-weights_100(j)/max(weights_100))*[1,1,1])

 plot(second_discharge_time(100:150), V_cell_storage(100:150,j),...

 'color', (1-weights_150(j)/max(weights_150))*[1,1,1])

 plot(second_discharge_time(150:length(V_cell_storage)), ...

 V_cell_storage(150:end,j), 'color', (1-weights_150(j)/...

 max(weights_150))*[1,1,1])

end

plot(second_discharge_time(EODs), weights_50s*5 + 2.5,'k-',...

 'linewidth',2)

plot(second_discharge_time(1:length(second_discharge_voltage))...

 ,second_discharge_voltage, 'ko', 'linewidth', 1.5)

err_early = sum(weights_50.*second_discharge_time(EODs))-3690

err_late = sum(weights_100.*second_discharge_time(EODs))-3690

err_final = sum(weights_150.*second_discharge_time(EODs))-3690

100

sig_early = sqrt(sum(weights_50.*(second_discharge_time(EODs) -...

 (err_early + 3690)).^2))

sig_late = sqrt(sum(weights_100.*(second_discharge_time(EODs) -...

 (err_late + 3690)).^2))

sig_final = sqrt(sum(weights_150.*(second_discharge_time(EODs) -...

 (err_final + 3690)).^2))

sum(weights_50.*second_discharge_time(EODs))

%% PF Single Particle model

S_n = 0.2604;

S_p = 0.2570;

k_n = 37.4312e-12;

k_p = 17.4733e-12;

R_n = 2e-6;

R_p = 2e-6;

D_n = 29.0798e-15;

101

D_p = 27.9034e-15;

c_nmax = 30074.5;

c_pmax = 51563.5;

c_e = 1000;

x_navg = 0.9401;

x_pavg = 0.5169;

T = 298.15;

R_g = 8.3143;

F = 96485;

alpha_a = 0.5;

alpha_c = 0.5;

S_n = S_n + S_n/10 * (0.5-rand(50,1));

S_p = S_p + S_p/10 * (0.5-rand(50,1));

x_navg = x_navg + x_navg/10 * (0.5-rand(50,1));

x_pavg = x_pavg + x_pavg/10 * (0.5-rand(50,1));

weights = 0.02*ones(1,50);

102

stop_cycle = length(second_discharge_voltage)+29;

tic

for i = 1:stop_cycle

 Iapp = second_discharge_current(i);

 J_n = -Iapp./S_n;

 J_p = Iapp./S_p;

 x_nsurf = x_navg - (J_n * R_n) / (5 * F * D_n * c_nmax);

 x_psurf = x_pavg - (J_p * R_p) / (5 * F * D_p * c_pmax);

 U_n = .8214 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./...

 x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 ...

 * exp (...

 0.4465*x_nsurf - 0.4108);

103

 U_p = (-4.8801 + 88.669 * x_psurf.^2 - 401.119 * x_psurf.^4 ...

 + 342.909 * ...

 x_psurf.^6 - 462.471 * x_psurf.^8 + 433.434 * x_psurf.^10)...

 ./ ...

 (-1 + 18.933*x_psurf.^2 - 79.532 * x_psurf.^4 + 37.311 *...

 x_psurf.^6 ...

 - 73.083 * x_psurf.^8 + 95.96*x_psurf.^10);

 eta_n = R_g * T ./ (F * alpha_a) .* log((J_n + (-4*c_e*...

 F.^2*c_nmax.^2*k_n.^2.*x_nsurf.^2 ...

 + 4*c_e*F^2*c_nmax.^2*k_n.^2.*x_nsurf+J_n.^2).^0.5) ./ ...

 (2*F*c_e^0.5*k_n.*(c_nmax.*x_nsurf).^0.5 .* ...

 (c_nmax-c_nmax.*x_nsurf).^0.5));

 eta_p = R_g * T / (F * alpha_c) .* log((J_p + (-4*c_e...

 *F^2*c_pmax^2*k_p^2.*x_psurf.^2 ...

 + 4*c_e*F^2*c_pmax^2*k_p^2.*x_psurf+J_p.^2).^0.5) ./ ...

 (2*F*c_e^0.5*k_p.*(c_pmax.*x_psurf).^0.5 .* ...

104

 (c_pmax-c_pmax.*x_psurf).^0.5));

 V_cell_set(i,:) = real(U_p + eta_p - U_n - eta_n);

 x_navg = x_navg - 3 * J_n / (F * R_n * c_nmax) ;

 x_pavg = x_pavg - 3 * J_p / (F * R_p * c_pmax) ;

end

for j = 1:50

 try

 EOD(j) = find(V_cell_set(:,j) <= 2.5,1);

 catch

 EOD(j) = EOD(j-1);

 end

 V_cell_set(EOD(j):end,j) = 0;

end

toc

105

tic

for i=1:(stop_cycle-29)

 weights = 1/(0.04*sqrt(2*pi)).*exp(-(V_cell_set(i,:)...

 -second_discharge_voltage(i)).^2/(2*0.04^2));

 weights = weights/sum(weights) ;

 if i==50

 weights_50 = weights;

 end

 if i==100

 weights_100 = weights;

 end

 if i==150

 weights_150 = weights;

106

 end

end

toc

figure

axis square

[EOD ind] = sort(EOD);

weights_50s = weights_50(ind);

weights_100s = weights_100(ind);

weights_150s = weights_150(ind);

hold on

box on

xlabel('Time(s)');

ylabel('Voltage(V)');

107

plot(second_discharge_time(EOD),weights_50s*5+2.5, 'k-',...

 'linewidth', 2)

plot(second_discharge_time(1:length(second_discharge_voltage)),...

 second_discharge_voltage, 'ko', 'linewidth', 1.5)

legend('PF prediction 928.6 (s)','observations')

for j = 1:50

 plot(second_discharge_time(1:100), V_cell_set(1:100,j), 'color',...

 (1-0.8*weights_50(j)/max(weights_50))*[1,1,1])

 plot(second_discharge_time(50:100), V_cell_set(50:100,j), ...

 'color', (1-0.8*weights_100(j)/max(weights_100))*[1,1,1])

 plot(second_discharge_time(100:150), V_cell_set(100:150,j), ...

 'color', (1-0.8*weights_150(j)/max(weights_150))*[1,1,1])

 plot(second_discharge_time(150:length(V_cell_set)), ...

 V_cell_set(150:end,j), 'color', (1-0.8*weights_150(j)/...

 max(weights_150))*[1,1,1])

end

108

plot(second_discharge_time(EOD),weights_50s*5+2.5, 'k-', ...

 'linewidth', 2)

plot(second_discharge_time(1:length(second_discharge_voltage)),...

 second_discharge_voltage, 'ko', 'linewidth', 1.5)

axis([0 4300 2.4 4])

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line.

text(25,2.55,'EODV failure threshold')

axis square

hold off

err_early = sum(weights_50.*second_discharge_time(EOD))-3690

err_late = sum(weights_100.*second_discharge_time(EOD))-3690

err_final = sum(weights_150.*second_discharge_time(EOD))-3690

sig_early = sqrt(sum(weights_50.*(second_discharge_time(EOD) -...

109

 (err_early + 3690)).^2))

sig_late = sqrt(sum(weights_100.*(second_discharge_time(EOD) -...

 (err_late + 3690)).^2))

sig_final = sqrt(sum(weights_150.*(second_discharge_time(EOD) -...

 (err_final + 3690)).^2))

function obj = SP_obj_fun(pars,time,current,voltage)

S_n = 0.2607;

S_p = 0.2571;

k_n = 37.4312e-12;

k_p = 17.4733e-12;

R_n = 2e-6;

R_p = 2e-6;

D_n = 29.0798e-15;

D_p = 27.9034e-15;

c_nmax = 30074.5;

110

c_pmax = 51563.5;

c_e = 1000;

x_navg = 0.9388;

x_pavg = 0.5171;

T = 298.15;

R_g = 8.3143;

F = 96487;

alpha_a = 0.5;

alpha_c = 0.5;

if length(pars) > 1

 S_n = pars(1);

 S_p = pars(2);

end

if length(pars) > 2

 x_navg = pars(3);

 D_pavg = pars(4);

111

end

if length(pars) > 4

 k_n = pars(5);

 k_p = pars(6);

end

if length(pars) > 6

 x_navg = pars(7);

 x_pavg = pars(8);

end

if length(pars) > 8

 c_nmax = pars(9);

 c_pmax = pars(10);

end

if length(pars) > 10

 alpha_a = 0.5;

 alpha_c = 0.5;

end

112

if length(pars) > 12

 R_n = pars(13);

 R_p = pars(14);

end

if length(pars) > 14

 c_e = pars(15);

 T = pars(16);

end

V_cell = []; % The model returns voltage, which is diplayed

% in plots. The vector is initialized before assigning entries.

% Likewise, initialize the vectors for states of charge.

x_navg_vec = [];

x_pavg_vec = [];

% The model is put into motion.

for i = 1:length(time) % The model is going to calculate,

 % one time point at an iteration, forward to the end.

113

 % Calculate the voltage at the current time point, first.

 % Then, thedynamic model will reach ahead to prepare the

 % changing states of charge for the next loop, the next

 % time point.

 Iapp = current(i); % Assign the current at the present

 % time point, so it's less bulky in the equations.

 J_n = -Iapp / S_n;

 J_p = Iapp / S_p;

 x_nsurf = x_navg - (J_n * R_n) / (5 * F * D_n * c_nmax);

 x_psurf = x_pavg - (J_p * R_p) / (5 * F * D_p * c_pmax);

 % Now, we have enough for the open circuit potentials.

 U_n = .8214 + .1387*x_nsurf + .029*x_nsurf^0.5 - .0172/...

 x_nsurf + ...

 .0019/x_nsurf^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 *...

 exp (...

114

 0.4465*x_nsurf - 0.4108);

 U_p = (-4.8811 + 88.669 * x_psurf^2 - 401.119 * x_psurf^4 +...

 342.909 * ...

 x_psurf^6 - 462.471 * x_psurf^8 + 433.434 * x_psurf^10) / ...

 (-1 + 18.933*x_psurf^2 - 79.532 * x_psurf^4 + 37.311 *...

 x_psurf^6 ...

 - 73.083 * x_psurf^8 + 95.96*x_psurf^10);

 eta_n = R_g * T / (F * alpha_a) * log((J_n + (-4*c_e*F^2*...

 c_nmax^2*k_n^2*x_nsurf^2 ...

 + 4*c_e*F^2*c_nmax^2*k_n^2*x_nsurf+J_n^2)^0.5) / (2*F*...

 c_e^0.5*k_n*(c_nmax*x_nsurf)^0.5 * ...

 (c_nmax-c_nmax*x_nsurf)^0.5));

 eta_p = R_g * T / (F * alpha_c) * log((J_p + (-4*c_e*...

115

 F^2*c_pmax^2*k_p^2*x_psurf^2 ...

 + 4*c_e*F^2*c_pmax^2*k_p^2*x_psurf+J_p^2)^0.5) / (2*...

 F*c_e^0.5*k_p*(c_pmax*x_psurf)^0.5 * ...

 (c_pmax-c_pmax*x_psurf)^0.5));

 % Now, the model returns its voltage.

 V_cell(i) = U_p + eta_p - U_n - eta_n;

 % Prepare the state of charge for the next iteration,

 % based upon the present current and the time step to come.

 if i<length(time) % The conditional statement is

 % necessary because at the very end, 'i + 1' is out of bounds

 % of the data vector.

 t_step = time(i+1) - time(i);

 end % t_step will be left as the last time step, when the end

 % of the data vector has passed.

116

 % Before changing the SOC, save the current point, for plotting.

 x_navg_vec(i) = x_navg;

 x_pavg_vec(i) = x_pavg;

 x_navg = x_navg - 3 * J_n / (F * R_n * c_nmax) ;

 x_pavg = x_pavg - 3 * J_p / (F * R_p * c_pmax) ;

end

obj = voltage - V_cell; % Change to (1:50) for 928.6s estimate.

function [obj]=ecm_obj_fun(theta)

R = theta(1);

Q = theta(2);

C = theta(3);

117

R_ct = theta(4);

global first_discharge_time first_discharge_current...

 first_discharge_voltage;

SOC_cell = 1 + first_discharge_current / (3600 * Q) .*...

 first_discharge_time;

SOC_n = 0.79*SOC_cell + 0.01;

SOC_p = 0.97-0.51*SOC_cell;

x_nsurf = SOC_n;

x_psurf_set = SOC_p;

U_n = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./...

 x_nsurf + ...

 .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -...

 .7984 * exp (...

118

 0.4465*x_nsurf - 0.4108);

U_p_set = (-4.656 + 88.669 * x_psurf_set.^2 - 401.119 *...

 x_psurf_set.^4 + 342.909 * ...

 x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *...

 x_psurf_set.^10) ./ ...

 (-1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 ...

 + 37.311 * x_psurf_set.^6 ...

 - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10);

V_o = U_p_set - U_n ;

V_cell = V_o + first_discharge_current.*R + Q./C .* exp(...

 -first_discharge_time./(R_ct * C))...

 + first_discharge_current.*R_ct.*(1-exp(...

 -first_discharge_time./(R_ct * C)));

119

obj = first_discharge_voltage - V_cell ;

function V_cell = SP(pars,time,current)

S_n = 3.41;

S_p = 3.86;

k_n = 37.4312e-12;

k_p = 17.4733e-12;

R_n = 2e-6;

R_p = 2e-6;

D_n = 29.0798e-15;

D_p = 27.9034e-15;

c_nmax = 30074.5;

c_pmax = 51563.5;

c_e = 1000;

x_navg = 0.8957971;

120

x_pavg = 0.5075848;

T = 298.15;

R_g = 8.3143;

F = 96487;

alpha_a = 0.5;

alpha_c = 0.5;

if length(pars) > 0

 S_n = pars(1);

 S_p = pars(2);

end

if length(pars) > 2

 x_navg = pars(3);

 x_pavg = pars(4);

end

if length(pars) > 4

 k_n = pars(5);

 k_p = pars(6);

121

end

if length(pars) > 6

 x_navg = pars(7);

 x_pavg = pars(8);

end

if length(pars) > 8

 c_nmax = pars(9);

 c_pmax = pars(10);

end

if length(pars) > 10

 alpha_a = 0.5;

 alpha_c = 0.5;

end

if length(pars) > 12

 R_n = pars(13);

 R_p = pars(14);

end

122

if length(pars) > 14

 c_e = pars(15);

 T = pars(16);

end

V_cell = []; % The model returns voltage, which is diplayed

% in plots. The vector is initialized before assigning entries.

% Likewise, initialize the vectors for states of charge.

x_navg_vec = [];

x_pavg_vec = [];

% The model is put into motion.

for i = 1:length(time) % The model is going to calculate,

 % one time point at an iteration, forward to the end.

 % Calculate the voltage at the current time point, first.

 % Then, the dynamic model will reach ahead to prepare the

 % changing states of charge for the next loop, the next time

 % point.

123

 Iapp = current(i); % Assign the current at the present

 % time point, so it's less bulky in the equations.

 J_n = -Iapp / S_n;

 J_p = Iapp / S_p;

 x_nsurf = x_navg - (J_n * R_n) / (5 * F * D_n * c_nmax);

 x_psurf = x_pavg - (J_p * R_p) / (5 * F * D_p * c_pmax);

 % Now, we have enough for the open circuit potentials.

 U_n = .8214 + .1387*x_nsurf + .029*x_nsurf^0.5 - .0172/...

 x_nsurf + ...

 .0019/x_nsurf^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 *...

 exp (0.4465*x_nsurf - 0.4108);

 U_p = (-4.8811 + 88.669 * x_psurf^2 - 401.119 * x_psurf^4 +...

 342.909 * ...

 x_psurf^6 - 462.471 * x_psurf^8 + 433.434 * x_psurf^10) / ...

124

 (-1 + 18.933*x_psurf^2 - 79.532 * x_psurf^4 + 37.311 *...

 x_psurf^6 ...

 - 73.083 * x_psurf^8 + 95.96*x_psurf^10);

 % In order to get the overpotentials, and complete the

 % voltage model, root-finding is necessary. fzero,

 % with an anonymous function inside, returns the overpotentials.

 eta_n = R_g * T / (F * alpha_a) * log((J_n + (-4*c_e*F^2*...

 c_nmax^2*k_n^2*x_nsurf^2 ...

 + 4*c_e*F^2*c_nmax^2*k_n^2*x_nsurf+J_n^2)^0.5) / (2*F*...

 c_e^0.5*k_n*(c_nmax*x_nsurf)^0.5 * ...

 (c_nmax-c_nmax*x_nsurf)^0.5));

 eta_p = R_g * T / (F * alpha_c) * log((J_p + (-4*c_e*...

 F^2*c_pmax^2*k_p^2*x_psurf^2 ...

125

 + 4*c_e*F^2*c_pmax^2*k_p^2*x_psurf+J_p^2)^0.5) / (2*F*...

 c_e^0.5*k_p*(c_pmax*x_psurf)^0.5 * ...

 (c_pmax-c_pmax*x_psurf)^0.5));

 % Now, the model returns its voltage.

 V_cell(i) = U_p + eta_p - U_n - eta_n;

 % Prepare the state of charge for the next iteration,

 % based upon the present current and the time step to come.

 if i<length(time) % The conditional statement is

 %necessary because at the very end, 'i + 1' is out of

 %bounds of the data vector.

 t_step = time(i+1) - time(i);

 end % t_step will be left as the last time step,

 % when the end of the data vector has passed.

126

 % Before changing the SOC, save the current point, for plotting.

 x_navg_vec(i) = x_navg;

 x_pavg_vec(i) = x_pavg;

 x_navg = x_navg - 3 * J_n / (F * R_n * c_nmax) ;

 x_pavg = x_pavg - 3 * J_p / (F * R_p * c_pmax) ;

end

end

	University of South Carolina
	Scholar Commons
	1-2013

	Comparison of a Particle Filter and Other State Estimation Methods for Prognostics of Lithium-Ion Batteries
	Eric Alan Walker
	Recommended Citation

