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ABSTRACT 

A particle filter (PF) is shown to be more accurate than non-linear least squares 

(NLLS) and an unscented Kalman filter (UKF) for predicting the remaining useful life 

(RUL) and time until end of discharge voltage (EODV) of a Lithium-ion battery.  The 

three algorithms track four states with correct initial guesses and 5% variation on the 

initial guesses.  The more accurate prediction performance of PF over NLLS and UKF is 

reported for three Lithium-ion battery models: a data-driven empirical model, an 

equivalent circuit model, and a physics-based single particle (SP) model.   
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CHAPTER 1 

 

INTRODUCTION 
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This thesis originated from an assignment to reproduce the results of a research 

group at a separate university.  My advisor was invited to speak at this other university 

and my advisor later gave me the assignment to reproduce an article which is referenced 

in this thesis and the corresponding journal article.  This thesis is a reproduction or 

adaptation of a separately published article, in which I am the first author, which is 

permitted by the University of South Carolina. 

In more plain language than the article, the contribution of this thesis is at least 

two-fold.  First, this thesis compares the work of the original work it cites to other 

established methods to accomplish the same task.  The application for this study can put 

its contribution in perspective.  The application is predicting the Remaining Useful Life 

of a battery which can be inside a satellite or an electric vehicle or an unmanned aerial 

vehicle.  Therefore there are different methods to go about making predictions of the 

Remaining Useful Life.  The specific assumptions and setup for making predictions is 

included in detail.  Although the original article was the first to use the method called the 

particle filter, this article makes a comparison to established methods in order to know 

whether the Particle Filter is preferred.  The results and findings of this thesis are indeed 

it is. 

The particle filter now has more evidence to support its use.  Really the Particle 

Filter is a departure from established methods because it is a probabilistic method based 

upon Bayes’ Formula.  In my opinion its implementation is easier than established 

methods, which are typically deterministic.  In my thesis defense, the superior accuracy 

of the particle filter was attributed to its use of prior knowledge during the question and 

answer session.  Deterministic methods are provided with prior knowledge in the form of 
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an initial guess, but they tend to immediately ignore it once new data is available.  Again 

this use of prior knowledge arises from, I believe, the Particle Filter’s probabilistic 

nature. 

The second contribution of this thesis is taking the Particle Filter and applying it 

with physics-based models of Li-ion batteries.  The Particle Filter had not been 

previously explored with physics-based models of Li-ion batteries and I was at the 

advantage of having joined a research group specializing in physics-based models of Li-

ion batteries.  This thesis considers two models besides the model of the original article, 

and each additional model receives the same treatment as the first model by a Particle 

Filter and comparison with established deterministic methods.  This geometrically 

increasing set of combinations led to a substantial amount of programming since each 

model has its own particularities.  The effort paid off because the first use of a particle 

filter with a physics-based Li-ion battery model is reported now.  The Particle Filter is 

adaptable to many physics-based models, and it is based upon a simple yet powerful 

equation and its prevalence will no doubt increase with increasing computational power. 

The work of this thesis suggests future work, some of which is listed in the 

conclusion.  One aspect of the future work is combining a charge model with a 

Remaining Useful Life model.  The Remaining Useful Life model is like the one 

suggested by the original article referenced in this thesis.  A charge model is the physics-

based model which is newly reported in combination with the Particle Filter.  The two 

types of models are distinguished by what quantity they are predicting and they cannot be 

compared like apples to apples.  The charge model predicts the time until a battery needs 

recharging and a Remaining Useful Life model predicts how many times the battery may 
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be recharged until it has reached its end of useful life.  Combining the two models means 

making a Remaining Useful Life Prediction and a charge prediction at the same time.  

The information from the RUL model adjusts and helps out the charge model.  Likewise, 

the charge model can hand over intelligence, so to speak, to the Remaining Useful Life 

prediction.  As the Remaining Useful Life model stands, in this thesis and in literature to 

the best of my knowledge, it waits until the point that the battery is recharged to update 

the RUL model.  Combining the models allows updates to the Remaining Useful Life 

model with each new voltage measurement which are many and close between. 

One comment which arose during my defense is the selection of the quantity of 

deviation in the likelihood equation in the Particle Filter method.  The likelihood equation 

quantifies how likely a possible solution is based upon a data point.  If the likelihood 

deviation is broad, then lots of solutions are considered likely and not much knowledge is 

gained from a data point.  If the likelihood deviation is too small then one solution, no 

solution, or a small number of solutions are quantified as likely.  This outcome is worse 

because it eliminates the diversity of solutions which are vital to the performance of the 

Particle Filter. 

My hope is that this is a step in the ongoing advancement of Lithium-ion battery 

modeling knowledge.  The work is a first of its kind in at least two ways which are 

comparison of the Particle Filter to established methods for making predictions of 

Remaining Useful Life and expanding the Particle Filter to physics-based Li-ion battery 

models.  Suggested future work is combining a charge model and a Remaining Useful 

Life model and how to select the likelihood deviation in the Particle Filter.  



 

5 

CHAPTER 2 

 

COMPARISON OF A PARTICLE FILTER AND OTHER STATE ESTIMATION 

METHODS FOR PROGNOSTICS OF LITHIUM-ION BATTERIES
†
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INTRODUCTION 

 

Lithium-ion batteries are utilized in spacecraft, aircraft, and electric vehicles.  An 

accurate prognosis for the remaining useful life (RUL) of Lithium-ion batteries and time 

until end of discharge voltage (EODV) is desired for these applications.  RUL is the 

number of cycles remaining until the battery’s capacity falls below a predetermined 

threshold, an event called end of useful life (EUL).  Time until EODV is the time until 

the battery voltage drops below a defined EODV threshold.  The particle filter (PF) is 

emerging as the preferred method for making these predictions about Lithium-ion 

batteries
1-5

.  In this work, a Lithium-ion battery is assumed to undergo constant, low-

current, complete discharge over cycling.  RUL and time until EODV are predicted with 

the above assumption using three models and three methods.  For comparison, accuracies 

for each method are reported. 

Previous work on Lithium-ion battery prognostics with PF found PF accurate.  

However, among the works considered, comparisons to other methods for Lithium-ion 

battery prognostics were not made or a comparison made was to a less than optimal 

prediction method 
1-5

.  Further, physics-based models of Lithium-ion batteries were not 

incorporated into PF for prognostics.  Physics-based models provide states with physical 

meaning in the Lithium-ion battery, and are built from first-principles.  In this work, three 

models including a physics-based Lithium-ion battery model are implemented with PF 

and tested for accuracy in predicting RUL or time until EODV.   
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Predicting the RUL by a data-driven model of a Lithium-ion battery undergoing 

constant charge and discharge cycling was investigated by He, et al
1
.  He, et al did not 

consider predicting time until EODV for a discharge cycle during cycling.  The batteries 

were charged completely and discharged completely, for the cycling protocol.  The 

failure threshold for the RUL was defined as the battery’s capacity falling below 80% of 

its original capacity.  The capacity at each cycle was measured by the integral of current 

over time.  The capacity can be considered the size of a fuel tank for the case of 

comparing EV’s to conventional vehicles.  With this analogy the RUL is the number of 

times the tank or battery can be refilled with fuel or recharged until it can no longer hold 

a useful amount of fuel or charge.  Although the size of a fuel tank does not generally 

change with the number of times it is refilled, a Lithium-ion battery loses capacity to the 

extent of losing usefulness
1,2,6

.   

In He, et al the capacity of a Lithium-ion battery was predicted forward in cycles 

until it dropped below the capacity at EUL,     .  When comparing prediction 

algorithms He, et al found PF to be more accurate than an extended Kalman filter (EKF) 

when predicting RUL.  An underlying step in the EKF algorithm is using a Taylor series 

expansion to linearize non-linear model equations.  This linearization approximation can 

be less than ideal if the problem is highly non-linear
7,8

.   

In this work, non-linear least squares (NLLS) and an unscented Kalman filter 

(UKF) are used for comparison, against a PF, for predicting RUL and time until EODV.   

NLLS is a state estimation algorithm for non-linear problems which attempts to minimize 

the sum of squared errors of a model and observations.  UKF is a sampling-based Kalman 

filter and has been shown to perform better than EKF for non-linear systems
7,8

.  UKF 
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chooses samples of the states by the state covariance matrix.  The sampling scheme in 

this work is      symmetric where   is the number of states.  In the UKF algorithm, 

the samples are passed through model equations then re-evaluated for mean and variance 

without linearizing model equations.  He, et al’s model used a function with two 

exponentials for their model equation of battery capacity as a function of cycle number.  

Because the model equation was highly non-linear with respect to the states, EKF was 

susceptible to error due to the linear approximation of the model.  In this work, UKF is 

compared against NLLS and PF with He, et al’s model. 

He, et al’s model was data-driven and was not developed from first principles of 

the physics occurring within the Lithium-ion battery.  In this work, He, et al’s model is 

tested, along with an equivalent circuit model (ECM) and physics-based single particle 

(SP) model.  ECM represents the battery as an electrical circuit with resisters, capacitors 

and other elements to create an equivalent circuit to model the battery behavior.  SP is 

derived from first-principles of physics occurring within a Lithium-ion battery.  Thus, the 

SP parameters have a physical interpretation.   

Xing, et al
2
 extended He, et al’s work by testing an empirical second-order 

polynomial model for RUL predictions as well as He, et al’s model using PF.  They 

compared the two models and their results showed that He, et al’s model predicted RUL 

more accurately than the polynomial model.  Again, the new model was data-driven, and 

its parameters did not have a physical interpretation.  Saha, et al
3
 predicted the time until 

EODV of a battery undergoing discharge.  The application for their work was predicting 

the flying time of an unmanned aerial vehicle (UAV).  Without prognostics, the flying 

time of the UAV was usually reduced to provide extra margin to prevent the UAV battery 
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from becoming over-discharged during flight.  Saha, et al applied PF with an empirical 

model in order to predict the time until EODV.  The time until EODV was the difference 

of the predicted time of EODV minus the time of prediction.  Predictions were made at 

multiple time points and the batteries were discharged until they experimentally reached 

EODV.  The empirical model used with PF included terms representing the battery’s 

open circuit potential, Ohmic drop, activation polarization, and concentration 

polarization.  This model was based upon a high level of abstraction of the physics 

occurring within the cell
3
.  No other method was compared against PF for testing 

prediction accuracy by Saha, et al although PF was supported due to the predictions 

meeting prognostics metrics for accuracy
3
.    

Jin, et al
4
 used a data-driven model with PF for the application of predicting the 

residual life of Lithium-ion batteries in spacecraft.  The residual life was the number of 

cycles until a failure threshold was reached, essentially the same as RUL. The model was 

not physics-based, and PF was not established as more accurate than other RUL 

prediction methods.  Pattipati, et al
5
 used a data-driven model to predict the RUL of a 

battery.  Their model was a modified Randles equivalent circuit.  In their model they 

considered other states besides predicted RUL such as the state of charge (SOC) of the 

battery.  However, their model was not physics-based.  Also, they required that the 

battery be taken offline for taking measurements. 

Ramadesigan
9
, et al predicted the capacity fade of a Lithium-ion battery due to 

aging using a power-fade law on six states of an electrochemical model.  The states’ 

uncertainty was quantified by a Markov Chain Monte Carlo (MCMC) algorithm.  Their 

investigation supported the accuracy of MCMC state estimates.  The states followed a 
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power law over cycling and the electrochemical model was simulated for the individual 

cycles.  MCMC is similar to PF.  Both can make non-Gaussian, numerical estimates of 

the states by approximating their probability distributions.  Both are built upon Bayes’ 

rule for updating state probability distributions.   

Ramadesigan, et al’s states had physical significance, and some insight into the 

source of capacity fade was suggested, since the negative anode solid phase diffusivity 

decreased by a statistically significant amount.  Although Ramadesigan, et al utilized a 

rigorous physics-based model, the states themselves followed power-law models.  This 

work incorporates the models themselves into a PF framework.  Also, PF is compared for 

prediction accuracy of some failure for a variety of models and methods to test whether 

PF is the most accurate prognostics method or not.  Ramadesigan’s work emphasized an 

investigation of modeling capacity fade.   

Outside of Lithium-ion battery applications, the PF has been used for prognostics.  

Daigle, et al
10

 used a physics-based model of a centrifugal pump with PF for predicting 

the failure of a pump.  The PF was able to use a physics-based model to make predictions 

about the pump, because the PF is generalizable to prognostics.  Cadini, et al
12

 used PF to 

predict the propagation of a crack in concrete.  An, et al
6
 provided a tutorial in MATLAB 

for prognostics using a PF.  Their examples were crack growth and battery degradation, 

using empirical models. 

Although not investigated for prognostics, physics-based models of Lithium-ion 

batteries have been investigated in literature.  A physics-based, single particle (SP) model 

of a Lithium-ion battery was compared against an empirical model by Rahimian, et al
11
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for fitting cell voltage.  The physics-based model performed better than the empirical 

model in accuracy for fitting cell voltage under low constant current conditions.  The 

models in Rahimian, et al, have not been used for Lithium-ion battery prognostics.  Their 

SP model and ECM model are re-applied for predicting time until EODV in this work.  

The empirical model, considered by Rahimian, et al, was an equivalent circuit model 

(ECM), first reported by Verbrugge
15

, different from the equivalent circuit models of 

Saha, et al or Pattipatti, et al.   

The SP in Rahimian et al’s comparison was also used with Kalman filtering 

approaches in a separate work
7
 for estimating the SOC of a Lithium-ion battery 

undergoing low-earth-orbit cycling.  The SP model included some extra states for 

capacity fade effects.  The comparison made in their work was between UKF and EKF, 

for use with the SP model.  The unscented Kalman filter (UKF) was the preferred type of 

Kalman filter, in their work.  Both the SP and ECM from Rahimian are applied to PF for 

predicting time until EODV.  Also, PF is compared against UKF, not EKF, for tests of 

prediction accuracy. 

This work compares, based on accuracy of predictions, PF with NLLS and UKF, 

for prognostics of Lithium-ion batteries.  First, RUL is predicted for a Lithium-ion 

battery using the model of He, et al
1
 with NLLS, UKF, and PF.  Next, the ECM model of 

Verbrugge
15

 with NLLS, UKF and PF predicts the time until EODV of a Lithium-ion 

battery.  The predictions of RUL and time until EODV assume that the battery is 

undergoing low constant current, complete discharge.  The last model used to compare 

the methods is the physics-based SP model, and NLLS, UKF and PF are compared for 

predicting the time until EODV.   
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1.1 HE, ET AL MODEL 

1.1.1  Data set explanation and objective 

From the state estimates of He, et al
1
 a synthetic data set of capacity versus cycle 

was made by adding zero-mean, random normal noise with a standard deviation of 

      (  ) to capacity. This data set is presented in Figure 1.1.  The objective is to 

predict the remaining useful life (RUL) of the battery, as the data becomes available.  

When EUL is reached (the first capacity measurement which falls below the EUL failure 

threshold) the predictions may be tested for accuracy, against the experimental result.  

The EUL capacity failure threshold is specifically, 

                 (1) 

     (  ) is the capacity when   is equal to one, the first cycle.       (  ) is the 

capacity at the end of useful life (EUL).       is the horizontal line in Figure 1.1.  The 

RUL is, 

               (2) 

     is the cycle when the capacity of the battery decreases below     .    is the cycle 

when the RUL prediction is made.  The RUL is calculated as the difference of the 

predicted cycle of EUL and the cycle of prediction.  In order to quantify accuracy,      

is subtracted from     
 , where the asterisk denotes the experimental result.   

1.1.2  He, et al model 

The empirical model of He, et al
1
 is 

    (   )       (   )        (   )  (3) 
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where 

  [       ]       (4) 

 ( ) is the model, k is the cycle index.     (  ) is capacity at cycle index  , 

 (  )  (
 

     
)   (  )  (

 

     
) are states, and   is the state vector (one underbar,  , 

denotes a vector).  Once   is estimated,       may be solved for by, 

     (      )       (      )            (5) 

     is subtracted from     
 , and the smaller number of cycles indicates a more accurate 

prediction of RUL. 

1.1.3 He, et al model non-linear least squares results 

The first method to make predictions of RUL with the He, et al model is non-

linear least squares (NLLS).  NLLS, which was used by Rahimian, et al
11

 for comparing 

SP to ECM, estimates  .  With this estimate a prediction of      may be made.  White 

and Subramanian
12

 explicitly provide a non-linear least squares (NLLS) algorithm for 

state estimation for a general case.  The first battery data set is synthesized from He, et 

al’s states and displayed in Figure 1.1.  A second battery data set from the same states 

with different random noise is used for NLLS state estimation.  For the first test of NLLS 

prediction, three states are given the exact parameters, and the   state is estimated by 

NLLS with 50 data.  The   state is given the correct initial guess (IG).  The IG’s from He, 

et al are displayed in Table 1.1.  The result is NLLS makes a very accurate prediction.  

The second test is using NLLS to track the   and   state.  The model is non-linear in the 

  state which makes the estimation problem non-linear unlike tracking the single state  .  
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The constraints are such that   is positive and   is negative.  The fit for tracking two 

states and predicting RUL is nearly on top of the fit of the   state.  If the other states are 

the fixed, correct values, NLLS can make an accurate RUL prediction when tracking   

and   or only  . 

The next test is tracking the four states in the model.  None of the states are fixed.  

Correct IG’s are supplied to NLLS.  Table 1.1 includes the parameters when four states 

are estimated by NLLS.    and   are constrained negative, and   and   are constrained 

positive which correspond to the correct signs.  The results are in Figure 1.2.  Unlike 

tracking one or two states, tracking four states gives an inaccurate prediction of 88 cycles.  

Without the knee (downward bend) in the later data, NLLS makes an inaccurate 

prediction when tracking four states.  The prediction does not show a knee.  When NLLS 

is constrained to 5% of the correct four states, the prediction is more accurate than 

without constraints.  With 5% constraint the error is 10 cycles.   

1.1.4 Unscented Kalman filter 

Rahimian, et al
11

 applied UKF and EKF with SP for estimating SOC and state of 

life (SOL) for a Lithium-ion battery undergoing low-earth-orbit cycling.  SOL is a 

measure of the aging of the Lithium-ion battery.  Rahimian, et al found UKF to be more 

accurate than EKF based upon fitting voltage measurements.  Plett
8
 provides an 

explanation based upon the assumptions taken by EKF and UKF of why UKF is more 

accurate for non-linear model problems.  Plett’s explanation is, when calculating the 

mean of a random variable,   

 [  ( )]    ( [ ])    (6) 
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where   ( ) is a non-linear model equation.  The mean of the non-linear function of the 

random variable,  , is only approximately equal to the function of the mean of  .   This is 

caused because   ( ) is linearized by a first-order Taylor series.  Likewise, covariance 

matrices can be inaccurate when passed through a linearized version of the model 

equation.   

UKF does not change model equations.  Instead, deterministic samples are taken, 

and the samples are propagated through the non-linear model equations.  After being 

propagated through, the samples provide a mean and covariance.  The sampling scheme 

used in this work is      symmetric
13

 where   is the number of states.  During the 

update step of Kalman filtering the states are changed by the experiment measurement.  

The states are assumed to be Gaussian distributed.  The UKF algorithm equations are 

presented in the Appendix.   

Four states in He, et al’s model are tracked by UKF.  50 data points are used to 

track the states.  NLLS made an inaccurate 88 cycle RUL prediction with 50 data points 

when tracking four states.    , the state covariance matrix is initialized by diagonalizing 

the difference of the upper and lower bounds of the 95% confidence interval of He, et al’s 

states and squaring the difference.  The Cholesky decomposition takes the square roots of 

the diagonal elements of a matrix.  The diagonal elements of the Cholesky decomposition 

are used to make samples.  Table 1.1 lists the four state results from prediction alongside 

the correct states, and   is the only state to change by a noticeable amount.  Figure 1.3 

displays the prediction results of UKF which are less than accurate with an error of 19 

cycles.  The prediction results are more accurate than NLLS for tracking four states but 
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less accurate than when NLLS is constrained by 5% to the correct states which made an 

error of 10 cycles.   

1.1.5  Particle filter 

PF makes stochastic, meaning random, estimates of states and adjusts their 

weights from observable measurements.  The method of particle filtering does not begin 

with the assumption that there is a single, best prediction.  On the other hand, PF assumes 

that there are many possible predictions, and each prediction is associated with a weight, 

or probability.  PF is built upon Bayesian statistics, which is a paradigm shift from 

deterministic methods.  It parts from the notion that nature is deterministic and 

predictable
17

.   

PF makes a probability density function (PDF) approximation of capacity in the 

case of He, et al for a PDF of     .  Particles approximate a probability distribution of 

the state vector,   , which can be transferred to     , from the model.  For He, et al’s 

model   is  .  PF begins with a model in state-space form. 

       (    )     (7) 

     (  )         (8) 

  is an integer which is a discrete index e.g. cycle index for the He, et al model.   ( ) is 

the dynamic model of how the states change with   and    is the measurement model 

which predicts the measurement based on the values of states at  .  In He, et al’s model, 

   is the measurement calculated from the states.     is the measurement noise.   
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The particle filter estimates the state vector,  , by a probability distribution, 

 (  |  ).   (  |  ) gives the probabilities for a domain of possible values of the true 

state given all the observations at index   and prior information from training data.  PF 

approximates the probability distribution of    by a series of weighted particles.    
  

represents one estimate of the states,   , and   
  is the associated probability of the 

estimate.  Together,   
  and   

  make one particle.    is the total number of particles.  In 

this work, particles are uniformly varied around the correct or best IG’s.  All of the 

particles together make an approximation of the probability distribution of   .  The 

weights are such that they sum to one. 

∑   
  

         (9) 

The particles approximate the distribution of    by 

 (  |  )  ∑   
  (     

 ) 
      (10) 

 ( ) is the Dirac delta function.  Equation (10) is a convention for particles making a 

probability distribution.  A simpler equation to express how particles make a distribution 

is 

 (  
 |  )    

      (11) 

Equation (11) is interpreted as the probability of any particle,   
 , is its weight. 

As   advances, the posterior PDF becomes the prior PDF of the new   with the 

dynamic model,  ( ).   (  |  ) is a posterior PDF   (       ) is a prior PDF. 
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 (  |    )  ∑     
  

       (    
 )   (12) 

Equation (12) generates the prior distribution of the parameters,   .  Once the prior 

distribution of    is available by Equation (12) the posterior distribution of    is obtained 

by
1,3,12,19

   

  
      

   (  |  
 )       (13) 

 (  |  
 ) is the likelihood of   

 .  The likelihood is calculated by
6,17 

 (  |  
 )  

 

 √  
   [ 

 

 

*     (  
 )+
 

  
]   (14) 

  is the standard deviation of the measurement noise,   .  Equation (14) requires the 

assumption that measurement noise is Gaussian distributed with mean zero.  From 

Equation (14), the closer   (  
 ) is to    the higher  (  |  

 ) is and the higher the 

likelihood is for   
 .  The result of Equation (14) plugs into Equation (13), and   

 is 

obtained.  In order to satisfy that the weights sum to one (Equation (11)), normalization is 

performed
1,12,14

.  

   
 
 

  
 

∑  
 
  

   

       (15) 

The overbar in Equation (15) indicates a normalized weight.  Essentially, several 

possible particles of different states are generated.  They can be visualized as curves with 

units of capacity in He, et al’s model.  These particles are more or less likely, from 

Equation (14), based upon the distance from experimental measurements.  Unlike NLLS 
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and UKF, the PF particle state estimates do not change in this work.  The weights of the 

particles change but not the state estimates of the particles.   

Figure 1.4 displays PF results for He, et al’s model.  The grey lines are particle 

estimates of the states shaded by their weights.  Figure 1.4 displays the PF results with 

particles of five percent uniform variation above and below the correct states.  The 

prediction is more accurate than NLLS or UKF tracking four states.  The number of 

particles is 100.  Although one prediction PDF is shown the particle shades shift due to 

two later predictions.  The figure reveals some effects of PF.  Particles away from the 

data are shaded less likely, which becomes more pronounced in later predictions.  The 

weights at the edge of the prediction PDF jump up and down.  Figure 1.5 zooms in on the 

prediction PDF’s.  A spread of particles appears beginning around cycle 165, which is 

packed together in earlier cycles.  Therefore, the algorithm didn’t differentiate the 

likelihoods in the bundle of particles, which is why the likelihood jumps around where 

those particles cross the failure threshold.  In this work the weighted sum of the particles 

is used to report prediction accuracy of PF because a choice of the most likely particle 

isn’t as meaningful due to the jumping around of weights.  The weighted sum of particles 

gives a prediction error of magnitude 0.82 cycles with He, et al’s model.  PF makes the 

most accurate prediction among the three algorithms considered when tracking all four 

model states and given correct IG’s. 

1.2  EQUIVALENT CIRCUIT MODEL 

1.2.1  Data set explanation and objective 
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The data for the ECM and SP time until EODV predictions are from the NASA 

Ames prognostics data repository
16

.  Batteries are discharged at a constant current of 

  ( ) from a fully charged     ( ) to a EODV cutoff voltage of     ( ).  Assuming 

constant current throughout discharge, the objective is to predict the time until the 

EODV.   Figure 1.6 displays the data set for time until EODV prediction. 

The RUL predictions used the capacity of a discharge as one measurement.  The 

capacity results from many discharges of a battery undergoing charging and discharge 

cycling were displayed in Figures 1.1-4.  A single discharge is displayed, per plot, for 

visualization of prediction of time until EODV for the remaining figures.  For a complete 

cycle, after EODV, the battery was charged to a fully charged     ( ).  The discharge 

plots have axes with units of voltage versus time, instead of capacity versus cycle. 

1.2.2  Equivalent circuit model 

Verbrugge’s ECM is considered for a battery discharge cycle
11,15

.  The data 

assumes a constant current discharge, so the cell potential,      ( ) can be related to the 

current,     ( ) by the following equation, according to the ECM model. 

     (                )           
 

 
   ( 

 

    
)         (     ( 

 

    
)) 

 (16) 

Unlike He, et al’s model,       ( ) is the measurement.  The states are   [ ], the cell 

resistance,   (  ) the capacity of the cell,  ( ) the capacitance, and     [ ] the 

interfacial charge transfer resistance.     ( ) is the open circuit potential of the cell, 

defined in Equation (17).   
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 (    )    

 (    )     (17) 

  
  ( ) are open circuit potentials of the cathode and anode, respectively

20
.       are the 

states of charge of the electrodes. 

  
 (    )  

(                 
             

             
             

             
  )

             
            

            
            

           
     (18a) 

  
 (    )                          

    
     

    
 
     

    
   
   

       (          )        (                 ) (18b) 

     and      are obtained by a linear interpolation of        .   

                                                    (19) 

        is governed by 

                  
    

     
       (20) 

  ( ) is time.  Figure 1.7 displays the equivalent electric circuit representation of the 

battery, which is the origin of Equation (16) of the ECM model.  The model terms 

representing battery effects are treated as resistors or capacitors in an electric circuit.  

ECM is a widespread type of battery model
9
.   

1.2.3  Equivalent circuit model results 

Table 1.2 displays the training estimates from data.  NLLS and ECM states from 50 data 

are included for comparison.  All four states are tracked.  Figures 1.8 and 1.9 display the 

prediction results of NLLS and UKF.  With correct IG’s NLLS makes an inaccurate 
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prediction unless NLLS is constrained to 5% of the correct IG’s.  UKF’s prediction is 

inaccurate, but more accurate than NLLS unless NLLS is constrained to 5% of the correct 

IG’s.  In both methods, all four ECM states are tracked.  NLLS 5% constrained has an 

error of 396 seconds.  The state covariance matrix,   , of UKF is created by 

diagonalizing 5% of the best ECM states from training data and squaring the matrix.  

Figure 1.10 displays the PF prediction at the same time as NLLS and UKF.  Although 

one prediction PDF is shown the particle shades shift due to two later predictions.  The 

correct four states are uniformly varied by 5%.  The weights move up and down because 

the state particles are bundled together over the data until after the last prediction is made.  

The weighted sum of particles gives an error of 25.62 seconds.  The prediction of PF at 

928.6 (s) is more accurate than the predictions of NLLS and UKF at that time when 

tracking all four model states with best IG’s.   

1.3  SINGLE PARTICLE MODEL 

1.3.1  Single Particle model 

The final model considered in this work is the single particle model (SP).  SP is used for 

time until EODV prediction.  SP makes simplifying assumptions from more rigorous 

physics-based models
7,11

.  For the low constant-current discharging considered in this 

work, the assumptions of SP are met.  SP considers two electrodes to contain spherically 

symmetric particles of solid active material.  Lithium intercalates and de-intercalates at 

the surface of the solid active material and diffuses.  By treating the concentration profile 

inside the solid active material spherical particles as a two-term polynomial, volume 

averaging techniques create an average concentration for the bulk of the particle.  
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Reproduced from Rahimian, et al, SP equations are as follows
11

.  Capacity fade effects 

are removed.  In the cathode     and in the anode    .                                     

   
    

  
       (21) 

    
    

  
       (22) 

       

  
  

   

         
       (23) 

                
    

            
    (24) 

    is the exchange current density for each electrode *
 

  
+.         is the ratio of the solid 

bulk concentration to the maximum solid concentration of Lithium for each electrode.    

is Faraday’s constant, 96485 in *
 

      
+.    [ ] is the particle radius for each electrode.  

      *
   

  
+ is the maximum solid phase concentration of Lithium for each electrode.  

  
 [  ] is the electroactive surface area for each electrode.          is the ratio of the solid 

surface concentration to the maximum solid concentration for each electrode,         

      .      *
  

 
+ is the solid phase diffusion coefficient of Lithium for each electrode. 

Butler-Volmer kinetics are used to describe the intercalation and de-intercalation 

reactions of Lithium at the electrodes. 

  
 
   (                    )

   
(             )

   
  
    

 [   (
     

   
  )     (

      

   
  )]      (25) 
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     and      are the anodic and cathodic transfer coefficients, respectively, for the 

intercalation and deintercalation reactions.  If          , then Equation (25) can be 

solved explicitly for   , as shown in Equation (26).     *
 

    
+ is the gas contant.   

   
   

    
  (

(   (     
       
   

        
      

       
   

           
 )
   
)

    
     (             )

   
(                    )

   )   (26) 

 Overpotentials,   , are also 

        
         (27) 

        
         (28) 

The open circuit potentials,   
 , are the same as those defined in Equations (18a) and 

(18b) for the ECM model with an exception.  By finding an accurate fit to the 

experimental data, the parameter which is .7222 has been changed to .8214 and the 

parameter which is -4.656 has been changed to -4.8801.  The difference of the electrode 

potentials,   , (with Equations (27) and (28) substituted) is the cell voltage. 

           
  (     

 )     (29) 

Table 1.3 shows the best IG’s from literature and training data.  Figure 1.11 

displays the NLLS fit of SP.  The best IG’s are provided for four states,    and         .  

The prediction is very inaccurate unless NLLS is constrained to 5% of the best IG’s.  The 

UKF prediction, shown in Figure 1.12, is more accurate than NLLS unless NLLS is 5% 

constrained.  The error of NLLS 5% constrained is 272 seconds.  The    matrix of UKF 

was made by diagonalizing 5% of the parameters squared.  Figure 1.13 shows PF with 
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5% variation on the correct parameters.  Although one prediction PDF is shown the 

particle shades shift due to two later predictions.  PF gives an error of 8.54 seconds for 

the most accurate prediction.  Table 1.4 includes a matrix of the prediction error of the 

models and methods.  The results indicate that the methods are of increasing accuracy 

from NLLS to UKF to NLLS 5% constrained to PF across all three models.   

1.4  CONCLUSIONS 

The PF was compared to other algorithms for prediction accuracy using three 

separate models.  Fifty data points were used for predictions in all cases.  Tracking the   

parameter and/or the   state with correct initial guesses and correct fixed states gave 

good results with NLLS.  Tracking four states did not unless NLLS was constrained to 

5% of the correct or best initial guesses.  UKF was more accurate given 5% variation on 

the correct initial guesses of the states unless NLLS was 5% constrained.  PF was most 

accurate.  PF used state estimates from training data creating a diversity of particles.  

Adjustments were made to the weights of the particles, which affected the prediction 

PDF, but the state estimates were not changed from data available for predictions.  With 

four states tracked and correct initial guesses varied by 5% PF performed more accurately 

than UKF which performed more accurately than NLLS but less than NLLS 5% 

constrained for all three models.  The three models for prediction testing were a data-

driven model from He, et al, an equivalent circuit model, and a physics-based single 

particle model.  The physics-based model has the advantage over the other models in that 

its parameters are physically meaningful and it is derived from first principles.  The 

predictions made of Lithium-ion ion batteries were the remaining useful life with He et 
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al’s model, and the time until end of discharge with the equivalent circuit model and the 

single particle model.   

Possible future work is increasing the complexity of assumptions for making 

predictions, such as considering current loads other than constant current for predicting 

time until end of discharge or using incorrect initial guesses.  Less than accurate initial 

guesses and non-constant current loading can require introducing resampling in the PF 

algorithm.  Other possible future work includes making remaining useful life predictions 

by an equivalent circuit model or single particle model.  States in the models may be 

obtained from voltage measurements during a cycle and a particle filter may use these 

states to make predictions about future cycles and the remaining useful life.  
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1.5  TABLES AND FIGURES 

Table 1.1  States in He, et al model.  The states returned by estimating four states with 

NLLS with 50 available data and correct initial guesses are listed for comparison.  UKF 

states from 50 available data are listed for comparison. 

 

Parameter Value Unit NLLS 

estimates 

with 50 

available data 

UKF 

estimates 

with 50 

available 

data 
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Table 1.2.  States in ECM model.  The states from NLLS and UKF estimation with 50 

data points are listed for comparison. 

 

Parameter Value Unit NLLS estimates 

with 50 available 

data 

UKF estimates 

with 50 

available data 
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Table 1.3  States in SP model.  Values are from training data.   

 
Parameter Value Unit 
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Table 1.4  Matrix of models and methods.  Prediction errors reported.  Methods are 

ordered by increasing accuracy.   

 He, et al ECM SP 

NLLS    (      )     (       )     (       ) 

UKF    (      )     (       )     (       ) 

NLLS 5% 

constrained 

   (      )     (       )     (       ) 

PF (weighted 

average) 

     (      )       (       )      (       ) 
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Figure 1.1  Capacity data set for RUL prediction 
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Figure 1.2 Tracking a different number of states.  Given the correct fixed states, a variety 

of states are tracked for prediction.  The first 50 data points are used for tracking.  

Tracking four states gives an inaccurate prediction, unless the knee is in the available 

data. 
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Figure 1.3  UKF RUL prediction for He, et al model 
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Figure 1.4  PF RUL prediction for He, et al model 
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Figure 1.5 Zoom on PF RUL prediction for He, et al model 
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Figure 1.6 ECM data set 
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Figure 1.7  Equivalent circuit representation of a Lithium-ion battery. 
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Figure 1.8  ECM NLLS prediction 
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Figure 1.9  ECM UKF prediction 
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Figure 1.10 ECM PF prediction 
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Figure 1.11 SP NLLS prediction 
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Figure 1.12 SP UKF prediction 
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Figure 1.13 SP PF prediction 
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APPENDIX A – UNSCENTED KALMAN FILTER 

The unscented Kalman filter (UKF) is a deterministic, sample-based filter 

method, used in online estimation applications.  An updated state estimate is calculated at 

each new measurement, as opposed to NLLS, which uses all measurements for making 

state estimates.  For non-linear models, UKF is preferred to EKF, among Kalman filters.  

The UKF algorithm follows
13

:  First, the state vector estimate,  ̂ , and its covariance,   
 , 

are initialized.  For example, in He, et al’s model,  ̂  is in fact  , which contain        .   

 ̂   [  ]          
   *(    ̂ )(    ̂ )

 
+   (30) 

The hat indicates an estimate.  The next step in the algorithm is to create a 

symmetric set of samples, with the Cholesky decomposition of   
 .  The symmetric 

     sampling scheme is the sampling choice in this work
16

.   

      (    
 )     (31) 

        ̂                  ̂    √                     ̂    √       (32) 

  is the matrix that holds all the samples of the states.      are the diagonals of the 

Cholesky decomposition.    is a tuning parameter, and     is the number of state 

variables.     is an index which begins at one and continues to include  , and is as long as 

the number of states.  The weights,  , associated with the samples in   are calculated, 

   
 

√   
         

 

[ (   )]
          

 

[ (   )]
  (33) 
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The above unscented transform gives the prior,  , state estimate at index,  .   

[ ̂        
 ]    ( ̂              ( )       )  (34) 

   , the unscented transform, is the sampling scheme of Equations (32) and (33).       

are the input variables.   ( ) is the state dynamic model.  The He, et al model does not 

have a state dynamic model, but other models may.  Considering the same example 

model, the input variable is   for He, et al’s model.   Next, the measurement update leads 

to the posterior state estimate at  . 

       (         )      (35) 

 ̂ 
  ∑     

  
       (36) 

  
  
 ∑   (      ̂ 

 )(      ̂ 
 )
   

      (37) 

  
  
 ∑   (    ̂   )(      ̂   )

  
      (38) 

  
  

 is the measurement space covariance, and   
  

 is the cross covariance.  The update 

step is completed after, 

     
  (  

  )
  

      (39) 

 ̂ 
   ̂ 

    (       
   ̂ 

 )     (40) 

  
     

       
  
  
        (41) 

  is the process noise.  The UKF algorithm is presented as a flowchart in Figure A.1 . 
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Figure A.1  UKF algorithm flowchart 
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APPENDIX B – MATLAB PROGRAMS 

clc 

clear all 

close all 

% Eric Walker  

% M.S. thesis NLLS 

  

%% He, et al 

  

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\NASA'... 

    ' Ames Data\B0005.mat']); 

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\NASA'... 

    ' Ames Data\B0007.mat']); 
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first_batt = (-9.86e-7)

 * exp(5.752e-2 * (1:200)) + (8.983e-1) * ... 

    exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 

  

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:300)) + (8.983e-1) *... 

    exp((-8.340e-4) * (1:300)) + 0.005*randn(1,300); 

  

  

  

% Present the data in Figure 1. 

hold on % Show all plots on the same figure. 

plot(1:length(first_batt), first_batt, 'ko') 

plot([1,200],first_batt(1)*0.8*[1,1],'k-','linewidth',1.5) 

text(25,first_batt(1)*0.81,'EUL failure threshold') 

xlabel('Cycle number (k)') 

ylabel('Capacity (Ah)') 

ylim([0.65, 0.91]) 
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axis square  

box on 

  

%NLLS 

theta=[-9.86e-7,5.752e-2,8.983e-1,-8.34e-4];    

  

  

[theta_50_one_st, resnorm] = lsqnonlin(@(t_1) (second_batt(1:50))... 

    - (-9.86e-7*exp(5.752e-2*... 

    (1:50)) + t_1 * exp(-8.34e-4*(1:50))),8.983e-1);  

  

[theta_50_two_st, resnorm] = lsqnonlin(@(theta) (second_batt(1:50))... 

    - (-9.86e-7*exp(5.752e-2*... 

    (1:50)) + theta(1) * exp(theta(2)*(1:50))),[8.983e-1,-8.34e-4],... 

    [0, -inf], [inf, 0]); 

  

[theta_50_four_st, resnorm] = lsqnonlin(@(t_4) (second_batt(1:50)) ... 
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    - (t_4(1)*exp(t_4(2)*... 

    (1:50)) + t_4(3) * exp(t_4(4)*(1:50))),[-9.86e-7,5.752e-2,... 

    8.983e-1,-8.34e-4],[-inf, 0, 0, -inf], [0, inf, inf, 0]);  

  

[theta_50_four_st_const, resnorm] = lsqnonlin(@(t_4_c) ... 

    (second_batt(1:50)) - (t_4_c(1)*exp(t_4_c(2)*... 

    (1:50)) + t_4_c(3) * exp(t_4_c(4)*(1:50))),[-9.86e-7,... 

    5.752e-2,8.983e-1,-8.34e-4],[-9.86e-7*1.05, 5.752e-2*0.95,... 

    8.983e-1*0.95, -8.34e-4*1.05], [-9.86e-7*0.95, 5.752e-2*1.05,... 

    8.983e-1*1.05, -8.34e-4*0.95]);  

  

  

figure  % See three NLLS predictions 

hold on 

plot(1:200, (theta(1)*exp(theta(2)*... 

    (1:200)) + theta_50_one_st * exp(theta(4)*(1:200))),'k-',... 

    'linewidth',2) 
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plot(1:length(second_batt), (theta(1)*exp(theta(2)*... 

    (1:length(second_batt))) + theta_50_two_st(1) * exp(... 

    theta_50_two_st(2)*(1:length(second_batt)))),'k--',... 

    'linewidth',2) 

plot(1:length(second_batt), (theta_50_four_st(1)*exp(... 

    theta_50_four_st(2)*... 

    (1:length(second_batt))) + theta_50_four_st(3) * exp(... 

    theta_50_four_st(4)*(1:length(second_batt)))),'k:',... 

    'linewidth',2) 

plot(1:length(second_batt), (theta_50_four_st_const(1)*exp(... 

    theta_50_four_st_const(2)*... 

    (1:length(second_batt))) + theta_50_four_st_const(3) * exp(... 

    theta_50_four_st_const(4)*(1:length(second_batt)))),'k-.',... 

    'linewidth',2) 

plot(1:length(second_batt), second_batt, 'ko') 

plot([1,250],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5)  

text(25,second_batt(1)*0.81,'EUL failure threshold') 
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xlabel('Cycle number (k)') 

ylabel('Capacity (Ah)') 

ylim([0.65, 0.91]) 

axis square  

box on 

legend('c state tracked ','c and d state tracked',... 

    'four states tracked','four states tracked 5% constrained',... 

    'observations')  

  

%% ECM 

  

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'... 

    'NASA Ames Data\B0006.mat']); 

  

global first_discharge_time first_discharge_current... 

    first_discharge_voltage; 

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured... 
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    (3:end); 

first_discharge_time    = B0006.cycle(1,2).data.Time(3:end); 

first_discharge_current = B0006.cycle(1,2).data.Current_measured... 

    (3:end); 

  

  

[ecm, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, 

[0.129635,2.0764,21.045,0.110328],[0 0 0 0], [1, 10, 2000, 1]);   

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured... 

    (3:end); 

second_discharge_time    = B0006.cycle(1,4).data.Time(3:end); 

second_discharge_current = B0006.cycle(1,4).data.Current_measured... 

    (3:end); 

second_discharge_time    = [second_discharge_time ... 

    (second_discharge_time(1:100) + second_discharge_time(end))]; 

second_discharge_current = [second_discharge_current ... 

    second_discharge_current(1:100)]; 
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% Take the first forty data points for the NLLS prediction 

first_discharge_voltage  = second_discharge_voltage(1:50); 

first_discharge_time     = second_discharge_time(1:50); 

first_discharge_current  = second_discharge_current(1:50); 

[ecm_2, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, ecm,... 

    [0 0 0 0], [1, 10, 2000, 1]);  

  

  

R = ecm_2(1); 

Q = ecm_2(2); 

C = ecm_2(3); 

R_ct = ecm_2(4); 

  

SOC_cell = 1 + second_discharge_current ./ (Q*3600) .*... 

    second_discharge_time; 
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SOC_n = 0.79.*SOC_cell + 0.01; 

SOC_p = 0.97-0.51*SOC_cell; 

  

x_nsurf = SOC_n; 

x_psurf_set = SOC_p; 

  

U_n     = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -... 

    .0172./x_nsurf + ... 

    .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984... 

    * exp (... 

    0.4465*x_nsurf - 0.4108); 

  

U_p_set     = ( -4.656 + 88.669 * x_psurf_set.^2 - 401.119 *... 

    x_psurf_set.^4 + 342.909 * ... 

    x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *... 

    x_psurf_set.^10 ) ./ ... 

    ( -1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +... 
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    37.311 * x_psurf_set.^6 ... 

    - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10 ); 

  

V_o = U_p_set - U_n ; 

  

V_cell = V_o + second_discharge_current*R + Q./C .* exp(-... 

    second_discharge_time./(R_ct * C))... 

    + second_discharge_current.*R_ct.*(1-exp(-... 

    second_discharge_time./(R_ct * C))); 

  

% Now the constrained 

  

[ecm_2_c, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, ecm,... 

    0.95*ecm, 1.05*ecm);  

  

  

R = ecm_2_c(1); 



 

59 

Q = ecm_2_c(2); 

C = ecm_2_c(3); 

R_ct = ecm_2_c(4); 

  

SOC_cell = 1 + second_discharge_current ./ (Q*3600) .*... 

    second_discharge_time; 

  

SOC_n = 0.79.*SOC_cell + 0.01; 

SOC_p = 0.97-0.51*SOC_cell; 

  

x_nsurf = SOC_n; 

x_psurf_set = SOC_p; 

  

U_n     = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -... 

    .0172./x_nsurf + ... 

    .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984... 

    * exp (... 
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    0.4465*x_nsurf - 0.4108); 

  

U_p_set     = ( -4.656 + 88.669 * x_psurf_set.^2 - 401.119 *... 

    x_psurf_set.^4 + 342.909 * ... 

    x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *... 

    x_psurf_set.^10 ) ./ ... 

    ( -1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +... 

    37.311 * x_psurf_set.^6 ... 

    - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10 ); 

  

V_o = U_p_set - U_n ; 

  

V_cell_c = V_o + second_discharge_current*R + Q./C .* exp(-... 

    second_discharge_time./(R_ct * C))... 

    + second_discharge_current.*R_ct.*(1-exp(-... 

    second_discharge_time./(R_ct * C))); 
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first_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured... 

    (3:end); 

first_discharge_time    = B0006.cycle(1,4).data.Time(3:end); 

for y = 1:length(V_cell) 

    if V_cell(y) < 2.5 

        break 

    end 

end 

for z = 1:length(V_cell_c) 

    if V_cell_c(z) < 2.5 

        break 

    end 

end 

V_cell = V_cell(1:y); 

V_cell_c = V_cell_c(1:z); 

figure 

hold on 
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plot(second_discharge_time(1:length(V_cell)),V_cell,'k-',... 

    'linewidth',2) 

plot(second_discharge_time(1:length(V_cell_c)),V_cell_c,'k--',... 

    'linewidth',2) 

plot(second_discharge_time(1:length(second_discharge_voltage)),second_discharge_volt

age, 'ko',... 

    'linewidth', 1.5) 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

axis([0 4250 2.4 4]) 

axis square 

box on 

xlabel('Time (s)') 

ylabel('Voltage (V)') 

legend('NLLS prediction 928.6 (s)', ... 

    'NLLS prediction 928.6 (s) 5% constrained', 'observations') 

  

% Reset the following three variables after the above nlls. 
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first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured(3:end); 

first_discharge_time    = B0006.cycle(1,2).data.Time(3:end); 

first_discharge_current = B0006.cycle(1,2).data.Current_measured(3:end); 

[ecm, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, ... 

    [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 2.5, 2000, 1]); 

  

%%  NLLS Single Particle model 

  

[S_x_avg,resnorm,res] = lsqnonlin(@SP_obj_fun, ... 

    [0.2607, 0.2571, 0.9388, 0.5171]... 

    ,[],[1 1 1],[],second_discharge_time(1:50),... 

    second_discharge_current(1:50),second_discharge_voltage(1:50)); 

  

[S_x_avg_c,resnorm_c,res_c] = lsqnonlin(@SP_obj_fun, ... 

    [0.2607, 0.2571, 0.9388, 0.5171]... 

    ,[0.2607, 0.2571, 0.9388, 0.5171]*0.95,... 

    [0.2607, 0.2571, 0.9388, 0.5171]*1.05,... 
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    [],second_discharge_time(1:50),... 

    second_discharge_current(1:50),second_discharge_voltage(1:50)); 

  

  

[voltagePredi]        = SP(S_x_avg,second_discharge_time,... 

    second_discharge_current); 

s = find(voltagePredi<2.4,1); 

voltagePredi=voltagePredi(1:s); 

[voltagePredi_c]      = SP(S_x_avg_c,second_discharge_time,... 

    second_discharge_current); 

  

for z = 1:length(voltagePredi_c) 

    if voltagePredi_c(z) < 2.4 

        break 

    end 

end 

voltagePredi_c = voltagePredi_c(1:z); 
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figure 

axis([0 4250 2.4 4]) 

axis square 

hold on 

box on 

xlabel('Time(s)'); 

ylabel('Voltage(V)'); 

plot(second_discharge_time(1:length(voltagePredi)),voltagePredi, 'k-',... 

    'linewidth',2) 

plot(second_discharge_time(1:length(voltagePredi_c)),voltagePredi_c, 'k--',... 

    'linewidth',2) 

plot(second_discharge_time(1:length(second_discharge_voltage))... 

    ,second_discharge_voltage,'ko') 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

legend('NLLS prediction 928.6 (s)', ... 
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    'NLLS prediction 928.6 (s) 5% constrained', 'observations') 

clc 

clear all  

close all 

  

%Eric Walker 

%M.S. thesis UKF 

  

%% UKF He, et al 

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) *... 

    exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 

  

theta=[-9.86e-7; 5.752e-2; 8.983e-1; -8.34e-4]; 

  

P       = diag([(3.442e-8 - (-2.007e-6)), (6.221e-2 - 5.283e-2), ... 

    (9.035e-1 - 8.931e-1), (-7.670e-4 - (-9.007e-4))])^2  ;... 

    % 0.95 confidence from He, et al. 
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kappa   = 0.5; 

Q_storage = [] 

for i = 1:length(second_batt) 

    C        = chol(P); 

    Chi(:,1) = theta; 

    Chi(:,2) = theta + sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,3) = theta + sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,4) = theta + sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,5) = theta + sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    Chi(:,6) = theta - sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,7) = theta - sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,8) = theta - sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,9) = theta - sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    W(1)     = kappa / sqrt(4 + kappa); 

    W(2:9)   = 1     / (2*(4+kappa)); 

    W        = W/sum(W); 
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    Q_cap    = Chi(1,:) .* exp( Chi(2,:) * i ) + Chi(3,:) .* ... 

        exp( Chi(4,:) * i );  

     

    Q_hat    = sum(W.*Q_cap); 

    Q_storage = [Q_storage; Q_hat]; 

     

    if i < 51 

        P_yy     = sum(W.*((Q_cap).^2)); 

         

         

        P_xy     = (Chi - repmat(theta,1,9)) .* [W;W;W;W] *(Q_cap... 

            - Q_hat)';  

        K_k      = P_xy/(P_yy+0.05); 

        egg      = theta + K_k*(second_batt(i) - Q_hat); 

        theta(1) = egg(1); 

        theta(2) = egg(2); 

        theta(3) = egg(3); 
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        theta(4) = egg(4); 

  

  

        P        = P - K_k * P_xy'; 

    end 

  

  

end 

figure 

hold on 

plot(1:length(second_batt), Q_storage, 'k-','linewidth',2) 

plot(1:length(second_batt), second_batt,'ko','linewidth',1.5) 

legend('UKF prediction k=50', 'observations') 

plot([1,200],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5)  

text(25,second_batt(1)*0.81,'EUL failure threshold') 

ylim([0.65, 0.91]) 

xlabel('k, Cycle index (cycle)') 
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ylabel('Q, Capacity (Ah)') 

axis square 

box on 

  

  

%% UKF ECM 

clear all 

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'... 

    'NASA Ames Data\B0006.mat']); 

  

  

global first_discharge_time first_discharge_current... 

    first_discharge_voltage; 

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured... 

    (3:end); 

first_discharge_time    = B0006.cycle(1,2).data.Time(3:end); 

first_discharge_current = B0006.cycle(1,2).data.Current_measured... 
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    (3:end); 

  

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured... 

    (3:end); 

second_discharge_time    = B0006.cycle(1,4).data.Time(3:end); 

second_discharge_current = B0006.cycle(1,4).data.Current_measured... 

    (3:end); 

second_discharge_time    = [second_discharge_time ... 

    (second_discharge_time(1:30) + second_discharge_time(end))]; 

second_discharge_current = [second_discharge_current ... 

    second_discharge_current(1:30)]; 

  

[ecm, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, ... 

    [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 10, 2000, 2]); 

ecm=ecm' 

sigma = 0.0015; 
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V_cell_storage = []; 

R = ecm(1) %+ ecm(1)/4 * randn(1,50)%1795; 

Q = ecm(2) % + ecm(2)/20*(randn(1,50))); % %2.0593; 

C = ecm(3) %+ ecm(3)/4 * randn(1,50);%1.17e-8; 

R_ct = ecm(4) %+ ecm(4)/4*randn(1,50) %0.1451; 

  

  

P       = (diag(ecm) / 20)^2; 

  

  

ecm_orig= ecm; 

kappa = 0.5; 

for i = 1:length(second_discharge_voltage) 

  

    C        = chol(P); 

    Chi(:,1) = ecm; 
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    Chi(:,2) = ecm + sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,3) = ecm + sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,4) = ecm + sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,5) = ecm + sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    Chi(:,6) = ecm - sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,7) = ecm - sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,8) = ecm - sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,9) = ecm - sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    W(1)     = kappa / sqrt(4 + kappa); 

    W(2:9)   = 1     / (2*(4+kappa)); 

    W        = W/sum(W); 

  

    SOC_cell = 1 + second_discharge_current(i) ./ ... 

        (Chi(2,:)*3600) .* second_discharge_time(i); 

  

    SOC_n = 0.79.*SOC_cell + 0.01; 

    SOC_p = 0.97-0.51*SOC_cell; 
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    x_nsurf = SOC_n; 

    x_psurf_set = SOC_p; 

  

     

    U_n     = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 -... 

        .0172./x_nsurf + ... 

        .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -... 

        .7984 * exp (... 

        0.4465*x_nsurf - 0.4108); 

     

    U_p_set     = ( -4.656 + 88.669 * x_psurf_set.^2 - 401.119 *... 

        x_psurf_set.^4 + 342.909 * ... 

        x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *... 

        x_psurf_set.^10 ) ./ ... 

        ( -1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 +... 

        37.311 * x_psurf_set.^6 ... 
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        - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10 ); 

     

    V_o = U_p_set - U_n ; 

     

    V_cell = V_o + second_discharge_current(i)*Chi(1,:) + ... 

        Chi(2,:)./Chi(3,:) .* exp(-second_discharge_time(i)./... 

        (Chi(4,:) .* Chi(3,:)))... 

        + second_discharge_current(i).*Chi(4,:).*(1-exp(... 

        -second_discharge_time(i)./(Chi(4,:) .* Chi(3,:)))); 

  

     

    y_hat    = sum(W.*V_cell); 

    V_cell_storage = [V_cell_storage; y_hat]; 

     

    if i < 50 

        P_yy     = sum(W.*((V_cell).^2)); 
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        P_xy     = (Chi - repmat(ecm,1,9)) .* [W; W; W; W] *... 

            (V_cell - y_hat)'; %P_xz is (1x1). 

        K_k      = P_xy/(P_yy+0.05); 

        ecm      = ecm + K_k*(second_discharge_voltage(i) - y_hat); 

         

         

        err(i)   = (second_discharge_voltage(i) - y_hat); 

  

        P        = P - K_k * P_xy'; 

    end 

  

  

end 

  

% This block of code is to stop the prediction when the 

%voltage drops below 2.5 volts. 
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k=1 

while V_cell_storage(k) > 2.5 && k < 195 

    k = k+1; 

end 

V_cell_storage = V_cell_storage(1:k); 

  

figure 

hold on 

plot(second_discharge_time(1:length(V_cell_storage)),... 

    V_cell_storage,'k-','linewidth',2) 

plot(second_discharge_time(1:length(second_discharge_voltage)),... 

    second_discharge_voltage, 'ko', 'linewidth', 1.5) 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

axis([0 4250 2.4 4]) 

axis square 

box on 
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xlabel('Time (s)') 

ylabel('Voltage (V)') 

legend('UKF prediction 928.6 (s)', 'observations') 

  

%% UKF SP 

  

S_n    = 0.2604; 

S_p    = 0.2570; 

k_n    = 37.4312e-12; 

k_p    = 17.4733e-12; 

R_n    = 2e-6; 

R_p    = 2e-6; 

D_n    = 29.0798e-15; 

D_p    = 27.9034e-15; 

c_nmax = 30074.5; 

c_pmax = 51563.5; 

c_e    = 1000; 
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x_navg = 0.9401; 

x_pavg = 0.5169; 

T      = 298.15; 

R_g    = 8.3143; 

F      = 96487; 

alpha_a  = 0.5; 

alpha_c  = 0.5; 

  

P = (diag([S_n,S_p,x_navg,x_pavg]./20))^2; 

C = P; 

kappa = 0.2; 

  

for i=1:length(second_discharge_time); 

  

  

    C        = chol(P); 

    Chi(:,1) = [S_n; S_p; x_navg; x_pavg]; 
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    Chi(:,2) = [S_n; S_p; x_navg; x_pavg] + ... 

        sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,3) = [S_n; S_p; x_navg; x_pavg] + ... 

        sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,4) = [S_n; S_p; x_navg; x_pavg] + ... 

        sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,5) = [S_n; S_p; x_navg; x_pavg] + ... 

        sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    Chi(:,6) = [S_n; S_p; x_navg; x_pavg] - ... 

        sqrt(4 + kappa)*[C(1,1); 0; 0; 0]; 

    Chi(:,7) = [S_n; S_p; x_navg; x_pavg] - ... 

        sqrt(4 + kappa)*[0; C(2,2); 0; 0];   

    Chi(:,8) = [S_n; S_p; x_navg; x_pavg] - ... 

        sqrt(4 + kappa)*[0; 0; C(3,3); 0];   

    Chi(:,9) = [S_n; S_p; x_navg; x_pavg] - ... 

        sqrt(4 + kappa)*[0; 0; 0; C(4,4)];   

    W(1)     = kappa / sqrt(4 + kappa); 
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    W(2:9)   = 1     / (2*(4+kappa)); 

    W        = W/sum(W);  

  

  

  

    %%%%%Now the SP measurement model 

    Iapp = second_discharge_current(i); 

    J_n  = -Iapp./Chi(1,:); 

    J_p  = Iapp./Chi(2,:); 

    x_nsurf = Chi(3,:) - ( J_n * R_n ) / ( 5 * F * D_n * c_nmax); 

    x_psurf = Chi(4,:) - ( J_p * R_p ) / ( 5 * F * D_p * c_pmax); 

  

    U_n     = .8214 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./... 

        x_nsurf + ... 

        .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 ... 

        * exp (... 

        0.4465*x_nsurf - 0.4108); 
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    U_p     = ( -4.8801 + 88.669 * x_psurf.^2 - 401.119 * x_psurf.^4 ... 

    + 342.909 * ... 

        x_psurf.^6 - 462.471 * x_psurf.^8 + 433.434 * x_psurf.^10 )... 

        ./ ... 

        ( -1 + 18.933*x_psurf.^2 - 79.532 * x_psurf.^4 + 37.311 *... 

        x_psurf.^6 ... 

        - 73.083 * x_psurf.^8 + 95.96*x_psurf.^10 ); 

    eta_n   = R_g * T ./ (F * alpha_a) .* log( ( J_n + (-4*c_e*... 

        F.^2*c_nmax.^2*k_n.^2.*x_nsurf.^2 ... 

       + 4*c_e*F^2*c_nmax.^2*k_n.^2.*x_nsurf+J_n.^2).^0.5 ) ./ ... 

       (2*F*c_e^0.5*k_n.*(c_nmax.*x_nsurf).^0.5 .* ... 

       (c_nmax-c_nmax.*x_nsurf).^0.5) ); 

    

    eta_p   = R_g * T / (F * alpha_c) .* log( ( J_p + (-4*c_e... 

        *F^2*c_pmax^2*k_p^2.*x_psurf.^2 ... 

       + 4*c_e*F^2*c_pmax^2*k_p^2.*x_psurf+J_p.^2).^0.5 ) ./ ... 
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       (2*F*c_e^0.5*k_p.*(c_pmax.*x_psurf).^0.5 .* ... 

       (c_pmax-c_pmax.*x_psurf).^0.5) ); 

    

    zeta = U_p + eta_p - U_n - eta_n; 

    y_hat    = sum(W.*zeta); 

    P_yy     = sum(W.*((zeta-y_hat).^2)); 

    y_hat_storage(i) = y_hat; 

     

    if i <= 50 

        P_xy     = (Chi - repmat([S_n; S_p; x_navg; x_pavg],1,9))... 

            .* [W; W; W; W] *(zeta - y_hat)';  

        K_k      = P_xy/(P_yy+0.2); 

        egg      = [S_n; S_p; x_navg; x_pavg] + K_k*(... 

            second_discharge_voltage(i) - y_hat); 

        S_n      = egg(1); 

        S_p      = egg(2); 

        x_navg   = egg(3); 
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        x_pavg   = egg(4); 

         

       Q        = 0.4e-4 * ones(4,4); 

       P        = P - K_k * P_xy' + Q; 

    end 

        J_n  = -Iapp./S_n; 

        J_p  = Iapp./S_p; 

        x_navg    = x_navg - 3 * J_n / (F * R_n * c_nmax) ; 

        x_pavg    = x_pavg - 3 * J_p / (F * R_p * c_pmax) ; 

         

     

end 

  

y_hat_storage = y_hat_storage(1:find(y_hat_storage<2.5,1)); 

figure 

hold on 

plot(second_discharge_time(1:length(y_hat_storage)), y_hat_storage,... 
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    'k-', 'linewidth', 2) 

axis([0 4300 2.4 4]) 

xlabel('Time (s)') 

ylabel('Voltage (V)') 

legend('UKF prediction 928.6 (s)', 'observations') 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

plot(second_discharge_time(1:length(second_discharge_voltage)),... 

    second_discharge_voltage,'ko') 

axis square 

box on 

clc 

clear all 

close all 

% Eric Walker  

% M.S. thesis PF 
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%% PF He, et al model 

  

%Load the data set. 

  

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'... 

    'NASA Ames Data\B0005.mat']); 

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'... 

    'NASA Ames Data\B0007.mat']); 

  

theta=[-9.86e-7,5.752e-2,8.983e-1,-8.34e-4]'; 

  

first_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ... 

    * exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 

  

second_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ... 

    * exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 
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%PF  

theta_set=repmat(theta,1,100); 

theta_set(1,1:100) = theta(1) + theta(1)/10 * (0.5-rand(100,1)); 

theta_set(2,1:100) = theta(2) + theta(2)/10 * (0.5-rand(100,1)); 

theta_set(3,1:100) = theta(3) + theta(3)/10 * (0.5-rand(100,1)); 

theta_set(4,1:100) = theta(4) + theta(4)/10 * (0.5-rand(100,1)); 

weights = 0.01 * ones(1,100); 

  

tic 

for j = 1:100 

    choose_par(j,:) = theta_set(1,j) * exp(theta_set(2,j) * ... 

        (1:250)) + theta_set(3,j) * exp(theta_set(4,j)*(1:250)); 

    RULs(j)         = find(choose_par(j,:) <= 0.8*(second_batt(1)),1); 

end 

toc 
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tic 

sigma = 0.1; 

for i = 1:200 

    if i ==50 

        weights_50 = weights; 

    end 

    if i == 100 

        weights_100 = weights; 

    end 

    if i == 150 

        weights_150 = weights; 

    end 

    % Get the likelihood 

    likelihood = 1/(sigma*sqrt(2*pi)) * exp(-1/2 * ... 

        ((second_batt(i)) - (theta_set(1,:) .* exp(theta_set(2,:)... 

        * i) + theta_set(3,:) .* exp(theta_set(4,:) * i))).^2 /... 

        sigma^2); 
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    % Update the weights 

    weights = weights .* likelihood; 

    weights = weights / sum(weights); 

end 

toc 

[RULs, ind] = sort(RULs); 

weights_50s = weights_50(ind); 

weights_100s = weights_100(ind); 

weights_150s = weights_150(ind); 

  

figure 

  

xlabel('k, Cycle index (cycle)') 

ylabel('Capacity (Ah)') 

axis square 

hold on  

plot(RULs', weights_50s + 0.8*second_batt(1),'k-', 'linewidth', 2) 
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plot(1:length(second_batt), second_batt,'ko','linewidth',1.5) 

  

  

% Make them range from 0 to 1, otherwise they will be light. 

for j = 1:100 

    plot(1:50,choose_par(j,1:50),'color',(1-weights_50(j)/max... 

        (weights_50))*[1, 1, 1]); % Smaller numbers are darker. 

    plot(50:100,choose_par(j,50:100),'color',(1-weights_50(j)/... 

        max(weights_100))*[1, 1, 1]); % Smaller numbers are darker. 

    plot(100:150,choose_par(j,100:150),'color',(1-weights_50(j)/... 

        max(weights_150))*[1, 1, 1]); % Smaller numbers are darker. 

    plot(150:200,choose_par(j,150:200), 'color',(1-weights_50(j)/max... 

        (weights))*[1, 1, 1]); 

end 

  

plot(RULs', weights_50s + 0.8*second_batt(1),'k-', 'linewidth', 2) 

plot(1:length(second_batt), second_batt,'ko','linewidth',1.5) 
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legend('PF prediction k=50', 'observations') 

plot([1,200],second_batt(1)*0.8*[1,1],'k-','linewidth',1.5) 

text(25,second_batt(1)*0.81,'EUL failure threshold') 

axis([0 200 0.65, 0.91]) 

%title('PF tracking four states, five percent particle variation') 

xlabel('k, Cycle index (cycle)') 

ylabel('Q, Capacity (Ah)') 

axis square 

box on 

  

err_early = sum(weights_50s.*RULs)-190 

err_late  = sum(weights_100s.*RULs)-190 

err_final = sum(weights_150s.*RULs)-190 

sig_early = sqrt(sum(weights_50s.*(RULs - (err_early + 190)).^2) ) 

sig_late  = sqrt(sum(weights_100s.*(RULs - (err_late + 190)).^2) ) 

sig_final = sqrt(sum(weights_150s.*(RULs - (err_final + 190)).^2) ) 
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%% PF Equivalent circuit model 

clear all 

load(['D:\Documents and Settings\Eric\My Documents\spring 2013\'... 

    'NASA Ames Data\B0006.mat']); 

  

global first_discharge_time first_discharge_current... 

    first_discharge_voltage; 

first_discharge_voltage = B0006.cycle(1,2).data.Voltage_measured(3:end); 

first_discharge_time    = B0006.cycle(1,2).data.Time(3:end); 

first_discharge_current = B0006.cycle(1,2).data.Current_measured(3:end); 

  

  

[ecm, resnorm, residuals] = lsqnonlin( @ecm_obj_fun, ... 

    [1.17e-8, 2.1, 1795.6, 0.28],[0 0 0 0], [1, 2.5, 2000, 1]);   

second_discharge_voltage = B0006.cycle(1,4).data.Voltage_measured(3:end); 

second_discharge_time    = B0006.cycle(1,4).data.Time(3:end); 

second_discharge_current = B0006.cycle(1,4).data.Current_measured(3:end); 
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second_discharge_time    = [second_discharge_time ... 

    (second_discharge_time(1:30) + second_discharge_time(end))]; 

second_discharge_current = [second_discharge_current ... 

    second_discharge_current(1:30)]; 

  

  

% PF 

sigma = 0.0015; 

  

%In the following lines, set the IG and variation percent. 

R = ecm(1) + ecm(1)/10*(0.5-rand(1,50)); 

Q = ecm(2) + ecm(2)/10*(0.5-rand(1,50)); 

C = ecm(3)  + ecm(3)/10*(0.5-rand(1,50)); 

R_ct = ecm(4) + ecm(4)/10*(0.5-rand(1,50)); 

  

  

weights = 0.02*ones(1,50); 
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V_cell_storage = []; 

tic 

for i = 1:224 

    % Get the likelihood 

    % Quantity inside the square, first 

    SOC_cell = 1 + second_discharge_current(i) ./ (Q*3600) .* ... 

        second_discharge_time(i); 

  

    SOC_n = 0.79.*SOC_cell + 0.01; 

    SOC_p = 0.97-0.51*SOC_cell; 

     

    x_nsurf = SOC_n; 

    x_psurf_set = SOC_p; 

     

    U_n     = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 - ... 

        .0172./x_nsurf + .0019./x_nsurf.^1.5 + .2808 * exp(0.9-... 

        15*x_nsurf) -.7984 * exp (0.4465*x_nsurf - 0.4108); 
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    U_p_set     = ( -4.656 + 88.669 * x_psurf_set.^2 - 401.119 * ... 

        x_psurf_set.^4 + 342.909 * ... 

        x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 * ... 

        x_psurf_set.^10 ) ./ ... 

        ( -1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 + ... 

        37.311 * x_psurf_set.^6 ... 

        - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10 ); 

     

    V_o = U_p_set - U_n ; 

     

    V_cell = V_o + second_discharge_current(i)*R + Q./C .* ... 

        exp(-second_discharge_time(i)./(R_ct .* C))... 

        + second_discharge_current(i).*R_ct.*(1-exp(... 

        -second_discharge_time(i)./(R_ct .* C))); 

    V_cell_storage = [V_cell_storage; V_cell]; 
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    if i<=194 

    quantity = (second_discharge_voltage(i) - V_cell).^2; 

    likelihood = 1./(sigma*sqrt(2*pi)) .* exp(-1/2 * ... 

        (quantity).^2 ./ sigma^2); 

    % Update the weights 

    weights = weights .* likelihood; 

    weights = weights/sum(weights); 

    end 

    if i == 50 

        weights_50 = weights; 

    end 

    if i == 100 

        weights_100 = weights; 

    end 

    if i == 150 

        weights_150 = weights; 

    end 
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end 

toc 

  

tic 

for j = 1:50 

    EODs(j) = find(V_cell_storage(:,j) <= 2.5,1); 

    V_cell_storage(EODs(j):end,j) = 0; 

end 

toc 

  

[EODs ind] = sort(EODs); 

weights_50s = weights_50(ind); 

weights_100s = weights_100(ind); 

weights_150s = weights_150(ind); 

  

figure 
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hold on 

plot(second_discharge_time(EODs), weights_50s*5 + 2.5,... 

    'k-','linewidth',2) 

plot(second_discharge_time(1:length(second_discharge_voltage)),... 

    second_discharge_voltage, 'ko', 'linewidth', 1.5) 

axis([0 4250 2.4 4]) 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

axis square 

box on 

%title('5 percent variation correct IG') 

xlabel('Time (s)') 

ylabel('Voltage (V)') 

legend('PF prediction 928.6 (s)', 'observations') 

for j=1:50 

    plot(second_discharge_time(1:50), V_cell_storage(1:50,j),... 

        'color', (1-weights_50(j)/max(weights_50))*[1,1,1]) 
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    plot(second_discharge_time(50:100), V_cell_storage(50:100,j),... 

        'color', (1-weights_100(j)/max(weights_100))*[1,1,1]) 

    plot(second_discharge_time(100:150), V_cell_storage(100:150,j),... 

        'color', (1-weights_150(j)/max(weights_150))*[1,1,1]) 

    plot(second_discharge_time(150:length(V_cell_storage)), ... 

        V_cell_storage(150:end,j), 'color', (1-weights_150(j)/... 

        max(weights_150))*[1,1,1]) 

  

end 

plot(second_discharge_time(EODs), weights_50s*5 + 2.5,'k-',... 

    'linewidth',2) 

plot(second_discharge_time(1:length(second_discharge_voltage))... 

    ,second_discharge_voltage, 'ko', 'linewidth', 1.5) 

  

err_early = sum(weights_50.*second_discharge_time(EODs))-3690 

err_late  = sum(weights_100.*second_discharge_time(EODs))-3690 

err_final = sum(weights_150.*second_discharge_time(EODs))-3690 
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sig_early = sqrt(sum(weights_50.*(second_discharge_time(EODs) -... 

    (err_early + 3690)).^2) ) 

sig_late  = sqrt(sum(weights_100.*(second_discharge_time(EODs) -... 

    (err_late + 3690)).^2) ) 

sig_final = sqrt(sum(weights_150.*(second_discharge_time(EODs) -... 

    (err_final + 3690)).^2) ) 

sum(weights_50.*second_discharge_time(EODs)) 

  

%%  PF Single Particle model 

  

S_n    = 0.2604; 

S_p    = 0.2570; 

k_n    = 37.4312e-12; 

k_p    = 17.4733e-12; 

R_n    = 2e-6; 

R_p    = 2e-6; 

D_n    = 29.0798e-15; 
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D_p    = 27.9034e-15; 

c_nmax = 30074.5; 

c_pmax = 51563.5; 

c_e    = 1000; 

x_navg = 0.9401; 

x_pavg = 0.5169; 

T      = 298.15; 

R_g    = 8.3143; 

F      = 96485; 

alpha_a  = 0.5; 

alpha_c  = 0.5; 

  

S_n    = S_n + S_n/10 * (0.5-rand(50,1)); 

S_p    = S_p + S_p/10 * (0.5-rand(50,1)); 

x_navg = x_navg + x_navg/10 * (0.5-rand(50,1)); 

x_pavg = x_pavg + x_pavg/10 * (0.5-rand(50,1)); 

weights    = 0.02*ones(1,50); 
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stop_cycle = length(second_discharge_voltage)+29; 

tic 

for i = 1:stop_cycle 

  

    Iapp = second_discharge_current(i); 

    J_n  = -Iapp./S_n; 

    J_p  = Iapp./S_p; 

    x_nsurf = x_navg - ( J_n * R_n ) / ( 5 * F * D_n * c_nmax); 

    x_psurf = x_pavg - ( J_p * R_p ) / ( 5 * F * D_p * c_pmax); 

  

    U_n     = .8214 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./... 

        x_nsurf + ... 

        .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 ... 

        * exp (... 

        0.4465*x_nsurf - 0.4108); 
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    U_p     = ( -4.8801 + 88.669 * x_psurf.^2 - 401.119 * x_psurf.^4 ... 

    + 342.909 * ... 

        x_psurf.^6 - 462.471 * x_psurf.^8 + 433.434 * x_psurf.^10 )... 

        ./ ... 

        ( -1 + 18.933*x_psurf.^2 - 79.532 * x_psurf.^4 + 37.311 *... 

        x_psurf.^6 ... 

        - 73.083 * x_psurf.^8 + 95.96*x_psurf.^10 ); 

    eta_n   = R_g * T ./ (F * alpha_a) .* log( ( J_n + (-4*c_e*... 

        F.^2*c_nmax.^2*k_n.^2.*x_nsurf.^2 ... 

       + 4*c_e*F^2*c_nmax.^2*k_n.^2.*x_nsurf+J_n.^2).^0.5 ) ./ ... 

       (2*F*c_e^0.5*k_n.*(c_nmax.*x_nsurf).^0.5 .* ... 

       (c_nmax-c_nmax.*x_nsurf).^0.5) ); 

    

    eta_p   = R_g * T / (F * alpha_c) .* log( ( J_p + (-4*c_e... 

        *F^2*c_pmax^2*k_p^2.*x_psurf.^2 ... 

       + 4*c_e*F^2*c_pmax^2*k_p^2.*x_psurf+J_p.^2).^0.5 ) ./ ... 

       (2*F*c_e^0.5*k_p.*(c_pmax.*x_psurf).^0.5 .* ... 
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       (c_pmax-c_pmax.*x_psurf).^0.5) ); 

    

    V_cell_set(i,:) = real(U_p + eta_p - U_n - eta_n); 

     

    x_navg    = x_navg - 3 * J_n / (F * R_n * c_nmax) ; 

    x_pavg    = x_pavg - 3 * J_p / (F * R_p * c_pmax) ; 

end 

  

for j = 1:50 

    try 

        EOD(j) = find(V_cell_set(:,j) <= 2.5,1); 

    catch 

        EOD(j) = EOD(j-1); 

    end 

    V_cell_set(EOD(j):end,j) = 0; 

end 

toc 
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tic 

for i=1:(stop_cycle-29) 

  

    weights         = 1/(0.04*sqrt(2*pi)).*exp(-(V_cell_set(i,:)... 

        -second_discharge_voltage(i)).^2/(2*0.04^2)); 

    weights   = weights/sum(weights) ; 

  

     

    if i==50 

            weights_50 = weights; 

  

    end 

    if i==100 

            weights_100 = weights; 

    end 

    if i==150 

            weights_150 = weights; 
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    end 

  

end 

toc 

  

  

figure 

axis square 

[EOD ind] = sort(EOD); 

weights_50s = weights_50(ind); 

weights_100s = weights_100(ind); 

weights_150s = weights_150(ind); 

  

hold on 

box on 

xlabel('Time(s)'); 

ylabel('Voltage(V)'); 
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plot(second_discharge_time(EOD),weights_50s*5+2.5, 'k-',... 

    'linewidth', 2) 

plot(second_discharge_time(1:length(second_discharge_voltage)),... 

    second_discharge_voltage, 'ko', 'linewidth', 1.5) 

legend('PF prediction 928.6 (s)','observations') 

for j = 1:50 

    plot(second_discharge_time(1:100), V_cell_set(1:100,j), 'color',... 

        (1-0.8*weights_50(j)/max(weights_50))*[1,1,1]) 

    plot(second_discharge_time(50:100), V_cell_set(50:100,j), ... 

        'color', (1-0.8*weights_100(j)/max(weights_100))*[1,1,1]) 

    plot(second_discharge_time(100:150), V_cell_set(100:150,j), ... 

        'color', (1-0.8*weights_150(j)/max(weights_150))*[1,1,1]) 

    plot(second_discharge_time(150:length(V_cell_set)), ... 

        V_cell_set(150:end,j), 'color', (1-0.8*weights_150(j)/... 

        max(weights_150))*[1,1,1]) 

  

end 
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plot(second_discharge_time(EOD),weights_50s*5+2.5, 'k-', ... 

    'linewidth', 2) 

  

plot(second_discharge_time(1:length(second_discharge_voltage)),... 

    second_discharge_voltage, 'ko', 'linewidth', 1.5) 

axis([0 4300 2.4 4]) 

plot([1,4250],2.5*[1,1],'k-','linewidth',1.5) % The EODV line. 

text(25,2.55,'EODV failure threshold') 

axis square 

hold off 

  

  

  

err_early = sum(weights_50.*second_discharge_time(EOD))-3690 

err_late  = sum(weights_100.*second_discharge_time(EOD))-3690 

err_final = sum(weights_150.*second_discharge_time(EOD))-3690 

sig_early = sqrt(sum(weights_50.*(second_discharge_time(EOD) -... 
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    (err_early + 3690)).^2) ) 

sig_late  = sqrt(sum(weights_100.*(second_discharge_time(EOD) -... 

    (err_late + 3690)).^2) ) 

sig_final = sqrt(sum(weights_150.*(second_discharge_time(EOD) -... 

    (err_final + 3690)).^2) ) 

 

function obj = SP_obj_fun(pars,time,current,voltage) 

  

S_n    = 0.2607; 

S_p    = 0.2571; 

k_n    = 37.4312e-12; 

k_p    = 17.4733e-12; 

R_n    = 2e-6; 

R_p    = 2e-6; 

D_n    = 29.0798e-15; 

D_p    = 27.9034e-15; 

c_nmax = 30074.5; 
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c_pmax = 51563.5; 

c_e    = 1000; 

x_navg = 0.9388; 

x_pavg = 0.5171; 

T      = 298.15; 

R_g    = 8.3143; 

F      = 96487; 

alpha_a  = 0.5; 

alpha_c  = 0.5; 

  

if length(pars) > 1 

    S_n = pars(1); 

    S_p = pars(2); 

end 

if length(pars) > 2 

    x_navg = pars(3); 

    D_pavg = pars(4); 
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end 

if length(pars) > 4 

    k_n = pars(5); 

    k_p = pars(6); 

end 

if length(pars) > 6 

    x_navg = pars(7); 

    x_pavg = pars(8); 

end 

if length(pars) > 8 

    c_nmax = pars(9); 

    c_pmax = pars(10); 

end 

if length(pars) > 10 

    alpha_a = 0.5; 

    alpha_c = 0.5; 

end 
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if length(pars) > 12 

    R_n = pars(13); 

    R_p = pars(14); 

end 

if length(pars) > 14 

    c_e = pars(15); 

    T   = pars(16); 

end 

V_cell = [];  % The model returns voltage, which is diplayed 

% in plots.  The vector is initialized before assigning entries.   

% Likewise, initialize the vectors for states of charge. 

x_navg_vec = []; 

x_pavg_vec = []; 

  

% The model is put into motion.   

for i = 1:length(time)  % The model is going to calculate,  

    % one time point at an iteration, forward to the end. 
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    % Calculate the voltage at the current time point, first.   

    % Then, thedynamic model will reach ahead to prepare the  

    % changing states of charge for the next loop, the next  

    % time point.  

     

    Iapp    = current(i); % Assign the current at the present 

    % time point, so it's less bulky in the equations. 

    J_n     = -Iapp / S_n; 

    J_p     = Iapp / S_p; 

    x_nsurf = x_navg - ( J_n * R_n ) / ( 5 * F * D_n * c_nmax); 

    x_psurf = x_pavg - ( J_p * R_p ) / ( 5 * F * D_p * c_pmax); 

     

    % Now, we have enough for the open circuit potentials. 

    U_n     = .8214 + .1387*x_nsurf + .029*x_nsurf^0.5 - .0172/... 

        x_nsurf + ... 

        .0019/x_nsurf^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 *... 

        exp (... 
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        0.4465*x_nsurf - 0.4108); 

     

    U_p     = ( -4.8811 + 88.669 * x_psurf^2 - 401.119 * x_psurf^4 +... 

        342.909 * ... 

        x_psurf^6 - 462.471 * x_psurf^8 + 433.434 * x_psurf^10 ) / ... 

        ( -1 + 18.933*x_psurf^2 - 79.532 * x_psurf^4 + 37.311 *... 

        x_psurf^6 ... 

        - 73.083 * x_psurf^8 + 95.96*x_psurf^10 ); 

     

    

   eta_n    = R_g * T / (F * alpha_a) * log( ( J_n + (-4*c_e*F^2*... 

       c_nmax^2*k_n^2*x_nsurf^2 ... 

       + 4*c_e*F^2*c_nmax^2*k_n^2*x_nsurf+J_n^2)^0.5 ) / (2*F*... 

       c_e^0.5*k_n*(c_nmax*x_nsurf)^0.5 * ... 

       (c_nmax-c_nmax*x_nsurf)^0.5) ); 

    

   eta_p    = R_g * T / (F * alpha_c) * log( ( J_p + (-4*c_e*... 
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       F^2*c_pmax^2*k_p^2*x_psurf^2 ... 

       + 4*c_e*F^2*c_pmax^2*k_p^2*x_psurf+J_p^2)^0.5 ) / (2*... 

       F*c_e^0.5*k_p*(c_pmax*x_psurf)^0.5 * ... 

       (c_pmax-c_pmax*x_psurf)^0.5) ); 

    

   % Now, the model returns its voltage. 

   V_cell(i) = U_p + eta_p - U_n - eta_n; 

    

   % Prepare the state of charge for the next iteration, 

   %  based upon the present current and the time step to come. 

    

   if i<length(time)  % The conditional statement is  

       % necessary because at the very end, 'i + 1' is out of bounds 

       % of the data vector. 

       t_step    = time(i+1) - time(i); 

   end % t_step will be left as the last time step, when the end  

   % of the data vector has passed. 
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   % Before changing the SOC, save the current point, for plotting. 

   x_navg_vec(i) = x_navg; 

   x_pavg_vec(i) = x_pavg; 

    

   x_navg    = x_navg - 3 * J_n / (F * R_n * c_nmax) ; 

   x_pavg    = x_pavg - 3 * J_p / (F * R_p * c_pmax) ; 

    

end 

  

obj = voltage - V_cell; % Change to (1:50) for 928.6s estimate. 

function [obj]=ecm_obj_fun(theta) 

  

  

R = theta(1); 

Q = theta(2); 

C = theta(3); 
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R_ct = theta(4); 

  

global first_discharge_time first_discharge_current... 

    first_discharge_voltage; 

SOC_cell = 1 + first_discharge_current / (3600 * Q) .*... 

    first_discharge_time; 

  

SOC_n = 0.79*SOC_cell + 0.01; 

SOC_p = 0.97-0.51*SOC_cell;  

  

x_nsurf = SOC_n; 

x_psurf_set = SOC_p; 

  

U_n     = .7222 + .1387*x_nsurf + .029*x_nsurf.^0.5 - .0172./... 

    x_nsurf + ... 

        .0019./x_nsurf.^1.5 + .2808 * exp(0.9-15*x_nsurf) -... 

        .7984 * exp (... 
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        0.4465*x_nsurf - 0.4108); 

     

U_p_set     = ( -4.656 + 88.669 * x_psurf_set.^2 - 401.119 *... 

    x_psurf_set.^4 + 342.909 * ... 

        x_psurf_set.^6 - 462.471 * x_psurf_set.^8 + 433.434 *... 

        x_psurf_set.^10 ) ./ ... 

        ( -1 + 18.933*x_psurf_set.^2 - 79.532 * x_psurf_set.^4 ... 

        + 37.311 * x_psurf_set.^6 ... 

        - 73.083 * x_psurf_set.^8 + 95.96*x_psurf_set.^10 ); 

  

V_o = U_p_set - U_n ; 

  

V_cell = V_o + first_discharge_current.*R + Q./C .* exp(... 

    -first_discharge_time./(R_ct * C))... 

    + first_discharge_current.*R_ct.*(1-exp(... 

    -first_discharge_time./(R_ct * C))); 
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obj = first_discharge_voltage - V_cell ; 

 

function V_cell = SP(pars,time,current) 

  

S_n    = 3.41; 

S_p    = 3.86; 

k_n    = 37.4312e-12; 

k_p    = 17.4733e-12; 

R_n    = 2e-6; 

R_p    = 2e-6; 

D_n    = 29.0798e-15; 

D_p    = 27.9034e-15; 

c_nmax = 30074.5; 

c_pmax = 51563.5; 

c_e    = 1000; 

x_navg = 0.8957971; 
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x_pavg = 0.5075848; 

T      = 298.15; 

R_g    = 8.3143; 

F      = 96487; 

alpha_a  = 0.5; 

alpha_c  = 0.5; 

if length(pars) > 0 

    S_n = pars(1); 

    S_p = pars(2); 

end 

if length(pars) > 2 

    x_navg = pars(3); 

    x_pavg = pars(4); 

end 

if length(pars) > 4 

    k_n = pars(5); 

    k_p = pars(6); 
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end 

if length(pars) > 6 

    x_navg = pars(7); 

    x_pavg = pars(8); 

end 

if length(pars) > 8 

    c_nmax = pars(9); 

    c_pmax = pars(10); 

end 

if length(pars) > 10 

    alpha_a = 0.5; 

    alpha_c = 0.5; 

end 

if length(pars) > 12 

    R_n = pars(13); 

    R_p = pars(14); 

end 
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if length(pars) > 14 

    c_e = pars(15); 

    T   = pars(16); 

end 

V_cell = [];  % The model returns voltage, which is diplayed 

% in plots.  The vector is initialized before assigning entries. 

% Likewise, initialize the vectors for states of charge. 

x_navg_vec = []; 

x_pavg_vec = []; 

  

% The model is put into motion.   

for i = 1:length(time)  % The model is going to calculate,  

    % one time point at an iteration, forward to the end. 

    % Calculate the voltage at the current time point, first.   

    % Then, the dynamic model will reach ahead to prepare the  

    % changing states of charge for the next loop, the next time    

    % point. 
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    Iapp    = current(i); % Assign the current at the present 

    % time point, so it's less bulky in the equations. 

    J_n     = -Iapp / S_n; 

    J_p     = Iapp / S_p; 

    x_nsurf = x_navg - ( J_n * R_n ) / ( 5 * F * D_n * c_nmax); 

    x_psurf = x_pavg - ( J_p * R_p ) / ( 5 * F * D_p * c_pmax); 

     

    % Now, we have enough for the open circuit potentials. 

    U_n     = .8214 + .1387*x_nsurf + .029*x_nsurf^0.5 - .0172/... 

        x_nsurf + ... 

        .0019/x_nsurf^1.5 + .2808 * exp(0.9-15*x_nsurf) -.7984 *... 

        exp (0.4465*x_nsurf - 0.4108); 

     

    U_p     = ( -4.8811 + 88.669 * x_psurf^2 - 401.119 * x_psurf^4 +... 

        342.909 * ... 

        x_psurf^6 - 462.471 * x_psurf^8 + 433.434 * x_psurf^10 ) / ... 
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        ( -1 + 18.933*x_psurf^2 - 79.532 * x_psurf^4 + 37.311 *... 

        x_psurf^6 ... 

        - 73.083 * x_psurf^8 + 95.96*x_psurf^10 ); 

     

     

   % In order to get the overpotentials, and complete the  

   % voltage model, root-finding is necessary.  fzero,  

   % with an anonymous function inside, returns the overpotentials. 

    

   eta_n    = R_g * T / (F * alpha_a) * log( ( J_n + (-4*c_e*F^2*... 

       c_nmax^2*k_n^2*x_nsurf^2 ... 

       + 4*c_e*F^2*c_nmax^2*k_n^2*x_nsurf+J_n^2)^0.5 ) / (2*F*... 

       c_e^0.5*k_n*(c_nmax*x_nsurf)^0.5 * ... 

       (c_nmax-c_nmax*x_nsurf)^0.5) ); 

    

   eta_p    = R_g * T / (F * alpha_c) * log( ( J_p + (-4*c_e*... 

       F^2*c_pmax^2*k_p^2*x_psurf^2 ... 
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       + 4*c_e*F^2*c_pmax^2*k_p^2*x_psurf+J_p^2)^0.5 ) / (2*F*... 

       c_e^0.5*k_p*(c_pmax*x_psurf)^0.5 * ... 

       (c_pmax-c_pmax*x_psurf)^0.5) ); 

    

   % Now, the model returns its voltage. 

   V_cell(i) = U_p + eta_p - U_n - eta_n; 

    

   % Prepare the state of charge for the next iteration,  

   % based upon the present current and the time step to come. 

    

   if i<length(time)  % The conditional statement is  

       %necessary because at the very end, 'i + 1' is out of  

       %bounds of the data vector. 

       t_step    = time(i+1) - time(i); 

   end % t_step will be left as the last time step,  

   % when the end of the data vector has passed. 
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   % Before changing the SOC, save the current point, for plotting. 

   x_navg_vec(i) = x_navg; 

   x_pavg_vec(i) = x_pavg; 

    

   x_navg    = x_navg - 3 * J_n / (F * R_n * c_nmax) ; 

   x_pavg    = x_pavg - 3 * J_p / (F * R_p * c_pmax) ; 

    

end 

  

end 
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