
Graduate Theses and Dissertations Graduate College

2010

AQUA-G: a universal gesture recognition
framework
Jay Roltgen
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Psychology Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Roltgen, Jay, "AQUA-G: a universal gesture recognition framework" (2010). Graduate Theses and Dissertations. 11430.
http://lib.dr.iastate.edu/etd/11430

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/11430?utm_source=lib.dr.iastate.edu%2Fetd%2F11430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

AQUA-G: a universal gesture recognition framework

by

Jay William Roltgen

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Human Computer Interaction; Computer Engineering

Program of Study Committee:
Stephen Gilbert, Co-major Professor

James Oliver, Co-major Professor
Phillip Jones

Iowa State University

Ames, Iowa

2010

Copyright c© Jay William Roltgen, 2010. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . xi

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1

1.1 Gestures . 2

1.2 Overview of related work . 3

1.2.1 Gesture-enabled hardware devices 3

1.2.2 Gesture recognition . 4

1.2.3 Existing gesture recognition frameworks 5

1.2.4 Software for input processing . 13

1.2.5 Interfaces with multiple input devices 14

1.2.6 Collaborative environments . 15

1.3 Motivation for AQUA-G . 15

CHAPTER 2. AQUA-G . 18

2.1 Design goals . 18

2.1.1 Performance . 19

2.1.2 Programming language independence 20

2.1.3 Platform independence . 20

2.1.4 Ease of customization . 21

iii

2.1.5 Provide a set of unified standard gestures 22

2.1.6 Support for component-centric vs. global gestures 22

2.2 Tools . 22

2.3 Key concepts . 23

2.3.1 Events . 23

2.3.2 Gestures . 26

2.3.3 Creating gestures and events dynamically 27

2.3.4 Regions . 28

2.4 Event flow . 28

2.5 System decomposition . 29

2.5.1 EventProcessor . 31

2.5.2 InputProtocol . 31

2.5.3 InputDeviceConnection . 32

2.5.4 GestureServer . 33

2.5.5 GestureEngine . 33

2.5.6 GlobalGestureLayer . 35

2.5.7 Region . 36

2.5.8 ClientConnection . 37

2.5.9 Utilities . 37

2.5.10 Gesture and event creation . 39

2.6 Client application interaction . 40

2.6.1 Initialization state . 40

2.6.2 Running state . 41

2.7 Supported input devices . 43

2.7.1 Windows and Linux mice . 43

2.7.2 HP TouchSmart touchscreen . 43

2.7.3 iPad and iPhone . 43

iv

2.7.4 Wii Remotes . 45

2.7.5 Cricket location sensors . 46

2.7.6 Sparsh-UI input devices . 46

2.8 Supported gestures . 47

2.8.1 Drag gesture . 47

2.8.2 2D rotate gesture . 47

2.8.3 Zoom gesture . 48

2.8.4 Flick gesture . 48

2.8.5 Double-click gesture . 48

2.9 Supported event translators . 48

2.9.1 Get handID gesture . 49

2.9.2 Kinetic gesture . 49

CHAPTER 3. CASE STUDIES . 50

3.1 A first application . 50

3.2 A user-identification based application 54

3.3 LABET unmanned vehicle controller . 57

3.4 The flick gesture . 59

3.5 The kinetic gesture . 60

3.6 The iPad and iPhone driver . 61

CHAPTER 4. EVALUATION . 63

4.1 Initial developer survey . 63

4.2 User evaluation . 66

4.2.1 Method . 67

4.2.2 Example student 1 . 68

4.2.3 Example student 2 . 69

4.3 Discussion of evaluation results . 70

v

CHAPTER 5. CONCLUSION . 74

5.1 Primary advantages . 74

5.2 Limitations . 75

5.3 Future work . 77

APPENDIX A. DEVELOPING SOFTWARE USING AQUA-G . . . 79

A.1 Developing a custom event . 79

A.2 Developing a custom gesture . 85

A.3 Developing an input device driver . 88

A.4 Developing a client application . 93

APPENDIX B. WAYFINDER . 105

B.1 Title and authors . 105

B.2 Abstract . 105

B.3 Introduction . 106

B.4 Related work . 107

B.5 Wayfinder . 109

B.5.1 Hardware and software . 110

B.5.2 Features . 111

B.6 Experiment 1 . 118

B.6.1 Method . 118

B.6.2 Performance metrics in the simulated mission 119

B.6.3 Training . 121

B.6.4 Results . 123

B.7 Experiment 2 - map manipulation . 125

B.7.1 Results . 126

B.8 Limitations . 127

B.8.1 Hardware . 127

vi

B.8.2 Situational awareness . 128

B.9 Discussion . 128

B.10 Conclusions and future work . 129

B.11 Acknowledgments . 130

APPENDIX C. FORMS . 131

C.1 Informed Consent . 131

C.2 Interview Protocol . 131

BIBLIOGRAPHY . 136

vii

LIST OF TABLES

Table 4.1 Major emergent themes in initial survey. 65

Table 4.2 Student 1’s responses to interview questions. 72

Table 4.3 Student 2’s responses to interview questions. 73

viii

LIST OF FIGURES

Figure 1.1 Three-layer depiction of MT4j architecture. 7

Figure 1.2 Three-layer depiction of PyMT architecture. 10

Figure 1.3 Three-layer depiction of Sparsh-UI architecture. 11

Figure 1.4 Three-layer depiction of Tisch architecture. 12

Figure 1.5 Comparison of existing gesture recognition systems and frame-

works. 16

Figure 2.1 AQUA-G event flow. 29

Figure 2.2 AQUA-G class diagram. 30

Figure 2.3 EventProcessor interface. 31

Figure 2.4 InputProtocol class. 31

Figure 2.5 InputDeviceConnection class. 32

Figure 2.6 GestureServer class. 33

Figure 2.7 GestureEngine class. 34

Figure 2.8 GlobalGestureLayer class. 35

Figure 2.9 Region class. 36

Figure 2.10 Client Connection class. 37

Figure 2.11 Filesystem class. 37

Figure 2.12 AquaSocket class. 38

Figure 2.13 EndianConverter class. 39

Figure 2.14 EventFactory class. 39

ix

Figure 2.15 GestureFactory class. 40

Figure 2.16 The HP TouchSmart. 44

Figure 2.17 The Apple iPad. 44

Figure 2.18 The Nintendo Wii Remote. 45

Figure 2.19 A Cricket sensor. 46

Figure 3.1 A first AQUA-G application. 51

Figure 3.2 A user interacting with the sample application using the HP

TouchSmart. 52

Figure 3.3 A user interacting with the sample application using a standard

mouse. 52

Figure 3.4 A user interacting with the sample application using a Wii Remote. 53

Figure 3.5 A user interacting with the sample application using an iPad. . . 54

Figure 3.6 A user interacting with the sample application using both an HP

TouchSmart and a standard mouse simultaneously. 55

Figure 3.7 Two users playing the AQUA-G Game of Life. 56

Figure 3.8 The LABET unmanned aerial vehicle. 57

Figure 3.9 Architecture for the AQUA-G solution to LABET UAV control. 58

Figure 3.10 The LABET avatar simulated in OpenGL. 58

Figure 3.11 The iPad device driver. 61

Figure 4.1 Method for conducting developer study. 67

Figure 5.1 A comparison of gesture recognition systems 76

Figure B.1 The Vigilant Spirit controliInterface 109

Figure B.2 The Wayfinder application. Visible are vehicles (circles), threats

(triangles), waypoints (flags) and control panels (left). 110

Figure B.3 The 25.5” HP TouchSmart computer. 111

x

Figure B.4 The Stantum SMK 15.4” multitouch device 111

Figure B.5 Wayfinder’s video control panel 113

Figure B.6 Wayfinder’s waypoint panel . 114

Figure B.7 Classification pie menus. Threats were classified by type, behav-

ior, size, and severity, all of which were described to participants

in a training video. 116

Figure B.8 Threats displayed in Wayfinder. 117

Figure B.9 Multitouch experience among participants. 119

Figure B.10 Wayfinder instructing a participant to place waypoints. Note the

small circular waypoint targets with the numbers inscribed. . . . 120

Figure B.11 Situational awareness prompt. 122

Figure B.12 Results of waypoint task. Users were able to set waypoints an

average of 6.01 seconds faster using the mouse. 125

Figure B.13 Map manipulation task. The participants manipulated the small

black rectangle so that it filled the screen with the arrow pointing

up. 125

Figure B.14 Results of the map manipulation task. Participants completed

6.6 more manipulations with the multitouch interface. 126

Figure C.1 Informed Consent Document, Page 1. 132

Figure C.2 Informed Consent Document, Page 2. 133

Figure C.3 Interview Protocol, Page 1. 134

Figure C.4 Interview Protocol, Page 2. 135

xi

ACKNOWLEDGEMENTS

I would like to thank all those who have supported me throughout my academic

career. My major professor, Dr. Stephen Gilbert, has been a constant source of encour-

agement and enlightenment, and has always guided me in the right direction.

I would also like to thank my peers at the Virtual Reality Applications Center who

have supported, mentored, or worked with me over the past two years, especially Mike

Oren, Tony Ross, Rob Evans, Peter Wong, and Tony Milosch. I have developed a great

deal of knowledge and experience as a result of working with these incredibly talented

individuals.

Finally, I would like to thank my wife Katie, who has been an unfailing source of

encouragement and support, even as I worked many long hours to finish this thesis. Her

assistance in the final weeks proofreading and reviewing this thesis were invaluable, and

I could not have finished this without her love and support.

xii

ABSTRACT

In this thesis, I describe a software architecture and implementation which is de-

signed to ease the process of 1) developing gesture-enabled applications and 2) using

multiple disparate interaction devices simultaneously to create gestures. Developing

gesture-enabled applications from scratch can be a time-consuming process involving

obtaining input from novel input devices, processing that input in order to recognize

gestures, and connecting this information to the application. Previously, developers

have turned to gesture recognition systems to assist them in developing these appli-

cations. However, existing systems to date are limited in flexibility and adaptability.

I propose AQUA-G, a universal gesture recognition framework that utilizes a unified

event architecture to communicate with a limitless variety of input devices. AQUA-G

provides abstraction of gesture recognition and allows developers to write custom ges-

tures. Its features have been driven in part by previous architectures and are partially

based on a needs assessment with a sample of developers. This research contributes a

scalable and reliable software system for gesture-enabled application development, which

makes developing and prototyping novel interaction styles more accessible to a larger

development community.

1

CHAPTER 1. INTRODUCTION

Gestural interfaces are becoming increasingly popular. With the recent proliferation

of touchscreen devices including the iPhone (3), interactive kiosks (51), and gesture-

enabled video game controllers such as the Wii Remote (52), users are becoming more

familiar with gesture-enabled interfaces. However, interaction styles for these devices

are often tied to the hardware platform; users expect certain gestures on the iPhone and

certain gestures on the Wii Remote. While this approach is to some extent necessary due

to ergonomic constraints, a software framework which would allow for the exploaration

of simultaneous use of gestures across multiple devices could offer novel interaction

opportunities.

To achieve this end, I address the following problem. Rapidly prototyping a gesture-

enabled interactive application is generally not trivial. Building and testing an applica-

tion involves a great deal of work to communicate with input devices, recognize gestures,

and react to gesture-releated events appropriately. The research presented in this theses

addresses this problem by providing a universal gesture recognition framework that is

capable of communication with a limitless variety of input devices. The goal of this

work is to simplify the developer’s tasks by providing standard gesture recognition ca-

pabilities and to allow testing of applications with a variety of input devices with little

development overhead. This should allow developers to experiment with other interest-

ing input methodologies that they may not have considered previously due to a perceived

complexity of developing an application which utilizes other types of input.

AQUA-G is an implementation of the described software architecture. As of July 1,

2

2010, AQUA-G communicates with several multi-touch devices, standard mice on both

Windows and Linux, the Wii Remote (52), the iPad (2) and iPhone (3), and a Cricket

location system (56) which provides user identification on a multi-touch table.

Support is planned to enable interaction with the ZCam 3-D camera (27), haptic

devices such as the Phantom (39), multitouch tables which offer user ID recognition

through the use of overhead cameras (17), and tangible user interfaces similar to SLAP

Widgets (74).

Ideally, AQUA-G will make existing interaction techniques accessible to a wider au-

dience. Its support for multiple simultaneous input devices will allow for systems which

utilize multiple methods of input, such as touch-tables augmented with user identifi-

cation (17), tangible user interfaces, and novel interaction styles which utilize multiple

inputs, to be united together under a common architecture.

1.1 Gestures

A question that must be addressed before presenting this research is ”What is a

gesture?” Generally, we think of interactive gestures as those which are associated with

touchscreen-enabled devices. However, the idea of gestural input is not limited to multi-

touch screens. Dan Saffer describes gestural input in a much broader sense, in that

anything users do in an attempt to perform some action be considered a gesture (64).

Typing on a keyboard, moving a mouse, blinking an eye, waving a hand, and seemingly

limitless possible interactions can all be described as ”gesture-based” interactions.

Generally, it is our goal as software and interface developers to make these gestural

interactions as natural and effortless as possible. We want the user interface to ”come

alive” and interact with users in a way that is easy to learn and easy to understand. In

order to do this and create interactions which utilize gestures, it is necessary to create

software to recognize input from input devices and process that input to output gestural

3

information. It is precisely this process which this research addresses and attempts

to streamline for all future developers wishing to utilize gestural interaction in their

applications.

1.2 Overview of related work

Bill Buxton and many others in the human-computer interaction community have re-

searched gestural interfaces (tablet pen-based, finger-based, hand-based) since the early

1980s (12). Furthermore, some researchers have focused on how users learn new gesture-

based interaction techniques (6; 1). Still others have researched improving the accessi-

bility of new gesture interaction techniques to new users (9). Over the years, much work

has been devoted to creating software architectures and frameworks to allow develop-

ers to take advantage of these new styles of input (18; 58; 45; 57; 16). I will examine

and comment on existing gesture recognition software frameworks and assess how this

architecture, AQUA-G, might be informed by each design.

1.2.1 Gesture-enabled hardware devices

Gesture-based input devices are ever-increasing in popularity and ubiquity. Often as

users, we may not even realize the presence of these devices, but they are nevertheless

there and present. Gestural interfaces such as automatic sliding doors, automatic paper

towel dispensers, and automatic hand dryers can all be considered gestural interfaces

under Saffer’s definition. With the recent proliferation of touchscreen phones, interactive

kiosks, and gesture-enabled gaming controllers, these types of gestural interactions are

becoming more and more commonplace.

Bill Buxton provides a concise summary of several touch systems which have been cre-

ated over the years, going as far back as the 1960s (12) . Perhaps one of the most famous

early gestural interaction systems was VIDEOPLACE, developed by Myron Krueger and

4

others, and published in 1985 (36). Krueger’s work was ahead of its time and had a great

deal of influence in this field. He addressed issues such as whole-body gestural input,

co-located and remote collaboration between users, and multi-touch gestures with his

VIDEOPLACE system.

In more recent years, researchers produced a system called DiamondTouch (16) in

2001 which is capable of detecting multiple points of touch. The system can detect

pressure of each touch as well as identify which user created that touch. In 2005,

Jeff Han (24) contributed to a spark of interest in multi-touch interaction by showing

how multi-touch devices could be created by anyone with relatively little cost. Since

2005 there has been an explosion of multi-touch and gesture-enabled hardware devices

(49; 3; 47; 42; 53) which have led to increasing accessibility of these devices to developers

interested in creating gesture-enabled applications.

1.2.2 Gesture recognition

A great deal of research has been performed in the field of gesture recognition, and a

full examination of this body of research is outside the scope of this work. The proposed

software architecture servers as a framework for gesture recognition, so that gesture

recognition algorithms and techniques they may unified under a common architecture

and made accessible to a wider developer community.

Still, it is important to recognize the broad scope of gesture recognition. In general,

gesture recognition can be classified into two categories: static gesture recognition and

dynamic gesture recognition. In this work, I will define static gesture recognition as

any form of recognizing gestures which evaluates a sequence of states of input data in

order to output some meaningful result at the end of gesture processing. Examples of

static gestures would include the Graffiti handwriting recognition feature on many Palm

OS devices, Windows pen flicks available on tablet editions of the Windows operating

system, and many others.

5

Static gesture recognition involves evaluating a sequence of states and comparing

them against some target data using an algorithm called a classifier. There are many

methods by which this is done; among the most popular classification methods involve

using Hidden Markov Models (66; 73), Support Vector Machines (8; 38; 13), and neural

networks (5; 48).

Dynamic gesture recognition, by contrast, involves recognizing gestures which must

have some action in real-time, such as drag, scaling, or rotation gestures. Dynamic

gestures output the result of processing every time input data is received, as each gesture

event corresponds to a single state of the input data. Dynamic gesture recognition is

used extensively in multi-touch systems to provide a natural, interactive interface. It

is generally less based on classifying input data and attempting to match it to a target

expected action (as in most classifiers), and more on evaluating users’ actions in real

time in order to to augment the user experience.

1.2.3 Existing gesture recognition frameworks

Much work has been proposed which aims to provide a framework for gesture recogni-

tion, especially for multi-touch interfaces, but all implementations that precede AQUA-G

have been limited by design or by consequence. For example, some systems are limited

by programming language (45; 57), in that they can only communicate with applications

written in a specific language. Others are platform-dependent (32; 4), or do not provide

the ability to write custom gestures and input device drivers (53; 49). These existing

systems have informed the design and architecture of AQUA-G.

This section reviews existing gesture recognition systems and describes each system’s

strengths and weaknesses in an attempt to explore and compare all existing solutions

which are similar to Aqua.

In an attempt to unite all of these disparate systems, it is useful to have a common

framework for comparing these disparate systems. It is best to think of gesture pro-

6

cessing architectures in terms of components and more specifically, layers. In addition,

through research and evaluation of these systems, I have found that all gesture pro-

cessing software architectures have three main logical components, or layers. Individual

software architectures may use the layers in different ways, or may utilize different means

of communication between the layers, but each layer is always present in some form. The

three layers are:

• The application layer

• The gesture processing layer

• The input device layer

In each figure presented in this section, I will show the three layers as they relate to

the existing systems. While the original authors of these systems did not describe their

architectures with these specific terms or layers, I have attempted to re-describe their

architectures accurately using this three-layer framework for ease of comparison between

systems.

Ideally, the three layers would function independently of one another, so applications,

gestures, and input device implementations can be changed easily without affecting the

other layers. However, fully separating functionality in this way can introduce more

complexity into a system. For this reason, these three layers are provided slightly differ-

ently in some frameworks, but they are always present, I we will discuss each software

architecture in terms of these layers.

We will first examine two systems which are intended for use in the multi-touch

application domain: Multi-Touch For Java (MT4j) (45) and PyMT (57). These systems

are robust and flexible but are tied to a specific programming language. AQUA-G should

be available for any programming language and any platform, but may also be greatly

informed by the architecture of these existing systems.

7

MT4j is a Java gesture processing system. As shown in Figure 1.1, MT4j implements

the four layers described, though uses different names for each layer and divides the

input device layer into two layers: the input hardware layer, and the input hardware

abstraction layer.

Figure 1.1 Three-layer depiction of MT4j architecture.

In addition to providing an architecture for gesture processing, MT4j also provides

a set of multi-touch enabled Java GUI widgets in the presentation layer, which allows

developers to quickly and easily develop multi-touch enabled Java applications by simply

sub-classing the provided GUI widgets.

This is one of the great strengths of MT4j, because a common problem in multi-

touch application development is that most GUI frameworks provide widgets which do

8

not know how to respond to native multi-touch events. For example, the widget may

know what to do with mouse events, but cannot interpret a zoom or rotate event unless

the input device converts or maps these multi-touch events to standard mouse events.

Since MT4j provides a widget framework, the widgets provided are able to handle zoom

and rotate events without this conversion or mapping. This provides the benefit of

greatly simplifying the development of Java multi-touch enabled applications.

Additionally, MT4j provides a space for global gestures which may not be associated

with a particular UI component. For example, gestures such as waving at the display

or shaking a controller are hard to associate with any component in the UI, but may

be designed to trigger certain actions. As a result, these are considered global gestures

instead of component gestures and are handled appropriately.

In addition to this elegant handling of global vs. component gestures, MT4j also

provides an input hardware abstraction layer which converts all device inputs into unified

input events. This allows MT4j to be compatible with a variety of input devices. MT4j

provides input device abstraction for multi-touch devices, mouse devices and keyboard

devices. This allows MT4j a great deal of flexibility when it comes to handling input from

new input devices, and allows a developer to create new input devices by conforming

to MT4j’s abstraction layer. This idea of unified events informed the architecture and

design process for Aqua, because Aqua aims to be compatible with a variety of input

devices, just like MT4j.

Thus, to create a multi-touch application using MT4j, one simply uses the provided

widget classes. Gestures can be created and registered using the provided API, which

makes it easy to receive multi-touch gesture events on components which extend the

provided widgets. MT4j provides the ability to create custom gestures, though it is not

clear as of this writing how to do so.

MT4j provides a clean interface for creating multi-touch Java applications, and makes

it very easy for developers to create multi-touch Java applications. MT4j has some

9

weaknesses, particularly in that it provides little support for extending the framework

to other GUI widget frameworks or creating applications in other languages besides Java.

Additionally, as of this writing it is not clear how to create a new custom gesture for use

with the framework. AQUA-G will improve on these weaknesses in part through cross-

language compatibility and by providing dynamic loading of gestures so that developers

do not have to recompile the main source code.

Another gesture recognition system which is tailored for a specific programming

language is PyMT (57), tailored for Python applications. Similar to MT4j, PyMT aims

to provide a robust and easy-to-use multi-touch gesture recognition platform. However,

in PyMT, the three layers discussed above are implemented differently than in most

gesture recognition frameworks (See Figure 1.2). This is because in PyMT, gesture

processing is performed in each individual UI widget. This means that in order to receive

gesture events for a particular gesture, the widget you wish to utilize these events must

extend the UI widget that appropriately processes those events. Thus, gesture processing

in PyMT is inherently tied to the widget, which makes it easy to understand, but rather

inflexible.

Since python supports multiple inheritance, developers can create widgets which

extend the functionality of two or more other widgets and use gestures from each event.

PyMT allows developers to create multi-touch applications by simply subclassing the

provided multi-touch enabled widgets.

PyMT is written in python and provides a graphics library which is built on top of

OpenGL, meaning the widgets in PyMT are very responsive and fast. It is a reliable plat-

form for developing python applications, but providing the custom GUI widget library

and tying the gesture processing to these widgets means that all of its gesture-processing

functionality is tied to the Python programming language.

Sparsh-UI (58) is an open source gesture recognition framework for multi-touch hard-

ware and software. The system strives to move away from the programming language

10

Figure 1.2 Three-layer depiction of PyMT architecture.

dependence exhibited by the two systems described above. However, this comes at a

cost: Sparsh-UI does not provide a set of multi-touch enabled widgets. This is because

it aims to abstract gesture processing from the particular widget library used, so that

the developer can receive gesture events regardless of whatever programming language

he or she is using.

This cost is difficult to mitigate when developing a system which is intended to be

cross-language, as providing a set of GUI widgets for every programming language would

be a large undertaking. Aqua will share this limitation with Sparsh-UI, at least at first.

After Aqua begins to be widely used, it is possible developers will contribute Aqua

widget frameworks for individual programming languages.

Sparsh-UI also implements the three-layer system described in the opening paragraph

of this section, and is shown in Figure 1.3. Sparsh-UI is cross-platform, is provided in a

Java and C++ version, and utilizes TCP/IP sockets to provide communication between

11

the three layers. As a result, Sparsh-UI is compatible with all programming languages

that support socket communication. Applications for Sparsh-UI have been written in

Java and C++ to date. Sparsh-UI also provides excellent documentation for developers

who wish to create a client application or new gesture.

Figure 1.3 Three-layer depiction of Sparsh-UI architecture.

Sparsh-UI is created exclusively for multi-touch applications. The API is not ex-

tensible to accepting other types of input, such as may be received from systems that

may provide additional information about the touches such as height, width, userID

and other custom information. However, Sparsh-UI is a well-developed and mature soft-

ware system that is an excellent solution for applications which utilize multi-touch input

exclusively.

Another multi-touch software architecture which is very similar to Sparsh-UI is Tisch

12

(18). Tisch is a unified multi-touch software architecture which aims to support gesture

processing for multi-touch systems. The architecture of Tisch (Figure 1.4) is nearly

identical to Sparsh-UI, but it adds a transformation layer which calibrates input device

data, and an interpretation layer, which processes gestures. This layer is also present in

Sparsh-UI in the Gesture Recognition Framework, but in Tisch this layer behaves slightly

differently. In Sparsh-UI, the gesture recognition framework asks the client adapter for

the component that the touch point ocurred over each time a new touch point is received.

In Tisch, the regions-of-interest are communicated to the interpretation layer by the

widget layer upon initialization, so that no communication is necessary until events are

generated.

Figure 1.4 Three-layer depiction of Tisch architecture.

This is an important distinction and was a crucial decision in the design of AQUA-G.

Since AQUA-G is intended to be extensible to 3-D input devices and client applications,

we do not know how developers will choose to utilize the 3-D space. Clearly, input

13

device space coordinates in 3-D space may not map well to coordinates in the client

application space. Thus, we have decided that it is best to ask the client application to

locate the appropriate region each time a new 3-D coordinate is received. Our model is

thus similar to that used by Sparsh-UI.

1.2.4 Software for input processing

The four systems described above, Tisch, Sparsh-UI, PyMT, and MT4j, are perhaps

the most robust software architectures which utilize the three-layer model described

above. There are many other systems which intend to allow developers to create multi-

touch applications by providing interfaces to process input from hardware, but their

gesture processing systems are not customizable as in the above systems. Examples of

these systems include:

• The NextWindow Two-Touch API (49), which allows developers to write applica-

tions for NextWindow touchscreens.

• The N-trig API (53), which allows developers to write applications for N-trig touch-

screens.

• The Windows 7 Touch SDK (32), which allows developers to utilize the multi-

touch functionality built in to Windows 7. The Windows 7 touch SDK is rather

flexible, but does not allow the addition of new gestures, and applications must

utilize the Windows API for creating GUI interfaces.

• The iPhone SDK (4), which allows developers to write multi-touch enabled iPhone

applications.

• Community Core Vision (54), a cross-platform solution for tracking touch points

in optical touch systems.

14

The software architecture presented in this research is highly informed by existing

gesture recognition frameworks, of which there are many. A key contribution of this

research is to present a framework that is not tied to a specific input device or type,

but may be compatible with a variety of input devices which provide dissimilar types of

events. The system should allow for a limitless variety of input events, so that it will

not become obsolete as new input methodologies are developed. The key advantages

to using a system such as this will be the ability to test interactive applications with a

variety of input devices with very little development overhead.

1.2.5 Interfaces with multiple input devices

One of the key contributions of the Aqua framework is that it provides support for

mulitple input devices and multi-modal gesture recognition. This is a major contribution

because of the radiply expanding research area of multi-modal interaction systems. A

great deal of user interfaces are beginning to use multiple means of input, such as

combining keyboard, mouse, touchscreen, hand tracking, and many other forms of input.

One such application involves using a large touchscreen system and multiple key-

boards and mice. Cheng et al (14) describe a system which is capable of recognizing

both multi-touch and mouse input and utilizes the Multi-pointer X software to provide

multi-touch functionality for the X window system.

Another application of multi-modal interaction is described by Hartmann (25) and

involves user interaction with a large multi-touch display that is augmented with multiple

keyboard and mice combinations. The researchers go on to describe several intriguing

and new interaction styles which utilize these multi-modal user interactions. Dealing

with multiple input devices appropriately can be one of the key strengths of a system

like Aqua.

Another research area which is related to this idea of multi-modal interaction is the

area of tangible user interfaces (28; 74; 72; 34). Tangible UIs usually involve touchscreen

15

interaction combined with tracking of physical objects on top of the screen or table. An

example of a tangible UI is detailed by (74) in which researchers augmented a touchscreen

user interface with physical UI widgets which users could turn, slide or type with. The

widgets noticeably improved user interaction.

An important part of developing effective tangible user interfaces is that the tangible

objects must be tracked and their locations and state must be reported to some software

application. To date, all of these systems implement their own custom method of doing

this reporting. By using a common framework, it would be possible to greatly reduce

the development work necessary to create such systems.

1.2.6 Collaborative environments

Much research involves investigating collaboration of users in tabletop environments

(29; 70; 30). Often, research in collaborative environments is benefited by a technology

which provides user identification. Differing means of doing this user identification are

presented by (16), (25), and (17). A unified system might be able to accept touch

input from some hardware device and hand positions from the same or another separate

device, and output user identification information for each hand and touch point. The

ability to switch out a touchscreen quickly and retain the hand-tracking technology

makes AQUA-G very powerful in the flexibility it could allow experimenters wishing to

evaluate different means of doing this type of user id association.

1.3 Motivation for AQUA-G

As shown, to date, many gesture recognition frameworks are designed for a specific

application domain: multi-touch interaction. Other frameworks are only available for

use with a specific programming language or platform. For a side-by-side comparison of

some of these existing systems, please refer to Figure 1.5. As shown in the figure, all of

16

the existing systems have some limitations.

Figure 1.5 Comparison of existing gesture recognition systems and frame-
works.

These limitations become especially important as gestural interaction expands be-

yond multi-touch devices. Novel input methodologies utilizing devices such as 3-D cam-

eras (27), Wii Remotes (52), tangible interfaces (74) and other interesting gesture-based

interactions, are increasingly used to explore novel interaction styles (37; 25; 74). With

the advent of new technology that is allowing more precise sensing of human behav-

ior, gestural interactions can become increasingly complex as we can utilize whole-body

17

interaction.

AQUA-G is intended to provide developers with a way to rapidly develop and pro-

totype gesture-enabled applications. As such, the software architecture should allow

developers a great deal of flexibility when it comes to implementing an application.

Furthermore, AQUA-G should provide user interface and interaction researchers with

a way to easily test different means of input with their application. Prior to the proposal

of this architecture, I wrote an application called Wayfinder to evaluate the differences

between multi-touch and mouse interaction for command and control applications. A

paper that describes application is given in Appendix A. In order to write this applica-

tion, I was required to spend time writing additional code to talk to both the multi-touch

and mouse device.

Had this application been developed using AQUA-G, I would have not incurred this

development overhead, and furthermore, the research could be extended to evaluate

other types of input devices with little to no additional software development.

AQUA-G will be of great use to those wishing to perform similar research, and will

make developing gesture-enabled applications much easier and more accessible for future

software developers.

18

CHAPTER 2. AQUA-G

Developing a software framework for gesture recognition will involve identifying de-

sign goals, defining requirements, designing software, and implementing that software.

In this chapter, I will begin by identifying several design goals for AQUA-G. I will con-

tinue by describing the tools used in creating the software, and discuss key concepts

related to the architecture. I will give a system decomposition and and describe the

software architecture and components which allow the design goals to be accomplished.

Finally, I will describe input devices and gestures which the software framework currently

supports.

2.1 Design goals

AQUA-G is intended to be used widely by other software developers. To ensure that

it would satisfy the needs of the eventual users of AQUA-G, I developer user-centered

design goals which were created based on the results of the initial survey described in

chapter 4. These design goals were driven in part by this survey, and based on limita-

tions of previous systems. The importance of flexibility, scalability and performance is

paramount when designing a software framework that deals with user input and is in-

tended to be used widely by other software developers. I will describe each of the design

goals that I developed for AQUA-G, and also describe how each of those objectives has

been satisfied.

19

2.1.1 Performance

Of crucial importance in any software system that deals with user input is perfor-

mance. As I developed the design for AQUA-G, it was crucial to keep performance in

mind when making all major architectural decisions.

Some decisions that were made to ensure good performance were:

• Minimized network communication between components to the extent possible.

• Utilized sorted data structures to store large amounts of data in order to minimize

search time.

• Used native platform libraries instead of relying on third-party code to avoid any

unnecessary overhead.

• Used C++ for implementation and compiled for each platform, rather than using

an interpreted cross-platform language.

For network communication, I chose to utilize TCP sockets. This decision to use

TCP sockets rather than UDP sockets was motivated by a desire for stable and reliable

communication, and for this decision, I have traded thoroughput for security. As an

important example of the benefit of the use of TCP sockets, if an input device driver

or client application crashes or disconnects unexpectedly, AQUA-G can observe this

through the broken stream connection and clean up appropriately. If UDP sockets were

used, AQUA-G would be unable to perform this action without the use of a time-out on

the connection, which would put unnecessary constraints upon the input device driver

or client application developer.

Furthermore, lost information when dealing with user input can be difficult to detect

and handle appropriately. For example, if AQUA-G receives a stream of touch input

events, and the touch death (also known as up or release) is lost on the connection, it

20

is difficult for AQUA-G to decide whether the user is holding their finger very still in

one place, or whether they have actually released it but the up event was lost. For this

reason, the decision was made to utilize TCP sockets and accept the performance loss.

2.1.2 Programming language independence

For AQUA-G, developers should be able to write input device drivers and client

applications in any language of their choice. The limitations of doing this have been

discussed in chapter 1. However, this decision will allow developers greater flexibility

when using the framework and will allow them to choose a language which suits their

needs, without having to learn a different gesture recognition framework. Programming

language independence was accomplished by utilizing TCP sockets for communication

between layers, rather than tying input devices and client application to the framework

through method calls. As a result, any language which supports socket communication

is compatible with AQUA-G.

2.1.3 Platform independence

Prior to the design and proposal of AQUA-G, potential developers were surveyed

about the usefulness of a system like it. This survey is described in chapter 4. The

developers expressed a desire that AQUA-G should run on Windows, Linux and Mac OS,

so that they could choose a platform which would be best for their specific application. I

have chosen to utilize C++ for the implementation, and AQUA-G will need to make use

of platform-specific functionality such as filesystem access, threading and TCP sockets.

In order to achieve this cross-platform functionality, I had to decide whether to rely on

third-party libraries which abstract the OS-specific functionality into wrapper classes,

or write the cross-platform functionality myself. I wanted AQUA-G to have as few

dependencies as possible, so I chose to write the cross-platform functionality myself.

Though this involved more work during implementation, the result was code that I fully

21

understand and am able to test and debug easily. Furthermore, it allows AQUA-G

to stand alone without the need to link to additional third-party libraries. The code

abstracts the cross-platform functionality under invariant interfaces so that AQUA-G

can run without knowledge of its underlying platform on Windows, Linux and Mac OS.

Currently, support has been developed for Windows and Linux. Support for Mac OS is

left for future work.

2.1.4 Ease of customization

In order to encourage adoption of AQUA-G, it is crucial that developers be able to

customize the framework by adding custom input devices, gestures, events, and client

applications. This functionality should be readily apparent and allow for easy cus-

tomization to suit the developers’ needs. To help provide this functionality, AQUA-G

will dynamically load gestures and events at runtime. This adds complexity to the

framework, but provides increased flexibility for developers wishing to customize the

framework by creating their own gestures and events. To accomplish this, gestures and

events are compiled into shared libraries, which can be compiled for the correct platform

easily throught the use of a cross-platform build tool such as SCons (35) or CMake (33).

This feature allows developers to compile new gesture and event classes without making

any changes to the framework source code, which eases integration of developer-created

gestures and events.

Furthermore, good documentation has been provided so that developers can create

these new types of gestures and events quickly and easily. I have provided sample

projects which allow developers to learn how to create their gestures and events quickly.

The sample projects are pre-configured to build the appropriate shared libraries, which

AQUA-G can then use at runtime.

22

2.1.5 Provide a set of unified standard gestures

AQUA-G is not simply be an empty framework which allows for customization by

developers, or it will not be able to obtain initial acceptance. It should provide a standard

set of gestures that developers can code applications to, so that developers do not have

to start from scratch when they wish to create a new application. In order to satisfy

this design goal, AQUA-G includes basic zoom, rotate, and drag gestures. Support

for additional gestures is planned for future work. It is my hope that developers will

contribute additional gestures which will be available for use by the entire development

community. Since AQUA-G allows extensive customization, unique and creative gestures

can be created quickly and easily.

2.1.6 Support for component-centric vs. global gestures

As described in chapter 1, MT4J provides elegant handling of component-centric

vs. global gestures. Similarly, AQUA-G should distinguish between component-centric

gestures such as “drag,” “zoom,” and “rotate,” and global gestures such as “turn off,”

“wave,” “turn on,” etc. The latter types of actions should not need to be associated

with a particular region or UI component, and would be considered global gestures.

Providing this distinction allows application developers flexibility when creating gestures

and defining the desired application behavior.

2.2 Tools

In order to implement AQUA-G using C++ and still provide cross-platform func-

tionality, I utilized several tools to help write the software. The primary tool I used in

developing and creating this software is called SCons (35). SCons is a cross-platform

build system written in Python which allows reliable, repeatable software builds across

multiple platforms.

23

SCons uses a simple user-created configuration file to build software, and I used the

syntax described in the SCons documentation to create a configuration file for AQUA-G.

The configuration file, named “SConstruct” by requirement, has a simple syntax, and

SCons uses this file to build software for the platform it is executed on by invoking the

platform’s native compiler and linker tools. This allowed me to write a single build file

and easily compile the software for multiple platforms, which was a great benefit.

2.3 Key concepts

Before discussing individual modules and components in AQUA-G, it is important to

discuss the basic components upon which AQUA-G relies, and the principles of design

which allow it stand apart from previous similar systems. The key components in AQUA-

G are events and gestures, and the ability to load these events and gestures dynamically

makes AQUA-G flexible and makes it easy for developers to customize.

2.3.1 Events

In AQUA-G, Events represent information that is passed between input devices and

client applications. Crucial to one of the primary contributions of AQUA-G is the

concept that input device events and client application events can and do share a common

interface under a “unified event architecture.” This allows a great deal of flexibility in

the software framework, as detailed in the following scenario.

Assume that a developer wants to build and test an application with which they

may evaluate the differences between interaction using the mouse or using a multi-touch

device. This test application will allow basic drag and zoom gestures in order to allow

users to pan and zoom a top-down view of a map.

Our multi-touch device can provide information such as location and state informa-

tion of all detected points of touch. However, to provide zoom events, the application

24

requires a zoom gesture which will take as input multiple points, determine the change

in distance over time between these points, and output an AQUA-G zoom event.

The developer also wants to use the mouse device. However, the mouse device can

provide other unique information such as mouse wheel events. He or she would like to

use the mouse wheel to send zoom events to the application. However, these events

should not go to zoom gestures for processing, because they are already zoom events!

Instead, they should be sent directly to the application! In previous frameworks, this

is difficult or impossible. The developer would be forced to provide workarounds by

simulating multiple touch points when the mouse wheel was used, or connecting the

mouse to the application directly, bypassing the framework entirely.

In AQUA-G, I have solved this problem. It is simple to configure this scenario in

AQUA-G. The developer can configure the mouse to send native AQUA-G zoom events

to AQUA-G when it detects a mouse scroll. The test application informs AQUA-G

that it is interested in receiving these zoom events, and configures zoom gestures to

process the touch point information received from the multi-touch device. Now, the

application receives information from both the mouse and touchscreen and can process

it appropriately.

2.3.1.1 A unified event architecture

Developer-created custom events should be able to contain any desired information.

However, it is important that we provide a standard event interface to facilitate gesture

recognition across multiple devices, so that developers can write input device drivers

which are compatible with the standard set of gestures provided by AQUA-G.

A unified event framework dictates that events share a common set of data so that

they may be uniformly processed by the basic gestures. The information which all events

share was determined through an evaluation of the types of information basic gestures

require, as well as what information might be needed for most interactions using AQUA-

25

G.

Here is the structure of the information which is shared by all AQUA-G events:

• Event name (string)

• Event description (string)

• Event type (byte) One of:

– DOWN, UP, MOVE, HOVER, OTHER

• Event ID (for keeping track of related DOWN, MOVE, UP events)

• Event location (float[3]) (x, y, z)

The Event base class provides these data members, and all developer-created events will

subclass this event, facilitating uniform processing of all events. In addition to providing

this basic structure, the Event class provides the following methods:

• Event(byte* data)

• byte[] serialize(short* lengthOut)

These two methods are provided to enable AQUA-G to send events over the TCP

socket connections. The constructor takes as input a byte array and un-serializes this

information into the event’s fields. The serialize() method does the reverse by serializing

the event’s fields into a byte array.

Since developers will create custom events, it is necessary to provide these custom

events with the ability to serialize their own custom data representation, be it accelerom-

eter readings, button presses, or some other custom data. In order to do this, the Event

class delegates the custom event serialization to the subclasses while still providing a

common interface for all events. Each event must override the virtual method “serial-

izeData(),” which is used by the serialize method to serialize this custom data.

26

2.3.2 Gestures

Gestures are the core of the AQUA-G framework. They are responsible for processing

input events in order to return some meaningful information as the result of the gesture

processing. For example, a zoom gesture will take as input touch point events and

output zoom events which contain scale and center information. The Gesture base class

in AQUA-G provides developers a means of implementing their own custom gestures.

AQUA-G is designed to make creating custom gestures as easy as possible for developers,

so there is only a single method that developers must implement for event processing.

It is defined as:

• bool processEvent(Event * e)

Developers must override this method to implement their own gesture processing.

It is also necessary that AQUA-G provide some means of gestures to publish their

resulting information, or output events. However, developer-created gestures should not

need to know where this information is going. As an example, for global gestures, event

translators, and region or component-centric gestures (distinction described in section

2.5), the destination for the resulting output events is not the same.

This could be done by allowing the processEvent method to return a list of gestures,

which the caller could then send to the appropriate destination. However, this imple-

mentation would limit gestures to only output events when their processEvent method

was called by some other code. Some gestures will want to implement timers and asyn-

chronous gesture processing, so providing a means of creating output events at will is

absolutely essential.

In order to satisfy this need, the Gesture base class provided by AQUA-G contains

a protected method publishEvent(Event * e) which developers can use in their imple-

mentations to output events which are a result of gesture processing. The publishEvent

method sends the event to the next component in the event flow diagram, which is

27

shown below in Figure 2.1. Each gesture is initialized by the framework with this “next

component,” and the publishEvent() method will send the event to this target compo-

nent. Therefore, any gesture may implement threading, timers, or other asynchronous

processing and call this method at will to output events.

2.3.3 Creating gestures and events dynamically

In order to ease gesture and event development for AQUA-G, I have chosen to im-

plement dynamic class loading in C++ to allow runtime loading of gesture and event

code. This is a departure from previous systems, and is one of the key contributions

of this work. In previous systems, to implement custom gesture processing, it was nec-

essary to add a new object to the system and hard-code object creation functionality

to incorporate the new gesture. AQUA-G does not share this limitation with other

systems. In AQUA-G, gestures and events can stand alone. Developers do not have

to have any knowledge of AQUA-G’s underlying implementation to create new gestures

and events. Furthermore, this gives developers the flexibility of not having to re-compile

the AQUA-G source code in order to add a new gesture or event.

As a matter of implementation, run-time class loading in C++ is accomplished

through an implementation of the Factory Method design pattern (22). Each gesture or

event class must implement a createEvent() or createGesture() method which returns an

instance of itself. These methods are exposed through DLL export in Windows or shared

object libraries in Linux, and can be used by the GestureFactory and EventFactory in

AQUA-G to load custom events and gestures dynamically.

In order to implement this approach, AQUA-G requires that event and gesture file-

names match their class names exactly. The factories use the data contained in the

“Event name” field of the event to load the appropriate library and call the creator

method to create the appropriate event.

28

2.3.4 Regions

The idea of “regions” was introduced by Sparsh-UI (58) and Tisch (18). A region

is an area of interest in the client application space. A region could be a UI widget,

a polygon in a 3D environment, or some other on-screen area of interest. Crucial to

accurate gesture processing is the ability to distinguish between on-screen objects and

process events appropriately.

In AQUA-G, I have chosen to follow the implementation of Sparsh-UI for region

identification and processing. In this method, event time AQUA-G receives an event

from an input device, it will ask the client application for a unique region identifier.

Therefore, the client must maintain knowledge of the locations of its UI components,

so that when AQUA-G asks which region an event should be sent to, the client can

respond with the correct identifier, and AQUA-G can process the event by sending it

to the appropriate region for processing by component-specific (also hereafter known as

region-specific) gestures.

2.4 Event flow

In AQUA-G, events pass through the system as shown in Figure 2.1. Events pass

from the input devices at the bottom of the figure, to the client application at the top

of the figure.

Events begin at the input device level, where they are sent to the AQUA-G ges-

ture server by the input device drivers. These events are received by a corresponding

InputDeviceConnection object residing inside the AQUA-G framework.

Each client application in AQUA-G has a stack of components associated with it,

as shown in Figure 2.1. This stack is made up of a gesture engine, event translators,

regions, and global and region-specific gestures.

Once AQUA-G has received events from input devices, the events are passed to all

29

Figure 2.1 AQUA-G event flow.

available GestureEngine objects. From there, they are sent to event translators, and then

move on to global gestures, regions, and region gestures. All of these components will be

described in the next section, which decomposes the system into individual components.

AQUA-G itself makes up all components in Figure 2.1 between the input devices and

client applications. AQUA-G does not impose any restrictions on the maximum number

of input devices or client applications. As stated above, each component in Figure 2.1

will be described in the system decomposition section. However, the exact module names

may differ slightly from this logical depiction of the architecture. Therefore it will be

useful to refer often to this diagram when reading the next section to remember where

each component lies in the event flow.

2.5 System decomposition

This section describes each module which is shown in the AQUA-G class diagram, as

shown in Figure 2.2. This diagram represents the object-oriented design and implemen-

30

tation of AQUA-G. Each module is responsible for a specific task, and its responsibilities

are described in this section. Modules are generally described in the order in which

Figure 2.2 AQUA-G class diagram.

events flow through the modules, as shown in Figure 2.1. Thus, modules which appear

early in this section receive events sooner than modules which appear later in the section.

An exception is this first module, EventProcessor, which provides a standard interface

for event processing which is used by many of the classes in the architecture.

31

2.5.1 EventProcessor

Figure 2.3 EventProcessor interface.

Many classes in AQUA-G have the need to perform processing on Event objects.

This common functionality is defined by the EventProcessor interface. Any class that

provides this interface shall implement the two processEvent methods provided here.

The methods are different only in that one method takes a integer regionID parameter

in addition to the Event parameter e. The regionID is provided by the client application

and is a logical equivalent to a GUI widget or component in the UI.

2.5.2 InputProtocol

Figure 2.4 InputProtocol class.

The InputProtocol class (Figure 2.4) is responsible for communicating with an input

device. In AQUA-G, input devices communicate with the AQUA-G gesture server over

a TCP socket connection. The InputProtocol class has a member variable socket which

is a TCP socket that is connected to the input device driver. It has a single method,

getNextEvent, which returns the next incoming event from the input device using the

pointer passed in as an argument (receivedEvent in Figure 2.4).

The AQUA-G InputProtocol specifies the format in which input devices should send

information to the AQUA-G gesture server. The input device driver connects to the

32

gesture server using a TCP socket connection. After establishing the connection to the

gesture server, it can begin sending events.

When an input device wishes to send an event, it should first send a short integer

which contains the number of bytes in the incoming event. The InputProtocol class in

the AQUA-G framework reads this short integer and proceeds to read that number of

bytes into a buffer. Finally, it constructs the appropriate event using the event name

and the data it received and places it in the output parameter receivedEvent.

Implementing the input protocol in a separate module allows for easy customization

of the protocol or extension of the protocol by class inheritance. For example, imple-

menting a custom input device protocol could be performed by sub-classing the input

device protocol and overriding the getNextEvent method.

The InputProtocol represents only the socket connection to the input device. Its get-

NextEvent() method is called repeatedly by an instance of the InputDeviceConnection

class, which is responsible for processing events received from an input device.

2.5.3 InputDeviceConnection

Figure 2.5 InputDeviceConnection class.

The InputDeviceConnection class represented in Figure 2.5 maintains information

about an input device connection. It contains a reference to the AQUA-G gesture server

in the member server and a reference to the associated InputProtocol object protocol.

Furthermore, each InputDeviceConnection has a unique identifier which is stored in id.

33

The InputDeviceConnection is constructed when the AQUA-G gesture server accepts

an incoming connection from an input device. It has a single method run which is called

by the GestureServer after it is constructed. This method begins reading events using

the getNextEvent() method in the InputProtocol class. Upon receiving an event, it sends

it to server by calling the processEvent method which is implemented in GestureServer

because it implements the EventProcessor interface.

2.5.4 GestureServer

Figure 2.6 GestureServer class.

The GestureServer is the core of the AQUA-G framework. It handles incoming con-

nections from input devices and client applications by listening on the member variable

listenSocket. Incoming connections made to this socket are processed, and the gesture

server creates input device or client application connections as necessary. Each client ap-

plication has its own associated GestureEngine object, and the GestureServer will send

all incoming events from the InputDeviceConnections to all available GestureEngines,

again by calling the processEvent method on the GestureEngine.

2.5.5 GestureEngine

The GestureEngine class is tasked with processing all events targeted for a specific

client application, and is the first client application-specific module to receive events

from input devices. It maintains a list of all event translators (see Figure 2.7), which are

described below. Upon receiving an event, it sends the event to all available translators.

34

Figure 2.7 GestureEngine class.

When the translators have finished processing the event, the GestureEngine sends the

event to the globalLayer for further processing. The GestureEngine also maintains a

reference client to a ClientConnection object. It uses this object to communicate with

the client application. When a GestureEngine is initialized, it asks the client which

event translators the client would like to register.

2.5.5.1 Event translators

The event translators mentioned in this section are given a special place in the AQUA-

G gesture framework, and represent another new area which has not been previously

implemented. In the Tisch architecture (18), the transformation layer is responsible

for calibrating incoming data (See Figure 1.4). In AQUA-G, event translators have

much more power. Event translators are instances of gestures, but they have additional

abilities. They can translate input device information into other, perhaps more relevant

information. They publish their resulting events back to the gesture engine, allowing for

“layered” translators if desired by the client application. Here are two examples which

demonstrate the need for event translators:

• A certain input system may provide touch point information and also track user

hands via diffuse illumination (65), Cricket location sensors (56), or with an over-

head camera (17). An example of this type of application is described in chapter

3. An event translator may accept as input these two types of information and

output touch point data augmented with a hand identifier.

35

• A Wii Remote may provide input events such as accelerometer values. An event

translator may filter this information to provide smoother values, or it may inter-

polate the accelerometers to provide velocity or even attempt to provide position

events.

Event translators can also consume events so that they are not processed by the global or

region gestures. This allows for appropriate translation of events, since event translators

often intend to replace incoming events with the translated events.

2.5.6 GlobalGestureLayer

Figure 2.8 GlobalGestureLayer class.

Global gestures are not associated with a particular component in the user interface.

For example, gestures which have global actions such as “turn system on” or “mute

volume” are generally not associated with a particular UI component, and thus should

be processed on a global or application-wide level. Gestures in this class will receive all

events from the input devices, and their resulting events are published directly to the

client application.

The GlobalGestureLayer (Figure 2.8) is a placeholder for these types of gestures. It

maintains a list of all of these gestures in globalGestures, and also maintains a list of

allowed events which the client is interested in receiving. The client specifies the types

of events it wishes to receive during initialization.

36

Finally, the GlobalGestureLayer maintains a list of regions, which were described in

section 2.3.4. It is responsible for determining which region events should be sent to

as they are received from the input device. After the GlobalGestureLayer receives the

region identifier for the event from the client, it calls the appropriate processEvent()

method for that particular Region.

2.5.7 Region

Figure 2.9 Region class.

Each Region object module is responsible for maintaining a single region of interac-

tion, and is a counterpart to its visible representation in the client application. Usually,

this representation is a component or widget in a user interface.

When a Region object is first created, it will ask the client application which gestures

should be allowed for this region using its reference to the client application. The client

application will respond with a list of the available gestures and events for that region.

As an example, for a photo organizing application, each region might represent a single

photo in the interface, and the the client would respond to this message with “zoom

gesture, rotate gesture, drag gesture” or some other list of available gestures it deems

appropriate.

37

Figure 2.10 Client Connection class.

2.5.8 ClientConnection

The client application communicates with AQUA-G through TCP sockets. This class

contains a socket with which it uses to communicate with the client application, and

provides methods which the framework can use to sent the client application messages.

These messages and the communication that takes place is described in greater detail

in section 2.6.

2.5.9 Utilities

Since AQUA-G must run on multiple platforms, platform-specific functionality has

been abstracted into wrapper classes which provide the necessary functionality. The

utilities package in AQUA-G also provides functionality for endian conversion, which is

required for transmitting event data over the TCP sockets.

2.5.9.1 FileSystem

Figure 2.11 Filesystem class.

The FileSystem class is responsible for using platform-specific APIs to find shared

libraries in a given directory. Its getSharedLibraryFiles() method returns a list of file

38

names which represent all of the available shared library files in the given directory. This

method is used by the gesture and event factories to dynamically load the gestures and

events. The method must take into account the different prefixes and extensions which

each platform uses - on Windows, the method looks for “¡MyGesture¿.dll” files, on Linux

it looks for “lib¡MyGesture¿.so” files, and on Mac OS it looks for “¡MyGesture¿.dylib”

files.

2.5.9.2 AquaSocket

Figure 2.12 AquaSocket class.

Since AQUA-G communicates with input devices and applications over sockets, it

is necessary to wrap the platform-specific socket APIs so that the framework can make

use of sockets in a platform-independent manner. I investigated several other socket-

wrapping libraries, but settled on writing my own because of the additional dependencies

that AQUA-G would require in order to build using these libraries. The AquaSocket class

makes use of preprocessor definitions to compile the correct code during the build process

for AQUA-G, and it provides standard socket functionality. For exception handling, the

socket will throw a generic exception which can be caught by users of the class.

2.5.9.3 EndianConverter

The EndianConverter class provides simple conversion from little-endian to big-

endian byte ordering, and also provides a method which will check if the current platform

39

Figure 2.13 EndianConverter class.

is a little or big-endian platform. Users of the class can utilize these functions to convert

all data to be sent over the network into network-endian (big-endian) byte format, and

back to host-endian format when it is received.

2.5.10 Gesture and event creation

AQUA-G dynamically loads events and gestures, and makes use of the factory

method design pattern described in (22). Each shared library will expose a creator

method, which the framework can find through the use of platform-specific dynamically-

linked library code. It then uses this method to create the appropriate class, given a

certain class name. The factories shown in Figure 2.14 and Figure 2.15 expose methods

which will return a pointer to the instance of the created class, given the class name.

Figure 2.14 EventFactory class.

40

Figure 2.15 GestureFactory class.

2.6 Client application interaction

Because AQUA-G will communicate with user interface applications, the interaction

with these applications is more complicated than interaction with the input devices,

where it is sufficient simply to send events to AQUA-G. The messages that the client

will be expected to respond to are described in this section.

2.6.1 Initialization state

Upon initialization, the client must identify itself to AQUA-G as a client application.

As soon as a connection has been established, the gesture server will require knowledge

of the allowed global gestures and event translators allowed for a particular client appli-

cation. Thus, it will expect the client application to respond to the following messages.

2.6.1.1 Get global information

This message is sent by AQUA-G when it requests the global gestures that will be

associated with this client. The client application must respond by sending an integer

which represents the number of gestures it wishes to register, followed by a set null-

terminated strings, each of which contains the name of each gesture it wishes to register

as a global gesture.

Furthermore, AQUA-G will also need to know which events should be passed globally

to the client application. Events specified will be sent directly from the input devices

41

to the client applications. This allows AQUA-G to act as a simple event pipe between

input devices and client applications. This functionality can be useful for debugging

input devices or working with input device data directly in the client application.

To send events, the client application must send an integer which represents the

number of events it wishes to register, followed by a set of null-terminated strings, each

of which contains the name of the event it wishes to register as a global allowed event.

2.6.1.2 Get event translators

This message is sent by AQUA-G to request the event translators that will be as-

sociated with this particular client. The client application must respond by sending an

integer representing the number of gesture names it will send. It will then send a set

of null-terminated strings, each of which contains the name of each gesture it wishes to

register as an event translator.

2.6.2 Running state

After initialization, the client application should be prepared to respond to any of

the following messages which are sent by AQUA-G.

2.6.2.1 Get region identifier

This message is sent when AQUA-G recognizes a new event. Along with this message,

AQUA-G sends a location which represents where the event occurred. The client should

use this information to find the appropriate region identifier and sent it back to AQUA-G

as an integer value.

2.6.2.2 Get region information

This message is sent by AQUA-G when it recognizes a new region – when the client

sends a region identifier as a result of the Get Region Identifier message that AQUA-G

42

has not used before. For proper behavior, the newly created region will need to know

which gestures should be associated with it. The client shall respond similarly to the

Get Global Gestures message, because the region needs to be initialized with the same

type of information as the global gesture layer - a set of allowed gestures and events.

However, these gestures and events will only apply to this specific region. To respond

to this message, the client will respond in exactly the same was as when responding

to the Get global gestures message - by sending an integer representing the number of

gesture names it will send, followed by a set of null-terminated strings, each containing

a name of a gesture it wishes to register with this region. It must also send an integer

which represents the number of events it wishes to register as allowed for this region,

followed by a set of null-terminated strings, each of which contains the name of the event

it wishes to register as an allowed event for this region.

2.6.2.3 Process global event

This message is sent when a global event has occurred. In the examples given pre-

viously, this would be something such as a “turn off” or “mute volume” type of event,

which has been recognized by a global gesture. In addition to the message itself, AQUA-

G sends a byte array containing the event data which the client shall use to identify the

event and construct the appropriate event.

2.6.2.4 Process region event

This message is nearly identical to the Process Global Event message, but in addition

to the event data, AQUA-G also sends an integer representing the region ID for which

this event occurred. Using this information, the client can respond appropriately to the

incoming event.

43

2.7 Supported input devices

The AQUA-G framework supports multiple simultaneously connected input devices,

and allows developers to create their own input devices by following a standard protocol.

Already, support for several devices exists, and support for additional devices is planned

for future work. Devices drivers have been written for the following input devices.

2.7.1 Windows and Linux mice

AQUA-G provides a device driver for a standard windows mouse as well as a stan-

dard Linux mouse. This allows developers to test their applications using conventional

hardware before they acquire other input devices. The mouse provides unified events

such as down, move, up, and hover events, and sends an identifier which represents the

left, middle, and right mouse buttons.

2.7.2 HP TouchSmart touchscreen

A device driver has been written which takes input from an HP TouchSmart touch-

screen using the NextWindow Two-Touch API. Since the driver uses this standard API,

it is believed that this device driver will work for any input device which has a Nex-

tWindow touchscreen. However, this has not yet been tested.

2.7.3 iPad and iPhone

A developer has contributed a device driver for the iPad and iPhone as a result

of the evaluation conducted of AQUA-G. The driver turns these devices into wireless

trackpads, where the screen on the device is mapped to the application using a 1-1

correspondence. Thus, any point pressed on the iPad or iPhone will be mapped directly

to the application screen. This has both advantages and disadvantages, because a user

44

Figure 2.16 The HP TouchSmart.

Figure 2.17 The Apple iPad.

45

can interact with any on-screen information quickly, but in a less precise manner as a

result of the small input surface.

2.7.4 Wii Remotes

Figure 2.18 The Nintendo Wii Remote.

Support is also provided for multiple simultaneously connected Wii Remotes. The

Wii Remote support utilizes the C-sharp WiiMoteLib API written by Brian Peek (55),

and, as a result, only works on Windows operating systems. The Wii Remote interface

to AQUA-G follows the standard Wii interaction paradigm of pointing at the screen,

and requires a Wii sensor bar or equivalent sources of infrared light. The driver uses the

two infrared light sources, tracked by the Wii Remote’s infrared camera, to indicate the

place on the screen that the user is pointing. Using this information, the driver allows

46

the user to click on objects using the trigger button located on the bottom of the Wii

Remote.

2.7.5 Cricket location sensors

Figure 2.19 A Cricket sensor.

In the haptics lab at the Virtual Reality Applications Center, Iowa State University,

we have an implementation of a Cricket location system which, utilizing Cricket sensors

(Figure 2.19) strapped to users’ hands, can provide hand positions when multiple users

are interacting with a 60” multi-touch table. I have written an AQUA-G device driver

for this system, which allows us to write applications which utilize user identification.

An example of this type of application is described in the case studies chapter later on

in this work.

2.7.6 Sparsh-UI input devices

Since many of the devices we use in our lab use Sparsh-UI for gesture recognition,

AQUA-G provides backwards compatibility in the sense that it will accept connections

from Sparsh-UI devices. A custom protocol has been written which allows these de-

47

vices to communicate with the AQUA-G framework without any changes to their device

drivers.

Support for more input devices is planned for future work, and we expect that de-

velopers will continue to contribute device drivers for many new and perhaps as of yet

unknown types of input devices in the future.

2.8 Supported gestures

AQUA-G comes with a standard set of dynamic gestures which allow for the devel-

opment of gesture-enabled applications. It is my hope that developers will continue to

contribute gestures for AQUA-G, adding to an ever-expanding list of supported gestures.

The current gestures that come with AQUA-G are described in this section.

2.8.1 Drag gesture

The drag gesture allows for multi-point movement of objects. Therefore, users can

drag objects with multiple fingers or mice at the same time. The drag gesture calculates

the drag amount based on the centroid of these points, and outputs a drag event which

indicates where on the screen the desired component should be moved to.

2.8.2 2D rotate gesture

The 2D rotate gesture allows for multi-point rotation of objects. The gesture calcu-

lates the rotation based in the change in the angle of points about the centroid of those

points. Upon determining the amount the user has rotated multiple points, the gesture

creates a rotate event and outputs this to the application.

As of July 1, 2010, only 2D rotation is supported. Using three or more points to

rotate objects in 3D space is a complex operation, and we are still determining the best

way to handle these types of gestures.

48

2.8.3 Zoom gesture

The zoom gesture allows for multi-point scaling of objects, where the scale is calcu-

lated based on the relative change in distance between the points on the object. The

scale is calculated using this relative change and is sent to the applications as a zoom

event.

Because multiple gestures can be combined together, if the drag, rotate, and zoom

gestures are all processed at the same time, applications can allow for rotation and

scaling about any point of the component, not just the center.

2.8.4 Flick gesture

This gesture behaves similarly to mouse gestures in Firefox (44) or pen flicks in tablet

editions of Windows (43). It simply detects quick user “flicks” in four directions: up,

down, left, and right. The gesture will send a flick event to applications if a flick is

detected.

2.8.5 Double-click gesture

This gesture detects when users have tapped or clicked twice rapidly. This allows

developers to utilize double-clicks in their applications without having to perform the

double-click detection themselves. The gesture sends double-click events to applications;

along with the amount of time that elapsed between the two clicks. This allows appli-

cations to customize timing for individual clicks if they find their application is not

responding appropriately.

2.9 Supported event translators

AQUA-G also provides a few basic gestures which are intended to be used as event

translators. In AQUA-G, any gesture can serve as a standard gesture or an event

49

translator; so the term “gesture” in AQUA-G also extends to event processing algorithms

or translators which are implemented as gestures, such as the following two gestures.

2.9.1 Get handID gesture

This gesture associates hand position with touch points. It can be utilized by ap-

plications which require user identification, meaning they need to know which user is

associated with each individual interaction. The gesture is intended to be used as an

event translator. It consumes hand positions and unified touch events and outputs Han-

dIDTouch events which contain a hand identifier of the hand which was closest to that

point at the time the point was detected.

2.9.2 Kinetic gesture

In some multi-touch applications, developers have attempted to simulate physical

properties in interfaces. For example, objects in an interface, when moved quickly and

released, will continue to move and then slow down gradually, as if by the force of friction.

This can have a pleasing aesthetic effect, and I wanted developers using AQUA-G to

have access to this effect. Therefore, this gesture takes as input unified events, and,

upon receiving an UP event, will continue to simulate additional events which are in the

direction of motion of the previous MOVE events that were received. The simulated

events will slow down over time and, when the speed of the object has fallen below a

predefined threshold, the gesture will send an UP event to the application.

50

CHAPTER 3. CASE STUDIES

In this chapter, I will present several case studies of AQUA-G. The case studies

describe example applications, device drivers, and gestures which have been developed

using the AQUA-G framework, and demonstrate its power and flexibility for developing

varied types of software applications. Three of the projects described in this chapter

were created by the author, and three others were created by other developers using the

AQUA-G framework.

3.1 A first application

In order to test and debug AQUA-G, it was necessary to develop a simple application

which would allow for testing of basic gestures and input devices. To achieve this end,

I developed an application which allows users to drag, scale and rotate several colored

blocks on the screen. The application is analogous to the rather widespread photo-

organizing demonstration available on many multi-touch devices. An image of this

application in use is shown in Figure 3.1.

The application was written in Java and utilizes AQUA-G unified events and the

Drag, 2D Rotate, and Zoom gestures provided by AQUA-G and described in section

2.8. The sample application currently allows the following input devices to be connected

simultaneously.

• Windows mouse

• HP TouchSmart touchscreen

51

Figure 3.1 A first AQUA-G application.

• Wii remotes

• iPad

• Sparsh-UI input devices

Using the HP TouchSmart, users can drag, scale and rotate the blocks on the screen

using two fingers to pinch, stretch, or rotate the blocks using the gestures described

above (Figure 3.2). The HP TouchSmart API only provides two simultaneous points

of touch, so even though the gestures provided by AQUA-G are capable of recognizing

and processing more than two fingers, users can only use two fingers to interact with the

application.

Users may also interact with the application using a standard mouse. With the

mouse, users can drag objects around on-screen and also use the mouse wheel to scale

the objects (Figure 3.3). Moving the mouse wheel up or down makes the objects bigger or

smaller; similar to using two fingers to scale the objects using the TouchSmart. However,

by utilizing AQUA-G, the mouse is able to send native AQUA-G zoom events to AQUA-

G. These zoom events are passed directly to the application rather than being sent

through the gestures for processing.

52

Figure 3.2 A user interacting with the sample application using the HP
TouchSmart.

Figure 3.3 A user interacting with the sample application using a standard
mouse.

53

Users may also interact with the sample application using a Wii Remote (Figure 3.4).

The Wii Remote allows users to drag objects around on the screen by pressing and

holding the B button, located on the bottom of the remote. It also allows a user to scale

objects by pushing the Wii Remote towards the screen and by pulling the Wii Remote

away from the screen.

In order to accomplish this, the Wii Remote utilizes an infrared camera to track the

distance between the two infrared points of light, which are emitted by a Wii sensor

bar. By pushing the Wii Remote closer to the screen, the camera moves closer to the

screen, and as a result, the camera detects that the distance between the two points of

light has increased. This relative change in the distance between the two points is sent

to AQUA-G as a native zoom event, similar to the mouse driver implementation.

Figure 3.4 A user interacting with the sample application using a Wii Re-
mote.

Finally, the application allows users to interact using an iPad or iPhone (Figure 3.5).

The device driver turns the iPad or iPhone into a touch-based input device which op-

erates in the same space as the display using a 1-1 correspondence. To clarify, when

the user touches in the middle of the iPad, a touch point is shown in the middle of the

sample application’s screen. Similarly, if a user were to touch near the upper left corner,

the touch would be displayed near the upper left corner of the application’s screen. In

54

this way, users can interact with the on-screen objects in the same manner as they would

using the HP TouchSmart.

Figure 3.5 A user interacting with the sample application using an iPad.

Since the sample application supports multiple simultaneous input devices, users can

interact with the application using multiple devices at the same time. In Figure 3.6,

a user is simultaneously using the HP TouchSmart and the mouse to interact with the

application. I found that interacting with both the touchscreen and mouse simulta-

neously afforded precise and engaging interaction, which I did not necessarily expect.

Prior research has shown that multi-touch interaction can offer advantages for manipu-

lating objects when it is necessary to simultaneously zoom, drag, and rotate them (46).

However, it can often afford less precise interaction than a standard mouse (21; 61). I

anticipate that AQUA-G will allow us to experiment with these and similar unexplored

types of interaction for other applications.

3.2 A user-identification based application

In addition to the sample application, I have developed another application which

utilizes the GetHandIDGesture provided by AQUA-G to recognize individual users gath-

ered around a 60” multi-touch table. The application is written in Java and is an im-

55

Figure 3.6 A user interacting with the sample application using both an
HP TouchSmart and a standard mouse simultaneously.

plementation of Conway’s Game of Life, as described by Gardner in a 1970 issue of

Scientific American (23). The game is played on a square grid, and is played as follows.

First, a player enables or gives life to a set of squares in the grid, called life forms. Once

this setup has been performed, the user’s task is complete, and the user simply watches

their creation evolve. The game evolves iteratively based upon the following rules which

govern the calculation of the next iteration. In the next iteration:

1. any alive cell with less than 2 alive neighbors dies from loneliness.

2. any alive cell with more than 3 alive neighbors dies from overcrowding.

3. any alive cell with 2 or 3 alive neighbors remains alive in the next iteration.

4. any dead cell with exactly 3 neighbors becomes alive in the next iteration.

These simple rules evoke surprisingly interesting and engaging behavior of the simulated

life forms.

In this application, users touch the screen to create alive cells. The game differs

slightly from the standard version of the game described above, in that it allows for user-

56

Figure 3.7 Two users playing the AQUA-G Game of Life.

controlled creation of new alive cells during the evolution of the system. Furthermore,

this application has been augmented with user identification, which allows each user

to create uniquely colored life forms. One user’s alive life forms are able to assimilate

other alive life forms if they own a majority of the life form’s neighbors. This evokes

a somewhat competitive environment as users attempt to spread their own life forms

throughout the playing surface and try to repel other users’ life forms. An example of

two users playing the game is shown in Figure 3.7.

To provide user identification, the application uses the Cricket user identification

system developed by Ramanahally (59) for the Virtual Reality Applications Center.

The Cricket sensors are visible in Figure 3.7 and provide hand positions to AQUA-G,

and touch points are provided by the multi-touch sensitive table. AQUA-G processes

these inputs in the GetHandIDGesture and reports touch points augmented with a user

identification field to the application.

This game demonstrates the power of AQUA-G to utilize varying types of input from

devices other than standard pointing devices. Furthermore, it showcases the collabo-

rative (or competitive) nature interaction such as this can provide, and the interaction

paradigm demonstrated extends easily to important applications such as virtual assem-

57

bly, collaborative design, mission planning, and others. Using AQUA-G allowed this

application to be developed rapidly using the same method and similar code as the first

example application described in the previous section.

3.3 LABET unmanned vehicle controller

This unique application of AQUA-G was contributed by an external developer utiliz-

ing AQUA-G to provide an event handling framework for controlling an unmanned aerial

vehicle (UAV) named LABET (Low Altitude Balloon Experiments in Technology). A

picture of the LABET vehicle is shown in Figure 3.8.

Figure 3.8 The LABET unmanned aerial vehicle.

The architecture involves three input devices: a joystick, mouse, and the UAV, and

three client applications: two GUI applications for controlling the UAV, and the UAV

itself. This application extends the use of AQUA-G to an application which I did not

originally expect, and demonstrates the power and flexibility of the framework to be

used in widely varied applications. A diagram of the architecture of this application is

given in Figure 3.9.

58

Figure 3.9 Architecture for the AQUA-G solution to LABET UAV control.

Figure 3.10 The LABET avatar simulated in OpenGL.

59

As shown in the architecture diagram, there are three applications for this AQUA-

G solution: two GUIs and the vehicle itself. These applications subscribe for global

events from the joystick and the mouse controllers, and utilize the events to update user

feedback (GUI applications) or control the vehicle (LABET UAV). Furthermore, the

two GUI applications also subscribe for global events from the LABET UAV, which, in

this architecture, functions as both an input device and client application.

This AQUA-G case study is still under development, and will be completed after

the publication of this thesis. So far, work has been performed to develop a joystick

device driver and simple client application which, using OpenGL, allows users to control

a virtual LABET avatar using the joystick. This avatar is shown in Figure 3.10.

3.4 The flick gesture

As part of the evaluation of AQUA-G, a developer created a gesture which I have

have called the Flick gesture. The gesture recognizes flick gestures similar to Pen Flicks

in tablet editions of the Windows operating systems, or Firefox mouse gestures which

are available as a Firefox add-in. The gesture uses time to detect rapid click, drag,

and release motions in four directions (up, down, left, and right). The generated “Flick

events” can be interpreted and used as command shortcuts by applications wishing to

incorporate this functionality.

As described in Appendix A, I have created a website (60) which contains tutori-

als and example code for developers wishing to develop software using AQUA-G. The

developer who created this gesture did so by modifying the sample gesture and event

projects which are provided on the AQUA-G website.

60

3.5 The kinetic gesture

In some multi-touch demonstrations, developers have attempted to recreate physical

properties of tangible, real-world objects. They have attempted to make objects on-

screen behave as objects in the real world do when moved on a table. These objects,

if moved quickly and released, will continue to move even after the user has released

them. The objects will come to a stop as if suppressed by the force of friction. I wanted

developers using AQUA-G to be able to utilize this visually appealing effect.

To achieve this, I set out to create an AQUA-G gesture which would provide this

feature. The result has been named the Kinetic Gesture, and it is intended to be used

as an event translator. If the gesture detects that the user has moved an object quickly,

when the object is released, the gesture will simulate additional events which appear to

continue moving the object. The speed of the simulated events will decrease over time,

as if by friction.

In order to implement this gesture, it was first necessary to decide how to deter-

mine if the object should continue to move after the user has released contact with the

object. I have implemented this detection based upon the acceleration of the point of

interaction with the object. I assume that if the object is accelerating in the same di-

rection it is traveling, then it should continue moving after the user releases it, and if it

is decelerating, it should not continue to move.

Therefore, the kinetic gesture determines that a point of interaction should continue

moving based on the location of the five most recent events received for that point of

interaction. Upon receiving an up event for that point, it calculates the average velocity

and acceleration of these last five events.

If the acceleration is in the same direction as the velocity of the object, the gesture

assumes that the object should continue moving, and starts a new thread. This new

thread uses the average velocity which was calculated by the gesture and continues to

61

send move events after the real up event was received. To simulate the force of friction,

the thread applies a constant deceleration of the object, calculates the resulting position

and new velocity of the object, and sends these simulated events. Once the velocity has

fallen below a threshold, the gesture sends an up event to the client application.

This gesture, similar to the flick gesture, was created by modifying the sample gesture

project provided on the AQUA-G webpage.

3.6 The iPad and iPhone driver

As part of the evaluation of AQUA-G, a developer created an AQUA-G device driver

for both the iPad and the iPhone. The device driver allows a user to utilize an iPad

or iPhone to connect to AQUA-G. The developer completed this device driver quickly

by reusing existing code to communicate with a standard mouse. An example of a user

using this device driver is shown in Figure 3.11.

Figure 3.11 The iPad device driver.

Since the iPad or iPhone functions as an input device for AQUA-G, but not a client

application, it cannot easily duplicate the screen that the client application shows. Cur-

62

rently, the device driver works by mapping the input device screen directly to the client

application screen. Thus, a user touch on the device is scaled and mapped to the larger

screen. However, since the iPad and iPhone do not provide the pressure of the touch,

it is impossible to know exactly where a user is about to touch until after they have

done so. I have observed that this leads users to perform a “guess-and-check” style of

interaction where they first tap to determine where their finger is on the larger screen

and establish a frame of reference, then move their finger and tap again. A user will

repeat this process until the object they find is selected.

This is not an ideal method of interaction because users, before interacting with the

application, must spend time determining where their fingers are on the screen. Matejka

et al describe means of using multi-touch displays to emulate a mouse (40), and it would

be interesting to apply their techniques in order to allow the iPhone or iPad to function

more like a wireless trackpad. This would provide interesting opportunities for exploring

different means of interaction with this device.

This case study shows the capabilities of AQUA-G to communicate with devices

over a wireless connection. Using a multi-touch input device which demands very high

throughput over a network connection limits the performance of the device and the

application. Thus, it will be necessary in future work to evaluate potential areas of

improvement for performance when connecting input devices over a network connection.

63

CHAPTER 4. EVALUATION

AQUA-G was designed to allow other software developers to utilize it to create

gesture-enabled applications. Therefore, in order to effectively evaluate AQUA-G, it

was necessary to involve outside developers in the evaluation. In order to satisfy this

goal, I involved outside developers in two ways: first, by proposing AQUA-G and asking

for developer feedback, and second, by requesting developers to use the framework and

participate in an interview upon completion of their experience. These two methods of

evaluation have provided valuable feedback and validation of the usefulness of AQUA-G

for developing gesture-enabled applications.

4.1 Initial developer survey

Before embarking on the task of designing and implementing a system like AQUA-

G, I felt that it would be beneficial to request opinions and advice from other software

developers who might benefit from such a system.

To evaluate the potential benefits of AQUA-G, I conducted a survey of developers

to establish the merit of creating such a system. The survey was administered via an

email request and was sent to a sample of developers, all male, between the ages of 20

and 50. Of those surveyed, nine responses were collected. Of these nine responses, three

of them were from developers in academia (grad students), and six of them were from

developers working in industry. Most developers were alumni of Iowa State University,

and all had prior experience developing end-user applications.

64

The developers were provided a PDF document with a description of the AQUA-G

concept and features, and were asked to answer questions about the proposed design.

The questions in the survey revolved around initial reactions, perceived advantages and

disadvantages, and other miscellaneous queries. During evaluation of developer feedback,

several major themes emerged. Among these themes were the need for cross-platform

compatibility, ease of use, and others. Table 4.1 shows some comments from developers

categorized into their respective themes. Furthermore, the number in parenthesis rep-

resents the number of developers that made a comment related to this theme. What

follows is a summary of their comments in response to the questions asked. This eval-

uation provided insights into the design of AQUA-G and also affirmed that the system

would be valuable to develop.

The initial proposal was generally well-received by the developers who responded

to the survey. When asked about their initial reactions, developers commented that

“it sounds like it will have some very good features that would be useful in a research

or development environment,” and that “anything that abstracts away the input from

several devices is a great idea.” Developers did express some initial concerns with the

work as well, commenting that “I’d want to hear more about how the system actually will

be implemented,” and “Does the input device / gesture events adhere to some standard?”

These initial concerns generally expressed a desire to obtain more information.

When asked about the potential advantages of such a system, two developers ex-

pressed their opinion that the biggest advantage would be in saved time for developers.

Others commented that advantages would be “flexibility to plug-n-play with any device

given the proper input interpretation,” “multiple input devices with dynamically loading

gestures,” and “modular generic gesture recognition modules.”

Developers were also asked what they thought might be the primary limitations

of such a system. They expressed that it would be difficult to convince people to use

AQUA-G if alternatives exist. Another concern expressed was that of performance. One

65

Table 4.1 Major emergent themes in initial survey.

Theme Selected Quotations

Cross-platform
importance (6)

“Cross-platform compatibility is extremely important - I’d need
it to run on all three major OSes to consider using it”
“It is not critical that it be cross-platform but it is a plus. We
use both Linux and Windows OS.”
“You need Win7 and OSX. As soon as you do that, you may as
well support Linux.”

Developer experi-
ence (5)

“It could be difficult to convince people to write drivers for the
system when another alternative system may already exist.”
“If it’s any more difficult to use than a regular event driven ar-
chitecture most people won’t see the benefits.”
“[Consider the] developer interface.”

Ease of use (5) “It sounds like it would make it very easy for developers to add
support for receiving gestures from a variety of input devices.”
“This would clearly make creating applications easier.”
“Ease of use and configurability of the system would be key cri-
teria.”

Performance (3) “More generic systems are prone to being less performant, and
that can really matter when you’re dealing with user input.”
“As the number of gestures supported grows (specifically static
gestures), it may have a significant impact on the responsiveness
of the system (since multiple inputs from multiple devices are
supported).”

Other themes (2) Flexibility, saved time for developers, dynamically loaded ges-
tures, developer (open source) community, choice of programming
language

66

developer noted that “most generic systems are prone to being less performant, and that

can really matter when you’re dealing with user input.” It was therefore crucial to take

performance issues into account when developing AQUA-G.

Developers wrote that they would be excited to try out the system when it was

completed. They generally expressed a desire for the system to be cross-platform, and

only three noted that they had heard of systems similar to this, those systems being

VPRN (68), VR Juggler (7), and Sparsh-UI (58).

4.2 User evaluation

Evaluation of a software framework is crucial in order to determine its usability and

usefulness. AQUA-G was no exception, especially since it is to be used by a wide com-

munity of developers. Effectively evaluating whether a software framework will be useful

should involve asking developers to use the framework and report back on their expe-

riences. I evaluated AQUA-G in this way, and interviewed the developers about their

experiences with AQUA-G. Though the sample size of developers was relatively small,

the qualitative feedback they provided regarding AQUA-G was essential in determining

some of the future work for the framework.

I requested developers to use AQUA-G to develop gestures, applications, and de-

vice drivers, and participate in an interview about their experiences. I successfully

recruited six other software developers. Five of these students were graduate students in

technology-related disciplines, and one was a faculty member in the Dept of Electrical

and Computer Engineering. All participants were male, and all had no prior experience

with AQUA-G, though one undergraduate student had previously developed software

for Sparsh-UI.

Four participants developed gestures for AQUA-G - three worked on a double-click

gesture independently, and one worked on a flick gesture. One participant completed an

67

iPhone/iPad device driver, and another completed both a joystick device driver and an

application for the LABET UAV case study described in chapter 3.

4.2.1 Method

The participants were tasked with developing additional components for AQUA-

G. Each participant was given a short verbal introduction to AQUA-G, a description

of the task he would complete, and a verbal walk-through of the AQUA-G website

and available documentation and sample projects. After completing this introduction,

participants completed their respective development tasks.

Figure 4.1 Method for conducting developer study.

The participants were instructed that they could ask questions throughout their

development process in order to clarify questions or concerns they might have about

using AQUA-G. I answered these questions and helped explain the architecture in greater

detail, and explained the method for developing code for use AQUA-G, but did not

review or assist the participants in writing code to develop their component. As a

result, I did not influence the implementation or design of the participants’ solutions, or

help them write the code to interface their component with AQUA-G.

68

Upon completion of their development task, the participants were interviewed in

person about their experiences. Both interviews were recorded for later review and

analysis. The interview protocol used may be found in Appendix C, and it contains

questions which inquire about the developers’ perceived advantages and disadvantages

of AQUA-G, how they would rate their experience using it, what could be improved

about the development process, and more.

I have selected two example tasks and interviews to present as examples of the

evaluation conducted. This will demonstrate in greater detail the study method and the

types of questions the participants were asked during the interview.

4.2.2 Example student 1

4.2.2.1 Task

I tasked a computer engineering undergraduate student with developing an iPad and

iPhone device driver, and the result of his assignment was discussed as a case study in

Chapter 3. The student was provided with AQUA-G documentation and sample code

and told to write a device driver for the iPad and iPhone.

4.2.2.2 Difficulties encountered

The student reported that a lot of the time he spent working on the device driver for

AQUA-G was working on iPhone or iPad-specific issues, rather than AQUA-G issues.

He reported that the biggest problems he encountered were not knowing the specifics of

how AQUA-G worked. He didn’t know what the device identifier (device ID) was for, or

that the array of 3 floats in the touch point represented the x, y, and z of the touch point.

The other problems he encountered concerned learning how to develop for the iPhone

/ iPad. The difficulties this student had could be partially mitigated by improving the

documentation and sample projects on the website.

69

4.2.2.3 Results

The student succeeded in developing both an iPad and iPhone device driver for

AQUA-G which connects over a wireless connection to the AQUA-G gesture server. The

student estimated that he spent approximately 15 hours developing the device driver,

which is described as a case study in Chapter 3. The student’s abbreviated questions

and responses to the interview questions are given in Table 4.2. During the interview,

the student noted that there is currently no way to send feedback-related information

to input devices to turn on lights, enable vibration, or perform other feedback actions.

This will be discussed as future work.

4.2.3 Example student 2

4.2.3.1 Task

I tasked a mechanical engineering student with developing a flick gesture which is

also described in a case study in Chapter 3. The student was provided with AQUA-G

documentation available on the website as well as sample gesture code.

4.2.3.2 Difficulties encountered

Due to the student’s background in mechanical engineering, he was not as experienced

with C++ and general programming knowledge as was the first student. This student

encountered difficulty setting up the project and build process correctly, especially using

Visual Studio on Windows.

Additionally, the student expressed that he had difficulty determining the flow of

the events/gestures and figuring out where his code needed to go. He mentioned that

this was clarified during a discussion he and I had about the architecture of AQUA-

G. This perceived difficulty suggests that the AQUA-G website should contain more

documentation regarding the architecture on the wiki page on the website.

70

4.2.3.3 Results

The student estimated that he was able to complete his development task in about

10 hours. The fact that the student was able to learn about AQUA-G having never

heard of anything like it, read the documentation, and complete a gesture and event so

quickly, is a testament to the student’s skill as well as to the design of AQUA-G.

As a result of the design of AQUA-G, the student didn’t have to touch the original

AQUA-G source code and instead was able to focus on only the code necessary to

recognize the gesture. However, the student mentioned that he had in fact used existing

gesture code in the AQUA-G source code, which was not part of the sample project he

was provided. He noted that the sample projects were too simple, and seeing a more

complicated gesture which involved data processing was more helpful. The student’s

responses to the interview questions are given in Table 4.3.

This will be taken into account for future work and improvement of the framework.

The student and I discussed ways which more complicated sample projects could be

provided to better show how to write gesture-processing code.

4.3 Discussion of evaluation results

All participants completed their development tasks and created contributions to the

AQUA-G framework. The iPad and iPhone device driver, flick gesture, double-click

gesture, and joystick driver are now part of the AQUA-G project and can be used with

AQUA-G.

All participants expressed positive feedback about their experience. They stated that

developing a device driver or application would not be a difficult task for the average

developer. The participants most likely based this opinion on the fact that they were

all able to complete their tasks in less than 15 hours, demonstrating that developing a

component for AQUA-G does not involve an inordinate amount of time. Considering the

71

fact that this was the participants’ first experience with AQUA-G, and that development

time for developing additional components would likely decrease, these results show that

I was successful in creating a framework which the participants found easy to use and

develop for.

Furthermore, because these participants developed their components using AQUA-

G, after finishing development of the individual component, each could easily create

a fully functional application which utilized their module with very little additional

development time. In comparison, asking these participants to write all of this code

from scratch, including a device driver, application, and gestures, would take significantly

more time.

Still, the participants noted some things could be improved about AQUA-G. They

provided valuable feedback, some of which will be included as future work for AQUA-

G. Among the most influential and unique ideas the participants came up with for

improvement of AQUA-G were:

• Provide a means of sending data back to input devices to trigger lights, vibration,

or other input device-specific feedback.

• Provide more complex sample projects in addition to the simple skeleton projects

already available - the ones provided are too simple to be able to learn from.

The interviews allowed the participants to voice their opinions and reflections on their

experience developing using the framework, and the feedback they provided was and will

continue to be essential in determining areas of improvement for AQUA-G.

72

Table 4.2 Student 1’s responses to interview questions.

Question Answer

What do you think are the
biggest advantages of using
AQUA-G?

The fact that it can natively handle multiple devices.

What do you think are
the primary limitations of
AQUA-G?

It not being able to send any time of data back to the
device. It seems like that’s coming up more and more,
with vibration stuff.

How would you rate your
experience writing a device
driver for AQUA-G? Was
it positive or negative and
why?

Positive because it was pretty quick; I didn’t have too
many problems with it; the total development time
was small.

Could anything be improved
about the development ex-
perience?

Making the whole idea of AQUA more known to peo-
ple who don’t know about it; the wiki has a couple
things like the tutorials to help. Something that con-
fused me was there is the touch point, there is a float
array and it doesn’t really show that the first two are
for x, y and z, and that was a little confusing, so maybe
just go through the simple things.

Was the network protocol
and event structure docu-
mentation clear to you?

Yes - well, I don’t know about the documentation, but
after reading the sample code it was pretty clear.

Do you think creating a de-
vice driver is a difficult task
for the average developer?
Maybe rate on a 0-10 score?

2 on a 0-10 scale; it’s pretty easy after seeing the sam-
ple code. I think if you were doing it from scratch, just
reading the documentation, it would be pretty hard.
There’s a lot of different drivers now, so it’s pretty
easy to look at these kind of things.

What can be done to en-
courage other people to con-
tribute to the project?

This is always the battle with open source projects -
you can modify the license to say that if you modify
it, you have to post it. Have some kind of feedback or
a really good community around it - that helps a lot
because people want to contribute to a big community.
Make it easy to contribute.

What do you think other
developers will like best or
least about it?

It’s really easy to work with it; the amount of sample
code and documentation makes it easy. Least - maybe
it doesn’t work well with their existing systems.

What can be done to con-
vince other developers to use
AQUA-G?

Other open source projects have a good community;
so we need a good community behind it. As soon as
you get the community, I think a lot of development
will happen on its own.

73

Table 4.3 Student 2’s responses to interview questions.

Question Answer

What do you think
are the biggest ad-
vantages of using
AQUA-G?

Convenience, once you have it finished, you can put it on a lot
of different systems; because of the intent, it’s very flexible.

What do you think
are the primary limi-
tations of AQUA-G?

I don’t really know - a unique solution might be a lot more
tuned to the system though.

How would you rate
your experience writ-
ing a device driver
for AQUA-G? Was it
positive or negative
and why?

It was cool - it was really interesting. It’s very neat to be part
of something that you can see where it’s going and where it’s
going to be used. I’ve done programming, but I haven’t done
a lot of larger scale things, but this was interesting because
it was a large scale. It was really useful to take existing
gestures and just use them as a template. The sample code
was helpful, especially the source files (the AQUA-G gestures
and not the sample projects).

Could anything be
improved about the
development experi-
ence?

The way that the tutorials are set up are geared to people
who have a lot more knowledge of programming than I do;
maybe I just have less than everyone else, but I think if the
tutorials were structured around making a more complicated
event or complicated gesture, so for me it was a little hard
to see what’s supposed to happen where, because there was
really no data processing that had to happen in the sample.

Do you think creat-
ing a device driver is
a difficult task for the
average developer?

I would not think so. I would think that the trick would be
refining the logic so that you get the results you intended.

How was creating the
event? Was it diffi-
cult?

Relatively speaking, I think it would be easy; when I was
doing it I was still learning about AQUA-G. Going back and
editing it later, it was a lot easier.

What can be done to
encourage other peo-
ple to contribute to
the project?

I guess a lot of that would be application specific. If it was
able to be something that was able to be used with not just
multi-touch type things. I don’t know how many people
would use it if they’re not going to use that sort of device.

What do you think
other developers will
like best or least
about it?

If you were making a lot of events and gestures; I think events
are very similar - there’s very few things that are unique to
each event. Creating unique events might get tedious when
it’s so similar to others. Gestures have the same template to
follow. If someone sat down and wanted to write 100 gestures,
they might get tired of sitting down and writing the same
thing over and over again.

74

CHAPTER 5. CONCLUSION

This research proposed to solve the following problem. Developing gesture-enabled

applications is far from trivial. The time investment required to communicate with

input devices, recognize gestures, and provide user feedback is significant. A framework

which decreases this time investment could encourage other developers to try out new

and novel input devices and use gestures in their applications. The resulting increase in

exploration of gesture-enabled input methodologies would advance research in the field

of more natural human-computer interaction.

In this thesis I have presented AQUA-G, a software architecture which enables rapid

development of gesture-enabled applications. I have described the need for a framework

such as this which provides cross-platform, cross-language support. I have described

the software architecture of AQUA-G, which has been designed to satisfy this need.

Furthermore, as validation that the framework is useful, I have presented case studies of

developers using AQUA-G, and described a brief qualitative evaluation of the software

framework.

I will conclude this thesis by reiterating the primary advantages and limitations of

AQUA-G, and discussing future work for the software framework.

5.1 Primary advantages

AQUA-G is a cross-platform, cross-language solution for the gesture-enabled appli-

cation development problem. It provides dynamic loading of gesture and event code,

75

which provides added flexibility and simplicity for developers wishing to customize the

framework for their own applications. It communicates with a variety of input devices,

and allows for these input devices to be connect simultaneously to produce engaging

interaction paradigms. As a result, it is easy for developers to try out applications with

different input devices in order to evaluate the effectiveness of using different means of

input for their application. Finally, the framework is open source and allows anyone to

make contributions, which will encourage the future development of AQUA-G.

5.2 Limitations

I would like to acknowledge limitations of AQUA-G that will require future work to

improve or eliminate.

One of the developers in the user study noted that there was no way to send informa-

tion back to input devices for the input devices to provide feedback. This is especially

important for devices than can provide haptic feedback, such as standard haptic devices,

Wii Remotes, or other similar input devices. The framework was designed to allow data

to flow towards the client application, but not the other way around. This helps to avoid

circular references and possible infinite loops. As such, no accommodation was made to

allow the application to send information back to the input device.

A current workaround for this limitation would be to write a program for an input

device which functions as both an input device driver and client application. This

two-way exchange of data would allow for client applications to send information back

to input devices. This workaround has been implemented in the LABET case study

described in Chapter 3 for the unmanned vehicle because it needs to both send and

receive information.

The other limitation that has been discovered is that input devices connecting over

a network connection through TCP sockets do not have the necessary throughput to

76

produce desirable performance. This is not a problem for devices which do not send

a large amount of data over the network connection, nor is it a problem for devices

which are connected on the same machine as AQUA-G. However, for devices which are

sending touch points or other large amounts of data, a performance decrement is visually

apparent.

One potential solution for this limitation will be to include a high-bandwidth UDP

socket connection to AQUA-G. This socket would accept connections from input devices

and/or client applications requiring higher bandwidth.

Figure 5.1 A comparison of gesture recognition systems

77

5.3 Future work

Many improvements are available for AQUA-G, and a great deal of work is needed to

advertise AQUA-G to begin creating the community of developers that will advance this

research. As described by a developer in the user study, the website must be improved

to include documentation which describes the architecture and design of AQUA-G. This

will help potential developers understand how the framework operates and where to

begin writing code which will be compatible with AQUA-G.

A framework modification should be investigated to allow client applications to send

information back to input devices. This will encourage the development of software

which communicates with devices providing haptic feedback, including Wii Remotes

and other haptic devices.

Improvements should be investigated to allow high-throughput devices to be con-

nected to AQUA-G over the network with less performance loss. This will have the

additional benefit of encouraging the development of device drivers and gestures which

utilize camera information or other large amounts of data for gesture processing. A

potential solution as described above would be to give AQUA-G an additional socket

utilizing higher-throughput UDP or other datagram-oriented protocol, which would al-

low for higher data rates.

Other future work could involve adding provisions to allow customization of gesture

parameters by client applications. For example, the kinetic gesture utilizes a coefficient

of friction to slow down the components over time, as if by the force of friction. AQUA-G

does not currently allow for this time of runtime customization. In the future, AQUA-

G could allow client applications to supply this coefficient of friction if they desire to

represent different types of surfaces which have different coefficients of friction. This

could also be easily extended to customize other gestures which might require user-

supplied parameters.

78

Finally, future work should be undertaken to provide gesture-aware UI widget sets

for different UI frameworks. Figure 5.1 reiterates the comparison of existing systems to

AQUA-G presented in the first chapter. AQUA-G satisfies all of the limitations of ex-

isting systems except for providing gesture-aware widget sets for different programming

languages. Therefore, this should be an area of immediate exploration.

This concludes this thesis. I have high expectations for AQUA-G, and hope that

developers will begin utilizing AQUA-G to contribute device drivers, gesture recogniz-

ers, and client applications which will be accessible to a wider development audience,

furthering research in gesture-enabled application development.

The AQUA-G website provides a demonstration video, several wiki tutorials, sample

projects, and executable downloads, and it also hosts the source code repository. It is

maintained through Google Code and is accessible on http://code.google.com (60).

79

APPENDIX A. DEVELOPING SOFTWARE USING

AQUA-G

In this chapter, I will describe how to develop software using AQUA-G. Much of this

information can also be found on the website (60) which was developed as part of this

work, and it is provided there to help developers understand how to write software for

AQUA-G.

AQUA-G is easily customizable. It allows for developers to write new input device

drivers, client applications, gestures, and events quickly and easily. Each section in this

chapter will describe the process of creating a custom module for use with AQUA-G.

A.1 Developing a custom event

Occasionally, developers may find it necessary to write a custom event for an appli-

cation that uses AQUA-G. This is often necessary if they have a new input device that

AQUA-G does not recognize, such as a game controller. In addition to writing the input

device driver for AQUA-G, he or she may also want to create some custom events, such

as button presses, controller accelerometer readings, etc.

Writing new events in AQUA-G is straightforward. In AQUA-G, events are dynam-

ically loaded by the gesture server, so there is no need to download or look at the source

code for the gesture server.

Since the events are dynamically loaded by the gesture server, they need to be com-

piled as shared libraries. This means that for Windows, events will be compiled into a

80

dynamic link library (*.dll file) and on Linux, they will be compiled into a shared object

library (*.so file).

There are some requirements that developers must fulfill to create a custom AQUA-G

event:

1. The custom event must subclass the Event class defined in Event.h.

2. The custom event class must declare a char buffer to hold its serialized data.

3. The event class name must exactly match the library name. Developers should de-

fine a class “MyEvent” which will get compiled to “MyEvent.dll” or “MyEvent.so”

4. The event .cpp file must export the functions required for dynamic loading. The

function is named “createEvent” and is described below.

5. Events in AQUA-G are serialized over the network. Developers must implement a

constructor which takes as input a single byte array containing the event’s data,

and also implement the serializeData method, which returns a byte array contain-

ing the same data. This will allow AQUA-G to send the event from the input

device to the gesture server and application.

6. The compiled library must be placed where the AQUA-G gesture server can find

it. Developers can simply copy the .dll or .so file into (AQUA-exe-home)/events.

In order for the event to be dynamically loaded, you must export the function cre-

ateEvent, which is used by the operating system to dynamically load the class. Through-

out this section, I will use the UnifiedZoomEvent class provided by AQUA-G as an

example. Here is an example of the createEvent() function for Windows and Linux:

#ifdef _WIN32

extern "C" {

__declspec (dllexport) Event* createEvent(char* data) {

81

return new UnifiedZoomEvent(data);

}

}

#else

extern "C" {

Event* createEvent(char* data) {

return new UnifiedZoomEvent(data);

}

}

#endif

Note that developers will need to change the return statement of each of these functions

to match the desired event name (instead of UnifiedZoomEvent, above).

The event class also has to declare a data buffer to hold the data which will be seri-

alized by the serializeData method. Developers will want to declare a member variable

“dataBuffer” whose length is the same as the number of bytes in the custom data. This

is done in the zoom event class as follows:

#define UNIFIEDZOOMEVENT_DATA_LENGTH 16

#include <string>

#include "Event.h"

class UnifiedZoomEvent : public Event {

// Attributes

private:

float _zoomScale;

float _zoomCenter[3];

82

char _dataBuffer[UNIFIEDZOOMEVENT_DATA_LENGTH];

...

Finally, the event will be serialized over the network, so developers need to implement a

constructor which takes a byte array containing the event data, as well as the protected

serializeData method which returns a byte array containing the same data. AQUA-G se-

rializes events by calling (CustomEvent).serialize(). The serialize method is implemented

in the Event superclass, and it delegates the custom data serialization to serializeData(),

which is implemented in the custom event class.

Here is a the serializeData method for the UnifiedZoomEvent class:

/**

* Constructs a char array with this event’s data. Data:

* - 4 bytes : zoom scale (float)

* - 4 bytes : zoom center x-coord

* - 4 bytes : zoom center y-coord

* - 4 bytes : zoom center z-coord

*/

char* UnifiedZoomEvent::serializeData(short& outLength) {

outLength = UNIFIEDZOOMEVENT_DATA_LENGTH;

float tempScale, tempX, tempY, tempZ;

tempScale = _zoomScale;

// zoom center

tempX = _zoomCenter[0];

tempY = _zoomCenter[1];

83

tempZ = _zoomCenter[2];

if (EndianConverter::isLittleEndian()) {

tempScale = EndianConverter::swapFloatEndian(tempScale);

tempX = EndianConverter::swapFloatEndian(tempX);

tempY = EndianConverter::swapFloatEndian(tempY);

tempZ = EndianConverter::swapFloatEndian(tempZ);

}

memcpy(_dataBuffer + 0, &tempScale, 4);

memcpy(_dataBuffer + 4, &tempX, 4);

memcpy(_dataBuffer + 8, &tempY, 4);

memcpy(_dataBuffer + 12, &tempZ, 4);

return _dataBuffer;

}

Please examine how this method works. All the method needs to serialize is this

class’s data members. The members of the Event superclass are handled automatically.

First, the method sets the parameter outLength to the number of bytes in the returned

char buffer. In the example, I use the length which I previously defined in a header

file. Then, the method serializes the event’s custom data. First, it copies the event’s

custom data into temporary variables. The data must be returned in network endian or

big-endian form, so the method changes the endianness if necessary. Developers may use

the EndianConverter utility class provided in sample projects to perform this operation,

as shown in the above code. Finally, copy each data member into our data buffer, and

return it.

84

Along with the serializeData method, developers must also implement a constructor

which un-does this serialization. Here is the constructor for UnifiedZoomEvent:

UnifiedZoomEvent::UnifiedZoomEvent(char *data) : Event(data) {

int i;

int dataPos = (_name.length() + _description.length() + 2 + 17);

memcpy(&_zoomScale, &data[dataPos], 4);

dataPos += 4;

memcpy(_zoomCenter, &data[dataPos], 12);

// Handle endianness.

if (EndianConverter::isLittleEndian()) {

_zoomScale = EndianConverter::swapFloatEndian(_zoomScale);

for (int i = 0; i < 3; i++) {

_zoomCenter[i] =

EndianConverter::swapFloatEndian(_zoomCenter[i]);

}

}

}

Note how this constructor works. The class UnifiedZoomEvent first calls the superclass

constructor Event(data), which un-serializes the parameter data into the Event class’s

fields. Then, the constructor must un-serialize its custom data.

When events are sent over the network, the data pointer contains all of the data for

the event. This is why the variable dataPos is defined in the above code - since the

data parameter points to the start of the data buffer, and some of this data is the Event

class’s data, developers can use dataPos to represent the first data item of the custom

85

data. This declaration and initialization should be the same for all events.

Then, the method copies the data members into the custom fields zoomScale and

zoomCenter, and handles the endianness appropriately. Notice the “action and reaction”

style of the constructor and the serializeData method. One puts the data into a byte

array, and the other pulls the data back out.

Once developers have finished implementing the event and can compile it successfully,

it is ready to use. The event can be used by input devices, gestures, and the application

itself. In order to use the event with custom gestures, developers must place the compiled

library where the AQUA-G gesture server can find it. They must place the .dll or .so

file into (AQUA-exe-home)/events. The next time a developer runs AQUA-G, the event

will be dynamically loaded.

A.2 Developing a custom gesture

Allowing developers the ability to write their own custom gestures was one of the

key factors in developing the design and architecture for AQUA-G.

Since gestures are dynamically loaded through the use of shared libraries, when a

developer creates a gesture, it must be compiled to a .dll file on Windows or a .so file

on Linux. The AQUA-G gesture server recognizes these files and loads the gesture code

at runtime. This means that developers don’t have to look at a single line of AQUA-G

code to write their own gesture.

To write a custom gesture, developers must satisfy the following requirements:

• The gesture must subclass the Gesture class defined in Gesture.h.

• The gesture class name must exactly match that of the compiled library. Devel-

opers must define a class such as “MyGesture” which gets compiled to “MyGes-

ture.dll” or “MyGesture.so”

86

• The gesture class must export a function “createGesture” which is used by AQUA-

G to load the class dynamically.

• Developers must override the method “handleEvent” in the Gesture class. This is

where the gesture can process incoming events.

• Developers must place the compiled library into a place where Aqua can find it,

in (AQUA-exe-home)/gestures. They will find all of the included gestures in this

directory.

In this section, I will describe and analyze the simple HelloWorldGesture which is

provided in AQUA-G. Here is the header file for this class:

#ifndef _HELLOWORLDGESTURE_H_

#define _HELLOWORLDGESTURE_H_

#include "../events/Event.h"

#include "Gesture.h"

class HelloWorldGesture : public Gesture {

// Methods

public:

HelloWorldGesture(EventProcessor* publisher, int regionID = -1) :

Gesture(publisher, regionID) {};

virtual bool handleEvent(Event* event);

private:

void printHello();

};

#endif

87

Notice how simple this class definition is. It declares the HelloWorldGesture class,

which subclasses the Gesture class. It then declares a constructor which calls the Gesture

superclass constructor. Developers should provide a constructor with this same signature

in their gesture. The EventProcessor object is the EventProcessor that the gesture will

send events that it generates to, using the sendEvent method provided by the Gesture

class. This is described below.

Additionally, developers need to export functions which are used by AQUA-G to

load the gesture class. These can be placed in the header file or the cpp file. Here are

these functions for the HelloWorldGesture:

#ifdef _WIN32

extern "C" {

__declspec (dllexport) Gesture* createGesture(EventProcessor*

publisher, int regionID) {

return new HelloWorldGesture(publisher, regionID);

}

}

#else

extern "C" {

Gesture* createGesture(EventProcessor* publisher, int regionID) {

return new HelloWorldGesture(publisher, regionID);

}

}

#endif

Developers will have to modify the return statement so that it returns an instance of

the new gesture, but otherwise these methods should remain the same.

Here is the implementation cpp file for HelloWorldGesture:

88

#include <stdio.h>

#include "HelloWorldGesture.h"

bool HelloWorldGesture::handleEvent(Event* event) {

printHello();

publishEvent(event)

return false;

}

void HelloWorldGesture::printHello() {

printf("Hello, world! My region ID is: %d\n", _regionID);

}

The cpp file implements only one public method, handleEvent. This is where all of

the gesture processing code belongs. HandleEvent is called by AQUA-G whenever a

new event is available for this gesture to process. In this simple gesture, I simply print

”Hello, World“ along with this gesture’s regionID to the console, and publish the same

event I received. However, more complex behavior can easily be defined. For example,

the UnifiedZoomGesture handles events, calculates relative change in scale over time,

creates instances of UnifiiedZoomEvent, and publishes these new events. AQUA-G then

sends these events to the application.

A.3 Developing an input device driver

AQUA-G is designed to communicate with a limitless variety of input devices. In

order for it to do this, it communicates with input devices using a custom serialization

protocol over a TCP socket. Writing a new input device driver is made easier, how-

ever, by using the Event classes already provided with AQUA-G. These classes already

89

have built-in serialization functionality which developers may use in their custom device

drivers.

As stated above, AQUA-G communicates with input devices via TCP/IP sockets.

Therefore, in order to communicate with AQUA-G, an input device driver must create

a TCP socket. Then, the input device driver must send a single byte with value 0x02,

which will identify it as an input device. Here is some example code which which

performs this using Windows sockets:

#include <windows.h>

#include <winsock2.h>

#include <ws2tcpip.h>

SOCKET sock;

WSADATA data;

struct addrinfo *result = NULL;

struct addrinfo *ptr = NULL;

struct addrinfo hints;

int iResult;

char deviceType = 2;

iResult = WSAStartup(MAKEWORD(2, 2), &data);

if (iResult != 0) {

printf("Error starting WSA\n");

return 1;

}

ZeroMemory(&hints, sizeof(hints));

90

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_protocol = IPPROTO_TCP;

// Resolve the server address and port

iResult = getaddrinfo("127.0.0.1", SERVER_PORT, &hints, &result);

if (iResult != 0) {

printf("getaddrinfo failed: %ld\n", WSAGetLastError());

WSACleanup();

return 1;

}

sock = INVALID_SOCKET;

// Attempt to connect to the first address returned by addrinfo

ptr = result;

sock = socket(ptr->ai_family, ptr->ai_socktype, ptr->ai_protocol);

if (sock == INVALID_SOCKET) {

printf("Error at socket(): %ld\n", WSAGetLastError());

freeaddrinfo(result);

WSACleanup();

return 1;

}

iResult = connect(sock, ptr->ai_addr, (int)ptr->ai_addrlen);

if (iResult == SOCKET_ERROR) {

91

printf("Error connecting to socket.\n");

closesocket(sock);

sock = INVALID_SOCKET;

return 1;

}

freeaddrinfo(result);

if (sock == INVALID_SOCKET) {

printf("Unable to connect to server!\n");

WSACleanup();

return 1;

}

// Send our device type - 2, input device.

iResult = send(sock, &deviceType, 1, 0);

if (iResult == SOCKET_ERROR) {

printf("Send failed: %d\n", WSAGetLastError());

closesocket(sock);

WSACleanup();

return 1;

}

Once this initialization is complete, it is quite easy to send events to AQUA-G. In

the Event class, a single method is defined:

char* serialize(int& outLength)

This method returns a pointer to an array of bytes which contains the event data, as

well as an integer “outLength” which contains the length of this array.

92

To send the event to AQUA-G, the developer simply sends a short int containing

this length, followed by the data. Below is example code which demonstrates how to do

this.

int sendEvent(Event* e) {

char outLength[2];

short iOutLength, tempLength;

int iResult;

char* eventData = e->serialize(iOutLength);

tempLength = iOutLength;

if (EndianConverter::isLittleEndian()) {

tempLength = EndianConverter::swapShortEndian(tempLength);

}

// Send the length of the event

memcpy(outLength, &tempLength, 2);

iResult = send(sock, outLength, 2, 0);

if (iResult == SOCKET_ERROR) {

printf("Send length failed: %d\n", WSAGetLastError());

closesocket(sock);

WSACleanup();

exit(0);

return -1;

}

// Send the event itself.

iResult = send(sock, eventData, iOutLength, 0);

93

if (iResult == SOCKET_ERROR) {

printf("Send data failed: %d\n", WSAGetLastError());

closesocket(sock);

WSACleanup();

exit(0);

return -1;

}

delete[] eventData;

return 0;

}

In order to develop an input device driver, it will be beneficial to review example

code. A good place to start is by looking at the code for the Windows mouse input

device driver provided by AQUA-G. Other example device drivers may be found by

browsing the source code.

A.4 Developing a client application

AQUA-G communicates with client applications using a standard protocol over TCP

sockets. Writing a new client application involves writing code which conforms to this

custom protocol. Fortunately, much of this work has been done for developers wishing

to develop Java and C++ applications. The implementation of said protocol will be

outlined in this section, and the sample implementation is given in Java code, though it

should be relatively easy to port this code to other languages.

In order to communicate with AQUA-G, a client application must create a TCP

socket and connect to a predefined port. Then, it must send a single byte with value

0x03 on that socket. This alerts AQUA-G to the fact that the incoming connection

94

should be treated as a client application and should receive events appropriately. The

code for initialization the connection is given below. The Java code sets up a socket

with data input and output streams, and begins handling events from AQUA-G.

After initialization, the client application must begin reading data from the socket,

which is coming from AQUA-G. AQUA-G will send the following messages to the client

application, which it will be expected to process and handle appropriately. The message

type is sent as a single byte, which it reads from the socket and uses to determine the

appropriate action. The message types are as follows:

• Get Region ID (0)

• Get Global Info (1)

• Get Region Info (2)

• Process Global Event (3)

• Process Region Event (4)

• Get Event Translators (5)

Here is the sample code which connects to the AQUA-G gesture server:

public class AquaClient {

enum MessageType {

REGION_ID,

GLOBAL_INFO,

REGION_INFO,

PROCESS_GLOBAL_EVENT,

PROCESS_REGION_EVENT,

TRANSLATORS

95

}

private Socket _socket;

private DataInputStream _input;

private DataOutputStream _output;

public static void main(String[] args) throws

UnknownHostException, IOException {

AquaClient ac = new AquaClient();

ac.connect();

while(true) ac.handleRequest();

}

/**

* Connects to Aqua.

* @throws IOException

* @throws UnknownHostException

*/

private void connect() throws UnknownHostException, IOException {

_socket = new Socket("localhost", 3007);

_input = new DataInputStream(_socket.getInputStream());

_output = new DataOutputStream(_socket.getOutputStream());

_output.write(1);

}

}

Here is the code which handles the messages from Aqua. It is a simple switch statement

96

which checks the message type which comes in from Aqua.

private void handleRequest() throws IOException {

MessageType type = null;

try {

type = MessageType.values()[_input.read()];

} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Message not recognized...\n");

return;

}

switch(type) {

case REGION_ID:

handleGetRegionID();

break;

case GLOBAL_INFO:

handleGetGlobalInfo();

break;

case PROCESS_GLOBAL_EVENT:

processGlobalEvent();

break;

case PROCESS_REGION_EVENT:

processRegionEvent();

break;

case REGION_INFO:

handleGetRegionInfo();

break;

97

case TRANSLATORS:

handleGetTranslators();

break;

default:

System.out.println("Error - message not recognized: " + type);

break;

}

}

Notice that the code above simply checks the message type and hands off the process-

ing of each message to appropriate handler functions. This is generally a good idea, and

encouraged in implementation of a custom client application. I will describe in detail

each handler function below.

The first handler method is handleGetRegionID. This function is called when AQUA-

G recognizes an event that should be passed to a component in a client application’s user

interface. After the message type is sent, AQUA-G sends three floating-point numbers

which represent the x, y, and z location of the new event. X and Y values will be

normalized between 0 and 1, where (0,0) represents the upper left corner of the screen,

and (1,1) represents the lower right corner. Z values may not be normalized as they

differ depending on input device, but the convention is to represent it in centimeters

from the surface of the display, increasing as distance increases.

The client application code must return a unique identifier for the component which

this event occurred over. To do this, developers must keep track of the locations of all of

the GUI components or have some means of determining which component lies where.

Java provides this through the getComponentAt() method, and other GUI frameworks

should be able to perform similar actions. It is up to the developer to maintain unique

identifiers for each component.

98

Here is the code for handling the getRegionID message:

/**

* Handles the getRegionID message.

*/

private void handleGetRegionID() throws IOException {

float[] location = new float[3];

location[0] = _input.readFloat();

location[1] = _input.readFloat();

location[2] = _input.readFloat();

if (location[0] < 0.5) {

_output.writeInt(1);

} else {

_output.writeInt(0);

}

}

This code maintains two groups, one for the left half of the screen, and one for the right

half of the screen. The group ID is written back to AQUA-G as an integer value.

AQUA-G needs to know which global gestures should be allowed for the client appli-

cation. Global gestures are those which are not associated with a particular UI compo-

nent in the application. These gestures are generally things such as a “shake,” “wave,”

or similar gesture, though technically any gesture can be classified as a global gesture.

These gestures will receive all of the events from the input devices and process them

accordingly.

Furthermore, developers may specify global allowed events, which will always be sent

to the client application. They can use this to specify a certain type of event which should

99

be passed directly to the application without being passed to individual widgets. For

example, developers may want to receive all touch events regardless of the component

they occurred over if they want to log touch point information in an application.

In order to determine these global gestures, AQUA-G sends the client application

the “Get Global Info” message. The application must implement the following protocol

to send the allowed global gestures back to AQUA-G:

• Send an integer value representing the number of allowed global gestures.

• Send each gesture name as a NULL-TERMINATED string.

• Send an integer value representing the number of allowed global events.

• Send each event name as as NULL-TERMINATED string.

The application can also write 0 as the number of gestures or events and simply not

write any strings, if it does not wish to receive gestures.

Here is sample code which performs this action:

/**

* Handles the getGlobalInfo message.

*/

private void handleGetGlobalInfo() throws IOException {

_output.writeInt(1);

// Sent gestures as null-terminated strings.

_output.writeBytes("HelloWorldGesture\0");

// Send the events

_output.writeInt(1);

100

_output.writeBytes(UnifiedEvent\0);

}

Similarly, AQUA-G will require knowledge of the event translators allowed for the

client application. Event translators are gestures which generally consume some events

and translate them into other events. An example of an event translator is a gesture

which converts Wii Remote accelerometer values into velocity or position values. An-

other example could be a gesture which associates touch point information with hand

location information provided by two separate input systems. The code for returning

this information is as follows:

/**

* Handles the getTranslators message.

*/

private void handleGetTranslators() throws IOException {

// Send # of translators.

_output.writeInt(1);

// Send translator names.

_output.writeBytes(UserIDHandGesture\0);

}

Now that the application has set up the global gestures and event translators, and

knows how to return a unique identifier for each region in the UI, it is almost ready to

begin processing events. After AQUA-G handles an incoming input device events by

asking the application for the region ID, it will need to know the allowed gestures for

that region. For example, allowed gestures for a photo in a photo organizing application

might be zoom, rotate, and drag.

AQUA-G will request region information by sending the application a GET REGION

INFO message. Then, it will send the application the unique region ID which it is

101

requesting information for. Here is some example code which will process this message

appropriately. In this sample code, if the region ID is 1, the application will return a

HelloWorld Gesture and a DragGesture; if the regionID is anything else, no gestures are

allowed. When processing this message, the application should send AQUA-G a single

integer representing the number of allowed gestures, follow by a null-terminated string

containing the name of each gesture. Then, it may also tell AQUA-G which events

should be allowed from this region. For example, it may choose to receive a WaveEvent

or ShakeEvent on a particular region. These types of events would usually come from

global gestures, but this code demonstrates that an application can allow them on a

region-level only if it so desires.

/**

* Handles the getRegionInfo message.

*/

private void handleGetRegionInfo() throws IOException {

int regionID = _input.readInt();

if (regionID == 1) {

_output.writeInt(2);

_output.writeBytes("HelloWorldGesture\0");

_output.writeBytes(UnifiedDragGesture\0);

_output.writeInt(1);

_output.writeBytes(WaveEvent\0);

} else {

_output.writeInt(0);

_output.writeInt(0);

}

}

102

Now, the application has handled all messages for which action is required. The only two

messages left are the PROCESS REGION EVENT and PROCESS GLOBAL EVENT

messages. These two messages are sent when AQUA-G sends the application an event.

Here is code which will process these two types of messages. In sending the PROCESS

REGION EVENT message, AQUA-G will send the application an integer value, which is

the unique Region ID which that event should be passed to. In the PROCESS GLOBAL

EVENT message, no regionID is sent.

After receiving the regionID if necessary, the application needs to read the event from

the socket. AQUA-G will first send a short integer representing the number of bytes

contained in the event. The application should read this first, then continue by reading

the specified number of bytes from the socket and placing them into an array.

In practice, event un-serialization is typically handled by the event constructor. The

first data in the event array is the name of the event. An application can read the

name of the event by reading data from the array that it received until it reaches a null

character. It can then compare this name and create the appropriate event, as shown

in the sample code below.

/**

* Handles the processGlobalEvent message.

*/

private void processGlobalEvent() throws IOException {

//System.out.println("Got global event.");

short length = _input.readShort();

byte[] data = new byte[length];

_input.read(data, 0, length);

String name = "";

103

int index = 0;

while (data[index] != ’\0’) {

name += (char)data[index++];

}

Event e = null;

if (name.equals("UnifiedEvent")) {

e = new UnifiedEvent(data);

System.out.println("loc: " + e.getLocation()[0] + ", " +

e.getLocation()[1] + ", " + e.getLocation()[2]);

}

}

/**

* Handles the processRegionEvent message.

*/

private void processRegionEvent() throws IOException {

int regionID = _input.readInt();

short length = _input.readShort();

byte[] data = new byte[length];

_input.read(data, 0, length);

String name = "";

int index = 0;

while (data[index] != ’\0’) {

104

name += (char)data[index++];

}

Event e = null;

if (name.equals("UnifiedDragEvent")) {

e = new UnifiedDragEvent(data);

} else if (name.equals("UnifiedZoomEvent")) {

e = new UnifiedZoomEvent(data);

} else if (name.equals("Unified2DRotateEvent")) {

e = new Unified2DRotateEvent(data);

}

for (AquaPhoto p : _photos) {

if (p.getID() == regionID) {

p.processEvent(e);

}

}

}

This concludes the section on writing client applications, input devices, and gestures for

AQUA-G. Information for those wishing to obtain more information is provided on the

website which was developed as part of this work, http://aqua-gesture-framework.

googlecode.com

105

APPENDIX B. WAYFINDER

This appendix contains the paper ”Wayfinder: Evaluating Multitouch Interaction in

Supervisory Control of Unmanned Vehicles“ (61) which was published in the Proceedings

of the World Conference on Innovative Virtual Reality, 2010.

B.1 Title and authors

Wayfinder: Evaluating Multitouch Interaction in Supervisory Control of Unmanned

Vehicles.

• Jay Roltgen, Department of Psychology, Virtual Reality Applications Center, Iowa

State University, Ames, Iowa, 50010, jroltgen@iastate.edu

• Stephen Gilbert, Department of Psychology, Virtual Reality Applications Center,

Iowa State University, Ames, Iowa, 50010, gilbert@iastate.edu

B.2 Abstract

In this paper we investigate whether the use of a multitouch interface allows users

of a supervisory control system to perform tasks more effectively than possible with a

mouse-based interface. Supervisory control interfaces are an active field of research, but

so far have generally utilized mouse-based interaction. Additionally, most such interfaces

require a skilled operator due to their intrinsic complexity. We present an interface for

controlling multiple unmanned ground vehicles that is conducive to multitouch as well

106

as mouse-based interaction, which allows us to evaluate novice users performance in

several areas. Results suggest that a multitouch interface can be used as effectively as

a mouse-based interface for certain tasks which are relevant in a supervisory control

environment.

B.3 Introduction

Previous research has been devoted to developing effective supervisory control inter-

faces for unmanned aerial vehicles (UAVs) (62; 63). A supervisory control interface is

an interface which allows an operator to coordinate a variety of processes in a complex

system such as a nuclear power plant, a factory, or in this case, a fleet of UAVs. The

operator does not control them directly, e.g. flying the UAV, but instead specifies goals

or destinations to be reached. A common problem in this field is the desire to represent

information to operators in such a way that they can perform tasks effectively and make

limited errors.

Research is currently being performed at Wright Patterson Air Force Base (WPAFB)

to investigate various supervisory control interfaces. Researchers there have developed

an application called ”Vigilant Spirit“(VS) (62) to serve as a framework for researching

these interfaces as they apply to various real-world scenarios. VS provides UAV operators

with supervisory control of multiple simulated UAVs.

Currently, VS utilizes a dual-monitor, mouse-and-keyboard environment. We have

created an interface loosely based on VS that is more conducive to multitouch interaction,

so that we may explore the potential benefits of multitouch interaction in supervisory

control interfaces.

107

B.4 Related work

Multitouch technology has received a great deal of interest in recent years. An ad-

vance in sensing technology and the popularization of do-it-yourself multitouch has made

this technology available to a greater population than ever before. Several technologies

have been made available to researchers as well as consumers, such as the iPhone (3),

the Microsoft Surface (11), and others (11).

Recently, touch-enabled devices have also made their way into the PC market with

the introduction of the HP TouchSmart (26) and Dell Latitude (15). It is our expectation

that these multitouch-enabled PCs will continue to proliferate in the near future.

Other products such as the DiamondTouch (16), the Microsoft Surface (11), and

the iPhone (3) have evolved into reliable sensing systems, and OEM vendors such as

NextWindow (49) and N-Trig (53) are providing reliable multitouch sensing technologies

to hardware manufacturers.

In addition to advances in the consumer market, much research has been devoted to

multitouch sensing technology. Jeff Han is partially responsible for this recent spark of

interest, with his paper detailing low-cost do-it-yourself multitouch sensing (24).

While a great deal of this effort is aimed at improving multitouch sensing technology

and enabling end-users, additional research has been conducted to evaluate the benefits

of multitouch in several different application domains.

Recently, multitouch interfaces have received attention in command-and-control ap-

plications (67; 69). One such example is COMET (67), where researchers seek to utilize

a multitouch interface to enhance face-to-face collaboration of military officers planning

missions on a virtual table. This work is primarily intended to evaluate the poten-

tial benefits of multitouch and digital interaction in this type of environment. The

researchers are particularly interested in the abilities of the digital interface to save and

record mission planning sessions, features that were not available with older technology

108

used for this type of planning work.

Other research has been performed to investigate various supervisory control inter-

faces (62; 63) which aims to determine what types of tasks and interfaces can have an

effect on operator mental workload. Our research takes a similar approach, however

this prior research in supervisory control interfaces has been exclusively targeted for

mouse-based interfaces.

A great deal of work has been done in the area of remote robot tele-operation and

control (20; 50), which exhibits a great deal of influence on this research. Some have

even already begun to use multitouch interfaces as effective means for operating remote

robots (41; 31), which may lead to more widespread adoption of multitouch interfaces in

these types of direct control situations. This research area primarily involves direct con-

trol of vehicles, and we intend to build on this work as it may apply to more supervisory

means of control.

Finally, advances in performance of touch-enabled hardware have facilitated research

to determine if multitouch interfaces offer significant performance gains over similar

mouse-based interfaces (46; 21). This research generally shows that multitouch can offer

particular advantages for manipulating objects, but is perhaps less precise than standard

mouse-based interaction. One of the goals of our research is to verify these results and

show that they hold true in a supervisory control environment, and provide a realistic

use case of multitouch technology. The results of this research will directly apply to

current research in supervisory control interfaces.

It is our aim to bridge the gap which remains between research in multitouch inter-

action and research in supervisory control interfaces, and explore the extent to which a

multitouch interface can be effective in this environment. To accomplish this goal, we

have created the software application ”Wayfinder“.

109

B.5 Wayfinder

The Wayfinder application has been developed as a research platform with which to

conduct studies on supervisory control interfaces that might apply to similar interfaces

such as Vigilant Spirit. Typical screenshots of Vigilant Spirit and Wayfinder are given

in Figure B.1 and Figure 2, respectively. Wayfinder has been designed such that it has

similar features to the Vigilant Spirit application, which was developed by our fellow

researchers at WPAFB. This is to ensure that the results of this research may apply to

current supervisory control interfaces, and especially to Vigilant Spirit. We have chosen

so substitute unmanned ground vehicles (UGVs), or rovers, for UAVs. This choice was

motivated by our desire to make the application extensible enough to be used with

both real and virtual vehicles, and the greater availability of unmanned ground vehicles

in our research lab for future research involving real vehicles. Wayfinder is capable of

communicating with virtual simulated rovers, as in this experiment, and it provides an

invariant software interface for the vehicles which will allow us to use it for real vehicles

in the future as well.

Figure B.1 The Vigilant Spirit controliInterface

110

Figure B.2 The Wayfinder application. Visible are vehicles (circles), threats
(triangles), waypoints (flags) and control panels (left).

B.5.1 Hardware and software

For multitouch input and gesture recognition, we have effectively utilized the Sparsh-

UI gesture recognition framework (58). Sparsh-UI was developed by researchers at Iowa

State University in 2008, and it provides a cross-platform gesture recognition system

compatible with several input devices. Several other gesture recognition systems are

available, but they do not provide the flexibility we desired.

Alternatives to Sparsh-UI gesture recognition include Tisch (18) and Multitouch for

Java (45). We chose to use Sparsh-UI because it provides the functionality that we

require in order to recognize and process multitouch input, and it is flexible enough

to accommodate multitouch input from several types of multitouch-enabled hardware

devices.

We decided to purchase and use a 25.5 HP TouchSmart (Figure B.3) device for this

study, because it offered the screen real-estate necessary as well as reliable sensing. Due

to certain multitouch-sensing limitations of the HP TouchSmart, we also used a second

device, the 15.4 Stantum SMK multitouch device (Figure B.4). We chose to conduct two

separate experiments with these two devices to more exhaustively evaluate the potential

benefits of multitouch hardware.

Sparsh-UI was previously compatible with the Stantum SMK device; however, it was

111

not compatible with the HP TouchSmart. We chose to write a driver for the TouchSmart

so that it too would be compatible with Sparsh-UI, allowing us to utilize both input

devices as necessary.

Figure B.3 The 25.5” HP TouchSmart computer.

Figure B.4 The Stantum SMK 15.4” multitouch device

B.5.2 Features

Wayfinder provides many features that are common in most supervisory control

interfaces. Its purpose is to enable an operator to monitor several UGVs simultaneously,

112

visualizing intelligence and threat information for him or her without overtaxing his or

her mental capacity. It provides a top-down map which occupies most of the screen, as

shown in Figure B.2. This top-down map functions as the main interaction space for

the application. Vehicles appear on the map at their current positions, and users can

interact with the vehicles in several ways, which are described in this section.

Additionally, Wayfinder allows users to drag, zoom, and pan this top-down map to

view different areas of the map. This allows them to obtain an overall view of the map or

zoom in for a more detailed view quickly and easily. In Wayfinder, we chose not to allow

users the capability of rotating the top-down map to view it from different angles. This

decision was motivated by a desire to maintain control over the tasks in the experiment,

which might have varied in difficulty depending on the angle from which the operator

viewed the map.

B.5.2.1 Simulated vehicles

In Wayfinder, the operator has supervisory control of three semi-autonomous vehicles

(rovers). To instruct the vehicles to travel to intended destinations, he or she may specify

navigational waypoints (see Setting Waypoints, below). Wayfinder can support multiple

rovers, allowing as many as screen real estate and operator mental capacity will allow.

In this research, the operator controls three simulated ”virtual“ vehicles within a

3D model of a building rather than actual rovers. Though Wayfinder fully supports

interaction with real vehicles, we have chosen to utilize simulated vehicles out of a desire

to minimize hardware technical difficulties, video lag, and other variables which might

confound our results.

These ”virtual“ vehicles are simulated with a sister application, which handles navi-

gation and simulated video feeds. For simulating video feeds, we wrote an OpenScene-

Graph (10) application which provides the video feed back to Wayfinder. All commu-

nication between this application and Wayfinder is performed via TCP/UDP Sockets.

113

In addition, it is designed to conform to Wayfinders vehicle interface communication

standard, meaning that it would be very easy to replace the entire application with code

running on a real vehicle.

B.5.2.2 Video reviewing

Wayfinder allows users to view live video feed from each rover with the video control

panels (Figure B.5). Each video panel is colored to match the rover that it is associ-

ated with. As described above, for this experiment, the video feed is provided by the

OpenSceneGraph application which simulates rovers exploring a virtual 3D model of a

building.

Figure B.5 Wayfinder’s video control panel

The video reviewing functionality in Wayfinder is very complex and feature-rich so

that it may reflect the needs of Air Force UAV operators. The participant may use the

timeline shown beneath each video to replay and review older video. This is done by

either clicking or touching the playhead shown on the timeline and dragging it back and

forth. Additionally, the user can click or tap and drag the timeline itself to review older

video if, for example, the playhead has reached the edge of the timelines boundary box.

This feature allows the user to view older video in the event that a threat was detected

earlier in the mission.

114

If the user is reviewing old video, a transparent rover icon will be displayed on the

screen to show the location of the rover at that point in time. This transparent rover is

very useful to the participants who are reviewing video looking for threats, because it

allows them to place the transparent rover on the map where it would have had a good

view of the threat.

B.5.2.3 Setting waypoints

In Wayfinder, operators do not control the vehicles directly, but instead set intended

destinations, or waypoints, by using the waypoint control panels (Figure B.6). Each

waypoint control panel is colored to match both the vehicle and video panel that it is

associated with.

Figure B.6 Wayfinder’s waypoint panel

These waypoints can be compared to a bread-crumb trail in which the rover will try

to visit all of the waypoints sequentially. Since the rovers are semi-autonomous, they

plot the quickest route to their destination automatically, and are able to avoid walls

and obstacles that may be in their path.

We allow users to set waypoints with the multitouch interface by touching and holding

one of the buttons on the waypoint control panel with one hand, then tapping locations

on the top-down map to add or move waypoints with the other hand. For example, in

order to add a waypoint for the red rover, a user would tap and hold the ”add“ button

with the left hand. With this button held down, they may tap the map with the other

hand. Waypoints will appear on the map where the user tapped.

115

This interaction style was motivated by our wish to have participants utilize both

hands when interacting with the application. We observed in a pilot study that many

users did not use both hands if they were not forced to. We conducted this pilot study

with 5 participants, 3 male, 2 female, and observed their behavior in an attempt to

improve the interface for the larger study. We observed during this pilot study that

one of the male participants kept his right hand in his lap during the entire duration of

the experiment. Thus, in an attempt to get our users working with both of their hands

simultaneously in a bi-manual interaction style, we chose to require participants to set

waypoints using both hands. We observed that users picked this style of interaction up

very quickly, though it may not have seemed natural at first.

Similarly, to move waypoints, the user can tap and hold the ”move“ button and,

with the other hand, drag the desired waypoint to a different a location. To clear all of

the waypoints for a particular rover, the user must press and hold the clear button for

2 seconds.

With the mouse interface, the user only has one point of interaction with the interface,

so we needed to change the interaction style. For the mouse-based interaction, we settled

on a ”modal“ style of interaction. To enter a ’waypoint add mode“ the user simply clicks

on the ”add“ button. The button is now ”down“ similar to if the user was holding it

down, as in the multitouch approach. Once in this mode, the user can click anywhere

on the map to add waypoints at that point. Once they are finished adding waypoints,

they simply click the ”add“ button again to finish adding waypoints, and the rover will

begin moving.

B.5.2.4 Classifying threats

In our scenario, rovers will detect ”threats“ in their environment as they move around

the map. Threats are represented by red triangles in the interface (Figure B.2). Though

the rover is capable of detecting these threats, the task of recognizing and classifying

116

the threats falls to the user, as it often does in real-world scenarios as described by

researchers at WPAFB. For this task, we chose to implement a ”pie menu“ interface for

classification (Figure B.7).

Figure B.7 Classification pie menus. Threats were classified by type, behav-
ior, size, and severity, all of which were described to participants
in a training video.

There are four categories by which we are asking users to classify threats, and they

are:

• Type (Explosive, Suspicious Person, Injured Person, Radioactive Drum, Other)

• Behavior (Not moving, Moving slowly, Moving quickly)

• Size (0-2 ft, 2-5 ft, 5-8 ft, 8-10 ft)

• Severity (Urgent, Of Interest, Not of Interest, False Alarm).

The threats the users were asked to classify are shown in Figure B.8, and are as

follows. The person in Figure B.8 was modified to either have a red or blue shirt, or was

lying horizontally on the ground to show injury.

• Explosive Device — Type: Explosive, Behavior: Not moving, Size: 0-2 ft, Severity:

Urgent

117

• Person wearing RED — Type: Suspicious Person, Behavior: Not moving, Size:

5-8 ft, Severity: Of Interest

• Person wearing BLUE — Type: Suspicious Person, Behavior: Not moving, Size:

5-8 ft, Severity: Not Of Interest)

• Injured Person — Type: Injured Person, Behavior: Not moving, Size: 5-8 ft,

Severity: Urgent

• Radioactive Canister — Type: Radioactive Drum, Behavior: Not moving, Size:

2-5 ft, Severity: Urgent

• Table / Chair — Type: Other, Behavior: Not moving, Size 2-5 ft, Severity: False

Alarm

In order to bring up the classification menu, the user must click or tap on the red threat

triangle of a particular threat (Figure B.2). When the classification menu appears, the

user must select one element from each of the four categories and tap or click both of

the circular buttons on either side of the menu to confirm the classification (Figure B.7).

Figure B.8 Threats displayed in Wayfinder.

118

B.6 Experiment 1

The question we are addressing with this research is whether a multitouch interface is

more or less effective than a mouse-based interface for interaction in a supervisory control

setting. Using the Wayfinder application, we have designed several tasks and measures

by which we will evaluate the answer to this research question (see ”Tasks/Performance

Metrics,“ below). We propose that the multitouch interface may offer unique advan-

tages over a similar mouse-based interface, and may also have unique limitations. This

hypothesis is partially based on prior research involving the evaluation of multitouch

interfaces which has demonstrated that that multitouch interfaces can often be better

for complex manipulation tasks, but worse for precise tasks (46).

B.6.1 Method

The study was conducted using a within-participants design with 27 participants,

where each participant was asked to use both the mouse and the multitouch interface

to accomplish the tasks set forth by the experimenters.

Participants were trained with the interface as described in the ”Training“ section

below, after which they completed two 8-minute missions, one with each interface. To

mitigate the learning effect of a within-participants design, we alternated the order in

which participants used the two interfaces.

After completing the first mission, the operator was given time to practice with the

other interface and completed another 8-minute mission with the second set of threats

and waypoints.

After completing both missions, the first 16 participants were asked to complete the

second experiment described below. Then, participants were asked to fill out a short

written survey and were dismissed.

The participants were all college students participating in the study in order to obtain

119

class credit for their psychology classes, but none of the participants were acquainted

with the experimenters. The participants were varied in gender, age and relative expe-

rience with multitouch technology. 11 participants were male, 18 female, ranging in age

between 18 and 24 years old. Participants were asked to rate their experience with mul-

titouch technology (including the iPhone) on a 5-point Likert scale, and their responses

are given in Figure B.9.

We observed that most participants had some experience with multitouch technology,

and three owned a device with multitouch functionality.

Figure B.9 Multitouch experience among participants.

B.6.2 Performance metrics in the simulated mission

In order to evaluate the effectiveness of a multitouch interface, we have designed

several tasks which are based on real-world scenarios described by fellow researchers

at WPAFB. The tasks were encapsulated in an 8-minute mission, and each participant

completed two missions, one for the mouse interface, and one for the multitouch interface.

Participants were trained using both interfaces, as described below in the ”training“

section. For this experiment, participants used the HP TouchSmart for both multitouch

interaction and as a monitor for mouse interaction. This allowed us to control for the

size, brightness, and position of the display.

120

Tasks were presented to the user automatically by the Wayfinder application. The

application would display text at the top of the screen instructing the users what to do,

as in Figure B.10. When the application displayed a task, participants were instructed

to complete the task as quickly and accurately as they could.

Figure B.10 Wayfinder instructing a participant to place waypoints. Note
the small circular waypoint targets with the numbers inscribed.

B.6.2.1 Time taken to set waypoints

At predetermined times throughout the mission, the application would ask the op-

erator to set four waypoints for a rover. We observed the time that it took the user

to set all four waypoints, from the time the text was displayed until the participant

finished the task. To show the users where to place each waypoint, Wayfinder displayed

small circular targets with numbers inscribed to communicate the intended order of the

waypoints (Figure B.10).

B.6.2.2 Time taken to classify threats

At predetermined times throughout the mission, the application would ask the op-

erator to classify a particular threat displayed on the map. The operator would have

to then use the video control panels and the map to review older video, and use the

121

classification feature to classify the threat they were assigned. We measured the time

that it took the operator to classify and confirm the classification.

B.6.2.3 Situation awareness

Additionally, we will also measure whether a multitouch interface has an effect on the

operators Level 1 situation awareness, and will use the ”freeze technique“ as described

by M. Endsley in (19). Our implementation of this technique involves blanking the

screen at random times during the experiment and asking participants questions about

their environment to test their level of situation awareness.

The authors are aware that evaluation of Level 1 SA has some limitations, and that

higher levels of situational awareness are also crucial in supervisory control environments.

However, our measure of situational awareness is this research is strictly introductory

and will serve as a jumping-off point for future research. We will discuss the primary

limitations of Endsleys technique and discuss our motivations for using it in greater

detail in the ”Limitations“ section.

In this experiment, we evaluated Level 1 situational awareness as follows: three times

during the mission, we blanked the screen as described by Endsley in (19), displayed

the entire map of the building, and asking the operator to estimate the position of each

rover on the map (See Figure B.11). The operator dragged three icons, one representing

each rover, to his/her best estimate of each rovers position immediately before the screen

was blanked. We measured the average distance between the users perceived position of

each rover and the rovers actual position and reported it as a measure of Level 1 SA.

B.6.3 Training

During the design of this experiment, we were particularly concerned with the amount

and type of training users would receive. We assumed that our participants would have

varying degrees of experience with multitouch technology, which would potentially give

122

Figure B.11 Situational awareness prompt.

some participants a relative advantage when using the multitouch interface. We trained

the participants such that this effect was mitigated, and at the same time, we ensured

that users would receive a consistent training experience. Finally, we gave them all

enough information and experience to accomplish the goal in an effective and efficient

manner.

To help us accomplish this goal, we created a 6-minute training video for participants

to watch, which helped us ensure a consistent training experience.

The video trained the users in the different features of the application by demonstrat-

ing how to use a particular feature. Each feature was shown using both the mouse and

the multitouch interface, so that participants could observe the appropriate behavior

to trigger the action they intended. Furthermore, the video also instructed the partici-

pants in the manner in which they should classify the threats that appeared in the map,

as described in the ”Classification“ section above. The video also showed participants

images of the threats they would be asked to identify, as shown in Figure B.8.

While the training video demonstrated the particular interaction techniques that

would be necessary to interact with Wayfinder, it is difficult to tell whether the partic-

ipant was paying full attention, whether they understood all aspects of the video, and

whether they would be able to successfully apply the knowledge they have gained. To

help mitigate these effects, we also allowed participants to ask questions immediately

123

following the training video and answered these questions as completely as possible.

After training was completed, the operator was allowed to practice using the first

interface that was assigned to them, either mouse or multitouch. To minimize the

limitations mentioned above, the operator was ”trained to criterion,“ meaning that they

practiced using the interface and performing tasks until the experimenter could verify

that they were capable of using the interface effectively to accomplish tasks without

assistance.

A common problem that we addressed during training was the relative lack of expe-

rience with a multitouch interface when compared to experience with a mouse interface.

Participants unanimously have more experience using a mouse than they do using a

multitouch screen, specifically the multitouch devices we employed.

Due to this difference in experience, participants generally received longer instruc-

tion/practice time with the multitouch interface than they did with the mouse interface.

As such, the practice period for multitouch training lasted as little as four minutes or as

long as ten minutes in some cases, whereas the mouse training generally lasted between

two and five minutes.

B.6.4 Results

Results show that the multitouch interface performs comparably to the mouse inter-

face in classifying threats and in levels of SA obtained when using the interface.

For assessing Level 1 situation awareness, we measured the average distance between

each participants estimate of the location of each rover and the actual location of each

rover. Results are reported units of the map width, where 1 unit is approximately equal

to the width of the map. This was done because we did not have accurate measures

of absolute distance. The average difference between estimated and actual positions

for those using the mouse interface was 0.114 units, with a standard deviation of 0.051

units. The average difference between estimated and actual positions for those using

124

the multitouch interface was 0.130 units, with a standard deviation of 0.054 units. An-

alyzing these results with a paired-samples t-test yielded P=0.2067, so we are unable to

claim that there was a difference between the two interaction styles, however note that

multitouch performed similarly to the mouse-based interface for this task.

For classifying threats, we also observed similar results for both the multitouch and

mouse-based interfaces. We observed the average time it took for a user to complete a

classification task. When using the mouse interface, the average time to complete a clas-

sification task was 24.771 seconds, with a standard deviation of 10.325 seconds. When

using the multitouch interface, the average time was 24.933 seconds, with a standard

deviation of 10.519 seconds. It is interesting to note here that the standard deviation of

scores for this task was relatively high when compared with the mean score for this task,

implying that there was a great deal of variability between participants for this task.

For setting waypoints, we observed that the mouse interface performed better than

the multitouch interface. We observed a mean task completion time of 13.877 seconds

for the mouse interface, with a standard deviation of 5.342 seconds. For the multitouch

interface, the mean completion time was 19.887 seconds (6.01 seconds slower than the

mouse interface) with a standard deviation of 7.583 seconds. These results are illustrated

in Figure B.12. Analyzing this data using a paired-samples t-test yielded P=0.0017, and

we can conclude that for setting waypoints, the mouse interface performed better than

the multitouch interface.

We observed that many participants struggled when using the touchscreen interface

to set waypoints. Unfortunately, the HP Touchsmart produced sensing inaccuracies

when using multiple fingers to set waypoints, and users generally found it difficult to

overcome these sensing inaccuracies when performing precise actions such as setting

waypoints. We believe that other, more precise multitouch hardware would perform

relatively better than these results show, and is included for future investigation.

125

Figure B.12 Results of waypoint task. Users were able to set waypoints an
average of 6.01 seconds faster using the mouse.

B.7 Experiment 2 - map manipulation

In addition to our first experiment, we also measured the ability of a user to manip-

ulate the map to view a specific area of the map. To measure this, we asked the user to

drag, scale, and rotate a black rectangle such that it filled the screen (see Figure B.13).

Orientation was indicated by a red arrow, and participants were instructed that this

red arrow should point ”up when they were finished. This part of the experiment was

conducted independently with the first 16 participants from experiment 1, as described

above.

Figure B.13 Map manipulation task. The participants manipulated the
small black rectangle so that it filled the screen with the arrow
pointing up.

Of these 16 participants, 5 were male, 11 were female, and were in the same age

range and experience as in Experiment 1.

With the mouse interface, participants could move the rectangle by pressing the left

mouse button and dragging, scale by using the mouse wheel, and rotate by right-clicking

126

and dragging the mouse right to left. With the multitouch screen, participants could

manipulate the map by dragging, stretching, pinching and rotating with 2 fingers.

For this task, we used the Stantum SMK 15.4 multitouch device. Participants used

both a mouse and multitouch interface for this task, and training was performed in the

same manner as for the missions. To analyze the effects, we measured the number of

the described manipulation tasks the participant could complete in a two-minute time

period.

B.7.1 Results

Results of this experiment show that the use of a multitouch interface allows a user

to better manipulate the map to show a region of interest (Figure B.14). Data were

analyzed with a paired-sample t-test. On average, participants completed 6.6 more

manipulation tasks with the multitouch interface than they did with the mouse interface

in the two-minute time period (p ¡ 0.0001). Error bars in Figures 12 and 13 represent a

95 percent confidence interval for the mean.

Figure B.14 Results of the map manipulation task. Participants completed
6.6 more manipulations with the multitouch interface.

Finally, participants were asked to rate their preferences for each interface on a

continuous scale from 0-100, where 0 was ”preferred mouse“ and 100 was ”preferred

multitouch.“

127

Results show that participants slightly preferred the multitouch interface for manip-

ulating the map with an average response of 77.5, organizing information (62.4), and

classifying threats (69.0) (p ¡ 0.01). However, participants preferred the mouse interface

for setting waypoints with a response of 36.4 (p ¡ 0.01).

B.8 Limitations

The authors would like to express an acknowledgement of some limitations of this

research, primarily the decision to use two different hardware devices and the choice to

evaluate only Level 1 situational awareness.

B.8.1 Hardware

Initially, we did not intend to use more than a single input device in order to maintain

consistency; however, we were unable to find a commercial input device which satisfied

both of our requirements, which were:

• Must be large enough to display detail and allow the user a broad view of the

environment.

• Must have accurate sensing capabilities, and preferably the ability to sense multiple

fingers reliably.

We decided to purchase and use a 25.5” HP TouchSmart device for this experiment,

because it offered the screen real-estate necessary. However, the device did not satisfy

our second requirement as well as we thought, and presented significant sensing issues

(wherein the device cannot distinguish between multiple possible finger positions). This

made it difficult if not impossible to perform a 2-finger rotate gesture, which we required

for evaluating the ability of the user to manipulate the map.

128

Therefore, we used a second device in addition to the HP TouchSmart, one that

produced greater input precision. We chose to use a 15.4” Stantum SMK multi-touch

device. While the Stantum device is significantly smaller than the HP TouchSmart, it

offered us much greater precision. The use of two devices required us to conduct and

analyze two experiments, while our preference would have been to integrate them into

a single experiment. However, the experiments were run and analyzed independently,

and the results are still valid within each experiment.

B.8.2 Situational awareness

Our evaluation of Level 1 situational awareness has some limitations; it simply eval-

uates a participants perception of the details and elements of the environment, and does

not evaluate his or her comprehension or understanding of these elements. Our decision

to evaluate Level 1 SA was based on the introductory nature of this research, especially

as it explores a new application for multitouch interfaces. This research is intended to

serve as a jumping-off point for further investigation in the application of multitouch

interfaces in supervisory control settings. We acknowledge that further work is needed

to evaluate whether multitouch interfaces have an effect on higher levels of SA, and that

this evaluation is needed if multitouch interfaces are to become more widely accepted in

supervisory control environments.

B.9 Discussion

Results show that a multitouch interface can be an effective interface for manipulating

a map of a building to view different parts of the building. Multitouch interaction allows

users to perform three operations (zoom, drag, rotate) in a single motion, and the results

show a conclusive advantage for multitouch over mouse interaction.

We also found that a multitouch interface performs similarly to a mouse-based inter-

129

face for classifying threats and maintaining situation awareness in supervisory control

interfaces. As a result, developers of supervisory control interfaces should not be con-

cerned of a loss of Level 1 situation awareness by moving to a new, perhaps less familiar,

multitouch interface.

We found that the mouse interface performed better for setting waypoints for rovers

than the multitouch interface. However, users were frustrated by known hardware im-

precision with the HP TouchSmart when using the multitouch interface. We found that

users spent a great deal of time having to reset waypoints that they had already set

because the touchscreen was simply not precise enough.

Although we suspected that users would have more difficulty with precise tasks on

the multitouch screen, we believe that with a more precise touchscreen device, some of

these difficulties could be mitigated.

B.10 Conclusions and future work

We have shown that multitouch can be used as an effective interface in a supervisory

control environment, and have shown its advantages and potential disadvantages over

a mouse-based input device. We also expect that touchscreen hardware improvements

could lead to more consistent advantages for the multitouch input device.

Future work will involve evaluating a multitouch interface for longer missions to

evaluate strain on users, as the 8-minute missions described in this research were not

long enough to evaluate user strain and fatigue. These issues may have a significant effect

on the feasibility of implementing a multitouch interface for mission-critical supervisory

control interfaces.

Finally, developers of these interfaces will need to implement new and effective inter-

face designs that are customized for a multitouch interface. Multitouch gestures could

provide additional features that extend the basic functionality of the Wayfinder inter-

130

face, and make multitouch interaction a realistic interface for current supervisory control

interfaces.

B.11 Acknowledgments

We especially thank those involved in the development of the Wayfinder application,

namely Tony Milosch and Mike Oren, fellow researchers at Wright Patterson Air Force

Base for providing perspective and guidance, and those who participated in the research

study. This research was conducted with support from the AFOSR.

131

APPENDIX C. FORMS

This appendix contains forms and documents which were used in the user study.

C.1 Informed Consent

This section contains a copy of the informed consent document which was given to

participants in the developer study prior to their participation. Please refer to Figures

C.1 and C.2.

C.2 Interview Protocol

The interview protocol was developed and submitted before the name of the software

framework was changed to AQUA-G. Therefore, all questions reference the system called

“OmniGest.” During the interview, the word Omnigest was replaced by AQUA-G. The

interview protocol is shown in figures C.3 and C.4.

132

Figure C.1 Informed Consent Document, Page 1.

133

Figure C.2 Informed Consent Document, Page 2.

134

Figure C.3 Interview Protocol, Page 1.

135

Figure C.4 Interview Protocol, Page 2.

136

BIBLIOGRAPHY

[1] Appert, C., and Zhai, S. (2009). Using strokes as command shortcuts: cognitive

benefits and toolkit support. In Proceedings of the 27th international conference on

Human factors in computing systems (pp. 2289-2298). Boston, MA, USA: ACM.

doi:10.1145/1518701.1519052

[2] Apple, Inc. (2010). iPad. Retrieved 2 June, 2010 from http://www.apple.com/

ipad/

[3] Apple, Inc. (2010). iPhone. Retrieved June 2, 2010, from http://www.apple.com/

iphone

[4] Apple, Inc. (2010). iPhone Development Guide. Retrieved from http:

//developer.apple.com/iphone/library/documentation/Xcode/Conceptual/

iphone_development/000-Introduction/introduction.html

[5] Bailador, G., Roggen, D., Tröster, G., and Triviño, G. (2007). Real time gesture

recognition using continuous time recurrent neural networks. In Proceedings of the

ICST 2nd international conference on Body area networks (pp. 1-8). Florence, Italy:

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering). Retrieved from http://portal.acm.org/citation.cfm?id=

1460247

137

[6] Bau, O., and Mackay, W. E. (2008). OctoPocus: a dynamic guide for learning

gesture-based command sets. In Proceedings of the 21st annual ACM symposium

on User interface software and technology (pp. 37-46). Monterey, CA, USA: ACM.

doi:10.1145/1449715.1449724

[7] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., and Cruz-Neira,

C. (2008). VR juggler: a virtual platform for virtual reality application devel-

opment. In ACM SIGGRAPH ASIA 2008 courses (pp. 1-8). Singapore: ACM.

doi:10.1145/1508044.1508086

[8] Bonansea, L. (2009). 3D Hand gesture recognition using a ZCam and an SVM-

SMO classifier. Ames, IA, USA: Iowa State University. Retrieved from http://

gradworks.umi.com/14/68/1468148.html

[9] Bragdon, A., Zeleznik, R., Williamson, B., Miller, T., and LaViola, J. (2009). Ges-

tureBar: improving the approachability of gesture-based interfaces. In Proceedings

of the 27th international conference on Human factors in computing systems (pp.

2269-2278). Boston, MA, USA: ACM. doi:10.1145/1518701.1519050

[10] Burns, D., and Osfield, R. (2004). Open Scene Graph A: Introduction, B: Examples

and Applications. In Proceedings of the IEEE Virtual Reality 2004 (p. 265). IEEE

Computer Society. doi:10.1109/VR.2004.57

[11] Buxton, B. (2007). Multi-touch systems that I have known and loved. Retrieved

June 2, 2010, from http://www.billbuxton.com/multitouchOverview.html

[12] Buxton, W., Fiume, E., Hill, R., Lee, A., and Woo, C. (1983). Continuous hand-

gesture driven input. In Proceedings of Graphics interface (Vol. 83, pp. 191195).

138

[13] Chen, Y. T., and Tseng, K. T. (2007). Multiple-angle hand gesture recognition

by fusing svm classifiers. In IEEE International Conference on Automation Sci-

ence and Engineering, 2007. CASE 2007 (pp. 527530). Scottsdale, AZ, USA.

doi:10.1109/COASE.2007.4341729

[14] Cheng, K., Itzstein, B., Sztajer, P., and Rittenbruch, M. (2009). A unified multi-

touch and multi-pointer software architecture for supporting collocated work on the

desktop (Technical Report No. ATP-2247). NICTA. Retrieved from http://www.

cs.usyd.edu.au/~kcheng/2247_A_unified_2.pdf

[15] Dell. (2010). Dell Latitude XT2 Tablet PC Touch Screen Laptop Details. Retrieved

June 2, 2010, from http://www.dell.com/tablet?s=biz&cs=555

[16] Dietz, P., and Leigh, D. (2001). DiamondTouch: a multi-user touch technology. In

Proceedings of the 14th annual ACM symposium on User interface software and

technology (pp. 219-226). Orlando, Florida: ACM. doi:10.1145/502348.502389

[17] Dohse, K. C., Dohse, T., Still, J. D., and Parkhurst, D. J. (2008). Enhancing

multi-user interaction with multi-touch tabletop displays using hand tracking. In

Advances in Computer-Human Interaction, 2008 First International Conference on

(pp. 297-302). doi:10.1109/ACHI.2008.11

[18] Echtler, F., and Klinker, G. (2008). A multitouch software architecture. In Proceed-

ings of the 5th Nordic conference on Human-computer interaction: building bridges

(pp. 463-466). Lund, Sweden: ACM. doi:10.1145/1463160.1463220

[19] Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems.

Human Factors: The Journal of the Human Factors and Ergonomics Society, 37,

65-84. doi:10.1518/001872095779049499

139

[20] Fong, T., and Thorpe, C. (2001). Vehicle Teleoperation Interfaces. Autonomous

Robots, 11(1), 9-18. doi:10.1023/A:1011295826834

[21] Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. (2007). Direct-touch vs.

mouse input for tabletop displays. In Proceedings of the SIGCHI conference on

Human factors in computing systems (pp. 647-656). San Jose, California, USA:

ACM. doi:10.1145/1240624.1240726

[22] Gamma, E. (1995). Design patterns. Addison-Wesley.

[23] Gardner, M. (1970). Mathematical games: The fantastic combinations of John

Conway’s new solitaire game ’Life’. Scientific American, 223(4), 120123.

[24] Han, J. Y. (2005). Low-cost multi-touch sensing through frustrated total in-

ternal reflection. In Proceedings of the 18th annual ACM symposium on User

interface software and technology (pp. 115-118). Seattle, WA, USA: ACM.

doi:10.1145/1095034.1095054

[25] Hartmann, B., Morris, M. R., Benko, H., and Wilson, A. D. (2009). Augmenting

interactive tables with mice and keyboards. In Proceedings of the 22nd annual ACM

symposium on User interface software and technology (pp. 149-152). Victoria, BC,

Canada: ACM. doi:10.1145/1622176.1622204

[26] Hewlett-Packard Development Company, L.P. (2010). HP TouchSmart. Retrieved

June 2, 2010, from http://www.hp.com/united-states/campaigns/touchsmart/

[27] Iddan, G. J., and Yahav, G. (2001). Three-dimensional imaging in the studio and

elsewhere. In Three-Dimensional Image Capture and Applications IV (Vol. 4298,

pp. 48-55). San Jose, CA, USA: SPIE. doi:10.1117/12.424913

140

[28] Ishii, H., and Ullmer, B. (1997). Tangible bits: towards seamless interfaces be-

tween people, bits and atoms. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems (pp. 234-241). Atlanta, GA, USA: ACM.

doi:10.1145/258549.258715

[29] Izadi, S., Agarwal, A., Criminisi, A., Winn, J., Blake, A., and Fitzgibbon, A. (2007).

C-Slate: A Multi-Touch and Object Recognition System for Remote Collaboration

using Horizontal Surfaces. In Second Annual IEEE International Workshop on Hor-

izontal Interactive Human-Computer Systems, 2007. TABLETOP ’07 (pp. 3-10).

Newport, RI, USA. doi:10.1109/TABLETOP.2007.34

[30] Jacob, R. J., Girouard, A., Hirshfield, L. M., Horn, M. S., Shaer, O., Solovey,

E. T., and Zigelbaum, J. (2008). Reality-based interaction: a framework for post-

WIMP interfaces. In Proceedings of the twenty-sixth annual SIGCHI conference

on Human factors in computing systems (pp. 201-210). Florence, Italy: ACM.

doi:10.1145/1357054.1357089

[31] Kato, J., Sakamoto, D., Inami, M., and Igarashi, T. (2009). Multi-touch interface

for controlling multiple mobile robots. In Proceedings of the 27th international con-

ference extended abstracts on Human factors in computing systems (pp. 3443-3448).

Boston, MA, USA: ACM. doi:10.1145/1520340.1520500

[32] Kiriaty, Y. (2009). Multitouch capabilities in Windows 7. MSDN Magazine,

2009(August). Retrieved from http://msdn.microsoft.com/en-us/magazine/

ee336016.aspx

[33] Kitware, Inc. (2009). CMake. Retrieved June 2, 2010, from http://www.cmake.

org/

141

[34] Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. (2004). Papier-Mache:

toolkit support for tangible input. In Proceedings of the SIGCHI conference on

Human factors in computing systems (pp. 399-406). Vienna, Austria: ACM.

doi:10.1145/985692.985743

[35] Knight, S. (2002). SCons design and implementation. Presented at the Tenth Inter-

national Python Conference. Retrieved from http://www.python.org/workshops/

2002-02/papers/16/index.htm

[36] Krueger, M. W., Gionfriddo, T., and Hinrichsen, K. (1985). VIDEOPLACE – an

artificial reality. SIGCHI Bull., 16(4), 35-40. doi:10.1145/1165385.317463

[37] Lee, J. C. (2008). Hacking the Nintendo Wii Remote. IEEE Pervasive Computing,

7(3), 39-45. doi:10.1109/MPRV.2008.53

[38] Liu, Y., Gan, Z., and Sun, Y. (2008). Static Hand Gesture Recognition and its

Application based on Support Vector Machines. In Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, ACIS International

Conference on (Vol. 0, pp. 517-521). Los Alamitos, CA, USA: IEEE Computer

Society. doi:10.1109/SNPD.2008.144

[39] Massie, T. H., and Salisbury, J. K. (1994). The phantom haptic interface: A

device for probing virtual objects. In Proceedings of the ASME winter annual

meeting, symposium on haptic interfaces for virtual environment and teleopera-

tor systems (Vol. 55, pp. 295300). Retrieved from http://www.sensable.com/

documents/documents/ASME94.pdf

142

[40] Matejka, J., Grossman, T., Lo, J., and Fitzmaurice, G. (2009). The design and

evaluation of multi-finger mouse emulation techniques. In Proceedings of the 27th

international conference on Human factors in computing systems (pp. 1073-1082).

Boston, MA, USA: ACM. doi:10.1145/1518701.1518865

[41] Micire, M., Drury, J. L., Keyes, B., and Yanco, H. A. (2009). Multi-touch in-

teraction for robot control. In Proceedings of the 13th international conference

on Intelligent user interfaces (pp. 425-428). Sanibel Island, Florida, USA: ACM.

doi:10.1145/1502650.1502712

[42] Microsoft. (2010). Microsoft Surface. Retrieved June 2, 2010, from http://www.

microsoft.com/surface/en/us/default.aspx

[43] Microsoft. What are pen flicks? Retrieved July 2, 1010, from http://windows.

microsoft.com/en-US/windows-vista/What-are-pen-flicks.

[44] Mouse Gestures Redox :: Home. Retrieved July 2, 2010, from http://www.

mousegestures.org/.

[45] MT4j - Multitouch For Java. (n.d.). Retrieved November 18, 2009, from http:

//www.mt4j.org/mediawiki/index.php/Main_Page

[46] Muller, L. Y. L. (2008). Multi-touch displays: design, applications and performance

evaluation. Universiteit van Amsterdam. Retrieved from http://www.science.

uva.nl/research/scs/papers/archive/Muller2008a.pdf

[47] MultiTouch Ltd. (2009). MultiTouch Cell. Retrieved June 2, 2010, from http://

multitouch.fi/products/cell/

143

[48] Murakami, K., and Taguchi, H. (1991). Gesture recognition using recurrent neural

networks. In Proceedings of the SIGCHI conference on Human factors in comput-

ing systems: Reaching through technology (pp. 237-242). New Orleans, Louisiana,

United States: ACM. doi:10.1145/108844.108900

[49] NextWindow. (n.d.). NextWindow - Home. Retrieved June 2, 2010, from http:

//www.nextwindow.com/

[50] Nguyen, L., Bualat, M., Edwards, L., Flueckiger, L., Neveu, C., Schwehr, K., Wag-

ner, M., et al. (2001). Virtual realityiInterfaces forvVisualization and control of

remote vehicles. Autonomous Robots, 11(1), 59-68. doi:10.1023/A:1011208212722

[51] Nicholas, D., Huntington, P., and Williams, P. (2001). Establishing metrics for the

evaluation of touch screen kiosks. Journal of Information Science, 27(2), 61-71.

doi:10.1177/016555150102700201

[52] Nintendo. (2010). Wii controllers. Retrieved June 2, 2010, from http://www.

nintendo.com/wii/console/controllers

[53] N-trig. (n.d.). About us. Retrieved June 2, 2010, from http://www.n-trig.com/

Content.aspx?Page=AboutUs

[54] NUI Group Community. (n.d.). Community Core Vision. Retrieved June 2, 2010,

from http://ccv.nuigroup.com/

[55] Peek, B. (2009). Managed Library for Nintendo’s Wiimote. Retrieved June 2, 2010,

from http://wiimotelib.codeplex.com/

144

[56] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. (2000). The Cricket

location-support system. In Proceedings of the 6th annual international confer-

ence on Mobile computing and networking (pp. 32-43). Boston, MA, USA: ACM.

doi:10.1145/345910.345917

[57] PyMT : Open source library for multitouch development. (n.d.). Retrieved June 2,

2010, from http://pymt.txzone.net/

[58] Ramanahally, P., Gilbert, S., Niedzielski, T., Velazquez, D., and Anagnost, C.

(2009). Sparsh UI: A Multi-Touch Framework for Collaboration and Modular Ges-

ture Recognition. In ASME-AFM 2009 World Conference on Innovative Virtual

Reality (pp. 137-142). doi:10.1115/WINVR2009-740

[59] Ramanahally, P. (2010). Cricket based user identification for multi-touch table.

Ames, IA: Iowa State University. In Press.

[60] Roltgen, J. (2010). Aqua-gesture-framework. Retrieved June 2, 2010, from http:

//code.google.com/p/aqua-gesture-framework/

[61] Roltgen, J., and Gilbert, S. (2010). Wayfinder: Evaluating Multitouch Interaction

in Supervisory Control of Unmanned Vehicles. In Proceedings of the ASME 2010

World Conference on Innovative Virtual Reality.

[62] Rowe, A., Kristen, L., and Davis, J. (2009). Vigilant Spirit Control Station: A

Research Testbed for Multi-UAS Supervisory Control Interfaces. in Proceedings of

the International Symposium of Aviation Psychology. Retrieved from http://www.

vrac.iastate.edu/~jroltgen/VS.pdf

145

[63] Squire, P., Trafton, G., and Parasuraman, R. (2006). Human control of multiple

unmanned vehicles: effects of interface type on execution and task switching times.

In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot inter-

action (pp. 26-32). Salt Lake City, Utah, USA: ACM. doi:10.1145/1121241.1121248

[64] Saffer, D. (2008). Designing Gestural Interfaces: Touchscreens and Interactive De-

vices (1st ed.). O’Reilly Media.

[65] Schöning, J., Brandl, P., Daiber, F., Echtler, F., Hilliges, O., Hook, J., Löchtefeld,

M., et al. (2008). Multi-Touch Surfaces: A Technical Guide (No. TUM-10833). Uni-

versity of Münster. Retrieved from http://ifgi.uni-muenster.de/~j_scho09/

pubs/bymultitouch.pdf

[66] Starner, T., and Pentland, A. (1995). Real-time American Sign Language recogni-

tion from video using hidden Markov models. In Proceedings of the International

Symposium on Computer Vision (p. 265). Coral Gables, FL, USA: IEEE Computer

Society. doi:10.1109/ISCV.1995.477012

[67] Szymanski, R., Goldin, M., Palmer, N., Beckinger, R., Gilday, J., and Chase, T.

(2008). Command and Control in a Multitouch Environment. Presented at the Army

Science Conference. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?

Location=U2&doc=GetTRDoc.pdf&AD=ADA503423

[68] Taylor, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Helser, A. T.

(2001). VRPN: a device-independent, network-transparent VR peripheral system.

In Proceedings of the ACM symposium on Virtual reality software and technology

(pp. 55-61). Baniff, Alberta, Canada: ACM. doi:10.1145/505008.505019

146

[69] Tse, E., Shen, C., Greenberg, S., and Forlines, C. (2006). Enabling interaction with

single user applications through speech and gestures on a multi-user tabletop. In

Proceedings of the working conference on Advanced visual interfaces (pp. 336-343).

Venezia, Italy: ACM. doi:10.1145/1133265.1133336

[70] Tuddenham, P., and Robinson, P. (2007). Distributed tabletops: Supporting remote

and mixed-presence tabletop collaboration. In Second Annual IEEE International

Workshop on Horizontal Interactive Human-Computer Systems, 2007. TABLETOP

’07. (pp. 1926). Newpot, RI. doi:10.1109/TABLETOP.2007.15

[71] TUIO. (n.d.). Retrieved June 2, 2010, from http://www.tuio.org/

[72] Ullmer, B., and Ishii, H. (1997). The metaDESK: models and prototypes for tan-

gible user interfaces. In Proceedings of the 10th annual ACM symposium on User

interface software and technology (pp. 223-232). Banff, Alberta, Canada: ACM.

doi:10.1145/263407.263551 technology, ACM (1997), 223-232.

[73] Wilson, A., and Bobick, A. (1999). Parametric hidden Markov models for ges-

ture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(9), 884-900. doi:10.1109/34.790429

[74] Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J. D.,

and Borchers, J. (2009). SLAP widgets: bridging the gap between virtual and

physical controls on tabletops. In Proceedings of the 27th international conference

on Human factors in computing systems (pp. 481-490). Boston, MA, USA: ACM.

doi:10.1145/1518701.1518779

147

[75] Wobbrock, J. O., Morris, M. R., and Wilson, A. D. (2009). User-defined ges-

tures for surface computing. In Proceedings of the 27th international conference on

Human factors in computing systems (pp. 1083-1092). Boston, MA, USA: ACM.

doi:10.1145/1518701.1518866

[76] Wu, M., and Balakrishnan, R. (2003). Multi-finger and whole hand gestural in-

teraction techniques for multi-user tabletop displays. In Proceedings of the 16th

annual ACM symposium on User interface software and technology (pp. 193-202).

Vancouver, Canada: ACM. doi:10.1145/964696.964718

	2010
	AQUA-G: a universal gesture recognition framework
	Jay Roltgen
	Recommended Citation

	tmp.1335711608.pdf.FtskY

