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ABSTRACT 

 This dissertation augments the field of computational catalysis with uncertainty 

quantification.  An efficient tool to describe the energetics and structure of atomistic 

systems is density functional theory (DFT).  DFT may be used to understand how 

catalysts work although DFT is inexact in nature due to approximations necessary for 

computational tractability.  These approximations in DFT cause uncertainty in 

microkinetic model results for catalytic systems.  Therefore, reliable model results gained 

from DFT include a quantification of uncertainty.  The case study to examine a 

systematic framework for uncertainty quantification is water-gas shift (WGS 

CO+H2O⇌CO2+H2) reaction by Pt/TiO2 catalyst.   

Uncertainties are represented with probabilities and a latent variable model is 

developed that account for errors and correlations in DFT energies. This probabilistic 

model is further constrained to known reaction thermodynamics, and then propagated to 

quantities of interest such as turnover frequency (TOF), apparent activation barrier, and 

reaction orders.  DFT energies are obtained using four separate functionals PBE, RPBE, 

HSE, and M06L that each have their own justification for being appropriate for this 

study.  Although the uncertainty in model results spans orders of magnitude, a new 

approach is introduced to identify the dominant catalytic cycle under uncertainty.  Next 

three active sites of the Pt/TiO2 catalyst are compared using uncertainty and Bayesian 

statistics to find which active site best explains experiments.  Of the three active sites, 
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two involve the oxide support (TiO2) in the mechanism of reaction.  The third active site 

models only the metal with Pt(111).  The two active sites involving the oxide support 

both explain the experimental data far better than the terrace Pt(111) active site.  

Therefore, it is concluded that the oxide support plays a mechanistic role in the WGS 

reaction.  The selected active site is verified with separate experiments at separate 

pressure and temperature conditions
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CHAPTER 1  

INTRODUCTION 

This dissertation is written in manuscript style.  Therefore each chapter is a 

publication.  The first publication, chapter 2, is a theoretical investigation of a fuel cell 

anode.  This work was supported by the Energy Frontiers Research Center at the 

University of South Carolina.  Specifically, the work investigates the mechanism of 

sulfur poisoning of a perovskite anode material of a solid oxide fuel cell.  The model of 

the perovskite material has been developed in large part in the publications of Dr. Suwit 

Suthirakun and Dr. Salai Ammal and the dissertation of Dr. Suthirakun.   

 The second and third publication (the third publication is to be submitted) are at 

the heart of the title of this dissertation, uncertainty quantification.  We use an 

industrially-relevant water-gas shift reaction for producing hydrogen as a case study.  The 

second publication, chapter 3, deals with the forward problem in which we have some 

uncertainties in our model predictions.  The third publication deals with an inverse 

problem in which experiments are used to update our model uncertainties.  The inverse 

problem also helps us to select the atomistic-scale active site of the nano-particle catalyst.  

These publications were supported by the National Science Foundation CAREER award 

won by Dr. Andreas Heyden and the research in these publications also led to the 

Designing Materials to Revolutionize and Engineer our Future grant won by Drs. 

Heyden, Terejanu and Ammal
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CHAPTER 2 

MECHANISM OF SULFUR POISONING OF SR2FE1.5MO0.5O6-δ 

PEROVSKITE ANODE UNDER SOLID OXIDE FUEL CELL 

CONDITIONS
1
 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________ 
1
Walker, E.; Ammal, S. C.; Suthirakun, S.; Chen, F.; Terejanu, G. A.; Heyden, A. J. 

Phys. Chem. C, 2014, 118, 23545–23552. 

Reprinted here with permission of publisher. 
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2.1 ABSTRACT 

 The interactions between sulfur and the Sr2Fe1.5Mo0.5O6-δ (SFMO) perovskite 

anode are investigated using periodic density functional theory (DFT) calculations and 

constrained ab initio thermodynamic analysis under anodic solid oxide fuel cell 

conditions. Three surface models with different Fe:Mo ratios in the topmost layer are 

used to investigate the mechanism of sulfur poisoning. Sulfur prefers to interact with 

these surfaces by replacing existing oxygen rather than adsorbing on a metal or oxygen 

vacancy. Constructed phase diagrams suggest that the surface with higher Mo content on 

the gas exposed surface layer is highly resistant toward sulfur poisoning, whereas the 

FeO2-terminated surface is more susceptible to sulfur poisoning. The presence of S in the 

surface has also a negative impact on the surface vacancy formation process, which is the 

rate-controlling step in the H2 electro-oxidation. Adding a small Ni3 cluster to the least 

active FeO2-terminated surface promotes the oxygen vacancy formation; however, the 

presence of strongly adsorbed S on the Ni cluster makes this process more endergonic, 

which in turn will decrease the activity of the anode. Based on these results, we suggest 

that increasing the Mo content in the gas exposed surface layer of SFMO will improve its 

overall electrochemical performance while maintaining excellent sulfur tolerance. 

2.2 INTRODUCTION 

 Over the past decade, the search for clean, renewable, and sustainable energy has 

moved from the periphery to the center of the global economy. Solid oxide fuel cells 

(SOFCs) have great potential to be the cleanest, most efficient, and versatile system for 
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future energy conversion because they can convert energy more efficiently than 

conventional heat engine systems and lower temperature polymer-based fuel cells. The 

capability of SOFCs to operate with a wide range of gas fuels as well as the possibility of 

direct utilization (or through internal reforming) of conventional fossil, biomass, and 

other renewable fuels facilitates SOFC’s application in environmentally friendly 

industries.
1−5

 However, a major drawback of such readily available fuels is the presence 

of sulfur-containing impurities, which may poison the catalytically active metal sites at 

the anode and thus, seriously affect the cell performance and even operational life.
6−8

 

During the reforming process, the sulfur compounds are converted to gaseous H2S and 

the most commonly used Ni-based anodes in the current SOFC systems display very poor 

tolerance to H2S. Significant poisoning of Ni-anodes was observed when the H2S 

concentration was above 5−10 ppm at 950−1000 °C and the extent of poisoning increased 

dramatically at lower temperatures.
7,9,10

 Therefore, great efforts have been devoted to 

understanding the sulfur poisoning mechanism of SOFC anodes in recent years
11−17 

in 

order to identify specific mitigation strategies against degradation and for the rational 

design of sulfur tolerant anodes. 

 In addition to the efforts made to improve the sulfur tolerance of conventional Ni 

based anodes, recent studies have also focused on finding alternative anode materials 

with improved sulfur tolerance. Among them, the mixed ionic and electronic conductor 

(MIEC) oxides with perovskite structure have drawn significant interest for the 

development of high performance sulfur tolerant anodes. Recently, the Sr2Fe1.5Mo0.5O6-δ 

(SFMO) perovskite has been proven to be an extremely efficient anode for SOFCs 

because it exhibits chemical compatibility with the electrolyte and under reducing 
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conditions, good catalytic activity, and very good ionic and electrical conductivity.
18−23

 

Experimental studies have shown that the SFMO anode can process both H2 fuel and 

natural gas with high tolerance to sulfur.
18,19,22

 Despite these advantages, a major 

drawback of SFMO was identified in its relatively low electro-oxidation activity, leading 

to an overall low cell performance. It has been shown that adding a small amount of Ni to 

the anode improves the overall cell performance, indicating that Ni has an electrocatalytic 

effect toward fuel oxidation on the SFMO surface.
19,23

 However, the presence of Ni 

decreases the sulfur tolerance of SFMO and the cell performance of Ni−SFMO anode 

was found to drop by almost 18% after operating for about 20 h in a H2 fuel with 100 

ppm of H2S at 800 °C.
23

 Thus, a compromise between improved activity and sulfur 

tolerance of the SFMO anode has not yet been achieved. 

 In our recent study, we investigated the electro-oxidation mechanism of H2 fuel 

on the SFMO (001) surface under SOFC operating conditions using periodic density 

functional theory (DFT) calculations and microkinetic modeling techniques.
24

 We found 

that Mo plays a crucial role in improving the catalytic activity of SFMO; however, the 

Mo content in the SFMO surface tends to be very low under fuel cell operation 

conditions. On the basis of our results, we suggested that increasing the Mo content in the 

surface could possibly improve the overall electrochemical performance of SFMO. 

Herein, we investigate the sulfur poisoning mechanism of SFMO (001) surfaces with 

different Mo content under fuel cell operating conditions using constrained ab initio 

thermodynamics calculations. We aim at identifying the mechanism of S adsorption on 

the SFMO (001) surface and its effect on the rate-limiting step of the H2 electrooxidation. 

We find that Mo not only promotes the catalytic activity as identified in our earlier 
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work,
24

 but also dramatically improves the sulfur tolerance of the SFMO anode. 

However, in the presence of Ni clusters on the surface, added to promote the rate-limiting 

oxygen vacancy formation process, the activity will decrease with time due to Ni’s strong 

affinity for sulfur atoms. 

2.3 COMPUTATIONAL MODEL AND METHODS 

All calculations presented in this work were carried out using spin-polarized 

DFT+U theory with periodic boundary conditions as implemented in the Vienna Ab 

initio Simulation Package (VASP).
25,26

 The semilocal generalized gradient approximation 

density functional of Perdew, Burke, and Ernzerhof (PBE)
27

 was used to describe 

exchange and correlation effects. The nuclei and core electronic states were described by 

projector augmented-wave (PAW) potentials,
28

 while the Sr 4s4p5s, Fe 3p3d4s, Mo 

4p5s4d, Ni 4s3d, O 2s2p, and S 3s3p were treated as valence electrons. The PAW−DFT 

wave functions are expanded in a plane wave basis, with a kinetic energy cutoff of 800 

eV and a k-point sampling based on the Monkhorst-pack (MP)
29

 scheme. Integration over 

the first Brillouin zone used Gaussian smearing (σ = 0.05 eV) during structural 

relaxations. The U−J parameter was employed to correct the self-interaction error 

inherent in pure DFT when applied to transition metals with tightly localized d-electrons, 

such as Fe in SFMO. In accordance with earlier computational studies on SFMO,
20,30

 we 

set the U−J value for Fe to 4.0 eV and used no U−J parameter for Mo, as validated on the 

parent SrFeMoO6 compound. 
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The three SFMO (001) surface models, referred as plane-Mo,diagonal-Mo, and 

FeO2
-
 terminated surface, used to investigate sulfur poisoning mechanism are shown in 

Figure 2.1. We chose these surface models based on our previous constrained ab initio 

thermodynamic analysis on the stability of SFMO surface models under fuel cell 

operating conditions. The details of these calculations can be found elsewhere.
24

 The 

number of Mo atoms in the top surface layer of the plane-Mo, diagonal-Mo, and FeO
2

-
 

terminated surfaces are 2, 1, and 0, respectively. Our thermodynamic analysis
24 suggested 

that all three surface models possess five oxygen vacancies at relevant SOFC operating 

conditions (PO2 = 10
-20

, T = 1100 K); however, the distribution of vacancy sites is 

different in the three models.  The plane-Mo surface (Figure 2.1a) has two oxygen 

vacancies in the topmost layer, whereas the diagonal-Mo (Figure 2.1b) surface has three 

oxygen vacancies, and the FeO2
-
 terminated (Figure 2.1c) surface contains four oxygen 

vacancies in the topmost layer.  

Each SFMO (001) slab has four SrO and four Fe(Mo)O2 layers and is terminated 

by a Fe(Mo)O2 layer. As reported previously,
24

 the antiferromagnetic arrangement of Fe 

spins was found to be the most stable arrangement in all the three surface configurations. 

A vacuum gap of 15 Å was used to minimize the interaction between images along the z-

axis. The bottom-most layer was fixed in all calculations to mimic a semi-infinite bulk 

crystal and the slabs were optimized using a 4 × 4 × 1 MP
29

 k-mesh. Dipole and 

quadrupole corrections to the energy are taken into account using a modified version of 

the Markov and Payne method;
31

 i.e., the contribution of dipole interactions along the z-

axis is subtracted from the total energy. 
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2.4 RESULTS AND DISCUSSION 

Since sulfur compounds present in hydrocarbon fuels are converted to gaseous 

H2S during reforming and the adsorption of a sulfur atom on the SFMO surface can be 

described as 𝐻2𝑆(𝑔) + ∗  ↔  𝐻2(𝑔) + 𝑆∗, where * represents an empty site on the SFMO 

surface and S* is the adsorbed sulfur atom. On the three surface models considered in the 

present study (Figure 2.1), the adsorption site for a sulfur atom could either be on top of a 

Mo or Fe atom as well as on the existing oxygen vacancy site (𝑀 − 𝑉𝑂
•• − 𝐹𝑒, 𝑀 = 𝑀𝑜 or 

𝐹𝑒 in Kröger−Vink notation
32

). Our calculations suggested that the adsorption of S is 

favored on the oxygen vacancy site in all three surface models. The initial structures with 

S on top of a Mo or Fe atom converged to the structures with S in the vacancy site 

because each Mo and Fe atom in the three surface models has a neighboring oxygen 

vacancy. Thus, we describe the S adsorption reaction on the reduced SFMO (001) surface 

as 

𝐻2𝑆(𝑔) +  𝑀 − 𝑉𝑂
•• − 𝐹𝑒  ↔  𝐻2(𝑔) + 𝑀 − 𝑆 − 𝐹𝑒, (𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒) (1) 

and the corresponding adsorption reaction energy (𝛥𝐸𝑎𝑑𝑠) is then given by 

𝛥𝐸𝑎𝑑𝑠 =  𝐸𝐻2
𝐷𝐹𝑇 +  𝐸𝑀−𝑆−𝐹𝑒

𝐷𝐹𝑇+𝑈 −  𝐸𝐻2𝑆
𝐷𝐹𝑇 −  𝐸𝑀−𝑉𝑂

••−𝐹𝑒
𝐷𝐹𝑇+𝑈     (2) 

where 𝐸𝑀−𝑉𝑂
••−𝐹𝑒

𝐷𝐹𝑇+𝑈  and 𝐸𝑀−𝑆−𝐹𝑒
𝐷𝐹𝑇+𝑈  correspond to the computed energy of the surface model 

before and after S adsorption, respectively. In addition to the adsorption of S atom on the 

SFMO surface, we have also considered the possibility of S replacing an oxygen atom on 
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the surface. This reaction can be described as  

  𝐻2𝑆(𝑔) +  𝑀 − 𝑂 − 𝐹𝑒  ↔  𝐻2𝑂(𝑔) + 𝑀 − 𝑆 − 𝐹𝑒, (𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒)  (3) 

and the corresponding replacement reaction energy (𝛥𝐸𝑟𝑒𝑝𝑙) is then given by 

𝛥𝐸𝑟𝑒𝑝𝑙 =  𝐸𝐻2𝑂
𝐷𝐹𝑇 +  𝐸𝑀−𝑆−𝐹𝑒

𝐷𝐹𝑇+𝑈 −  𝐸𝐻2𝑆
𝐷𝐹𝑇 −  𝐸𝑀−𝑂−𝐹𝑒

𝐷𝐹𝑇+𝑈    (4) 

where 𝐸𝑀−𝑂−𝐹𝑒
𝐷𝐹𝑇+𝑈  and 𝐸𝑀−𝑆−𝐹𝑒

𝐷𝐹𝑇+𝑈  correspond to the energy of the surface model before and 

after O replacement by S, respectively. We note here that for a particular surface model, 

e.g. plane-Mo surface, the product structures of 𝑀 − 𝑆 − 𝐹𝑒 described in eqns. (1) & (3) 

and the corresponding energies described in eqns. (2) & (4) are different due to the 

adsorption and replacement happening at different sites. However, the reactant structures 

of 𝑀 − 𝑉𝑂
•• − 𝐹𝑒 and 𝑀 − 𝑂 − 𝐹𝑒 described in eqns. (1) & (3) and the corresponding 

energies described in eqns. (2) & (4) are the same because they only represent different 

active sites on the same surface model. The optimized structures of S adsorbed on the 

oxygen vacancy and S replacing an oxygen atom on the three surface models and their 

corresponding reaction energies are provided in Figure 2.2. The three SFMO surface 

models not only differ in number of Mo/Fe atoms and oxygen vacancy concentration on 

the surface layer, they also possess different oxygen vacancy types such as, 𝑀𝑜 − 𝑉𝑂
•• −

𝐹𝑒 and 𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒. The plane-Mo surface has only 𝑀𝑜 − 𝑉𝑂

•• − 𝐹𝑒 type oxygen 

vacancies and FeO2- terminated surface has only 𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 type oxygen vacancies. 

However, the diagonal-Mo surface has both types of oxygen vacancies on the surface 

layer. 
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Our calculations suggest that the adsorption of S on the 𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 vacancy of 

FeO2- terminated surface and diagonal-Mo surface is energetically more favorable than 

on the 𝑀𝑜 − 𝑉𝑂
•• − 𝐹𝑒 vacancy of plane-Mo surface by -0.49 eV and -0.70 eV, 

respectively. The adsorption of S on the 𝑀𝑜 − 𝑉𝑂
•• − 𝐹𝑒 vacancy of diagonal-Mo surface 

is even less favorable than the plane-Mo surface by 0.39 eV. We note here that when S is 

adsorbed on the 𝑀𝑜 − 𝑉𝑂
•• − 𝐹𝑒 vacancy of plane-Mo surface it forms a stronger bond 

with Fe (dFe-S = 2.26 Å) and a weaker bond with Mo (dMo-S = 2.51 Å). On the diagonal-

Mo surface the S atom is mostly bonded to Mo (dMo-S = 2.17 Å) without any interaction 

with Fe and thus becomes the least stable structure compared to all the other S adsorbed 

structures.  These results suggest that the Fe atoms have strong tendency to adsorb S 

atoms while Mo seems to exhibit some resistance towards S adsorption. Although the 

dissociative adsorption at the most favorable  𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 vacancy site seems to be 

stronger on the SFMO surfaces, the adsorption energies (-0.61 and -0.82 eV) are still 

lower than the S adsorption energies reported for Ni (100) and Ni (111) surfaces. Wang 

and Liu
33

 calculated the dissociative adsorption of H2S on Ni surfaces using PBE 

functional and reported that the adsorption energy ranges from -2.64 eV to -2.16 eV on 

Ni (100) surface and from -1.96 eV to -1.10 eV on Ni (111) surface when the surface 

coverage of S is between 0.063 to 0.5 ML. Thus the SFMO surface is expected to be less 

prone to sulfur poisoning than the conventional Ni based anodes.     

 Comparison of oxygen replacement reaction energies on the three surfaces also 

reveal the same trend as dissociative adsorption energies, i.e., replacing 𝐹𝑒 − 𝑂 − 𝐹𝑒 

type oxygen by S on the FeO2- terminated and diagonal-Mo surfaces are more favorable 
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than replacing 𝑀𝑜 − 𝑂 − 𝐹𝑒 type oxygen on the plane-Mo and diagonal-Mo surfaces. In 

order to examine the stability of the adsorbed S atom on the SFMO surface either via 

adsorption reaction or oxygen replacement reaction under fuel cell operating conditions, 

we calculated the Gibbs free energies of these reactions which includes the entropy 

contributions for gas molecules and allow us to make a direct comparison between these 

two reactions on each surface model.  The environmental effects at fuel cell operating 

conditions can be taken into consideration by calculating the Gibbs free energy G(T,P) of 

the reactants and products as a function of temperature (T) and pressure (P) from the 

DFT+U results using ab initio atomistic thermodynamic method. The change in Gibbs 

free energy (G) of reactions (1) and (3) can be written as: 

  𝛥𝐺𝑎𝑑𝑠 =  𝐺𝐻2(𝑔) +  𝐺𝑀−𝑆−𝐹𝑒 −  𝐺𝐻2𝑆(𝑔) −  𝐺𝑀−𝑉𝑂
••−𝐹𝑒  (5) 

  𝛥𝐺𝑟𝑒𝑝𝑙 =  𝐺𝐻2𝑂(𝑔) +  𝐺𝑀−𝑆−𝐹𝑒 −  𝐺𝐻2𝑆(𝑔) −  𝐺𝑀−𝑂−𝐹𝑒  (6) 

where the Gibbs free energies of the oxide surfaces (𝐺𝑀−𝑂−𝐹𝑒, 𝐺𝑀−𝑉𝑂
••−𝐹𝑒, and 𝐺𝑀−𝑆−𝐹𝑒) 

have relatively small variation with environmental effects and can be approximated by 

the energies computed by DFT+U. On the contrary, the Gibbs free energy of the gas 

phase molecules will be strongly affected by temperature (T) and pressure (P) and is 

calculated using  

   𝐺(𝑔)(𝑇, 𝑃) =  𝐸𝑔𝑎𝑠
𝐷𝐹𝑇 + 𝛥µ𝑔𝑎𝑠(𝑇, 𝑃0) +  𝑘𝐵𝑇𝑙𝑛 (

𝑃

𝑃0
)   (7) 
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where 𝛥µ𝑔𝑎𝑠(𝑇, 𝑃0) can be calculated from the rotational, translational, and vibrational 

partition functions of the gas molecule as a function of temperature under atmospheric 

pressure (P
0
 = 1 atm). The pressure dependent contribution is provided in the third term 

of eqn. (7). Since the surface structure is modified in the oxygen replacement reaction 

(3), vibrational effects on the surface free energy would be important and thus we 

calculated the vibrational free energy of the SFMO surfaces before and after S adsorption 

and replacement reactions by considering few vibrational modes around the active site. 

The active site (M-O-Fe or M-S-Fe) atoms and the neighboring oxygen atoms that are 

directly connected to the active site are included in the frequency calculations. 

Displacements of 0.001 Å were used along the x, y and z directions for all Hessian 

constructions from analytic gradients. The vibrational free energy (𝐹𝑣𝑖𝑏(𝑇)) within the 

harmonic approximation for n fundamental modes (with frequencies of i) of the system 

can be expressed as: 

 𝐹𝑣𝑖𝑏(𝑇) =  ∑ [
1

2
ħ𝜔𝑖 +  𝑘𝐵𝑇𝑙𝑛 (1 − 𝑒𝑥𝑝 (

−ħ𝜔𝑖

𝑘𝐵𝑇
))]𝑛

𝑖=1     (8) 

Thus the variation of Gibbs free energy for the adsorption and replacement 

reactions shown in eqns. (5) and (6) can be rewritten as, 

𝛥𝐺𝑎𝑑𝑠(𝑇, 𝑃) = (𝐸𝐻2
𝐷𝐹𝑇 + 𝛥µ𝐻2(𝑇, 𝑃0)) 

+ (𝐸𝑀−𝑆−𝐹𝑒
𝐷𝐹𝑇+𝑈 + 𝐹𝑀−𝑆−𝐹𝑒

𝑣𝑖𝑏 (𝑇)) 
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−(𝐸𝐻2𝑆
𝐷𝐹𝑇 +  µ𝐻2𝑆(𝑇, 𝑃0))  

− (𝐸𝑀−𝑉𝑂
••−𝐹𝑒

𝐷𝐹𝑇+𝑈 + 𝐹𝑀−𝑉𝑂
••−𝐹𝑒

𝑣𝑖𝑏 (𝑇))        

+ 𝑘𝐵𝑇𝑙𝑛 (
𝑃𝐻2

𝑃𝐻2𝑆
)                         (9)  

𝐺𝑟𝑒𝑝𝑙(𝑇, 𝑃) = (𝐸𝐻2𝑂
𝐷𝐹𝑇 + µ𝐻2𝑂(𝑇, 𝑃0)) 

+ (𝐸𝑀−𝑆−𝐹𝑒
𝐷𝐹𝑇+𝑈 + 𝐹𝑀−𝑆−𝐹𝑒

𝑣𝑖𝑏 (𝑇)) 

−(𝐸𝐻2𝑆
𝐷𝐹𝑇 + µ𝐻2𝑆(𝑇, 𝑃0))  

− (𝐸𝑀−𝑂−𝐹𝑒
𝐷𝐹𝑇+𝑈 + 𝐹𝑀−𝑂−𝐹𝑒

𝑣𝑖𝑏 (𝑇))     

+ 𝑘𝐵𝑇𝑙𝑛 (
𝑃𝐻2𝑂

𝑃𝐻2𝑆
)                               (10) 

The calculated reaction free energies using eqns. (9) and (10) at a representative 

temperature of 1100 K and assuming the partial pressure of gas molecules as 1 atm are 

provided in Table 2.1. The pressure dependence of these reaction free energies are 

displayed in the phase diagrams (Figure 2.3, G = 0  curve) which illustrate the stability 

of the S atom on the three SFMO surfaces as a function of temperature and pressure. The 

reaction free energies provided in Table 2.1 suggest that the dissociative adsorption of 

H2S on the 𝑀𝑜 − 𝑉𝑂
•• − 𝐹𝑒 site is endergonic at high temperatures whereas on the 

𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 site it is still favorable. Comparison of adsorption and oxygen 
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replacement reaction free energies on each surface suggests that the replacement reaction 

is more favorable than the adsorption reaction and the oxygen replacement is exergonic 

on all the surfaces at 1100 K.     

The constructed phase diagram (Figure 2.3a) using eqn. (9) indicates that the 

dissociative adsorption of H2S on the SFMO surface is favorable only when the H2S 

concentration in the fuel stream is above 10
4
 ppm at temperatures above 1000 K (PH2 = 1 

atm). Considering that the H2S concentration in most fuel sources is below 300 ppm,
11

 we 

can eliminate the possibility of poisoning the SFMO surface by dissociative adsorption of 

H2S. In the phase diagram of oxygen replacement reaction (Figure 2.3b) the G = 0 

curves are plotted against the partial pressure ratio of H2S and H2O.  In a typical H2 

oxidation process at SOFC anodes H2O concentration in the fuel stream is only about 

3%.
23,34

 Assuming PH2O = 0.03 atm, Figure 2.3b suggests that replacing Mo-O-Fe type 

oxygen by S is favorable only at high concentration of H2S (>10
3
 ppm) in the temperature 

range (900 – 1300 K) considered here. On the other hand, replacing Fe-O-Fe type oxygen 

by S on the diagonal-Mo surface becomes feasible when the H2S concentration is > ~200 

ppm at 1100 K and only need about 46 ppm of H2S at 900 K. In correlation with the 

reaction free energies provided in Table 2.1, the FeO2- terminated surface is more prone 

to S poisoning than the diagonal-Mo surface. On this surface, the replacement reaction 

becomes exergonic when the H2S concentration increases above 17 ppm and 88 ppm at 

temperatures 900 K and 1100 K, respectively. However, this amount is still higher than 

the H2S concentration required for poisoning the Ni anodes. Matsuzaki and Yasuda 

investigated the poisoning effect of sulfur-containing impurity on the electrochemical 

oxidation of H2 at the interface of Ni-YSZ cermet electrode and reported that the 
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polarization resistance and the overvoltage of the electrode increased when the H2S 

concentration exceeded 0.05, 0.5, and 2 ppm at 1023, 1173, and 1273 K, respectively.
7
  

Thus our computational results suggest that the SFMO electrodes in general are less 

susceptible to sulfur poisoning compared to the conventional Ni based electrodes and 

increasing the Mo concentration on the SFMO surface could further improve the 

resistance towards sulfur poisoning.  

 Next, we examined the effect of the presence of sulfur in the SFMO surface on its 

ability to electrochemically oxidize H2. In our recent work, we investigated various 

pathways of the electrooxidation of H2 at different active sites on the three SFMO 

surfaces.
24

 Our analysis based on periodic DFT and microkinetic modeling techniques 

revealed that at relevant operating voltages and reaction conditions, H2O desorption 

which produces surface oxygen vacancies is rate controlling for H2 oxidation on SFMO 

surfaces. Thus, we were able to relate the activity of these surfaces to their ability to form 

surface oxygen vacancies under SOFC operating conditions. The calculated current 

densities on the three surfaces correlated well with the Gibbs free energies of the 

reaction, 𝑀 − 𝑂 − 𝐹𝑒 + 𝐻2(𝑔)  ↔  𝑀 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑂(𝑔), (𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒). The 

correlation revealed that the surface with higher Mo concentration on the gas exposed 

layer (plane-Mo) has lower oxygen vacancy formation energy which in turn exhibited 

higher activity towards H2 electrooxidation. On the other hand, the most stable FeO2
-
 

terminated surface has higher oxygen vacancy formation energy and lower activity 

towards H2 electrooxidation. In our current analysis, we identified that the plane-Mo 

surface which exhibited higher activity is also less susceptible to sulfur poisoning and the 

least active FeO2- terminated surface is more susceptible to sulfur poisoning. In order to 
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understand the effect of sulfur on the rate controlling surface vacancy formation process 

on the FeO2- terminated surface, we calculated the Gibbs free energies of vacancy 

formation process in the presence of S by considering various active sites as shown in 

Table 2.2. The corresponding reactant structures and the exact oxygen/sulfur atom that is 

removed to form a vacancy are illustrated in Figure 2.4. The reaction (a) in Table 2.2 

corresponds to the surface vacancy formation process at 𝐹𝑒 − 𝑂 − 𝐹𝑒  site on a clean 

FeO2- terminated surface. In reaction (b), we assume that H2 oxidation occurs at the 

active site (𝐹𝑒 − 𝑆 − 𝐹𝑒) where the oxygen atom is already replaced by S and in reaction 

(c) we examine the effect of S on H2 oxidation at a neighboring 𝐹𝑒 − 𝑂 − 𝐹𝑒 site. The 

calculated Gibbs free energies of both reactions (b) & (c) are higher than the vacancy 

formation free energy (1.07 eV)
24

 in the absence of sulfur (a). The free energy of reaction 

(b) is 0.61 eV higher than the free energy of H2 oxidation at 𝐹𝑒 − 𝑂 − 𝐹𝑒 site, suggesting 

that the rate of H2 oxidation at 𝐹𝑒 − 𝑆 − 𝐹𝑒 site will be much smaller than that of 

𝐹𝑒 − 𝑂 − 𝐹𝑒 site. When S is present on the surface, the free energy of H2 oxidation at a 

neighboring 𝐹𝑒 − 𝑂 − 𝐹𝑒 site is also about 0.1 eV higher than the free energy in the 

absence of S. Thus in the presence of S, H2 oxidation rate at a neighboring 𝐹𝑒 − 𝑂 − 𝐹𝑒 

site will be at least an order of magnitude lower than the surface without any adsorbed S.  

 In our earlier work,
24

 we have also shown that the oxygen vacancy formation free 

energy of FeO2- terminated surface is greatly reduced in the presence of one and two Ni 

adatoms. In accordance with experimental reports,
19,23

 these results suggested that Ni 

improves the catalytic activity of SFMO anode by promoting the rate controlling oxygen 

vacancy formation process. However, the experimental studies also observed a drop in 
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cell performance of Ni-SFMO anodes with time while operating in H2 fuel with 100 ppm 

H2S.
23

 To further understand the detrimental effect of H2S on the Ni-SFMO anode 

performance, we calculated the oxygen vacancy formation free energies of the FeO2- 

terminated surface with a Ni3 cluster on top, both in the presence and absence of adsorbed 

sulfur on Ni. The calculated free energies are provided in Table 2.3 (reactions d & e) and 

the optimized structures are shown in Figures 2.4d & 2.4e. In the presence of Ni3 cluster, 

the oxygen vacancy formation free energy is calculated as 0.14 eV which is 0.93 eV 

smaller than the clean surface. Next, we examined the effect of S on the vacancy 

formation free energy of Ni3/SFMO surface. It is well known that the dissociative 

adsorption of H2S is highly favorable on Ni surfaces.
33,35,36

 Our calculations also suggest 

that the reaction energy (𝐸𝑎𝑑𝑠) for the dissociative adsorption of H2S on the Ni3 cluster 

is as high as -2.88 eV. This adsorption energy is higher than the reported dissociative 

adsorption energies of H2S for Ni (100) (𝐸𝑎𝑑𝑠 = −2.64 𝑒𝑉) and Ni (111) (𝐸𝑎𝑑𝑠 =

 −1.96 𝑒𝑉) at low coverage of S.
33

 This is not surprising considering that the Ni atoms in 

the adsorbed Ni3 cluster are highly under-coordinated than the surface Ni atoms. The high 

adsorption energy calculated for the Ni3 cluster suggests that the adsorbed S atom will be 

stable at SOFC operating conditions even in the presence of <2 ppm of H2S. When S is 

adsorbed on the Ni3 cluster, the vacancy formation free energy was calculated to be 0.74 

eV which is 0.70 eV higher than the reaction free energy in the absence of adsorbed S 

(Table 2.2). Thus, in agreement with experimental results
23

 these calculations confirm 

that although Ni promotes the catalytic activity of SFMO anode by facilitating the surface 

oxygen vacancy formation process, the activity will decrease with time due to the strong 

adsorption of sulfur on Ni. On the other hand, the plane-Mo surface with higher Mo 
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concentration on the gas exposed layer not only exhibits higher catalytic activity (without 

a need for additional Ni particles) but also shows high resistance to sulfur poisoning.  

 A better understanding of the detrimental effect of sulfur on the FeO2- terminated 

surface both in the presence and absence Ni cluster can be obtained by analyzing the 

electron density of these surfaces by computing Bader charges.
37,38

 These charges 

provided in Table 2.3 can yield a qualitative picture of the reorganization of the electron 

density upon adsorption of metal atoms or removal of neutral oxygen/sufur atom. In our 

earlier work,
24

 we have identified that all the Fe atoms on the FeO2- terminated surface 

(Sr16Fe12Mo4O43) layer are in Fe
2+

 state due to the presence of multiple oxygen vacancies 

under SOFC operating conditions. Further removal of oxygen atom from this surface 

during H2 oxidation process reduces the neighboring Fe atoms to an unstable Fe
1+

 state, 

making this process highly endergonic. The calculated Bader charges on the active 

oxygen and neighboring metal atoms on FeO2- terminated surface before and after 

oxygen vacancy formation are provided in the top portion of the first two columns of 

Table 2.3 for comparison. When an oxygen atom on the surface is replaced by sulfur 

(Table 2.3, column 3), the neighboring Fe atoms are slightly reduced. Since sulfur has a 

lower electronegativity than oxygen it donates some of its charge to the neighboring Fe 

atoms, however oxygen tends to keep the extra charge. Thus sulfur forms strong covalent 

bonds with Fe whereas the Fe-O bonds are more ionic: the closer the Bader charge is to 

the formal oxidation state the more ionic is the bond. This is also the reason why the 

oxygen replacement reaction by sulfur on this surface is highly favorable (Table 2.1). 

When H2 oxidation was considered on the 𝐹𝑒 − 𝑆 − 𝐹𝑒 site (Table 2.2, reaction (b)), the 

removal of S atom requires breaking two Fe-S covalent bonds and thus becomes highly 
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unfavorable. In Table 2.2, we have also shown that the presence of S on the surface 

further affects the oxygen vacancy formation energy at a neighboring site. The charges 

given in the last column of Table 2.3 (top) suggests that only part of the charge left on the 

surface upon removal of oxygen atom is transferred to the neighboring Fe atoms. Further 

analysis revealed that the remaining charge is transferred to the Fe/Mo and oxygen atoms 

in the second layer making those bonds more ionic and the vacancy structure less stable.   

 The electronic effect of Ni on the oxygen vacancy formation in the presence and 

absence of adsorbed sulfur can be analyzed from the calculated Bader charges provided 

in the bottom portion of Table 2.3. When Ni3 cluster is adsorbed on the surface 

(Sr16Fe12Mo4O43), a small amount of charge (0.54 𝑒−) is transferred from Ni to the 

surface Fe atoms as we have shown in our earlier work for Ni2 adsorption.
24

 The average 

charge on the Ni atom (𝑞𝑁𝑖
𝑎𝑣𝑒) is only +0.18, suggesting that the Ni atoms are mostly in 

metallic state. When the oxygen atom is removed from the surface, most of the extra 

charge (~0.60 𝑒−) left by oxygen is transferred back to the Ni cluster and the Fe atoms 

are not significantly further reduced. Thus Ni facilitates the rate controlling vacancy 

formation process by accepting the extra electrons left by oxygen. When S is adsorbed on 

the Ni cluster, the Ni atoms are more positively charged (𝑞𝑁𝑖
𝑎𝑣𝑒 = +0.44) due to the 

presence of negatively charged sulfur atom. However, we observed a similar amount of 

charge transfer from Ni to the surface (0.53 𝑒−) and a slightly smaller back transfer of 

charge from the surface to Ni (0.54 𝑒−) before and after oxygen vacancy formation, 

respectively. Although the amount of charge transfer from the surface to Ni upon oxygen 

vacancy formation is quite similar in the presence and absence of sulfur, there seems to 
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be a repulsive interaction between negatively charged Ni and S atoms which destabilizes 

the oxygen vacancy structure. Hence the promotional effect Ni could be suppressed by 

the presence of strongly adsorbed S atoms.  

2.5 CONCLUSIONS 

 Constrained ab initio thermodynamic simulations have been performed to 

investigate the sulfur poisoning mechanism of different terminations of SFMO (001) 

surfaces under SOFC operating conditions. Three surface models, namely plane-Mo, 

diagonal-Mo, and FeO2- terminated surfaces with varying Mo and oxygen vacancy 

concentration on the gas exposed layer were considered for this study. The interaction of 

sulfur on these surfaces has been examined by considering two types of reactions: 

dissociative adsorption of H2S and replacement of a surface oxygen by sulfur. Calculated 

Gibbs free energies suggested that the oxygen replacement reaction by sulfur is favored 

over dissociative adsorption of H2S on all the three surfaces. The phase diagrams further 

revealed that the dissociative adsorption of H2S on these surfaces is favorable only when 

the H2S concentration in the fuel stream exceeds 10
4
 ppm at SOFC operating 

temperatures. While replacing 𝑀𝑜 − 𝑂 − 𝐹𝑒 type oxygen by sulfur on the plane-Mo 

surface (with higher Mo content on the surface layer) is also favorable only at high 

concentration of H2S (>10
3
 ppm), the replacement of 𝐹𝑒 − 𝑂 − 𝐹𝑒 type oxygen on the 

diagonal-Mo and FeO2- terminated surfaces becomes feasible when H2S concentration is 

<100 ppm. Nevertheless, the H2S concentration required for a favorable oxygen 

replacement reaction is still higher than the amount required for poisoning the 

conventional Ni anodes. Thus, the SFMO anodes are in general less susceptible to sulfur 
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poisoning than the Ni anodes and the SFMO surface with higher Mo content on the 

exposed layer exhibits even better sulfur tolerance.  

 Furthermore, for the most stable and least active FeO2- terminated surface we also 

examined the effect of sulfur on the surface oxygen vacancy formation process which 

was identified in our earlier work as rate controlling process for H2 electro-oxidation.  

When S is present on the surface, the free energy of vacancy formation becomes more 

endergonic while considering H2 oxidation at 𝐹𝑒 − 𝑆 − 𝐹𝑒 site as well as at a 

neighboring oxygen site. Although, adding small Ni3 cluster on the surface promotes 

surface oxygen vacancy formation process, the presence of strongly adsorbed S atom on 

the Ni3 cluster destabilizes the oxygen vacancy structure and thus will decrease the 

activity of the anode with time. Overall, increasing the Mo content on the gas exposed 

layer of SFMO anode not only improves its catalytic activity but also maintains excellent 

sulfur tolerance.     
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2.8 TABLES AND FIGURES 

 

Table 2.1 Gibbs free energies for the dissociative adsorption of H2S (𝐺𝑎𝑑𝑠, eqn. 9) and 

oxygen replacement by H2S (𝐺𝑟𝑒𝑝𝑙, eqn. 10) on the SFMO (001) surface calculated at T 

= 1100 K and Pgas = 1 atm. 

Surface 

Model 

Adsorption 

site 
𝑮𝒂𝒅𝒔  (eV) Active site 

𝑮𝒓𝒆𝒑𝒍 

(eV) 

Plane-Mo 
𝑀𝑜 − 𝑉𝑂

••

− 𝐹𝑒 
0.30 𝑀𝑜 − 𝑂 − 𝐹𝑒 -0.17 

Diagonal-

Mo 

𝑀𝑜 − 𝑉𝑂
••

− 𝐹𝑒 
0.72 𝑀𝑜 − 𝑂 − 𝐹𝑒 -0.17 

𝐹𝑒 − 𝑉𝑂
••

− 𝐹𝑒 
-0.33 𝐹𝑒 − 𝑂 − 𝐹𝑒 -0.47 

FeO2- 

terminated 

𝐹𝑒 − 𝑉𝑂
••

− 𝐹𝑒 
-0.01 𝐹𝑒 − 𝑂 − 𝐹𝑒 -0.55 
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Table 2.2 Gibbs free energies (G) for the formation of an oxygen vacancy on the FeO2- 

terminated SFMO surface in the presence and absence of sulfur and nickel under 

reducing conditions (T = 1100 K, Pgas = 1 atm). 𝐹𝑒 − 𝑆 − 𝐹𝑒 represents the active site on 

the FeO2- terminated surface after an oxygen atom of 𝐹𝑒 − 𝑂 − 𝐹𝑒 active site is replaced 

by a sulfur atom and 𝑉𝑂
•• is the oxygen vacancy. 

 

Reaction G (eV) 

(𝑎) 𝐹𝑒 − 𝑂 − 𝐹𝑒 + 𝐻2(𝑔)  ↔  𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑂(𝑔) 1.07 

(𝑏) 𝐹𝑒 − 𝑆 − 𝐹𝑒 + 𝐻2(𝑔)  ↔  𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑆(𝑔) 1.68 

(𝑐) 𝐹𝑒 − 𝑆 − 𝐹𝑒 − 𝑂 − 𝐹𝑒 + 𝐻2(𝑔)  

↔  𝐹𝑒 − 𝑆 − 𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑂(𝑔) 

1.16 

(𝑑) 𝑁𝑖3/𝐹𝑒 − 𝑂 − 𝐹𝑒 + 𝐻2(𝑔)  ↔  𝑁𝑖3/𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑂(𝑔) 0.14 

(𝑒) 𝑆 − 𝑁𝑖3/𝐹𝑒 − 𝑂 − 𝐹𝑒 + 𝐻2(𝑔)  

↔  𝑆 − 𝑁𝑖3/𝐹𝑒 − 𝑉𝑂
•• − 𝐹𝑒 + 𝐻2𝑂(𝑔) 

0.74 
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Table 2.3 Calculated Bader charges (in e) on the neighboring metals and active 

oxygen/sulfur atom on the FeO2- terminated surface in the presence and absence of sulfur 

and nickel cluster.         

 

SFMO 

Sr16Fe12Mo4O43 

(Fe1-O1-Fe2-O2-

Fe3) 

Sr16Fe12Mo4O42 

(Fe1-𝑉𝑂
••-Fe2-O2-

Fe3) 

Sr16Fe12Mo4O42

S 

(Fe1-S1-Fe2-O2-

Fe3) 

Sr16Fe12Mo4O41

S 

 (Fe1-S1-Fe2-𝑉𝑂
••-

Fe3) 

Fe1 +1.21 +0.64 +1.11 +1.10 

Fe2 +1.22 +0.68 +1.12 +0.71 

Fe3 +1.22 +1.21 +1.23 +0.87 

O1/S1 -1.28 -- -1.10 -1.07 

O2 -1.30 -1.30 -1.30 -- 

        Ni:SFMO 

 
Ni3/Sr16Fe12Mo4O

43 

(Fe1-O-Fe2) 

Ni3/Sr16Fe12Mo4O

42 

(Fe1-𝑉𝑂
••-Fe2) 

S-

Ni3/Sr16Fe12Mo4O

43 

(Fe1-O-Fe2) 

S-

Ni3/Sr16Fe12Mo4O

42 

(Fe1-𝑉𝑂
••-Fe2) 

Fe1 +1.13 +0.85 +1.12 +0.84 

Fe2 +1.17 +0.89 +1.18 +0.86 

3Ni +0.54 -0.06 +1.32 +0.76 

S -- -- -0.79 -0.77 
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Figure 2.1 Sr2Fe1.5Mo0.5O6‐δ (δ = 0.625) (001) surface models used to study the sulfur 

poisoning mechanism: (a) plane-Mo surface (Mo:Fe = 1) (b) diagonal-Mo surface 

(Mo:Fe = 0.33), and (c) FeO2- terminated surface (Mo:Fe = 0). 

 

 

  



28 

 
 

Figure 2.2 Top view of the optimized structures of S adsorbed on an oxygen vacancy 

(𝑀 − 𝑉𝑂
•• − 𝐹𝑒, 𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒) and S replacing an oxygen atom (𝑀 − 𝑂 − 𝐹𝑒, 𝑀 =

𝑀𝑜 𝑜𝑟 𝐹𝑒) on the reduced SFMO (001) surface models (a ) plane-Mo surface (b) FeO
2
-

terminated surface, and (c) diagonal-Mo surface. 𝛥𝐸𝑎𝑑𝑠 and 𝛥𝐸𝑟𝑒𝑝𝑙 provided under each 

structure correspond to the reaction energy of dissociative adsorption of H
2
S (𝐻2𝑆 +

 𝑀 − 𝑉𝑂
•• − 𝐹𝑒  ↔  𝐻2 + 𝑀 − 𝑆 − 𝐹𝑒) and oxygen replacement by S (𝐻2𝑆 +  𝑀 − 𝑂 −

𝐹𝑒  ↔  𝐻2𝑂 + 𝑀 − 𝑆 − 𝐹𝑒), respectively.  
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Figure 2.3 Calculated phase diagrams for the interaction of S on SFMO (001) surfaces (a) 

dissociative adsorption of H2S on an oxygen vacancy (𝐻2𝑆 +  𝑀 − 𝑉𝑂
•• − 𝐹𝑒  ↔  𝐻2 +

𝑀 − 𝑆 − 𝐹𝑒, 𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒) (b) oxygen replacement reaction by S (𝐻2𝑆 +  𝑀 − 𝑂 −

𝐹𝑒  ↔  𝐻2𝑂 + 𝑀 − 𝑆 − 𝐹𝑒, 𝑀 = 𝑀𝑜 𝑜𝑟 𝐹𝑒). 
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Figure 2.4 Top view of reactant structures corresponding to the reactions provided in 

Table 2.2. Highlighted atom represents the atom removed during surface vacancy 

formation. 
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CHAPTER 3 

UNCERTAINTY QUANTIFICATION FRAMEWORK APPLIED TO THE 

WATER-GAS SHIFT REACTION OVER PT-BASED CATALYSTS
1
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3.1 ABSTRACT 

This paper presents a systematic approach to quantify uncertainties of various 

quantities of interest (QoIs) in catalysis determined by microkinetic models developed 

from first principles. One of the main sources of uncertainty in any microkinetic 

simulation is attributed to the exchange-correlation approximations in density functional 

theory (DFT) used to calculate the rate constants for all elementary reaction steps within 

transition state theory. These DFT approximations are at the core of significant 

discrepancies between computational simulations and experimental measurements. 

Therefore, any model calculation should be accompanied by a measure of uncertainty. 

This work uses probability to represent uncertainties and latent variable models to 

develop probabilistic models that account for errors and correlations in DFT energies. 

These probabilistic models are further constrained to known reaction thermodynamics, 

and then propagated to QoIs such as turnover frequency (TOF), apparent activation 

barrier, and reaction orders. The proposed uncertainty quantification (UQ) framework is 

applied on the water−gas shift reaction (WGS: CO + H2O ⇌ CO2 + H2). Specifically, this 

WGS study models a Pt/TiO2 catalyst as a Pt8 cluster supported on a rutile TiO2 (110) 

surface, where DFT energies are obtained using four separate functionals PBE, RPBE, 

HSE, and M06L that each have their own justification for being appropriate for this 

study. In this way, information from three different classes of functionals, GGA 

(generalized-gradient approximation), meta-GGA, and hybrid functionals, are used to 

generate a free energy probabilistic model. Although the uncertainty in model results 

spans orders of magnitude, a new approach is introduced to identify the dominant 

catalytic cycle under uncertainty. Overall, we find that our model captures various 
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experimental kinetic data; however, the probability densities for TOF, apparent activation 

barrier, and reaction orders are relatively wide due to different flavors of DFT predicting 

a wide variation of transition state and oxygen vacancy formation energies. Nevertheless, 

we can conclude with high certainty that a CO-promoted redox cycle is the dominant 

mechanism over the temperature range 473−600 K and that formate and carboxyl 

pathways are not playing any role for the investigated active site model. 

3.2 INTRODUCTION 

Microkinetic models play an important role in understanding reaction kinetics and 

production rates on macroscopic scales. The insight provided by microkinetic model 

simulations can be used to speed up the rational design of novel catalytic materials.
1−3

 

Density functional theory (DFT) provides a good starting point to estimate (together with 

harmonic transition state theory) the values of rate constants for each elementary step in 

the microkinetic model. However, DFT calculations have inadequacies due to exchange-

correlation approximations, which induce significant errors in the prediction of 

macroscopic quantities of interest (QoI) such as turnover frequency (TOF), apparent 

activation barrier, and reaction orders. For example, a variation of only 0.2 eV in a DFT 

predicted activation barrier leads to an uncertainty of 2 orders of magnitude in an 

elementary reaction rate constant in a catalytic cycle at 500 K, which again can lead to 

significant uncertainty in microkinetic modeling results. Therefore, new computational 

tools are required to quantify uncertainties in DFT calculations, propagate them to QoIs, 

and guide the process of drawing conclusions under uncertainty. We note that we limit 

ourselves in the following to uncertainties in the DFT functional and neglect any 
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uncertainties related to estimating entropies and using harmonic transition state theory. In 

fact, we assume that these uncertainties are small relative to the uncertainties in DFT 

energies such that they can approximately be mapped into the uncertainties of the DFT 

energies (an approximation that might not be valid for some surface states). We note that 

considering these uncertainties does not constitute any additional complication and our 

proposed framework can in principle be extended to include these uncertainties. Also, we 

are not concerned with inadequacies of our active site model structure and number of 

elementary reaction steps but aim at predicting the QoIs for a given active site model and 

reaction mechanism.   

Previously, a number of research groups such as Mortensen et al.,
4
 Cramer,

5
 and 

Hanke
6
 have investigated the errors in DFT energies of functionals commonly used in 

heterogeneous catalysis. Also, Vlachos and co-workers
7,8

 have proposed corrections for 

energies of formation and binding energies obtained by DFT calculations to explain 

differences in DFT energies and experimental observations. Errors in DFT energies have 

often been assumed to behave systematically; e.g., a constant correction term was 

assigned to any species containing an OCO backbone.
9
 This systematic error was 

determined by comparing DFT energies of gas molecules to National Institute of 

Standards and Technology (NIST) data.
10

 While such a systematic approach is appealing, 

there is little scientific justification regarding why errors in DFT energies can be divided 

into atom groups that are transferable to systems containing transition metal surfaces. 

Recently, Petzold et al.
11

 have proposed the use of databases of electronic density 

functionals fit by Bayes formula. This research led to the Bayesian error estimation−van 

der Waals (BEEF-vdW) functional,
4,12−14

 a seminal work in quantifying uncertainties in 
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DFT energies. BEEF-vdW is based on using empirical data of microscopic properties 

such as binding energies to infer errors and correlations in DFT energies due to the 

exchange-correlation functional approximation. Medford et al.
12

 recently found by 

studying the ammonia synthesis reaction that these correlations in energies play an 

important role in reducing the uncertainty in QoIs such as TOFs. One way to obtain 

correlations is to use the ensemble or a subset of the ensemble of functionals from BEEF-

vdW.
4,12−14

 However, these correlations are based strictly only on generalized-gradient 

approximation (GGA) functionals, and GGAs can face issues when electrons become 

localized such as in oxide systems.
15,16

 For example, in the system of consideration, 

oxygen vacancies are formed on a TiO2 surface, and a strategy based exclusively on 

GGA functionals for estimating errors and their correlation risks underestimating the 

inherent uncertainties since all GGA functionals will overdelocalize electrons which 

leads to lower vacancy formation energies. 

In this work, we propose to describe the uncertainty in DFT energies by explicitly 

accounting for information provided by various classes of functionals such as GGA, 

meta-GGA, as well as hybrid functionals. Specifically, we only choose DFT functionals 

(PBE,
17

 RPBE,
18,19

 HSE,
20

 and M06L
21

) that have some justification to be used in a DFT 

study of the active site model structure and that are all known to have different 

limitations relevant for the reaction mechanism. Next, DFT energies calculated with these 

functionals are used in a factor analysis
22

 to develop a probabilistic latent variable model 

that accounts for errors and correlations in DFT energies. This probabilistic model is 

further extended to ensure that samples of DFT energies are constrained to known 

reaction thermodynamics. This is accomplished by designing a separate probabilistic 
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model for energy correction of gas molecules based on the Dirichlet distribution.
23

 The 

uncertainty captured by this composite probabilistic model for DFT energies is 

propagated through the microkinetic model to QoIs using Monte Carlo simulations. 

Specifically, the composite probabilistic model is used to generate correlated and 

thermodynamically constrained DFT energy samples, which are then used to calculate 

rate constants in the microkinetic model. Finally, the uncertainty in the QoIs such as 

TOF, reaction orders, and apparent activation energy is captured by samples 

corresponding to the QoI predictive distribution. As the model calculations are no longer 

deterministic but rather probabilistic, new tools are required to draw conclusions under 

uncertainty. This work introduces the information theoretic quantity, Kullback− Leibler 

divergence, to determine the dominant pathway by finding the smallest divergence 

between the probability density function (PDF) of the overall TOF and the PDF of 

individual pathway TOF. 

To summarize, uncertainty quantification (UQ) is the process of assessing and 

representing uncertainties in model simulations such that their impacts on the QoIs can be 

determined. This paper presents a systematic approach to quantify uncertainties in QoIs 

calculated using microkinetic models. The proposed UQ framework for computational 

catalysis consists of three distinct processes: (1) quantifying uncertainties in DFT 

energies, (2) propagating uncertainties to QoIs, and (3) drawing conclusions using 

uncertain QoIs. To showcase the proposed UQ framework, we apply it to our recent 

water−gas shift reaction model (WGS: CO + H2O ⇌ CO2 + H2) over Pt/TiO2 catalysts.
24
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The WGS is an essential step in industrial chemical processes utilizing 

hydrogen.
24−33

 Besides producing hydrogen, the WGS consumes carbon monoxide (CO) 

which is beneficial because CO is a poison for noble metal catalysts and catalysts used in 

fuel cell applications.
26,32,33

 With these important applications comes a desire to 

understand the WGS over relevant catalyst systems. The case study in this work builds 

upon a theoretical investigation
24

 of the WGS over an active site at a three-phase 

boundary (TPB) of a metal nanoparticle, a reducible metal oxide support, and a gas 

phase. It has been hypothesized that TPB sites are the origin of unique activity and 

selectivity of various reducible oxide supported metal cluster catalysts. For example, gold 

(Au) catalysts on reducible oxide supports possess a unique activity attributed to TPB 

sites.
34−36

 The specific catalyst of this case study is platinum supported by titanium oxide 

(Pt/TiO2).
37−39

 Pt/TiO2 reports more activity than systems of Pt on other mixed oxides
34

 

and has been investigated for low and medium temperature WGS reactions.
40−47

 A 

current question of high interest is if individual metal atoms or metal 

clusters/nanoparticles supported on reducible oxide supports are the active site for 

catalysis.
48−50

 DFT calculations and microkinetic modeling can be used to shed more 

light on the activity of various active site models and has been used here for a Pt8/TiO2 

(110) catalyst model characteristic of a metal cluster on rutile TiO2. At the same time, 

describing the electronic structure of reaction intermediates and transition states at the 

interface of a Pt cluster and a TiO2 support during the WGS is quite challenging with 

DFT considering that regions of the active site model are clearly metallic while the oxide 

support is a semiconductor. Considering furthermore that the oxygen vacancy formation 

energy of TiO2 is significantly underpredicted by GGA-DFT,
51

 there is increased 
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uncertainty in our previous computational predictions that have been based on GGA-

DFT,
24,52

 making this catalytic system an ideal test case for our novel UQ approach. 

3.3 UNCERTAINTY QUANTIFICATION 

 This section introduces the proposed UQ framework for a general system where N 

functionals have been used to obtain energies for intermediate and transition states. In 

this work, N = 4. This data set is used to generate a probabilistic latent variable model to 

capture both the variation of DFT energies for individual states and the correlation 

between energies at various states. This probabilistic model is further constrained to 

known reaction thermodynamics, and then it is propagated to QoIs such as turnover 

frequency (TOF), apparent activation barrier, and reaction orders. Finally, an information 

theoretic approach is introduced to determine the dominant catalytic cycle under 

uncertainty. 

3.3.1 DFT Latent Variable Model 

 In this work the probabilistic latent variable model used to summarize the 

uncertainty in DFT calculations is developed using factor analysis. Factor analysis 

expresses observed variables (functional results) as a linear combination of a small 

number of factors.
22

 This allows the model to represent the uncertainty in the functionals 

as a multivariate Gaussian with a restricted number of free parameters and still capture 

the dominant correlations in the data set. Using fewer factors than functionals is possible 

because the functionals are correlated.
4,9

 An exchange-correlation functional in DFT 
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tends to overestimate one intermediate state energy if it overestimates a similar 

intermediate energy. Positive correlation signifies corrections moving together, and 

negative correlation corresponds to corrections occurring opposite to each other. 

 Factor analysis models the observable in the following manner. 

𝒚 = 𝑾𝒛 + 𝝁 + 𝒆      (1) 

Here, the vector 𝒚 denotes the observed DFT Gibbs’ free energies for all intermediate 

and transition states relative to a clean catalyst with reactant molecules in the gas phase, 𝒛 

is a vector of independent factors/latent variables that are normally distributed, 𝑁(0,1), 

the matrix 𝑾 contains the factor loadings that capture the correlations between 

observables, and 𝒆 is a zero-mean Gaussian distributed noise with a diagonal covariance 

matrix 𝚿 that contains specific variances.
22

  

The parameters, 𝑾, 𝝁, and 𝚿 are determined using maximum likelihood
22

 via 

Expectation Maximization, i.e., 𝝁 becomes a vector of the average of the DFT predicted 

Gibbs’ free energies.
53

 Given the set of 𝑁 DFT calculations, 𝒀 = {𝒚𝟏, … , 𝒚𝑵}, the 

corresponding log-likelihood function, 𝐥𝐧 𝒑,  to be maximized is given by, 

𝐥𝐧 𝒑(𝒀| 𝑾, 𝝁, 𝚿) =  ∑ 𝐥𝐧 𝒑(𝒚𝒊| 𝑾, 𝝁, 𝚿)𝑵
𝒊=𝟏    (2) 

The number of optimal factors is determined using cross-validation. After parameter 

learning, the marginal distribution for the observable 𝒚 is given by a Gaussian 
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distribution with mean 𝝁 and covariance matrix given by 𝚺 = 𝑾𝑾𝑇 + 𝚿. With this 

method the correlation structure is from 𝑁 functional results rather than setting a 

correlation structure by choosing a chemical similarity measure among states and 

transition states.  This latent variable model is used to draw samples of energies 

corresponding to intermediate and transition states. However, these energy samples may 

not match the reaction thermodynamics. 

3.3.2. Thermodynamics correction 

The factor analysis described above has been conducted on the free energies of 

surface intermediate and transition states.  After the factor analysis is completed, a 

separate probabilistic model is proposed to correct the free energies of the gas molecules 

such that they match the overall reaction thermodynamics (Gibbs’ free energy of 

reaction). Given 𝑀 gas molecules with {𝜁1, 𝜁2, … 𝜁𝑀} corrections, then the following 

constraint is imposed on the gas molecule corrections. 

∑ 𝜁𝑖 =𝑀
𝑖=1  𝛿       (3) 

 Note that 𝛿 is constant (the average error of our DFT functionals in predicting the 

Gibbs’ free energy of reaction).  The individual corrections may be bounded due to the 

uncertainty associated with the magnitude of the correction. Namely, each correction has 

its own associated uncertainty.  

𝜁𝑖 ≤ 𝜁𝑖 ≤ 𝜁𝑖        (4) 
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A modified uniform Dirichlet distribution (Diun) is used in this work
23

 to guarantee that 

the sample corrections sum up to the right-hand side of equation (3) and that individual 

corrections are within the set bounds. We start with a set of 𝑀 random variables {𝜁𝑖
∗} 

with joint distribution defined by Diun.
23

 Here, the Diun samples obey the following 

relation. 

∑ 𝜁𝑖
∗ =𝑀

𝑖=1  1       (5) 

To generate the samples for gas molecule corrections using Diun samples, first we 

have to define a transformation that will preserve the sum of corrections to be equal with 

the overall thermodynamics. The proposed relationship between Diun random variables 

and the gas molecule free energy correction is given by the following linear 

transformation.  

𝜁𝑖 = 𝑎 + (𝑏 − 𝑎) 𝜁𝑖
∗      (6) 

Here, 𝑎 = min ({𝜁𝑖}
𝑖=1..𝑀

) and 𝑏 =  𝛿 − 𝑎(𝑀 − 1). Note, that the individual upper 

bounds 𝜁𝑖 should be smaller than 𝑏. This transformation only ensures that the gas 

molecule corrections sum up to the right-hand side of equation (3), i.e., that the overall 

Gibbs’ free energy of reaction agrees exactly with NIST data. However, the sampling 

algorithm needs to take into account that the correction samples generated using this 

transformation might be larger than the imposed upper bound. As a result, all sample 

values higher than the upper bound are rejected and sampling is continued until the 
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desired number of feasible samples is obtained. Gas molecule energy corrections affect 

all state and transition state energies that contain gas molecules. Given a DFT energy 

sample 𝒚 from the latent variable model previously introduced, a set of corrections {𝜁𝑖} is 

drawn such that the corrected energy sample 𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 matches the overall 

thermodynamics. 

3.3.3. Propagation of uncertainty to quantities of interest 

Consider the turnover frequency (TOF) given by a mapping involving a microkinetic 

simulation that depends on the corrected DFT energies: 

𝑇𝑂𝐹 = 𝑓(𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅)      (7) 

The following relation gives the probability distribution of TOF induced by the DFT 

errors and magnitudes of gas molecule corrections. 

𝑝(𝑇𝑂𝐹) = ∫ 𝑝(𝑇𝑂𝐹| 𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅)𝑝(𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅)𝑑𝒚𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅  (8) 

Here, a Monte Carlo simulation is proposed to obtain samples from the probability 

distribution of TOF. A TOF sample is generated as follows. First an energy sample is 

generated for every intermediate state and transition state according to the latent variable 

model. Second, a set of gas molecule corrections is generated using the modified Diun. 

The corrected energy sample is then used to calculate the rate constants and solve the 
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microkinetic model. The TOF result of the microkinetic model is stored and a new set of 

energies is selected and this process is repeated a significant number of times.  

Similarly, one can quantify the uncertainty of other QoIs for comparison with 

experiments such as activation barrier (eV) and reaction orders. The apparent activation 

barrier is calculated as 

𝐸𝑎𝑝𝑝 = 𝑘𝐵𝑇2 (
𝑑𝑙𝑛(𝑇𝑂𝐹)

𝑑𝑇
)

𝑃,𝑇
      (9) 

where 𝑃 is pressure, 𝑇 is temperature and 𝑘𝐵 is Boltzmann’s constant.  A range of 

temperature points and a linear fit are used to calculate  𝐸𝑎𝑝𝑝 (𝑒𝑉).  Reaction orders, 𝛼𝑖 

for each species are calculated as 

𝛼𝑖 = (
𝑑𝑙𝑛(𝑇𝑂𝐹)

𝑑𝑙𝑛(𝑃𝑖)
)

𝑇,𝑃𝑗≠𝑖

       (10) 

where 𝑃𝑖 (atm) represents the partial pressure of gas species, i. 

3.3.4. Determining the dominant catalytic cycle  

The microkinetic model generates a variety of results comparable with 

experiments.  The overall TOF (s
-1

) as well as individual catalytic cycle TOF’s are solved 

for.  Calculating individual catalytic cycle TOF uncertainties allows evaluating the 

dominant cycle in a reliable manner.  The dominant catalytic cycle may be identified 
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using Kullback-Leibler (KL) divergence
54,55

, which is used in information theory to 

measure the difference between two probability distributions. KL divergence is defined 

by 

𝐷𝐾𝐿(𝑃||𝑄) = ∫ 𝑝(𝑥)
x

ln (
𝑝(𝑥)

𝑞(𝑥)
)     (11) 

where 𝑥 is an uncertain variable.  𝑝 and 𝑞 are two probabilities for a given value of 𝑥.  

The KL divergence is taken for each catalytic cycle TOF q from the overall TOF p in the 

case study.  A large KL divergence means PDF q is far from PDF p. The KL divergence 

is non-negative and it is zero when the two PDF’s 𝑝 and 𝑞 are identical.  A trapezoidal 

integration in MATLAB, trapz, is utilized to evaluate the integral in which the individual 

catalytic cycle TOF is q and the overall TOF is p. Specifically, a kernel density estimator, 

MATLAB’s ksdensity, is used to obtain a set of probabilities and their corresponding 

TOF values for the trapezoidal integration.  The dominant cycle is given by the catalytic 

cycle TOF that has the smallest KL divergence with respect to the overall TOF.  Figure 

3.1 illustrates the workflow of the general framework provided in this section. 

3.4 WGS APPLICATION 

Computational and model details of our case study model of the WGS over Pt8/TiO2 

are available in Ammal et al.
24

  DFT calculations used the PBE
17

 functional to 

approximate exchange and correlation effects.  For a factor analysis
22

 three more 

functionals are used along with PBE to obtain the correlations for a covariance matrix.  

The additional functionals are the revised Perdew-Burke-Ernzerhof (RPBE)
18,19

, Heyd-
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Scuseria-Ernzerhof (HSE)
20

, and M06L
21

 which is a Minnesota functional.  PBE uses a 

GGA which utilizes fundamental parameters apart from local spin density parameters to 

approximate the exchange-correlation energy in Kohn-Sham DFT and is considered a 

universally good functional.
56

 RPBE belongs to the class of GGA functionals that has 

been optimized for chemisorption energetics on transition metal surfaces to overcome the 

observed limitation of PBE to often overestimate the adsorption energy of various small 

molecules.
18

  Interestingly for this study, it has been proposed that PBE overestimates the 

binding of CO and H, while RPBE misrepresents the energy of species with OCO 

backbone.
9
  All of these species are of significant importance for the WGS.  Next, HSE is 

a computationally efficient hybrid exchange density functional based on the PBE0 (or 

sometimes called PBEh) functional that contains 25% exact exchange.
20,57

  For non-

metallic systems, transition state energies, and (of particular importance for this study) 

oxygen vacancy formation energies, it has been argued that the inclusion of exact 

exchange is important to describe the electronic structure correctly
16,58

.  Finally, we also 

performed calculations with the M06L meta-GGA DFT functional that is computationally 

faster than hybrid exchange functionals (though significantly slower than pure GGA 

functionals) and that has been optimized to predict good energetics (including energy 

barriers and medium range dispersion interactions) for transition metal, inorganic and 

organometallic systems. 

Climbing image nudge elastic band and dimer methods were used to obtain transition 

states
24,59-60

 at the PBE level of theory as reported previously.  For all other DFT 

functionals we only performed single point energy calculations on the PBE optimized 

geometries.  A full optimization with each DFT functional would be preferred; however, 
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the computational expense would be significantly larger (particularly for the HSE and 

M06L calculations) such that we refrained from using such an approach here.  Transition 

state theory within the harmonic approximation and for adsorption processes collision 

theory were used to calculate reaction rate constants.  For the vibrational partition 

function and zero-point energy (ZPE) correction we used the numbers from the PBE 

functional where we shifted all vibrational frequencies smaller than 100 cm
-1

 to 100 cm
-1

 

to avoid having large entropy contributions from very small frequencies.  The vibrational 

frequencies are computed by numerical differentiation.  A 0.01 Å displacement was used 

for all vibrational frequency calculations.  There are four catalytic cycles considered in 

this case study.  The first catalytic cycle is the classical redox catalytic cycle.
24,61,62

 The 

second catalytic cycle is the CO-promoted redox catalytic cycle.
24

  And, the final two 

pathways are the formate and carboxyl pathways with redox regeneration that we 

predicted previously to be of no importance.
24

  All elementary reaction steps in these four 

pathways have been included in a microkinetic model as described previously.
24

  The gsl 

(GNU Scientific Library) linear algebra library in C++ is used to solve the set of steady 

state reactor equations.   

Next, we placed Gaussian PDF’s representing the DFT energy uncertainty and their 

correlation on all intermediate and transition states.  Transition states from collision 

theory are given a PDF with correction with a mean of +0.075 eV and a standard 

deviation of 0.075 eV.  This mean correction suggests collision theory tends to 

underestimate transition state energies for adsorption.  The selection of a standard 

deviation covers a sticking coefficient from zero to one where at 500 K a correction of 

0.075 eV corresponds to a sticking coefficient of 0.175.   
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The standard deviations of all other intermediate and transition states are obtained by 

the results of our factor analysis
22

 of the four functionals. Only one factor is used to 

explain the correlation structure between DFT energies. The DFT calculations with four 

functional results are listed in Table 3.1. The standard deviations are listed in Table 3.2.  

All standard deviations are from the element-wise square root of the diagonal of the 

covariance matrix obtained through factor analysis.  Free energies of reaction and 

activation barriers which vary more widely are reflected by relatively larger standard 

deviations in Table 3.2.   

The DFT-derived free energy pathways for this system including all intermediate 

and transition states need to end 0.40 eV higher to match the overall reaction 

thermodynamics (NIST value: ∆𝐺𝑟𝑥𝑛
𝑊𝐺𝑆,(523 𝐾) =  −0.24 𝑒𝑉, average DFT: 

∆𝐺𝑟𝑥𝑛
𝑊𝐺𝑆,(523 𝐾) =  −0.64 𝑒𝑉, PBE: ∆𝐺𝑟𝑥𝑛

𝑊𝐺𝑆,(523 𝐾) =  −0.67 𝑒𝑉, RPBE: 

∆𝐺𝑟𝑥𝑛
𝑊𝐺𝑆,(523 𝐾) =  −0.62 𝑒𝑉, HSE: ∆𝐺𝑟𝑥𝑛

𝑊𝐺𝑆,(523 𝐾) =  −0.47 𝑒𝑉, M06L: 

∆𝐺𝑟𝑥𝑛
𝑊𝐺𝑆,(523 𝐾) =  −0.80 𝑒𝑉).  A four-dimensional modified Diun is used to obtain four 

corrections 𝜁𝐶𝑂2
, 𝜁𝐻2

, 𝜁𝐻2𝑂 , 𝜁𝐶𝑂 to gas molecule energies for CO2, H2, H2O and CO, 

respectively. The following constraints are imposed on the four corrections. 

𝜁𝐶𝑂2
+ 𝜁𝐻2

+ 𝜁𝐻2𝑂 + 𝜁𝐶𝑂 = 𝛿      (12) 

−0.4 ≤ 𝜁𝐶𝑂2
, 𝜁𝐶𝑂 ≤ 0.4               − 0.2 ≤ 𝜁𝐻2

, 𝜁𝐻2𝑂 ≤ 0.2 

 We choose relatively large bounds on uncertainty of ±0.4 eV for CO and CO2 due 

to the known challenges of DFT to predict both CO and CO2 equally well;
4
 while we 

choose a relatively small uncertainty bounds for H2 and H2O of ±0.2 eV.  It can be argued 
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that our uncertainty of ±0.4 eV and ±0.2 eV, respectively, is too large, however, we 

advise to not underestimate uncertainties and note that the overall error of the average of 

our four functionals is 0.40 eV for the WGS at T = 523 K. The following linear 

transformation is used to alter the Diun distribution: 

𝜁𝐶𝑂2
= 𝑎 + (𝑏 − 𝑎)𝜁𝐶𝑂2

∗        

𝜁𝐻2
= 𝑎 + (𝑏 − 𝑎)𝜁𝐻2

∗         

𝜁𝐻2𝑂 = 𝑎 + (𝑏 − 𝑎)𝜁𝐻2𝑂
∗        

            𝜁𝐶𝑂 = 𝑎 + (𝑏 − 𝑎)𝜁𝐶𝑂
∗               

  𝑎 = −0.4         

      𝑏 = 0.40 − 3𝑎      (13) 

This defines a four-dimensional Dirichlet distribution, called a simplex, where 

each correction is bounded below by 𝑎 and above by 𝑏.  This simplex is cut in order to 

provide the ranges of equation (12).  Figure 3.2 illustrates samples from equation (13) 

following the ranges of equation (12) as a boxplot.  Three samples are plotted on top of 

the boxplot to illustrate that each sample of gas DFT energy corrections sums to 0.40 eV.   

Another coding strategy is included to ensure that energies in the UQ simulation 

are physical.  Transition states used in transition state theory are set so that no activation 

barriers may be negative.  This is accomplished by constraining transition state free 

energies to be at least equal to product or reactant state free energies whichever is greater.   
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3.5 RESULTS AND DISCUSSION 

Figures 3.3a and 3.3b are free-energy diagrams which visualize the four functional 

results of the classical redox pathway and the CO-promoted redox pathway on our edge 

interface site model pictured in Figure 3.3c.
24

  We observe that PBE and RPBE free 

energies are relative to the HSE and M06L results quite similar.  Also, HSE and M06L 

free energies can deviate from the PBE and RPBE results by as much as 1 eV, 

particularly for transition states involving the formation of an oxygen vacancy in the TiO2 

support.  Figure 4a shows the 95% confidence interval based upon average DFT energies.  

The 95% confidence interval is the mean of the four functionals plus or minus two 

standard deviations, indicated by dashed lines.  The mean of the four functionals is the 

expected value, the solid line.  Figure 3.4b shows uncertainties from the factor analysis 

with thermodynamics (Gibbs’ free energy) correction for the gas molecules.  The final 

and initial Gibbs’ free energies are entirely certain in Figure 3.4b (the initial state is the 

reference energy and the final state is given by the reaction thermodynamics).  In other 

words, the mean of the four functionals undergoes gas-phase corrections which correct 

the Gibbs’ free energy of reaction to the NIST value which is assumed to have no 

uncertainty (the NIST uncertainty is significantly smaller than the DFT uncertainty). 

Figure 3.5 displays overall TOF results and TOF results of individual catalytic cycles 

including constraints on (gas molecule) thermodynamics and correlations.  The vertical 

dashed line is the experimental observation from Kalamaras et al.
44

  The dominant 

catalytic cycle is predicted to be the CO-promoted redox pathway at these reaction 

conditions (PCO = 0.03 atm, PH2O = 0.1 atm, PCO2 = 0.06 atm, PH2 = 0.2 atm, T = 523 K).  
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This observation is in agreement with our previous conclusions about the dominant 

reaction mechanism on Pt8/TiO2 interface sites.
24

  Figure 3.5 displays evidence of this 

trend by visual inspection that the probability density of the TOF of the CO-promoted 

redox pathway essentially lines up with the overall TOF probability density.  This lining 

up signifies that there is hardly any difference between overall TOF and CO-promoted 

TOF.  Although the classical redox pathway is not lined up with the overall TOF, the 

classical redox pathway is able to reach the experimentally observed TOF.  It is evident 

that even when considering uncertainty, the formate and carboxyl pathway cannot lead to 

a significant WGS rate at edge sites of a Pt cluster on TiO2 (110) and we can exclude the 

possibility that the WGS proceeds through these pathways at interface edge sites.    

To statistically formalize the importance of one pathway over another, the KL 

divergence is taken of the CO-promoted redox catalytic cycle TOF and the classical 

redox catalytic cycle TOF using the overall TOF as a reference over the temperature 

range of 473 to 673 K as shown in Figure 3.6.  The raw numerical data from the model 

must be transformed and entered into the equation for KL divergence, Equation (11).  A 

smaller KL divergence reveals that the individual catalytic cycle TOF is closer to the 

overall TOF.  As a note, any plotting software/language which has kernel density 

estimation capability could create the plots which MATLAB creates.  As a clarification, 

MATLAB is only used for plotting the data in this work.  QUESO, gsl and other C++ 

libraries are used to build and run the model for the generation of data.  Python is used to 

obtain confidence intervals and correlation structure by factor analysis.
63

  At a reaction 

temperature of 523 K, the KL divergence of the CO-promoted redox catalytic cycle is 

0.0237 which is significantly less than the 0.2211 KL divergence of the classical redox 
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cycle.  Therefore we have high confidence that the CO-promoted catalytic cycle is indeed 

dominant.  The CO-promoted redox catalytic cycle dominates within the temperature 

range of 473 K to at least 600 K, at which temperature we observe slowly a change in 

reaction mechanism (the KL for both pathways becomes equivalent at 608 K).  This 

change in dominant catalytic cycle is likely due to the effect of temperature on the CO 

binding energy and therefore the surface coverage fraction of the extra adsorbed CO 

molecule needed in the CO-promoted cycle.  We also analyzed the reaction pathways at a 

temperature of 623 K and Figure 3.7 illustrates the PDF’s of the two cycles and overall 

TOF at T=623 K.  Here, the classical redox TOF is very close to overall TOF and it 

becomes very challenging to identify the dominant reaction mechanism by visual 

inspection. However, it is still apparent that the formate and carboxyl mechanism lead to 

small TOFs and these pathways are not relevant for our Pt/TiO2 catalyst model.   

Next, we analyzed our predicted apparent activation barrier and reaction orders.  The 

apparent activation barrier of our active site model captures the experiment as evidenced 

by Figure 3.8 although it has wide uncertainty of over 2.5 eV (the apparent activation 

barrier has been obtained in the temperature interval from 473 to 673 K).  This wide 

uncertainty is a result of the significant uncertainty of the DFT predicted Gibbs’ free 

energies (Figure 3.3 and 3.4), particularly for processes involving the formation of an 

oxygen vacancy on the TiO2 surface.  In other words, agreement between experimental 

and computational apparent activation barriers is not a sufficient measure to validate the 

computational model.  We note however that there is a correlation between the TOF and 

apparent activation barrier such that when considering only the parameter space with 

results that are close to the experimental TOF, the uncertainty in apparent activation 
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barrier is significantly reduced and relatively close to the experimentally observed 

barrier.  Finally, Figure 3.9 shows reaction order PDF’s with experiments reported in the 

literature at reaction conditions of PCO = 0.03 atm, PH2O = 0.1 atm, PCO2 = 0.06 atm, PH2 = 

0.2 atm, T = 523 K.
15

  The experimental H2 reaction order is reasonably captured well by 

its PDF.  H2 and in fact all reaction orders display some degree of bimodality due to the 

large uncertainty in the DFT energies which leads to various states being rate controlling 

in different samples - for example the reaction order for H2O can be zero or one (or 

anywhere in between) when the uncertainty in DFT is accounted.  Also, the CO reaction 

order PDF is able to capture the experiment and the H2O reaction order PDF captures the 

experimental observation with most probability lying between 0 and 1.  Finally, the CO2 

reaction order PDF captures the experimental value at its mode at 0.  Overall, we observe 

wide ranges of predicted reaction orders with bimodality that capture the experimental 

data.  In other words, our model based on DFT and transition state theory captures all 

experimental data (indeed there exist free energy corrections that lead to kinetic 

parameters that all agree concurrently with experimental data); however, the PDFs for 

TOF, apparent activation barrier and reaction orders are relatively wide such that DFT is 

still challenged with predicting the absolute activity of active sites at the interface of a 

transition metal particle and a reducible oxide support. Encouragingly though the 

prediction of the dominant reaction pathway/mechanism can be made with high 

confidence for even complex active site models. Clearly, the formate and carboxyl 

mechanisms play no role at the investigated active site model and the CO-promoted 

redox pathway is the dominant reaction mechanism at low temperatures.    
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3.6 CONCLUSIONS 

A general framework has been proposed for uncertainty quantification of 

computational catalysis studies.  The usefulness of correlating DFT uncertainties using a 

factor analysis has been shown.  A Dirichlet distribution has been used to perform a 

thermodynamics correction.  Case study results have been presented and they suggest 

DFT is accurate for producing relative results such as the dominant catalytic cycle.  

Kullback-Leibler divergence has been presented for identification of the dominant 

catalytic cycle.  For the case study of the water-gas shift reaction at the edge interface site 

of our Pt8/TiO2 catalyst model, a combination of generalized gradient approximation 

functionals, a hybrid functional, and a Minnesota functional have been entered into the 

factor analysis for DFT uncertainty and correlation structure among states and transition 

states.  The experimental data of TOF, apparent activation barrier, and reaction orders of 

CO, H2O, CO2 and H2 all fall within the uncertainty due to DFT illustrating that our 

active site model might capture all relevant characteristics of the active sites in the 

experimental catalyst.  Two catalytic cycles, formate and carboxylate, have been ruled 

out from playing a dominant role in TOF.  Furthermore, the Kullback-Leibler divergence 

formalizes that the CO-promoted cycle is dominant over the classical redox cycle.  

Although, above 600 K the two cycles become equivalent in dominance as measured by 

Kullback-Leibler divergence.  A four-dimensional Dirichlet distribution has been applied 

to the gas molecules CO, H2O, CO2 and H2 which corrects the overall Gibbs’ free energy 

of reaction to NIST data, i.e., the reaction is less thermodynamically downhill with the 

Dirichlet distribution correction.  Uncertainty quantification forward problems such as 

the general framework and case study communicated here are recommended for other 
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computational catalysis models in order to account for the inexact nature of DFT and can 

of course be extended to include other uncertainties in the model if they are believed to 

be of high importance such as lateral interactions and limitations of harmonic transition 

state theory.  In future work, a significant reduction in uncertainty may be accomplished 

by using Bayesian statistical tools to perform an inverse problem to learn about DFT 

energies and their correlation from experiments.   
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3.9 TABLES AND FIGURES 

Table 3.1 Four functional results for the Gibbs’ free energy of various states of our model 

originally reported by Ammal et al.
24

 A temperature of 523 K has been used for the free 

energy calculations at a reference pressure of 1 atm for each gas molecule.  All energies 

are with reference to state: *Pt-Oint + 2CO(g) + H2O(g).  Transition states are symbolized 

by the reaction equation they belong to. 

Intermediate or Transition State 
G (eV) 

PBE RPBE HSE M06L 

*Pt-Oint + 2CO(g) + H2O(g) 0.000 0.000 0.000 0.000 

*Pt-Oint + 2CO(g) + H2O(g) COPt-

Oint + CO(g) + H2O(g)  0.000 0.000 0.000 0.000 

COPt-Oint + CO(g) + H2O(g)              0.182 0.273 0.365 0.768 

COPt-Oint + CO(g) + H2O(g)   

CO2(Pt-int) + CO(g) + H2O(g) 0.733 0.951 0.940 1.399 

CO2(Pt-int) + CO(g) + H2O(g)                    0.605 0.892 0.748 0.957 

CO2(Pt-int) + CO(g) + H2O(g)  *Pt-

Vint + CO2(g) + CO(g) + H2O(g)  1.829 1.976 2.803 2.095 

*Pt-Vint + CO(g) + H2O(g) + CO2(g)                    0.489 0.408 0.868 1.074 

*Pt-Vint + CO(g) + H2O(g) + CO2(g) 

*Pt-2OHint + CO(g)  + CO2(g)   1.020 1.263 2.044 1.395 

*Pt-2OHint + CO(g) + CO2(g)         0.121 0.462 0.667 -0.353 

*Pt-2OHint + CO(g) + CO2(g)            

HPt-OHint + Oint + CO(g) + CO2(g) 0.697 0.905 1.147 1.349 

HPt-OHint + *Pt + CO(g)  + CO2(g)       0.374 0.507 0.736 0.842 

HPt-OHint + *Pt + CO(g)  + CO2(g)     

2HPt-Oint + CO(g)  + CO2(g) 1.036 1.424 1.853 1.339 

2HPt-Oint  + CO(g)  + CO2(g)         -0.097 0.245 0.309 0.175 

2HPt-Oint + CO(g)  + CO2(g)   *Pt-

Oint +*Pt +H2(g) + CO(g)  + CO2(g) -0.097 0.245 0.309 0.175 

*Pt-Oint +*Pt +H2(g) + CO(g) + CO2(g) -0.667 -0.622 -0.468 -0.803 

CO2(Pt-int) + CO(g) + H2O(g)   

COPt-CO2(int) + H2O(g) 0.605 0.892 0.748 0.957 

COPt-CO2(int) + H2O(g) 0.540 0.780 0.879 1.318 

COPt-CO2(int) + H2O(g)  COPt-Vint  + 

CO2(g) + H2O(g) 1.272 1.323 1.851 2.306 

COPt-Vint +Oint + H2O(g) + CO2(g)  -0.305 -0.263 0.607 0.497 

COPt-Vint +Oint H2O(g) + CO2(g)  

COPt-2OHint  + CO2(g)   0.924 1.050 1.496 1.958 



60 

COPt-2OHint  + Os  + CO2(g) 
0.313 0.673 0.957 0.570 

COPt-2OHint  + Os  + CO2(g)   COPt-

OHint-Oint-OHs  + CO2(g)  0.771 1.111 1.206 1.651 

COPt-OHint-Oint-OHs + Oint  + CO2 (g)  
0.379 0.571 0.658 1.094 

COPt-OHint-Oint-OHs + Oint  + CO2 (g) 

 COPt-OHint-Oint-OHint + Os  + CO2 

(g)   0.869 0.949 1.258 1.920 

COPt-OHint-Oint-OHint + *Pt + CO2 (g) 
0.236 0.517 0.777 0.514 

COPt-OHint-Oint-OHint + *Pt  + CO2 

(g)  COPt-OHint-Oint-HPt + Oint  + 

CO2 (g)    0.262 0.397 0.648 1.344 

COPt-OHint-Oint-HPt + *Pt  + CO2 (g) 
-0.364 -0.097 -0.174 0.219 

COPt-OHint-Oint-HPt + *Pt  + CO2 (g) 

COPt-Oint-2HPt + Oint  + CO2 (g) -0.034 0.148 0.296 1.106 

COPt-Oint-2HPt  + CO2 (g) 
-0.761 -0.483 -0.612 0.102 

COPt-Oint-2HPt  + CO2 (g)  COPt-Oint  

+ 2*Pt  + CO2 (g)+ H2 (g) -0.761 -0.483 -0.612 0.102 

COPt-Oint  + 2*Pt  + CO2 (g)+ H2 (g) 
-0.485 -0.349 -0.103 -0.034 
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Table 3.2 Standard deviations of Gaussian uncertainties of Gibbs’ free energies obtained 

by factor analysis and setting adsorption/desorption uncertainties.  Standard deviations 

correspond to how varied the four functional results (free energies) listed in Table 1 are.  

All energies are with reference to state: *Pt-Oint + 2CO(g) + H2O(g).  Transition states are 

symbolized by the reaction equation they belong to. 

Intermediate or Transition State 

Standard 

Deviation 

(eV) 

*Pt-Oint + 2CO(g) + H2O(g) 0.000 

*Pt-Oint + 2CO(g) + H2O(g)  COPt-Oint + CO(g) + H2O(g)  0.075 

COPt-Oint + CO(g) + H2O(g)              0.224 

COPt-Oint + CO(g) + H2O(g)  CO2(Pt-int) + CO(g) + H2O(g) 0.243 

CO2(Pt-int) + CO(g) + H2O(g)                    
0.136 

CO2(Pt-int) + CO(g) + H2O(g)  *Pt-Vint + CO2(g) + CO(g) + H2O(g)  0.374 

*Pt-Vint + CO(g) + H2O(g) + CO2(g)                    
0.273 

*Pt-Vint + CO(g) + H2O(g) + CO2(g)  *Pt-2OHint + CO(g)  + CO2(g)   0.379 

*Pt-2OHint + CO(g) + CO2(g)         
0.386 

*Pt-2OHint + CO(g) + CO2(g)  HPt-OHint + Oint + CO(g) + CO2(g) 0.246 

HPt-OHint + *Pt + CO(g)  + CO2(g)       
0.184 

HPt-OHint + *Pt + CO(g)  + CO2(g)  2HPt-Oint + CO(g)  + CO2(g) 0.292 

2HPt-Oint  + CO(g)  + CO2(g)         
0.155 

2HPt-Oint + CO(g)  + CO2(g)   *Pt-Oint +*Pt +H2(g) + CO(g)  + 

CO2(g) 

0.075 

*Pt-Oint +*Pt +H2(g) + CO(g) + CO2(g) 0.119 

CO2(Pt-int) + CO(g) + H2O(g)  COPt-CO2(int) + H2O(g) 0.136 

COPt-CO2(int) + H2O(g) 0.282 

COPt-CO2(int) + H2O(g)  COPt-Vint  + CO2(g) + H2O(g) 0.423 

COPt-Vint +Oint + H2O(g) + CO2(g)  0.420 

COPt-Vint +Oint H2O(g) + CO2(g)  COPt-2OHint  + CO2(g)   0.407 

COPt-2OHint  + Os  + CO2(g) 0.231 
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COPt-2OHint  + Os  + CO2(g)  COPt-OHint-Oint-OHs  + CO2(g)  0.314 

COPt-OHint-Oint-OHs + Oint + CO2 (g)  0.262 

COPt-OHint-Oint-OHs + Oint + CO2 (g)  COPt-OHint-Oint-OHint + Os + 

CO2 (g)   
0.414 

COPt-OHint-Oint-OHint + *Pt + CO2 (g) 0.191 

COPt-OHint-Oint-OHint + *Pt  + CO2 (g)  COPt-OHint-Oint-HPt + Oint  

+ CO2 (g)    
0.417 

COPt-OHint-Oint-HPt + *Pt  + CO2 (g) 0.210 

COPt-OHint-Oint-HPt + *Pt  + CO2 (g)  COPt-Oint-2HPt + Oint  + CO2 

(g) 
0.436 

COPt-Oint-2HPt  + CO2 (g) 0.327 

COPt-Oint-2HPt  + CO2 (g)  COPt-Oint  + 2*Pt  + CO2 (g)+ H2 (g) 0.075 

COPt-Oint  + 2*Pt  + CO2 (g)+ H2 (g) 0.398 
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Figure 3.1  Flowchart of general framework for uncertainty quantification of 

computational catalysis results presented in section 3.2. 

Perform a factor analysis to 
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correlation structure equation 
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Identify dominant pathway 

using Kullback-Leibler 

divergence 

equation (11) 

 



64 

 

 

Figure 3.2  Boxplot of gas molecule free energy corrections with three samples shown on 

top.  The overall reaction thermodynamics may be expressed as ∑ 𝜈𝑖𝐺𝑖𝑖  where 𝜈𝑖 is the 

stoichiometric coefficient of gas molecule 𝑖.  Overall reaction Gibbs’ free energies are 

Δ𝐺𝑒𝑟𝑟𝑜𝑟 = 𝐺𝐶𝑂2
𝑒𝑟𝑟𝑜𝑟 + 𝐺𝐻2

𝑒𝑟𝑟𝑜𝑟 − 𝐺𝐻2𝑂
𝑒𝑟𝑟𝑜𝑟 − 𝐺𝐶𝑂

𝑒𝑟𝑟𝑜𝑟.  The three samples illustrate that Δ𝐺𝑒𝑟𝑟𝑜𝑟 

is +0.40 eV.  For example, a possible sample from the four-dimensional Dirichlet PDF is 

0.15, 0.07, -0.01, -0.17 (eV) for CO2, H2, H2O and CO because it falls within the 

constraints and sums (using stoichiometric coefficients) to +0.40 eV.  If a three-

dimensional slice were taken of this four-dimensional space the samples would appear 

uniformly spread.   
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(c) 

 

Figure 3.3a-c.  Free energy diagrams of the classical redox pathway (a) and CO-promoted 

redox pathway (b) computed by four DFT functionals at a reaction temperature of 523 K.  

Figure c is a picture of the active edge interface site model adapted from our earlier 

work
24

. 
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Figure 3.4a-b.  Relative Gibbs’ free energy diagram of the classical redox cycle with 95% 

confidence intervals from factor analysis.  Figure b shows the dirichlet pdf results 

correcting the thermodynamics (Gibbs’ free energy of reaction) to the NIST value at the 

end of the catalytic cycle. 
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Figure 3.5 Probability density of TOFs calculated for different pathways of the WGS at 

Pt/TiO2 interface sites.  At least 70,000 samples are used.  470,000 samples are used to 

test for convergence of the 70,000 sample results.  No change is observed and 70,000 

sample results are plotted.  PCO = 0.03 atm, PH2O = 0.1 atm, PCO2 = 0.06 atm, PH2 = 0.2 

atm, T = 523 K.  The straight line with X corresponds to the experimental results from 

Kalamaras, et al.
44
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Figure 3.6  KL divergence of two catalytic cycles over a range of temperatures.  A 

smaller KL divergence suggests dominance.  𝐷𝐾𝐿(𝑃||𝑄) = ∫ 𝑝(𝑥)
x

log2 (
𝑝(𝑥)

𝑞(𝑥)
).  Two 

temperatures at 523 K and 623 K indicated by straight line with X are selected for 

discussion. 
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Figure 3.7  Probability density of overall TOF and individual catalytic cycle TOF of 

various pathways at  PCO = 0.03 atm, PH2O = 0.1 atm, PCO2 = 0.06 atm, PH2 = 0.2 atm, and 

T = 623 K.  The catalytic cycles have moved closer together with an increase in 

temperature of 100 K relative to Figure 4 as indicated by the KL divergence in Figure 5. 
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Figure 3.8  Probability density of the apparent activation barrier obtained at PCO = 0.03 

atm, PH2O = 0.1 atm, PCO2 = 0.06 atm, PH2 = 0.2 atm, and T = 473 - 623 K.  Experimental 

data point from Kalamaras et al.
44

 is symbolized by a straight line with X.
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Figure 3.9  Probability density of various reaction orders.  All experimental data from 

Kalamaras et al.
44

 (symbolized by straight lines with X) are captured by their PDF’s.  

Reaction orders have been determined at the following reaction conditions: PCO = 0.03 

(0.02-0.08) atm, PH2O = 0.1 (0.05-0.1) atm, PCO2 = 0.06 (0.02-0.1) atm, PH2 = 0.2 (0.05-

0.4) atm, and T = 523 K.   
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CHAPTER 4 

IDENTIFYING ACTIVE SITES IN THE WATER-GAS SHIFT 

REACTION OVER TITANIUM OXIDE SUPPORTED PLATINUM 

CATALYSTS 
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4.1 ABSTRACT 

The most active site among three is determined for the water-gas shift reaction on 

Pt/TiO2 catalysts.  Each active site model consists of DFT calculations and a microkinetic 

model.  Of the three active sites, two involve the oxide support in the mechanism of 

reaction.  Using Bayesian statistical tools and experimental data the edge active site is 

selected followed by the corner in close second.  The edge and the corner site both 

explain the experimental data far better than the terrace Pt(111) active site.  Therefore, it 

is concluded that the oxide support plays a mechanistic role in the WGS reaction.  The 

selected active site, the edge, is verified with separate experiments at separate pressure 

and temperature conditions.  For the selected edge active site, the uncertainty in degrees 

of rate control are reported and discussed.  The rate-controlling step with the most 

uncertainty is adsorption of CO-promoter prior to the oxygen vacancy formation step.   

4.2 INTRODUCTION 

The WGS reaction (𝐶𝑂 + 𝐻2𝑂 ⇌ 𝐶𝑂2 + 𝐻2) is the most widely applied reaction 

in industry for the generation of hydrogen.
1-10

  Currently hydrogen is produced from 

natural gas sources through a process involving first high pressure steam-reforming.  This 

produces syngas (CO + H2 + CO2) which with the addition of water (H2O) allows for 

WGS.
11

  At present, there is disagreement in the literature for the active site of WGS for 

Pt nanoparticles on a reducible support such as TiO2.  Some have suggested that the Pt is 

the sole active site, corresponding to terrace active sites in this work.  This opinion rules 

out the mechanistic involvement of the support.  Grabow, et al
12

 and Stamatakis, et al
13,14

 

have proposed Pt(111)/Pt(211) as the active site, with little effect due to crystal surface 
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structure.  Schneider, et al
15

 found unphysically high surface CO coverage to be 

responsible to low turnover frequencies (TOF s
-1

) during simulations.  For Pt(111) and 

Pd(111) the reaction orders and apparent activation barrier (eV) did not match 

experiments where Pt and Pd nanoparticles were supported by 𝛾-Al2O3.  𝛾-Al2O3 support 

has the least supporting effect.
15

 On the other hand, Grabow, et al
12

 arrived at good 

agreement with experiments although free energies from DFT were adjusted to the data. 

However, Haruta, et al
16

 and Stephanopoulos, et al 
17

 have suggested that the support 

plays a role in the reaction due to nearly metal-free catalysts showing activity and the 

activity scales with the edge length of the nanoparticles.  Recently, there has been an 

open debate in the literature over the activity of single Pt atoms.
18,19

  Stephanopoulos, et 

al
18

 have suggested that single Pt atoms are active but Stair, et al
19

 have suggested there is 

only indirect evidence for this.  Previously, we have published on the mechanism of 

reaction on corner and edge sites for Pt8 nanoparticles.
20

  Selecting one of these models 

would not be conclusive for singe atom sites, but they would lend to the argument that 

single Pt atom sites are active due to the involvement of the oxide surface and the lesser 

importance of metal surfaces. 

Four types of DFT are used for investigation in this work as previously suggested 

for this system in our previous work.
20

  The reason to use four types of functionals is to 

include in the uncertainty possible approaches for treating the system.  First, generalized 

gradient approximation functionals are used including the Perdew-Burke-Ernzerhof 

(PBE)
21

 and Revised Perdew-Burke-Ernzerhof (RPBE)
22,23

 functionals are used.  Next, a 

hybrid functional including exact exchange-correlation was included in uncertainty 

quantification (UQ), the Heyd-Scuseria-Ernzerhof (HSE)
24

 functional.  Another type of 
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functional is included, the M06L functional.
25

  Thermodynamics were corrected to NIST 

gas-phase reaction thermodynamics in an unbiased manner using a Dirichlet
26

 probability 

density function of free energy corrections.  The concept is DFT inaccurately describes 

the thermodynamics of WGS occurring in a cycle on the catalyst surface.  However, by 

energy balance, the thermodynamics of the reaction on the catalyst surface must match 

the known NIST gas-phase thermodynamics.
27

  Corrections were/are made along the 

intermediates and transition states based upon the molecules in the gas phase resulting in 

the correct overall thermodynamics for a catalytic cycle.  The correction to arrive at 

correct thermodynamics was spread among the four molecules with the least amount of 

knowledge/bias to which of the gas molecules is correct or incorrect.  This unbiased 

spread of uncertainty is/was among the four gas molecules because it is unknown 

including the four functionals which molecules are more or less accurate.   

Bayesian statistics is widely applied in industry in academia for a gamut of 

conceivable applications from atmospheric and oceanographic modeling
28

, computational 

fluid dynamics
29

 including turbulent flow
30

 and even chemical kinetics
31

.  Caruthers, et 

al
32,33

 have proposed the use of Bayesian statistics in chemical kinetics modeling.  

Bayesian statistics grew in popularity in the twentieth century due to increasing 

computation power necessary to solve Bayes’ formula.  Indeed, for complex non-linear 

models no analytical solution for uncertainty quantification exists or if it exists is not at 

all practical without a computer algorithm to calculate a numerical approximation to the 

exact solution of Bayes’ formula.  In Bayes’ century there was no such computing power.  

The Bayesian inverse will allow for not only selecting a model but also identifying 

dominant cycles after learning from experimental data.  In the following sections, first 
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Pt(111) is calculated.  The four functional data for Pt(111) and the corner active sites are 

in tables in the supporting information.  Next is a discussion of the Bayesian inverse 

problem methodology.  The results of the model selection are presented and discussed.  A 

discussion and listing of the rate controlling steps is included in the supporting 

information.  The Campbell’s degree of rate control
34-38

 is used and the findings are 

probabilistic in nature like other Bayesian posterior probabilities.  Previously, degrees of 

rate control have been reported as single numbers.  Although, a slight change in free 

energetics of the rate controlling step such as can be caused by a temperature shift 

changes the rate-controlling step.
39

  Now, with the inclusion of uncertainty, more 

information is provided in the sense that a range of possible degrees of rate control are 

revealed and non-rate-controlling steps may be confidently ruled out because they have 

no probability to be rate controlling.  Also, insight is provided about the summation to 

one principle of degrees of rate control and the conditions for negative degree of rate 

control.
40

  The findings are summarized in the conclusion.  In future work, the Pt/CeO2 

Bayesian inverse problem is suggested. 

4.3 RESULTS AND DISCUSSION 

We can see from Figure 4.1a that the mean of the four functionals is slightly 

higher than the PBE value for the classical redox pathway.  From Figure 4.1b we see that 

the mean begins at a higher relative free energy but otherwise does not change the 

relative free energy to be remarkably higher.  We see from Figure 4.1a that the reaction 

thermodynamics are exact- they come to a point at the end of the classical redox pathway.  

The CO-promoted redox pathway does not begin at S1 and so has uncertainty to begin 

with.  Also, the first uncertainty shown is for a transition state.  The highest free energy 



 

77 

transition state for both the mean of the four functionals and PBE is vacancy formation 

and CO2 desorption in the classical redox pathway.  The second highest transition state 

for the classical redox pathway is TS7 which involves O-H bond breaking.  The highest 

free energy transition state within the CO-promoted redox pathway is oxygen vacancy 

formation.  However, the free energy of this transition state is less than for the oxygen 

vacancy transition state of the classical redox pathway.   

In Figure 4.2a the TOF (s
-1

) of the edge posterior captures the experiment.
41

  In 

Figure 4.2b the apparent activation barrier (eV) has reduced in uncertainty from the prior 

while capturing the experiment.  The same holds true for Figure 4.3a-b of the reaction 

orders.  The Figures 4.4a-b-4.5a-b are a verification of the edge posterior at separate
42

 

experimental conditions providing further support as the edge to be the active site of 

WGS on Pt/TiO2.  Figure A.6 is the degree of rate control for the classical pathway and 

CO-promoted pathway.   

Table 4.1 shows that the evidence against the corner site being active is barely 

worth a mention according to Table A.7, Jeffreys scale.
43

  This result suggests the corner 

is contributing to reaction and is active.  However, the terrace sites are not active at all as 

indicated by the substantial evidence against it being selected.  A key conclusion may be 

drawn here too because the terrace site is the only site which does not include the support 

in the mechanism.  That is, the corner and edge active sites involve forming oxygen 

vacancies and borrowing that oxygen that the support doesn’t possess solely electronic 

contributions to reaction but that is mechanistically involved in a way that other non-

oxygen donating supports would be able to provide. 
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Figure A.3 seems to suggest that the lateral interactions increase the free energy 

path and certainly the free energy of the highest free energy transition state.  However, a 

key point is the depth of the state of CO adsorption- it is less deep with lateral 

interactions which causes surface coverage fraction effects.  With no lateral interaction 

effects the surface is highly covered with CO which inhibits the TOF.  The lateral 

interactions also change the highest free energy transition state, although they both 

involve O-H bond breaking.  With no lateral interaction this highest free energy transition 

state is 𝐶𝑂𝑂𝐻 ↔ 𝐶𝑂2 + 𝐻.  With lateral interactions the highest free energy transition 

state is 𝐻2𝑂 ↔ 𝑂𝐻 + 𝐻.   This transition state corresponds to the only rate controlling 

step with 1.00 degree of rate control.  We are not suggesting this correspondence is by 

necessity but happens to agree in this case.  Another confirmation of the lateral 

interactions comes from Figure A.3.  The overall reaction thermodynamics is the same 

with and without lateral interactions.  Were the lateral interactions to be implemented in a 

different way that did not include a correction for every intermediate and transition state 

such as is done the overall reaction thermodynamics would change.  Figure A.3 is created 

from taking the steady-state reaction energies and activation barriers from the 

microkinetic model and constructing a free energy path.  During the microkinetic model, 

the reaction energies are affecting the surface coverage fractions of all states which in 

turn (the CO and H coverages), affect the reaction energies and activation barriers.  

Therefore matching the reaction thermodynamics is evidence that the lateral interactions 

are not affecting the reaction thermodynamics and are operating correctly.  Figure A.7 

shows the carboxyl intermediate as key.  Other potential pathways are shown but not all 

possibilities which are numerous are illustrated.  The hydroxyl (HCOO) intermediate is 
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not dominant as indicated by Figure A.7.  These results are suggested without uncertainty 

too.  (Figures A.7-A.10 are the terrace active site with posterior uncertainty). 

From Figure A.11 for the corner we observe a large reduction in uncertainty in the 

uncertain through Bayesian calibration.  The redox pathway is dominant on the corner.  

We see from Figure A.11 that the redox pathway TOF is much higher than the associated 

carboxyl even much more than the carboxyl is higher than the redox pathway.  Figures 

A.11-A.14 are the posterior uncertainties plotted on the experimental data used for 

calibration.  The vertical bars represent the experiments.  The uncertainty in the figures 

correspond to the red posterior uncertainty in the free energy path of Figure 4.2.  The 

highest energy transition state is between intermediate (IM) 12 and IM13 which 

corresponds to the vacancy formation reaction (𝐶𝑂, 𝐶𝑂2)𝑃𝑡−𝑂𝑖
 (𝐼𝑀12) → 𝐶𝑂𝑃𝑡 −

𝑉𝑖(𝐼𝑀13) + 𝐶𝑂2(𝑔).
29

 Furthermore, the redox pathway is able to capture the 

experimental TOF.  Figures A.12-A.13 display the reaction orders with DFT uncertainty.  

The DFT with uncertainty after calibration in Figure A.12 is not able to capture all 

reaction orders.  Certain reaction orders which are CO and CO2 increase the likelihood in 

Bayes’ formula but the other reaction orders cannot be captured and indeed result in 

smaller evidence.  When model error is considered which lumps together transition state 

theory, numerical accuracy of the microkinetic model, and any experimental error 

(because information is not available on the experimental uncertainty) the reaction orders 

are captured as shown in Figure A.13.  The CO and CO2 have a small model error but 

H2O in particular contains a large model error.  These model errors would suggest the 

edge active site is more active contributing to the experimental reaction orders.  The 

apparent activation barrier in Figure A.14.  
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For the terrace site uncertainty displayed in Figure A.5 the uncertainty is widened 

but the log-likelihood is still above the limit of 100 instead of dropping to numbers 

comparable to the edge and corner <10. The mean of the four functionals changes the 

highest free energy transition state from water dissociation to carboxyl formation 

𝐶𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂𝑂𝐻∗+∗.  Figures A.7-A.10 show considerable uncertainty in the 

apparent activation barrier (eV) and an inability to capture reaction orders which are 

further visual evidence for the oxide-supported active sites being active for WGS.  The 

overall large uncertainties are due to the search for a higher-evidence region of the 

parameter space which is not obtained but instead the limit of log-likelihood of 100 is 

constant. 

Figure 4.2a-b is the posterior uncertainty in overall TOF and individual cycles 

plotted on the TOF experimental point used for calibration as well as the same for the 

apparent activation barrier.  The experiment is more within the pdf than the prior 

uncertainty.
20

  A model error is added for the overall TOF which is not available for 

individual cycles.  As in the prior uncertainty, the posterior uncertainty shows the CO-

promoted redox to be dominant to classical redox.  This would agree with the free energy 

pathway being lower for the CO-promoted pathway.  In Figure 4.3a-b the model error for 

reaction orders is visibly less than the model error for the reaction orders of the terrace 

and corner sites.  Also, each reaction order is captured by the DFT uncertainty.  This 

supports the edge site being most active for WGS.  

Figure A.6 shows 5-6 potentially rate controlling steps with posterior uncertainty.  

Since the probability of any one step possessing a degree of rate control of one is very 

small, most likely there are multiple rate-controlling steps.  The classical redox pathway 
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has steps with less degree of rate control which is to be expected due to that pathway not 

being dominant.  TS3 is for the vacancy formation step of the classical redox cycle 

CO2(Pt-int) + CO(g) + H2O(g)  *Pt-Vint + CO2(g) + CO(g) + H2O(g).  This step, which has 

the highest probability of any step in the classical redox pathway, has also the highest 

free energy transition state for the classical redox pathway. TS4 is for the reaction *Pt-Vint 

+ CO(g) + H2O(g) + CO2(g) *Pt-2OHint + CO(g)  + CO2(g).  TS6 is for the reaction HPt-

OHint + *Pt + CO(g)  + CO2(g)     2HPt-Oint + CO(g)  + CO2(g).
4,21

   

TS8 begins the branching off of the CO-promoted redox cycle and shows a non-

zero probability of being rate-controlling.  TS10 corresponds to reaction COPt-Vint +Oint 

H2O(g) + CO2(g)  COPt-2OHint  + CO2(g).  Interestingly although the transition state 

has the highest free energy for the CO-promoted redox pathway the rate control is not the 

largest by probability.  TS11 corresponds to reaction COPt-2OHint  + Os  + CO2(g)   

COPt-OHint-Oint-OHs  + CO2(g).  This reaction possesses a high probability of being the 

most rate-controlling step.  It possesses a particularly large forward activation barrier due 

to stable reactants.  TS12 which also is most likely rate-controlling is the reaction COPt-

OHint-Oint-OHs + Oint  + CO2 (g)  COPt-OHint-Oint-OHint + Os  + CO2 (g).  The sum of 

the degrees of rate control are shown.  Since the simulation of uncertainty is completed 

numerically each samples gives one sum of degrees of rate control which is always one.  

However, how the rate control is distributed can vary for each sample which is why 

uncertainty is available in the plots.  A sum to one is a check that the degree of rate 

control analysis has been correctly implemented.   
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4.4 CONCLUSIONS 

Three active sites are investigated and the most active site selected.  An edge, 

corner and terrace site are considered.  Four functionals are used to evaluate the prior 

uncertainty for each site.  The terrace site includes lateral interactions for the most 

abundant surface intermediates CO and H and their effect on all states and transition 

states.  Then, using a microkinetic model and experimental kinetic data of TOF, reaction 

orders and apparent activation barrier, a Bayesian calibration is conducted for each active 

site model.  The posterior uncertainty is less for the edge and corner site and the posterior 

uncertainty is more for the terrace site.  For the edge site, the CO-promoted redox is 

dominant to classical redox.  For the corner site, the redox pathway is dominant to the 

associated carboxyl pathway.  For the terrace site the pathway involving the COOH 

carboxyl intermediate is dominant to the pathway involving the HCOO formate 

intermediate.  An evidence number is obtained for each active site during Bayesian 

calibration.  This number is a quantification of which active site model best explains 

experiments.  The edge site model is slightly more active than the corner site.  The terrace 

site does not explain experiments and is therefore not active.  The edge and corner sites 

are both at the three phase boundary of the Pt nanoparticle and the TiO2 support in which 

the support plays a mechanistic role by donating an oxygen.  The degrees of rate control 

for the active site has been revealed with a quantification of uncertainty and many steps 

contribute to rate control.  Finally, the edge posterior uncertainty has been verified with 

data performed at different experimental conditions than the data used for Bayesian 

calibrations.  We believe that beyond solving what is the active site for water-gas shift by 
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Pt/TiO2 catalyst, the methods presented in this work are transferrable to other catalysis 

challenges where determination of the active site is important. 
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4.7 TABLES AND FIGURES 

Table 4.1  Bayes factor matrix.  

𝐵12 where 1 is 

rows and 2 is 

columns 

Edge Corner Terrace 

Edge 1.00 2.20 5.05e+38 

Corner 0.45 1.00 1.1105e+38 

Terrace 1.9801e-39 9.0046e-39 1.00 
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(a) 
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(b) 

 

 
Figure 4.1 Prior and posterior uncertainty in the two dominant free energy paths for the 

edge active site.   
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(b) 

 

Figure 4.2  (a) TOF (s
-1

) of the edge posterior captures the experiment.
41

 (b) Apparent 

activation energy (eV) results of the Bayesian inverse. 
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(a) 
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(b) 

 

Figure 4.3  Reaction orders after the Bayesian inverse. The uncertainty due to DFT is 

able to capture experiments. 
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(a) 

 

(b) 
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Figure 4.4  (a) Edge verification at separate experimental conditions and sources TOF (s
-

1
).  T = 573 (K), PCO = 0.1 (atm), PH2O = 0.2, PCO2 = 0.1, PH2 = 0.4.

42
 (b) Edge verification 

at separate experimental conditions apparent activation barrier (eV).  
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(b) 

 

Figure 4.5  Edge verification at separate experimental conditions reaction orders.  T = 

573 (K), PCO = 0.1 (atm), PH2O = 0.2, PCO2 = 0.1, PH2 = 0.4.
42 
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APPENDIX A – SUPPORTING INFORMATION FOR CHAPTER 4 

A.1 TERRACE ACTIVE SITE MODEL 

All DFT energies and a microkinetic model are summarized below following the 

reaction mechanisms studied by Grabow et al.
1
 for Pt(111). This study uses the Perdew-

Burke-Ernzerhof (PBE)
2
 functional for all DFT calculations. All calculations have been 

performed with the Vienna ab initio Simulation Package (VASP).
3,4

  Climbing image 

nudged elastic band and dimer methods are used to locate first order saddle points, i.e., 

the transition states.
5-7

  Transition state theory and collision theory are used to calculate 

elementary step rate constants.  Transition state theory is expressed as 

𝑘 =
𝑘𝐵𝑇

ℎ
exp (−

𝛥𝐺‡

𝑘𝐵𝑇
)      (1) 

where 𝑘 is the rate constant, 𝑘𝐵 is Boltzmann’s constant, ℎ is Planck’s constant, 𝑇 is 

temperature, and 𝛥𝐺‡ is the free energy activation barrier.  Lateral interactions due to two 

abundant surface intermediates, CO and H, are applied to all intermediates and transition 

states (see below).  A 3x4x4 slab model of 48 Pt atoms is used for all DFT calculations.  

The top two layers are relaxed and the bottom two layers are fixed in the calculations.  

Calculated lattice constants are 𝑎 = 8.4342 Å, 𝑏 = 9.7389 Å, 𝑐 = 22.0000 Å.  A kinetic 

energy cutoff of 400 eV and a Gaussian smearing is 0.1 eV have been used in the DFT 

calculations.   
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Equations (2)-(16) summarize the elementary reaction steps considered in a 

microkinetic model used to solve for turnover frequency (TOF s
-1

), reaction orders, and 

apparent activation barrier (eV).   

∗ +𝐶𝑂  ↔   𝐶𝑂∗      (2) 

∗ +𝐻2𝑂  ↔  𝐻2𝑂∗      (3) 

   ∗ +𝐻2𝑂∗  ↔ 𝐻∗ + 𝑂𝐻∗                                    (4) 

∗ + 𝑂𝐻∗ ↔ 𝐻∗ + 𝑂∗      (5) 

𝑂𝐻∗ + 𝑂𝐻∗  ↔   𝐻2𝑂∗ + 𝑂∗     (6) 

𝐶𝑂∗ + 𝑂∗   ↔    𝐶𝑂2
∗ +∗     (7) 

∗ +𝐶𝑂𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻∗     (9) 

𝐶𝑂𝑂𝐻∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗     (10) 

𝐶𝑂𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗    (11) 

𝐻𝐶𝑂𝑂∗ +∗↔ 𝐶𝑂2
∗ + 𝐻∗     (12) 

𝐻𝐶𝑂𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗     (13) 

𝐻𝐶𝑂𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗    (14) 

2𝐻∗  ↔ 𝐻2 + 2 ∗      (15) 

𝐶𝑂2
∗ ↔ 𝐶𝑂2 +∗      (16) 

𝐻𝐶𝑂∗ +∗↔ 𝐶𝑂∗ + 𝐻∗     (17) 
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Asterisks, *, refers to an adsorbed species or a vacant surface site if the asterisk is 

unaccompanied by a chemical species.  Species without an asterisk are present in the gas 

phase.  Table A.1 summarize the DFT results for water-gas shift (WGS) on Pt(111). 
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Table A.1.  Activation barriers (eV) and reaction energies (eV) for elementary steps of 

the water-gas shift (WGS) reaction on Pt(111). 

Reaction Activation barrier 

(eV)  

Reaction energy 

(eV) 

𝐶𝑂+∗↔ 𝐶𝑂∗ 0.0 -1.76 

𝐻2𝑂+∗↔ 𝐻2𝑂∗ 0.0 -0.14 

𝐻2𝑂∗+∗↔ 𝐻∗ + 𝑂𝐻∗ 0.76 0.42 

𝑂𝐻∗+∗↔ 𝐻∗ + 𝑂∗ 1.03 -0.15 

𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐻2𝑂∗ + 𝑂∗ 0.0 0.43 

𝐶𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗+∗ 1.05 -0.18 

𝐶𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂𝑂𝐻∗+∗ 0.40 -0.11 

𝐶𝑂𝑂𝐻∗+∗↔ 𝐶𝑂2
∗ + 𝐻∗ 0.74 -0.22 

𝐶𝑂𝑂𝐻∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ 0.33 -0.07 

𝐶𝑂𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ 0.0 -0.66 

𝐻𝐶𝑂𝑂∗+∗↔ 𝐶𝑂2
∗ + 𝐻∗ 1.11 -0.57 

𝐻𝐶𝑂𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ 1.44 -0.45 

𝐻𝐶𝑂𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ 1.06 -1.01 

2𝐻∗ ↔ 𝐻2 + 2∗ 0.0 0.96 

𝐶𝑂2
∗ ↔ 𝐶𝑂2+∗ 0.0 -0.05 

𝐻𝐶𝑂∗+∗↔ 𝐶𝑂∗ + 𝐻∗ 0.22 -1.15 
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A.2 LATERAL INTERACTION MODEL 

 
The lateral interaction effects on surface intermediates and transition states due to 

the most abundant surface intermediates, CO and H, are considered.  Without considering 

lateral interaction effects, the Pt(111) WGS microkinetic model becomes poisoned with 

CO (greater than 99.9% CO on the surface) and the activity is approximately 9 orders of 

magnitude less than with lateral interactions.  Due to the nature of the catalyst model for 

the corner and edge active those models incorporate lateral interaction effects already. 

In this section first we begin with an explanation of lateral interaction effects for 

Pt(111) including a comparison of the relative free energy pathways with and without 

lateral interaction effects.  Next, Campbell’s degree of rate control (DRC)
8-12

 is explained 

and the sum of the DRC for all the elementary steps is shown to be one for Pt(111) with 

lateral interaction effects.  Finally, a comparison with WGS on Pt(111) by Stamatakis, et 

al.
13

 is conducted.  

Figures A.1 and A.2 are examples of the lateral interaction effects due to CO and 

H.  In fact, every intermediate and transition state includes lateral interaction effects due 

to CO and H such as those show in Figures A.1 and A.2.  What Figures A.1 and A.2 

show is a linear functional dependence on dimensionless surface coverage fraction of CO 

and H.  This linear functional dependence is programmed into the microkinetic model. 
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(a) 
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(b) 
 

 
 
Figure A.1.  Example lateral interaction effects (eV) on the CO surface intermediate.  A 

linear functional dependence on CO and H dimensionless surface coverage fraction for 

lateral interaction effect (eV) is shown for the example of the CO surface intermediate.  

All surface intermediates and transition states have such a linear functional dependence.  

(a) CO lateral interaction due to CO.  (b) CO lateral interaction due to H. 
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(a) 

 
 
(b) 
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Figure A.2.  Example lateral interaction effects (eV) on H surface intermediate.  (a) H 

lateral interaction due to CO. (b) H lateral interaction due to H. 
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As stated above, all intermediates and transition states are affected by CO and H.  

The reason for considering all intermediates and transitions states is to not change the 

overall reaction thermodynamics.  The free energy path of no lateral interactions and with 

lateral interactions are compared for the dominant (highest activity) reaction pathway in 

Figure A.3.  The free energy paths represent the steady state achieved by the microkinetic 

model.  As a confirmation of the thermodynamics not changing the last free energy are 

the same with and without lateral interactions.  By maintaining thermodynamics were are 

enforcing consistency in the microkinetic model with the established thermodynamics of 

WGS. 
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Figure A.3.  Comparison of relative free energy paths for no lateral interactions and with 

lateral interactions.  The free energy paths represent the steady state achieved by the 

microkinetic model.  The overall reaction thermodynamics are not affected by the 

inclusion of lateral interactions, which is a verification of the implementation of lateral 

interaction effects.  The dominant (most active) reaction pathway is displayed. 
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At this point we introduce the use of Campbell’s DRC and apply it to Pt(111).
8-12

 

Campbell’s DRC may be applied to any microkinetic model.  Later in this work, for the 

edge active site model we analyze the uncertainty in DRC.  The DRC for each elementary 

step for WGS on Pt(111) is listed in Table A.2.   The formula for DRC is,
8-12 

𝑋𝑅𝐶,𝑖 = (
𝜕𝑙𝑛𝑇𝑂𝐹

𝜕 
−𝐺𝑖

𝑇𝑆

𝑘𝐵𝑇

)

𝐺𝑗≠𝑖
𝑇𝑆 ,𝐺𝑚

     (18) 

𝑋𝑅𝐶,𝑖 is the degree of rate control for transition state 𝑖. Each individual transition state 

applies for a single elementary reaction step. 𝐺𝑖
𝑇𝑆 is the relative free energy of transition 

state structure 𝑖.  The temperature is held constant. All transition state relative free 

energies 𝑗 (and intermediate relative free energies 𝑚) are held constant.  It should be 

noted that a property of DRC is the sum of all DRC for a microkinetic model are one,
12,13 

Σ𝑖𝑋𝑅𝐶,𝑖 = 1       (19) 

This property holds true with the lateral interactions used is this work.  The last row of 

Table A.2 shows the DRC summing to one.  
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Table A.2. Linear lateral interactions Campbell’s degree of rate control (DRC) for each 

elementary step of WGS on Pt(111).  These DRC correspond to the lateral interaction 

free energy pathway in Figure A.3.  The last row shows the sum of all DRC for each 

elementary reaction step to be one, which is a verification for the implementation of the 

lateral interaction effects. 

Elementary reaction step Degree of rate control 

∗ +𝐶𝑂 ↔ 𝐶𝑂∗ -3.5×10
-12

 

∗ +𝐻2𝑂 ↔ 𝐻2𝑂∗ -5.5×10
-12

 

∗ +𝐻2𝑂 ↔ 𝐻∗ + 𝑂𝐻∗ 0.9995 

∗ +𝑂𝐻 ↔ 𝐻∗ + 𝑂∗ -6.4×10
-12

 

𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐻2𝑂∗ + 𝑂∗ 0.0 

𝐶𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗+∗ 2.5×10

-12
 

𝐶𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂𝑂𝐻∗+∗ 3.9×10
-4

 

𝐶𝑂𝑂𝐻∗+∗↔ 𝐶𝑂2
∗ + 𝐻∗ 1.3×10

-6
 

𝐶𝑂𝑂𝐻∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ 1.1×10

-11
 

𝐶𝑂𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ 0.0 

𝐻𝐶𝑂𝑂∗+∗↔ 𝐶𝑂2
∗ + 𝐻∗ 1.1×10

-11
 

𝐻𝐶𝑂𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ -5.5×10

-12
 

𝐻𝐶𝑂𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ -2.0×10

-12
 

2𝐻∗ ↔ 𝐻2 + 2∗ -6.5×10
-12

 

𝐶𝑂2
∗ ↔ 𝐶𝑂2+∗ 3.5×10

-12
 

𝐻𝐶𝑂∗+∗↔ 𝐶𝑂∗ + 𝐻∗ 8.6×10
-12

 

Sum of all degrees of rate control 0.99990 
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Stamatakis, et al.
14

 have found, using graph-theoretical kinetic monte carlo a 

higher TOF (s
-1

) and lower apparent activation barrier than our microkinetic model.  For 

comparison Table A.4 lists pre-exponential factors for rate constants and equilibrium 

constants.  A is a pre-exponential factor.  Using our zero-point corrected DFT energies 

and mean-field microkinetic model with the pre-exponential factors and lateral 

interactions affecting energies of Stamatakis, et al.
14

  we obtain a TOF on the same order 

of magnitude at 650 K as Stamatakis, et al.
14

  Therefore the cause for different TOF’s is 

in the pre-exponential factors and lateral interactions.    
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Table A.3. T=650 K. †CO* + O* ↔ CO2 + 2* is one reaction in Stamatakis, et al.
14

  

Elementary step Afwd (s
-1

) 

Stamatakis, et 

al.
1 

Afwd/Abwd 

Stamatakis, et 

al.
1 

Afwd (s
-1

) 

Walker, et 

al. 

Afwd/Abwd 

Walker, et al. 

∗ +𝐶𝑂 ↔ 𝐶𝑂∗ 3.41×10
5
 3.43×10

-9
 1.34×10

8
 2.85×10

-8
 

∗ +𝐻2𝑂 ↔ 𝐻2𝑂∗ 7.20×10
5
 1.69×10

-7
 1.67×10

8
 1.47×10

-6
 

∗ +𝐻2𝑂
↔ 𝐻∗ + 𝑂𝐻∗ 

4.48×10
12

 6.39 4.53×10
12

 2.90×10
-1

 

∗ +𝑂𝐻
↔ 𝐻∗ + 𝑂∗ 

2.36×10
13

 19.8 3.49×10
13

 5.20×10
-1

 

𝑂𝐻∗ + 𝑂𝐻∗

↔ 𝐻2𝑂∗ + 𝑂∗ 

3.09×10
11

 3.09 1.27×10
13

 1.27 

𝐶𝑂∗ + 𝑂∗

↔ 𝐶𝑂2
∗+∗ 

1.17×10
12

† 1.77×10
7
† 4.42×10

13
 

 

8.25 

𝐶𝑂∗ + 𝑂𝐻∗

↔ 𝐶𝑂𝑂𝐻∗+∗ 

4.58×10
11

 3.90×10
-2

 2.73×10
13

 8.91×10
-1

 

𝐶𝑂𝑂𝐻∗+∗

↔ 𝐶𝑂2
∗ + 𝐻∗ 

5.28×10
14

 8.96×10
9
 1.31×10

14
 1.31×10

1
 

𝐶𝑂𝑂𝐻∗ + 𝑂∗

↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ 

6.93×10
11

 4.53×10
8
 1.88×10

13
 8.40 

𝐶𝑂𝑂𝐻∗ + 𝑂𝐻∗

↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ 

1.04×10
13

 1.40×10
9
 5.55×10

12
 1.76 

𝐻𝐶𝑂𝑂∗+∗

↔ 𝐶𝑂2
∗ + 𝐻∗ 

5.97×10
13

 1.54×10
10

 4.29×10
13

 3.63 

𝐻𝐶𝑂𝑂∗ + 𝑂∗

↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ 

1.19×10
12

 7.76×10
8
 1.35×10

13
 4.19×10

-1
 

𝐻𝐶𝑂𝑂∗ + 𝑂𝐻∗

↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ 

6.30×10
12

 2.40×10
9
 7.61×10

13
 5.19 

2𝐻∗ ↔ 𝐻2 + 2∗ 6.17×10
12

 2.15×10
5
 7.76×10

14
 1.55×10

6
 

𝐶𝑂2
∗ ↔ 𝐶𝑂2+∗ 1.17×10

12
† 1.77×10

7
† 6.44×10

16
 6.04×10

8
 

𝐻𝐶𝑂∗+∗

↔ 𝐶𝑂∗ + 𝐻∗ 

8.42×10
12

 4.26×10
1
 1.35×10

13
 4.70×10

-1
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A.3 BAYESIAN STATISTICS 

This section introduces the proposed Bayesian framework for determining the 

active site.  The Pt(111) model features reactions occurring on metal only and the other 

models feature pathways occurring at a TPB of Pt and a reducible oxide support, TiO2.  

Even if uncertainty in results spans orders of magnitude a probability may be assigned to 

which model better explains experimental data.  This comparison could provide an 

insight to the mechanism driving WGS.  A first step in model selection is to calibrate 

each active site model, i.e. perform a Bayesian inverse problem on each active site model.  

The posterior distribution 𝑝(𝜃|𝐷, 𝑀) corresponding to the parameters of one of the three 

models, i.e. 𝑀 = 𝑀𝑐𝑜𝑟𝑛𝑒𝑟, is obtained using Bayes’ formula.  

𝑝(𝜃|𝐷, 𝑀) =
𝑝(𝐷|𝜃,𝑀)𝑝(𝜃|𝑀)

𝑝(𝐷|𝑀)
     (20) 

The parameters 𝜃 are the corrections to all intermediate and transition state 

relative free energies from DFT as well as  hyperparameters and corrections to gas 

molecule free energies. The posterior joint probability distribution represents the desired 

estimate of the parameters with quantified uncertainties given the experimental data 𝐷, 

and all prior information for the corresponding model. The prior information is encoded 

in the prior 𝑝(𝜃|𝑀), which contains all the uncertainty settings including correlations and 

thermodynamics corrections as presented in Heyden, et al.
15

 

The likelihood function 𝑝(𝐷|𝜃, 𝑀) provides the likelihood of observing the 

experimental data 𝐷 given the particular values of the parameters and the uncertainty in 

the model and experiment. Each experimental data set 𝐷 consists of six individual 

measurements. 
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𝐷 = {𝑇𝑂𝐹, 𝛼𝐶𝑂 , 𝛼𝐻2𝑂 , 𝛼𝐶𝑂2
, 𝛼𝐻2

, 𝐸𝑎𝑝𝑝}    (21) 

Here 𝛼 (𝑠−1𝑎𝑡𝑚−1) is the reaction order and 𝐸𝑎𝑝𝑝 (𝑒𝑉) is apparent activation energy and  

𝐶𝑂, 𝐻2𝑂, 𝐶𝑂2, 𝐻2 correspond to carbon monoxide, water, carbon dioxide and hydrogen.   

The six individual measurements are assumed to be independent given model 

parameters. This translates in the following factorization of the likelihood function. 

𝑝(𝐷|𝜃, 𝑀)

= 𝑝(𝑇𝑂𝐹|𝜃, 𝑀)𝑝(𝛼𝐶𝑂|𝜃, 𝑀)𝑝(𝛼𝐻2𝑂|𝜃, 𝑀)𝑝(𝛼𝐶𝑂2
|𝜃, 𝑀)𝑝(𝛼𝐻2

|𝜃, 𝑀)𝑝(𝐸𝑎𝑝𝑝|𝜃, 𝑀) 

(22) 

Each individual likelihood function is defined by the discrepancy between the model 

simulations, i.e. 𝐸𝑎𝑝𝑝
∗  and experimental data, i.e. 𝐸𝑎𝑝𝑝. This discrepancy is due to 

unaccounted model errors and unknown experimental errors. Namely it is assumed that 

the discrepancy is normally distributed with zero mean and unknown variance, i.e. 𝜎𝐸𝑎𝑝𝑝

2 . 

𝐸𝑎𝑝𝑝 = 𝐸𝑎𝑝𝑝
∗ + 𝜖𝐸𝑎𝑝𝑝

       (23) 

Therefore, the fully expanded likelihood function for the WGS calibration, is 

𝑝(𝐷|𝜃, 𝑀) =
1

√2𝜋𝜎𝑇𝑂𝐹
2  

exp (−
1

2
 
(𝑙𝑜𝑔10 𝑇𝑂𝐹−𝑙𝑜𝑔10 𝑇𝑂𝐹∗)

𝜎𝑇𝑂𝐹
2 ) 

1

√2𝜋𝜎𝛼𝐶𝑂
2

exp (−
1

2

(𝛼𝐶𝑂−𝛼𝐶𝑂
∗ )

2

𝜎𝛼𝐶𝑂
2 ) ×

1

√2𝜋𝜎𝛼𝐻2𝑂
2

exp (−
1

2

(𝛼𝐻2𝑂−𝛼𝐻2𝑂
∗ )

2

𝜎𝛼𝐻2𝑂
2 ) 

1

√2𝜋𝜎𝛼𝐶𝑂2

2
exp (−

1

2

(𝛼𝐶𝑂2−𝛼𝐶𝑂2
∗ )

2

𝜎𝛼𝐶𝑂2

2 ) ×

1

√2𝜋𝜎𝛼𝐻2

2
exp (−

1

2

(𝛼𝐻2−𝛼𝐻2
∗ )

2

𝜎𝛼𝐻2

2 )
1

√2𝜋𝜎𝐸𝑎𝑝𝑝
2

exp (−
1

2

(𝐸𝑎𝑝𝑝−𝐸𝑎𝑝𝑝
∗ )

2

𝜎𝐸𝑎𝑝𝑝
2 ) (24)  
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The hyperparameters 𝜎𝑇𝑂𝐹
2 , 𝜎𝛼𝐶𝑂

2 , 𝜎𝛼𝐻2𝑂
2 , 𝜎𝐶𝑂2

2 , 𝜎𝐻2

2 , 𝜎𝐸𝑎𝑝𝑝

2  are calibrated along with 

DFT and gas molecules corrections. The standard deviations of discrepancies are given 

prior inverse gamma pdfs, which allows them to extend to infinity, however with most of 

the probability concentrated around a prior value.  

Note, that in all models, there is a constraint on the parameters such that the activation 

barrier for any elementary step is guaranteed to be non-negative.  

When 𝑁 experimental data sets are available, {𝐷}𝑖=1..𝑁 then they are assumed to be 

independent and identically distributed, yielding the following likelihood function. 

𝑝({𝐷}𝑖=1..𝑁|𝜃, 𝑀) = ∏ 𝑝(𝐷𝑖|𝜃, 𝑀)𝑁
𝑖=1      (25) 

The marginal likelihood 𝑝(𝐷|𝑀) acts as both a normalization constant as well as a key 

quantity in model comparison. It is a natural formulation of Occam’s razor, providing an 

automatic trade-off between goodness-of-fit and model complexity. The evidence can be 

used to calculate the posterior model probabilities using Bayes’ rule as well. 

𝑝(𝑀|𝐷) =
𝑝(𝐷|𝑀)𝑝(𝑀)

𝑝(𝐷)
      (26) 

In the absence of information regarding which model is better at describing the 

physics of interest, the prior model probabilities are set to 𝑝(𝑀𝑒𝑑𝑔𝑒) = 𝑝(𝑀𝑐𝑜𝑟𝑛𝑒𝑟) =

𝑝(𝑀𝑡𝑒𝑟𝑟𝑎𝑐𝑒) =
1

3
. Note, that in this case the evidence can be used directly to compare the 

proposed models. 

The evidence can be written as the difference between the expected log-likelihood of the 

data and the Kullback-Leibler
16,17

  (KL) divergence between posterior and prior pdf of 
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model parameters. The expected log-likelihood quantifies how well the model fits the 

data, and the KL divergence quantifies model complexity. A large divergence between 

the posterior and prior pdfs suggest over-fitting of experimental data. Therefore, a 

complex model is penalized meaning it might not be selected over a simpler model that 

does not explain the data as well. KL divergence has been previously used
15

 to determine 

the distance of two catalytic cycle TOF (s
-1

) pdf’s divergence from overall TOF    (s
-1

).  

Thus, KL divergence served as a formalization of dominant pathway.   

Once both the TPB models and the Pt(111) model are calibrated using the same 

data, the evidences, 𝑝(𝐷|𝑀), of each calibration can be divided to produce a Bayes’ 

factor.  

𝐵𝑒𝑑𝑔𝑒/𝑐𝑜𝑟𝑛𝑒𝑟 =
𝑝(𝐷|𝑀𝑒𝑑𝑔𝑒)

𝑝(𝐷|𝑀𝑐𝑜𝑟𝑛𝑒𝑟)
     (27) 

The Bayes’ factor can be judge using Jeffrey’s scale to determine whether there is 

significant difference between two model evidences. 

In general, sampling from the posterior probability density, 𝑝(𝜃|𝐷, 𝑀) and 

approximating the model evidence, 𝑝(𝐷|𝑀) is not a trivial task. Here, we are using the 

multilevel sampling algorithm in the statistical library QUESO.
18,19

 The multilevel 

algorithm reduces two potential drawbacks of MCMC algorithms.  First, the MCMC may 

take too small steps and either not arrive at the high-probability region of the parameter 

space or the chain may be inside the high probability region but not sample all of it.  

Second, the steps may be too large that they skip over the high probability region 

entirely.  A sequence of intermediate distributions are sampled on the way to the final 
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target distribution.  The first sampled pdf is flattened and becomes more like the prior 

pdf.  This is achieved by the following factorization of the likelihood.   

𝑝(𝜃|𝐷, 𝑀) =
∏ 𝑝(𝐷|𝜃,𝑀)

𝛼𝑗𝐿
𝑗=1 𝑝(𝜃|𝑀)

𝑝(𝐷|𝑀)
      (28) 

∑ 𝛼𝑗 = 1𝐿
𝑗=1         (29) 

The overall log evidence is the sum of the log evidences at each level of the multilevel 

sampling where 𝑗 is the level and 𝐿 is the total number of levels.
19-21

   

 

A.4 FOUR FUNCTIONAL CALCULATIONS FOR TERRACE AND CORNER SITES 

The same approach which was applied to the edge active site is applied to the 

corner site
22

 and a newly-calculated from DFT Pt(111).  In the case of the edge active 

site, the CO-promoted redox cycle was determined to be dominant up to 650 K at which 

point the two cycles are competitive and after which classical redox is dominant.
15

  In this 

work we will evaluate CO-promoted redox versus associated carboxyl redox for the 

corner site
22

 and a formate pathway versus carboxyl pathway for Pt(111).  Pt(111) has a 

mean-field reaction on the surface instead of catalytic cycles.  Table S10 is the relative 

free energies as calculated by four functionals.  The results of the Bayesian inverse in the 

free energy parameter space are visualized in Figures A.12-A.13.  The verification of the 

edge posterior at 50K higher temperature and separate pressure conditions are shown in 

Figure A.14. 

Previously, Heyden, et al.
15

 four functionals were calculated to obtain a prior 

(before Bayesian inverse) uncertainty.  The same four functionals which were calculated 

for the to the edge active site
15

 are calculated for the the corner active site
22

 and the 

Pt(111) active site.   Tables A.4-A.5 list the relative free energies as calculated by four 
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functionals for Pt(111).  The results of the Bayesian inverse in the free energy parameter 

space are visualized in Figures A.4-A.5.   
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Table A.4. Relative free energies as calculated by four functionals
2,23-27

 for Pt(111). 

 G (eV) 

Reaction PBE RPBE M06L HSE 

vacancy 0.000 0.000 0.000 0.000 

𝐶𝑂(𝑔)+∗↔ 𝐶𝑂∗ 0.000 0.000 0.000 0.000 

𝐶𝑂∗ -1.820 -1.421 -1.486 -1.811 

𝐻2𝑂(𝑔)+∗↔ 𝐻2𝑂∗
 0.000 0.000 0.000 0.000 

𝐻2𝑂∗ -0.241 -0.017 -0.258 -0.355 

𝐻2𝑂∗ ↔ 𝐻∗ + 𝑂𝐻∗
 0.669 1.041 0.964 0.886 

𝐻∗
 -0.980 -0.645 -0.343 -1.217 

𝑂𝐻∗ -2.266 -1.853 -1.920 -1.997 

𝑂𝐻∗ ↔  𝐻∗ + 𝑂∗ -1.242 -0.794 -0.582 -0.553 

𝑂 ∗ -4.579 -4.088 -3.601 -3.527 

𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐻2𝑂∗ + 𝑂∗  -4.531 -3.707 -3.840 -3.994 

𝐶𝑂∗ +  𝑂∗ ↔ 𝐶𝑂2
∗  + ∗ -5.236 -4.466 -4.072 -3.950 

𝐶𝑂2
∗ -0.020 -0.006 -0.042 -0.014 

𝐶𝑂∗ + 𝑂𝐻∗ ↔  𝐶𝑂𝑂𝐻∗ +∗  -3.596 -2.895 -3.018 -0.993 

𝐶𝑂𝑂𝐻 ∗ -2.291 -1.947 -2.307 -2.294 

𝐶𝑂𝑂𝐻∗ +∗ ↔ 𝐶𝑂2
∗ +  𝐻∗ -1.401 -1.947 -1.298 -2.018 

𝐶𝑂𝑂𝐻∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ -6.510 -5.626 -5.540 -5.463 

𝐶𝑂𝑂𝐻∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗  -4.557 -3.800 -2.370 -4.291 

𝐻𝐶𝑂𝑂∗ +∗ ↔ 𝐶𝑂2
∗ + 𝐻∗ -1.262 -0.770 -1.356 -1.569 

𝐻𝐶𝑂𝑂 ∗ -2.375 -1.913 -2.486 -2.750 

𝐻𝐶𝑂𝑂∗ + 𝑂∗ ↔ 𝐶𝑂2
∗ + 𝑂𝐻∗ -5.447 -4.596 -4.408 -4.263 

𝐻𝐶𝑂𝑂∗ + 𝑂𝐻∗ ↔ 𝐶𝑂2
∗ + 𝐻2𝑂∗ -3.403 -2.519 -2.945 -3.105 

2𝐻∗ ↔ 𝐻2 + 2 ∗ 0.000 0.000 0.000 0.000 

𝐶𝑂2
∗ ↔ 𝐶𝑂2 +∗ 0.000 0.000 0.000 0.000 
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𝐻𝐶𝑂∗ +∗↔ 𝐶𝑂∗ + 𝐻∗ -2.077 -1.731 -1.877 -1.978 

𝐻𝐶𝑂∗ -2.372 -2.098 -2.332 -2.312 
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Table A.5.  Relative free energies as calculated by four functionals for the interface 

corner active site.
22 

Reaction 
G (eV) 

PBE RPBE HSE M06L 

*Pt (IM1) + 2CO(g) + H2O(g) 0.000 0.000 0.000 0.000 

*Pt (IM1) + 2CO(g) + H2O(g)→ COPt 

(IM2) + CO(g) + H2O(g) 
0.000 0.000 0.000 0.000 

COPt (IM2) + *Ti + CO(g) + H2O(g) -0.468 -0.194 -0.469 -0.014 

COPt (IM2) + *Ti  + CO(g) + 

H2O(g)→COPt-H2OTi (IM3) + CO(g)  
-0.468 -0.194 -0.469 -0.014 

COPt-H2OTi (IM3) + Ob + CO(g)  0.072 0.604 0.072 0.237 

COPt-H2OTi (IM3) + Ob + CO(g)→COPt-

OHTi-ObH (IM4) + CO(g)  
0.305 0.971 0.326 0.624 

COPt-OHTi-ObH (IM4) + CO(g)  0.266 0.856 0.188 0.261 

COPt-OHTi-ObH (IM4) + CO(g) → 

COOH(Pt-Ti)-ObH (IM5) + CO(g)  
0.818 1.589 0.810 0.958 

COOH(Pt-Ti)-ObH (IM5)+ Os+ CO(g) 0.707 1.495 0.646 0.955 

COOH(Pt-Ti)-ObH (IM5)+ Os+ CO(g) 

→CO2(Pt-Ti)-ObH-OsH (IM6) + CO(g)  
1.204 2.093 1.296 1.949 

CO2(Pt-Ti)-ObH-OsH (IM6) + CO(g)  1.178 2.086 1.196 1.497 

CO2(Pt-Ti)-ObH-OsH (IM6) + CO(g) → 

*Pt-ObH-OsH (IM7) + *Ti + CO(g) + 

CO2(g) 

1.178 2.086 1.196 1.497 

*Pt-ObH-OsH (IM7) + *Pt + CO(g) + 

CO2(g) 
0.529 0.987 1.078 0.505 

*Pt-ObH-OsH (IM7) + *Pt + CO(g) + 

CO2(g) → *Pt-HPt-ObH  (IM8) + Os+ 

CO(g) + CO2(g) 

0.754 1.196 1.601 1.241 

*Pt-HPt-ObH  (IM8) + Os+ CO(g) + CO2(g) -0.161 0.173 -0.015 0.068 

*Pt-HPt-ObH  (IM8) + Os + CO(g) + 

CO2(g)→ *Pt-HPt-OsH  (IM9) + Ob+ 

CO(g) + CO2(g) 

0.433 0.817 0.686 1.341 

*Pt-HPt-OsH  (IM9)  + CO(g) + CO2(g) 0.366 0.713 0.552 0.953 

*Pt-HPt-OsH  (IM9) + CO(g) + CO2(g) → 

2HPt  (IM10) + Os+ CO(g) + CO2(g) 
0.556 0.880 0.881 1.450 

2HPt  (IM10)  + CO(g) + CO2(g) -0.272 -0.009 -0.210 0.345 

2HPt  (IM10)  + CO(g) + CO2(g)→ *Pt 

(IM1) + *Pt+ CO(g) + CO2(g) + H2(g) 
-0.272 -0.009 -0.210 0.345 
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*Pt (IM1) + *Pt+ CO(g) + CO2(g) + H2(g) -0.638 -0.590 -0.440 -0.772 

COPt (IM2) + CO(g) + H2O(g)→ 

(CO,CO)Pt (IM11) + H2O(g) 
-0.468 -0.194 -0.469 -0.014 

(CO,CO)Pt (IM11) + Oi + H2O(g) -0.834 -0.775 -0.699 -1.131 

(CO,CO)Pt (IM11) + Oi + H2O(g)→ 

(CO,CO2)Pt-Oi (IM12) + H2O(g) 
-0.307 -0.037 -0.113 -0.547 

(CO,CO2)Pt-Oi (IM12) + H2O(g) -0.432 -0.152 -0.205 -0.685 

(CO,CO2)Pt-Oi (IM12) + H2O(g)→ COPt-

Vi  (IM13) + H2O(g)+ CO2(g) 
0.900 1.038 2.083 0.256 

COPt-Vi  (IM13) + H2O(g)+ CO2(g) -0.466 -0.633 0.824 -1.026 

COPt-Vi  (IM13) + H2O(g)+ CO2(g)→ 

COPt-H2Oi  (IM14) + CO2(g) 
-0.466 -0.633 0.824 -1.026 

COPt-H2Oi  (IM14) + *Pt + CO2(g) -0.287 -0.114 0.842 -0.617 

COPt-H2Oi  (IM14) + *Pt + CO2(g) → 

COPt-HPt-OiH  (IM15) + CO2(g) 
-0.253 -0.108 0.518 -0.550 

COPt-HPt-OiH  (IM15) + CO2(g) -1.114 -0.896 -0.886 -1.338 

COPt-HPt-OiH  (IM15) + CO2(g)→ 

(CO,H)Pt-HPt  (IM16) + Oi + CO2(g) 
-1.051 -0.842 -0.774 -1.096 

(CO,H)Pt-HPt  (IM16) + CO2(g) -1.246 -1.152 -1.120 -1.445 

(CO,H)Pt-HPt  (IM16) + CO2(g) → COPt 

(IM2) + *Pt+ CO2(g) + H2(g) 
-1.246 -1.152 -1.120 -1.445 

COPt (IM2) + *Pt+ CO2(g) + H2(g) -1.324 -1.245 -1.030 -2.101 
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Figure A.4.  Prior and posterior uncertainty in the dominant free energy path for the 

corner active site.  The experiment used in the Bayesian inverse is from Kalamaras, et 

al.
28

 which is at the conditions T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 

𝑃𝐻2
= 0.2. 
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Figure A.5.  Prior and posterior uncertainty in the dominant free energy path for the 

terrace Pt(111) active site.  The experiment used in the Bayesian inverse is from 

Kalamaras, et al.
28

 which is at the conditions T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 

𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2.      



 

126 

A.5 ACTIVE SITE SELECTION 

 
This section presents details concerning the active site selection which are not 

presented in the main text.  First, discrepancy model standard deviations, 𝜎, in Equation 

24 require a prior uncertainty because they are tuned during the Bayesian inverse.  The 

prior uncertainty is an inverse gamma probability density function with the 𝛼,𝛽 listed in 

Table A.6.  These settings in Table A.6.  Next, the DRC of the edge active site model 

under uncertainty are displayed.  Finally, the Bayesian inverse results for the corner and 

edge active site model are reported (results from the selected edge active site model are 

present in the main text). 
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Table A.6.  Discrepancy model standard deviations inverse gamma priors.  These 

hyperparameters are given a prior uncertainty because they are tuned during the Bayesian 

inverse.  Inverse gamma is a probability density function.  

𝑇𝑂𝐹 (𝑠−1) 𝛼𝐶𝑂 𝛼𝐻2𝑂 𝛼𝐶𝑂2
 𝛼𝐻2

 𝐸𝑎𝑐𝑡 (𝑒𝑉) 

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 

3 4 3 0.4 3 0.4 3 0.4 3 0.4 3 0.8 
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Figure A.6.  Degrees of rate control for classical and CO-promoted pathways for edge 

active sites posterior. 
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(a)
 

 

 

Figure A.7.  Terrace Pt(111) posterior TOF (s
-1

).  The experiment used for obtaining the 

posterior is from Kalamaras, et al.
28

 which is at the conditions T=523 (K), 𝑃𝐶𝑂 = 0.03 

(atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2.  For the terrace site the overall large 

uncertainties are due to the search for a higher-evidence region of the parameter space 

which is not obtained but instead the limit of log-likelihood of 100 is constant while the 

uncertainty increases. 
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Figure A.8.  Terrace Pt(111) posterior reaction orders CO and H2.   The experiment used 

for obtaining the posterior is from Kalamaras, et al.
28

 which is at the conditions T=523 

(K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 
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Figure A.9.  Terrace Pt(111) posterior reaction orders H2O and CO2.   The experiment 

used for obtaining the posterior is from Kalamaras, et al.
28

 which is at the conditions 

T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 
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Figure A.10.  Terrace Pt(111) posterior apparent activation barrier (eV).   The experiment 

used for obtaining the posterior is from Kalamaras, et al.
28

 which is at the conditions 

T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 
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Figure A.11.  Corner active site posterior TOF (s
-1

).  The experiment used for obtaining 

the posterior is from Kalamaras, et al.
28

 which is at the conditions T=523 (K), 𝑃𝐶𝑂 = 0.03 

(atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2.   
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Figure A.12.  Corner active site posterior reaction orders CO and H2.   The experiment 

used for obtaining the posterior is from Kalamaras, et al.
28

 which is at the conditions 

T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 
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Figure A.13.  Corner active site posterior reaction orders H2O and CO2.  The experiment 

used for obtaining the posterior is from Kalamaras, et al.
28

 which is at the conditions 

T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 

-1.00 -0.50 0.00 0.50 1.00 1.50
0.00

1.00

2.00

3.00

4.00
P

ro
b
a
b
ili

ty
 d

e
n
s
it
y

 

 
H2O DFT uncertainty

H2O total uncertainty

H2O experiment

CO2 DFT uncertainty

CO2 total uncertainty

CO2 experiment



 

136 

 

Figure A.14. Corner active site posterior apparent activation barrier (eV).  The 

experiment used for obtaining the posterior is from Kalamaras, et al.
28

 which is at the 

conditions T=523 (K), 𝑃𝐶𝑂 = 0.03 (atm), 𝑃𝐻2𝑂 = 0.1, 𝑃𝐶𝑂2
= 0.06, 𝑃𝐻2

= 0.2. 
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A.6 ALTERING GAS MOLECULE CORRECTION RANGE 

In order to form a dirichlet probability density function
 
for correcting 

thermodynamics as performed by Heyden, et al.
15

, a range is necessary to set on the 

individual gas molecule corrections.  Therefore, on the selected active site model, the 

edge active site, different gas molecule ranges are evaluated.  The range −0.6 ≤ 𝜁 ≤

0.6 (𝑒𝑉) was finally chosen.  For the range −0.2 ≤ 𝜁 ≤ 0.2 (𝑒𝑉) the evidence is 

1.23943e-05.  Figures A.15-A.17 are the results with this range of gas molecule 

corrections for the edge active site.  For the range −0.6 ≤ 𝜁 ≤ 0.6 (𝑒𝑉) the evidence is 

0.00129728.  Figures A.18-A.20 are the results with this range of gas molecule 

corrections.  No qualitative change in conclusions results from a change in gas molecule 

correction range. 
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Figure A.15.  TOF (s

-1
) after Bayesian inverse using the gas molecule range −0.2 ≤ 𝜁 ≤

0.2 (𝑒𝑉). 
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(a) 

 
(b) 
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Figure A.16. Reaction orders after Bayesian inverse using the gas molecule correction 

range −0.2 ≤ 𝜁 ≤ 0.2 (𝑒𝑉). 
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Figure A.17. Apparent activation barrier (eV) after Bayesian inverse using the gas 

molecule correction range −0.2 ≤ 𝜁 ≤ 0.2 (𝑒𝑉). 
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Figure A.18. TOF (s

-1
) after Bayesian inverse using the gas molecule correction range 

−0.6 ≤ 𝜁 ≤ 0.6 (𝑒𝑉). 
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(a) 
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Figure A.19. Reaction orders after Bayesian inverse using the gas molecule correction 

range −0.6 ≤ 𝜁 ≤ 0.6 (𝑒𝑉). 
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Figure A.20. Apparent activation barrier (eV) after Bayesian inverse using the gas 

molecule correction range −0.6 ≤ 𝜁 ≤ 0.6 (𝑒𝑉). 
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A.7 ORDER OF DATA POINTS FOR BAYESIAN INVERSE 

 

In order to select models, Jeffreys scale
29

 shown in Table A.7 is used. Due to the 

dependence of the model evidence on the prior model error settings, combinations of the 

three experimental data points are used in different orders and the evidences are listed in 

Tables A.8-A.10.  One experimental set of data is used to gain a prior model error which 

is at first uninformative (inverse gamma 𝛼 = 3, 𝛽 = 4 for log10TOF, 𝛽 = 0.4 for reaction 

orders, 𝛽 = 0.8 for apparent activation barrier (eV)).  A second experimental data point is 

used to compute the evidence using the prior from the first experimental data point.  This 

sequential evidence calculation may be achieved with 

 

𝑝(𝜃|𝐷1) =
𝑝(𝐷1|𝜃)𝑝(𝜃)

𝑝(𝐷1)
      (S31) 

𝑝(𝜃|𝐷2, 𝐷1) =
𝑝(𝐷2|𝜃1,𝐷1)𝑝(𝜃|𝐷1)

𝑝(𝐷2|𝐷1)
    (S32) 

𝑝(𝜃|𝐷2, 𝐷1) =
𝑝(𝐷2,𝐷1|𝜃)𝑝(𝜃)

𝑝(𝐷2,𝐷1)
     (S33) 

𝑝(𝐷2, 𝐷1|𝜃) = 𝑝(𝐷2|𝜃)𝑝(𝐷1|𝜃)    (S34) 

𝑝(𝜃|𝐷2, 𝐷1) =
𝑝(𝐷2|𝜃,𝐷1)𝑝(𝐷1|𝜃)𝑝(𝜃)

𝑃(𝐷2,𝐷1)
    (S35) 

𝑝(𝜃|𝐷2, 𝐷1) =
𝑝(𝐷2|𝜃,𝐷1)𝑝(𝜃|𝐷1)𝑝(𝐷1)

𝑝(𝐷2𝐷1)
    (S36) 

𝑝(𝜃|𝐷2, 𝐷1) =
𝑝(𝐷2|𝜃,𝐷1)𝑝(𝜃|𝐷1)

𝑃(𝐷2,𝐷1)

𝑝(𝐷1)

    (S37) 

𝑝(𝐷2|𝐷1) =
𝑝(𝐷2,𝐷1)

𝑝(𝐷1)
      (S38) 
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Table A.7.  Jeffreys scale for Bayes factors.
29 

𝐵12 Evidence against 𝑀2 

1-3.2 Not worth more than a bare mention 

3.2-10 Positive 

10-100 Strong 

>100 Very Strong 
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Table A.8.  Edge evidences  

𝑝(𝐷2, 𝐷3) 1.30553×10
-06

 

𝑝(𝐷2) 2.1922×10
-04

 

𝑝(𝐷3) 9.7553×10
-04

 

𝑝(𝐷1, 𝐷3) 1.85539×10
-06

 

𝑝(𝐷1) 5.9889×10
-03

 

𝑝(𝐷1, 𝐷2) 1.3125×10
-06
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Table A.9.  Corner evidences.  

𝑝(𝐷2, 𝐷3) 5.131×10
-06

 

𝑝(𝐷2) 3.410×10
-03

 

𝑝(𝐷3) 5.029×10
-03

 

𝑝(𝐷1, 𝐷3) 3.374×10
-06

 

𝑝(𝐷1) 6.117×10
-03

 

𝑝(𝐷1, 𝐷2) 5.651×10
-06

 

 

  



 

150 

Table A.10.  Bayes factor between edge and corner for different order Bayesian inverse.  

  Corner Edge 
Bayes factor edge 

against corner 

𝒑(𝑫𝟑|𝑫𝟐) 1.50×10
-03

 5.96×10
-03

 3.96 

𝒑(𝑫𝟐|𝑫𝟑) 1.02×10
-03

 1.34×10
-03

 1.31 

𝒑(𝑫𝟑|𝑫𝟏) 5.52×10
-04

 3.10×10
-04

 0.56 

𝒑(𝑫𝟏|𝑫𝟑) 6.71×10
-04

 1.90×10
-03

 2.83 

𝒑(𝑫𝟐|𝑫𝟏) 9.24×10
-04

 2.19×10
-04

 0.24 

𝒑(𝑫𝟏|𝑫𝟐) 1.66×10
-03

 5.99×10
-03

 3.61 
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