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ABSTRACT 

With the limited fossil fuel reserve and increased power demand, polymer 

electrolyte membrane fuel cells (PEMFC) have been considered to be a promising 

alternative to the current energy consumption mode due to its high energy conversion, 

high efficiency, and zero emissions. However, high cost, poor stability, and sluggish 

kinetic for oxygen reduction reaction (ORR) of Pt/C cathode catalysts are obstacles for 

the commercialization of PEMFC for automotive application. The observed poor stability 

is attributed to a corrosion of carbon supports due to low pH, high temperature, and high 

anodic potentials (1.0-1.5 V) at the cathode interface during start-up/shutdown 

conditions. Electrochemical oxidation of carbon results in carbon loss leading to Pt 

detachment/sintering and subsequent loss of electrochemical surface area (ECSA). 

Another contributing factor is Pt and/or alloying element dissolution and particle 

sintering in operating conditions (0.6-1.0 V). 

In this study, a support material, a Pt catalyst and a compressive Pt lattice catalyst 

were optimized to develop an active and stable cathode catalyst for PEMFC. A carbon 

composite catalyst (CCC) was developed from high surface area carbon black (HSACB), 

which has unique ORR activity and stability compared to those of HSACB. By using 

CCC support for Pt/C catalysts, the support stability was improved significantly. Also, 

transition metals embedded in CCC structure were used to synthesize the compressive Pt 

catalyst by using USC’s novel method. The catalyst indicated improved activity when 

compared with pristine Pt catalyst. 



vii 

To further enhance activity and stability, a novel activated carbon composite 

support (ACCS) was developed by optimizing surface area, pore-size distribution, as well 

as the degree of graphitization and the hydrophobicity. Pt deposition on the ACCS was 

optimized using a modified polyol process developed in our laboratory in order to control 

Pt particle size and Pt particle distribution. Fuel cell performance and stability of 

Pt/ACCS were evaluated using accelerated stress test (AST) protocols recommended by 

the US Fuel Cell Tech Team for both the catalyst and the support. The Pt/ACCS catalyst 

showed improved activity and excellent support stability at 1.0-1.5 V over those of 

commercial catalysts due to the controlled Pt particles and optimized properties of 

ACCS. Also, a compressive Pt catalyst (Pt*/ACCS) was developed to further increase 

activity and stability at 0.6-1.0 V. Pt*/ACCS was prepared using the in-house developed 

procedure in which Co diffuses into the Pt/ACCS catalyst followed by controlled heat-

treatment. The pyrolysis temperature and Pt/Co ratio were optimized to initiate formation 

of compressive Pt catalyst. A protective coating method was used to inhibit particle 

growth during heat treatment which maintains the catalyst particle size in the range 

between 3 and 5 nm. Pt*/ACCS showed enhanced catalyst stability at 0.6-1.0 V over that 

of Pt/ACCS while keeping good performance and good support stability. The good 

stability of Pt*/ACCS is attributed to a potential shift of Pt oxide formation to a more 

positive direction which results in less Pt dissolution due to less reduction of Pt oxide 

when the catalyst is cycled in cathode direction from 1.0 to 0.6 V. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Since the first concept of fuel cells was discovered in 1839 by William Grove, 

enormous research on catalysts, stacks, and systems has been carried out in variety of fuel 

cell types including solid oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), 

alkaline fuel cells (AFC), direct methanol fuel cells (DMFC), phosphoric acid fuel cells 

(PAFC), and polymer electrolyte membrane fuel cells (PEMFC) [1, 2]. A fuel cell is an 

electrochemical device that continuously converts chemical energy into electrical energy 

(and some heat) for as long as fuel and oxidant are supplied. It is a power generating 

device which has higher efficiency and low emission when compared to batteries and 

combustion engines [2]. 

Among various types of fuel cells, PEMFCs have attracted attention for 

automotive applications due to their high efficiency, high current density output, low-

temperature operation, and low emissions [3-7]. Robust cation exchange membranes 

were originally developed by DuPont and have proved instrumental in combining all the 

key parts of a fuel cell, anode electrode, cathode electrode, the electrolyte, and the gas 

diffusion layer (GDL), in a very compact unit which is membrane electrode assembly 

(MEA). The membrane relies on the presence of liquid water to be able to conduct 

protons effectively; therefore, to achieve good performance, effective electrocatalyst
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technology is required. The catalysts form thin gas-porous electrode layers on either side 

of the membrane. Ionic contact with the membrane is enhanced by mixing the catalysts 

with a liquid form of the membrane ionomer while constructing electrodes. The MEA is 

located between a pair of bi-polar plates (which also have a role of the current collector) 

with machined flow field for distributing fuel and oxidant to anode and cathode, 

respectively. Figure 1.1 represents the unit cell cross-section of a fuel cell stack  [8]. 

As shown in Figure 1.1, the hydrogen oxidation reaction (HOR) takes place on 

the anode catalysts with the following reaction [2]. 

 

ଶܪ 	→ ାܪ2 ൅ 2݁ି	ሺܧ௢ ൌ .ݏݒ	ܸ	0.00  ሺ1ሻ																																				ሻܧܪܴ

 

Various metal catalysts show high activity for HOR, but in acidic electrolytes, 

noble metals show the greatest stability towards corrosion or passivation. The exchange 

current density, io, of the reaction on Pt single crystals is ~ 10−3 A cm−2 [9]. This high io 

implies that on increasing load, the anode stays at a potential close to the theoretical 

reversible potential.  

The oxygen reduction reaction (ORR) is the primary electrochemical reaction 

occurring at the cathode of the fuel cells. The ORR in aqueous media is governed by a 

number of possible reactions. The thermodynamic potentials for the reactions are shown 

below [10]. 

 

ܱଶ ൅ ାܪ4 ൅ 4݁ି → ௢ܧሺ	ଶܱܪ2 ൌ .ݏݒ	ܸ	1.23  ሺ2ሻ																											ሻܧܪܴ

ܱଶ ൅ ାܪ2 ൅ 2݁ି → ௢ܧሺ	ଶܱଶܪ ൌ .ݏݒ	ܸ	0.67  ሺ3ሻ																												ሻܧܪܴ
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The generalized scheme for the ORR is shown in Figure 1.2 [11]. Based on this 

scheme, oxygen can be reduced either directly to water with the rate constant k1 without 

intermediate formation of H2O2,ad (direct four-electron reduction) to H2O2,ad with the rate 

constant k2 (series two-electron reduction). The adsorbed peroxide can be 

electrochemically reduced to water with the rate constant k3; catalytically decomposed on 

the electrode surface (k4) or desorbed into the bulk of the solution (k5). Ideally, the direct 

four-electron oxygen reduction path (Eq. 2) is more desirable than two-electron reduction 

path (Eq. 3) for high efficiency. Since the four-electron oxygen reduction is highly 

irreversible in aqueous electrolyte, it results in substantial energy losses in PEMFCs. In 

most instances, the exchange current densities practical for kinetic studies are much 

larger than the one for ORR; therefore, the information obtained from IV data is confined 

only to the rate-determining step, which is ORR [12]. Also, it is clear from the above 

discussion that the oxygen reduction takes place at a high positive potential in acid 

medium. At such a high potential, most of the metals will dissolve and only noble metals 

are stable.  

To determine the activities of various metals toward ORR, Norskov and co-

workers calculated the Gibbs free energy of the ORR intermediates as a function of 

cathode potential based on a simple dissociative mechanism, i.e., assuming the adsorbed 

oxygen atoms and the hydroxyl groups being the only intermediates by using density 

functional theory (DFT) models [13]. As shown in Figure 1.3, the model predicts a 

volcano-shaped relationship between the rate of the ORR and the oxygen adsorption 

energy, with platinum (Pt) and palladium (Pd) being the best metals for electrocatalysis 

for the ORR.  
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Therefore, Pt and Pt-based alloy catalysts are most commonly used as cathode 

catalysts for PEMFCs due to their high activity and stability [7, 14, 15]. However, the 

high cost of Pt metal is an obstacle for the commercialization of PEMFCs for automotive 

applications [16]. To overcome the cost issues of Pt-based catalysts, many recent studies 

have focused on decreasing the Pt loadings and increasing the Pt utilization in fuel cell 

electrodes while maintaining satisfactory activity and stability. These efforts include the 

design of novel catalysts, the use of new catalyst support materials, development of new 

methods for catalyst synthesis, optimizing Pt catalyst structures, developing Pt-alloy 

catalysts, and the optimization of electrode structure and fabrication methods [17-23]. 

In spite of relatively high stability of Pt metal in acidic medium, the 

electrochemical durability of Pt-based catalysts under  fuel cell operating conditions are 

not still satisfactory in terms of commercialization of PEMFCs for automotive 

applications [16]. The durability of Pt-based catalysts can be compromised by Pt 

sintering and dissolution, especially under the load cycling found in fuel cell vehicles, 

which accelerates these processes [24-29]. These effects significantly decrease the 

electrochemically active surface area and Pt utilization in fuel cell cathodes. In addition, 

the dissolution of non-noble metals in the catalyst alloy not only causes a decrease in the 

catalyst’s activity, but it also poisons the MEAs via ion exchange between the metal 

cations and the protonic sites on both the Nafion® membrane and the ionomer inside the 

catalyst layer [26]. 

Another concern complicating the use of carbon-supported Pt-based catalysts is 

the corrosion of the high surface area carbon support [21, 23, 28, 30, 31]. During the 

startup/shutdown cycle, the cathode interface potential of a fuel cell may increase to 1.2–
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1.5 V, or even higher. At these high potentials, the corrosion rate of carbon increases 

drastically resulting in severe degradation of the carbon support [32-35]. Oxidation of the 

carbon surface increases its hydrophilicity and thus affects water removal, resulting in an 

increased mass transfer resistance. In addition, the oxidation of carbon increases the 

electrical resistance of the catalysts, leads to the aggregation of catalyst particles, and 

even damages the structure of the catalyst layer. In particular, Pt increases the corrosion 

rate of carbon supports [28, 30, 31]. In spite of world-wide research about durability 

issues, it is still challenging to obtain a Pt-based fuel cell cathode catalyst with both high 

activity and durability necessary for automotive application. 

1.2 Literature review 

1.2.1 Carbon supports for Pt-based cathode catalysts 

Carbon black (CB) is a typical catalyst support material for fuel cell applications 

because of its high electrical conductivity, large surface area, and well-defined pore 

structure. Pt and Pt-based alloy catalysts supported on high surface area carbons have 

been used for ORR in PEMFCs [4, 7, 14, 36]. Recent research on PEMFC development 

mainly focuses on the reliability of the system and durability of the catalysts and catalyst 

supports. The performance degradation of PEMFCs is affected by several factors 

including Pt and/or alloying element dissolution [37, 38], Pt particle sintering [37-39], 

carbon support corrosion [31, 40-43], and membrane thinning [37, 38]. 

It has been reported that automotive fuel cell systems can experience excursions 

to very high potential regions due to repetitive shutdown/startup of the fuel cell system or 

due to local fuel cell starvation [44]. Reiser et al. [45] have shown that the cathode 

interfacial potential difference can reach ~1.5 V due to the “H2/air front” mechanism in 
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the anode compartment during startup/shutdown and carbon corrosion is an inevitable 

parasitic reaction at these high potentials. This high potential with other favorable 

conditions such as the presence of Pt, low pH, high oxygen and water contents, and high 

temperature accelerate the carbon corrosion according to the following reaction [46]: 

 

ܥ ൅ ଶܱܪ2 → ଶܱܥ ൅ ାܪ4 ൅ 4݁ି	ሺܧ௢ ൌ .ݏݒ	ܸ	0.207  ሺ4ሻ														Ԩሻ	25	ݐܽ	ܧܪܴ

 

In general, carbon corrosion occurs through the formation of oxygen-containing 

functional groups like carboxyl, carbonyl, hydroxyl, phenol, etc. on the surface at high 

potentials and temperature (>1.0 V vs. reversible hydrogen electrode (RHE) at room 

temperature or >0.8 V vs. RHE at 65 °C) [31, 42]. Figure 1.4 shows a schematic of the 

effects of carbon corrosion on a PEMFC cathode [41]. Carbon corrosion weakens the 

catalyst interaction with the support resulting in the formation of electrically isolated Pt 

particles that are detached from the carbon support. Electrochemical oxidation of the 

carbon support results in carbon support loss which leads to Pt agglomeration and 

sintering and subsequent loss of electrochemical surface area (ECSA) [39, 40, 43]. 

Carbon support oxidation can increase the hydrophilicity of the surface which results in a 

decrease in gas permeability [47] as the pores are filled with water that hinders gas 

transport [48]. Carbon support loss also causes a decrease in catalyst layer thickness 

which increases the cell resistance [49] due to poor electrical contact with the GDL [50, 

51]. Thus, carbon corrosion is a detrimental factor which affects the cathode catalyst 

degradation and overall PEMFC performance loss. 
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In order to overcome the problems associated with carbon supports, alternative 

materials such as metal oxides [41, 52-55], conducting polymers [56], non-conducting 

polymers [8, 57], metal nitrides and metal carbides [58, 59], ZrO2/C [60, 61], CeO2/C 

[62] have been explored as catalyst supports for PEMFC application with limited success 

in terms of achieving desired power density requirements necessary for automotive 

applications. Hence, high surface area carbons and graphitic carbons are being used as 

the catalyst support for PEMFC applications. 

Carbon corrosion in PEMFC cathode catalysts has been extensively studied in 

both three-electrode set-up using a rotating ring disk electrode (RRDE) [63-71] and under 

fuel cell operating conditions [32-35, 44, 72-81]. Mechanistic studies to understand 

carbon corrosion under PEMFC operating conditions have also been reported [82, 83]. 

The effect of corrosion of BP-2000 and XC-72 carbon supports on the durability of Pt/C 

catalyst was studied by Wang et al. [70] by applying a constant potential of 1.2 V under 

simulated PEMFC conditions. A larger increase in Pt particle size and a higher Pt loss 

was observed in the Pt/BP-2000 catalyst than in Pt/XC-72 under potential cycling 

condition between 0.6 and 1.2 V. ECSA loss of 40.9% for the Pt/BP-2000 and 20.6% for 

the Pt/XC-72 catalysts have been reported. Studies of the corrosion mechanism of Pt/XC-

72 and Pt/BP-2000 catalysts using RRDE and observations using a transmission electron 

microscope indicated that major corrosion occurred inside the catalyst with some minor 

corrosion on the surface in the case of Pt/XC-72, whereas corrosion predominantly 

occurred at the surface for Pt/BP-2000 [71]. 

The microstructure effects on the electrochemical corrosion of furnace blacks, 

proprietary carbons of the Sibunit family, carbon nanofilaments, and carbon-supported Pt 
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catalysts have been studied in a three-electrode cell in 2 M H2SO4 at 80 °C [64]. 

Corrosion currents were found to decay with time roughly following the t−0.5 dependence. 

Corrosion current densities (normalized to the surface area) depended strongly on the 

microstructure of the carbon material. The proprietary Sibunit carbon and carbon 

nanofiber possess higher corrosion stability than conventional furnace blacks. The 

electrochemical stability of carbon nanofiber [63], mesoporous carbon [65], nitrogen-

doped reduced graphene oxide [67], and graphene oxide (GO) [66, 68] supports in RRDE 

has also been reported. The experiments on carbon nanofibers showed that the relative 

increase in surface oxides during the electrochemical oxidation treatment is significantly 

smaller than on CB [63]. Potential cycling between 0.8 and 1.4 V in an RRDE indicated 

better stability for catalysts on Vulcan carbon due to the presence of larger average 

graphitic crystallites than for catalysts supported on high-surface-area ordered 

mesoporous carbon [65]. The GO has been used as a support for the cathode catalyst in 

PEMFCs because its oxygen-containing groups act as binding sites for Pt nanoparticles 

[66-68]. Unlike conventional Pt catalysts, a Pt catalyst supported on nitrogen-doped 

reduced GO showed no performance degradation after 1000 cycles between 0.6 and 1.2 

V in an accelerated durability test (ADT) [67]. He et al. [66] suggested a bifunctional 

effect of both graphitization and oxygen functional groups on the catalytic activity and 

stabilization of Pt nanoparticles deposited on reduced graphene oxide (Pt/RGO) catalysts. 

The support durability test results using three-electrode cell studies offer only limited 

information about the stability of various carbon supports and do not provide any insight 

into the durability of these supports in PEMFCs under actual startup/shutdown 

conditions. 
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The support durability of various carbon-supported Pt catalysts subjected to 

different accelerated corrosion tests in PEMFCs has been reported in the literature [32-

35, 44, 72-82]. Wang et al. [81] carried out support corrosion characterization studies on 

multiwall carbon nanotube (MWCNT) and commercial Vulcan XC-72 supports using 

potentiostatic treatment (0.9 V) for 168 h. They concluded that the multiwall carbon 

nanotube support is electrochemically more stable than the Vulcan XC-72 support since 

the former showed 30% lower corrosion current and a 37% loss in ECSA (80% loss in 

ECSA for Vulcan XC-72) after applying a constant potential of 0.9 V for 168 h. 

However, the experimental conditions used in this study do not effectively induce carbon 

corrosion since the extent of carbon corrosion is significant only at potentials >1.0 V. Bi 

and Fuller [72] studied the effect of temperature on carbon corrosion in Pt/C under 

accelerated conditions by applying a square-wave potential cycling between 0.87 and 1.2 

V vs. RHE. More rapid degradation was observed due to loss of ECSA and Pt deposition 

on the membrane at 80 °C than at 60 or 40 °C. 

Oh et al. [34, 35] and Lim et al. [32, 33] studied carbon corrosion in a variety of 

carbons such as CB, carbon nanofiber (CNF) and carbon nanocage (CNC) in Pt/CB, 

Pt/CNF and Pt/CNC catalysts by applying a constant potential of 1.4 V for 30 min. Using 

on-line mass spectrometry, they measured the amount of CO2 produced when these 

catalysts were subjected to a high potential. A comparison study involving Pt/CB, 

Pt/CNF and Pt/CNC by Oh et al. [35] indicated that the degree of graphitization did not 

directly correlate to the higher corrosion resistance. The authors concluded that 

hydrophobicity was a critical factor in enhancing the supports’ resistance to corrosion and 

that carbon nanocage was more resistant to corrosion than carbon nanofiber. Lim et al. 
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[33] also found significant corrosion resistance for the carbon nanocage support with 

2.3% performance degradation at 0.6 V under H2/O2 fuel cell polarization after applying 

1.4 V to the cathode for 30 min. In a separate study, Lim et al. [32] showed that the 

presence of water is indispensable for and the presence of gas-phase O2 has little effect 

on the electrochemical carbon corrosion. 

The durability of graphitic carbon (GrC) [76, 80] and graphitized MWCNT [77] 

supports was studied through accelerated stress tests (AST) using potentiostatic (potential 

holding at 1.2 V) [77, 80] and potential cycling (between 0.6 and 1.2 V) [76] 

experiments. Application of the constant potential to the Pt/GrC and Pt/non-GrC cathodes 

showed fuel cell performance degradation of only 10% after 70 h for the Pt/GrC and a 

much higher loss (77%) for the Pt/non-GrC in a H2/O2 fuel cell. The AST study for Pt3Co 

and Pt catalysts supported on graphitic and non-graphitic carbon supports subjected to 

potential cycling between 0.6 and 1.2 V indicated an order of durability: Pt3Co/GrC > 

Pt/GrC > Pt3Co/non-GrC > Pt/non-GrC [76]. The comparison study involving Pt/C, 

pristine, and graphitized Pt/MWCNT catalysts showed Pt particle growth in the Pt/C 

catalyst after subjecting the AST at 1.2 V [77]. The study concluded that Pt particles have 

a high tendency to aggregate upon carbon corrosion during AST because of their high 

surface-energy. Furthermore, in Pt/C, the amorphous nature of carbon with a higher 

number of defect sites facilitates carbon corrosion resulting in larger particles relative to 

Pt deposited on pristine and graphitized MWCNTs. 

A simple low-temperature self-catalyzed reduction treatment has been shown to 

improve the support durability at 1.4 V of the carbon nanotube (CNT) supports. Studies 

consisting of an accelerated test for 6 h followed by electrochemical characterization 
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studies including ECSA measurement and H2/O2 polarization curve indicated an activity 

loss of 62.5% for the commercial Pt/C and of only 6.2% for the CNT subjected to self-

catalyzed reduction treatment. An increase in polarization resistance of 3% for the 

Pt/CNT as opposed to a 700% increase for the Pt/C has been reported [75]. 

Dhanushkodi et al. [73] used a variety of voltage waveforms such as two square-

wave potential cycling tests (from 1.0 V to 1.4 V and from 1.0 V to 1.5 V) with different 

dwell times and constant cell voltage of 1.4 V to elucidate the extent of carbon corrosion, 

mixed-mode degradation, and Pt dissolution. 

The durability of Pt/C and of Pt deposited on mesoporous carbon functionalized 

with poly(3,4-ethylenedioxythiophene) (MC-PEDOT) has been reported by Tintula et al. 

[79]. They found the degradation rate for Pt/C in an H2/O2 fuel cell is three-times higher 

than that for Pt/MC-PEDOT. The authors concluded that the enhanced durability of 

Pt/MC-PEDOT is due to the specific interaction of Pt with the MC-PEDOT support and 

the resistance toward electrochemical oxidation of the mesoporous carbon support. 

Other studies of importance with respect to the carbon support corrosion were 

reported by Makharia et al. [44], Jung et al. [74], and Spernjak et al. [78]. Makharia et al, 

after studying the support stability by calculating the mass-specific CO2 currents by 

online gas analysis as a function of potential (1.1–1.3 V vs. RHE), temperature (50–95 

°C), and time (1000 min.), suggested that future R&D efforts should focus on the 

development of more stable catalyst supports with improved corrosion resistance at high 

cathodic potentials. Carbon corrosion in 50% Pt/C and 30% Pt-alloy/corrosion-resistant 

carbon catalysts were evaluated by recording H2/air polarization curves using a 

stoichiometry of 3/3 at 80 °C with 50% relative humidity (RH) and 150 kPaabs back 
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pressure. Their study showed that after 20 h of potentiostatic holding at 1.2 V, the H2/air 

performance of a Pt/C catalyst decreases 30 mV at 1500 mA cm−2 and much more after 

30 h, while the 30% Pt-alloy/corrosion-resistant support showed no decrease in 

performance even after 100 h of exposure at 1.2 V. A correlation between voltage loss 

and carbon-support weight loss indicated that both conventional and corrosion-resistant 

support electrode structures show high performance losses at about 5-10% carbon-

support weight loss. 

1.2.2 Pt deposition on carbon supports 

As the Pt is known to be a good catalyst for ORR, the production of such catalytic 

surfaces with a range of particle sizes and surface are of prime importance. The reduction 

of Pt metal salts to the metallic state on support materials has become a focus in material 

science dealing with nanoparticles [84]. There are mainly two methods for Pt deposition; 

electrochemical deposition and electroless (chemical) deposition. Historically, 

electrochemical deposition is a versatile technique by which a desired metallic coating 

can be obtained on to the surface of another metal by a simple electrolysis of an aqueous 

solution containing the desired metal ion or its complex with a driving force of external 

electric power. For fuel cell application, there were several approaches of electrochemical 

deposition technique for the synthesis of nano-sized electro-catalysts [85-87]. On the 

other hand, electroless deposition is a method of obtaining desired nano-sized catalyst 

particles by chemically reducing the metal ion or its complex on to either conducting or 

non-conducting substrates in a controlled fashion [84]. Table 1 compares the nature of 

reactions occurring in these two processes. The two processes distinctly differ in their 

reduction approaches. In the electrochemical method, reduction takes place by supplying 
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current externally and the sites for the anodic and cathodic reactions are separate. For the 

electroless deposition method, electrons required for the reduction are supplied by a 

reducing agent and the anodic/cathodic reactions are on the inseparable work piece. 

Moreover these reactions proceed only on the catalytically active surface and they are 

applicable for all platinum group metals (PGM) since all PGMs are catalytically active 

[84]. Since electroless deposition method is more efficient to control particle size, shape, 

and support materials, it has been widely used for the synthesis of Pt/C catalysts for fuel 

cell application [10, 88, 89]. 

Several methods in electroless deposition have been used to prepare Pt-based 

catalyst; however, the following two synthesis methods are widely used – impregnation 

method, and colloidal method. Impregnation method is a simple and the most widely 

used straightforward chemical preparation technique. In this method, Pt precursors are 

mixed with a carbon powders in aqueous or organic solution (toluene, ethanol, octyl 

ether, benzyl ether, acetone) to form a homogeneous mixture followed by heat treatment 

under a reducing gas (e.g., 5% hydrogen balanced with nitrogen) [90-96]. Alternatively, 

the mixture is reduced by a chemical reduction in the presence of a suitable reducing 

agent, such as NaBH4 [97], formic acid [98, 99], formaldehyde [100], borane tert-

butylamine [101], etc. Metal chloride and metal acetate salts are commonly used as 

precursors in the impregnation method due to their easy availability. The heat treatment 

normally produces a non-uniform composition, resulting in a decrease in the activity. So, 

the chemical reduction method is preferentially used for the reduction of Pt ion in the 

liquid phase. Even with chemical reduction method, however, many studies have shown 
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the difficulty of high metal loadings (which are essential for fuel cell applications) 

without a significant increase in the Pt particle size [102, 103].  

The colloidal method is another extensively used preparation route for the Pt-

based catalysts. This method consists of three steps: preparation of the Pt-metal colloids, 

deposition of the colloids onto the carbon supports, and chemical reduction of the 

suspension. The colloidal method can be further optimized by using new precursors, 

reducing agents, stabilizers, solvents, and synthetic procedures [104-106]. In spite of the 

complexity of the synthesis route, the colloidal method can be an effective method for Pt 

deposition on carbon supports by producing well-homogenized ultrafine Pt particles with 

narrow particle size distribution [107]. In the colloidal method, diverse stabilizing agents 

have been used to control metal particle size. Organic stabilizers such as 

polyvinylpyrrolidone (PVP) and the dodecyldimethyl(3-sulfopropyl)ammonium 

hydroxide are widely used in the preparation of metal colloids [108-110]. The stabilizing 

agents can help to control metal particle size, but some of them remain on the metal 

surface after synthesis and inhibit the catalytic activity. A typical method to remove the 

stabilizing agent, heat treatment, results in sintering of metal nano particles which leads 

to a decrease in the catalytic activity.  

In this aspect, polyol process which is one of colloidal reduction methods is 

preferred since it does not require any type of polymer stabilizer. Bock et al. studied PtRu 

deposition on high surface area carbon by polyol method [111]. They have shown that the 

size of PtRu catalyst particles can be varied in the range of 0.7-4 nm by controlling the 

solution pH. Also, they suggested the mechanism of polyol method in which the 

formation of the particles involves the reduction of Pt and Ru precursor salts by receiving 
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electrons from the oxidation of the solvent, ethylene glycol. The glycolic anion which 

was produced from the oxidation of ethylene glycol acts as a stabilizer for the PtRu 

colloids, and hence the resulting PtRu particle size is controlled. In another research, the 

same authors reported that organic materials from a synthesis of polyol method can be 

removed at relatively low temperature (160 °C) which avoids Pt particle sintering 

problem [112]. Oh et al. investigated the parameters involved in Pt/C catalyst synthesis 

using polyol method [113]. The authors also found that initial pH of the reaction mixture 

is a key factor in controlling the particle size of Pt. Furthermore, they observed a severe 

reduction in the metal loading with increasing solution pH due to the electrostatic 

stabilization between Pt particles and carbon supports as confirmed by the zeta potential 

study. The zeta potential of the carbon support decreased from positive to negative values 

with increasing solution pH while that of the Pt particles remained constant at a negative 

charge after pH 6 which results in poor adsorption of Pt particles on the carbon supports. 

They further optimized the polyol method to improve the product yield and found out 

final adjustment of pH is an important factor for high yield of the process [114]. It is 

shown that the surface charge on the carbon supports becomes more electropositive when 

the final solution pH is changed from alkaline to acidic by monitoring the zeta potential. 

The yield from the pH adjustment step is 14% higher (96% product yield) than that in the 

absence of the step (82% product yield). Other studies show that polyol process can be 

optimized further with the microwave-assisted process [115-124], stabilizing agent [108, 

119, 123, 125], and post heat-treatment [126].  
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1.2.3 Stability of Pt-based catalysts 

It is well-known that Pt nanoparticle catalyst on carbon support is one of the best 

catalysts for PEMFC application. At the same time, nanoparticles inherently show a 

strong tendency to agglomerate due to their high specific surface energy [39, 127, 128]. 

For nanoparticles, the smaller the size, the higher the specific surface area, and the easier 

to agglomerate/sinter [127]. When Pt nanoparticles agglomerate to bigger ones, the 

ECSA of Pt catalysts decreases and the performance of PEMFC degrades consequently. 

Additionally, it can be accelerated under the extremely harsh condition of PEMFC. For 

the cathode, the catalysts are under strongly oxidizing conditions: high oxygen 

concentration, high potential (>0.6 V vs. SHE, and sometimes >1.2 V for short periods of 

time [129]). An increase of cathode potential results in the formation of surface oxides of 

Pt which not only decreases the Pt activity towards ORR but also accelerates the 

degradation of Pt catalysts. Also, PEMFCs are operated under the condition of low pH 

(<1), high temperature (80 °C or above), and with significant levels of water in both 

vapor and liquid phase which increase Pt degradation rate [21]. 

It is reported that the performance degradation of PEMFC is largely due to the 

ECSA loss of the cathode catalysts and the decrease in ECSA mainly results from the 

increase of Pt or Pt-M alloy nanoparticle size, the dissolution of Pt and/or other alloyed 

metals, and the detachment of Pt and/or Pt-M alloy nanoparticles from the carbon support 

[130, 131]. As to the increase in Pt nanoparticle size, there are several fundamentally 

different pathways [27, 49, 132, 133]: (i) Pt dissolution and re-deposition, which is also 

called “Ostwald ripening” [134, 135], (ii) the coalescence of Pt nanoparticles via Pt 

nanocrystallite migration on the carbon support [136, 137], (iii) the transport of Pt atoms 
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on the carbon support, so-called “2D Ostwald ripening” as compared with the case of (i), 

which is also called “3D Ostwald ripening.” But so far, there is still no agreement on the 

respective contribution of the above pathways to the total decrease in the ECSA [127]. 

It has been observed that operating conditions have a great influence on the 

degradation of Pt-based catalysts, which include the electrode potential, constant 

potential or potential cycling, the temperature, the humidity, etc. [138, 139]. Wang et al. 

reported that Pt dissolving rate in acidic solution increases with increasing potentials 

from 0.65 to 1.1 V vs. SHE under potentiostatic conditions, and above 1.1 V, the 

dissolution rate decreases which is attributed to the formation of a protective Pt-oxide 

film [140]. Also, they observed that cycling the potential between the oxide formation 

and reduction regions leads to higher dissolution rates than potential holding in the oxide 

formation region, with the latter being three to four orders of magnitude lower than the 

former. This is because, once the oxide are reduced by the negative potential sweep, PtZ+ 

ions are formed and dissolved in the electrolyte and accelerated corrosion takes place 

[141-143]. The humidity is another important parameter that affects the degradation of 

Pt-based catalysts. For example, Pt surface area loss is largely mitigated by operating the 

cell at 25% RH as compared to 100% RH [144]. In another study, the degree of Pt 

oxidation on PEMFC cathode increased significantly with an increase in RH from 20 to 

72% [145]. It has also been shown that the growth of Pt particles is accelerated in the 

presence of a liquid environment, which is attributed to the lowered activation energy of 

particle growth [146, 147]. The degradation of catalysts is also a function of temperature. 

Catalyst coarsening rates exhibited a linear increase with temperature [138]. In the 

experiment of Pt dissolution at a certain potential, it is estimated that the Pt2+ equilibrium 
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concentration on acidic solution at 0.9 V increases by two orders of magnitude from 25 to 

80 °C and an additional order of magnitude from 80 to 120 °C. 

To investigate the kinetics of Pt dissolution relevant to PEMFCs, a mathematical 

model has been developed by Darling and Meyers [139]. They showed that Pt dissolution 

is negligible at low and high potentials but is large at intermediate potentials. In their 

kinetic model, they explained the effect of potential in the following way, by considering 

three possible reactions: 

 

ݐܲ → ଶାݐܲ ൅ 2݁ି	ሺܲݐ	݊݋݅ݐݑ݈݋ݏݏ݅݀ሻ																																								ሺ5ሻ 

ݐܲ ൅ ଶܱܪ → ܱݐܲ ൅ ାܪ2 ൅ 2݁ି	ሺܲݐ	݁݀݅ݔ݋	݈݂݉݅	݊݋݅ݐܽ݉ݎ݋݂ሻ																	ሺ6ሻ 

ܱݐܲ ൅ ାܪ2 → ଶାݐܲ ൅  ሺ7ሻ													ሻ݁݀݅ݔ݋	ݐܲ	݂݋	݊݋݅ݐݑ݈݋ݏݏ݅݀	ሺ݄݈ܿ݁݉݅ܿܽ	ଶܱܪ

 

The model and experimental data indicated that at lower potentials (i.e. under the 

conditions of normal H2/air fuel cell operation), the solubility of Pt in acid is quite low. 

At higher potential and on exposure to air to form PtO, the oxide layer effectively 

protects the Pt particles from dissolution. At intermediate potentials, however, the 

uncovered surface is prone to high rates of Pt dissolution. 

The investigation of the stability of Pt-based catalyst in real time fame is time-

consuming and inefficient since the life requirement for PEMFC is >5000 h for 

transportation and >40000 h for stationary applications [42]. Therefore, the so-called 

accelerated degradation test (ADT) is developed including thermal degradation under hot 

air conditions [129, 148], OCV operation [149], and electrochemically forced aging 

under simulated cell operating conditions [25, 26, 39, 43]. Between these methods, 
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electrochemically forced aging method is widely used due to the similarity of the real 

PEMFC operating conditions. Usually, a constant potential in the range of cathode 

potential in a working PEMFC or a potential cycling in the potential region between the 

oxidation and reduction of Pt is applied to the cathode. Among all the above methods, 

Gasteiger and co-workers proposed the catalyst voltage cycling test method as a reliable 

and efficient screening tool for fuel cell catalyst development [44, 144]. At the same 

manner, Fuel Cell Technical Team (FCTT) and Department of Energy (DOE) suggested 

triangle potential sweep cycles from 0.6 to 1.0 V for catalyst stability test [150]. 

1.3 Objectives and outline 

The objective of this work is to develop a cathode catalyst with high fuel cell 

performance under H2/air (power density), optimized mass activity, good support stability 

and good catalyst stability for transportation applications. To achieve this objective, 

support material, Pt catalyst, and compressive Pt catalyst were studied and optimized. 

The specific objectives are (i) Development of activated carbon composite support 

(ACCS) having desired stability, hydrophilic/hydrophobic property, BET surface area, 

pore-size distribution. (ii) Modification of the surface of ACCS to facilitate uniform Pt 

deposition. (iii) Studying Pt/ACCS catalysts in PEM fuel cells with 25 cm2 MEAs and 

evaluating the support stability for Pt/ACCCS catalyst under potential cycling conditions 

(1.0-1.5 V, 5000 cycles) by measuring the cell potential loss and to compare the results 

with the stability of commercial Pt/C catalyst deposited on high surface area carbon. (iii) 

Development of compressive Pt catalyst on ACCS support to further improve catalyst 

stability under 0.6-1.0 V cycling by optimizing synthesis parameter including Pt/Co ratio, 

annealing temperature, protective layer coating, etc. 
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To the best of our knowledge, very limited reports are available on the support 

stability and catalyst stability performance of cathode catalyst under fuel cell condition 

by testing MEAs. These studies are important for the development of cathode catalysts 

for automotive applications since it could mimic the fuel cell stack situation effectively. 

Therefore, the overall objectives of the present study are (i) to develop active and stable 

cathode catalyst for PEMFC, (ii) to study their support stability using a 1.0-1.5 V 

potential cycling experiment, and (iii) to study their catalyst stability using a 0.6-1.0 V 

potential cycling experiment by comparing the ORR activity under fuel cell operating 

conditions with 25 cm2 MEA. 

  



 

 

 

 

Figur
stack
 

re 1.1 PEMF
k, showing th

FC compone
he componen

ents. Unit ce
nts of an exp

 

21 

ell cross sect
panded MEA

tion of the N
A [8]. 

Nth unit cell in a fuel ceell 



 

 

 

 

 

 

 

 

Figur
 

re 1.2 Schemmatic presenttation of OR
 

22 

RR pathway [[11]. 

 



 

 

 

 

 

 

Figur
bindi
 

re 1.3 Calcu
ing energy [1

ulated trends
13]. 

 in oxygen 

 

23 

reduction acctivity plotteed as a func

 

ction of the OO 



 

 

 

 

 

 

 

Figur
agglo
(a) no
 

re 1.4 Sch
omeration, (2
ormal (corro

hematic rep
2) coalescen

osion-resistan

presentation 
nce, and (3) l
nt) electrode

 

24 

of the ef
loss of Pt pa
e and (b) corr

ffect of ca
articles durin
rroded electr

arbon corro
ng operation
rode [41]. 

 

osion on (1
n of PEMFC

1) 
s: 



 

25 

 

 

 

Table 1.1 Nature of reactions and their sites occurring in electrochemical and electroless 
depositions [84]. 
 

Property Electrochemical deposition Electroless (chemical) deposition 

Driving force External power supply 
Reducing agent [RA] and 

auto-catalytic property of the 
deposited metal 

Cathode reaction Mn+ + ne− →M Mn+ + RA→M 

Anodic reaction M − ne− →Mn+ RA – ne− →[RA]Oxidized form 

Overall reaction Manode →Mcathode Mn+ + RA→M + [RA]Oxidized form 

Anodic site Anode itself Work piece 

Cathodic site Work piece Work piece 
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CHAPTER 2 

STUDY OF THE CARBON COMPOSITE CATALYST (CCC) AS A 

SUPPORT MATERIAL FOR CATHODE CATALYSTS SYNTHESIZED 

FROM A HIGH SURFACE AREA CARBON BLACK (HSACB) 

2.1 Introduction 

To achieve high power in PEMFCs, the catalyst layer should be relatively thin to 

minimize losses from the rate of proton diffusion and the rate of mass transfer of 

reactants (H2 and O2/air) and product (H2O) within the electrode. To minimize the 

thickness of the catalyst layer, the Pt loading on carbon must be significantly high (~30 

wt. % or higher) compared with the one for normal commercial supported Pt catalysts 

which are typically less than 5 wt. % [151]. For the synthesis of high Pt loading Pt/C 

catalysts, high surface area carbon black (HSACB) is the most widely used support 

material due to large surface area for Pt deposition, well-defined pore structure, and high 

electrical conductivity [4, 7]. While the Pt catalyst dispersed on HSACB has been shown 

high power density in many studies, the stability of this catalyst is not satisfactory for 

automotive PEMFC application, especially for cathode catalysts [40-42]. To improve the 

stability of support, a modification of HSACB must be considered. 

The carbon composite catalyst (CCC) obtained from HSACB could be one of the 

promising support materials for Pt/C cathode catalyst for PEMFCs. The researchers at the 

University of South Carolina, has developed CCC as a non-precious cathode catalyst for 
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PEMFCs [7, 152-159]. It is obtained by the surface modification of HSACB through 

pyrolysis in the presence of a Co-chelate complex. There are two advantages of CCCs as 

a cathode catalyst support material: (i) high ORR activity which is similar to that of Pt 

and (ii) increase of graphitization of carbon through metal-catalyzed pyrolysis. When 

CCC is used as a support material for Pt cathode catalyst, the ORR activity of CCC can 

also contribute to the overall ORR activity of Pt/C catalyst. Furthermore, more 

graphitized carbon structure of CCC can enhance the carbon support stability compared 

with the pristine HSACB.  

The objective of the work in this chapter is to investigate the feasibility of CCC 

obtained from a commercial HSACB as a support material for cathode catalyst and study 

the electrochemical characteristics and stability in PEMFCs. 

2.2 Experimental 

2.2.1 Synthesis of CCC from HSACB 

A methodology for CCC has been developed at University of South Carolina and 

reported in our previous studies [7, 152-159]. The CCC was synthesized from HSACB - 

Ketjenblack EC-300J. In brief, the as-received HSACB was refluxed in a concentrated 

HNO3 solution at 80 °C to introduce oxygen functional groups onto the carbon surface. 

Then, the oxidized carbons were subjected to a metal-catalyzed pyrolysis process in the 

presence of transition metals, such as Co, and nitrogen-containing organic compounds, 

ethylenediamine (EDA), to introduce pyridinic-nitrogen ORR active sites by pyrolysis at 

different temperatures (800–1500 °C) under N2 atmosphere. Then, the resulting products 

were leached in 0.5 M H2SO4 to remove excess metals on the surface. Finally, the 

products were heat treated again using the same temperatures used before. 
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2.2.2 Material characterization studies 

The physical properties of CCCs were studied using a variety of physical 

characterization techniques such as X-ray diffraction (XRD), Raman spectroscopy, 

Brunauer-Emmett-Teller (BET) surface area analysis, inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES) analysis, and high resolution transmission electron 

microscopy (HRTEM). XRD patterns were recorded using Rigaku 405S5 to identify the 

crystalline structure of the synthesized CCCs. Raman spectroscopy (HORIBA 

"LABRAM 1B” with He-Ne 20mW laser, wave length 632.817 nm) was used to evaluate 

the degree of graphitization of the carbon supports. BET (Quantachrome) was used to 

determine the surface area and pore-size distribution of the CCCs. ICP-AES (Perkin 

Elmer) analysis was used to determine the composition CCCs. HRTEM (Hitachi H9500) 

was used to determine the surface structure of CCCs. 

2.2.3 Electrochemical characterization studies 

Electrochemical RRDE characterization studies were performed in 0.1 M HClO4 

using a Pine bipotentiostat (Model AFCBP1), a Pt-mesh counter electrode, and an 

Ag/AgCl reference electrode (0.254 V vs. RHE). RRDE with a Pt-ring and a glassy 

carbon disk (0.248 cm2) was used as the working electrode. The catalyst ink was prepared 

by blending the catalyst powder (CCCs) with a 5% solution of Nafion® and isopropanol 

in an ultrasonic bath. Appropriate quantities of the catalyst inks were deposited on the 

glassy carbon disk using a micropipette to achieve loadings of 100 μg cm−2 of CCCs. 
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2.3 Results and discussion 

2.3.1 Roles of ethylenediamine and cobalt on CCC synthesis 

To study roles of Co and nitrogen-containing organic compounds on CCC 

synthesis, three samples with different combinations of the reactants are prepared and 

evaluated. EDA was used as a nitrogen-containing organic compound in this study. 

Sample 1 is prepared using HSACB and Co source without EDA. 0.48 g of Co(NO3)2 

6H2O was dissolved in 200 ml of IPA and 0.4 g of oxidized HSACB was added to the 

suspension. The suspension was refluxed at 80 °C for 3 h while continuous stirring. The 

solvent was removed by rotary evaporator (Buchi, Rotavapor R-210 and B-491) write the 

other details) followed by drying at 80 °C in a vacuum oven. The collected powder was 

heat-treated at 800 °C for 1 h with 5 °C/min ramping time under N2 atmosphere. Finally, 

the product was acid leached in 0.5 M H2SO4 at 80 °C for 2 h. Sample 2 is prepared using 

only EDA and Co source without HSACB support in the same manner as sample 1 

preparation. Sample 3 is prepared using all three reactants namely, HSACB, Co source, 

and EDA which is a typical CCC synthesis procedure [7, 152-159]. Figure 2.1 shows 

XRD patterns of HSACB and the three samples prepared using the method described 

above. Sample 1 shows almost identical XRD pattern with the one of pristine HSACB 

which indicates that no Co inclusion in the sample and negligible structural change. On 

the other hand, sample 2 shows similar XRD pattern with the one of CCC-800 °C which 

indicates Co presence in the sample. Similar observation is also confirmed by HRTEM 

shown in Figure 2.2. The HRTEM image for sample 1 (Figure 2.2 (b)) shows no Co 

particles in the carbon similar with pristine HSACB (Figure 2.2 (a)). However, the 

HRTEM image for sample 2 (Figure 2.2 (c)) shows Co particles in the sample same as 
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CCC-800 °C sample (Figure 2.2 (d)). This result is attributed to the formation of Co-

chelate complex by Co and nitrogen nitrogen-containing organic compounds [160]. 

When Co and EDA formed Co-chelate complex, thin layers of carbon evolved from EDA 

encapsulated the Co particles during pyrolysis. In the case of sample 1, no Co-chelate 

complex was formed due to the absence of EDA resulting in bare Co particles that cannot 

be protected by carbon layers from EDA and dissolved completely during the acid 

leaching step. 

2.3.2 Electrochemical characterization of CCC 

Comparison of ORR kinetics of HSACB and CCC-800 °C are shown in Figure 

2.3. The HSACB shows no activity in terms of onset potential for ORR and diffusion 

current when compared to CCC-800 °C which shows onset potentials of ~0.86 V vs. 

RHE and well-defined kinetic and mass-transfer regions in 0.1 M HClO4 electrolyte at 

room temperature. Koutecky–Levich analysis resulted in slopes close to that for the 

theoretical four-electron transfer reaction with a calculated number of transferred 

electrons of about 3.6 for CCC-800 °C. The RRDE studies also indicated that the H2O2 

production on CCCS-800 °C is 2.5% (Figure 2.4). The formation of H2O2 is detrimental 

to the Nafion® membrane and the ionomer in PEM fuel cells [161]. Studies carried out by 

Sethuraman et al. [162] and Stamenkovic et al. [163] correlate the % H2O2 production to 

the number of electrons transferred during ORR in acid electrolytes. Stamenkovic et al. 

[163] reported that the kinetics/reaction pathways of the oxygen reduction reaction on Pt-

poly and Pt (110) are almost identical, i.e., the 4 e− reduction (with ca. 5-10% of H2O2 

production at 0.1 V) is operative on Pt-poly in acid solutions.  Since the H2O2 production 

is less than 5% on CCC-800 °C, the ORR kinetics follows the 4 e− reduction pathways 
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and is similar to that on Pt catalysts. Similar results have been reported in our previous 

studies for various non-precious metal catalysts [7, 152-159]. Our previous studies on 

various non-precious metal catalysts showed that high-temperature pyrolysis produces 

pyridinic and graphitic-type nitrogen on the surface of CCC and the pyridinic-nitrogen 

group act as catalytic sites for ORR. Maldonado et al. [164] have reported that a strong 

Lewis basicity of such nitrogen-modified sites facilitates the reductive adsorption of 

oxygen without the irreversible formation of oxygen functionalities, due to an increase in 

the electron-donor property of carbon. The surface analysis using X-ray photoelectron 

spectroscopy (XPS) did not show the presence of Co and indicated the presence of only 

carbon, nitrogen, and oxygen on the CCC surface. It is important to note that Co is 

present only in the bulk as indicated by the ICP-AES analysis. The Co content 

determined using ICP-AES indicates that approximately a half the amount of Co in the 

CCC-800 °C is removed within the first 0.5 h and stays the same  (~10 wt. % Co) even 

after 8 h leaching in 0.5 M H2SO4 (Figure 2.5). The result shows that ~10 wt. % Co is on 

the surface of carbon which is easy to be removed by the acid leaching and another ~10 

wt. % of Co is encapsulated by the graphitic carbon layers protecting it during acid 

leaching. This is also confirmed by the HRTEM image of CCC-800 °C which shows a 

significant amount of Co particles after acid leaching step (Figure 2.2 (d)). Thus, the 

ORR catalytic activity of CCC is due to the presence of pyridinic-nitrogen groups and an 

addition of Co for metal-catalyzed pyrolysis helps (i) the inclusion of nitrogen into the 

CCC and (ii) the formation of graphitic carbon structure during pyrolysis [7, 152-159]. 
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2.3.3 Effect of pyrolysis temperature on CCC synthesis 

The XRD patterns of CCC synthesized at heat treatment temperatures between 

800 and 1500 °C are shown in Figure 2.6. It is observed that the degree of graphitization 

increases with an increase in the pyrolysis temperature by analyzing the C (002) peaks of 

the XRD patterns of different CCCs. It has been reported that higher value of the 

crystallite thickness (Lc) calculated by Scherrer’s formula and lower value of the 

interlayer spacing (d002) obtained from Bragg’s law imply higher degree of graphitization 

[34, 165]. Also, lower value of the ratio between the D and G peaks (ID/IG) obtained from 

Raman spectroscopy indicates a higher degree of graphitization [67, 166]. The Raman 

spectroscopy results for CCCs with different heat treatment temperature are shown in 

Figure 2.7. The Lc value increased and both d002 and the ID/IG ratio decreased as a 

function of pyrolysis temperature indicating the increased degree of graphitization of 

CCCs. As shown in Table 2.1, BET analysis of various carbon supports indicated surface 

area values of 800, 411, 380, 255, 241, 189, and 158 m2 g−1 for HSACB, CCC-800 °C, 

CCC-900 °C, CCC-1000 °C CCC-1100 °C, CCC-1300 °C, and CCC-1500 °C, 

respectively. The BET surface area decreased for different CCCs as the heat treatment 

temperature increased due to the removal of micropores and formation of graphitized 

carbons. The HRTEM images which are shown in Figure 2.8 for various CCCs also 

confirm the increase of a degree of graphitization with the increase in heat-treatment 

temperatures. While the starting material, HSACB, is amorphous in nature, the CCCs 

show graphitic carbon tubes and carbon fiber structure formation during metal-catalyzed 

pyrolysis. It is observed that carbon nanostructures are formed even in the case of CCC-

800 °C (Figure 2.8 (c)). As heat treatment temperature increased, more carbon 



 

33 

nanostructures are observed and CCC-1500 °C (Figure 2.8 (h)) shows the bulk of 

complete carbon nanostructures. In addition, Co particles are observed in the case of 

CCC-800 °C (Figure 2.8 (c)) and CCC-900 °C (Figure 2.8 (d)). The Co particles are well 

distributed with the particle size in the range of 5-15 nm for CCC-800 °C. For CCC-900 

°C, Co particle size is increased to ~20 nm and the number of particles is significantly 

decreased. Above 1000 °C, no Co particles are observed in the HRTEM images. To 

figure out the Co concentration in CCCs, ICP-AES analysis was performed. It shows that 

10.7 wt. % of Co for CCC-800 °C, 4.5 wt. % of Co for CCC-900 °C, and less than 1 wt. 

% of Co for CCCs heat-treated above 1000 °C. The difference in Co content in the CCCs 

is attributed to the protection of Co particles by carbon layers from EDA during 

pyrolysis. At 800 °C, the carbon formed from EDA can successfully encapsulate the Co 

particles to protect them from acid leaching. However, the carbon protecting layer is 

decomposed at temperatures > 1000 °C and most of the Co particles are exposed to acid 

during leaching. The results of XRD, Raman, BET, and ICP-AES analysis are 

summarized in Table 2.1. 

2.3.4 Electrochemical stability of CCC 

To investigate the electrochemical stability of CCCs, potential cycling test was 

conducted (Figure 2.9) using an RRDE in a three-electrode electrochemical cell. The 

HSACB, oxidized HSACB, and CCCs were dispersed on a glassy carbon electrode and 

cycled between 0.05 to 1.20 V vs. RHE for 500 times in 0.1 M HClO4 solution purged 

with N2. The oxidized HSACB (Figure 2.9 (b)) shows increase of quinone-hydroquinone 

peaks (~0.6 V vs. RHE) and double layer capacitance currents when compared with 

pristine HSACB (Figure 2.9 (a)) due to surface oxygen group formation during HNO3 
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acid treatment [167]. Usually, double layer capacitance depends on the surface area of 

carbons [168]. In this case, however, the pristine HSACB which has higher BET surface 

area (800 m2 g−1), shows relatively small double layer capacitance current since it 

contains relatively small amount of surface oxygen group. In the case of CCCs, as heat 

treatment temperature increased, double layer capacitance currents were decreased by 

combined effects of (i) decrease of BET surface area and (ii) decrease of surface oxygen 

group due to high temperature heat treatment. After 500 cycles, HSACB shows the 

highest increase of double layer capacitance current which could be translated by the 

increase of surface oxygen group and the increase of surface roughness due to 

electrochemical carbon corrosion. The CCCs show relatively small change in double 

layer capacitance current after cycling test compared with the one of HSACB. The 

increase of temperature decreased the change of double layer capacitance after cycling 

test due to higher degree of graphitization and smaller BET surface area of CCCs. 

According to the results, we could conclude that high temperature treated CCC has high 

electrochemical stability at high potentials. 

2.4 Conclusion 

The CCC was synthesized by the modification of HSACB through heat treatment 

in the presence of Co-chelate complex. The carbon atoms from EDA had an important 

role on CCC synthesis which kept the Co particles in the CCC structure by protecting 

them with thin carbon layers through Co-chelate complex formation followed by 

graphitic carbon layer formation during pyrolysis. Also, Co-chelate complex introduced 

nitrogen groups on the surface of CCC during pyrolysis resulting in increased ORR 

activity. The Co source used for the synthesis helped the graphitization of CCC at 
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relatively low temperature by catalyzing the graphitization process during pyrolysis. 

CCC-800 °C showed higher activity for ORR and the higher degree of graphitization 

compared with the ones of HSACB which are beneficial for a support material for 

PEMFC cathode catalysts. As pyrolysis temperature increased, the degree of 

graphitization of CCC was also increased, especially in the case of CCC-1500 °C, where 

complete carbon nanotube and carbon nanofiber structure formation was observed. The 

Co content in the CCC was studied by ICP-AES and HRTEM analysis. While a 

significant amount of Co (~10 wt. %) was detected in CCC-800 °C, a negligible amount 

of Co was found in CCCs heat treated above 1000 °C. It is because that carbon layers 

from Co-chelate complex successfully protected the Co particles at 800 °C, but they are 

decomposed at the higher temperature (> 1000 °C) and resulted in Co loss during acid 

leaching step. For potential cycling test, CCCs showed enhanced electrochemical stability 

compared with the pristine HSACB. The increase of pyrolysis temperature increased the 

electrochemical stability by enhancing the graphitization of CCC and reducing BET 

surface area. Due to the high activity and stability, CCCs could be suggested as a 

promising support material for Pt/C cathode catalyst for PEMFCs. 

  



 

 

 

 

 

Figur
comb
 

re 2.1 XRD
binations of r

D patterns 
reactants. 

of HSACB

 

36 

B and CCCC samples pprepared wiith differene

 

et 



 

 

 

 

 

 

Figur
comb
EDA
 

re 2.2 HRT
bination of 

A+Co, and (d

TEM images
reactants. (

d) Sample 3: 

s of HSAC
(a) HSACB
CCC-800 °C
 

37 

CB and CC
B, (b) Samp
C (HSACB+

CC samples 
ple 1: HSA
+Co+EDA).

prepared w
ACB+Co, (c

 

with differen
c) Sample 2

nt 
2: 



 

 

 

 

 

Figur
voltam
 

re 2.3 Comp
mmetry. 

parison of OORR kinetics

 

38 

s of HSACBB and CCC--800 °C by linear swee

 

ep 



 

 

 

 

 

Figur
 

re 2.4 H2O2 pproduction oon CCC-800
 

39 

0 °C by lineaar sweep volttammetry. 

 



 

 

 

 

 

Figur
AES.
 

re 2.5 Effect
. 

t of leachingg time on the

 

40 

e Co contentt in CCC-8000 °C determmined by ICP

 

P-



 

 

 

 

 

Figur
 

re 2.6 Comparison of XRRD patterns 
 

41 

of HSACB aand CCCs. 

 



 

 

 

 

 

Figur
 

re 2.7 Comparison of Raaman spectra
 

42 

a of HSACBB and CCCs.

 



 

 

Figur
CCC
°C. T

re 2.8 HRTE
-900 °C, (e)

The scale bar

EM images 
 CCC-1000 

r is 20 nm. 

of (a) HSAC
°C, (f) CCC

43 

CB, (b) oxid
C-1100 °C, (

dized HSAC
(g) CCC-130

 

 

CB, (c) CCC
00 °C, and (h

C-800 °C, (d
h) CCC-150

d) 
00 



 

 

Figur
CCC
condi
purgi
 

re 2.9 Elect
-800 °C, (d)
itions: poten
ing. 

trochemical 
) CCC-900 
ntial cycling

stability res
°C, (e) CCC

g 0.05-1.20 V

 

44 

sults of (a) 
C-1000 °C, 
V vs. RHE,

HSACB, (b
and (f) CCC

, 500 cycles

b) oxidized 
C-1100 °C. 
s, 0.1 M HC

 

HSACB, (c
Stability te

ClO4 with N

c) 
st 

N2 



 

45 

 

 

 

 

Table 2.1 Comparison of physical properties of HSACB and CCCs. 
 

Sample 
Pyrolysis 

temp. 
(°C) 

Lc 
(nm) 

(XRD)

d002 
(nm) 

(XRD) 

ID/IG 
(Raman) 

BET surface 
area 

(m2 g−1) 

Co conc. 
(wt. %) 

(ICP-AES) 

HSACB - 1.1 0.3613 1.60 800 0 

CCC-800 °C 800 - - 1.50 411 10.7 

CCC-900 °C 900 3.6 0.3440 1.43 380 4.5 

CCC-1000 °C 1000 7.1 0.3433 1.28 255 - 

CCC-1100 °C 1100 7.3 0.3431 1.25 241 0.66 

CCC-1300 °C 1300 7.8 0.3430 1.07 189 0.69 

CCC-1500 °C 1500 7.9 0.3416 0.83 158 0.99 
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CHAPTER 3 

DEVELOPMENT OF Pt/CCC CATHODE CATALYST – EVALUATION 

OF SUPPORT STABILITY IN THE PRESENCE OF PLATINUM 

3.1 Introduction 

To investigate the feasibility of the CCC as a cathode catalyst support material for 

PEMFCs, Pt was deposited and its electrochemical activity and stability was evaluated in 

25 cm2 MEAs. In the previous chapter, the increase of graphitization and the increase of 

electrochemical stability of CCC by increasing the pyrolysis temperature were observed. 

In order to use graphitized CCC as a cathode catalyst support material for PEMFCs, it is 

essential to modify the CCC surface for Pt deposition since the surface of CCC has a 

hydrophobic character which repels Pt deposition resulting in non-uniform distribution. It 

is generally accepted that oxygen functional groups transform carbon surfaces from 

hydrophobic to hydrophilic for better Pt deposition on graphitic carbon supports. There 

are various methods reported in the literature to modify the carbon surface including 

treatment with ionic liquids [169, 170], coating with a polymer [171], and oxidative acid 

treatment [92, 172-178]. Among them, oxidative acid treatment is most widely used and 

has shown results of uniform dispersion of Pt nanoparticles and improvement of Pt 

content [92, 173-177]. However, it has been reported that the acid treatment destroys the 

carbon structure resulting in an increase of carbon corrosion and decrease of Pt/C catalyst 

stability [176]. To solve these problems, noncovalent functionalization of carbon
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as an alternative to oxidative acid treatment has been studied recently [179-181]. Figure 

3.1 shows the mechanism of noncovalent functionalization of CNFs with organic 

compounds like benzyl mercaptan (BM), 1-aminopyrene (AP), and 1-pyrene carboxylic 

acid (PCA). These materials attach to the carbon surface via nondestructive π-π stacking 

mechanisms (aromatic interaction) between the pyrene or phenyl moiety resulting in 

effective functionalization without significant damage to the carbon surface [180]. In the 

current study, PCA was selected for the surface modification of carbon due to its good 

functionalization property of graphitic carbon surface thus resulting in improved MEA  

performance [180]. After surface modification of the CCC, Pt was deposited using a 

modified polyol method. 

Corrosion of HSACB in the presence of Pt is inevitable at high potentials under 

PEMFC operating conditions such as high oxygen concentration, high water content, and 

low pH which favor carbon oxidation [42, 182]. During operation, the cathodes of 

automotive fuel cells often experience very high potentials due to startup/shutdown 

cycles or due to local fuel starvation at the anode [44, 45, 48]. Reiser et al. [45] have 

shown that the cathode interfacial potential difference can reach as high as 1.5 V due to 

the H2/air front in the anode compartment during startup/shutdown. Carbon corrosion 

occurs at 0.207 V vs. RHE; however, it is not detected during fuel cell operation due to 

its sluggish reaction kinetics [44]. In general, carbon corrosion is estimated by measuring 

the amount of CO2 produced [32-35] or the corrosion current [44] at high applied 

potentials in a PEMFC by supplying pure H2 to the anode and pure N2 to the cathode. 

However, the measured current is always coupled with the H2-oxidation current at the 

cathode due to H2 cross-over from the anode through the Nafion® membrane [44]. In the 
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present investigation, the cathode is subjected to 1.2 V constant potential for 400 h to 

study the support stability by measuring H2/air polarization performance, ECSA and mass 

activity at regular intervals. 

3.2 Experimental 

3.2.1 Surface modification of CCC and Pt deposition 

A surface functionalization process to increase the hydrophilic property of CCC 

was developed using a bifunctional organic molecule containing aromatic hydrocarbon 

and acid groups. A surface modification process is necessary in order to obtain a uniform 

Pt particle size distribution on the CCC. The surface modified CCC was obtained by 

dispersing the CCC to the concentrated PCA solution. First, the PCA was dissolved in 

ethanol in a sonication bath for 3 h. After complete dissolution of PCA, the CCC was 

added to the PCA solution and dispersed in a sonication bath for 12 h. The resulting 

suspension was filtered and washed with ethanol followed by drying in the vacuum oven 

at 80 °C. Pt nanoparticle deposition with an initial loading of 30 wt. % was carried out 

using a modified polyol process to control the particle size and enhance the catalyst-

support interaction. In brief, a measured amount of PtCl4 was dissolved in an appropriate 

volume of ethylene glycol under vigorous stirring for 30 min. 0.5 M NaOH was 

introduced into the solution to adjust the pH. The pH of the reaction mixture was 

precisely controlled at every step of the process in order to obtain a uniform Pt 

deposition. Then, calculated amount of surface modified CCC was added to the solution 

so that the desired initial Pt loading was achieved in the Pt/CCC catalyst. The resulting 

suspension was stirred for 1 h at room temperature followed by refluxing at 160 °C for 3 

h. The solution was allowed to cool down to room temperature and kept for 12 h under 



 

49 

continuous stirring. 0.1 M H2SO4 was then added to the cooled mixture and the solution 

pH was adjusted to 3. The mixture was kept stirred for 24 h. The Pt/CCC catalysts in the 

solution were filtered and thoroughly washed with de-ionized (DI) water. The resulting 

Pt/CCC catalysts were dried in air for 0.5 h at 160 °C and stored for further studies. 

3.2.2 Material characterization studies 

The physical properties of Pt/CCC catalysts were studied using a variety of 

physical characterization techniques such as XRD, X-ray fluorescence (XRF), HRTEM, 

and ICP-AES analysis. XRD patterns were recorded using Rigaku 405S5 to identify the 

crystalline structure of the synthesized supports and catalysts. XRF was used to confirm 

the Pt loading on the cathode and anode electrodes. HRTEM (Hitachi H9500) was used 

to determine the particle size and particle size distribution of Pt/CCC catalysts. ICP-AES 

(Perkin Elmer) analysis was used to determine the composition of Pt/CCC catalysts. 

3.2.3 MEA fabrication and electrochemical measurements 

The polarization performances of Pt/CCC catalysts were evaluated in 25 cm2 

MEAs. Commercial Pt/C (TEC10E50E, 46.7 wt. % Pt on Ketjenblack-EC300J, Tanaka 

Kikinzoku Kogyo K.K., Japan) catalyst was used as a cathode catalyst for Pt/HSACB 

catalyst since Ketjenblack-EC300J HSACB was used as a support material [162]. The 

same catalyst was also used as the anode catalyst in all the MEAs. The catalyst inks were 

prepared by blending the catalysts with a pre-calculated amount of 5% solution of 

Nafion® in isopropyl alcohol (Alfa Aesar) using an ultrasonic bar. The catalyst inks were 

directly deposited onto the Nafion® NRE 212 membrane on both cathode and anode. The 

cathode and anode catalyst loading was fixed at 0.1 mgPt cm−2 and confirmed using XRF. 

Commercially available carbon paper with a microporous layer (SGL 10 BC) was used as 
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the GDL for the cathode and anode. The catalyst-coated membrane was hot-pressed with 

the GDLs on both the cathode and anode side at 140 °C for 3 min using 20 kg cm−2 

pressure to form the MEA. 

Initially, the MEA was activated under a supply of H2 and O2 at 80 °C to the 

anode and cathode compartments, respectively, and the initial polarization performance 

curves were recorded with a flow rate of 750 ml min−1 and 100% RH. The catalyst mass 

activity was evaluated under H2/O2 (2.0/9.5 stoic.) at 80 °C, 100% RH, and 150 kPaabs 

back pressure. The polarization curves were recorded under H2/air (2.0/2.0 stoic.) at 80 

°C, 50% RH and 170 kPaabs back pressure. The support stability was evaluated using a 

potentiostatic experiment. The potential holding experiment was performed by applying 

1.2 V constant potential to the cathode with respect to the anode for 400 h at a cell 

temperature of 80 °C. During the experiment, pure hydrogen (200 cc min−1) and nitrogen 

(75 cc min−1) having 100% RH were supplied to the anode and cathode compartments 

under 150kPaabs back pressure, respectively. The potential loss under H2/air, the loss of 

ECSA and the loss in catalyst mass activity after 400 h potential holding at 1.2 V were 

used as criteria to evaluate the support stability in Pt/CCC catalysts.  

3.3 Results and discussion 

3.3.1 Surface modification of CCC for Pt deposition 

The hydrophilicity of as-synthesized CCC and surface-modified CCC is evaluated 

by observing the change in appearance of aqueous dispersions of CCCs. Initially, the 

CCC samples are uniformly dispersed in DI water using an ultrasonic bath in a glass vial. 

After 10 h, the as-synthesized CCC that did not undergo functionalization formed large 

aggregates and settled down completely at the bottom of the vial. The functionalized-
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CCC remained as a stable dispersion for 60 h in aqueous media (Figure 3.2). The stability 

of surface functionalized CCC in water is attributed to the grafting of oxygen-containing 

groups onto the support surface which endows it with negative charges and provides the 

electrostatic stability required for a colloidal dispersion. The surface-modified CCC 

promotes uniform Pt deposition which is essential for achieving high catalyst utilization 

and stability in PEMFCs [23]. In this study, Pt/CCC-800 °C, Pt/CCC-900 °C, Pt/CCC-

1100 °C, Pt/CCC-1300 °C, and Pt/CCC-1500 °C catalysts are synthesized using a 

modified polyol reduction process. The Pt loading was targeted at 30 wt. % for all the 

catalysts. The Pt deposition process parameters have been optimized to obtain uniform Pt 

deposition with an average Pt particle size, dPt, of 2.3-2.9 nm on various supports used in 

this study. 

The XRD patterns of commercial Pt/C and Pt/CCC catalysts are compared in 

Figure 3.3. The diffraction patterns represent all the reflections corresponding to the face 

centered cubic (fcc) lattice of Pt for all the catalysts. The diffraction peaks appearing at 

26° can be attributed to C(002) of the supports. Commercial Pt/C shows small and wide 

C(002) peak which indicates the amorphous character of the supporting carbon. The 

Pt/CCC catalysts show increased intensity and sharpness of C(002) peaks with an 

increase in CCC synthesis temperature indicating the increasing graphitization of CCC 

which is in good agreement with the results presented in Chapter 2 (Table 2.1 / Figure. 

2.6 and 2.7). Table 3.1 compares the Pt particle sizes and Pt concentrations of 

commercial Pt/C and Pt/CCC catalysts. The Pt crystallite size was calculated using the 

Pt(220) peak appearing at 67.5° by Scherrer equation [183]: 
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where D is the crystallite size in nm, k is a coefficient (0.9), λ is the wavelength of X-ray 

(1.5404 Å), B is the line broadening at half the maximum intensity in radians, and θ is the 

angle at the position of the maximum peak known as Bragg angle. The dPt values 

calculated from the XRD analysis are 2.0 nm for the commercial Pt/C and 2.3-2.9 nm for 

Pt/CCC catalysts, which are confirmed by the HRTEM images shown in Figure 3.4. The 

Pt loading on CCCs were in the range of 28.2–29.3 wt. % as confirmed by ICP-AES 

analysis which is in good agreement with the targeted Pt loading of 30 wt. %. 

3.3.2 Electrochemical activity and stability of Pt/CCC catalysts 

To investigate the electrochemical activity and stability of Pt/CCC catalysts, 

Pt/CCC-800 °C, Pt/CCC-1100 °C, and Pt/CCC-1500 °C catalysts were selected and 

tested. The commercial Pt/C catalyst which uses HSACB support was also tested for 

comparison. The commercial Pt/C catalyst studied in this investigation is deposited on 

Ketjenblack-EC300J HSACB which is the starting material of CCCs. The support 

stability results of H2/air polarization curves (initial and after 400 h at 1.2 V) of 

commercial Pt/C, Pt/CCC-800 °C, Pt/CCC-1100 °C, and Pt/CCC-1500 °C catalysts are 

compared in Figure 3.5. The performance decay is evaluated by comparing the cell 

potential loss at 800 mA cm−2. A very high potential loss (696 mV loss after 400 h) for 

the commercial Pt/C catalyst (shown in Figure 3.5 (a)) together with high mass activity 

loss (72%) and ECSA loss (71%) (shown in Table 3.2) confirm the fact that HSACB is 

prone to electrochemical oxidation when subjected to 1.2 V constant potential for 400 h. 

The commercial Pt/C catalyst showed very high performance loss under mass-transfer 
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controlled region due to severe carbon corrosion at high potentials which resulted in 

detachment of Pt particles from the support that is no longer electrochemically active, 

increase in hydrophilic property due to carbon corrosion, and in particle agglomeration 

[31]. Similar studies by Makharia et al. for a 50% Pt/C indicated 30 mV losses at 1500 

mA cm−2 after 20 h of operation and drastic performance degradation after 30 h due to 

the onset of mass-transport losses induced by carbon corrosion [44]. Electrochemical 

carbon corrosion is one of the most important issues that affect the long-term stability of 

PEMFCs. 

Figure 3.5 (b) shows the initial and final (after 400 h) H2/air fuel cell polarization 

curves for the Pt/CCC-800 °C catalyst subjected to a potential holding experiment for 

400 h. At the beginning of the test, the Pt/CCC-800 °C catalyst showed an iR-corrected 

cell potential of 699 mV at 800 mA cm−2 which decreased to 498 mV after 400 h 

potential holding at 1.2 V resulting in a potential loss of 201 mV. The mass activity and 

ECSA losses after 400 h testing are 50% and 60%, respectively (Table 3.2). The high cell 

potential loss is due to the corrosion of relatively high surface area for the CCC-800 °C 

(411 m2 g−1) which could be attributed to the oxidation of non-graphitic carbon initiated 

by the surface defects on the partially graphitized CCC-800 °C. The broader C(002) peak 

for CCC-800 °C in Figure 3.3 than for the other CCCs (CCC-1100 °C or CCC-1500 °C) 

indicates the presence of amorphous and partially graphitized carbons which is confirmed 

by the Raman spectroscopy results shown in Table 2.1. Due to the heterogeneous nature 

of CCC-800 °C and the method used for the synthesis, we assume that the primary 

particles exhibit the high density of surface defects [182]. The edges of these defect sites 

and corners of basal planes present in CCC-800 °C are susceptible to electrochemical 
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oxidation and the presence of Pt can propagate the carbon corrosion under 1.2 V potential 

holding experimental conditions. 

The degree of graphitization of the CCC was further increased by increasing the 

heat treatment temperature to 1100 °C. The high temperature heat treatment resulted in a 

high degree of graphitization, with a significant decrease in the BET surface area. The 

support stability results shown in Figure 3.5 (c) clearly indicate the enhancement in 

stability for the Pt/CCC-1100 °C at 1.2 V potential holding experiment. At 800 mA cm−2 

current density, the Pt/CCC-1100 °C catalyst showed an initial iR-corrected cell potential 

of 671 mV and 543 mV after 400 h. The support stability test results indicated a cell 

potential loss of 128 mV which is much smaller than that for Pt/CCC-800 °C and 

commercial Pt/C catalysts. Furthermore, the mass activity loss (47%) and ECSA loss 

(58%) are lower than those for the commercial Pt/C and Pt/CCC-800 °C catalysts. The 

improved support stability is solely attributed to the high degree of graphitization of the 

CCC-1100 °C. It has been reported that the extent of graphitization of carbon supports 

plays an important role on the support stability, with more graphitic carbons being more 

thermally and electrochemically stable [21, 129]. 

The H2/air polarization curves obtained before and after 400 h potential holding at 

1.2 V for the Pt/CCC-1500 °C catalyst are compared in Figure 3.5 (d). It shows an initial 

iR-corrected cell potential of 686 mV and 622 mV after 400 h potential holding with a 

potential loss of 64 mV. The Pt/CCC-1500 °C catalyst showed mass activity loss of 39% 

and ECSA loss of 18% after 400 h. Figure 3.6 compare the ECSA loss in the fuel cell for 

the commercial Pt/C and the Pt/CCC-1500 °C catalysts. The commercial Pt/C showed an 

initial ECSA of 52 m2 gPt
−1 which drastically decreased to 15 m2 gPt

−1 (71% loss) after 
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400 h due to severe carbon corrosion. In contrast, the Pt/ CCC-1500 °C showed an ECSA 

loss of 18% with initial and final ECSA values of 27 and 22 m2 gPt
−1, respectively. 

Figure 3.7 and Table 3.2 compare the electrochemical properties in a fuel cell 

(initially and after 400 h) including potential loss at 800 mA cm−2 in H2/air, ECSA loss 

and mass activity loss at 0.9 ViR-corr for commercial Pt/C, Pt/CCC-800 °C, Pt/CCC-1100 

°C and Pt/CCC-1500 °C catalysts. All the fuel cell polarization results together with mass 

activity loss and ECSA loss data clearly indicate that the graphitic carbon support offers 

better resistance to corrosion during 1.2 V potential holding. With the enhanced support 

stability for the Pt/CCC-1500 °C, better catalyst stability is anticipated when subjected to 

potential cycling conditions between 0.6 and 1.0 V where the Pt and Pt-based catalysts 

suffer a loss of activity due to various processes including metal dissolution, loss in 

ECSA etc.  

3.4 Conclusion 

In this chapter, the feasibility of CCC as a cathode catalyst support material for 

PEMFCs was investigated. After using noncovalent functionalization of the CCCs, Pt 

nanoparticles could be successfully deposited on the CCC support with particle sizes in 

the range of 2.3-2.9 nm. The Pt loading on CCCs were in the range of 28.2–29.3 wt. % as 

confirmed by ICP-AES analysis which is in good agreement with the targeted Pt loading 

(30 wt. %). The potential holding test was conducted at 1.2 V for 400 h to examine the 

support stability of commercial Pt/C, Pt/CCC-800 °C, Pt/CCC-1100 °C, and Pt/CCC-

1500 °C catalysts. The commercial Pt/C catalyst which used HSACB as a support 

material showed complete loss of potential at 800 mA cm−1 in H2/air fuel cell polarization 

performance after 400 h testing. Also, the commercial Pt/C catalyst showed 71% loss of 
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ECSA and 72% loss of mass activity. On the other hand, the Pt/CCC-1500 °C catalyst 

showed 64 mV potential loss (at 800 mA cm−2) in H2/air fuel cell polarization 

performance, 18% ECSA loss, and 39% mass activity loss after 400 h testing. The 

enhanced support stability of Pt/CCC-1500 °C catalyst is attributed to the increased 

graphitic character of CCC-1500 °C support when compared to the commercial HSACB 

  



 

 

 

 

 

 

Figur
(BM)
 

re 3.1 Schem
), 1-aminopy

matic diagra
yrene (AP) a

am of the fu
and 1-pyrene

 

57 

unctionalizat
ecarboxylic a

tion of CNF
acid (PCA) [

Fs with benz
[180]. 

 

zyl mercaptaan 



 

 

 

 

 

 

 

Figur
CCC 
 

re 3.2 Comp
by precipita

parison of hy
ation test dur

ydrophilic c
ring 60 h. 

 

58 

characters off pristine CCCC and surf

 

face-modifieed 



 

 

 

 

 

Figur
 

re 3.3 XRD ppatterns of ccommercial P
 

59 

Pt/C and Pt/CCCC catalyssts. 

 



 

 

Figur
°C, (d
10 nm

re 3.4 HRTE
d) Pt/CCC-1
m. 

EM images o
1100 °C, (e) 

of (a) comm
Pt/CCC-130

 

60 

mercial Pt/C, 
00 °C, and (

(b) Pt/CCC
(f) Pt/CCC-1

C-800 °C, (c)
1500 °C. Th

 

) Pt/CCC-90
he scale bar 

00 
is 



 

 

 

 

Figur
(c) P
stabil
 

re 3.5 H2/air
Pt/CCC-1100
lity test (1.2 

r fuel cell pla
0 °C, and (d
V potential 

arization cur
d) Pt/CCC-
holding for 
 

61 

rves of (a) c
1500 °C cat
400 h). 

commercial P
atalysts befo

Pt/C, (b) Pt/
ore and after

CCC-800 °C
r the suppo

 

C, 
ort 



 

 

Figur
Pt/CC
 

re 3.6 Comp
CC-1500 °C 

parison of cy
catalysts be

yclic voltamo
efore and afte

 

62 

ograms in M
er the suppo

MEA for (a) 
ort stability te

commercial
est. 

 

l Pt/C and (bb) 



 

 

Figur
Pt/CC
suppo
 

re 3.7 Comp
CC-800 °C, 
ort stability t

parison of (a
Pt/CCC-110

test. 

a) iR correc
00 °C, and 

 

63 

cted voltage 
Pt/CCC-150

and (b) EC
00 °C cataly

CSA of com
ysts before 

 

mmercial Pt/C
and after th

C,  
he 



 

64 

 

 

 

 

 

Table 3.1 Physical properties of commercial Pt/C and Pt/CCC catalysts. 
 

Sample 
Support 

pyrolysis temp. 
(°C) 

dPt (nm) 
(XRD) 

Pt conc. (wt. %) 
(ICP-AES) 

Commercial Pt/C - 2.0 44.3 

Pt/CCC-800 °C 800 2.4 28.7 

Pt/CCC-900 °C 900 2.3 29.3 

Pt/CCC-1100 °C 1100 2.9 28.4 

Pt/CCC-1300 °C 1300 2.7 28.8 

Pt/CCC-1500 °C 1500 2.7 28.2 
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Table 3.2 Comparison of electrochemical performance before and after the support 
stability test for commercial Pt/C, Pt/CCC-800 °C, Pt/CCC-1100 °C, and Pt/CCC-1500 
°C catalysts. 
 

Sample 

iR corrected cell potential 
(H2/air) 

 at 800 mA cm−2 (mV) 

ECSA 
(m2 gPt

−1)  
Mass 

activity loss 
at 0.9 ViR-corr 

(%) 0 h 400 h 
Loss 
(mV) 

0 h 400 h 
Loss 
(%) 

Commercial Pt/C 696 0 696 52 15 71 72 

Pt/CCC-800 °C 699 498 201 48 19 60 50 

Pt/CCC-1100 °C 671 543 128 45 19 58 47 

Pt/CCC-1500 °C 686 622 64 27 22 18 39 
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CHAPTER 4 

A NOVEL METHOD FOR THE SYNTHESIS OF Pt-Co/CCC CATALYST 

USING THE CCC AS A CATALYST SUPPORT AND A SOURCE OF 

COBALT 

4.1 Introduction 

In chapter 2, significant amount of Co content (10.7%) in the CCC-800 °C sample 

was observed after subjecting to 0.5 h leaching in 0.5 M H2SO4. The CCC-800 °C also 

showed improved electrochemical stability than of the conventionally used HSASB and 

good feasibility as a support material for PEMFC applications. By using these unique 

characteristics of CCC-800 °C, a novel method to synthesize Pt-Co/C catalyst was 

developed. Various procedures have been reported in the literature to obtain Pt alloy 

catalyst. The most common procedure to synthesize Pt alloy catalyst is the impregnation 

of the Co metal precursor on Pt/C followed by heat treatment at high temperature (above 

600 °C) to produce Pt-Co alloy [2, 184, 185]. In another method, Pt and transition metal 

are co-deposited on carbon supports using various reducing agents like sodium formate, 

formaldehyde, sodium borohydride etc. [186-188]. Other procedures such as 

precipitation, sol-gel and polyol methods have also been carried out for making Pt-alloy 

catalysts [189-191]. While a variety of methods has been investigated, in most of the 

cases, chemical leaching step is necessary to remove excess transition metal on the 

surface after alloy formation step which hinders active sites of the catalyst. This chemical
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leaching step not only helps to clean the surface of the catalyst but it also makes adverse 

effects on the catalyst by weakening the Pt support interaction which results in poor 

stability. 

In this work, a new approach to synthesize Pt-Co catalyst is developed by using 

Co-containing CCC-800 °C to improve the catalytic activity and stability of Pt-Co/CCC. 

Figure 4.1 compares the schematic diagrams of the conventionally used impregnation 

method and the novel method developed in this study. The strategy is the synthesis of Pt-

Co/CCC catalyst by using the Co metal encapsulated within the CCC-800 °C as a catalyst 

support as well as a Co source for making Pt-Co alloy. The goal is to study the 

synergistic effect of ORR activity originated from CCC support (non-precious metal 

catalyst) and Pt. This novel procedure of synthesizing Pt-Co catalyst does not need a 

chemical leaching step after the alloy formation thus avoiding the overall fuel cell 

performance loss since the Co is diffused from the interior of CCC to Pt deposited on the 

surface which minimizes the interference with the Pt activity.  

4.2 Experimental 

4.2.1  Synthesis of Pt-Co/CCC catalyst 

A chloroplatinic acid (H2PtCl6, Sigma-Aldrich) was used as the Pt-precursor for 

the deposition of 30 wt. % Pt on CCC-800 °C support. The desired amount of 

chloroplatinic acid solution and CCC were mixed in DI water and heated up to 70 °C. 

Then 2.0 M sodium formate (HCOONa, Sigma-Aldrich) was slowly added to the reaction 

mixture, followed by refluxing at 70 °C for 12 hr. The resulting Pt/CCC-800 °C sample 

was washed with DI water, dried under vacuum at 80 °C and finally heat-treated in 

nitrogen at 800 °C for a different time for Pt-Co/CCC formation. 
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4.2.2 Material characterization studies 

The physical and chemical properties of the materials were characterized using 

XRD and HRTEM techniques. XRD (Rigaku 405S5) patterns were recorded to identify 

the crystalline structure of catalyst and measure Pt particle size. HRTEM (Hitachi 

H9500) was carried out to determine the particle size and dispersion of Pt on support.  

4.2.3  RRDE measurements 

All the RRDE studies were performed in 0.1 M HClO4 using a Pine bipotentiostat 

(Model AFCBP1), a Pt-wire counter electrode, and an Ag/AgCl reference electrode. An 

RRDE with a Pt ring and a glassy carbon disk was used as the working electrode. The 

catalyst ink was prepared by blending catalyst powder with ethanol in an ultrasonic bath. 

Then 20 µgPt cm−2 of the ink was deposited onto the glassy carbon. After the deposition, 

5 µL of a 0.25 wt% Nafion® solution was applied onto the catalyst layer. Cyclic 

voltammograms (CV) recorded in nitrogen were used to obtain the background capacitive 

currents and ECSA of the Pt catalysts. Linear sweep voltammograms in O2-saturated 

electrolyte were measured at 900 rpm. The oxygen reduction current was determined as 

the difference between currents measured in the N2- and O2-saturated electrolytes. 

The ECSA of Pt was determined by charge integration under the hydrogen 

desorption peaks appearing between 0 and 0.35 V, by assuming a charge of 210 µC cm−2 

for the electroactive Pt surface. Then, the specific ECSA was calculated based on the 

following relation: 
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where QH (µC) is the charge for hydrogen desorption, m (µg cm−2) is the Pt metal 

loading, and qH (µC cm−2) is the charge required for desorbing a monolayer of hydrogen 

on Pt surface. The electrolyte was purged with oxygen for 30 min prior to the oxygen 

reduction measurement. The oxygen reduction current was calculated from the difference 

between currents measured in the N2- and O2-saturated electrolytes.  

The mass transfer corrected Tafel plot was calculated by using the diffusion 

limited current density (jD) at 0.2 V and the following expression based on the Levich 

equation [192]: 
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where j is the measured cell current density (A cm−2). 

4.2.4  MEA fabrication and electrochemical measurements 

The anode and cathode catalysts were directly deposited on to the Nafion® NRE 

212 (DuPont) membrane. The anode and cathode catalyst loading were fixed at 0.1 mgPt 

cm−2 and confirmed using XRF analysis. The catalyst coated membrane and GDLs were 

hot-pressed at 140 °C under a pressure of 20 kg cm−2 for 3 min. Catalyst mass activity 

was measured at 0.9 ViR-corr under H2/O2 (2.0/9.5 stoic.) at 80 °C, 100% RH. Polarization 

studies were performed under H2/O2 (750 mL min−1/750 mL min−1) at 80 °C, 100 % RH, 

no back pressure and H2/air (1.5/1.8 stoic.) at 80 °C, 40% RH, 150 kPaabs back pressure. 
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4.3 Results and discussion 

4.3.1 Effect of heat treatment time on Pt-Co/CCC formation 

To synthesize the Pt-Co alloy catalyst, Pt/CCC catalyst were heat-treated at 800 

°C for different duration (0.5-4.0 h) under nitrogen atmosphere. Figure 4.2 shows 

HRTEM images of Pt/CCC (before heat treatment) and Pt-Co/CCC (after heat treatment 

at 800 °C for 2 h). Figure 4.2 (a) shows homogeneous dispersion of Pt particles on the 

CCC support with the particle size in the range of 2-3 nm. The arrow indicates the 

embedded Co particle within the CCC which will be the Co source for Pt-Co alloy 

formation. After heat treatment, increase of Pt particle sizes from 2-3 nm to a range of 3-

8 nm due to sintering effect at high temperature was observed (Figure 4.2 (b)). 

To investigate the effect of heat treatment duration on crystalline structure of Pt-

Co/CCC catalysts, XRD patterns for Pt/CCC and different heat treated Pt-Co/CCC 

catalysts (heat treated for 0.5-4.0 h) are compared (Figure 4.3). The degree of alloying 

increases as the heat treatment duration increases, which can be seen from the shift in the 

2θ to higher values. It is noticeable that a splitting of the Pt lattice peaks occurred for the 

0.5 h and 1 h heat treated Pt-Co/CCC catalysts while single peaks were observed for the 

Pt/CCC, 2 h heat treated Pt-Co/CCC, and 4 h heat treated Pt-Co/CCC catalysts. For more 

detailed analysis, the deconvolution of Pt(220) lattice peaks between 63-77° for Pt/CCC, 

0.5 h heat treated Pt-Co/CCC, 1 h heat treated Pt-Co/CCC, and 2 h heat treated Pt-

Co/CCC were carried out (Figure 4.4). The deconvolution of Pt/CCC shows a single peak 

at 67.3° which indicates the presence of only pristine Pt. On the other hand, the 0.5 h heat 

treated Pt-Co/CCC shows both Pt (67.9°) and Pt-Co (69.4°) peaks due to presence of 

mixed structure of Pt and Pt-Co. For 1 h heat treated Pt-Co/CCC, the deconvolution of 
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peak shows a similar pattern with that of 0.5 h heat treated Pt-Co/CCC which indicates 

the presence of both Pt and Pt-Co in the catalyst. However, the Pt-Co peak intensity is 

increased when compared with that of 0.5 h Pt-Co/CCC due to an increase in Pt-Co alloy 

formation. For 2 h heat treated Pt-Co/CCC, only a single peak for Pt-Co was observed at 

69.5° which indicates the completion of Pt-Co alloy formation in the catalyst. The 2θ 

values for Pt and Pt-Co peaks and particle sizes are summarized in Table 4.1. These 

results indicate that Co particle present in the CCC support was gradually diffused to the 

Pt particles and the content of Pt-Co alloy was increased as a function of heat treatment 

duration. After 2 h heat treatment, the Co was completely diffused to Pt particles and 

uniform Pt-Co/CCC catalyst was formed. 

4.3.2  Electrochemical studies of Pt-Co/CCC catalysts 

The CV test was performed for the fresh Pt/CCC and Pt-Co/CCC catalysts 

pyrolyzed at 800 °C for 0.5, 1, 2, and 4 h to examine their electrochemical performance 

including ECSA in RRDE test conditions (Figure 4.5). It is noticed that the longer 

heating time decreased the capacitive current, hydrogen adsorption, and oxide layer 

formation on the catalyst. The decrease of hydrogen adsorption region was more 

pronounced than the decrease in the capacitive region indicating that the carbon support 

surface area was not changed significantly in the presence of Pt during heat treatment.  

The ECSA decreased from 96.3 m2 gPt
−1 to 42.8 m2 gPt

−1 when the heat treatment 

time was increased from 0 (no heat treatment) to 2 h due to particle size increase and the 

Pt-Co alloy formation. The theoretical ECSA was calculated from the average particle 

size by using the following formula [193]: 
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where Pt is the density of Pt (21.6 g cm−3) and d is the average particle diameter, 

measured using XRD analysis. 

Figure 4.6 (a) shows the variation of theoretical and measured ECSA vs. the heat 

treatment time. The theoretical ECSA is inversely proportional to the particle size, as 

expected from Eq. 11. The measured ECSAs have a minimum value for the 2 h heat 

treated Pt-Co/CCC. Simultaneously the difference between the measured and the 

theoretical value increases as the heat treatment time increases from 0 to 2 h and 

decreases for 4 h heat treated Pt-Co/CCC catalyst. This effect is probably due to the result 

of decreased adsorption energy of hydrogen on well-formed Pt-Co alloys and 

consequently the lower coverage of the H(ads) monolayer. The alloying affects the 

surface charge and the value of 210 µC cm−2 for the adsorption of one monolayer of 

hydrogen on polycrystalline Pt which was used for the calculation of the ECSA is no 

longer valid. The uncertainty of exact number of the surface charge of the H monolayer 

partly caused the discrepancy from Eq. 11. It can be concluded that at 2 h heat treatment, 

the H adsorption is the smallest and not the specific surface area of Pt caused by the 

increased particle size. 

The specific oxide formation charge (C mgPt
−1) has been calculated by integrating 

the current from 0.45 V to 1.0 V and normalized to the Pt content: 
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where Idl is the capacitive current (A), the sweep rate is equal to 0.05 V s−1, m is the Pt 

metal loading on the ring disk (20 µg cm−2), and A is the disk area (0.248 cm2). The 

specific oxide formation charge result in Figure 4.6 (b) shows the same trend with ECSA, 

which is in agreement with the expected lower surface O(ads) bonding energy for the Pt-

Co alloy surfaces. Among all the catalysts, the 2 h heat treated Pt-Co/CCC showed the 

lowest oxide coverage. 

Figure 4.7 shows the mass transfer corrected ORR activities for Pt/CCC and Pt-

Co/CCC catalysts. The specific activity of the catalyst at 0.9 V increased from 0.063 mA 

cm−2 to 0.165 mA cm−2 for the non-heat treated (Pt/CCC) and 2 h heat treated Pt-Co/CCC 

catalysts, respectively. The specific activity at 0.9 V decreased for the 4 h heat treated Pt-

Co/CCC catalyst (0.138 mA cm−2). The maximum specific activity was observed for the 

2 h heat treated Pt-Co/CCC catalyst, which is in agreement with the minimum oxide 

coverage observed in Fig 4.6(b). The ECSAs, specific oxide formation charges, and 

specific activities at 0.9 V for Pt/CCC and Pt-Co/CCC catalysts are summarized in Table 

4.2. 

From the electrochemical study results, it can be concluded that by applying the 

innovative Pt-Co/CCC preparation methodology, highly-active Pt-Co/CCC catalyst can 

be synthesized. This methodology is cost-effective and easy to scale up. Furthermore, no 

post acid leaching step is necessary to remove unreacted Co from the catalyst. A high 

catalytic activity has been achieved without the leaching or electrochemical de-alloying 

steps, which may cause weakening of support-Pt particle interaction and increase the 

support corrosion leading to poor stability. 
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4.3.3 Fuel cell studies of Pt-Co/CCC catalysts 

The OCV and the kinetic region performance were studied for the elucidation of 

the synergetic effects of CCC support and Pt-Co catalyst. Figure 4.8 shows H2/O2 

polarization curves of commercial Pt/C (TEC10E50E, 46.7% Pt, TKK), Pt/CCC, and 2 h 

heat treated Pt-Co/CCC catalysts. According to these results, the OCV and kinetic region 

performances increased when Pt was deposited onto CCC support due to the synergistic 

effect of combined ORR activities of CCC support and Pt/Pt-Co catalysts. The OCV of 

the ORR on Pt was extensively studied by Damjanovic, Sepa, and Wroblowa by 

analyzing the effects of oxygen pressure, pH, and contamination on the measurable OCV 

of ORR on Pt in sulfuric acid [194-196]. The theoretically expected value of 1.23 V was 

not obtained because of the very low exchange current density for the ORR. They 

concluded that any small contamination in Pt decreases the OCV and the maximum OCV 

measured in an extra clean environment was even lower than its thermodynamic value. 

The oxide formation was found to be independent of the oxygen content and it was 

accounted for in the following reactions: 

 

ݐܲ ൅ ଶܱܪ → ሻݏሺܱܽ݀ݐܲ ൅ ାܪ2 ൅ 	2݁ି																																				ሺ13ሻ 

ݐܲ ൅ ଶܱܪ → ሻݏሺܽ݀ܪܱݐܲ ൅ ାܪ ൅	݁ି																																					ሺ14ሻ 

ሻݏሺܽ݀ܪܱݐܲ → ሻݏሺܱܽ݀ݐܲ ൅	ܪା ൅	݁ି																																				ሺ15ሻ 

 

Consequently a mixed potential [196] is built up in the MEA, in which oxide 

formation or the contaminants (hydrogen crossover) partly acts as the anodic part and 

ORR as the cathodic part. Evidently if the ORR is enhanced or the oxide formation is 
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shifted to a higher mixed potential, higher OCV can be obtained. To sum up, the 

synergistic effect of CCC support and the Pt-Co catalyst formation enhanced the overall 

ORR activity of Pt-Co/CCC catalyst resulting in higher measurable OCV than that of the 

commercial Pt/C catalyst. 

Figure 4.9 (a) shows H2/O2 fuel cell polarization curves for Pt/CCC and 2 h heat 

treated Pt-Co/CCC cathode catalysts. The fuel cell performance of 2 h heat treated Pt-

Co/CCC is higher than that of the Pt/CCC catalyst in both low and high current regions. 

The results indicate that the activity of 2 h heat treated Pt-Co/CCC can be improved by 

achieving complete Pt-Co alloy formation. The current at 0.7 ViR-corr increased from 1.26 

to 2.15 A cm−2 when the Pt-Co alloy is formed in the case of 2 h heat treated Pt-Co/CCC 

catalyst. Mass activity results of Pt/CCC and 2 h heat treated Pt-Co/CCC are shown in 

Figure 4.9 (b). Mass activity of 2 h heat treated Pt-Co/CCC (0.36 A mgPt
−1) is 2.8 times 

higher than that of the Pt/CCC (0.13 A mgPt
−1) which shows that mass activity is 

increased when Pt is alloyed with Co. 

H2/air fuel cell polarizations of Pt/CCC and 2 h heat treated Pt-Co/CCC are 

presented in Figure 4.10. The 2 h heat treated Pt-Co/CCC shows better fuel cell 

performance than the Pt/CCC in the same manner as observed in H2/O2 polarization 

studies (Fig. 4.9). Especially at 0.7 ViR-corr, the 2 h heat treated Pt-Co/CCC catalyst 

generated 1.7 times higher current density than that of Pt/CCC. 

4.4 Conclusion 

A novel method to synthesize Pt-Co/C was investigated by using Co-containing 

CCC as the support material to deposit Pt and subsequent heat treatment to obtain Pt-

Co/CCC catalysts for PEMFC applications. Series of Pt-Co/CCC catalysts was 
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synthesized by heat treating the Pt/CCC catalyst at 800 °C for various durations. The Pt-

Co alloy formation was confirmed by the observed shift in the 2θ values in the XRD 

patterns. The effect of alloying on the ORR activity was studied by analyzing the ECSA, 

the oxide formation charge, and the specific catalytic activity determined by mass 

transfer corrected Tafel analysis. In the fuel cell studies, 2 h heat treated Pt-Co/CCC 

showed better H2/O2 and H2/air polarization performance than Pt/CCC. The mass activity 

of the 2 h heat treated Pt-Co/CCC (0.36 A mgPt
−1) was 2.8 times higher than that of the 

Pt/CCC (0.13 A mgPt
−1). 
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Table 4.1 Summary of the deconvolution of the Pt(220) peaks and particle sizes for 
Pt/CCC and Pt-Co/CCC catalysts heat treated at 800 °C for 0.5, 1, 2, and 4 h. 
 

Heat treatment time 
(h) 

Pt peak 
(deg.) 

Pt-Co peak 
(deg.) 

Particle size 
(nm) 

0 67.3 - 2.5 

0.5 67.9 69.4 2.8 

1 67.8 69.5 3.9 

2 - 69.4 3.9 

4 - 69.5 4.5 
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Table 4.2 Summary of electrochemical properties for Pt/CCC and Pt-Co/CCC catalysts 
heat treated at 800 °C for 0.5, 1, 2, and 4 h. 
 

Heat treatment 
time (h) 

ECSA 
(m2 gPt

−1) 

Specific oxide 
formation charge 

(C mgPt
−1) 

Specific activity 
at 0.9 V 

(mA cm−2) 

0 96.3 0.109 0.063 

0.5 58.8 0.065 0.095 

1 52.8 0.065 0.142 

2 42.8 0.048 0.165 

4 48.1 0.059 0.138 
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CHAPTER 5 

DEVELOPMENT OF ACTIVATED CARBON COMPOSITE SUPPORT 

(ACCS) WITH HIGH ACTIVITY AND STABILITY 

5.1 Introduction 

It is well known that the carbon supported Pt catalysts show improved activity 

and stability compared to unsupported Pt catalysts due to the high efficiency of well 

distributed Pt nanoparticles on the carbon support and good interaction of Pt 

nanoparticles and carbon [197]. Several properties are required for an ideal support 

material for Pt-based catalysts for PEMFC: (i) good electrical conductivity, (ii) good 

catalyst-support interaction, (iii) appropriate surface area for catalyst deposition, (iv) 

mesoporous structure enabling the ionomer to bring the catalyst nanoparticles close to the 

reactants, i.e. to maximize the triple-phase boundary, (v) good water management 

capability to avoid flooding, (vi) good corrosion resistance, and (vii) cost-effective for 

mass production [197]. The choice of support material is vital and highly influential in 

determining the activity, stability, and cost-effectiveness of the catalyst and the overall 

PEMFC system. 

The HSACB is the most widely used support material in PEMFC due to the high 

electrical conductivity, high surface area, easy availability, and low cost [197]. However, 

many studies have shown that HSACB has low resistance towards thermal and 

electrochemical oxidation because of the HSACB structure containing mainly amorphous
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carbon and a small portion of plane graphite carbon, which has an abundance of dangling 

bonds and defects [43]. The dangling bonds can easily form surface oxides, which results 

in a higher corrosion rate under electrochemical oxidation. To improve the 

electrochemical stability of the carbon support and overall Pt/C catalyst, new carbon 

materials have been tested as support materials for PEMFC, including nano-diamonds 

[198-200], CNTs [201-203], CNFs [34, 176, 202], CNCs [33, 34], graphene [204, 205], 

etc. These carbon materials have shown enhanced thermal and electrochemical stability 

due to higher degree of graphitization of carbon and inert surface structures toward 

carbon oxidation [201]. However, those properties also act as drawbacks in the 

preparation of Pt/C catalysts since they do not provide proper active sites for Pt 

deposition. Furthermore, hydrophobic nature of their surfaces impedes dispersion in a 

polar solvent thus preventing the Pt deposition on the surfaces [176]. It may cause 

difficulty in controlling the particle size, uniform distribution of Pt particles, and 

achieving high metal loading, which results in low activity of catalysts [206]. In order to 

enhance Pt deposition on these carbons, a surface functionalization is required. However, 

it makes the preparation more complex and increases the cost. In addition, after attaching 

the functional groups on carbons, the surface properties are usually influenced, and the 

stability of functionalized material will be decreased as a result [176]. Relatively high 

cost of the alternative carbon supports is another huge obstacle although the cost of these 

materials has fallen continuously in recent years [207]. 

The activated carbon composite support (ACCS) which was obtained from carbon 

black has ideal properties for Pt deposition similar to that of carbon blacks. In addition, 

the preliminary study of thermal stability showed that ACCS has good thermal stability 
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similar to that of CNFs. From these advantages of ACCS, it was considered as a 

promising support material for Pt catalyst and was studied extensively in this study. The 

membrane electrode assembly (MEA) performance and support stability were studied 

with Pt loading of 0.1 mg cm−2 on both cathode and anode electrodes.  

To examine the electrochemical stability of carbon support material in PEMFC 

condition, various methods have been suggested [208]. Generally, it is required to operate 

more than 5000 h to apply PEMFC to the automotive application [42]. However, it is 

impractical and inefficient to estimate the stability under practical conditions because of 

huge testing time and cost. Therefore, various research groups proposed several effective 

AST methods for testing MEAs and their materials [209-212]. A good AST method 

should meet several conditions: (i) relatively short testing time, (ii) good selectivity of 

carbon degradation, and (iii) good degradation behavior of fuel cell performance [213]. 

To establish appropriate AST protocol to meet all the conditions mentioned above, it is 

important to understand the mechanism of carbon corrosion at various potential regions 

and potential profiles (constant potential, triangular cycling, rectangular cycling, etc). 

Reiser et al. suggested that a cathode interfacial potential difference would be increased 

up to ~1.5 V due to the “H2/air front” mechanism in the case of start-up/shut-down 

process [45]. The same phenomenon also occurs in the case of local hydrogen starvation 

in the MEA [214]. Furthermore, it has been shown that the cathode potential behavior 

follows a triangular change with the maximum potential of ~1.5 V when H2 introduced to 

the anode compartment [212]. Recently, Hashimasa et al. studied the effects of the 

potential waveform on carbon corrosion rate by comparing 1.3 V constant potential and 

0.9-1.3 V potential cycling [213]. If the carbon corrosion is only affected by high 
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potential, holding the potential at high value would show high carbon corrosion rate. 

However, the carbon corrosion rate of 0.9-1.3 V potential cycling was higher than that of 

1.3 V constant potential. Park et al. proposed the reason of this phenomenon that de-

passivated Pt at the lower potential catalyzes carbon corrosion when potential is increased 

[215]. The result shows that the potential cycling is more effective than potential holding 

to test carbon corrosion. But there is still an issue about the lower potential limit of 

potential cycling; lower potentials than 0.9 V in the potential cycling would also result in 

Pt degradation through the Pt oxidation and reduction processes [216]. Therefore, the 

performance loss by carbon corrosion and the one by Pt degradation will be mixed 

resulting in the poor selectivity of carbon support degradation. Thus, the potential above 

1.0 V at which Pt is passivated all the time should be used as the lower potential limit of a 

potential cycling test to study the carbon support stability without the contribution of Pt 

degradation. According to all these studies, the potential cycling between 1.0 and 1.5 V 

would be a good AST protocol to test the carbon support stability in PEMFC. Actually, 

the FCCJ suggested a potential cycling protocol (1.0-1.5 V, 5000 cycles, 0.5 V s−1) to test 

the support stability in 2011 [212], and the U.S. DOE revised their previous protocol (1.2 

V constant potential for 400 h) with the same potential waveform as the FCCJ in 2013 

[217]. The 1.0-1.5 V potential cycling protocol not only correctly simulates the practical 

startup/shutdown behavior but it also reduces the testing time (2 sec cycle−1, < 3 h total). 

Mukundan reported the comparison of the old protocol (1.2 V constant potential for 400 

h) and the new protocol (1.0-1.5 V, 5000 cycles, 0.5 V s−1) of U.S. DOE [218]. It was 

observed that 200 h constant potential at 1.2 V is equivalent to 2000 cycles at 1.0-1.5 V. 

According to the result, the author concluded that the new protocol could reduce the 
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testing time significantly (~100 times) when compared to the old protocol with the same 

performance decay. Due to the advantages mentioned above, in this study, the 1.0-1.5 V 

potential cycling protocol has been selected to test the carbon support stability for Pt 

catalysts deposited on various carbon materials. 

5.2 Experimental 

5.2.1 Synthesis of activated carbon composite support (ACCS) 

The ACCS was synthesized by two-step process - purification and stabilization - 

from a carbon black.  

5.2.2 Carbon thermal stability and thermogravimetric analysis 

A variety of carbon supports such as HSACB (Ketjenblack EC-300J, Akzo 

Nobel), Vulcan XC-72 (Cabot), CCC 1500 °C (In-house), Ensaco 290G (Timcal), ACCS 

(In-house), CNC (obtained from a collaborating laboratory), and CNF (Sigma-Aldrich) 

were selected and their thermal stability was measured by heat treatment at 600 °C for 1 h 

with 10 °C min−1 ramping time in a tube furnace with constant air flow (150 ml min−1). 

The weights before and after heat treatment were measured using a digital balance to 

calculate the weight loss of each carbon. Complete thermal decomposition of carbons 

was studied by thermogravimetric analysis (TGA) (Q5000IR, TA Instruments). The 

experiments were conducted under mixed gas of 10 ml min−1 of nitrogen and 25 ml min−1 

of air. The temperature was increased up to 1000 °C at 10 °C min−1 ramping time. 

5.2.3 Synthesis of Pt/C catalyst 

Platinum nanoparticle deposition with an initial loading of 30 wt. % Pt was 

carried out using a modified polyol process to control the particle size and to enhance the 

catalyst-support interaction. In brief, a measured amount of PtCl4 was dissolved in an 
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appropriate volume of ethylene glycol under vigorous stirring for 30 min. Each carbon 

was functionalized with PCA solution in order to obtain a uniform Pt particle distribution 

on the carbon support. Calculated amount of surface modified carbon support was added 

to the solution so that the desired initial Pt loading was achieved in the final Pt/C catalyst. 

Then, 0.5 M NaOH was introduced into the solution to adjust the pH in the range 

between 11 and 12. The resulting suspension was stirred for 1 h at room temperature 

followed by refluxing at 160 °C for 3 h. The solution was allowed to cool down to room 

temperature and kept for 12 h under continuous stirring. 0.1 M H2SO4 was then added to 

the cooled mixture and the solution pH was adjusted to 3. The mixture was kept under 

stirring for 24 h. The catalyst in the solution was filtered and thoroughly washed with DI 

water. The resulting Pt/C catalyst was dried at 160 °C and stored for further studies. 

5.2.4 Material characterization studies 

The physical properties of carbon supports and Pt/C catalysts were studied using 

XRD and HRTEM. XRD patterns were recorded using Rigaku 405S5 to identify the 

crystalline structure of the supports and catalysts. HRTEM (Hitachi H9500) was used to 

determine the Pt particle size of Pt/C catalysts. 

5.2.5 MEA fabrication and electrochemical measurements 

The polarization performances of commercial Pt/C (TEC10E30E, 28.2 wt. % Pt 

on Ketjenblack EC-300J, Tanaka Kikinzoku Kogyo K.K., Japan), in-house synthesized 

30 wt. % Pt/290G (Ensaco 290G carbon support obtained from Timcal), and in-house 

synthesized 30 wt. % Pt/ACCS catalysts were evaluated in 25 cm2 MEAs. The 46.7 wt. 

% commercial Pt/C catalyst (TEC10E50E, 46.7 wt. % Pt on Ketjenblack-EC300J, 

Tanaka Kikinzoku Kogyo K.K., Japan) was used as the anode catalyst in all the MEAs. 



 

95 

The catalyst inks for the anode and cathode were prepared by blending the catalysts in DI 

water, isopropyl alcohol, and 5% solution of Nafion® in isopropyl alcohol (Alfa Aesar) in 

an ultrasonic bath. The catalyst inks were directly deposited onto the Nafion® NRE 212 

membrane using a spray gun. The catalyst loadings were fixed at 0.1 mgPt cm−2 and 0.1 

mgPt cm−2 confirmed using XRF for cathode and anode, respectively. Commercially 

available carbon paper (SGL 10 BC) was used as the GDL for both anode and cathode. 

The catalyst coated membranes were hot-pressed with GDLs at 140 °C for 3 min. under 

20 kg cm−2 to form MEAs. Initially, the MEA was activated under a supply of H2 and O2 

at 80 °C to the anode and cathode compartments, respectively, and the initial polarization 

performance curves were recorded with a flow rate of 750 ml min−1 and 100% RH. The 

catalyst mass activity was evaluated under H2/O2 (2.0/9.5 stoic.) at 80 °C, 100% RH, and 

150 kPaabs back pressure. The polarization curves were recorded under H2/air (2/2 stoic.) 

at 80 °C, 40% RH, and 170 kPaabs back pressure. Electrochemical impedance 

spectroscopy (EIS) measurement was conducted in the frequency range from 0.025 to 

1000 Hz at 10 mA cm−2 polarized condition using the in-built EIS analyzer in the Fuel 

Cell Test System (Model 850e, Scribner Associates, USA) under H2/air (2/2 stoic.) at 80 

°C, 40% RH, and 170 kPaabs back pressure. 

Two different DOE suggested AST test protocols are used to evaluate the stability 

of the catalyst: support stability test under 1.0-1.5 V cycling and catalyst stability test 

under 0.6-1.0 V cycling. The support stability was evaluated using a simulated start-

up/shut-down cycling experiment. The experiment was performed by cycling between 1.0 

and 1.5 V for 5000 cycles with 0.5 V s−1 scan rate at a cell temperature of 80 °C [217]. 

The catalyst stability was tested by cycling between 0.6 and 1.0 V for 30000 cycles with 
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0.05 V s−1 scan rate at a cell temperature of 80 °C [217]. During the experiment, pure 

hydrogen (200 ml min−1) and nitrogen (75 ml min−1) having 100% RH were supplied to 

the anode and cathode compartments, respectively. The mass activity change under 

H2/O2, the voltage change and the power density change under H2/air, ECSA under H2/N2 

after 5000 potential cycles were used to evaluate the support stability. 

5.3 Results and discussion 

5.3.1 Carbon supports characterization 

The thermal stability of various carbons was examined by heat treatment under air 

flow at 600 °C for 1 h. Figure 5.1 shows the weight retentions after thermal stability test 

for various carbons. The HSACB, CCC-1500 °C, Vulcan XC-72, Ensaco 290G, ACCS, 

CNC, and CNF were compared. Two commonly used carbon supports for Pt/C catalyst 

for PEMFC, namely HSACB (Ketjenblack EC-300J) and Vulcan XC-72, show the lowest 

weight retention after thermal stability test (1.5% for HSACB and 14.1% for Vulcan XC-

72). The CCC-1500 °C obtained from HSACB shows increased thermal retention 

(24.4%) which agrees with the result of increased degree of graphitization (chapter 2). 

The Ensaco 290G carbon shows a weight retention of 29.3% which is higher than for 

HSACB and Vulcan XC-27. The ACCS shows 92.8% retention which is much higher 

than that of HSACB, Vulcan XC-72, and Ensaco 290G carbons. The high weight 

retention for ACCS is in similar range of those of CNC and CNF which are highly 

graphitized carbons. S.M. Andersen et al. [206] claimed that CNF and CNT supports for 

Pt/C cathode catalyst showed higher thermal stability as well as higher electrochemical 

stability in MEA test (0 – 1.6 V 15000 cycling) than those of CB support. From the 
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thermal stability test results, it is expected that the ACCS which showed similar thermal 

stability as the CNF would show good electrochemical stability in MEA tests.  

Among various carbons, HSACB, Ensaco 290G, and ACCS were selected for 

more detailed thermal decomposition analysis using TGA. Figure 5.2 shows the result of 

TGA for the three selected carbon supports. The ACCS shows the highest thermal 

stability by showing highest on-set temperature for decomposition. The HSACB shows 

the lowest thermal stability and Ensaco 290G shows intermediate thermal stability in 

between ACCS and HSACB which agrees well with the thermal stability study results 

presented in Figure 5.1. The starting temperatures of decomposition are 570, 588, and 

640 °C for HSACB, Ensaco 290G, and ACCS, respectively. 

The XRD patterns of HSACB, Ensaco 290G, and ACCS are shown in Figure 5.3. 

The crystallite thickness (Lc) calculated by Scherrer’s formula and the interlayer spacing 

(d002) obtained from Bragg’s law are used as the factors to determine the degree of 

graphitization of carbons. It has been reported that higher Lc value of the (002) peak and 

lower d002 number imply a higher degree of graphitization [165, 219]. The ACCS shows 

Lc value which is almost twice higher than that of HSACB and Enasco 290G, and the 

lowest d002 of 0.349 when compared to the other two supports. From the XRD analysis, a 

higher degree of graphitization of ACCS compared with the HSACB and Ensaco 290G 

was observed and it could be attributed to the higher thermal stability of ACCS than 

HSACB and Ensaco 290G. The weight retentions of various carbons after thermal 

stability test, the starting temperatures of decomposition on TGA, Lc values, and d002 

values obtained from XRD analysis are summarized in Table 5.1. 
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5.3.2 Support stability test (1.0-1.5 V, 5000 cycles) 

The 30 wt. % Pt on Ensaco 290G carbon support (Pt/290G) and 30 wt. % Pt on 

ACCS support (Pt/ACCS) catalysts were synthesized using a modified polyol reduction 

process. Commercially available 28.2 wt. % Pt/C catalyst (TEC10E30E) was compared 

with Pt/290G and Pt/ACCS as a cathode catalyst to represent the Pt/HSACB catalyst 

since Ketjenblack-EC300J HSACB was used as a support material for this commercial 

catalyst [183]. The XRD patterns of commercial Pt/C, Pt/290G, and Pt/ACCS catalysts 

are compared in Figure 5.4. The diffraction patterns represent all the reflections 

corresponding to the face centered cubic (fcc) lattice of Pt supported on various carbon 

supports. Scherrer’s equation was used for calculating the Pt crystallite size using the 

Pt(220) peak appearing at 67.5° [47, 158]. The dPt values calculated from the XRD 

analysis are 1.6, 3.2, and 2.1 nm for the commercial Pt/C, Pt/290G, and Pt/ACCS 

catalysts, respectively, which are confirmed by the HRTEM images and corresponding 

particle size distribution shown in Figure 5.5. 

The support stability tests were carried out by subjecting the MEAs to a potential 

cycling test (1.0-1.5 V, 5000 cycles) to simulate the start-up/shut-down conditions of an 

automotive PEMFC. The corrosion rate of carbon increases drastically at high electrode 

potentials, and can result in severe degradation of the carbon support via the following 

reaction [46]:  

 

ܥ ൅ ଶܱܪ2 → ଶܱܥ ൅ ାܪ4 ൅ 4݁ି	ሺܧ௢ ൌ .ݏݒ	ܸ	0.207  ሺ4ሻ										Ԩሻ	25	ݐܽ	ܧܪܴ
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Oxidation of the carbon surface increases its hydrophilicity and affects water 

removal, resulting in an increased mass-transfer resistance. In addition, the oxidation of 

carbon increases the electrical resistance of the catalysts, leads to the detachment or 

aggregation of catalyst particles, and damages the cathode catalyst layer structure [51]. 

Furthermore, the presence of Pt increases the corrosion rate by catalyzing the carbon 

oxidation [206]. 

Figure 5.6 shows H2/air fuel cell polarization curves for the three different 

cathode catalysts. After 5000 cycles, the Pt/ACCS shows no loss in H2/air performance 

indicating good support stability under high potentials (Figure 5.6(c)). On the other hand, 

commercial Pt/C catalyst shows 69.5% power density loss only after 1000 cycles and a 

further decrease to 88.7% after 5000 cycles (Figure 5.6(a)). The Pt/290G catalyst shows 

moderate stability with 22.5% power density loss until 2000 cycles and a rapid decay 

between 2000 and 5000 cycles resulting in overall power density loss of 84.0% (Figure 

5.6(b)). Mass activities under H2/O2 operating conditions at 0.9 ViR-corr were measured 

before and after support stability test to examine the kinetic performance changes of these 

three catalysts (Figure 5.7). The Pt/ACCS catalyst shows no loss after the support 

stability test while commercial Pt/C and Pt/290G catalysts show 57.5% and 66.2% losses, 

respectively. Similar trends were observed in EIS analysis (Figure 5.8). Commercial Pt/C 

and Pt/290G catalysts show an increase of charge-transfer resistance after the support 

stability test, but Pt/ACCS shows a small decrease of resistance which may due to the 

activation effect. The maximum power densities and mass activities before and after 

stability test for commercial Pt/C, Pt/290G, and Pt/ACCS catalysts are summarized in 

Table 5.2. 
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The good support stability of ACCS was attributed to the higher degree of 

graphitization of ACCS than HSACB and Ensaco 290G supports which was confirmed 

by XRD analysis. Also, it could be elucidated by the hydrophobic character of ACCS 

since carbon corrosion occurs in the presence of water [35]. In order to determine the 

hydrophilic/hydrophobic nature, the carbon supports were dispersed in water/hexane 

mixture (Figure 5.9). The HSACB and Ensaco 290G carbons are mainly dispersed in the 

water phase which indicates the hydrophilicity of these carbons. On the other hand, 

ACCS shows dispersion mainly in the hexane phase while only a small amount of carbon 

is dispersed in the water phase which shows good hydrophobic property for ACCS when 

compared with the other two carbons. The enhanced hydrophobic property of ACCS is 

also confirmed by the contact angle measurement. As shown in Fig. 5.10, ACCS shows a 

contact angle of 132° which is much greater than that for HSACB (38°) and Ensaco 290G 

(32°) carbons. The enhanced hydrophobic property of ACCS can minimize water 

adsorption on the carbon surface resulting in less carbon corrosion. Furthermore, the 

difference in hydrophobicity affects the H2/air fuel cell performance in the mass-transport 

region. While commercial Pt/C and Pt/290G show current densities of 950 mA cm−2 and 

1250 mA cm−2 at 0.6 ViR-corr, respectively, Pt/ACCS shows 1700 mA cm−2 at 0.6 ViR-corr. 

The higher H2/air fuel cell performance of Pt/ACCS is due to (i) optimized support 

properties such as BET surface area which resulted in thin catalyst layer thus favoring 

effective mass-transfer to the Pt catalytic sites and (ii) hydrophobicity of the ACCS 

support which results in better water removal during high current operation.  
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5.3.3 Catalyst stability test (0.6-1.0 V, 30000 cycles) 

The DOE suggested catalyst stability test method was used (potential cycling 

between 0.6 to 1.0 V for 30000 cycles) for the catalyst stability test. Figure 5.11 shows 

the H2/air polarization performance of catalyst stability test result for Pt/ACCS and 

commercial Pt/C cathode catalyst. The Pt/ACCS catalyst shows an initial power density 

of 0.173 gPt kW−1 with a potential loss of 73 mV (iR-corr) at 0.8 A cm−2 after 30000 

potential cycles between 0.6 and 1.0 V. The commercial Pt/C shows the initial power 

density of 0.268 gPt kW−1 and no activity at 0.8 A cm−2 after 30000 cycles. Figure 5.12 

shows initial mass activity of 0.193 A mgPt
−1 and the stability of mass activity for the 

Pt/ACCS catalyst subjected to potential cycling between 0.6 and 1.0 V. The catalyst 

stability test resulted in 52% mass activity loss after 30000 cycles for Pt/ACCS catalyst. 

The commercial 46% Pt/C catalyst shows 0.184 A mgPt
−1 initial mass activity and 60% 

loss after 30000 cycles. The cell voltages, rated power densities, mass activities and 

ECSAs before and after stability test for Pt/ACCS and commercial Pt/C are summarized 

in Table 5.3. 

5.4 Conclusion 

The ACCS was employed as a support material for Pt/C cathode catalyst to 

improve the catalytic activity and stability under PEMFC operating conditions. Pyrolysis 

at 600 °C result showed similar thermal stability for ACCS and CNF supports. Also, 

complete decomposition study by TGA confirmed the good thermal stability of ACCS. 

Potential cycling between 1.0 and 1.5 V for 5000 cycles showed no loss in both H2/air 

fuel cell performance and mass activity for the Pt/ACCS catalyst while commercial Pt/C 

and Pt/290G showed drastic performance losses after the stability test. The good stability 
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of ACCS at high potentials is attributed to the higher degree of graphitization which was 

confirmed by XRD analysis and better hydrophobic nature of ACCS when compared to 

HSACB and Ensaco 290G carbons. Catalyst stability under 0.6-1.0 V cycling test of 

Pt/ACCS catalyst showed improved stability than commercial Pt/C catalyst too. 
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Table 5.1 List of carbons and physical properties of various carbons. 
 

Sample 
Weight retention 

after heat treatment  
at 600 °C (%) 

Starting temp. of 
decomposition (°C) 

(TGA) 

Lc  
(nm) 

(XRD) 

d002  

(nm) 
(XRD) 

HSACB 1.5 570 1.8 0.361 

Vulcan XC-72 14.1 - - - 

CCC 1500 °C 24.4 - - - 

Ensaco 290G 29.3 588 2.0 0.358 

ACCS 92.8 640 4.0 0.349 

CNC 81.4 - - - 

CNF 92.9 - - - 
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Table 5.2 Comparison of fuel cell performances of commercial Pt/C, Pt/290G, and 
Pt/ACCS catalysts before and after the support stability test (1.0-1.5 V potential cycling 
for 5000 cycles). 
 

Sample 

Max. power density (mW cm−2) Mass activity (A mgPt
−1) 

Initial 
After 5k 
cycles 

Change 
(%) 

Initial 
After 5k 
cycles 

Change 
(%) 

Commercial 
Pt/C 

495 56 −88.7 0.167 0.071 −57.5 

Pt/290G 530 85 −84.0 0.139 0.047 −66.2 

Pt/ACCS 722 793 9.8 0.165 0.167 1.0 
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Table 5.3 Comparison of fuel cell performances of Pt/ACCS and commercial Pt/C 
catalysts before and after the catalyst stability test (0.6-1.0 V potential cycling for 30000 
cycles). 
 

Catalyst/Test 

Cell voltage (mV) 

@ 1.5 A/cm
2
 for 

support stability 

@ 0.8 A/cm
2
 for 

catalyst stability 

Rated power 
density 

(gPt kW−1) 

Mass activity 
(A mgPt

−1) 
ECSA 

(m2 gPt
−1) 

Initial Final Initial Final Initial Final Initial Final 

Pt/ACCS 
Support stability 
(1.0-1.5 V, 5k)  

  
Catalyst stability 
(0.6-1.0 V, 30k) 

  
629 

 
 

723 

 
638 

(No loss) 
 

650 
(−73) 

 
0.186 

 
 

0.173 

 
0.174 

 
 

0.252 

  
0.165 

  
  

0.193 

  
0.167 

(No loss)  
  

0.092 
(−52%) 

  
50.0 

  
   

41.0 

  
27.5 

(−45%) 
  

14.0 
(−66%) 

Commercial 
Pt/C 

Support stability 
(1.0-1.5 V, 5k)  

   
Catalyst stability 
(0.6-1.0 V, 30k) 

  
 481 

 
 

696 

 
0 

(−481) 
 

0 
(−696) 

 
0.278 

 
 

0.268 

 
3.460 

 
 

0.730 

  
0.167 

   
  

0.184 

  
0.071 

(−58%) 
  

0.074 
(−60%) 

  
59.8 

  
   

62.0 

  
11.0 

(−82%) 
  

13.6 
(−78%) 
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CHAPTER 6 

DEVELOPMENT OF COMPRESSIVE Pt LATTICE CATALYST ON 

ACCS SUPPORT (Pt*/ACCS) TO IMPROVE ACTIVITY AND 

STABILITY UNDER 0.6-1.0 V CYCLING 

6.1 Introduction 

As discussed previously, it is essential to decrease the Pt loading in the MEA by 

increasing the catalyst activity and stability to meet the cost targets of automotive 

PEMFC commercialization. One of the promising pathways to achieve a high activity of 

the catalyst is through the modification of the intrinsic catalyst activity of Pt by doping 

the catalyst with transition metal that results in the formation of bimetallic surfaces. In 

the past decades, great progress has been made in developing more active and durable Pt-

M catalysts and in understating the factors contributing to their activity enhancements. In 

the literature, usually two to three-fold specific activity enhancements for the Pt-M 

catalysts have been reported [4, 12, 220-222]. There have been several attempts made to 

hypothesize the relationship between the higher activities of Pt-M alloy catalysts over Pt 

catalysts: a surface roughening effect due to leaching of the alloying  metal [223, 224]; 

decreased lattice spacing of Pt atom [225, 226]; electronic effects of the neighboring 

atoms on Pt, such as increased Pt d-band vacancy [220, 227] or depressed d-band center 

energy [228-230]; and decreased Pt oxide/hydroxide formation at high potentials [220, 

231]. Some mechanisms are partly coupled with each other, for instance, the decreased 
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lattice spacing may affect the electronic structure of Pt atoms, which in turn may inhibit 

the Pt oxide/hydroxide formation. 

In the early 1980s, Jalan and Taylor suggested that the nearest-neighbor distance 

between Pt atoms played an important role in the ORR, the rate determining step being 

the rupture of O-O bond via various dual-site mechanisms [225]. They proposed that the 

original distance between the nearest-neighbor atoms on the surface of pure Pt is not ideal 

for the dual site adsorption of O2. The introduction of foreign atoms which reduce the Pt 

nearest-neighbor spacing would result in a higher ORR activity. Mukerjee et al. have 

reported extensive set of values for five Pt-M alloys (PtCr/C, PtMn/C, PtFe/C, PtCo/C, 

and PtNi/C) supported on the high surface area carbon supports [220]. The results 

indicated that 20-30 mV activity gains over Pt/C could be obtained or a 1.2-5.0-fold 

increase in specific activity and similar increase in mass activity of the Pt-M alloys over 

Pt. By employing extended X-ray absorption fine structure (EXAFS) and X-ray 

diffraction (XRD) analysis, contractions in the Pt-Pt bond distances were observed. Also, 

they found that the Pt-alloys possess higher Pt d-band vacancies than Pt/C in the double-

layer potential region (0.54 V vs. RHE), while Pt/C shows higher d-band vacancy relative 

to alloys in the high potential region (0.84 V vs. RHE) which could be interpreted as a 

result of the significant adsorption of OH species at high potential on Pt/C, but to a lesser 

extent on Pt-M alloys. 

Various synthesis techniques have been used to develop Pt-M alloy catalysts on 

carbon supports. Xiong and Manthiram synthesized nanostructured Pt-M/C (M = Fe, and 

Co) alloy catalysts by a micro-emulsion method and high-temperature treatment [232]. 

They observed 3-4 times higher mass activities for the Pt-M/C alloy catalysts than Pt/C 



 

120 

catalyst, with Pt-Co/C being the best performing catalyst. Yano et al. succeeded to obtain 

highly-dispersed Pt and Pt-M/C (M = V, Cr, Fe, Co, and Ni) nano-particles on CB 

support by the simultaneous reduction of Pt(acac)2 and M(acac)x in organic nano-capsule 

with good control of both the particle size and uniform alloy composition [233]. It was 

observed that ORR activities of Pt-M/CB alloys were 1.3-1.8 times higher than that of 

Pt/CB catalyst. Qian et al. prepared Pt-M/C (M = Cr, Fe, and Co) using a reverse micelle 

method [234]. They showed that Pt-M/C catalysts obtained by the reverse micelle method 

had more uniform particles and narrow particle size distribution than that prepared using 

the impregnation method. Rao and Viswanathan prepared Pt-M/C (M = Cr, Fe, and Co) 

catalysts by simultaneous polyol reduction and decomposition of metal precursors with 

1,2-hexadecanediol in the presence of nonanoic acid and nonylamine protecting agents 

[235]. The ORR activities of Pt-M/C catalysts are found to be ~1.5 times higher than that 

of the as-synthesized and commercial Pt/C catalysts. 

It has been reported that the topmost atomic layer of an annealed Pt-M alloy 

catalyst is composed of pure Pt while the second layer is enriched with the transition 

metal [229, 236, 237]. These Pt-rich surface catalysts are produced during annealing by 

the displacement of Pt and M atoms in the first several layers to minimize the total free 

energy. Xu et al. studied the adsorption of O and O2 and the dissociation of O2 on the 

(111) faces of ordered Pt3Co and Pt3Fe alloys and on monolayer Pt skins covering these 

two alloys [238]. The absolute magnitudes of the binding energies of O and O2 followed 

the same order in these two alloy systems: Pt skin < compressed Pt(111) < Pt(111) < 

unsegregated Pt3Co(111) or unsegregated Pt3Fe(111) which were caused by the shifting 

of the d-band center of Pt-skin and compressed Pt(111). The authors proposed that an 
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alleviation of poisoning by O and enhanced rates for reactions involving O could be some 

of the reasons why Pt-skins are more active for the ORR.  

Stamenkovic et al. employed the ultra-high vacuum (UHV) and in situ 

electrochemical methods to prepare, characterize, and study the ORR on polycrystalline 

Pt3Ni and Pt3Co bulk alloys in acid electrolytes [237, 239]. It was found that in 0.1 M 

HClO4, the catalytic enhancement was greater than that in 0.5 M H2SO4 for all the 

catalysts, and the order of activities was  Pt skin > Pt3Co > Pt3Ni > Pt. The maximum 

catalytic activity was found on the Pt-skin on Pt3Co; 3-4 times higher than that for pure 

Pt. The enhancement of activity was interpreted by the reduced adsorption of oxygenated 

species from water onto Pt-skin or Pt-M alloy catalysts, that is, a ~20-30 mV shift in the 

formation potential of OHad to more positive potentials on the alloy surfaces, leaving 

more active Pt sites for the ORR. They found that the relationship between the specific 

activity and the d-band center position on the Pt-skin or Pt-skeleton surfaces exhibits a 

volcano shape, with the maximum catalytic activity obtained for Pt3Co (Figure 6.1) 

[230]. To create better catalysts than Pt for the ORR, the catalysts should counterbalance 

two opposing effects, that is, relatively strong adsorption energy of O2 and reaction 

intermediates and relatively low coverage by spectator oxygenated species and 

specifically adsorbed anions. For catalysts that bind O2 too strongly, the rate is limited by 

the rate of removing surface oxides and anions and for catalysts that bind O2 too weakly, 

the rate is limited by the rate of electron and proton transfer to adsorbed O2.  

Chen et al. [236, 240] observed chemical composition variations within individual 

nanoparticles of acid-treated Pt3Co catalysts, which is in good agreement with the 

formation of percolated Pt-rich regions that extend from the surface to the particle center, 
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analogous to the skeleton structure proposed previously for bulk Pt-alloy surfaces after 

acid leaching [230, 241]. The acid-treated Pt3Co nanoparticles showed ~ 2 times higher 

specific activity than that of pure Pt nanoparticles. They also annealed the acid-treated 

Pt3Co catalyst and found direct evidence of Pt sandwich-segregation surfaces of ordered 

Pt3Co nanoparticles with the topmost layer of pure Pt atoms. The specific activity of the 

annealed nanoparticles was ~ 4 times higher than that of pure Pt nanoparticles. The 

enhanced ORR activity of acid-treated and annealed Pt3Co nanoparticles relative to Pt 

nanoparticles was attributed to compressive strains and ligand effects associated with the 

percolated and sandwich-segregation structures in nanoparticles near-surface regions, 

respectively. 

From extensive researche about Pt-M catalysts, it has been seen that promising 

results towards enhancement of ORR activity have been achieved, especially for 

compressive Pt catalyst obtained from Pt-Co interaction. However, most of these exciting 

approaches have been tested and characterized only using an RRDE which is very 

different from that of real PEMFC operating conditions. Moreover, in RRDE studies, the 

transport of oxygen is limited with the dissolved oxygen in acid electrolytes (~10-12 

ppm) and the catalyst surface is entirely wet with the electrolyte forming three-phase 

(solid-liquid-gas) equilibrium. In this respect, the objectives of this research is to develop 

Pt-Co catalysts using robust carbon-based supports and perform studies in 25 cm2 MEAs 

under H2/O2 and H2/air to investigate the activity and stability of compressive Pt catalyst 

from Pt-Co under real-time PEMFC operating condition. 
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6.2 Experimental 

6.2.1 Synthesis of Pt*/ACCS catalyst 

Pt*/ACCS catalyst was synthesized by the annealing of Pt/ACCS catalyst in the 

presence of Co under 5% H2 (balanced with N2) atmosphere. Annealing temperature was 

studied in the range of 300 to 900 °C. To prevent Pt particle sintering and agglomeration, 

a protective coating was applied to Pt/ACCS catalyst before annealing. Also, Pt/Co ratio 

was studied to investigate the formation of Pt*/ACCS and fuel cell performance as a 

function of Co amount in the Pt*/ACCS.  

6.2.2 Material characterization studies 

The physical properties of Pt*/ACCS catalysts were studied using XRD and 

HRTEM. XRD patterns were recorded using Rigaku 405S5 to identify the crystalline 

structure of the supports and catalysts. HRTEM (Hitachi H9500) was used to determine 

the Pt particle size of Pt*/ACCS catalysts. 

6.2.3 MEA fabrication and electrochemical measurements 

The polarization performances of 30 wt. % Pt*/ACCS catalysts were evaluated in 

25 cm2 MEAs. The 46.7 wt. % commercial Pt/C catalyst (TEC10E50E, 46.7 wt. % Pt on 

Ketjenblack-EC300J, Tanaka Kikinzoku Kogyo K.K., Japan) was used as the anode 

catalyst in all the MEAs. The catalyst inks for the anode and cathode were prepared by 

blending the catalysts in DI water, isopropyl alcohol, and 5% solution of Nafion® in 

isopropyl alcohol (Alfa Aesar) in an ultrasonic bath. The catalyst inks were directly 

deposited onto the Nafion® NRE 212 membrane using a spray gun. The catalyst loadings 

were fixed at 0.1 mgPt cm−2 and 0.1 mgPt cm−2 confirmed using XRF for cathode and 

anode, respectively. Commercially available carbon paper (SGL 10 BC) was used as the 
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GDL for both anode and cathode. The catalyst coated membranes were hot-pressed with 

GDLs at 140 °C for 3 min. under 20 kg cm−2 to form MEAs. Initially, the MEA was 

activated under a supply of H2 and O2 at 80 °C to the anode and cathode compartments, 

respectively, and the initial polarization performance curves were recorded with a flow 

rate of 750 ml min−1 and 100% RH. The catalyst mass activity was evaluated under H2/O2 

(2.0/9.5 stoic.) at 80 °C, 100% RH, and 150 kPaabs back pressure. The polarization curves 

were recorded under H2/air (2/2 stoic.) at 80 °C, 40% RH and 170 kPaabs back pressure.  

Two different DOE suggested AST test protocols are used to evaluate the stability 

of the catalyst: support stability test under 1.0-1.5 V cycling and catalyst stability test 

under 0.6-1.0 V cycling. The support stability was evaluated using a simulated start-

up/shut-down cycling experiment. The experiment was performed by cycling between 1.0 

and 1.5 V for 5000 cycles with 0.5 V s−1 scan rate at a cell temperature of 80 °C [217]. 

The catalyst stability was tested by cycling between 0.6 and 1.0 V for 30000 cycles with 

0.05 V s−1 scan rate at a cell temperature of 80 °C [217]. During the experiment, pure 

hydrogen (200 ml min−1) and nitrogen (75 ml min−1) having 100% RH were supplied to 

the anode and cathode compartments, respectively. The mass activity change under 

H2/O2, the voltage change and the power density change under H2/air, ECSA under H2/N2 

after 5000 potential cycles were used to evaluate the support stability. 

6.3 Results and discussion 

6.3.1 Effect of protective coating  

Pt*/ACCS catalyst was prepared using a methodology developed at USC. To 

introduce Pt* catalyst, Co was used for a doping material with an amount which is 

relevant to Pt2Co1 atomic ratio. Figure 6.2 shows the effect of protective coating on the 
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particle size of Pt*/ACCS catalyst. To activate the Pt-Co interaction, high-temperature 

annealing was applied. After annealing at 800 °C for 4 h of Co-doped Pt/ACCS catalyst, 

the peak positions of Pt increased from 39.81° to 40.6-40.9° which indicates good Pt-Co 

interaction and formation of compressive Pt lattice. However, the particle size was 

increased to 6.7 nm when no protective coating was used (dPt = 2.9 nm before heat 

treatment). The large Pt particle size results in small ECSA and low fuel cell 

performance. To maintain the Pt particle size after high-temperature annealing, the 

protective coating was introduced in the process. As shown in Figure 6.2, the particle size 

was maintained at 3.2 nm after annealing in cases where the protective coating was used. 

The HRTEM images of Pt/ACCS catalyst and Pt*/ACCS catalysts which were heat 

treated with a protective coating and without the protective coating are shown in Figure 

6.3. The pristine Pt/ACCS shows uniform Pt dispersion on the ACCS. Without the 

protective coating, large particles are seen in the range between 8 and 20 nm. However, 

when the protective coating is present, uniform particle distribution is seen with a particle 

size in the range between 3 and 5 nm. 

6.3.2 Effect of annealing temperature 

The effect of annealing temperature on the particle sizes of Pt*/ACCS was studied 

in the temperature range from 300 to 900 °C. In this study, the protective coating was 

applied to all the samples and all the samples were annealed for 4 h with same Co amount 

of Pt2Co1 atomic ratio. The corresponding XRD patterns of various temperature annealed 

Pt*/ACCS catalyst are shown in Figure 6.4. The Pt(111) peak is shifted to a higher 2θ 

value as the annealing temperature is increased. The peak shift is linearly increased up to 

around 700 °C and is saturated above 700 °C annealing temperature (Figure 6.5). From 
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this result, we can conclude that more compressive Pt lattice is formed by increasing 

temperature and formation of compressive Pt lattice is saturated above 800 °C under this 

condition. The effect of annealing temperature on the particle size is shown in the 

HRTEM images (Figure 6.6). Up to 800 °C, no significant Pt agglomeration was 

observed even though they showed larger Pt particle size than a pristine Pt/ACCS 

catalyst. However, significant particle agglomeration and particle size growth are 

observed on the Pt*/ACCS catalyst annealed at 900 °C. From the results above, it is 

reasonable to conclude that choosing the annealing temperature in the range of 700-800 

°C for the synthesis of Pt*/ACCS catalyst to maximize the Pt* formation while 

maintaining good particle size of Pt. 

The effect of annealing temperature on the fuel cell performance of Pt*/ACCS 

with a composition of Pt2Co1 is studied. Figure 6.7 shows ECSAs of Pt/ACCS and 

various temperature annealed Pt*/ACCS catalysts. While the ECSA of Pt/ACCS showed 

41.0 m2 gPt
−1, Pt*/ACCS catalysts showed ECSAs lower than 35 m2 gPt

−1 due to its 

relatively large particle size than Pt/ACCS. As annealing temperature increased, Pt 

particle size increased and ECSA decreased since the ECSA is directly related with the Pt 

particle size (Eq. 11). The mass activities of Pt/ACCS and Pt*/ACCS catalysts at 0.9 ViR-

corr under H2/O2 condition are shown in Figure 6.8. The mass activities of Pt*/ACCS 

catalysts showed more than two times higher values (> 0.40 A mgPt
−1) than that of 

Pt/ACCS catalyst (0.193 A mgPt
−1). The mass activity gradually increased to 0.492 A 

mgPt
−1 until 700 °C annealing temperature. The increase in mass activity can be attributed 

to an increase of Pt* lattice formation as a function of annealing temperature which was 

confirmed by XRD analysis. At 900 °C, a decrease of mass activity was observed 



 

127 

because of the agglomeration of Pt particles and large particle size of Pt. The H2/air fuel 

cell performance was studied to investigate the performance of Pt*/ACCS in the 

operating condition of automotive application (Figure 6.9). At 0.7 ViR-corr which is the 

ohmic loss region, Pt*/ACCS catalysts showed more 100 mA higher current densities 

than that of Pt/ACCS catalyst in H2/air polarization. The current densities of 1186 mA 

cm−2 and 1143 mA cm−2 were observed at 0.7 ViR-corr for 700 °C and 800 °C annealed 

Pt*/ACCS catalyst respectively compared with 1011 mA cm−2 for Pt/ACCS catalyst. 

However, the H2/air performance at mass transfer limitation region at 0.6 ViR-corr did not 

show significant improvement which was observed in mass activity and H2/air 

performance at ohmic loss region. The current densities of 1889 mA cm−2 and 1800 mA 

cm−2 were observed at 0.6 ViR-corr for 700 °C and 800 °C annealed Pt*/ACCS catalysts, 

respectively. These performances are similar values to the pristine Pt/ACCS catalyst 

(1884 mA cm−2 at 0.6 ViR-corr). Also, lower performances than Pt/ACCS catalyst were 

observed in the case of catalysts synthesized below 600 °C and over 850 °C. For the 

catalysts annealed below 600 °C, the low H2/air performances are due to the residual 

coating materials on Pt particles which cover the active site of Pt. The low performance 

of the catalysts annealed over 850 °C is attributed to the large Pt particle size and 

agglomerations which were shown in the HRTEM images. 

 The reason for this phenomenon is that the H2/air performance is mainly 

controlled by the kinetic performance of catalyst at the low current density region but is 

mostly controlled by the mass transfer limitation including O2 concentration and water 

removal at the high current density region. Furthermore, for both Pt/ACCS and 

Pt*/ACCS, only pure Pt will be present on the catalyst surface at applied potentials of 
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0.6-0.7 V due to the electrochemical reduction of Pt oxides at that potential. Thus, the 

H2/air performance at low potentials will not be greatly affected as much as in the case of 

mass activity which is measured at 0.9 ViR-corr. However, the most important achievement 

of the Pt*/ACCS catalyst is the improvement of catalyst stability under 0.6-1.0 V 

potential cycling experiment. The result of catalyst stability and the mechanism of 

improvement of catalyst stability will be discussed in a following section. The effect of 

annealing temperature of Pt*/ACCS catalyst on physical property and electrochemical 

property is summarized in Table 6.1. 

6.3.3 Effect of Pt/Co ratio 

The pristine Pt/ACCS catalyst presents high support stability and enhanced 

catalyst stability when compared to commercial Pt/C catalysts. In order to further 

improve the catalyst stability, Pt should be doped with Co to induce Pt lattice contraction 

which decreases Pt dissolution during potential cycling (0.6-1.0 V). However, doping Pt 

with excess of Co decreases the ORR activity due to Co coverage on the Pt active sites. 

On the other hand, our results indicated that a smaller Co to Pt ratio may not be effective 

to provide the compressed Pt strain. Therefore, the Pt to Co ratio plays a significant role 

in catalyst development and needs to be optimized to synthesize a highly active and 

stable catalyst.  

To investigate the effect of the Pt/Co ratio on Pt*/ACCS catalyst, various Pt/Co 

ratio from Pt4Co1/ACCS to Pt1Co1/ACCS were synthesized using same protective coating 

process and annealing conditions of 800 °C for 4 h. The effect of the Pt/Co ratio on the 

particle size and Pt structure is shown in Figure 6.10. All Pt*/ACCS catalysts with 

various Pt/Co ratios showed peak shifts in XRD. The Pt*/ACCS catalyst synthesized with 
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a higher amount of Co exhibited a higher shift in the 2θ angle indicating a more 

compressive Pt lattice formation. Furthermore, Pt particle sizes of the Pt*/ACCS catalysts 

measured by XRD patterns showed the values in the range of 3-4 nm which were well 

maintained after annealing due to the controlled annealing with protective coating 

procedure. The mass activity results for Pt/ACCS and Pt*/ACCS synthesized with 

various Pt/Co ratios are presented in Figure 6.11. As the Co amount increased in the 

Pt*/ACCS catalyst, mass activity increased due to the formation of a more compressive 

Pt lattice. While all the Pt*/ACCS catalysts annealed at various temperatures showed 

Pt(111) 2θ values higher than 40.50° and mass activities above 0.40 A mgPt
−1, 

Pt4Co1/ACCS and Pt3Co1/ACCS catalysts showed 2θ values of 40.29° and 40.46° and 

mass activities of 0.329 and 0.344 A mgPt
−1 which are smaller than those of various 

temperature annealed catalysts. These results indicate that the Pt/Co ratio is a more 

sensitive factor than the annealing temperature to form a compressive Pt lattice catalyst. 

The H2/air fuel cell performance for Pt/ACCS and Pt*/ACCS synthesized with various 

Pt/Co ratios are shown in Figure 6.12. The H2/air fuel cell performance of Pt2Co1/ACCS 

and Pt3Co1/ACCS catalysts showed similar performance with that of the Pt/ACCS 

catalyst. The Pt1Co1/ACCS catalyst showed lower H2/air fuel cell performance (1230 mA 

cm−2) when compared to that of the pristine Pt/ACCS catalyst (1884 mA cm−2) due to the 

partially covered Pt active sites by an excess Co amount in the Pt1Co1/ACCS catalyst. 

Based on the physical and electrochemical properties of various Pt*/ACCS 

catalysts with different Pt/Co ratios, a catalyst with a composition of Pt3Co1/ACCS 

catalyst annealed at 800 °C for 4 h was selected and subjected to support stability and 

catalyst stability studies under 1.0-1.5 V and 0.6-1.0 V potential cycling conditions, 
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respectively. The effect of the Pt/Co ratio of Pt*/ACCS catalyst on physical and 

electrochemical properties is summarized in Table 6.2. 

6.3.4 Support stability test (1.0-1.5 V, 5000 cycles) 

Prior to the stability tests, the reproducibility of the Pt*/ACCS catalyst was tested 

by fabricating five different MEAs and testing their fuel cell performances (Figure 6.13). 

The MEAs showed good agreement of H2/air performance and mass activity results 

within ±4% difference. The H2/air fuel cell performance and mass activity of the 

Pt*/ACCS catalyst subjected to 1.0-1.5 V potential cycling test is shown on Figure 6.14. 

The Pt*/ACCS catalyst showed an initial potential of 633 mViR-corr at 1.5 A cm−2 and a 

potential loss of 8 mV at 1.5 A cm−2 after 5000 potential cycles between 1.0 and 1.5 V. 

The commercial Pt/C catalyst showed 481 mViR-corr at 1.5 A cm−2 for initial performance 

and no activity after only 1000 cycles between 1.0-1.5 V (Figure 5.6 (a)). The mass 

activity of the Pt*/ACCS catalyst showed 0.341 A mgPt
−1 for initial performance and 50% 

loss after 5000 cycles at 1.0-1.5 V. The commercial Pt/C catalyst showed 0.167 A mgPt
−1 

initial mass activity and 58% loss after 5000 cycles at 1.0-1.5 V. The good support 

stability of Pt*/ACCS is attributed to the stable ACCS support as we discussed in chapter 

5. The mass activity of Pt*/ACCS showed higher loss than that of Pt/ACCS since Co 

dissolution is inevitable at high potential region. The dissolution of Co changes the 

structure of the compressive Pt catalyst and decreases the mass activity which is closely 

related with the compressive Pt lattice formation as we observed above. 

6.3.5 Catalyst stability test (0.6-1.0 V, 30000 cycles) 

Figure 6.15 shows the H2/air fuel cell performance of Pt*/ACCS catalyst tested in 

25 cm2 MEA subjected to 0.6-1.0 V potential cycling test. The Pt*/ACCS catalyst 
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showed an initial potential of 729 mViR-corr at 0.8 A cm−2 with a potential loss of 24 mViR-

corr at 0.8 A cm−2 after 30000 potential cycles between 0.6 and 1.0 V. As shown in Table 

6.3, the commercial Pt/C showed an initial potential of 699 mViR-corr at 0.8 A cm−2 and no 

activity at 0.8 A cm−2 after 30000 cycles. The support stability and catalyst stability test 

results for the Pt*/ACCS catalyst compared with Pt/ACCS and commercial Pt/C catalysts 

are summarized in Table 6.3. 

The positive potential change of Pt oxide formation on Pt-M catalyst when 

compared to pure Pt has been reported previously [242, 243]. The CV patterns for 

Pt*/ACCS and Pt/ACCS catalysts indicate a shift of potential of Pt oxide formation by 

~40 mV for Pt*/ACCS when compared to Pt/ACCS. During potential cycling from 0.6 to 

1.0 V, Pt oxides are formed according to the following reactions [216]: 

 

ݐܲ ൅ 	ଶܱܪ → ܱݐܲ ൅ ାܪ2 ൅ 2݁ି																																										ሺ16ሻ 

ݐܲ ൅ 	ଶܱܪ2 → ଶܱݐܲ ൅ ାܪ4 ൅ 4݁ି																																								ሺ17ሻ 

ݐܲ ൅ 	ଶܱܪ → ሻݏሺܱܽ݀ݐܲ ൅ ାܪ2 ൅ 2݁ି																																						ሺ18ሻ 

 

In the reverse scan from 1.0 to 0.6 V, Pt oxides are reduced to Pt according to the 

following reactions:  

ܱݐܲ ൅ ାܪ2 ൅ 2݁ି → ݐܲ ൅  ሺ19ሻ																																												ଶܱܪ

ଶܱݐܲ ൅ ାܪ4 ൅ 4݁ି → ݐܲ ൅  ሺ20ሻ																																											ଶܱܪ2

ሻݏሺܱܽ݀ݐܲ ൅ ାܪ2 ൅ 2݁ି → ݐܲ ൅  ሺ21ሻ																																									ଶܱܪ
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The potential shift for Pt oxidation to higher values increases the mass activity 

(from 0.193 to 0.344 A mgPt
−1) due to the suppression of Pt oxide formation which has 

much lower exchange current density for ORR (io =1.7×10−10 A cm−2) when compared to 

pure Pt (io = 2.8×10−7 A cm−2) [244]. Besides the effect of higher mass activity, the Pt* 

catalyst also illustrates improved stability when compared to the pure Pt catalyst. Since Pt 

oxide dissolves during potential cycling conditions according to Eq. 22 and Eq. 23, less 

Pt oxide formation in the forward scan due to higher Pt oxidation potential in the case of 

the Pt*/ACCS catalyst alleviates Pt dissolution in the reverse scan and enhances the 

catalyst stability. 

 

ܱݐܲ ൅ ାܪ2 → ଶାݐܲ ൅  ሺ22ሻ																																															ଶܱܪ

ଶܱݐܲ ൅ ାܪ4 ൅ 2݁ି → ଶାݐܲ ൅  ሺ23ሻ																																							ଶܱܪ2

 

6.4 Conclusion 

The Pt*/ACCS catalyst was synthesized according to the methodology developed 

at USC. To prevent the Pt particle sintering and agglomeration during annealing, the 

protective coating was applied to the synthesis process. The synthesis parameters 

including annealing temperature and Pt/Co ratio were studied to optimize the formation 

of compressive Pt lattice and its fuel cell performances. The fuel cell performance of the 

Pt*/ACCS catalyst and its support stability under 1.0-1.5 V potential cycling and catalyst 

stability under 0.6-1.0 V potential cycling were evaluated using a 25 cm2 MEA. The 

Pt*/ACCS catalyst showed an initial mass activity of 0.344 A mgPt
−1 at 0.9 ViR-corr and an 

initial power density (rated) of 0.174 gPt kW−1. The support stability under 1.0-1.5 V 
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potential cycling showed a mass activity loss of 50%, a potential loss of 8 mV at 1.5 A 

cm−2, and an ECSA loss of 22% after 5000 cycles. The catalyst stability under 0.6-1.0 V 

potential cycling showed a loss of mass activity of 45%, a potential loss of 24 mV at 0.8 

A cm−2, and an ECSA loss of 42% after 30000 cycles which were improved over those of 

the Pt/ACCS catalyst. The improved catalyst stability of Pt*/ACCS is attributed to a 

lower formation of Pt oxide in the forward scan of 0.6-1.0 V due to a higher Pt oxide 

formation potential than Pt/ACCS which leads to less dissolution of Pt in the backward 

scan of 1.0-0.6 V. The Pt*/ACCS catalyst which showed high initial fuel cell 

performance, good support stability, and good catalyst stability would be an ideal cathode 

catalyst candidate for automotive application PEMFC.  
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Table 6.1 Summary of the physical and electrochemical properties for Pt/ACCS and 
Pt*/ACCS catalysts annealed at various temperatures. 
 

Annealing 
temp. 
(°C) 

d
Pt

 

(XRD) 
(nm) 

2θ for 
Pt (111) 

(°) 

ECSA 
(m2 gPt

−1)

Mass 
activity 

(A mgPt
−1)

Current 
density at 
0.7 V

iR-corr
 

(mA cm−2) 

Current 
density at 
0.6 V

iR-corr
 

(mA cm−2) 

Rated 
power 
density 

(gPt kW−1) 

Pt 2.9 39.81 41.0 0.193 1011 1884 0.174 

300 3.0 40.18 - - - - - 

500 4.1 40.50 34.2 0.425 1028 1418 0.229 

600 4.1 40.65 30.5 0.458 1018 1395 0.237 

700 4.7 40.81 30.4 0.492 1186 1889 0.173 

750 4.6 40.86 - - - - - 

800 3.2 40.92 26.1 0.474 1143 1800 0.180 

850 3.0 40.90 28.4 0.471 930 1488 0.207 

900 2.9 40.89 26.6 0.408 917 1308 0.250 
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Table 6.2 Summary of the physical and electrochemical properties for Pt/ACCS and 
Pt*/ACCS catalysts synthesized with various Pt/Co ratios. 
 

Catalyst 
Annealing 
condition 

2θ for 
Pt (111) 

(o) 

dPt 
(XRD) 
(nm) 

Mass 
activity 

(A mgPt
െ1) 

Current density  
at 0.6 ViR-corr 
(mA cmെ2) 

Pt/ACCS 

800 oC 
4 h 
w/ 

protective 
layer 

coating 

39.87 2.9 0.193 1884 

Pt4Co1/ACCS 40.29 3.8 0.329 1545 

Pt3Co1/ACCS 40.46 3.8 0.344 1847 

Pt2Co1/ACCS 40.92 3.4 0.474 1800 

Pt1Co1/ACCS 41.48 3.3 0.484 1230 
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Table 6.3 Summary of the stability test results for Pt*/ACCS, Pt/ACCS, and commercial Pt/C catalysts. 
 

Catalyst/Test  

Cell voltage  
(mV)  

Power density 
(gPt kW−1) 

Mass activity  
(A mgPt

−1) 
ECSA  

(m2 gPt
−1) 

Initial Final Initial Final Initial Final Initial Final 

Pt*/ACCS 
Support Stability 

(1.0-1.5 V, 5k cycles)  
  

  
Catalyst stability 

(0.6-1.0 V, 30k cycles) 

  
633 

@ 1.5 A cm−2 
 
 

729 
@ 0.8 A cm−2 

 
625 

@ 1.5 A cm−2 
(8 mV loss) 

 
705 

@ 0.8 A cm−2 
(24 mV loss) 

 
0.180 

 
 
 

0.174 

 
0.195 

 
 
 

0.231 

  
0.341 

  
  
  

0.344 

  
0.171 

(50% loss) 
 
  

0.189 
(45% loss) 

 

  
30.5 

  
  
  

30.1 
  
  

  
23.9 

(22% loss) 
 
  

17.4 
(42% loss) 

 
Pt/ACCS 

Support Stability 
 (1.0-1.5 V, 5k cycles) 

  
  

Catalyst stability 
(0.6-1.0 V, 30k cycles) 

  
629 

@ 1.5 A cm−2  
 
 

723 
@ 0.8 A cm−2 

 
638 

@ 1.5 A cm−2 
(No loss) 

 
650 

@ 0.8 A cm−2 
(73 mV loss) 

 
0.186 

 
 
 

0.173 

 
0.174 

 
 
 

0.252 

  
0.165 

  
  
  

0.193 

  
0.167 

(No loss)  
 
  

0.092 
(52% loss) 

 

  
50.0 

  
  
  

41.0 

  
27.5 

(45% loss) 
 
  

14.0 
(66% loss) 

 
Commercial Pt/C 
Support Stability 

(1.0-1.5 V, 5k cycles)  
  
 

Catalyst stability 
(0.6-1.0 V, 30k cycles) 

  
 481 

@ 1.5 A cm−2 
 
 

696 
@ 0.8 A cm−2 

 
0 

@ 1.5 A cm−2 
(481 mV loss)  

 
0 

@ 0.8 A cm−2 
(696 mV loss)  

 
0.278 

 
 
 

0.268 

 
3.460 

 
 
 

0.730 

  
0.167 

  
  
  

0.184 

  
0.071 

(58% loss) 
 
  

0.074 
(60% loss) 

 

  
59.8 

  
  
  

62.0 

  
11.0 

(82% loss) 
 
  

13.6 
(78% loss) 
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