
University of South Carolina
Scholar Commons

Theses and Dissertations

12-14-2015

Development of Highly Active and Stable Hybrid
Cathode Catalyst for PEMFCs
Won Suk Jung
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Chemical Engineering Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Jung, W. S.(2015). Development of Highly Active and Stable Hybrid Cathode Catalyst for PEMFCs. (Doctoral dissertation). Retrieved
from http://scholarcommons.sc.edu/etd/3261

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarcommons.sc.edu%2Fetd%2F3261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3261?utm_source=scholarcommons.sc.edu%2Fetd%2F3261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu


DEVELOPMENT OF HIGHLY ACTIVE AND STABLE HYBRID CATHODE CATALYST 

FOR PEMFCS 

 

by 

 

Won Suk Jung 

 

Bachelor of Science 

Sungkyunkwan University, 2005 

 
Master of Science 

Korea University of Science and Technology, 2008 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of of Doctor of Philosophy in 

 

Chemical Engineering 

 

College of Engineering & Computing 

 

University of South Carolina 

 

2015 

 

Accepted by: 

 

Branko Popov, Major Professor 

 

John W. Weidner, Committee Member 

 

Francis Gadala-Maria, Committee Member 

 

Andreas Heyden, Committee Member 

 

Xinyu Huang, Committee Member 

 

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies



ii 

© Copyright by Won Suk Jung, 2015 

All Rights Reserved.



iii 

DEDICATION 

To my beloved family, 

아내 연재와 딸 수아 그리고 양가 부모님께 바칩니다. 

  



iv 

ACKNOWLEDGEMENTS 

 I appreciate my advisor, Dr. Popov, guiding me for the direction where I go. 

Especially, he gave me an opportunity to participate in the huge research program and an 

intrinsic experience. This is the precious feeling in my life ever and I cannot forget the 

lessons from that experience. As well, I thank my all the colleagues who helped to 

prepare this work. 

 I specially thank all committee members, Dr. Andreas Heyden, Dr. Francis 

Gadala-Maria, and Dr. Xinyu Huang. They spent their precious time to suggest and 

advise this work and made it more reasonable. 

 My parents have had a worry for my future and life all the time. But they have 

believed and supported me. It is more valuable than millions of dollars to me. Also my 

wife who flew ten thousands of miles from home to here has sacrificed her-self for me. 

Since I know this is not easy, she deserves to get my appreciation. My friends, Dr. 

Hyunseok Cho and Hyeran Cho, helped me a lot to prepare the presentation and 

dissertation in detail. 

  



v 

ABSTRACT 

 Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources 

of the future for a variety of applications including portable electronics, stationary power, 

and automobile application. However, sluggish cathode kinetics, high Pt cost, and 

durability issues inhibit the commercialization of PEMFCs. To overcome these 

drawbacks, research has been focused on alloying Pt with transition metals since alloy 

catalysts show significantly improved catalytic properties like high activity, selectivity, 

and durability. However, Pt-alloy catalysts synthesized using the conventional 

impregnation method exhibit uneven particle size and poor particle distribution resulting 

in poor performance and/or durability in PEMFCs.  

In this dissertation, a novel catalyst synthesis methodology is developed and 

compared with catalysts prepared using impregnation method and commercial catalysts. 

Two approaches are investigated for the catalyst development. The catalyst durability 

was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first 

approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction 

reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The 

structural and electrochemical properties of Pt/CCC catalyst are investigated using high-

resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron 

spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical 

properties. The synergistic effect of CCC and Pt is confirmed by the observed high 

activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of 
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Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present 

within the CCC support into the Pt nanoparticles during heat-treatment. The optimized 

Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the 

catalyst prepared using the impregnation method in PEMFCs and showed high stability 

under 30,000 potential cycles between 0.6 and 1.0 V. To further increase the stability of 

the catalyst at high potential cycles (1.0-1.5 V), high temperature treatment is used to 

obtain graphitized carbon having optimum BET surface area. The novel catalyst synthesis 

procedure developed in this study was successfully applied for the synthesis of Co-doped 

Pt catalysts supported on the graphitized carbon which showed high activity and 

enhanced stability at high potentials.
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND OF PEMFCS 

Fuel cells are the electrochemical converters that transform the chemical energy 

into electrical energy. Briefly, fuel cells produce electricity by two simple reactions 

where hydrogen is oxidized at the anode and oxygen is reduced at the cathode and water 

is produced as a by-product. Unlike internal combustion engines, the fuels (hydrogen and 

oxygen) are not burned in fuel cells. Instead, the electrical energy is generated by electro-

catalytical behavior. Due to the benefit, the energy efficiency is drastically high as 

compared to the internal combustion engines. Moreover, the heat produced by fuel cells 

operation can be harnessed for heating, hot water, and/or refrigeration cycles. 

Fuel cells are similar with batteries since they use an electro-chemical reaction to 

provide electricity. However, a battery stores the chemical reactants such as metal 

compounds as a source of energy. Once it is used up, they must be discarded in case of 

primary batteries or externally recharged in case of rechargeable batteries. On the other 

hand, fuel cells can run indefinitely as long as the reactants, namely hydrogen and oxygen 

(or air), are supplied to the fuel cells.    

There are several different types of fuel cells namely, proton exchange membrane 

fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), phosphoric acid fuel cells 

(PAFCs), molten carbonate fuel cells (MCFCs) and solid oxide fuel cells (SOFCs). Fuel 
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cells classification is determined by different types of electrolyte employed in the 

respective system. PEMFCs in general have the following benefits over the traditional 

 power sources (e.g. internal combustion engines and batteries).   

1. Higher efficiency than internal combustion engines. 

2. Ability to run with low noise. 

3. Produce only water as the by-product thus preventing pollution caused by fossil 

fuels in internal combustion engines. 

4. Provide greater energy security for the country that does not have oil or natural 

gas. 

5. Produce stable electricity independently when used as a stationary power. 

6. High temperature fuel cells produce electricity and heat simultaneously. The 

heat is well suited for cogeneration application. 

7. Operating times are even longer than batteries. 

8. No “memory effect” unlike batteries. 

A PEMFC unit consists of a stack. A stack is comprised of numerous individual 

membrane-electrode assemblies (MEAs). An MEA has a solid electrolyte and two 

electrodes.  Of the two electrodes, one is positive (cathode) and the other is negative 

(anode). An electrolyte plays a key role; it must permit only the appropriate ions to 

transfer between the electrodes. The failure of an electrolyte leads to disturbance in the 

reactions on the electrodes. The hydrogen oxidation reaction takes place on the anode, 

while the oxygen reduction reaction (ORR) occurs on the cathode.   
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  The reactions in fuel cells are explained as follows. Hydrogen is supplied to the 

anode which is electro-catalytically decomposed into protons and electrons according to 

the following reaction:   

H2 → 2H+ + 2e−  E0=0 V vs. RHE [1.1] 

The protons produced at the anode permeate through the electrolyte membrane to 

the cathode. On the other hand, the electrons move along an eternal circuit to the cathode. 

The oxygen supplied to the cathode reacts with the protons and electrons from the anode 

to produce water according to the following reaction:   

1

2
O2 + 2H+ + 2e− → H2O     E0=1.229 V vs. RHE [1.2] 

The overall reaction in a fuel cell is as follows. 

H2 +
1

2
O2 → H2O    E0=1.229 V vs. RHE [1.3] 

 

1.2 LITERATURE REVIEW  

Challenges the PEMFCs have faced are largely the cost, and durability. In the past 

several years, the effort for the fuel cell cost-down has been successful. For example, the 

cost for fuel cell has been reduced from $275 kW-1 in 2002 to $51 kW-1 in 2010 [1] . 

However, it is still more expensive than the internal combustion engine systems [2]. One 

primary portion of a fuel cell cost is due to the membrane electrode assembly (MEA) 

wherein the fuel cell reactions, fuel oxidation and oxygen reduction, take place. The most 

preferred catalysts used in the MEAs are based on Pt which is expensive and scarce. The 

Pt loading has been reduced by two orders of magnitude in the past decade and there is 

still room for further reduction by developing highly-active catalysts. The 2020 DOE 

targets for the fuel cell cost is $40 kW-1 for the transportation application. Specifically, 
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Figure 1.1 A schematic of typical PEMFC [3]. 
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Figure 1.2 Modeled cost of an 80-kWnet PEM fuel cell system based on projection to 

high-volume manufacturing (500,000 units per year) in 2013 [4]. 
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for the catalyst, a total loading (anode + cathode) of 0.125 mgPGM cm-2 is targeted by the 

US Department of Energy by FY 2017. 

Fuel cell components like the MEA suffer degradation during long-term 

operations. The lifetime required by a commercial fuel cell is over 5,000 h durability for 

light-weight vehicles [2]. The degradation on long-term operation is caused by platinum 

sintering and dissolution, especially under load cycling and high electrode potentials. 

Carbon-support corrosion is another challenge at high electrode potentials and can 

worsen with load cycling. 

Therefore, ways to cut costs by reducing cathode loadings to 0.1 mgPt cm-2 by 

employing catalysts having high performance and durability is the core-issue of most of 

the electro-catalyst research.  

 

1.2.1 PT-BASED CATALYST DEGRADATION 

Platinum is well-known as a stable material in most of the acidic solutions such as 

sulfuric acid and hydrochloric acid. However, under certain conditions, it can undergo 

dissolution. Especially, Pt can be oxidized and reduced as follows [5]. 

Pt + H2O ↔ PtO + 2H+ + 2e−  E0 = 0.98 − 0.059pH      E0=0.98-0.059pH [1.4] 

PtO + H2O ↔ PtO2 + 2H+ + 2e−     E0=1.05-0.059pH [1.5] 

PtO + 2H+ ↔ Pt2+ + H2O      log[Pt2+]=-7.06-2pH log[Pt2+] [1.6] 

PtO2 + 4H+ + 2e−  ↔ Pt2+ + 2H2O     E0=0.84-0.12pH-0.03 log[Pt2+] [1.7] 

Pt ↔ Pt2+ + 2e−      E0=1.12+0.029 log[Pt2+] [1.8] 

Researchers found that the platinum is not stable under the PEMFC operation 

conditions such as high operating temperature, high humidity, and high potential. Dam 
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et.al [6] determined the in-situ dissolution of platinum using the conventional 

electrochemical cell equipped with a quartz crystal microbalance. According to the 

results, they observed that the gain in the electrode mass is due to the oxide formation and 

the loss of mass is attributed to the dissolution. The gain in the mass occurred for the first 

certain time while a constant potential is applied to the electrode. After that time, the 

mass decreased. For example, at a constant potential of 0.85 V, the mass increased for the 

first 100 min. After 100 min, the mass of the electrode decreased. They also noted that 

the dissolution rate was strongly dependent on the temperature. Platinum dissolution rate 

at 80 °C was even faster than that at 60 °C. At 0.95 V, it showed 100 ng h-1cm-2 at 80 °C, 

while it was 0.05 ng h-1cm-2 at 60 °C. Some research group verified the dissolution of 

different type of Pt such as carbon-supported Pt particle, Pt sheet, Pt wire, and Pt disk [7-

10]. As shown in Figure 1.3, Wang et.al [10] measured the dissolution rate of Pt by high-

resolution inductively coupled plasma-mass spectrometry (ICP-MS) under potentiostatic 

conditions. They reported that the concentration of dissolved Pt increases from 0.65 to 

1.1 V and decreases at higher potentials than 1.1 V, which has been attributed to the 

formation of a protective oxide film. In particular, results showed that cycling potential 

ranges between the Pt-oxide formation and reduction enhanced the dissolution rates of Pt 

[7-9]. Sugawara et.al [11] investigated Pt dissolution under both potentiostatic and 

potential cycling conditions with a channel flow double electrode (CFDE) combined with 

Electron Probe Microanalyzer (EPMA) and ICP-MS. According to their results, under 

potentiostatic conditions, the Pt ions are detected at a potential higher than 0.8 V by ICP-

MS, and the dissolution was maximized at 1.1 V. At the potential higher than 1.2 V, the 

dissolution of Pt is decreased by the Pt oxide formation of 1-2.5 monolayers (ML).  
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Figure 1.3 Time dependence of the electrode weight measured in 1 M HClO4 and at 

80 °C at different dissolution potentials: (a) 0.85, (b) 0.95, (c) 1.05, (d) 1.15, and (e) 1.4; 

(f) time dependence of the steady-state current at a potential of 1.4 V [10] 
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(e) (b) 

(c) (f) 
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Figure 1.4 (a) Equilibrium soluble platinum concentration as a function of temperature 

and voltage. Solid line, 196 °C, platinum foil from Bindra et al.; dashed line, 25 °C, 

platinum foil from Pourbaix; short-dashed line, 80 °C, platinum foil interpolated; solid 

circles, 80 °C, 2-3 nm platinum particles of a 46 wt% Pt/C electrocatalyst powder Tanaka 

sample measured in 0.5 M H2SO4 [12]. (b) Pt dissolution rate vs dissolution potential and 

temperature. The real surface area of the electrode is 24 cm2 [10]. 

 

 

 

 

(a) 

(b) 
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However, under potential cycling conditions, Pt dissolution is enhanced when the upper 

potential limit is higher than 0.8 V and the lower potential limit is less than 0.6 V, where 

the Pt-O is completely reduced. Consequently, the Pt dissolution is more accelerated as 

the upper potential limit shifts more positively. A recent research using ICP-MS online 

analysis in Figure 1.5 represents a straightforward separation of the anodic and cathodic 

dissolution processes in correlation with the formation and reduction of the oxide layer 

[13]. The anodic dissolution is marginally dependent on the potential limits in cyclic 

voltammetry (CV), the scan rate, and the pH of the electrolyte, while clearly an enhanced 

cathodic dissolution was observed with higher anodic potential limits, lower scan rates, 

and increased acidity. As shown in Figure 1.6, Dhanushkodi et.al measured the MEA 

performance loss under the Pt dissolution conditions such as square-wave cycle (3 s at 0.6 

V followed by 3 s at 1.0 V) at 40, 60, and 80 °C [14]. Polarization curves showed 

performance degradation particularly at low current density where kinetic effects are 

dominant. The polarization resistances measured in the low current density region by 

electrochemical impedance spectroscopy (EIS) increased at all temperatures. 

Electrochemical active surface area (ECSA) showed significant losses at all temperatures. 

Besides, the temperature leads to higher losses in both ECSA and MEA performance. 

In the case of Pt-M alloy (M=Ni, Co, Fe, Cr etc.) catalysts, many literatures 

reported the dissolution of both Pt and M under operating conditions [15-18]. Yu et al. 

[18] prepared and evaluated a carbon supported Pt2.5Co1catalyst in a dynamic fuel cell 

with continuous water fluxing on the cathode. Figure 1.7 presents the Co2+ concentration 

as a function of cycling number. It represents that 13.9 molar % cobalt dissolved in the 

first 400 cycles. The amount of cobalt dissolution was reduced subsequently and leveled  
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Figure 1.5 Alternation of the platinum surface state during: (a) anodic polarization, above 

ca. 1.1 V (vs. RHE) dissolution and passivation of the surface are in competition; and (b) 

cathodic polarization, during surface reduction below ca. 1.0 V (vs. RHE) (re-)deposition 

and dissolution are in competition [13]. 
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Figure 1.6 Performance loss of MEAs measured after being subjected to Pt dissolution 

testing protocol at 40, 60 and 80 °C. Performance loss obtained from polarization curves 

at (a) 0.1 A cm-2 and (b) 1.7 A cm-2. Variation of % ECSA loss with number of cycles 

during the degradation is shown in (c) [14].  
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Figure 1.7 Cobalt dissolution as a function of cycling number of PtCo/C electrode in a 

liquid cell of 0.1M HClO4. The cycling test was conducted at 25 °C [18]. 
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off to approximately 6% after 800 cycles. This result agreed with a high performance loss 

in the first 400 cycles and a reduced loss in subsequent cycles. The results indicated that 

cobalt dissolution neither detrimentally reduced the cell voltage nor dramatically affected 

the membrane conductance. The overall performance loss over 2400 cycles for the 

PtCo/C MEAs was less than that of the Pt/C MEA. The performance losses of the Pt/C 

MEA over 1200 cycles mainly resulted from the cathode ECSA loss due to platinum re-

crystallization, while the performance losses of the PtCo/C MEA resulted from the 

activity loss due to cobalt dissolution as well as the ECSA loss.   

Bonakdarpour et al. [19] studied the dissolution of Fe and Ni from Pt1−xMx (M = 

Fe, Ni; 0 < x < 1) catalyst under simulated operating conditions of PEMFCs. Electron 

microprobe measurements showed that transition metals are removed from all 

compositions during acid treatment, but that the dissolved amount of metal increases with 

x, acid strength, and temperature. For x < 0.6, the dissolved transition metals originated 

from the surface, since no significant changes in the lattice size are observed upon 

dissolution of Fe or Ni. However, for x > 0.6, the transition metals dissolved also from 

the bulk because the lattice constant expands.   

Protsailo and Haug [20] investigated the performance and durability improvement 

of PEMFCs, that can be achieved using PtCo/C and PtIrCo/C, synthesized by the 

carbothermal technique. The alloys showed not only better activity compared to pure Pt, 

but they also exhibited remarkable durability in the conditions at which Pt alone is prone 

to dissolution. The losses of the real surface area of Pt/C, PtCo/C and PtIrCo/C following 

1800 cycles at 120 °C were about 45% for Pt/C, 18% for PtCo/C and 8% for PtIrCo/C, 

respectively. 
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Johnson Matthey [21, 22] reported a series of carbon supported binary alloys such as PtFe, 

PtMn, PtNi, PtCr, and PtTi alloys with a Pt to M atomic ratio of 50:50 and heat- treated to 

a variety of temperatures. Electron probe microanalysis (EPMA) was employed to 

evaluate the stability of the alloys during operation in the PEMFCs. The PtCr and PtTi 

alloys did not show any apparent leaching from the catalyst to the membrane or anode 

catalyst layer, while the PtFe, PtMn, and PtNi showed leaching of the base metal into the 

MEA, but no performance loss was observed over the 200 h testing. 

Hoshi et.al [16] investigated the dissolution behavior of equimolar Pt–M (M: Cu, 

Co, Ni, Fe) alloys under conditions of immersion, potentiostatic polarization, and 

potential cycling in 0.5 M H2SO4 solution at 25 °C as shown in Figure 1.8. ICP-MS was 

employed to determine the quantity of dissolved ions.  In 3-h immersion tests, selective 

dissolution of M atoms occurred immediately after immersion and is quickly suppressed. 

The Pt–Fe alloy exhibited a larger dissolution rate than other alloys. The dissolution rates 

of Cu, Co, and Ni were negligibly small just after immersion. The Pt-rich layer that 

formed on the Pt–Co and Pt–Ni surfaces after 1 h of immersion was stable under 

potentiostatic polarization at 1.0 and 1.2 V, but further dissolution of Co and Ni occurs at 

1.4 V. The enhancement of dissolution was more significant under 0–1.4 V potential 

cycling. The other research in Figure 1.9 represented the dissolution of equimolar Pt–M 

(M: Co, Ni, Fe) alloys under potential cycling with various combinations of upper 

potential limit (Eupper) and lower potential limit (Elower) in 0.5 M H2SO4 solution at 25 °C 

[17]. Selective dissolution of M was negligibly small when Eupper ≤ Erest, while it is 

increased with positively shifting the Eupper when Eupper  > Erest. The Eupper dependency of 

Pt dissolution is very similar to that of M dissolution, although the absolute values are  
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Figure 1.8 The amount of ions dissolved from the Pt–M alloys in 0.5M H2SO4 solution at 

25 °C (a) dissolved M ions during 3 h-immersion test, (b) dissolved Pt ions after 3 h-

immersion test. (c) dissolved M ions under the potentiostatic polarization at1.0, 1.2 and 

1.4 V. (d) dissolved M ions measured at the end of 100 cycles of CVs [16]. 
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Figure 1.9 Effect of upper potential limit of CV on amounts of (a) M (= Co, Ni, Fe) and 

(b) Pt dissolved from the Pt–M alloys by 100 potential cycles. The lower potential limit 

was fixed at 0 V. Effect of lower potential limit of CV on amounts of (a) M (= Co, Ni, Fe) 

and (b) Pt dissolved from the Pt–M alloys by 100 potential cycles. The upper potential 

limit was fixed at 1.4  V [17].   
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much smaller. Regarding the effect of lower potential limit Elower of the potential cycling 

with a common Eupper = 1.4 V, the amounts of the dissolved Co, Ni and Fe are very small 

amounts when the Elower is 0.8, 1.0, and 1.2 V, while it is significantly increased when 

Elower = 0.5 and 0 V, where Pt dissolution is also remarkably accelerated by potential 

cycling. Dissolution of M and Pt is accelerated by potential cycling in the potential range 

where formation of PtOad and the reduction occurs. 

 

1.2.2 CARBON CORROSION 

In addition to degradation of the catalysts, the carbon support that deposits the 

catalyst particles and provides electrical connection to the gas-diffusion media and 

bipolar plates also plays an important role in MEA degradation. Therefore, corrosion of 

carbon materials as catalyst supports for PEMFCs may give rise to electrical isolation of 

the catalyst particles as they are detached from the support, and result in aggregation of 

catalyst particles. Those results are attributed to a decrease in the electrochemical active 

surface area of the catalyst and an increase in the hydrophilicity of the carbon surface, 

which can, in turn, result in a decrease in gas permeability as the pores become more 

likely to be filled with liquid water films that can hinder gas transport [23]. As durability 

targets are established, graphitized carbons are being considered for use in PEMFCs due 

to the importance of carbon stability [24]. The carbon corrosion reaction in aqueous acid 

electrolytes including proton exchange membranes is shown as [25] 

C + 2H2O ↔ CO2 + 4H+ + 4e−      E0=0.207 V [1.9] 

This reaction is thermodynamically feasible at the potential range where the fuel 

cell operates.   
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First, Stevens et.al investigated the thermal degradation of carbon and platinum 

supported on carbon in air at an elevated temperature [26]. Whereas the Black Pearls 

carbon is stable in air at temperatures as high as 195 °C, a high platinum loading can lead 

to a loss of more than 80% of all carbon, where the time needed to reach the maximum 

amount of combusted carbon is determined by the temperature and the platinum loading. 

At platinum loadings used in commercial PEMFC catalysts, i.e. 40 wt% and higher, the 

loss of carbon at the lowest experimental temperature, 125 °C, amounted to 15% after 

1,000 h. From the relation between carbon loss and temperature, it was concluded that 

below 100 °C, thermal oxidation of platinum loaded carbon in air did not take place. 

Roen et al. [27] detected CO2 in the cathode exhaust gas during CV with varying Pt mass 

fraction, catalyst type, and temperature. An Arrhenius plot indicated higher apparent 

activation energy for CO2 production at the positive potential limit of the CV on 0% Pt 

(carbon-only) electrode than on 39% Pt/C electrode. It was concluded that platinum 

accelerated the corrosion rate of the carbon catalyst support. Additional studies showed 

that the humidification of air accelerated the thermal corrosion rate of carbon, by 

providing an additional pathway for chemical carbon oxidation through a direct reaction 

with water [28, 29]. Mathias et al. [30] reported the relation of carbon corrosion current 

on the potential, material, temperature, and time. The logarithm of the corrosion current 

related linearly with the logarithm of time.   

Reiser et.al [31] proposed the reverse-current mechanism related to the local 

hydrogen starvation. During transient conditions of the cell operation such as start-up and 

shut-down, a high interfacial potential difference causes carbon corrosion as shown in 

Figure 1.10. When hydrogen is introduced into the anode during startup, a condition is  
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Figure 1.10 Potential distributions along anode flow path during reverse current 

conditions [31]. 
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created where hydrogen occupies only part of the anode. At this moment, the carbon 

corrosion is occurred at the cathode. During the shutdown procedure, a similar 

phenomenon can be occurred, when the air from the outside or through the membrane, 

replaces the hydrogen causing carbon corrosion at the anode [31-35]. 

Fundamental studies on carbon corrosion have been carried out in aqueous 

electrolyte for a degradation mechanism [36-41]. Differential electrochemical mass 

spectroscopy (DEMS) shows that pure carbon is oxidized only at potentials higher than 

0.9 V (RHE), and that Pt activation catalyzes the oxidation of a COsurf surface layer to 

CO2 at potentials between 0.6 and 0.8 mV (RHE) in  sulfuric acid solution. This indicates 

that the carbon corrosion by Pt occurs in the neighborhood of the Pt-sites, thus damaging 

the Pt to carbon contact [36]. The membrane inlet mass spectrometry (MIMS) shows the 

formation of carbon oxidation products like CO2, CO and HCOOH. The oxidation of 

carbon is accelerated in the presence of Pt [40]. In-situ electrochemical quartz crystal 

microbalance (EQCM) shows mass changes of a variety of carbon supports during the 

CV in deaerated 0.5M H2SO4 solution [42]. The mass change and corrosion onset 

potential during electrochemical carbon corrosion indicated oxide formation and 

accumulation on the carbon surface, leading to a mass increase. A decrease in the mass is 

associated with carbon loss from the gasification of carbon surface oxides into carbon 

dioxide. High surface area carbon blacks ECP 600 and ECP 300 have a carbon loss of 

0.0245 ng cm−2 s−1 and 0.0144 ng cm−2 s−1 and as compared to 0.0115 ng cm−2 s−1 for low 

surface area support XC-72. Graphitized XC-72 and multi-walled carbon nanotubes 

(MWNTs), with higher graphitization have higher carbon corrosion onset potential at 

1.65V and 1.62V and appear to be more intrinsically resistant to corrosion. 
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In Figure 1.11, electrochemical surface oxidation of carbon black (CB) was 

studied under the potentiostatic condition up to 120 h at various potentials from 0.6 to 1.2 

V at room temperature and 65°C [37]. The presence of ether, carbonyl, and carboxyl 

surface oxide species that decreases the degree of hydrophobicity after electrochemical 

treatments was observed. In this study, the authors found that experiments at 65°C 

showed clear signs of surface oxidation after only 16 h at potentials > 0.8 V, while 

potential holds at 1.0 V at room temperature only resulted in slight oxidation of Vulcan 

XC-72. This verifies that surface oxides can be generated under simulated PEMFC 

operating conditions. Avasarala et.al have investigated the electrochemical oxidation of 

CB due to potential cycling between 0 and 1.2 V in 0.1 M perchloric acid at 60 °C, which 

simulates the operating condition in PEMFCs  [43]. Using X-ray photoelectron 

spectroscopy (XPS), formation of several oxygen functional groups such as C=O, C–O–C, 

O–C=O on CBs were identified under potential cycling between 0 and 1.2 V for 16 h 

duration. The increase in hydroquinone-quinone redox couple and total surface oxygen 

on the surface of CB during potential cycling is much higher than that of the as-received 

CB. Potential cycling significantly increases the surface oxidation along with significant 

oxidation to gaseous oxides such as CO/CO2 gases. The oxygen functional groups formed 

on the surface of the potentially cycled CB supports were found to be relatively higher 

compared to those exposed to ‘potential hold’ conditions. 

Siroma et.al observed the carbon-corroded electrode by atomic force microscopy 

(AFM) and field emission-scanning electron microscopy (FE-SEM) studies using  highly 

oriented pyrolytic graphite (HOPG) as shown in Figure 1.12 [38]. The formation of 

blisters on the surface of the model electrode is observed by AFM after it is kept at 1.0 V,  
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Figure 1.11 CVs of 10 wt% TFE-Vulcan composite after potential holds at 65 °C for 16 h 

at (a) 0.8, (b) 1.0, and (c) 1.2 V (sweep rate of 10 mV s-1). The initial (0 h) CVs of the 

prefilled samples overlapped [37]. 
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Figure 1.12 AFM images (1 μm × 1 μm) of a Pt-catalyzed HOPG surface (a) before and 

(b) after potential retention at 1.0 V for 70 h in a 1.0 M HClO4 solution [38]. 
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especially at and around the Pt particles. FE-SEM observations using a backscattered 

electron detector revealed that the Pt particles remain unchanged at their original 

positions after the formation of blisters.  

On the other hand, Kinumoto et.al investigated the effects of hydrogen peroxide 

on the degradation of Pt/C catalyst [39]. After immersed in acidic 1.0 mol l−1 H2O2 

solution at room temperature, many scars were formed by oxidative etching of HOPG 

and Pt-particle catalysts aggregated on the surface, while no surface change was observed 

without hydrogen peroxide. These resulted in significant deterioration of Pt/HOPG 

electrode and the active surface area of the Pt particles. Regarding the applied potential, 

the deterioration of the electrode was accelerated at potentials both more positive and 

negative than the open-circuit potential. Also, similar degradation phenomenon was 

observed when the potential was set at 0.1 V, at which a large amount of H2O2 is formed 

in oxygen reduction, in O2-saturated H2O2-free acid solution for 5 days. Based on the 

results, they proposed the mechanism of Pt/C deterioration by hydrogen peroxide. 

H2O2 + 2H+ + 2e−  ↔ H2O (on Pt)      E0=1.763 V [1.10] 

C + H2O ↔ CO(g) + 2H+ + 2e−  (on C)     E0=0.518 V [1.11] 

C + 2H2O ↔ CO2 + 4H+ + 4e−      E0=0.207 V [1.12] 

In the presence of Pt, an additional reaction can also be occurred [44]. Carbon 

monoxide is adsorbed on the metal surface at potentials below 0.55 V.  At higher 

potentials, CO is oxidized to CO2 according to following reaction.  

Pt-COad + Pt-OHad  ↔ Pt2 + CO2 + H+ + e−  [1.13] 

Also, the overpotential of following reaction is decreased. This leads to an 

increase in corrosion rates compared to that of carbon only.  
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COad + Pt-OHad  ↔ Pt + CO2 + H+ + e− [1.14] 

 

 

1.2.3 CARBON COMPOSITE CATALYST 

The carbon composite catalyst (CCC) that was developed in Dr.Popov’s 

laboratory has shown higher graphitized structure and better activity towards ORR than 

most of the commercially available CB supports. Most of the graphitic carbons like 

carbon nano-tubes are expensive. However, the CCC is made of cheap CB and nitrogen 

contained in the graphitic structure which produces the synergistic effect with noble 

metals like Pt.   

The CCC was synthesized through the following three consecutive steps: (i) the 

deposition of transition metal-chelate complex, and (ii) the high-temperature pyrolysis, 

and (iii) the chemical post-treatment. Transition metals such as Co and Fe were used to 

facilitate and stabilize the incorporation of nitrogen within the carbon matrix.   

The nitrogen atom in the CCC enhances the ORR activity. Many investigations on 

non-precious metal catalyst have shown the vast development using nitrogen active site 

for ORR. According to the earlier reports [45-53], their results agree with points in 

common as follows: (i) Active sites were formed in the presence of transition metal, 

carbon, and nitrogen, (ii) The nitrogen sites are believed as active sites for ORR,  (iii) The 

Co and/or Fe are the effective metal to give a high activity for the carbon,  (iv) The 

carbon heat-treated at 600 – 900 °C shows the high activity, and  (v) The stability is 

increased as the temperature exceeds 900 °C.  
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Figure 1.13 shows the LSV diagrams of oxygen reduction on the CCC with 

different treatments [52]. One catalyst is heat-treated at 900 °C, while another is treated 

by a series of heat-treatment at 900 °C, leaching, and re-heat-treatment at 900 °C. The 

LSV was performed in O2-saturated 0.5 M H2SO4 solution at a scan rate of 5 mV s-1 and a 

rotation speed of 900 rpm. The oxygen reduction current on the catalyst that was heat-

treated twice is higher than that heat-treated once, while the onset potential of oxygen 

reduction is same on both catalysts (ca. 0.85 V vs. NHE). As shown in Figure 1.14, the 

polarization curves of PEM fuel cells using those catalysts as a cathode shows the same 

performance as appeared in LSV measurements [52]. The observed activity difference 

between two catalysts may be explained as follows: the active sites of catalysts were 

formed at the first pyrolysis at high temperature. At the same time, inactive residues on 

the surface such as metals and metal oxides produced in the heat-treatment process cover 

and hinder the active site of catalyst surface. To remove those species, the acid leaching 

process is efficiently applied, resulting in ~ 40% weight loss of the catalysts.  As a result, 

the catalyst heat-treated twice shows the better current density for the ORR.   

According to the literature [54-58] and previous characterization studies [51, 53, 

59-61] on the non-precious metal catalysts, high temperature pyrolysis produces the 

pyridinic and quaternary-type nitrogen on the surface of the carbon substrate. A strong 

Lewis basicity of such nitrogen-modified sites facilitates the reductive adsorption of 

oxygen without the irreversible formation of oxygen functionalities, due to an increased 

electron-donor property of carbon [56]. 

The long-term stability of CCC is shown in Figure 1.15. The catalysts were heat-

treated at 800 °C (denoted as NMCC-800) and 1100 °C (denoted as NMCC-1100),  
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Figure 1.13 LSV curves of CCC treated by a pyrolysis alone and by a series of pyrolysis, 

leaching and 2nd pyrolysis. The measurements were performed in O2-saturated 0.5 M 

H2SO4 solution using a potential scan rate of 5 mV sec-1 and an electrode rotation rate of 

900 rpm [52].   
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Figure 1.14 Polarization curves of PEMFCs prepared with CCC as a cathode treated by a 

pyrolysis alone and by a series of pyrolysis, leaching and 2nd pyrolysis. The CCC 

loading is 6 mg cm-2. The test was run with H2/O2 back pressure of 30 psi/30 psi. The fuel 

cell operating temperature is 75 °C [52].   
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Figure 1.15 Long-term fuel cell stability test measured on the carbon composite catalysts 

at 200 mA cm-2 [62].   
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respectively. NMCC-800 shows a better initial activity, while its stability is very poor. 

This phenomenon has been evidenced previously by other research groups [47, 50, 63]. 

The NMCC-800 showed fast degradation in a range of 0 to 150 h. The NMCC- 1100 

showed much better stability than NMCC-800 at the 0 to 150 h. For example, from 6 to 

16 h, NMCC-800 degraded at a rate of 980 mV h-1 while NMCC-1100 decreased at a rate 

of 400 mV h-1. Since 16 h-operation, NMCC-1100 degraded at a rate of 40 mV h-1. 

According to the literatures [48, 63, 64] and previous studies [52, 59-61], the 

stability of catalysts is strongly dependent on the heat-treatment temperature. The 

hydrophilicity of the catalyst depending on pyrolysis temperature may strongly affect the 

water management and thus mass transfer in the cathode catalyst layer. It has been 

reported that the fast degradation may be attributed to the loss of the pyridinic-N sites 

which are alkaline in nature and react in a matter of minutes with the protons present at 

the cathode electrolyte interface; the slow decay is due to further loss of active sites 

through the oxidation decomposition of CCC under corrosive conditions, such as low pH, 

high temperature, high water content, high potential, high oxygen concentration, and 

hydrogen peroxide produced during the ORR [62]. The performance decay may also 

result from water flooding in the cathode due to the hydrophilic property of the catalyst 

and the thickness of cathode catalyst layer.   

 

1.3 OBJECTIVES AND OUTLINE 

The objective of this dissertation is to develop a novel technology based on a 

novel hybrid cathode catalyst (HCC) process in which a highly active compressive Pt-

lattice catalyst is formed by the interaction of Pt with electrochemically active, transition-
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metal-containing CCC. The proposed HCC method is a novel method to prepare the 

compressive Pt-lattice catalyst since both the carbon support and metal catalyst are 

electrochemically active for ORR and the transition metal required for the formation of 

highly active compressive Pt catalyst is encapsulated within the graphitic carbon structure. 

Our novel catalyst synthesis procedure avoids the chemical leaching step thus enhancing 

the stability under high potentials. 

In chapter 2, the synergetic effect of Pt and CCC was investigated. Variety of 

characterization techniques such as XPS, XRD, HR-TEM, and RDE together with fuel 

cell testing were carried out to study the structure-property relationship of the synthesized 

catalyst. RDE studies of the CCC chelated with nitrogen-containing organic compound 

showed a high electrochemical activity for ORR in 0.1 M HClO4 electrolyte. Moreover, 

the Pt nanoparticles deposited on CCC as a support exhibited better ORR performance 

than the conventional Pt/C catalyst.  

In chapter 3, the HCC based on a novel catalyst synthesis process was optimized 

with respect to the annealing temperature. The catalyst stability was measured in 25 cm2 

MEAs under PEM fuel cell operating conditions which revealed higher activity and 

stability for the HCC than the one prepared using conventional impregnation process.   

In chapter 4, the support stability of heat-treated CB was investigated under 

potential cycling (1-1.5 V) conditions. Raman spectroscopy and XRD are employed to 

analyze the effects of temperature on the structure and electrochemical stability of the 

heat-treated CB supports. The catalyst stability was evaluated by measuring the 

polarization curves under H2/Air atmosphere before and after potential cycles.   
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In chapter 5, a novel method for the preparation of Co-doped Pt was employed to 

make supported catalyst using heat-treated, graphitized CB as support. The prepared 

catalyst was subjected to physical characterization tools such as XPS, XRD, HR-TEM, 

and the performance was evaluated using polarization studies. The stability of catalyst is 

enhanced at high potential (1-1.5 V) while the catalyst stability is remained under 

PEMFC operating conditions. 
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CHAPTER 2 

SYNERGISTIC EFFECT OF CCC AND PT CATALYST 

 

2.1 INTRODUCTION 

Recently polymer electrolyte membrane fuel cells (PEMFCs) are emerging as a 

promising candidate for automotive industries. Still the cost reduction is critically 

necessary for commercializing PEMFCs. To reduce the overall cost, the activity and 

stability of ORR catalyst should be further improved. In general, the cathode catalyst 

development focuses on two specific areas namely highly-active and stable Pt-based 

catalyst development and highly-stable catalyst support development to withstand the 

harsh operating environment of automotive PEMFCs. In this regard, research has been 

focused on the development of various Pt-alloy cathode catalysts such as PtCo, PtNi, and 

PtFe and more corrosion-resistant graphitic carbon supports such as carbon nanotubes 

(CNTs), carbon nanocages (CNCs), and carbon nanofibers (CNFs). The above-mentioned 

graphitic carbon supports are chosen as  alternative cathode catalyst support since the 

conventionally used CB is easily subjected to corrosion  under  PEMFC operating 

conditions like low pH at the cathode interface, high operating temperature (> 80 °C), and 

high cathode interface potential (1.2-1.5 V). The selection of graphitic carbons as 

alternative support is not viable due to their high cost. Therefore, it is necessary to 

develop a catalyst consisting of catalytically-active support and Pt-based catalyst to
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significantly reduce the cost while retaining ORR catalytic activity and stability under 

PEMFC operating conditions.   

In this chapter, a novel approach for the preparation of cost-effective, highly-

active, and stable carbon-based support HCC and its synergistic effect towards ORR is 

reported. HCC is a combination of pyridinic site-containing CCCs and platinum catalytic sites 

for oxygen reduction. Besides its own contribution to the overall catalyst activity (an advantage 

over conventional CB supports), the noble metal-free CCC can also enhance the activity of the Pt 

through synergistic effects. The enhanced activity of HCC is demonstrated both in half-cell 

using 0.1 M HClO4 as electrolyte and in 25 cm2 MEAs.   

 

2.2 EXPERIMENTAL  

2.2.1 PREPARATION OF SUPPORT AND CATALYST 

For a typical CCC preparation [51-53, 61, 65], 2 ml of the ethylenediamine was 

chelated with iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O) and cobalt (II) nitrate 

hexahydrate (Co(NO3)2·6H2O) in isopropyl alcohol (IPA).  0.4 g of pre-oxidized CB 

(Ketjen Black EC-300J) was added to the chelating solution followed by refluxing at 

85 °C for 3 h. The solvent was removed by rotary evaporating and the product was dried 

in an air oven at 80 °C for 12 h. Subsequently, the resultant mass was pyrolyzed in a tube 

furnace under the pure nitrogen atmosphere for 1 h. After cooling down to room 

temperature, the sample was leached in 0.5 M H2SO4 at 80 °C for 8 h to remove the 

unreacted transition metals present on the surface. The CCC was obtained after washing 

and drying at 80 °C overnight. 5 wt% Pt on the CCC was deposited by the electroless 

deposition using sodium formate as a reducing agent. 5 wt% Pt on high surface area 

carbon (denoted as Pt/CB) was prepared using the same method as Pt/CCC using CB 
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(Ketjen Black EC-300J) as a support. Also 30 wt% Pt was deposited by the same method 

on both supports for comparison studies in fuel cell. 

2.2.2 PHYSICAL CHARACTERIZATION 

The nitrogen adsorption/desorption isotherms were obtained at −196 °C using a 

Quantachrome NOVA 2000 BET analyzer. Specific surface area was determined by a 

multipoint Brunauer-Emmett–Teller (BET) analysis. Pore size distribution (PSD) curves 

were calculated by the Barrett–Joyner–Halenda (BJH) method using the 

adsorption/desorption branch. X-ray diffraction (XRD) analysis was performed using a 

Rigaku D/Max 2500 V/ PC with a Cu Kα radiation. A tube voltage of 30 kV and a 

current of 15 mA were used during the scanning. To estimate the particle size of samples, 

we employed the following Scherrer equation [66]:   

10 cos

k
D

B




  [2.1] 

where D is the crystallite size in nm, k is a coefficient (0.9), λ is the wavelength of X-ray 

(1.5404 Å), B is the line broadening at half the maximum intensity in radians, and θ is the 

angle at the position of the maximum peak known as Bragg angle. High resolution 

transmission electron microscope (HR-TEM) was used to study the morphology and 

particles size distribution of the catalysts using Hitachi 9500 HR-TEM operated at 300 

kV accelerating voltage. X-ray fluorescence (XRF, Fischer XDAL) was used to 

determine Pt loading in the catalyst coated membrane.  

 

2.2.3 ELECTRODE PREPARATION 

In a typical RDE experiment, for the CCC, 8 mg of CCC was ultrasonicated in 1 

ml of IPA.  15 ul of the ink (0.12 mgCCC cm-2) was deposited on the glassy carbon 
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electrode. In the case of Pt/CCC and Pt/CB, the catalyst ink was prepared by mixing the 

respective catalysts with absolute ethanol and DI water in an ultrasonicate bath. The 

catalyst ink was deposited onto the glass carbon electrode with a target Pt loading of   20 

μgPt cm-2. For all RDE tests, 5 μl of 0.25 wt% ionomer (Alfa Aesar) was additionally 

deposited on the catalyst layer to give a good adhesion of catalyst onto the glassy carbon 

electrode.   

 For the MEA fabrication, the in-house synthesized Pt/CCC catalyst was 

employed as the cathode catalyst while commercial 46% Pt/C (Specifications of TKK 

catalyst) was used as a catalyst for the anode. Catalyst inks were prepared by 

ultrasonically mixing the respective catalysts (32 mg), IPA (1.8 ml), Nafion® ionomer (5% 

solution, Alfa Aesar), and DI water (0.2 ml). The ionomer content was 30% and 20% in 

the anode and cathode inks, respectively. The catalyst inks were sprayed directly on the 

Nafion® 212 membrane. The Pt loading on the anode is kept at 0.1 mg cm−2, while the 

cathode Pt loading is varied from 0.04 to 0.15 mg cm−2. The catalyst coated membrane 

was then hot pressed at 140 °C using a pressure of 20 kg cm−2 for 6 min. in between the 

gas diffusion layers (Sigracet GDL 10BC, SGL) and Teflon gaskets to prepare the MEA 

for the performance evaluation studies in fuel cell.  For the comparison, Pt/CB as a 

cathode was used at the Pt loading of 0.04 and 0.15 mg cm−2. 

 

2.2.4 ELECTROCHEMICAL MEASUREMENT 

Electrochemical experiments of the CCC and Pt/CCC were performed in a 

rotating disk electrode (RDE) setup using a Pine bi-potentiostat (Model AFCBP1). A 

glassy carbon disk (0.247 cm2) was acted as a working electrode. The Ag/AgCl electrode 
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and platinum mesh were used as a reference and counter electrodes, respectively. All 

electrode potentials reported here were converted into the reversible hydrogen electrode 

(RHE). RDE tests were performed in 0.1 M HClO4 solution as an electrolyte at the room 

temperature. The CV was swept at a scan rate of 50 mV s-1 from 0.005 to 1.0 V in 

deaerated electrolyte under N2 atmosphere. Linear sweep voltammetry (LSV) 

measurements were conducted at a scan rate of 5 mV s-1 in O2–saturated electrolyte by 

sweeping the potential between 0.2 and 1.1 V anodically. The LSV curves presented in 

this work are properly corrected using the background capacitance current that is 

measured in the N2 atmosphere at a scan rate of 5 mV s-1.   

For the PEMFC test, the MEA was activated under a supply of H2 and O2 at 80 °C 

to the anode and cathode compartments, respectively with a flow rate of 750 ml min−1 

and 100% relative humidity (RH). After MEA activation, the mass activity at 0.9 ViR-free 

was evaluated under H2/O2 (2/9.5 stoic.) at 80 °C, 100% RH, and 150 kPaabs. back 

pressure. The fuel cell polarization was conducted using a fully automated fuel cell test 

station (Scribner Associates Inc., model 850e) at 80 °C.  

 

2.3 RESULTS AND DISCUSSION 

2.3.1 CCC SUPPORT SYNTHESIS 

Figure 2.1 (a) and (b) show the nitrogen adsorption-desorption isotherms and BJH 

PSD curves of CCC and CB. The specific BET surface area of CCC and CB are 231.9, 

and 826.4 m2 g−1, respectively.  The CCC exhibits characteristic Type IV 

adsorption/desorption isotherm behavior according to IUPAC (The International Union of 

Pure and Applied Chemistry) classification indicating its mesoporous nature [67]. The  
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Figure 2.1 (a) N2 adsorption/desorption isotherms and (b) BJH pore-size distribution 

curves obtained from the adsorption branch of CB and CCC. The inset in (b) compares 

the PSD in the range 0-10 nm. 

 

 

(a) 

(b) 
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isotherms show hysteresis loop with sharp adsorption and desorption branches over a 

relative pressure range of 0.4-0.8. The nitrogen uptake is observed when (P/P0) ratio is 

0.94-1.0, which indicates the presence of mesopores [67]. As shown in Figure 2.1 (b) 

inset, after the metal-catalyzed pyrolysis the peak pore diameter is ca. 4 nm, which is the 

same as that of CB.  

Figure 2.2 (a) presents XRD patterns of the CCC and CB. In general, the 

characteristic diffraction peaks of (002) and (101) planes for graphite are found at ca. 26 

and 43° (PDF#97-003-1829). The diffraction peaks of CCC are sharper with increased 

intensity and slightly shifted to higher angles. Consequently, the interlayer spacing of 

CCC based on (002) plane decreases to 0.3437 nm, while that of CB is 0.3615 nm. The 

results indicated that the surface of CCC has been partially graphitized during metal-

catalyzed pyrolysis. Furthermore, the CCC shows characteristic diffraction peaks at 44.45° 

which corresponds to the (110) plane of body-centered cubic (BCC) structure of FeCo 

metal particle (PDF#49-1568), respectively.  

The HR-TEM images of CCC and CB are shown in Figure 2.3 (a) and (b), 

respectively. The apparent difference between them is the presence of FeCo particles 

encapsulated by graphitic carbon shells in the CCC support. The graphitic carbon shells 

derived from EDA protects FeCo particles, while the FeCo particles present on the 

surface are removed during acid leaching. Nanostructured fibers or tubes of graphitic 

carbon are also formed as a result of pyrolysis in the presence of Fe and Co metals [55, 

56] while KB showed amorphous morphology as shown in Figure 2.3 (b).  

The results of XPS analysis performed on CCC and CB supports are presented in 

Figure 2.4 (a) and (b), respectively. Figure 2.4 (a) shows the survey scans for CCC and  
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Figure 2.2 Comparison of XRD patterns of CCC and CB. 
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Figure 2.3 HR-TEM images of (a) CCC and (b) CB. 

 

 

 

 

(a) 

(b) 
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Figure 2.4 (a) XPS survey scans of CCC and CB and (b) deconvoluted N1s XPS spectra 

of CCC. 

 

 

(a) 

(b) 
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CB. The XPS spectrum of CCC alone, as shown in Figure 2.4 (b), represents a peak 

around 398.4 eV which corresponds to the nitrogen atom. The nitrogen peak shown in 

Figure 2.4 (b) for CCC can be deconvoluted into four major peaks corresponding to 

pyridinic, pyrrolic and/or pyridone, quaternary, and pyridinic-N+-O− (oxidized nitrogen). 

The peak at 398.5 eV accounts for the presence of pyridinic-N whereas the peak at 400.2 

eV corresponds to the pyrrolic-N and/or pyridine-N. The peaks at 401.4 and 404.1 eV are 

ascribed to the presence of quaternary-N and pyridinic-N+-O−, respectively. Relative 

percentages of pyridinic-N and pyrrolic-N and/or pyridine-N are 41.7 and 27.5 % of total 

nitrogen, respectively. Quaternary-N accounts for 21.0 % while pyridinic-N+-O− occupies 

9.9%. It is well-known that pyridinic-N situated on the edge of the graphite planes 

promotes ORR by donating one p-electron to the aromatic π system [55, 68, 69]. 

Moreover, previous studies report that the quaternary-N plays a role as stable ORR active 

sites [55, 56, 61, 70]. The results for the deconvolution of the N 1s spectra are 

summarized in Table 2.1. 

The electrochemical characteristics of CCC, CB, and Pt/C in 0.1 M HClO4 at 

room temperature using three-electrode electrochemical cell are shown in Figure 2.5.  

The CV in Figure 2.5 (a) was performed at a scan rate of 50 mV s-1by sweeping the 

potential between 0.005 V and 1.0 V in N2-saturated electrolyte. Unlike CB, CCC 

exhibits the quinine/hydroquinone redox coupling at 0.6 V. Interestingly, the oxidation 

current of CCC decreases with sweeping 0.8 to 1.0 V, while that of CB increases. LSV in 

Figure 2.5 (b) was measured at a scan rate of 5 mV s-1in O2-saturated electrolyte by 

sweeping potential between 0.2 and 1.1 V in the anodic direction. The rotation speed was 

1600 rpm for LSV measurement.  The LSV curves presented in this work are properly  
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Table 2.1 Characteristics of CCC obtained from XPS N1s peak 

 
BE 

[eV]  
FWHM 

Relative intensity 

[%] 

Pyridinic- N 398.5  1.711  41.7 

Pyrrolic N and or 

pyridone-N 
400.2 1.581 27.5 

Quaternary-N  401. 4]  1.806  21.0 

Pyridinic-N
+
-O

-
 404.1  2.785  9.9 
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Figure 2.5 (a) CV diagrams of CCC and CB in N2-saturated 0.1 M HClO4 at room 

temperature and scan rate of 50 mV s-1. (b) LSV curves of Pt/C, CCC and CB in O2-

saturated 0.1 M HClO4 at room temperature and scan rate of 5 mV s-1 with 1600 rpm. (c) 

The Koutechy-Levich plots from LSV data of CCC at different potentials. (d) Tafel plot 

from LSV data of CCC at 1600 rpm. 

 

 

 

 

(a) 

(b) 

(c) (d) 
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corrected using the background capacitance current that is measured in the N2 atmosphere 

at a scan rate of 5 mV s-1. Figure 2.5 (b) shows that the CCC exhibits better activity than 

CB.  The on-set potential is significantly enhanced by ca. 0.5 V as compared to the CB. 

The half-wave potential of the CCC is 0.640 V. The diffusion-limited plateau is well-

defined, which indicates that the active sites are evenly distributed over the CCC. Figure 

2.5 (c) exhibits the Koutechy-Levich plot derived from LSV curves with different rpm by 

means of the following equations:  

1

𝑖
=

1

𝑖k
+

1

𝑖dl
 [2.2] 

𝑖dl = 𝐵𝑤1/2 [2.3] 

𝐵 = 0.62𝑛𝐹𝐶𝑂2
𝐷𝑂2

2/3
𝑣−1/6 [2.4] 

where i is the measured current density, 𝑖k is the kinetic current density, 𝑖dl is the 

diffusion-limited current density, B is the Levich slope, n is the number of electron 

exchanged in ORR, F is the Faraday constant, 
2OC  is the bulk concentration of oxygen 

(1.3×10−6 mol cm−3), 
2OD  is the diffusion coefficient of oxygen in the bulk solution 

(1.7×10−5 cm2 s−1), ω is the rotation rate in rpm, and v is the kinematic viscosity of the 

solution (0.01cm2 s−1). As a result, the calculated n values of CCC at 0.3-0.65 V is ca. 3.7 

indicating the 4-electron ORR process on CCC. With 2-electron process, the catalytic 

poison species, H2O2, is produced and degrades the membrane and carbon support [71]. 

The Tafel plot obtained from the LSV curves that are corrected for diffusion effects using 

Eq. (2.5) is shown in Figure 2.5 (d).  

𝑖𝑘 =
𝑖𝑑𝑙 ∙ 𝑖

𝑖𝑑𝑙 − 𝑖
 [2.5] 
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As shown in Figure 2.5 (d), the Tafel slope is about 81 mV dec−1 at low current 

density. This value may be attributed to the transfer of the first electron as the rate-

determining step and the Temkin conditions of intermediate adsorption [72]. 

 

2.3.2 PT/CCC ELECTRO-CATALYST SYNTHESIS 

Figure 2.6 shows the XRD patterns of Pt/CCC and Pt/CB which indicated that the 

Pt is present on CCC as a single element without making the alloy with transition metal 

encapsulated within the CCC since the peaks at 2θ = 39.8, 46.7, 67.7, and 81.2° are 

corresponding to the (111), (200), (220), and (311) planes of face-centered cubic (FCC) 

Pt, respectively. As shown in Figure 2.2, peaks at 44.45 and 55° correspond to the (110) 

and (200) planes of BCC-FeCo. The particle size calculated by Scherer equation using 

Pt(111) plane indicated 3.3 nm for Pt/CCC and  2.4 nm for Pt/CB catalysts.   

Figure 2.7 (a) and (b) represent HR-TEM images of Pt/CCC and Pt/CB. The HR-

TEM images reveal that the Pt nanoparticles are successfully deposited on the graphitized 

CCC support. For each samples, approximately 100 particles were analyzed to obtain the 

mean particle size. The mean particle size of Pt/CCC is 2.1 nm, while that of Pt/CB is 2.0 

nm. The particles are evenly deposited on both the supports. The Pt/CB shows a good 

agreement with particle size from XRD but the Pt/CCC represents a big difference since 

FeCo peaks interfere with the unique Pt peaks during half-width calculation required for 

particle size measurement using Scherrer equation. 

Figure 2.8 presents the XPS spectra for Pt/CCC and Pt/CB catalysts. The XPS is a 

powerful technique to analyze the oxidation states of metals on the catalyst surface. 

Figure 2.8 (a) and (b) shows the Pt 4f spectra of Pt in Pt/CCC and Pt/CB catalysts,  
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Figure 2.6 Comparison of XRD patterns of Pt/CCC and Pt/CB catalysts. 
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Figure 2.7 HR-TEM images of (a) Pt/CCC and (b) Pt/CB catalysts. 
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Figure 2.8 Deconvoluted XPS spectra of Pt4f in (a) Pt/CCC and (b) CB. (c) 

Deconvoluted XPS spectra of N1s Pt/CCC. 

(a) 

(b) 

(c) 
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respectively, which is deconvoluted to three pairs of doublets corresponding to Pt0, Pt
2+

, 

and Pt
4+

.  The metallic Pt0 for Pt/CCC is observed at 71.2 eV (Pt 4f7/2) and 74.7 eV (Pt 

4f5/2).  The second doublet at 72.1 and 75.8 eV could be assigned to the Pt
2+ chemical 

state as PtO or Pt(OH)2 [73, 74]. The third doublet of Pt at 74.4 and 77.5 eV was the 

weakest in intensity, which are ascribed to Pt
4+

 chemical state as PtO2 [74-76].  The 

deconvoluted Pt data of Pt/CB indicates that the Pt binding energy (BE) values are nearly 

similar to that of Pt/CCC.  The percentage of Pt0 for Pt/CCC is higher than that for Pt/CB, 

(53% for HCC and 46.8% for Pt/CB). The N 1s spectra of Pt/CCC are shown in Figure 

2.8 (c). Four different types of nitrogen namely, pyridinic, pyrrolic and/or pyridone, 

quarternary, and pyridinic-N+-O- are assigned to the N 1s spectra as in the case of pure 

CCC (Figure 2.4 (b)). Relative ratios of pyridinic-N and pyrrolic-N and/or pyridine-N are 

29.8 and 41.0% of total nitrogen, respectively. Quaternary-N accounts for 22.6 % while 

pyridinic-N+-O− occupies the remaining 6.5%. As compared to the CCC, the pyridinic-N 

decreases by 11.9% and pyrrolic-N and/or pyridine-N increases by 13.5%. It may result 

from the oxidation of pyridinic-N during Pt deposition. Wang et al. studied the change of 

nitrogen types in accordance with electrochemical reduction and oxidation [77]. They 

found that the oxidation of nitrogen doped carbon monolith caused the decrease of 

pyridinic-N and increase of pyridone -N. The possible mechanism is that the electrons 

from nitrogen are consumed by Pt species, followed by formation of metallic Pt0. As 

shown in Pt oxidation state, Pt/CCC contains higher Pt0 concentration than Pt/CB. The 

results for the deconvolution of the Pt 4f and N 1s spectra are summarized in Table 2.2 

and 2.3, respectively. 
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Table 2.2 Characteristics of the Pt/CB and Pt/CCC catalysts obtained from XPS Pt4f 

peaks 

 
Catalyst 

BE 
[eV] Relative 

Intensities 

[%] 4f
7/2

 4f
5/2

 

Pt
0

 

Pt/CB 71.2 74.7 46.8 

Pt/CCC 71.2 74.7 53.0 

Pt
2+ 

Pt/CB 72.2 75.8 35.8 

Pt/CCC 72.1 75.8 33.3 

Pt
4+ 

Pt/CB 74.4 77.5 17.4 

Pt/CCC 74.4 77.5 13.7 
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Table 2.3 Characteristics of Pt/CCC obtained from XPS N1s peak 

 
BE 

[eV] 
FWHM 

Relative intensity 

[%] 

Pyridinic- N 398.5 1.663 29.8 

Pyrrolic N and or 

pyridone-N 
400.2 1.823 41.0 

Quaternary-N 401.4 2.328 22.6 

Pyridinic-N
+
-O

-
 404.1 2.11 6.5 
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The electrochemical characteristics of Pt/CCC and Pt/CB in 0.1 M HClO4 at room 

temperature using three-electrode electrochemical cell are shown in Figure 2.9. The CV 

was performed at a scan rate of 50 mV s-1 by sweeping the potential between 0.005 V and 

1.0 V in N2-saturated electrolyte as shown in Figure 2.9 (a). The ECSA was calculated 

from the integrated charge in the hydrogen desorption peak using the following equation:  

ECSA =
𝑄H

0.21 × 𝐿𝑃𝑡
 [2.6] 

where, QH (mC cm−2) is the coulombic charge for hydrogen desorption, LPt (mg cm−2) 

represents the Pt loading on the glassy carbon electrode and 0.21 mC cm−2 is the charge 

required to oxidize a ML of H2 on the Pt site [78]. The calculated value of ECSA for 

Pt/CCC is 67.2 m2 g-1, while the Pt/CB shows 56.8 m2 g-1. LSV in Figure 2.9 (b) was 

measured at a scan rate of 5 mV s-1 in O2-saturated electrolyte by sweeping the potential 

between 0.2 and 1.1 V in the anodic direction. The rotation speed is 1600 rpm for LSV 

measurement. The LSV curves presented in this work were properly corrected using the 

background capacitance current that was measured in the N2 atmosphere at a scan rate of 

5 mV s-1. Figure 2.9 (b) shows that the Pt/CCC exhibits better ORR performance than the 

Pt/CB.  The diffusion-limited current density of Pt/CCC is 5.67 mA cm−2, while that of 

Pt/CB is 4.9 mA cm−2. The half-wave potential of the Pt/CCC is 0.852 V, while that of 

Pt/CB is 0.769 V. Tafel plot obtained from Figure 2.9 (b) is presented in Figure 2.9 (c) 

which shows that Pt/CCC exhibits 3.5-fold higher kinetic current than the Pt/CB catalyst. 

The Tafel slope of Pt/CCC (80mV dec-1) is lower than that of Pt/CB (88mV dec-1). The 

results obtained from half-cell studies indicate that the Pt/CCC catalyst outperforms the 

Pt/CB catalyst in kinetic, mixed kinetic-diffusion, and diffusion regions. The 

enhancement in the ORR activity can be attributed to the use of CCC as a support which  
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Figure 2.9 (a) CV diagrams of Pt/CCC and Pt/CB in N2-saturated 0.1 M HClO4 at room 

temperature and scan rate of 50 mV s-1. (b) LSV curves of Pt/CCC and Pt/CB in O2-

saturated 0.1 M HClO4 at room temperature and scan rate of 5 mV s-1 at 1600 rpm. (c) 

Tafel plots from LSV data of Pt/CCC and Pt/CB at 1600 rpm. 

 

(a) 

(b) 

(c) 
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significantly contributed to the overall activity through the synergistic effect. The origin 

of synergetic effect of Pt/CCC may come from the enhanced adsorption strength with the 

metals [79], improvement of electronic properties due to lone pairs of electrons on 

nitrogen atoms [80-82], and well-dispersed metal on support due to a strong Lewis 

basicity [56]. Additionally, the support used in this work is extremely active for ORR, 

which may reduce the oxygen in addition to the activity of Pt for the oxygen reduction. 

The increased Pt0 may also contribute to the high activity of Pt/CCC since the Pt0 is more 

active for ORR than Pt oxide. Electrochemical properties of the Pt/CB and Pt/CCC are 

summarized in Table 2.4. 

 

2.3.3 EVALUATION OF FUEL CELL PERFORMANCE 

In order to evaluate the fuel cell performances, Pt/CCC and Pt/CB are used as a 

cathode electrode in an MEA. The Pt loading at the anode is constant at 0.1 mg cm-2 for 

all the MEAs tested. Two different Pt loadings (0.15 and 0.04 mg cm−2) are used for both 

Pt/CCC and Pt/CB catalysts. Figure 2.10 (a) represents PEMFC polarization curves 

obtained at 80 °C with reactants supplied at100% RH and without backpressure. The fuel 

cell performance of Pt/CCC is significantly increased when compared to that of Pt/CB 

catalyst. The difference is prominent as the Pt loading decreases in the MEA. That is, at 

0.04 mg cm−2 Pt loading, Pt/CCC exhibits 1.5 to 6-fold increase in current density in the 

potential range of 0.6-0.8 V when compared with that of Pt/CB. The Pt/CCC exhibits 202 

and 1252 mA cm-2, while Pt/CB shows only 34 and 728 mA cm-2 at 0.8 and 0.6 V, 

respectively. Figure 2.10 (b) exhibits the effect of backpressure when 0.04 mg cm-2 Pt 

loading is used in the MEA. As the backpressure increases, the fuel cell performance  
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Table 2.4 Electrochemical properties of the Pt/CB and Pt/CCC catalysts obtained from 

CV diagrams and LSV curves 

 
Tafel slope 

[mV dec-1] 

Ikin  

at 0.9 V vs. RHE 

[mA] 

Half wave potential 

[V vs. RHE] 

ECSA 

[m2 g-1] 

Pt/CB -80 0.11 0.769 56.8 

Pt/CCC -88 0.39 0.852 67.2 
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Figure 2.10 (a) PEMFC polarization curves of Pt/CCC and Pt/CB with various Pt loading 

at 80 °C and100% RH and without backpressure. (b) PEMFC polarization curves of 

Pt/CCC and Pt/CB with various backpressures at 0.04 mg cm-2 Pt loading at 80 °C and 

100% RH. (c) Mass activities of Pt/CCC and Pt/CB at 80 °C and 100% RH applying a 

backpressure of 7.3 psi. 

 

 

(a) 

(b) 

(c) 
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increased. As a result, Pt/CCC at 0.04 mg cm-2 with backpressure of 30 psi shows higher 

performance than Pt/CB at 0.15 mg cm-2 without backpressure. In the range of 0.6-0.8 V, 

the current density of Pt/CCC has increased 15-73% more than that of the Pt/CB. 

However, Pt/CCC and Pt/CB show similar performances at the mass transfer region. 

Similar results were observed in RDE tests shown in Figure 2.9 (b). The LSV curves 

showed a small difference in diffusion-limited current density region as compared to the 

difference in kinetic and mixed kinetic-diffusion regions. The mass activities shown in 

Figure 2.10 (c) were obtained by applying a backpressure of 7.3 psi and supplying H2 and 

O2 (70 and 160 sccm) to the anode and cathode, respectively. The mass activity of 

Pt/CCC is 0.26 A mgPt
-1, which is higher than that of Pt/CB (0.1 A mgPt

-1). The results 

obtained from LSVs and fuel cell polarization curves indicate that the synergistic effect 

of CCC when used as a support for Pt catalyst is mainly effective in the kinetic and mixed 

kinetic-diffusion regions.   

 

2.4 CONCLUSION 

A novel non-precious metal CCC containing electrochemically active sites for 

ORR was prepared. The CCC exhibits high activity and good selectivity for ORR due to 

the presence of pyridinic and quaternary-nitrogen catalytic sites. The electrochemical 

performances of 5 wt% Pt deposited on CCC and CB were evaluated. Kinetic current of 

Pt/CCC calculated from LSV is 3.5-fold higher than that of Pt/CB. Tafel slope and half-

wave potential of Pt/CCC exhibit higher activity than the Pt/CB. The enhanced activity 

may be attributed to the increased metallic Pt0 concentration in Pt/CCC catalyst as 

confirmed by XPS analysis. XPS studies also confirmed the oxidation of nitrogen 
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resulting in an increase of metallic Pt0 during Pt synthesis. The Pt/CCC showed improved 

overall fuel cell performance. That is, in the potential range between 0.6 and 0.8 V, the 

current density of Pt/CCC is 1.5 to 6-fold higher than that of Pt/CB when employing 

ultra-low Pt loading (0.04 mgPt cm−2). Furthermore, by applying a backpressure of 30 psi, 

the Pt/CCC with 0.04 mg cm-2 exhibited much higher fuel cell performance than Pt/CB 

with approximately four time higher Pt loading (0.15 mg cm-2) without applying 

backpressure. The HCC comprising of Pt and non-precious metal catalyst provides the 

enormous activity through the combined activity of catalytic sites present in the CCC 

support and Pt. Furthermore, the catalyst- support interaction of Pt and CCC enhanced the 

overall activity of Pt/CCC towards ORR. It is envisaged that the use of catalytically-

active CCC as a cathode catalyst support may play a key role in achieving ultra-low Pt 

loading catalysts for automotive fuel cell application. 

 

 

 



62 

CHAPTER 3 

DEVELOPMENT OF HIGHLY ACTIVE AND STABLE HYBRID CATHODE CATALYST 

UNDER POTENTIAL CYCLING CONDITIONS FOR PEMFCS 

 

3.1 INTRODUCTION 

PEMFCs are attractive power sources of the future for variety of applications 

including portable electronics, stationary power, and electric vehicles. However, sluggish 

cathode kinetics, high Pt cost, and durability issues inhibit the use of PEMFCs for 

automobile applications [83, 84]. A number of factors contribute to the performance 

degradation of PEMFCs including catalyst dissolution [12, 85-89], catalyst sintering [90, 

91], membrane degradation [92-94], and carbon support corrosion [95-99].  

One of the efforts in achieving increased catalytic activity is by alloying Pt with 

3d transition metals to obtain high kinetic activity at 0.9 ViR-free for ORR [100-104]. In 

PEMFCs, Pt-alloys with various transition metals such as Cr, Co, Ni, etc. have been 

extensively studied and shown superior electrocatalytic activity for the ORR when 

compared to pure Pt [102-106]. The enhancement in kinetic activity over Pt by alloying 

Pt with transition metals is due to various factors including lowering of the Pt oxidation 

state [107], suppression of Pt oxide formation [107, 108], formation of a new electronic 

structure with higher Pt 5d orbital vacancies [100], decrease in the Pt-Pt interatomic 

distance and therefore a more favorable O2 adsorption [100], formation of a thin Pt skin 
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on the surface of the alloy core [109-111], and the altered electronic structures of the 

topmost Pt atoms [102, 103, 112]. 

Amongst the Pt-alloy catalysts, the PtCo catalyst has attracted much attention due 

to its high kinetic activity and stability in acidic environment [16, 105]. Paulus et al. 

studied the bulk compositions of 50 and 75 at.% Pt with Ni and Co as alloying elements 

[101]. In comparison to pure Pt, the results revealed a small activity enhancement of ca. 

1.5 times for the 25 at. % Ni and Co catalysts, and a more significant enhancement by a 

factor of 2-3 for the 50 at.% Co. Huang et al. showed that PtCo alloy nanoparticles 

exhibit kinetic activity and specific activity enhancements by a factor of ~3.2 and ~2.2, 

respectively for the ORR when compared to pure Pt [113]. Antolini et al. reviewed the 

activity and stability of various Pt-alloy catalysts, and concluded that PtCr and PtCo are 

more stable than PtV, PtNi, and PtFe due to their high degree of alloying and particle size 

[105]. Jayasayee et al. studied the activity and durability of PtCo, PtNi, and PtCu in 

PEMFC cathodes as a function of alloying elements in a systematic manner [104]. They 

showed that the performance of PtCo and PtCu catalysts was found to be most attractive 

when compared to PtNi and Pt catalysts. Mani et al. investigated the kinetic activity of 

dealloyed PtCu, PtCo, and PtNi in PEMFCs [106]. They found that Pt-alloy with Co and 

Cu are more active than PtNi. Mass and specific activities of PtCo and PtCu were 

enhanced by a factor of 3~4 times, compared to the commercial Pt/C catalyst.  

The durability of carbon-supported PtCo catalysts is the core advantage as 

cathode catalysts in PEMFCs. Yu et al. studied the durability of Pt/C and PtCo/C cathode 

catalysts with continuous water fluxing on the cathode under a potential cycling test 

between 0.87 and 1.2 V vs. RHE [18]. The authors found that cobalt dissolution neither 
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detrimentally reduced the cell voltage nor dramatically affected the membrane 

conductance. Cell performance enhancement by PtCo/C over Pt/C catalyst was sustained 

over 2400 cycles and the overall performance loss of the PtCo/C membrane electrode 

assemblies (MEAs) was less than that of the Pt/C MEA. Arico et al. reported the 

performance and durability of carbon-supported PtCo under high temperature (110-

130 °C) operation in PEMFCs [114]. A potential cycling test at 130 °C in a pressurized 

PEMFC showed a better stability for the PtCo alloy than pure Pt/C. Furthermore, better 

performance was obtained at high temperatures for the pre-leached PtCo/C than the Pt/C 

catalyst. They observed that the amount of Pt oxides on the outermost atomic layers was 

much smaller in PtCo than in Pt catalyst. These characteristics appeared to influence 

catalysts’ performance and durability. Stassi et al. investigated the effect of thermal 

treatment on the structure and surface composition of PtCo catalysts during accelerated 

stress test (AST) [115]. They reported that different thermal treatments caused significant 

structural and morphological modifications in the PtCo catalysts. Yu et al. studied the 

cycling stability of dealloyed PtCo3 and PtCu3 catalysts between 0.6 and 1.0 V (vs. RHE) 

for up to 30,000 cycles [116]. In situ X-ray absorption spectroscopy (XAS) analysis 

showed stronger bulk Pt-Pt compressive strains and higher bulk d-band vacancies for the 

dealloyed PtCu3 than the dealloyed PtCo3 which was correlated to the higher initial 

activity of dealloyed PtCu3. MEA tests showed poor durability towards voltage cycling 

for the dealloyed PtCu3 catalyst when compared to dealloyed PtCo3 catalyst due to Cu 

plating on the anode.  

In general, PtM3 (M = Cu, Co, Ni, Fe, Cr) catalysts are prepared by impregnating 

excess amount of transition metal salts into Pt/C catalyst followed by a heat-treatment 
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under a reducing atmosphere and acid leaching procedures [106, 116, 117]. Since excess 

transition metal salts are used for the catalyst synthesis, the leaching is carried out in 

strong acids for prolonged time which may be detrimental to the support stability when 

the cathode experiences high potentials during startup/shutdown cycles. In our previous 

studies, we reported a novel method of preparing Co-doped Pt catalysts on CCC supports 

[85, 118]. In the present study, Co was initially doped into the CB at high temperature 

using metal-catalyzed pyrolysis which was used as a transition metal source for the 

formation of Co-doped Pt. The Co-doped carbon prepared in this manner was used as a 

support to deposit Pt nanoparticles (Pt/CCC catalyst synthesis). The Pt supported on Co-

doped carbon was heat-treated under reducing atmosphere to obtain Co-doped Pt catalyst 

with controlled particles size. During heat-treatment, Co, which is doped within the 

carbon, diffuses to the surface and forms Co-doped Pt catalyst with a core-shell structure. 

The kinetic activity and durability of kinetic activity of Co-doped Pt prepared by the 

novel approach were examined and compared with those of commercial PtCo/C as well 

as state-of-the-art Pt/C catalyst [119, 120].   

 

3.2 Experimental  

3.2.1 PREPARATION OF SUPPORT AND CATALYST 

The CCC support was prepared using the procedure developed at the University 

of South Carolina [51-53, 61, 65]. In brief, as-received CB (Ketjen Black EC-300J) was 

oxidized with 9.8 M HNO3 solution at 85 °C for 9 h under refluxing conditions. After 

filtering, the oxidized CB was washed with DI water several times and dried under 

vacuum at 80 °C for 12 h. A desired amount of Co(NO3)2 and ethylene diamine, used as 
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Co and N precursors, respectively, were mixed with the oxidized CB in 200 ml IPA. The 

mol ratio of Co and N precursors was maintained at 1:9. The mixture was reflexed for 3 h 

at 85 °C under vigorous stirring, followed by drying under vacuum at 80 °C. The 

resultant powder was subjected to heat-treatment under inert atmosphere at 800 °C for 1 h 

followed by leaching in 0.5 M H2SO4 at 80 °C for 3 h to remove excess Co. The final 

product is denoted as CCC. The CCC was e non-covalently activated by the 1-

pyrenecarboxylic acid (PCA) before the Pt deposition [121, 122].   

Pt deposition was accomplished by a polyol reduction method for the preparation 

of 30% Pt/CCC catalyst. First, the CCC support was dispersed in 25 ml of ethyleneglycol 

in a sonication bath (Branson ultrasonic cleaner). A desired amount of PtCl4 was added 

and the pH was adjusted to 11 by the addition of 0.1 M NaOH solution. The resulting 

solution was refluxed at 160 °C for 3 h and allowed to cool to room temperature. Then, 

the solution was filtered, washed with DI water, and dried at 160 °C for 1 h. Prior to heat-

treatment, the Pt/CCC was subjected to a protective coating procedure using polyaniline. 

Oxidative polymerization of aniline sulfate was carried out at room temperature using 

ammonium peroxysulfate as the oxidizing agent [123, 124]. The polyaniline-coated 

Pt/CCC was placed in an alumina crucible and heat-treated at 700 -900 °C for 2 h in a 

tubular furnace under 5% H2 (balance N2) atmosphere. The catalyst thus prepared is 

denoted as Co-doped Pt/CCC.  

For comparison, the PtCo catalyst was prepared by the conventional 

impregnation method with the same ratio of Pt to Co as in the Co-doped Pt/CCC. Briefly, 

the 46 % Pt/C (TEC10E50E, Tanaka Kikinzoku Kogyo K.K, Japan) is mixed with 

Co(NO3)2 at an atomic ratio of 1:1. The mixture was stirred for 12 h to obtain 
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homogeneous slurry. The resultant slurry was dried in an oven for 12 h under vacuum 

followed by heat-treatment at 800 and 900 °C for 2 h under 5% H2 (balance N2) 

atmosphere. The catalysts thus obtained were denoted as PtCo/C-Imp-800 and PtCo/C-

Imp-900, respectively.  

 

3.2.2 PHYSICAL CHARACTERIZATION 

The nitrogen adsorption/desorption isotherms were obtained at −196 °C using a 

Quantachrome NOVA 2000 BET analyzer. Specific surface area was determined by a 

multipoint BET analysis. PSD curves were calculated by the BJH method using the 

adsorption/desorption branch. XRD analysis was performed using a Rigaku D/Max 2500 

V/ PC with a Cu Kα radiation. A tube voltage of 30 kV and a current of 15 mA were used 

during the scan. To estimate the particle size of samples, we employed the following 

Scherrer equation [66]:   

10 cos

k
D

B




  [3.1] 

where D is the crystallite size in nm, k is a coefficient (0.9), λ is the wavelength of X-ray 

(1.5404 Å), B is the line broadening at half the maximum intensity in radians, and θ is the 

angle at the position of the maximum peak known as Bragg angle. Raman spectroscopy 

was used to evaluate the degree of graphitization of the carbon supports using HORIBA 

"LABRAM 1B” (He-Ne 20mW laser, wave length 632.817 nm). Inductively coupled 

plasma atomic emission spectroscopy (ICP-AES, Perkin Elmer) analysis was used to 

determine the composition of the catalysts. HR-TEM was used to study the morphology 

and particles size distribution of the catalysts using Hitachi 9500 HR-TEM operated at 
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300 kV accelerating voltage. XRF (Fischer XDAL) was used to determine PtCo 

composition in the catalyst and Pt loading in the catalyst coated membrane.  

 

3.2.3 RDE MEASUREMENTS 

A glassy carbon disk electrode (0.247 cm2) was acted as a working electrode. The 

Ag/AgCl electrode and platinum mesh were used as a reference and counter electrodes, 

respectively. All electrode potentials reported here were converted into the RHE. In a 

typical RDE experiment, 8 mg of CCC and CB was ultrasonicated in 1 ml of IPA. 15 ul 

of the ink (0.12 mg cm-2) was deposited on the glassy carbon electrode. For the Pt/CCC 

and Pt/CB, the catalyst was mixed with absolute ethanol and DI water ultrasonically. The 

catalyst ink was deposited onto the glassy carbon electrode.   

RDE tests were performed in 0.1 M HClO4 solution as an electrolyte at room 

temperature using a Pine bi-potentiostat (Model AFCBP1). The CV was swept at a scan 

rate of 50 mV s-1 from 0.005 to 1.0 V in deaerated electrolyte under N2 atmosphere. LSV 

measurements were conducted at a scan rate of 5 mV s-1 in O2–saturated electrolyte by 

sweeping potential between 0.2 and 1.1 V anodically. The LSV curves presented in this 

work are properly corrected using the background capacitance current that is measured in 

the N2 atmosphere at a scan rate of 5 mV s-1.   

 

3.2.4 MEA FABRICATION AND ELECTROCHEMICAL MEASUREMENT 

For the MEA fabrication, the in-house synthesized catalysts were employed as the 

cathode catalyst while commercial 46% Pt/C was used as a catalyst for the anode. 

Catalyst inks were prepared by ultrasonically mixing the respective catalysts (32 mg), 
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IPA (1.8 ml), Nafion® ionomer (5% solution, Alfa Aesar), and DI water (0.2 ml). The 

ionomer content was 30% and 20% in the anode and cathode inks, respectively. The 

catalyst inks were sprayed directly on the Nafion® 212 membrane covering an active area 

of 25 cm2. The Pt loading on the anode and cathode electrodes is kept at 0.1 and 0.15 mg 

cm−2, respectively. The catalyst coated membrane was then hot pressed at 140 °C using a 

pressure of 20 kg cm−2 for 6 min. in between the gas diffusion layers (Sigracet GDL 

10BC, SGL) and Teflon gaskets to prepare the MEA for the performance evaluation 

studies in fuel cell.   

Initially, the MEA was activated under a supply of H2 and O2 at 80 °C to the 

anode and cathode compartments, respectively with a flow rate of 750 sccm and 100% 

RH. After MEA activation, the initial kinetic activity at 0.9 ViR-free was evaluated under 

H2/O2 (2/9.5 stoic.) at 80 °C, 100% RH, and 150 kPaabs. back pressure. The 

electrochemical surface area (ECSA) was estimated using CVexperiments carried out 

between 0.05 and 0.6 V (vs. RHE) at 80 °C under fully humidified H2 and N2 supply to 

the anode and the cathode, respectively. The mass activity measurements were performed 

using the AST protocol suggested by U.S DRIVE Fuel Cell Tech Team [125]. During 

AST, 200 sccm H2 and 75 sccm N2 were supplied to the anode and cathode, respectively 

and the potential was swept between 0.6 and 1.0 V (vs. RHE) at 50 mV s−1 in a triangle 

profile for up to 30,000 cycles. The fuel cell polarization was conducted using a fully 

automated fuel cell test station (Scribner Associates Inc., model 850e) at 80 °C. The mass 

activity and ECSA measurements were performed after 0, 1000, 5000, 10,000, 20,000, 

and 30,000 cycles. The cell potential loss at 800 mA cm−2 was used as one of the criteria 

to evaluate the catalyst performance. For comparison purposes, MEAs with commercial 
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PtCo/C (TEC36EA52, 46.8% Pt and 6.7% Co, Tanaka Kikinzoku Kogyo K.K, Japan) and 

46% Pt/C (TEC10E50E, Tanaka Kikinzoku Kogyo K.K, Japan) as cathode catalysts were 

also prepared and evaluated under the same experimental conditions.  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 CCC SUPPORT SYNTHESIS 

Figure 3.1 illustrates the schematic diagram of the approach used to synthesize 

CCC and Co-doped Pt/CCC. Surface modification on the carbon support introduces 

oxygen and nitrogen groups on the surface [51, 65]. The metal-catalyzed pyrolysis 

increases the carbon graphitization degree at high temperatures (800~900 °C), introduces 

7-15% Co in the carbon matrix, and incorporates nonmetallic (nitrogen-containing) active 

sites on the carbon surface. Next, the chemical leaching removes excess Co, and Co 

particles encapsulated with thin carbon layer is remained in the support which is used to 

dope Pt for preparing Co-doped Pt/CCC catalyst. Modified polyol process was used for 

uniform platinum deposition [118]. In the subsequent annealing step, the Co encapsulated 

within the CCC support diffuses to the surface to form Co-doped Pt catalyst in the 

presence of polymer protective coating [118]. The heat-treatment process was optimized 

to control the particle size between 3-5 nm, resulting in compressive Pt-lattice catalyst 

having Pt-shell/doped metal core structure.  

Figure 3.2 (a) and (b) show the nitrogen adsorption-desorption isotherms and BJH 

PSD curves of CCC and CB. The specific surface areas of CCC and CB are 398 and 826 

m2 g−1, respectively. The CCC exhibits characteristic Type IV adsorption/desorption  
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Figure 3.1 Schematic diagram for CCC support and Co-doped Pt/CCC catalyst synthesis. 
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Figure 3.2 (a) N2 adsorption/desorption isotherms and (b) BJH pore-size distribution 

curves obtained from the adsorption branch of CCC and CB. The inset in (b) compares 

the PSD in the range 0-10 nm. 

 

 

 

(a) 

(b) 
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isotherm behavior according to the IUPAC classification indicating its mesoporous nature 

[67]. The isotherms show hysteresis loop with sharp adsorption and desorption branches 

over a relative pressure range of 0.4-0.8. The nitrogen uptake is observed when (P/P0) 

ratio is 0.94-1.0, which indicates the presence of mesopores [67]. The total pore volume 

was reduced from 0.846 to 0.688 ml g−1. As shown in Figure 3.2 (b) inset, after the metal- 

catalyzed pyrolysis the peak pore diameter is ca. 4 nm. 

Figure 3.3 (a) presents XRD patterns of the CCC and CB. Generally the 

characteristic diffraction peaks of (002) and (101) planes for carbon are found at ca. 26 

and 43°. The diffraction peaks of CCC are sharper with increased intensity and shift to 

more positive angles. Consequently, the interlayer spacing of CCC based on (002) plane 

decreases to 0.3456 nm, while that of CB is 0.3615 nm. The results indicated that the 

carbon surface of CCC has been partially graphitized during metal-catalyzed pyrolysis. 

Furthermore, the CCC shows characteristic diffraction peaks at 44.2, 51.5, and 75.8° 

which correspond to the (111), (200), and (220) planes of FCC structure of Co metal 

particle (PDF#97-007-6632), respectively. The XRD results confirm the presence of Co 

metal after acid-leaching at 80 °C. Additionally, Figure 3.3 (b) reveals the Raman spectra 

for CCC and CB. Both CCC and CB show the D band and G band at approximately 1350 

and 1580 cm−1, respectively. The D band originates from structural defects and disorder-

induced features on carbon, while the G band corresponds to the stretching vibration 

mode of graphite crystals [70, 126]. Relative ratio of D band to the G band (ID/IG) for 

CCC and CB is estimated to be 2.42 and 2.60, respectively, indicating that CCC is more 

graphitized than CB.  
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Figure 3.3 Comparison of (a) XRD patterns and (b) Raman spectra of CCC and CB. 
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The HR-TEM images of CCC (after acid leaching) and CB are shown in Figure 

3.4 (a) and (b), respectively. The apparent difference between them is the presence of Co 

particles encapsulated by carbon shells in the CCC support since the Co particles present 

on the surface are removed during acid leaching. Nanostructured fibers or tubes of 

graphitic carbon are also formed as a result of pyrolysis in the presence of Co metal [55, 

56] while CB showed amorphous morphology as shown in Figure 3.4 (b). ICP-AES 

analysis of CCC indicated a cobalt content of ~13 wt% in the CCC synthesized at 800 °C.  

The results of XPS analysis performed on CCC and CB supports are presented in 

Figure 3.5 (a) and (b), respectively. Figure 3.5 (a) shows the survey scans for CCC and 

CB. Only XPS spectrum of CCC, as shown in Figure 3.5 (b), exhibits a broad peak 

around 398.9 eV which corresponds to the nitrogen atom. The nitrogen peak shown in 

Figure 3.5 (b) for CCC can be deconvoluted into four major peaks corresponding to 

pyridinic, pyrrolic and/or pyridone, quaternary, and pyridinic-N+-O− (oxidized nitrogen). 

The peak at 398.4 eV accounts for the presence of pyridinic-N whereas the peak at 400.3 

eV corresponds to the pyrrolic-N and/or pyridine-N. The peaks at 401.1 and 403.4 eV are 

ascribed to the presence of quaternary-N and pyridinic-N+-O−, respectively. Relative 

percentages of pyridinic-N and pyrrolic-N and/or pyridine-N are 41 and 38.5 % of total 

nitrogen, respectively. Quaternary-N accounts for 6.6 % while pyridinic-N+-O− occupies 

13.9 %. It is well-known that pyridinic-N situated on the edge of the graphite planes 

promotes ORR by donating one p-electron to the aromatic π system [55, 68]. Moreover, 

previous studies report that the quaternary-N plays a role as stable ORR active sites [55, 

56, 61, 70]. Results for the deconvolution of the N 1s spectra are summarized in Table 

3.1. 
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Figure 3.4 HR-TEM images of (a) CCC and (b) CB. 
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Figure 3.5 (a) XPS survey scans of CCC and CB and (b) deconvoluted N1s XPS spectra 

of CCC. 
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Table 3.1 Characteristics of CCC obtained from XPS N1s peak 

 
BE 

[eV] 
FWHM 

Relative intensity 

[%] 

Pyridinic- N 398.4 1.736 41.0 

Pyrrolic N and or 

pyridone-N 
400.3 2.254 38.5 

Quaternary-N 401.1 2.000 6.6 

Pyridinic-N
+
-O

-
 403.4 4.331 13.9 
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3.3.2 ELECTROCHEMICAL CHARACTERIZATION OF CCC 

Figure 3.6 exhibits the electrochemical properties of CCC in a half-cell employing 

0.1 M HClO4 as the electrolyte. Figure 3.6 (a) represents the CV curves of CCC and CB 

at room temperature. CCC shows the quinone/hydroquinone redox coupling peaks at ca. 

0.6 V; as the potential increases, the oxidation current of CB also increases while that of 

CCC remains almost constant. The low oxidation current may be attributed to the 

increase in the degree of graphitization for CCC support as confirmed by XRD and 

Raman spectroscopy analyses. In Figure 3.6 (b), LSV curves of CCC and CB recorded at 

a rotating rate of 1600 rpm and a scan rate of 5 mV s-1 in O2–saturated electrolyte are 

shown. The potential was swept between 0.2 and 1.1 V anodically. All the LSV curves 

were properly corrected using the background capacitance current obtained from the 

respective CVs recorded in N2-saturated electrolyte. The on-set potential of CCC is 0.45 

V higher than the CB. The plateau of diffusion-limited current density is well-developed 

at approximately 0.5 V indicating that the active sites for ORR were uniformly 

distributed on the CCC support. The LSV results show that the CCC support itself is 

active for the ORR which is advantageous when compared to the conventionally used CB. 

  

3.3.3 SYNTHESIS OF CO-DOPED PT/CCC CATALYST  

The elemental compositions in the bulk of Pt/CCC and Co-doped Pt/CCC 

catalysts were determined using ICP-AES and XRF. Initially, the metal-catalyzed 

pyrolysis resulted in 13.2 wt% Co within the partially graphitized CCC support 

synthesized at 800 °C. As described earlier, the novelty of the process is to use the Co 

particles embedded in the CCC support for the formation of Co-doped Pt catalyst when  
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Figure 3.6 (a) CV diagrams of CCC and CB in N2-saturated 0.1 M HClO4 at room 

temperature and scan rate of 50 mV s-1. (b) LSV curves of CCC and CB in O2-saturated 

0.1 M HClO4 at room temperature and scan rate of 5 mV s-1 at 1600 rpm. 

 

 

 

(a) 

(b) 
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subjected to heat-treatment at 800 °C for 2 h under 5% H2. ICP-AES and XRF analyses 

indicated initial Pt:Co atomic ratios of 1:1 and 1.1:1, respectively for Pt/CCC and Co-

doped Pt/CCC catalysts.  

In Figure 3.7, XRD is carried out to confirm that the Co is doped into Pt as a 

function of temperature. The catalyst is heat-treated for 2 h at the desired temperature 

under 5% H2 atmosphere. The last 3 digits in the sample names represent the temperature, 

for example, the Co-doped Pt/CCC-700 is prepared at 700 °C. Deconvolution is carried 

out for the peaks obtained in 2θ angles in the range 37-44°. The characteristic diffraction 

peaks of fresh Pt/CCC at 39.8, 46.25,  67.7, and  81.25° correspond to the (111), (200), 

(220) and (311) planes of FCC-Pt, respectively, while those at 44.2, 51.5, and 75.8° are 

ascribed to (111), (200), and (220) planes of pure Co, respectively, as shown in Figure 

3.7 (a). The Co-doped Pt/CCC-700 and Co-doped Pt/CCC-750 represent split peaks, 

while the Co-doped Pt/CCC-800 and Co-doped Pt/CCC-900 show one single peak. 

Deconvoluted peaks for Co-doped Pt/CCC-700 and Co-doped Pt/CCC-750 are shown in 

Figure 3.7 (b) and (c), respectively. For Co-doped Pt/CCC-700, the peaks are located at 

40.2 and 41.62°, while those are positioned at 40.65 and 41.45° when heat-treatment was 

carried out at 750 °C. A single peak was observed at 41.25 and 41.27° for Co-doped 

Pt/CCC-800 and Co-doped Pt/CCC-900, respectively. As a function of temperature, the 

Co metal is slowly diffused into the Pt particles and homogeneous Co-doped Pt is formed 

at 800 and 900 °C. As a result of Co diffusion into Pt particles, the peaks of Pt in Pt/CCC 

have shifted to higher angles and resulted in reduced lattice parameter. It indicates that 

the Co particles immobilized in the CCC support diffused to the surface at high 

temperature, which resulted in the formation of Co-doped Pt catalyst particles. Synthesis  
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Figure 3.7 (a) XRD patterns of CCC, Pt/CCC, and Co-doped Pt/CCC prepared at 700, 

750, 800, and 900 °C. Deconvoluted peaks of (b) Co-doped Pt/CCC-700, (c) Co-doped 

Pt/CCC-750, (d) Co-doped Pt/CCC-800 and (e) Co-doped Pt/CCC-900. 

 

(a) 

(b) (c) 

(d) (e) 
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conditions, structural characteristics and composition for the Co-doped Pt/CCC are 

summarized in Table 3.2. On the other hand, the catalyst prepared by the conventional 

impregnation method exhibits one single peak for the sample heat treated at 900 °C, 

while multiple peaks are observed at 800 °C, as shown in Figure 3.8 (a). PtCo/C-Imp-800, 

as shown in Figure 3.8 (b), shows the 3 peaks at 40, 41, 41.48°. When the temperature is 

raised to 900 °C, only a single peak is observed at 41.18° (Figure 3.8 (c)). These results 

show that, in order to obtain a homogeneous structure of catalyst successfully, the 

conventional impregnation method must be carried out at 100 °C higher temperature than 

the novel method developed in the current study. Both Co-doped Pt/CCC-800 and 

PtCo/C-Imp-900 show chemically ordered face centered tetragonal (FCT) structure. The 

(001) and (100) superlattice planes at ca. 24 and 33°, respectively, confirm the FCC to 

FCT phase transformation [127]. Co-doped Pt/CCC-800 and PtCo/C-Imp-900 are used as 

cathode catalysts to study their electrochemical performance and the results are presented 

in section 3.3.4 (Figure 3.11).  

The HR-TEM images of Pt/CCC, Co-doped Pt/CCC-700, Co-doped Pt/CCC-750, 

Co-doped Pt/CCC-800, and Co-doped Pt/CCC-900 are shown in Figure 3.9 (a)-(e), 

respectively. The average particle sizes and the particle size distribution were measured 

using the values obtained from over 100 nanoparticles. As shown in Figure 3.9 (a), the Pt 

nanoparticles are deposited with uniform size and distribution on the CCC support. The 

mean particle size is approximately 2.5, 4.9, 5.0, 5.4 and 6.2 nm for the Pt/CCC, Co-

doped Pt/CCC-700, Co-doped Pt/CCC-750, Co-doped Pt/CCC-800, and Co-doped 

Pt/CCC-900, respectively. For the Pt/CCC catalyst, the Pt nanoparticles are uniformly 

deposited on the support and 2-3 nm-sized particles are dominant. Most of the particles in  
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Table 3.2 Summary of synthesis conditions, structural characteristics, and composition of 

Co-doped Pt/CCC 

Synthesis 

temperature 

[°C] 

Composition 

(at. Pt:Co =) 

Catalyst 

phase 

Lattice 

parameters 

a/c [Å/ Å) 

Particle 

size [nm] 

Relative 

FCT ratio 

[%] 

700 1.1:1 

disordered 

FCC 
3.882/3.882 

2.5 58.8 

ordered FCT 2.688/3.667 

750 1.1:1 

disordered 

FCC 
3.841/3.841 

4.4 64.3 

ordered FCT 2.688/3.709 

800 1.1:1 ordered FCT 2.688/3.759 3.9 100 

900 1.1:1 ordered FCT 2.688/3.754 4.6 100 
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Figure 3.8 (a) XRD patterns of Pt/C, PtCo/C-Imp-800, and PtCo/C-Imp-900 prepared at 

800, and 900 °C. Deconvoluted XRD patterns of (b) PtCo/C-Imp-800, and (c) PtCo/C-

Imp-900. 

 

 

 

(a) 

(b) (c) 
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Figure 3.9 HR-TEM images of (a) Pt/CCC , (b) Co-doped Pt/CCC-700, (c) Co-doped 

Pt/CCC-750, (d) Co-doped Pt/CCC-800 and (e)Co-doped Pt/CCC-900   

 

 

 

(a) (b) 

(c) (d) 

(e) 

(f) 



87 

Co-doped Pt/CCC catalyst are in the range of 4-7 nm while a few large particles are also 

formed due to the high temperature treatment, but they are well-distributed on the support.  

In Figure 3.9 (f), the particle size and standard deviation (SD) are plotted. The particle 

size and SD increase gradually for the samples prepared at temperatures in the range of 

600 to 800 °C, while significant increase is observed for the sample heat treated at 900 °C. 

Especially, 900 °C resulted in poor particle size distribution when compared to other 

catalysts. 

 

3.3.4 DURABILITY OF CO-DOPED PT/CCC IN PEMFC TESTING.  

Figure 3.10 represents the catalyst durability of Co-doped Pt/CCC-700, Co-doped 

Pt/CCC-750, and Co-doped Pt/CCC-800 samples subjected to 0.6-1.0 V potential 

sweeping at a scan rate of 50 mV s-1. The AST was performed for 30,000 cycles at 80 °C 

and 100% RH and the potential loss at 800 mA cm−2 in H2/air polarization was used for 

comparing the fuel cell performances of various catalysts. For the Co-doped Pt/CCC-700, 

the potential loss at 800 mA cm-2 was 69 mV, while that of Co-doped Pt/CCC-750 is 48 

mV. The Co-doped Pt/CCC-800 with a single diffraction peak as shown in XRD (Figure 

3.7 (d)) shows a performance decay of 40 mV. The current density at 0.6 ViR-free reduced 

by 39 and 31% for the Co-doped Pt/CCC-700 and Co-doped Pt/CCC-750, respectively. 

The Co-doped Pt/CCC-800 shows the most stable current density with 20% loss. The 

results obtained from AST reveal that the durability of Co-doped Pt/CCC increases as the 

synthesis temperature increases which may be attributed to the formation of chemically 

ordered FCT-structural catalyst at high annealing temperatures [127, 128].  
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Figure 3.10 H2/air polarization curves of (a) Co-doped Pt/CCC-700, (b) Co-doped 

Pt/CCC-750, and (c) Co-doped Pt/CCC-800 (initial and after 10,000 and 30,000 cycles).  

 

(a) 

(b) 

(c) 
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Figure 3.11 shows the durability of Co-doped Pt/CCC, PtCo/C-Imp, PtCo/C, and 

Pt/C before and after 30,000 potential cycles between 0.6 and 1.0 V. The Co-doped 

Pt/CCC initially shows 1358 mA cm-2 at 0.6 ViR-free, while that of PtCo/C-Imp exhibits 

992 mA cm-2. High Co concentration leads to a low fuel cell performance at high current 

density [129, 130]. However, despite the same ratio of Pt to Co, H2/air polarization 

performance of Co-doped Pt/CCC is higher than that of PtCo/C-Imp and is similar to that 

of commercial Pt/C. After 30,000 cycles the current density of Co-doped Pt/CCC at 0.6 

ViR-free decreases by 20%, while that of PtCo/C-Imp is 17.3%. The performance of Pt/C 

exhibits high performance (1467 mA cm-2) at 0.6 ViR-free but its performance after 30,000 

cycles significantly decreased by 76.2%. Commercial PtCo/C shows 51.8% loss from the 

initial current density of 930 mA cm-2. After the AST, the potential loss of Co-doped 

Pt/CCC at 800 mA cm−2 is 40 mViR-free while PtCo/C and Pt/C showed no activity at that 

current density after 30,000 cycles and the potentials are not measurable. The PtCo/C-

Imp showed 60 mV loss after 30,000 cycles. The drastic performance degradation for the 

commercial PtCo/C and Pt/C catalysts can be attributed to Ostwald ripening, Pt 

dissolution and re-deposition [12, 85, 86, 89, 131]. 

The initial mass activities and stability of mass activities of Co-doped Pt/CCC, 

PtCo/C-Imp, PtCo/C, and Pt/C catalysts at 0.9 ViR-free are shown in Figure 3.12 (a)-(d), 

respectively. The mass activity is defined as the ORR rate per gram of Pt measured at 0.9 

ViR-free [125]. The mass activity measurements were performed using the AST protocol 

suggested by U.S DRIVE Fuel Cell Tech Team. The Co-doped Pt/CCC shows much 

higher mass activity (0.44 A mgPt
−1) at 0.9 ViR-free than commercial PtCo/C (0.38 A 

mgPt
−1) and Pt/C (0.18 A mgPt

−1) catalysts due to the formation of Co-doped Pt core and  
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Figure 3.11 H2/air polarization curves of Co-doped Pt/CCC, PtCo/C-Imp, PtCo/C, and 

Pt/C before and after 30,000 potential cycles between 0.6 and 1.0 V. 
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Figure 3.12 Comparison of mass activities of (a) Co-doped Pt/CCC, (b) PtCo/C-Imp, (c) 

PtCo/C, and (d) Pt/C catalysts as a function of cycle number. The activities were 

measured under the following operating conditions: H2/O2 (2/9.5 stoic.), 80 °C, 100% RH, 

and 150 kPaabs. back pressure. 

 

 

 

 

(a) (b) 

(c) (d) 
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Pt-rich shell type catalyst particles with compressive Pt lattice during heat-treatment [103, 

132, 133].  When transition metals such as Co are used to modify electronic properties of 

Pt, two major effects namely, strain effect and ligand effect, are induced within the Pt 

host lattice [134-137]. The ligand effect is the change in the local electronic, and 

therefore, the catalytic properties of a central metal atom brought about by varying its 

near neighbor atoms [138]. The strain effect leads to a decrease in the Pt-Pt interatomic 

distance when compared to pure Pt while the ligand effect results in the modification of 

the surface electronic structure due to hetero-metallic bonding interactions [135].  

The mass activity degradation tendencies of Co-doped Pt/CCC, PtCo/C-Imp, 

PtCo/C, and Pt/C catalysts are plotted in Figure 3.13. It shows a linear decrease until 

20,000 cycles and stabilized after 20,000 cycles. After 30,000 cycles, the decrease in 

mass activity is ca. 42.8%, 78.8%, 69.6%, and 63% for Co-doped Pt/CCC, PtCo/C-Imp, 

PtCo/C, and Pt/C, respectively. Furthermore, the Co-doped Pt/CCC still retained a 

significant amount of mass activity (0.25 A mgPt
−1) even after 30,000 potential cycles 

which is much higher than that of initial mass activity of Pt/C (0.18 A mgPt
−1). This may 

be due to the fact that the Co dissolution rate in Co-doped Pt/CCC is much smaller than 

that in commercial PtCo/C and Co doping has increased the durability of Co-doped 

Pt/CCC catalyst under potential cycling conditions. After potential cycling between 0.6 

and 1.0 V, thick Pt skin (~1.8 nm) is formed on the catalyst due to Pt dissolution/re-

deposition (Figure 3.14), which is still active for the ORR as indicated by the high mass 

activity even after 30,000 cycles. The thick Pt skin reduces the electronic effect in Co- 

doped Pt which may be one of the reasons for the kinetic activity loss besides the well-

explained Pt particle agglomeration effect [139, 140]. On the other hand, Co from  
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Figure 3.13 Mass activity degradation of Co-doped Pt/CCC, PtCo/C-Imp, PtCo/C, and 

Pt/C catalysts as a function of cycle number. 
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Figure 3.14 X-ray energy dispersive spectrometry (XEDS) particle line-scan of Co-doped 

Pt/CCC catalyst (after 30,000 cycles). 
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PtCo/C–Imp and PtCo/C catalyst is rapidly dissolved after 10,000 cycles and the mass 

activity reached a value which is close to that of initial value for the Pt/C catalyst. Thus, 

after 10,000 cycles, the commercial PtCo/C catalyst performs like a pure Pt/C catalyst 

and further performance degradation is caused by the Pt dissolution and redeposition 

mechanism which occurs at higher rate than the one observed for Co-doped Pt/CCC. 

To further understand the loss in kinetic activity, the normalized ECSAs of Co-

doped Pt/CCC, PtCo/C–Imp, PtCo/C, and Pt/C as a function of cycle number are shown 

in Figure 3.15. The integration of hydrogen desorption area in the CV can be obtained 

with subtraction of the current density due to double layer charging. The ECSA was 

calculated using the following equation:  

ECSA =
𝑄H

0.21 × 𝐿𝑃𝑡
 [3.2] 

where, QH (mC cm-2) is the coulombic charge for hydrogen desorption, LPt (mg cm-2) 

represents the Pt loading and 0.21 mC cm−2 is the charge required to oxidize a ML of H2 

on the Pt site [78]. Initial ECSA values of 75, 41, 68, and 75 m2 gPt
−1 were obtained for 

Co-doped Pt/CCC, PtCo/C–Imp, PtCo/C, and Pt/C catalysts, respectively. Generally 

ECSAs of all the catalysts decrease rapidly by 10,000 cycles, while those are linearly 

reduced from 10,000 to 30,000 cycles. The Pt/C shows rapid degradation in the first 

1,000 cycles comparing to stable Co-doped Pt/CCC and PtCo/C–Imp. After 1,000 cycles, 

Co-doped Pt/CCC and PtCo/C–Imp show ca. 5% decrease of initial ECSAs, while the 

ECSA of Pt/C decreases ca. 17%. Finally, after 30,000 cycles, 64% of the initial ECSA is 

remained for the Co-doped Pt/CCC, while 53, 21, and 22% of initial ECSAs are retained 

for PtCo/C–Imp, PtCo/C, and Pt/C, respectively. This result indicates that the Co-doped 

Pt/CCC is remarkably more stable than PtCo/C–Imp, PtCo/C, and Pt/C catalysts.  
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Figure 3.15 Normalized ECSA of Co-doped Pt/CCC, PtCo/C –Imp, PtCo/C, and 

commercial Pt/C catalysts as a function of cycle number.  ECSAs were calculated from 

cyclic voltammograms obtained between 0.05 and 0.6 V (vs. RHE) at 80 °C. Fully 

humidified H2 (200 sccm) and N2 (75 sccm) were supplied to the anode and the cathode, 

respectively. 
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Figure 3.16 HR-TEM images and particle size distribution for (a) Co-doped Pt/CCC and 

(b) Pt/C catalysts before and after 30,000 cycles.  

 

 

 

(a) 

(b) 
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The HR-TEM images of Co-doped Pt/CCC and Pt/C after AST are shown in 

Figure 3.16 (a) and (b), respectively. After AST, the mean particle size of Co-doped 

Pt/CCC and Pt/C increased to 6.2 nm and 7.3 nm, corresponded to 15 and 204% increase, 

respectively. The Pt/C shows large particles (> 10 nm) and significant catalyst 

aggregation indicating poor particle distribution. Several mechanisms are suggested for 

the phenomenon such as Pt dissolution/redeposition, Pt migration and aggregation [141-

144].On the other hand, the particle size distribution based on the histograms represents 

that the particle size of Co-doped Pt/CCC still exhibits good catalyst dispersion and the 

narrow particle size distribution is well maintained. Since the ECSA and particle 

aggregation are related to the catalyst activity, the performance of Co-doped Pt/CCC is 

more stable than that of Pt/C catalyst. 

Composition of Co-doped Pt/CCC catalyst before and after AST was examined 

using XRF as shown in Table 3.3. The results indicated that for the PtCo/C–Imp, the ratio 

of Pt:Co increased from 0.9:1 to 2.2:1 after AST, while the initial Pt:Co atomic ratio 

(1.1:1) for the Co-doped Pt/CCC increased to 2.3:1. The retained Co amount was 38.5% 

for PtCo/C–Imp, while that for the Co-doped Pt/CCC was 49.3% due to the dissolution of 

Co from the catalyst during potential cycling. A variety of studies have also reported that 

the PtCo catalyst degradation under fuel cell operating conditions is due to rapid Co 

dissolution, which results in the formation of a “Pt skeleton” structure at the outmost 

surface layer within the first few hours of operation [145-148]. Further degradation forms 

a thick Pt shell/PtCo core structure due to Co surface segregation/leaching and Ostwald 

ripening of Pt [145, 146]. It has been found that the Co content in the bulk PtCo  

 



99 

Table 3.3 Pt:Co atomic compositions of Pt/CCC and Co-doped Pt/CCC measured by 

ICP-AES, XPS, and XRF  

 ICP XPS 

XRF 

Initial After AST 

Pt/CCC 1:1 - - - 

Co-doped 

Pt/CCC 
1.1:1 1.2:1 1.1:1 2.3:1 

PtCo/C-Imp - - 0.9:1 2.2:1 
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decreased and Co concentration of near-surface PtCo was lower than the bulk 

concentration after degradation [146, 149].  

Structural change of Co-doped Pt/CCC and PtCo/C–Imp catalysts was studied by 

XRD investigation before and after AST as shown in Figure 3.17 and Table 3.4. As 

shown in Figure 3.17 (a), after the AST, the Co-doped Pt/CCC obviously shows Bragg 

angle shift to lower angles near to the peak position of pure Pt. The peak around 40o is 

deconvoluted into 2 peaks in Figure 3.17 (b).  One peak is located at 39.87o and the other 

is positioned at 40.23o. The relative ratio is 12.1 and 87.9% for peaks at 39.87o and 40.23o, 

respectively. This result indicates that both thick Pt layer and Co-doped Pt co-exist in the 

cathode electrode due to the electrochemical leaching of Co and Pt dissolution/re-

deposition phenomenon during potential cycling between 0.6 and 1.0 V. The Co on the 

catalyst surface is removed electrochemically during potential cycling between 0.6 and 

1.0 V.  Recently, some researchers have investigated the effect of structural and 

compositional changes on the degradation of PtCo catalyst stability [149-151]. Hidai et 

al., using Co 2p soft X-ray photoemission spectroscopy (SXPES) spectra of the cycle-

tested PtCo catalyst, showed  absence of cobalt on the surface of catalyst particles and the 

presence of thick Pt skin layer (> 1.4 nm) on the catalyst surface [149]. XRD patterns of 

the PtCo/C–Imp showed that the 2θ angle of metal planes moved to lower angle in Figure 

3.17 (c). Deconvoluted peaks in Figure 3.17 (d) are observed at 40.03 and 39.90o. When 

compared to Co-doped Pt/CCC, the Bragg angle and relative ratio of PtCo characteristic 

peak are lower than those of Co-doped Pt/CCC. Interestingly, Pt characteristic peak is 

observed in both Co-doped Pt/CCC and PtCo/C–Imp. These results indicate that pure Pt  
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Figure 3.17 Comparison of XRD patterns of (a) Co-doped Pt/CCC and (c) PtCo/C-Imp 

before and after 30,000 cycles. Deconvoluted peaks of (b) Co-doped Pt/CCC and (d) 

PtCo/C-Imp after 30,000 cycles. 
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Table 3.4 Characteristics of XRD peak for Co-doped Pt/CCC and PtCo/C-Imp after 

30,000 cycles 

 
Catalyst 

phase 

Initial After 30,000 cycles 

2θ FWHM Ratio 

[%] 
2θ FWHM 

Ratio 

[%] 

Co-doped 

Pt/CCC 

Pt - - - 39.87 0.375 12.1 

PtCo 41.25 2.082 100 40.23 1.874 87.9 

PtCo/C-Imp 

Pt - - - 39.90 0.416 25.9 

PtCo 41.18 2.155 100 40.03 2.955 74.1 
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is deposited during dissolution/re-deposition when subjected to potential cycling, which 

corresponds to the results of compositional analysis shown in Table 3.3.  

Table 3.5 compares the mass activities in H2-O2 at 0.9 ViR-free, open circuit 

potentials (OCP) in H2/air, and maximum power density in H2/air fuel cell for Co-doped 

Pt/CCC, commercial PtCo/C, and commercial Pt/C catalysts. The OCP measurements 

indicated stable and very high values for the Co-doped Pt/CCC during the entire potential 

cycling period. Specifically, the OCP after 10,000 cycles is close to 1.0 V which may be 

attributed to the Co dissolution and formation of Pt-rich surface layer during potential 

cycling.  

It has been reported that water activation and Pt-OH formation on PtCo catalyst 

surface is shifted to higher potentials when compared to pure Pt [101, 152, 153]. The 

cyclic voltammograms recorded in rotating ring disk electrode (RRDE) for Co-doped 

Pt/CCC and Pt/CCC catalysts shown in Figure 3.18 indicate a shift in Pt-OH formation 

by ~40 mV for the Co-doped Pt/CCC when compared to Pt/CCC. Figure 3.18 also shows 

two regions namely, H adsorption/desorption below 0.4 V and oxygen-related reactions 

(Pt oxidation/reduction) between 0.6 and 1.0 V. During potential cycling from 0.6 to 1.0 

V, Pt oxides are formed according to the following reactions [11]: 

𝑃𝑡 + 𝐻2𝑂 → 𝑃𝑡𝑂 + 2𝐻+ + 2𝑒− [3.3] 

𝑃𝑡 + 2𝐻2𝑂 → 𝑃𝑡𝑂2 + 4𝐻+ + 4𝑒− [3.4] 

At high potentials, adsorbed oxygen (Pt-Oad) is formed due to water oxidation: 

𝑃𝑡 + 𝐻2𝑂 → 𝑃𝑡 − 𝑂𝑎𝑑 + 2𝐻+ + 2𝑒− [3.5] 

In the reverse scan from 1.0 to 0.6 V, platinum oxides are reduced to Pt according to the 

following reactions:  
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Table 3.5 Comparison of mass activities, OCPs in H2/air, and maximum power density for Co-doped Pt/CCC, PtCo/C-Imp, PtCo/C, 

and Pt/C catalysts 

Catalyst 

Measured activity at 0.9 ViR-free* OPC (V)** Maximum power density** 

Initial 

(A mgPt
−1) 

After 

30k cycles 

(A mgPt
−1) 

Loss (%) Initial 30,000 cycles 
Initial 

(mW cm−2) 

After 

30k cycles 

(mW cm−2) 

Loss (%) 

Co-doped Pt/CCC 

PtCo/C-Imp 

PtCo/C 

Commercial Pt/C 

0.44 

0.50 

0.38 

0.18 

0.25 

0.11 

0.116 

0.06 

43 

79 

69 

67 

0.984 

0.974 

0.922 

0.960 

0.995 

0.976 

0.907 

0.917 

857 

602 

482 

746 

721 

576 

251 

274 

16 

4 

48 

63 

* H2/O2 (2/9.5 stoic.), 80 °C, 100% RH, 150 kPaabs. back pressure. 

** H2/air (2/2 stoic.), 80 °C, 50% RH, 170 kPaabs. back pressure. 
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Figure 3.18 Cyclic voltammograms of Pt/CCC and Co-doped Pt/CCC. The measurements 

were carried out at room temperature by sweeping the potential from 0.05-1.0 V vs. RHE 

at 50 mV s−1 in nitrogen-purged 0.1 M HClO4. 

 

 

 

 

 

 

ca. 40 mV shift 
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𝑃𝑡𝑂 + 2𝐻+ + 2𝑒− → 𝑃𝑡 + 𝐻2𝑂   [3.6] 

𝑃𝑡𝑂2 + 4𝐻+ + 4𝑒− → 𝑃𝑡 + 2𝐻2𝑂 [3.7] 

𝑃𝑡 − 𝑂𝑎𝑑 + 2𝐻+ + 2𝑒−  → 𝑃𝑡 + 𝐻2𝑂 [3.8] 

The potential shift for Pt oxidation to higher values, as indicated by the higher 

OCP observed in H2/air polarization curve, increases the kinetic mass activity (from 0.15 

to > 0.4 A mgPt
−1) due to the suppression of Pt oxide formation which has much lower 

exchange current density for ORR (io =1.7×10−10 A cm−2) when compared to pure Pt (io = 

2.8×10−7 A cm−2) [154]. Besides the effect of higher kinetic activity, Co-doped Pt catalyst 

also illustrates improved stability when compared to pure Pt catalyst. Since Pt oxide 

dissolves during potential cycling conditions according to Eq. (8). Less PtO2 formation in 

the forward scan due to higher Pt oxidation potential in the case of Co-doped Pt/CCC 

catalyst alleviates Pt dissolution in the reverse scan and enhances the catalyst stability.  

𝑃𝑡𝑂2 + 4𝐻+ + 2𝑒− → 𝑃𝑡2+ + 2𝐻2𝑂 [3.9] 

However, in automotive applications at applied potentials of ~0.6-0.7 V, only 

pure Pt catalytic sites will be present on the catalyst surface for ORR at high current 

regions due to electrochemical reduction of Pt oxides formed when the cathode catalyst is 

subjected to high potentials during startup/shutdown cycles and/or fuel starvation. Thus, 

the H2/air performance at low potentials will not be greatly affected as much as in the 

case of mass activity which is measured at 0.9 ViR-free. 

 

3.4 CONCLUSION  

A novel procedure was developed for the synthesis of Co-doped Pt/CCC catalyst 

using Co-doped CCC as a support, which contains pyridinic-nitrogen active sites, through 
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platinum deposition and heat-treatment procedures. HR-TEM indicated uniform Pt 

deposition for the Pt/CCC and Co-doped Pt/CCC catalysts with average particle sizes of 

2.5 and 5.4 nm, respectively. The Co-doped Pt/CCC catalyst showed initial mass activity 

of 0.44 A mgPt
−1 and 0.25 A mgPt

−1 at 0.9 ViR-free after 30,000 potential cycles between 

0.6 and 1.0 V while the for the PtCo/C–Imp, PtCo/C, and Pt/C showed initial mass 

activity of 0.50, 0.38, and0.14 A mgPt
−1 and ca. 60 ~ 70% loss of activity after 30,000 

cycles. The enhanced catalytic activity at high potentials and stability of mass activity for 

the Co-doped Pt/CCC catalyst are attributed to the formation of compressive Pt lattice 

catalyst due to Co doping. The Co-doped Pt/CCC showed stable OCP close to 1.0 V 

under H2/air with an initial power density of 857 mW cm−2 and only 16% loss after 

30,000 cycles. Physical characterization such as XRD, XRF, and HR-TEM after 30,000 

cycles showed that the Co-doped Pt/CCC exhibited more stable properties than other 

catalysts. Electrochemical characterization indicated that Co doping increased the 

potential for PtO2 formation to a more positive value and suppressed the detrimental Pt 

dissolution/re-deposition process while enhancing the catalyst stability under potential 

cycling conditions. 
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CHAPTER 4 

EVALUATION OF CARBON NANOSTRUCTURE OBTAINED AT HIGH 

TEMPERATURE AND ITS DURABILITY UNDER PEMFC START-UP/SHUTDOWN 

CYCLING CONDITIONS  

 

4.1 INTRODUCTION 

PEMFCs are attracting huge attention as new power source for automotive and 

stationary applications, due to their intrinsic advantages such as low emission, high 

energy density, and high efficiency. However, there are still some problems to solve like 

the high activity and durability of catalysts in order to advance to the commercialization 

stage. In general, the carbon supported Pt or Pt-based alloy is used as catalysts. 

Degradation mechanisms for catalysts involve dissolution of Pt [12, 85-89], migration of 

Pt [155, 156] and carbon corrosion [95-99]. Especially, since the standard electrode 

potential of carbon is very low as shown in the equation below, the carbon support is 

electrochemically oxidized under high temperature and humidity employed in normal 

operating conditions.   

C + 2H2O ↔ CO2 + 4H+ + 4e−     E0=0.207 V (vs. RHE) at 25 °C [4.1] 

It is believed that there are two parallel pathways for carbon degradation [25, 35]. 

One is the direct carbon oxidation reaction in the presence of water and the other is the 

indirect carbon oxidation via surface oxides. In the presence of Pt, the Pt accelerates the 
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formation of CO-like species, which is further oxidized in the presence of water to 

produce CO2 [27].   

Reiser et.al proposed the reverse-current mechanism related to the local hydrogen 

starvation [31]. During transient conditions of the cell operation such as start-up and shut-

down, a high interfacial potential difference causes carbon corrosion. When hydrogen is 

introduced into the anode during startup, a condition is created where hydrogen occupies 

only part of the anode. At this moment, the carbon corrosion is occurred at the cathode. 

During the shutdown procedure, a similar phenomenon can be occurred, when the air 

from the outside or through the membrane, replaces the hydrogen causing carbon 

corrosion at the anode [31-35]. Moreover, according to a reverse-current decay 

mechanism, after the shut down or during start-up, the cathode in PEMFC can experience 

a higher potential than the OCV. Such a high potential rapidly oxidizes the carbon 

support [31, 35]. When the carbon support is oxidized, the Pt nanoparticles aggregate to 

larger particles and the porosity of catalyst layer is changed [157, 158]. These results 

bring about the reduction of ECSA, and decreased performance. 

Roen et al. detected CO2 in the cathode exhaust gas during CV with varying Pt 

mass fraction, catalyst type, and temperature [27]. An Arrenhius plot indicated higher 

apparent activation energy for CO2 production at the positive potential limit of the CV on 

0% Pt (carbon-only) electrode than on 39% Pt/C electrode. It was concluded that 

platinum accelerated the corrosion rate of carbon support. DEMS shows that pure carbon 

is oxidized only at potentials higher than 0.9 V (RHE) and that Pt catalyzes the oxidation 

of a COsurf surface layer to CO2 at potentials between 0.6 and 0.8 mV (RHE) in the 

sulfuric acid solution. The result indicates that the carbon corrosion by Pt occurs in the 
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neighborhood of Pt-sites, thus damaging the Pt to carbon contact [36]. The MIMS shows 

the formation of carbon oxidation products like CO2, CO and HCOOH. In-situ EQCM 

study shows mass changes of a variety of carbon supports during the CV in deaerated 

0.5M H2SO4 solution [42]. High surface area CBs ECP 600 and ECP 300 have a carbon 

loss of 0.0245 ngcm−2 s−1 and 0.0144 ngcm−2 s−1 and as compared to 0.0115 ngcm−2 s−1 

for low surface area support XC-72. Graphitized XC-72 and MWNTs, with higher 

graphitization have higher carbon corrosion onset potential at 1.65V and 1.62V, 

respectively and appear to be more intrinsically resistant to corrosion.  

Hara et al. analyzed commercial Pt/CB, and Pt/GCB, heat treated Pt/GCB, and 

nanocapsule Pt/GCB) under start/stop operating condition [159]. They suggested that the 

Pt catalyst degradation was influenced not only by the type of carbon support but also by 

the state of Pt dispersion and the average Pt particle size. It is proposed that the electrodes 

with better performance contained a relatively large proportion of graphitic carbon, and 

the nature of these catalysts gave rise to better electronic conductivity and, thus, better 

resistance to oxidation and corrosion, as well as lower chemical activity, compared to CB. 

In the present study, we are suggesting that the carbon nanostructure supports 

obtained by heat-treating amorphous CB improves the corrosion resistance. We have 

synthesized a number of carbon nanostructures at various temperatures, deposited Pt 

nanoparticles using modified polyol method, and evaluated the durability of the 

synthesized catalysts using an electrochemical potential cycle protocol between 1.0 and 

1.5 V. The activity has been evaluated by the kinetic current and half-wave potential in 

RDE studies, while the durability has been estimated by ECSA, potential loss, and 

current density loss in 25 cm2 MEAs.    
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4.2 EXPERIMENTAL  

4.2.1 PREPARATION OF SUPPORT AND CATALYST 

For the treatment of carbon supports, the as-received Ketjen Black EC-300J (KB) 

was heat-treated at different temperatures in order to obtain carbon supports having 

different degree of graphitization. Before the heat-treatment, nitrogen gas was flown to 

purge the quartz tube furnace (OTF-1200X-SNT-110, MTI corp.) for 30 min. The 

nitrogen gas was fed to the tubular furnace during the heat-treatment. The temperatures of 

900, 1300, and 1700 °C are used in this study. Supports thus prepared are denoted as KB-

9, KB-13, and KB-17, while the un-heat-treated sample is denoted as KB. The supports 

were non-covalently activated by the PCA before the Pt deposition due to their high 

hydrophobicity deposition [121, 122].   

Pt deposition was accomplished by a polyol reduction method for the preparation 

of 30% Pt/C catalyst. First, each support was dispersed in 25 ml of ethyleneglycol in a 

round bottom flask using an ultrasonication bath (Branson ultrasonic cleaner). A desired 

amount of PtCl4 was added and the pH was adjusted to 11 by the addition of 0.5 M NaOH 

solution. The resulting solution was refluxed at 160 °C for 3 h and allowed to cool to 

room temperature. Then, the solution was filtered, washed with DI water, and dried at 

160 °C for 30 min under air atmosphere.    

 

4.2.2 PHYSICAL CHARACTERIZATION 

The nitrogen adsorption/desorption isotherms were obtained at −196 °C using a 

Quantachrome NOVA 2000 BET analyzer. Specific surface area was determined by a 

multipoint BET analysis. PSD curves were calculated by the BJH method using the 
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adsorption/desorption branch. XRD analysis was performed using a Rigaku D/Max 2500 

V/ PC with a Cu Kα radiation. A tube voltage of 30 kV and a current of 15 mA were used 

during the scanning. To estimate the Pt particle size of the synthesized catalysts, we 

employed the following Scherrer equation [66]:   

10 cos

k
D

B




  [4.2] 

where D is the crystallite size in nm, k is a coefficient (0.9), λ is the wavelength of X-ray 

(1.5404 Å), B is the line broadening at half the maximum intensity in radians, and θ is the 

angle at the position of the maximum peak known as Bragg angle. Raman spectroscopy 

was used to evaluate the degree of graphitization of the carbon supports using HORIBA 

"LABRAM 1B” (He-Ne 20mW laser, wave length 632.817 nm). HR-TEM was used to 

study the morphology and particles size distribution of the catalysts using Hitachi 9500 

HR-TEM operated at 300 kV accelerating voltage. XRF (Fischer XDAL) was used to 

determine PtCo composition in the catalyst and Pt loading in the catalyst coated 

membrane.  

 

4.2.3 ELECTROCHEMICAL CHARACTERIZATION 

Electrochemical characterization was performed in a RDE setup using a Pine bi-

potentiostat (Model AFCBP1). A glassy carbon disk electrode (0.247 cm2) was acted as a 

working electrode. The Ag/AgCl electrode and platinum mesh were used as a reference 

and counter electrodes. RDE tests were performed in 0.1 M HClO4 solution as an 

electrolyte at room temperature. All the potentials are reported against RHE. In a typical 

experiment, Pt catalyst was mixed with IPA and DI water ultrasonically. The catalyst ink 

was deposited onto the glassy carbon electrode, leading to a catalyst loading of 20 μgPt 



 

113 

cm-2. For all RDE tests, 5 μl of 0.25 wt% ionomer (Alfa Aesar) was additionally 

deposited on the catalyst layer to ensure good adhesion of the catalyst onto the glassy 

carbon electrode. LSV was measured at a scan rate of 5 mV s-1 by sweeping the potential 

between 0.2 V and 1.05 V under oxygen purging. The LSV curves presented in this work 

were properly corrected using the background capacitance current that was measured in 

the nitrogen atmosphere at a scan rate of 5 mV s-1.   

 

4.2.4 MEA FABRICATION AND PEMFC MEASUREMENT 

The in-house synthesized Pt catalyst and commercial 46% Pt/C were employed as 

the cathode and anode catalysts, respectively. Catalyst inks were prepared by 

ultrasonically mixing the appropriate amount of catalysts, IPA, Nafion® ionomer (5% 

solution, Alfa Aesar), and DI water. The ionomer content was 30% and 20% in the anode 

and cathode inks, respectively. The catalyst inks were sprayed directly on Nafion® 212 

membrane covering an active area of 25 cm2. The Pt loading on the anode and cathode 

electrodes is kept at 0.1 and 0.15 mg cm−2, respectively. The catalyst coated membrane 

was then hot pressed at 140 °C using a pressure of 20 kg cm−2 for 6 min. in between the 

gas diffusion layers (Sigracet GDL 10BC, SGL) and Teflon gaskets to prepare the MEAs 

for the performance evaluation studies in fuel cell.   

The initial mass activity at 0.9 ViR-free was evaluated under H2/O2 (2/9.5 stoic.) at 

80 °C, 100% RH, and 150 kPaabs. back pressure. For the polarization studies, H2 and air 

were supplied to the anode and cathode, respectively at a constant stoichiometry of 2 and 

2 (170 kPaabs backpressure) at 80 °C and 40% RH. The ECSA was estimated using CV 

experiments carried out between 0.05 and 0.6 V (vs. RHE) at 80 °C under fully 
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humidified H2 and N2 supply to the anode and the cathode, respectively. For the AST, H2 

and N2 were supplied to the anode and cathode at 100% RH, respectively and the 

potential was swept between 1.0 and 1.5 V (vs. RHE) at 500 mV s−1 in a triangle profile 

for up to 3,000 cycles [125]. The fuel cell test was conducted using a fully automated fuel 

cell test station (Scribner Associates Inc., model 850e). The mass activity, ECSA, and 

H2/air polarization measurements were performed every 1,000 cycles.  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 CHARACTERIZATION OF SUPPORTS 

Figure 4.1 (a) and (b) show the nitrogen adsorption-desorption isotherms and BJH 

PSD curves of KB, KB-9, KB-13, and KB-17. The specific surface area of KB is ca. 826 

m2 g−1. The specific surface areas of KB-9, KB-13, and KB-17 are 760, 515, and 276 m2 

g-1, respectively. The isotherms of all supports show hysteresis loop with sharp 

adsorption and desorption branches over a relative pressure range of 0.4–0.8, as shown in 

Figure 4.1 (a). Furthermore, nitrogen uptake for CCC and GCCC is observed at a 

relatively high pressure of 0. 94 – 1.0, which is associated with the presence of 

mesopores. The isotherms of KB-9, KB-13, and KB-17 exhibit characteristic Type IV by 

IUPAC classification indicating that KB-9, KB-13, and KB-17 are the mesoporous 

support [67]. The total pore volume of KB, KB-9, KB-13, and KB-17 are 1083, 1097, 

1042, and 921 ml mg-1, respectively. In Figure 4.1 (b), as a function of temperature, the 

carbon supports heat-treated at higher temperature show larger volume than KB in the 

pore diameter range of 20 and 100 nm. In contrast, in the small pore diameter (< 3 nm), 

the carbons heat-treated at higher temperature represent the decrease of pore volume.  
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Figure 4.1 (a) N2 adsorption/desorption isotherms and (b) BJH pore-size distribution 

curves obtained from the adsorption branch of KB heat-treated at different temperatures. 

The inset in (b) compares the PSD in the range 0-10 nm. 

 

 

(a) 

(b) 
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However, the peak pore volume at 3-4 nm is the same for all the supports as shown in 

Figure 4.1 (b) inset. 

XRD patterns of the KB, KB-9, KB-13, and KB-17 are shown in Figure 4.2. XRD 

shows peaks for pure carbon material. The characteristic diffraction peaks of KB-17 at ca. 

26, and 43 and 54° represent (002), (100), and (004) planes of hexagonal structural 

graphite, respectively. Based on (002) plane, as a function of temperature, the 

characteristic diffraction peaks are sharper with increased intensity and shift to more 

positive angles. Therefore, the interlayer spacing of KB-17 calculated from (002) plane is 

0.3506 nm, while that of KB is 0.3607 nm. Since interlayer spacing of KB-17 shows 

closer to the graphite (0.3350 nm) than that of KB (JCPDS No. 41-1487), XRD results 

prove that the carbon surface is more crystallized and graphitized a at elevated 

temperatures. Figure 4.3 (a)-(d) exhibit the Raman spectra for KB, KB-9, KB-13, and 

KB-17. All the supports show the D band and G band at ca. 1350 and 1600 cm−1, 

respectively. The D band originates from structural defects and disorder-induced features 

on carbon, while the G band corresponds to the stretching vibration mode of graphite 

crystals [70, 126]. Two broad peaks at ca. 1200 and 1510 cm-1 are associated with carbon 

atoms outside of a perfectly planar graphene network (such as aliphatic or amorphous 

structures) and integrated five-member rings or heteroatoms in graphene-sheet structures, 

respectively [160-162]. The integrated intensity ratio of D band to the G band (ID/IG) is 

widely used for indicating the degree of graphitization or the defect quantity in graphitic 

materials. ID/IG for KB, KB-9, KB-13, and KB-17 are estimated to be 2.75, 2.80, 2.51, 

and 2.05, respectively, which is indicative of increase in the order of graphitization. In 

general, the results of Raman spectra agree well with the XRD analysis. The trend in  
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Figure 4.2 Comparison of XRD patterns of KB heat-treated at different temperature. 
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Figure 4.3 Raman spectra of (a) KB, (b) KB-9, (c) KB-13, and (d) KB-17. 
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specific surface area, interlayer spacing, and ID/IG as a function of temperature are shown 

in Figure 4.4 (a) and (b). In Figure 4.4 (a) and (b), as the temperature increases, the 

specific surface area, interlayer spacing, and ID/IG decrease. Both KB and KB-9 exhibit 

similar specific surface area, interlayer spacing, and ID/IG ratio. It suggests that the 

graphitic carbon starts to be formed between 900 and 1300 °C. The linear relation 

between the interlayer spacing and ID/IG is shown in Figure 4.4 (c). This relation exhibits 

that KB is more graphitized as the temperature is increased.  

The HR-TEM images of KB and KB-17 are shown in Figure 4.5. KB is 

comprised of discontinuous and disordered graphite sheets, typical property of 

amorphous carbon [163] as shonw in Figure 4.5 (a) and (b). HR-TEM images shown in 

Figure 4.5 (c) and (d) exhibit hollow structures for KB-17 with graphitic carbon outer 

layers. Thus, KB-17 possesses ordered and clear graphitic structure, while KB is 

apparently amorphous in nature.    

 

4.3.2 CHARACTERIZATION OF PT ON KB AND KB-17 

Figure 4.6 (a) shows the nitrogen adsorption-desorption isotherms of Pt/KB and 

Pt/KB-17. After Pt deposition, the isotherms of Pt/KB and Pt/KB-17 maintain the 

hysteresis loop with sharp adsorption and desorption branches in a relative pressure range 

of 0.4 – 0.8. Nitrogen uptake at a high relative pressure also indicates that both catalysts 

have mesoporous structure. Due to the blockade of pores by the loaded Pt nanoparticles 

[164], the specific surface areas of Pt/KB and Pt/KB-17 are reduced to 271 and 188 m2 

g−1, respectively. Figure 4.6 (b) shows BJH PSD curves of Pt/KB and Pt/KB-17. In the 

range of large pore size ( > 10 nm), there is no apparent difference between these  
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Figure 4.4 (a) Change of specific surface area and ID/IG as a function of temperature.  (b) 

Change of interlayer spacing as a function of temperature. (c) Relationship between ID/IG 

and interlayer spacing. 
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Figure 4.5 HR-TEM images of (a, b) KB and (c, d) KB-17. 
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Figure 4.6 (a) N2 adsorption/desorption isotherms and (b) BJH pore-size distribution 

curves obtained from the adsorption branch of Pt/KB and Pt/KB-17. The inset in (b) 

compares the PSD in the range 0-10 nm. 
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catalysts. In contrast, in the range of 2-3 nm, the pore volume of Pt/KB is decreased much 

comparing to fresh KB, while that of Pt/KB-17 exhibits no change before and after the Pt 

deposition, as shown in Figure 4.6 (b) inset. It suggests that the majority of Pt 

nanoparticles are deposited in the micro-pores of KB, whereas most of them are anchored 

on the meso and macro pores in the KB-17.  

XRD patterns of Pt deposited on KB and KB-17 supports are shown in Figure 4.7.  

The characteristic diffraction peaks of Pt/KB and Pt/KB-17 at 39.8, 46.25, and 67.7° 

correspond to the (111), (200), and (220) planes of pure Pt, respectively (JCPDS No. 04-

0783). Both Pt/KB and Pt/KB-17 exhibit the characteristics of the Pt with FCC structure. 

The mean particle size is determined from the (220) plane using the Scherer equation. 

According to the calculation, they have similar particle sizes, which results in no particle 

size effect on the catalytic activity and durability. The mean particle sizes are estimated to 

be 2.5, and 2.3 nm for Pt/KB and Pt/KB-17, respectively.   

Figure 4.8 (a) and (b) show the HR-TEM images of Pt/KB and Pt/KB-17. Over 

100 nanoparticles are used to measure the mean particle sizes and particle size 

distribution. The Pt nanoparticles are uniformly deposited and well-distributed on the 

supports. The mean particle sizes of Pt/KB and Pt/KB-17 are 2.6, and 2.5 nm, 

respectively which agrees well with the results obtained from XRD. Pt nanoparticles are 

dominantly distributed on both supports in the range of 2-3 nm. The SD is constant with 

0.6 nm for both catalysts, which corresponds to the uniform Pt particle size distribution 

and larger numbers of sites for the deposition of Pt particles. XRD and HR-TEM results 

exhibit Pt nanoparticles with diameter of 2-3 nm and the narrow distribution, indicating  
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Figure 4.7 Comparison of XRD patterns of Pt/KB and Pt/KB-17 catalysts. 
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Figure 4.8 HR-TEM images of (a) Pt/KB and (b) Pt/KB-17 catalysts. 
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that effect of Pt catalyst particle size is well-controlled since carbon oxidation is 

accelerated in the presence of Pt [40]. 

 

4.3.3 ELECTROCHEMICAL PERFORMANCE AND DURABILITY OF PT/KB AND PT/KB-17 

The LSVs of Pt/KB and Pt/KB-17 obtained at room temperature in oxygen-

saturated 0.1 M HClO4 electrolyte are shown in Figure 4.9 (a). The LSVs are recorded at 

a rotating rate of 1600 rpm and a scan rate of 5 mV s-1 by sweeping the potential 

anodically (0.2 V and 1.05 V). The ORR is governed under kinetic dominated process at 

high potential region. The mixed kinetic-diffusion control is occurred at mid-potential 

regions, followed by a plateau of diffusion-limited current. The Pt/KB-17 exhibits better 

performance for the ORR than Pt/KB. The diffusion-limited current density of Pt/KB-17 

is 5.02 mA cm-2 while that of Pt/KB is 4.82 mA cm-2. Furthermore, the half-wave 

potential of Pt/KB-17 is 0.85 V, while that of Pt/KB shows 0.841 V. For the on-set 

potential, the Pt/KB-17 exhibits more 20 mV more anodic potential than Pt/KB.  The 

specific activities (As), which is calculated from ECSA and platinum loading, is shown in 

Figure 4.9 (a) inset in the region of 0.8 and 0.5 V. The result indicates higher catalytic 

activity for Pt/KB-17 when compared to Pt/KB towards ORR in the whole region of 0.8 

and 0.5 V.  

To compare the activity of these catalysts in the kinetic region, Tafel plots for the 

Pt/KB and Pt/KB-17 in Figure 4.9 (b) are obtained from LSV diagram using the 

following equation [165]: 
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Figure 4.9 (a) LSV curves of Pt/KB and Pt/KB-17 catalysts in O2-saturated 0.1 M HClO4 

at room temperature and scan rate of 5 mV s-1 with 1600 rpm. The inset in (a) shows 

specific activities calculated from ECSA and platinum loading. (b) Tafel plots from LSV 

data of Pt/KB and Pt/KB-17catalysts at 1600 rpm.  
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1

𝑖
=

1

𝑖k
+

1

𝑖dl
 [4.3] 

𝑖𝑘 =
𝑖𝑑𝑙 ∙ 𝑖

𝑖𝑑𝑙 − 𝑖
 [4.4] 

where i is the measured current in LSV experiment,  𝑖k is the mass transport free kinetic 

current, and  𝑖dl is the diffusion-limited current. The Pt/KB-17 catalyst shows higher 

kinetic current than Pt/KB. For example, 𝑖k of the Pt/KB-17 is 1.28 mA, while that of 

Pt/KB is 0.91 mA. Consequently, for the kinetic, mixed, and diffusion-limited regions, 

the Pt/KB-17 represents superior performance for ORR than Pt/KB.   

Figure 4.10 (a) and (b) show the polarization and power density curves of Pt/KB 

and Pt/KB-17 before and after potential cycling between 1.0 and 1.5 V, respectively.  In 

Figure 4.10 (a), the polarization curves of Pt/KB are compared to those of Pt/KB-17. As 

shown in LSV results, the fuel cell tests also show higher performance for Pt/KB-17 

higher than that for Pt/KB. At 0.6 V, the Pt/KB catalyst shows an initial current density of 

610 mA cm-2, while Pt/KB-17 exhibits 716 mA cm-2. After 1000 cycles, for the Pt/KB, 

the current density at 0.6 V is 228 mA cm-2, while Pt/KB-17 after 3000 cycles shows 788 

mA cm-2. Moreover, a potential gain of 8 mV at 1600 mA cm-2 is observed for the Pt/KB-

17.  Figure 4.10 (b) exhibits the power density loss of Pt/KB and Pt/KB-17 catalysts after 

potential cycling experiment. The maximum power density of Pt/KB is 498 mW cm-2, 

while that of Pt/KB-17 is 585 mW cm-2, indicating 17% increase when compared with 

Pt/KB. After 1000 cycles, for the Pt/KB, 64% loss in the maximum power density is 

observed, while the Pt/KB-17 shows 3% gain after 3000 cycles. Since, the Pt 

nanoparticles on both supports practically show the same properties in the HR-TEM and 

XRD, the enhancement in initial performances are likely to have come from the  
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Figure 4.10 (a) H2/air polarization and (b) the power density curves of Pt/KB and Pt/KB-

17 catalysts before and after 3,000 potential cycles between 1.0 and 1.5 V. 
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difference in the nature of the supports used. First, in the case of Pt/KB, the Pt 

nanoparticles are filled in the micro-pores as discussed in Figure 4.6. It is well-known 

that the initial performance of amorphous carbon supported Pt in the RDE and MEA test 

is lower than that of graphitized carbon supported Pt, since micro pores can inhibit the 

reactant flow from contacting the Pt catalyst surface efficiently [163, 166, 167]. 

Additionally, the electrical conductivity is increased since the oxygenated functional 

groups are removed at the high temperature [98, 168, 169]. Liu et al. reported that the 

Pt/GCB exhibits enhanced electro-catalytic activity in terms of both efficiency and 

kinetics for the ORR [163]. Since the heat treatment process removes most of the surface 

defects on the CB, and the oxygen molecules can be adsorbed on the defect-free surface, 

improvements in ORR catalytic activity and kinetics are observed. Moreover, the 

graphitized carbon showed even lower mass transport resistance than as-received carbon 

due to the insufficient adsorption of oxygen molecules on the surface of the as-received 

carbon with a number of defect sites. It agrees well with the MEA tests in this study, 

since Pt/KB-17 outperforms Pt/KB in the mass transport dominant high current density 

region as shown in Figure 4.10. 

To further evaluate the durability, the ECSA change is shown in Figure 4.11 as a 

function of number of potential cycles for Pt/KB and Pt/KB-17 catalysts. After 1000 

cycles, the initial ECSA of Pt/KB remains only 39% of the initial value (32 m2 gPt
-1), 

indicating severe carbon corrosion.  However, the ECSA of Pt/KB-17 retains 84% after 

1000 cycles, which indicates that the Pt/KB-17 is even more stable than the Pt/KB under 

high potentials. For the Pt/KB-17, 54% of initial ECSA (60 m2 gPt
-1) is retained after 3000 

cycles. As seen in this result, the trend of mass activity is in good agreement with that of  
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Figure 4.11 Normalized ECSA of Pt/KB and Pt/KB-17 as a function of cycle number.  

ECSAs were calculated from cyclic voltammograms obtained between 0.05 and 0.6 V (vs. 

RHE) at 80 °C. Fully humidified H2 (200 sccm) and N2 (75 sccm) were supplied to the 

anode and the cathode, respectively. 
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ECSA change. These results clearly indicate that the Pt/KB-17 catalyst is remarkably 

stable when compared to the Pt/KB. The high stability is attributed to the graphitic nature 

of KB-17 support  

In H2/air polarization studies, the Pt/KB exhibits a large voltage drop after 1000 

cycles due to carbon corrosion and subsequent processes such as Ostwald ripening, 

detached Pt particles, Pt particle migration and agglomeration under star-up/shutdown 

condition [170]. The electrochemical corrosion of the carbon surface led to changes in the 

surface chemistry of the carbon and an increase in the hydrophilicity of the catalyst layer 

and the GDL, which affects the transport behavior of the reactant gas and product water 

[165]. The carbon corrosion mechanism in PEMFCs is suggested as follows [171]   

C → C(s)
+ + e− [4.5] 

C(s)
+ + H2O → COsurf + 2H+ + e− [4.6] 

COsurf + H2O → CO2 + 2H+ + 2e− [4.7] 

COsurf + Pt → Pt-COads  [4.8] 

Pt-COads + H2O → CO2 + 2H+ + 2e− [4.9] 

According to the suggested mechanism, the electrochemical formation of C(s)
+  

surface sites occurred initially followed by a rapid hydrolysis into carbon surface oxides 

(COsurf). Then, the Pt nanoparticles accelerate the CO2 evolution reaction through eq 4.4 

and eq 4.5 instead of eq 4.3. The amorphous carbon or defective sites are oxidized at low 

potential (< 1.0 V). The nanostructural change of carbon can mitigate the carbon 

oxidation reaction as described above. As shown in Figure 4.4, as the heat treatment 

temperature is increased, the specific surface area of carbon is decreased and degree of 

graphitization is increased, which indicates that the Pt/KB-17 catalyst is more 
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hydrophobic and corrosion-resistant than Pt/KB. Furthermore, as the degree of 

graphitization increased, π-bonds in graphitized carbon support are also increased. 

Subsequently, the interaction between π –bonds and the Pt particles is relatively strong 

for the graphitized carbon, which results in the enhanced durability of the Pt catalysts 

[168, 169].  

 

4.4 CONCLUSION 

In this study, change in carbon nanostructure by means of high temperature 

treatment enhanced the support properties required for PEMFCs.  The support stability in 

the presence of Pt was evaluated using a potential cycling protocol (1.0-1.5 V). In order 

to enhance the durability, it is necessary to understand the important factors such as 

ECSA, ORR, and morphology of the support. The study shows that the carbon 

nanostructure and degree of graphitization play a key role in enhancing the support 

stability during startup/shutdown condition. As expected, higher temperature treatment 

leads to increasing in both degree of graphitization and corrosion resistance. Since the 

both KB and KB-17 carbon supports were treated with an effective surface activation 

process, Pt nanoparticle size is similar in both the disordered amorphous (KB) and 

ordered graphitized carbon (KB-17), which indicates no particle size effect on the support 

stability during high potential cycling. In this study, we have found that the graphitization 

at 1700 °C exhibits remarkable enhancement in support stability at high potentials when 

compared with the pristine amorphous carbon (KB). 
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CHAPTER 5 

ENHANCED DURABILITY OF CO-DOPED PT/GCCC CATALYST UNDER 

POTENTIAL CYCLING FOR PEMFCS 

 

5.1 INTRODUCTION 

PEMFCs enable the direct production of electricity from chemicals with higher 

efficiency, noiseless operation, and without pollutant emissions as compared to 

conventional internal combustions engines. However, there are still some problems to 

solve in order to advance to commercialization like the cost and durability of catalysts. In 

general, the catalysts are comprised of Pt nanoparticles and high surface area carbon 

which has the ideal properties as a support such as high electric conductivity, high surface 

area, and porosity. Degradation mechanisms for catalysts involve dissolution of Pt [12, 

85-89], migration of Pt [155, 156], and carbon corrosion [95-99]. In terms of carbon 

corrosion, the carbon support is electrochemically oxidized under PEMFC environment 

such as high temperature and humidity, since the standard electrode potential of carbon is 

very low as below.   

C + 2H2O ↔ CO2 + 4H+ + 4e−     E0=0.207 V (vs. RHE) at 25 °C [5.1] 

Furthermore, according to a reverse-current decay mechanism, after the shut 

down or during start-up, the cathode can be degraded by a higher potential than the OCV. 

Such a high potential rapidly oxidizes the carbon support [31, 35]. As the carbon support 

is oxidized, the Pt nanoparticles aggregate to form larger particles and the catalyst layer
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porosity is changed [157, 158]. These results bring about the reduction of ECSA and 

decreased performance. 

To enhance the durability of carbon supports, a variety of research has been 

investigated to identify alternate carbon-based supports, for example, CNCs [172, 173], 

CNTs [41, 174, 175] and graphene [176-178]. Lim et al. [172] investigated CNC obtained 

from acetylene black heat treated at 2800 °C. The corrosion-resistance of a CNC in a 

PEMFC was investigated by on-line mass spectrometry to measure CO2 generation at a 

constant potential of 1.4 V for 30 min. The CNC showed significant resistance to 

electrochemical corrosion, exhibiting low performance degradation of only about 2.3% 

after the corrosion test. Wang et al. [173] prepared N-doped graphitic hollow CNCs by 

spray pyrolysis and heat treatment with sulfur. When tested under fuel cell operating 

conditions, Pt/CNC exhibited almost no degradation for both HOR and ORR, compared 

with the apparent degradation observed for a commercial catalyst. Such a remarkable 

catalytic activity and durability were attributed to strong oxidation resistance and strong 

interaction with Pt particles due to their graphitization and concurrent N doping.  

Zhang et al. [174] fabricated nanocomposites of poly(diallyldimethylammonium 

chloride) (PDDA) and graphitic carbon nanotubes (GCNTs) using electrostatic self-

assembly technology. The potential step method (1.4–0.85 V) for 44 h was applied to test 

the durability in N2-saturated 0.5 M H2SO4 solution. After the degradation test, Pt/PDDA-

GCNTs  exhibited even  higher  durability  and activity than  Pt/CNTs and Pt/XC-72  in  

terms  of  both  ECSA and  ORR. Lv et al. [179] heat-treated the carbon nanotubes under 

NH3 atmosphere (H-CNTs-1000) to enhance the durability of the support. The 

electrochemical oxidation at 1.2 V for 48 h showed that the H-CNTs-1000 have a higher 
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resistance to electrochemical oxidation than the CNTs. They conducted potential cycling 

test between 0.6 and 1.2 V for 1000 cycles. After 1000 cycles, the ECSA of Pt/H-CNTs-

1000 remained 40.5%, while that of the Pt/CNTs remained only 22.9%.   

Tiwari et al. [180] reported that graphene oxide (GO) non-covalently interacted 

with genomic DNA significantly improved the durability of the support. The ECSA loss 

after 10,000 cycles between 0.6 and 1.2 V was only 6% while ~48% and ~60% of ECSA 

loss was observed for the Pt/GO and Pt/C catalysts, respectively. Jung et al. [176] 

prepared the GO from expandable graphite with Hummers method. The catalysts were 

examined between 0.4 and 1.2 V for 60 min. The ECSA of Pt/GO showed 17.81% loss 

while that of Pt/C showed 43.15% loss. For MEAs tests, the commercial Pt/C exhibited 

45.4% loss while the mixture of Pt/C and Pt/GO (Pt/C: Pt/GO =8:2) showed 17.7% loss 

after 3 h holding at constant 1.4 V.  

In our previous study, we reported a novel route of preparing Co-doped Pt 

catalysts on CCC as supports [85]. As described in Chapter 3, unlike the general 

impregnation method, in our novel synthesis, Co was initially doped into the carbon 

materials at high temperature using Co-catalyzed pyrolysis which later was used as the 

Co metal source for the formation of Co-doped Pt. The Co-doped carbon thus prepared 

was used as a support to deposit Pt nanoparticles. The Pt supported on Co-doped carbon 

was heat-treated under reducing atmosphere to obtain Co-doped Pt catalyst with 

controlled particles size. During the heat-treatment, Co which is doped within the carbon 

diffuses to the surface and forms Co-doped Pt catalyst with a core-shell structure. In the 

present study, the CB was heat-treated at high temperature to obtain highly graphitized 

carbon support. Since the pristine CB is amorphous, there is a limitation at high potentials 
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in order to use as a support in practical application. In this chapter, the kinetic activity 

and durability of Co-doped Pt catalysts prepared by the novel approach using the pristine 

and graphitized CB as catalyst supports. 

 

5.2 EXPERIMENTAL  

5.2.1 PREPARATION OF SUPPORT AND CATALYST 

All the details for the preparation of CCC are described in Chapter 3. In brief, to 

obtain graphitized carbon composite catalyst (GCCC), as-received CB (Ketjen Black EC-

300J) was heat-treated at 1700 °C for 1 h under N2 atmosphere. Then, the material was 

oxidized in 9.8 M HNO3 solution at 85 °C for 9 h under refluxing conditions. After 

filtering, the oxidized carbon was washed with DI water several times and dried under 

vacuum at 80 °C for 12 h. A desired amount of Co(NO3)2 and ethylene diamine, used as 

Co and N precursors, respectively, were mixed with the oxidized carbon in 200 ml IPA. 

The mol ratio of Co and N precursors was maintained at 1:9.  The mixture was reflexed 

for 3 h at 85 °C under vigorous stirring, followed by drying under vacuum at 80 °C. The 

resultant powder was subjected to heat-treatment under inert atmosphere at 800 °C for 1 h 

followed by leaching in 0.5 M H2SO4 at 80 °C for 3 h to remove excess Co.  The final 

product is denoted as GCCC. The supports were non-covalently activated by the PCA 

before the Pt deposition due to their high hydrophobicity deposition [121, 122] .   

Pt deposition was accomplished by a polyol reduction method for the preparation 

of 30% Pt/GCCC catalyst. First, the GCCC support was dispersed in 25 ml of 

ethyleneglycol in a sonication bath (Branson ultrasonic cleaner). A desired amount of 

PtCl4 was added and the pH was adjusted to 11 by the addition of 0.5 M NaOH solution. 
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The resulting solution was refluxed at 160 °C for 3 h and allowed to cool to room 

temperature. Then, the solution was filtered, washed with DI water, and dried at 160 °C 

for 1 h. Prior to heat-treatment, the Pt/GCCC was subjected to a protective coating 

procedure. Oxidative polymerization of aniline sulfate was carried out at room 

temperature using ammonium peroxysulfate as the oxidizing agent [123, 124]. The 

polyaniline-coated Pt/GCCC was placed in an alumina crucible and heat-treated at 

800 °C for 2 h in a tubular furnace under 5% H2 (balance N2) atmosphere. The catalyst 

thus prepared is denoted as Co-doped Pt/GCCC. Finally, the molar ratio of Pt to Co in 

both Co-doped Pt/CCC and Co-doped Pt/GCCC is 1:1. Similarly, Co-doped Pt/CCC was 

synthesized using CCC as the support. For comparison, Pt/C is prepared with the same 

polyol reduction method using Ketjen Black EC-300J. 

 

5.2.2 PHYSICAL CHARACTERIZATION 

The nitrogen adsorption/desorption isotherms were obtained at −196 °C using a 

Quantachrome NOVA 2000 BET analyzer. Specific surface area was determined by a 

multipoint BET analysis. PSD curves were calculated by the BJH method using the 

adsorption/desorption branch. XRD analysis was performed using a Rigaku D/Max 2500 

V/ PC with a Cu Kα radiation. A tube voltage of 30 kV and a current of 15 mA were used 

during the scanning. To estimate the particle size of samples, we employed the following 

Scherrer equation [66]:   

10 cos

k
D

B




  [5.2] 

where D is the crystallite size in nm, k is a coefficient (0.9), λ is the wavelength of X-ray 

(1.5404 Å), B is the line broadening at half the maximum intensity in radians, and θ is the 
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angle at the position of the maximum peak known as Bragg angle. Raman spectroscopy 

was used to evaluate the degree of graphitization of the carbon supports using HORIBA 

"LABRAM 1B” (He-Ne 20mW laser, wave length 632.817 nm). ICP-AES (Perkin 

Elmer) analysis was used to determine the composition of the catalysts. HR-TEM was 

used to study the morphology and particles size distribution of the catalysts using Hitachi 

9500 HR-TEM operated at 300 kV accelerating voltage. XRF (Fischer XDAL) was used 

to determine PtCo composition in the catalyst and Pt loading in the catalyst coated 

membrane.  

 

5.2.3 MEA FABRICATION AND ELECTROCHEMICAL MEASUREMENT 

For the MEA fabrication, the in-house synthesized catalysts were employed as the 

cathode catalyst while commercial 46% Pt/C was used as a catalyst for the anode. 

Catalyst inks were prepared by ultrasonically mixing the appropriate amount of catalysts, 

IPA (1.8 ml), Nafion® ionomer (5% solution, Alfa Aesar), and DI water (0.2 ml). The 

ionomer content was 30% and 20% in the anode and cathode inks, respectively. The 

catalyst inks were sprayed directly on the Nafion® 212 membrane covering an active area 

of 25 cm2. The Pt loading on the anode and cathode electrodes is kept at 0.1 and 0.15 mg 

cm−2, respectively. The catalyst coated membrane was then hot pressed at 140 °C using a 

pressure of 20 kg cm−2 for 6 min. in between the gas diffusion layers (Sigracet GDL 

10BC, SGL) and Teflon gaskets to prepare the MEA for the performance evaluation 

studies in fuel cell.   

The initial mass activity at 0.9 ViR-free was evaluated under H2/O2 (2/9.5 stoic.) at 

80 °C, 100% RH, and 150 kPaabs. back pressure. Polarization curves were obtained at 
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80 °C, and 170 kPaabs back pressure supplying H2 and air (2/2 stoic.) humidified at 50% 

RH. The ECSA was estimated using CV experiments carried out between 0.05 and 0.6 V 

(vs. RHE) at 80 °C under fully humidified H2 and N2 supply to the anode and the cathode, 

respectively. During AST, H2 and N2 were supplied to the anode and cathode, 

respectively and the potential was swept between 1 and 1.5 V (vs. RHE) at 500 mV s−1 in 

a triangle profile for the durability evaluation, respectively [125]. The fuel cell 

polarization was conducted using a fully automated fuel cell test station (Scribner 

Associates Inc., model 850e) at 80 °C. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 CCC AND GCCC SUPPORT SYNTHESIS 

Figure 5.1 (a) and (b) show the nitrogen adsorption-desorption isotherms and BJH 

PSD curves of CB, CCC and GCCC. The specific surface area of CB is 826.4 m2 g−1. The 

specific surface area of CCC is 397.7 m2 g-1, while the GCCC has 284.3 m2 g-1. The 

isotherms of CCC and GCCC show hysteresis loop with sharp adsorption and desorption 

branches over a relative pressure range of 0.4 – 0.8, while GCCC show larger hysteresis 

than CCC relatively, as shown in Figure 5.1  (a). In addition, nitrogen uptake for CCC 

and GCCC is observed at a relatively high pressure of 0. 94–1.0, which is associated with 

the presence of mesopores [67]. The isotherms of CCC and GCCC exhibit characteristic 

Type IV by the IUPAC classification indicating that CCC and GCCC are the mesoporous 

support [67]. The total pore volumes of CCC and GCCC are 0.846 and 0.688 ml g-1, 

respectively. In Figure 5.1 (b), CCC show lager pore volume than GCCC in pore 

diameter over 20 nm or less than 3 nm, while GCCC exhibits larger pore volume than  
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Figure 5.1 (a) N2 adsorption/desorption isotherms and (b) BJH pore-size distribution 

curves obtained from the adsorption branch of GCCC, CCC and CB. (c) BJH pore-size 

distribution in the range 0-10 nm. 

 

(a) 

(b) 

(c) 
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CCC in pore diameter between 3 and 4 nm, suitable sites for deposition of Pt 

nanoparticles. Like the CB, both CCC and GCCC show that the peak pore diameter under 

10 nm stays at ca. 4 nm, as shown in Figure 5.1 (c). 

The results of XPS analysis performed on the CB, CCC and GCCC supports are 

presented in Figure 5.2. Figure 5.2 (a) shows the survey scans for the CB, CCC and 

GCCC. The nitrogen atom is not observed in the survey scan of CB. XPS spectra of CCC 

and GCCC show a peak at ~398 eV which corresponds to the nitrogen atom on the 

surface of CCC and GCCC supports, as shown in Figure 5.2 (a). The nitrogen peaks 

shown in Figure 5.2 (b) and (c) for CCC and GCCC, respectively, can be deconvoluted 

into four major peaks corresponding to pyridinic, pyrrolic and/or pyridone, quaternary, 

and pyridinic-N+-O− (oxidized nitrogen). The peak at ca. 398.4 eV accounts for the 

presence of pyridinic-N whereas the peak at ca. 400.3 eV corresponds to the pyrrolic-N 

and/or pyridine-N. The peaks at ca. 401.1 and ca. 403.4 eV are ascribed to the presence of 

quaternary-N and pyridinic-N+-O−, respectively. For CCC, relative percentages of 

pyridinic-N and pyrrolic-N and/or pyridine-N are 41.0 and 38.5% of total nitrogen, 

respectively. Quaternary-N accounts for 6.6% while pyridinic-N+-O− occupies 13.9%. 

For GCCC, pyridinic-N and pyrrolic-N and/or pyridine-N contain 27.8 and 37.0%, 

respectively. Quaternary-N and pyridinic-N+-O− comprise 19.3 and 15.9%, respectively. 

The percentages of pyrrolic-N and/or pyridine-N and pyridinic-N+-O− show similar in 

CCC and GCCC. Pyridinic-N in GCCC exhibits less than that in CCC, while quaternary-

N in GCCC shows more than that in CCC. It is well-known that quaternary-N plays an 

important role in stability of catalyst in ORR [55, 56, 61, 70], while pyridinic-N situated  
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Figure 5.2 (a) XPS survey scans of GCCC, CCC and CB. Deconvoluted N1s XPS spectra 

of (b) CCC and (c) GCCC. 

 

(a) 

(b) 

(c) 
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on the edge of the graphite planes promotes ORR by donating one p-electron to the 

aromatic π system [55, 68, 69].   

XRD patterns of the CB, CCC, and GCCC are shown in Figure 5.3 (a). The Co 

metal is not observed in the XRD pattern of CB. The characteristic diffraction peaks of 

Co metal at ca. 44.2, 51.5, and 75.8° represent (111), (200), and (220) planes in both 

CCC and GCCC supports, respectively (PDF#97-007-6632). The XRD results confirm 

the presence of Co metal after acid-leaching at high temperature. Based on the carbon, 

the characteristic diffraction peaks of GCCC are sharper with increased intensity and shift 

to more positive angles. Therefore, the interlayer spacing of CCC based on (002) plane 

decreases to 0.3483 nm, while that of GCCC is 0.3463 nm. Figure 5.3 (b) and (c) exhibit 

the Raman spectra for CCC and GCCC. Both CCC and GCCC show the D band and G 

band at ca. 1350 and 1600 cm−1, respectively. The D band originates from structural 

defects and disorder-induced features on carbon, while the G band corresponds to the 

stretching vibration mode of graphite crystals [70, 126]. Two broad peaks at ca. 1200 and 

1510 cm-1 are associated with carbon atoms outside of a perfectly planar graphene 

network (such as aliphatic or amorphous structures) and integrated five-member rings or 

heteroatoms in graphene-sheet structures, respectively [160-162]. The integrated intensity 

ratio of D band to the G band (ID/IG) is widely used for indicating the degree of 

graphitization or the defect quantity in graphitic materials. ID/IG for CCC and GCCC is 

estimated to be 3.11 and 2.11, respectively, indicating that GCCC is more graphitized 

than CCC. These results combined with the Raman spectroscopy verify that the carbon 

surface of GCCC has been more graphitized than CCC which is already partially 

graphitized during metal-catalyzed pyrolysis as shown in chapter 3.  
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Figure 5.3 (a) Comparison of (a) XRD patterns of GCCC, CCC and CB. Raman spectra 

of (b) CCC and (c) GCCC. 

 

(a) 

(b) 

(c) 
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The HR-TEM images of CB, CCC and GCCC are shown in Figure 5.4 (a), (b) and 

(c), respectively. The apparent difference between them is the presence of Co particles 

encapsulated by carbon shells in the CCC and GCCC supports since the Co particles 

present on the surface are removed during acid leaching. Nanostructured fibers or tubes 

of graphitic carbon are also formed as a result of pyrolysis in the presence of Co metal 

[55, 56], while CB showed amorphous morphology without Co particles as shown in 

Figure 5.4 (a). ICP-AES results of CCC and GCCC indicated a cobalt content of ca. 13 

wt% in the supports synthesized at 800 °C.  

 

5.3.2 CO-DOPED PT/CCC AND CO-DOPED PT/GCCC CATALYST SYNTHESIS 

The elemental compositions in the bulk of Co-doped Pt/CCC and Co-doped 

Pt/GCCC catalysts were determined using ICP-AES and XRF. For both CCC and GCCC, 

the Co content is ca. 13 wt%. After Pt deposition, the initial Pt: Co atomic ratios are 1:1 

and 0.9:1 for Pt/CCC and Pt/GCCC catalysts, respectively. After heat-treatment at 800 °C 

for 2 h under 5% H2, the Pt: Co atomic ratios are 1.1:1 and 1.0:1 for Co-doped Pt/CCC 

and Co-doped Pt/GCCC catalysts, respectively. As described earlier, the novelty of the 

process is to use the Co particles embedded in the CCC support for the formation of Co-

doped Pt catalyst when subjected to heat-treatment at 800 °C for 2 h under 5% H2.  

To confirm Co doping into Pt, XRD analysis was performed and the results of 

Pt/CCC, and Pt/GCCC Co-doepd Pt/CCC, and Co-doped Pt/GCCC catalysts are shown in 

Figure 5.5. The characteristic diffraction peaks of Pt/CCC and Pt/GCCC at 39.8, 46.25,  

and 67.7° correspond to the (111), (200),and (220) planes of pure Pt, respectively, while 

those at 44.2, 51.5, and 75.8° are ascribed to (111), (200), and (220) planes of pure Co,  
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Figure 5.4 HR-TEM images of (a) CB, (b) CCC and (c) GCCC 

 

(a) 

(b) 

(c) 



 

148 

 

 

 

 

 

 

 

Figure 5.5 XRD patterns of GCCC, Pt/GCCC, and Co-doped Pt/GCCC. 
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respectively.  Both Pt/CCC and Pt/GCCC exhibit the characteristics of the Pt with FCC 

structure. As shown in Figure 5.5, the characteristic peaks of pure Co are observed in 

Pt/CCC and Pt/GCCC, since the CCC and GCCC contain Co encapsulated with thin 

carbon layer. After the heat-treatment, the peaks of Co and Pt are shifted to lower and 

higher angles, respectively and Co doping into the Pt lattice is observed as indicated by 

the shift in Pt(111) peak to higher angles. As a result, both Co-doped Pt/CCC and Co-

doped Pt/GCCC show chemically ordered FCT. The (001) and (100) superlattice planes 

at ca. 24 and 33°, respectively, confirm the formation of the FCT phase [127]. The XRD 

result indicates that the Co particles embedded in the CCC and GCCC supports 

successfully diffused to the surface during heat-treatment and formed Co-doped Pt 

catalyst particles regardless of the specific surface area. 

Figure 5.6 (a), (b), (c), and (d) show the HR-TEM images of Pt/CCC, Pt/GCCC, 

Co-doped Pt/CCC, and Co-doped Pt/GCCC catalysts, respectively. Over 100 

nanoparticles are used to measure the mean particle size and particle size distribution of 

the synthesized catalysts. As shown in the micrographs, Pt nanoparticles are uniformly 

deposited and well-distributed on the supports. The mean particle sizes of Pt/CCC, 

Pt/GCCC, Co-doped Pt/CCC and Co-doped Pt/GCCC are 2.5, 2.4, 5.4, and 4.8 nm, 

respectively. Pt nanoparticles in Pt/CCC and Pt/GCCC are dominantly deposited on both 

CCC and GCCC supports in the range of 2-3 nm. Majority of particles in Co-doped 

Pt/CCC and Co-doped Pt/GCCC are in the range of the 3-6 nm, while a few large 

particles are observed but well-distributed on the supports even after high temperature 

treatment. Parameters like particle size and surface area are summarized in Table 5.1.  
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Figure 5.6 HR-TEM images of fresh (a) Pt/CCC, (b) Pt/GCCC, (c) Co-doped Pt/CCC, 

and (d) Co-doped Pt/GCCC catalysts. 

 

 

 

 

 

 

(a) (b) 

(c) 
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Table 5.1 Characteristics of Co-doped Pt/CCC, Pt/GCCC and Co-doped Pt/GCCC  

 
DTEM

a
 

[nm] 

DXRD
b
 

[nm] 

STEM
c
 

[m2/g] 

ECSAd 

[m2/gPt] 

Co-doped Pt/CCC 5.4 4.1 52 70 

Co-doped Pt/GCCC 4.8 3.1 58 57 

a Mean particle size calculated from Scherrer equation. 
b Mean particle size based on the HR-TEM 
c Specific surface area calculated from the diameter of HR-TEM 
d Initial values of ECSA calculated from the hydrogen desorption peak in each CV. 
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5.3.3 DURABILITY OF CO-DOPED PT/CCC AND CO-DOPED PT/GCCC 

Figure 5.7 (a) and (b) represent the polarization and power density curves of Co-

doped Pt/CCC and Co-doped Pt/GCCC before and after potential cycling between 1.0 

and 1.5 V, respectively. In Figure 5.7 (a), the polarization curves of Co-doped Pt/CCC are 

compared to those of Co-doped Pt/GCCC. At 0.6 ViR-free, the initial current density of Co-

doped Pt/CCC shows 1395 mA cm-2, while the current density after 1000 cycles (between 

1.0 and 1.5 V) exhibits 400 mA cm-2. Moreover, at 1200 mA cm-2, the initial potential is 

0.638 ViR-free and no activity is observed after 1000 cycles, which indicates that the Co-

doped Pt/CCC catalyst layer is totally destroyed when subjected to high potentials. This 

result is very similar with the Pt/C. at 0.6 ViR-free, initially the Pt/C shows the 1230 mA 

cm-2, while the current density after 1000 cycles exhibits 360 mA cm-2.  The Pt/C loses 

all the activity at 1200 mA cm-2 after 1000 cycles. In the case of Co-doped Pt/GCCC, the 

initial current density is 1154 mA cm-2 at 0.6 ViR-free, while the current density after 3,000 

cycles shows 1140 mA cm-2. Also, the potential loss at 1200 mA cm-2 is only 10 mViR-free 

after 3,000 cycles. The durability of Co-doped Pt/GCCC is remarkably enhanced when 

compared to that of Co-doped Pt/CCC catalyst. As shown in Figure 5.7 (b), for the 

maximum power density which is calculated using the iR-free cell potential, both 

catalysts initially show similar values. The maximum power density of Co-doped 

Pt/GCCC is 897 mW cm-2, while that of Co-doped Pt/CCC is 883 mW cm-2. After 1000 

cycles, the maximum power density of Co-doped Pt/CCC decreased to 239 mW cm-2 

corresponding to 73% loss. However, that maximum power density of Co-doped 

Pt/GCCC decreased to 707 mW cm-2 which corresponds to only 21% loss after 1,000 

cycles. 
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Figure 5.7 (a) H2/air polarization and (b) power density curves of Co-doped Pt/CCC and 

Co-doped Pt/GCCC before and after potential cycling (1,000 cycles for Co-doped 

Pt/CCC; 3,000 cycles for Co-doped Pt/GCCC) between 1.0 and 1.5 V, respectively. 

 

 

 

(b) 

(a) 
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To further analyze the durability of catalysts, the normalized ECSAs calculated 

for Co-doped Pt/CCC, Co-doped Pt/GCCC, and Pt/C catalysts as a function of cycle 

number are shown in Figure 5.8. Initial ECSA values of 70, 57, and 70.8 m2 gPt
−1 are 

measured for Co-doped Pt/CCC, Co-doped Pt/GCCC, and Pt/C catalysts, respectively. 

After 1000 cycles, only 38 and 39% ECSA remains for the Co-doped Pt/CCC and Pt/C, 

respectively, while Co-doped Pt/GCCC catalyst retains 69% and 39% of its initial ECSA 

after 1,000 and 3,000 cycles, respectively. These results indicate that the Co-doped 

Pt/GCCC is remarkably durable when compared to the Co-doped Pt/CCC catalyst.  

The composition of catalysts before and after AST was examined using XRF. The 

results indicated that the initial Pt:Co atomic ratio for the initial Co-doped Pt/CCC and  

Co-doped Pt/GCCC is almost constant after 1,000 and 3000 cycles, respectively. In the 

previous study (chapter 3), the potential cycling from 0.6 to 1.0 V led to Co leaching and 

the formation of Pt-enriched shell/PtCo core structure. However, the potential cycling 

from 1.0 and 1.5 V does not result in Co leaching despite the performance degradation. It 

may be suggested that the electrochemical leaching of Co is inhibited at the high potential 

due to the rapid formation of up to 2 MLs of Pt oxide on the surface [181, 182]. The 

compositional data is summarized in Table 5.2. 

XRD patterns and their deconvolution before and after AST study are shown in 

Figure 5.9 and 5.10. The deconvolution is carried out in the range of 37 to 44o. First, the 

superlattice peaks like (100) plane, which is a feature for the FCT structure, are 

disappeared after 1000 cycles in Figure 5.9 (a). The (101) plane of Co-doped Pt after 

1000 cycles is shifted to lower angle indicating the increment of  lattice parameter. In 

Figure 5.9 (b), the initial Co-doped Pt/CCC catalyst clearly shows single peak, while the  
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Figure 5.8 Normalized ECSA of Co-doped Pt/CCC and Co-doped Pt/GCCC catalysts as a 

function of cycle number. ECSAs were calculated from cyclic voltammograms obtained 

between 0.05 and 0.6 V (vs. RHE) at 80 °C. Fully humidified H2 (200 sccm) and N2 (75 

sccm) were supplied to the anode and the cathode, respectively. 
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Table 5.2 Compositions of Pt/CCC, Co-doped Pt/CCC, Pt/GCCC and Co-doped 

Pt/GCCC measured by ICP-AES, XPS, and XRF  

 ICP XPS 

XRF 

Initial After AST 

Pt/CCC 1:1 - - - 

Pt/GCCC 0.9:1 - - - 

Co-doped 

Pt/CCC 
1.1:1 1.2:1 1.1:1 1:1 

Co-doped 

Pt/GCCC 
1.0:1 1.5:1 1.0:1 0.9:1 
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Figure 5.9 (a) Comparison of XRD patterns of Co-doped Pt/CCC before and after 1,000 

cycles. Deconvoluted patterns of Co-doped Pt/CCC (b) before and (c) after 1,000 cycles. 

(b) 

(a) 

(c) 
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Figure 5.10 (a) Comparison of XRD patterns of Co-doped Pt/GCCC before and after 

3,000 cycles. Deconvoluted patterns of Co-doped Pt/GCCC (b) before and (c) after 3,000 

cycles. 

 

 

(b) 

(a) 

(c) 
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Table 5.3 Characteristics of XRD peak for Co-doped Pt/CCC and Co-doped Pt/GCCC 

after AST 

 
Catalyst 

phase 

Initial After 3,000 cycles 

2θ FWHM Ratio 

[%] 
2θ FWHM 

Ratio 

[%] 

Co-doped 

Pt/CCC 

Pt - - - 39.84 4.373 51.6 

PtCo 41.25 2.082 100 40.55 1.767 48.4 

Co-doped 

Pt/GCCC 

Pt - - - 39.15 0.793 4.5 

PtCo 40.97 2.193 100 40.85 1.361 95.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

160 

catalyst after 1000 cycles in Figure 5.9 (c) exhibits the 2 different peaks at 39.84 and 

40.55° with the relative ratios of 51.6 and 48.4%, respectively. These changes indicate 

that the FCC crystalline structure (PDF#97-010-2621) formation for the Co-doped 

Pt/CCC catalyst after AST.  Similarly, as shown in Figure 5.10 (a), the initial (101) plane 

of Co-doped Pt/CCC is moved to lower angle, which results in increased  lattice 

parameters, while the XRD patterns of Co-doped Pt/GCCC show the super lattice peaks  

before and after 3000 cycles. The characteristic peaks of Co-doped Pt/GCCC after 3000 

cycles correspond to the FCT structure (PDF#97-010-2622). In Figure 5.10 (b), the initial 

Co-doped Pt/GCCC catalyst also apparently represents a single peak in the range of 37 to 

44o, while the catalyst after 3000 cycles in Figure 5.10 (c) shows two different peaks at 

39.15 and 40.85° with relative ratios of 4.5 and 95.5%, respectively. Post-test XRD 

analyses indicated that the structure of Co-doped Pt/GCCC is more stable than that of Co-

doped Pt/CCC after AST.   

Fundamentally, the interactions of Pt and carbon are partially covalent and ionic 

since the electron delocalization between the π sites on carbon and d orbital of Pt, and the 

electron-transfer from Pt to carbon, respectively [30, 140, 168, 183-186]. Unlike the 

amorphous carbons, the highly graphitized carbon supports, such as CNTs and graphenes, 

have abundant π sites on the surface and relatively small number of edge plane sites, 

which is resistant for carbon oxidation [168, 183, 184]. Therefore, the interaction of 

graphitized carbon and Pt is stronger than that of amorphous carbon and Pt, which leads 

to the less degradation. On the other hand, the tetragonal to cubic shift is occurred by 

increasing the particle size [187-189]. The particle size effects are based on a core–shell 

model of nanoparticles where the core is tetragonal and the shell is cubic. As reported in 
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the literature [7-10], Pt has been dissolved and re-deposited on the catalyst surface under 

high potential cycling. As a result, the particle size increases and the homogeneous 

bimetallic catalyst transforms into a Pt-alloy core and Pt shell [150, 190]. These 

combined effects can help the structure of catalyst on the highly graphitized GCCC to be 

stable after the AST which resulted in the stable fuel cell performance as shown in Figure 

5.7. 

 

5.4 CONCLUSION 

In this study, Co-Doped Pt/GCCC catalyst was prepared using a graphitized CB 

as a support and compared to Co-doped Pt/CCC catalyst. The change of specific surface 

area, interlayer spacing, and ID/IG value indicated that the GCCC was more graphitized 

than the CCC support. XPS results indicated the presence of four different types of 

nitrogen. The ratio of quaternary-N related to the durability is particularly increased as 

compared to that in the Co-doped Pt/CCC. HR-TEM studies indicated uniform particle 

sizes for Co-doped Pt/CCC and Co-doped Pt/GCCC catalysts with an average size of ca. 

5 nm. Both Co-doped Pt/CCC and Co-doped Pt/GCCC catalysts showed similar initial 

power density. After 3,000 potential cycles between 1.0 and 1.5 V, the retained ECSA of 

Co-doped Pt/GCCC was 39%. Furthermore, a very stable H2/air fuel cell performance 

was observed at 0.6 ViR-free for the Co-doped Pt/GCCC catalyst. According to the post-

test XRD results, FCT-structure of Co-doped Pt/GCCC was maintained until 3,000 

potential cycles, while the intrinsic FCT peaks of Co-doped Pt/CCC disappeared after 

1,000 potential cycles. Also, the 2θ of Co-doped Pt/GCCC was almost constant, while 

that of Co-doped Pt/CCC was apparently shifted to lower angle. Consequently, the 
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electrochemical and structural studies indicated that the degree of graphitization plays an 

important role in the stability of the catalyst structure under high potential cycling (1.0–

1.5 V). 
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CHAPTER 6 

SUMMARY 

 

In this study, a novel non-precious metal CCC containing electrochemically active 

sites for ORR was prepared and a novel synthesis of the Co-doped Pt/CCC is developed 

with the CCC. 

 A novel CCC exhibits high activity and good selectivity for ORR since the 

presence of pyridinic and quaternary-nitrogen catalytic sites observed by XPS analysis. 

The synergistic effect of CCC and Pt resulted in 1.5 to 6-fold higher activity than 

conventional Pt/C in RDE and fuel cell testing. The XPS analysis confirmed that the 

enhancement originated from the CCC and increase of metallic Pt0. 

A novel synthesis of the Co-doped Pt/CCC using a electrochemically active CCC 

is developed through platinum deposition and heat-treatment procedures. HR-TEM 

images indicated uniform Pt deposition for the Co-doped Pt/CCC with average particle 

size of 5.4 nm. Co-doped Pt/CCC showed high initial mass activity of 0.44 A mgPt
−1 and 

0.25 A mgPt
−1 at 0.9 ViR-free after 30,000 potential cycles between 0.6 and 1.0 V. It is 

highly stable as compared to the conventional catalysts (PtCo/C-Imp, PtCo/C, and Pt/C) 

showing 60-70% loss of activity. The enhanced catalytic activity and stability of activity 

for Co-doped Pt/CCC are attributed to the formation of compressive Pt lattice due to Co 

doping. The electrochemical characterization indicated that Co doping increased the
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potential for Pt oxide formation to a more positive value and suppressed the detrimental 

Pt dissolution process. 

To develop the stable support, the change in carbon nanostructure by means of 

high temperature treatment is investigated. The physical characterization such as BET, 

XRD, and Raman spectroscopy indicated that the degree of graphitization is increased as 

compared to the amorphous pristine carbon black. And the electrochemical tests exhibit 

the increased corrosion resistance as compared to the amorphous pristine carbon black. 

To apply for the novel synthesis of Co-doped Pt catalysts, GCCC was prepared using this 

graphitized CB as a support. As expected, the physical characterization indicated that 

GCCC exhibited higher degree of graphitization than CCC. HR-TEM studies showed 

uniform particle sizes for Co-doped Pt/GCCC while the XPS analysis exhibited the 

presence of higher ratio of quaternary-nitrogen in GCCC than CCC. Therefore, the 

stability of Co-doped Pt/GCCC based on fuel cell performance and ECSA is significantly 

increased as compared to the Co-doped Pt/CCC. According to the post-test XRD results, 

FCT-structure of Co-doped Pt/GCCC was maintained until 3,000 potential cycles, while 

the intrinsic FCT peaks of Co-doped Pt/CCC disappeared after 1,000 potential cycles. 
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