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 ة العلقسورمن                                           

 

 

 

 



 الاهداء

 ...نطاهسٌه الله عهٍه وعهى آل بٍخه انطٍبين اسٍد انبرٌت سٍدوا محمد طهى  إلى

 ...إلى شهداء انعساق ودمائهم انزكٍت وكم مىحاوا ومىحى المسهمين 

  ...انقىاث الامنٍت والحشد انشعبي المقدس  إلى

أبً وأمً أطال الله في أعمازهم  اًكسيم  بهغج أشدي الهماوً قىلاً طغيرة ولما اوًٍإلى مه زب

 ...وحفظهم خٍمت حضهني بحبهم وحنانهم 

اطسوحتي مه أساحرة وأطدقاء وأخض بانركس مشسفي وأسخاذي كم مه أعاوني في كخابت  إلى

 ...)اندكخىز وقاص ( 

 ... اًومهكني عبد اًكم مه عهمني حسف إلى 

 بقىل انشاعس أهدي ثمسة جهدي هرا مخمثلاً اًإنٍهم جمٍع

                    هدٌتي نكم مه قهبي ومه قهمً                                                                  

 لهداٌا عهى مقداز مهدٌهاإن ا                                                 

 نى كان ٌهدي الإوسان قٍمخه                                                              

  وما فٍهانكنج أهدي إنٍك اندوٍا                                                  

 انباحثت                                                                                                                
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     The purpose of this thesis is to study some special topics in the theory 

of univalent and multivalent functions, and study a new subclass  

                of univalent functions defined by Dziok- Srivastava 

linear operator. We gave some properties, like, a necessary and sufficient 

condition for a function   to be in  the class                  extreme 

points, Hadamard product techniqes, integral mean, closure theorem, radii 

of starlikeness, convexity and close - to – convexity. Some properties  

have been considered of a class of meromorphic univalent functions 

        Here, we introduced the new class        of meromorphic 

univalent functions with negative coefficients. The research presented 

some results, like, coefficient inequality, convex linear combination, 

closure theorem, distortion bounds, extreme points, radius of convexity, 

neighborhoods of a function      we had introduced some 

subordination properties of univalent functions, we obtain some results. 

We had also discussed subclass of multivalent functions defined by 

Hadamard propduct H               We obtain some properties, like, a 

necessary and sufficient condition for a function   to be in  the class 

H               distortion bounds, closure theorem, radius of 

starlikeness, and convolution properties. Also, a new class have been 

studied of multivalent harmonic functions defined by integral operator. 

We obtain some results, like, coefficient bounds, convex combination, 

integral operator and  distortion Theorem.       

 

Abstract 
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Some Definitions and Standard Results 

  

 

Introduction: 

             In this chapter, we have introduced a list of the definitions of the           

family of analytic functions, like, univalent, multivalent ( –valent) and               

related terms used during the study, some examples, applications of                

conformal map and  some basic results of univalent, multivalent ( –valent)         

functions which are needed in subsequent chapters for research. The detailed      

proofs  and further discussions may be found in standard texts such as Duren      

[14], Miller and Mocanu [27], Goodman[18] and other references in univalent 

function theory.  
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1.1 Fundamental Definitions 

 

 

 

Definition(1.1.1)[27]: A set   denote the class of  all functions   analytic 

in the open unit disk   *    | |   + and of the form:  

                    ( )    ∑   
 
      (   )                                 (1.1) 

Definition(1.1.2)[14]: A function    analytic in Domain    is said to be 

univalent there, if it does not take the same value twice, that is,  (  )  

 (  )  for all pairs of distinct points          in   . In other words,   is one 

– to – one (or injective) mapping of     onto another domain, and the class 

of all univalent functions is denoted by  .                                      

As examples, [4] the function  ( )    is univalent in    Also  ( )    

  

 
 is univalent in   for each positive integer n. 

 The theory of univalent functions is so much deep, we need certain 

simplifying assumptions. The most obvious one in the study is to  replace  

D          Section One
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the arbitrary domain   by one that is convenient, and is the open unit disk 

  *    | |   +  

Meromorphic function defined as a function   analytic in a domain     

except for a finite number of poles in  . 

The class of all meromorphic univalent functions   in a domain   is denoted 

by ∑  

Definition(1.1.3)[14]:A function   is said to be locally univalent at a point  

     if it is univalent in some neighborhood of   . 

     For analytic function   the condition   (  )    is equivalent to local 

univalence at   . Both startements can be proved by appeal to Rouche's 

theorem [1] ( Let   and   be analytic inside and on a rectifiable Jordan 

curve C, with | ( )|  | ( )| on C. Then   and (   ) have the same 

number of zeros, counted according to multiplicity inside C). 

Example(1.1.1)[22]: Consider the domain 

 

           {      | |            
  

 
}   

and let the function       given by  ( )      

It is clear that   is analytic on   and locally univalent at every       since 

  (  )        for all       

Definition(1.1.4)[14]: A set     is said to be starlike with respect to 

     if the line segment joining    to every other point     lies 

entirely in  . In a more picturesque language, the requirement is that every 

point of   be visible from   . The set   is said to be convex if it is starlike 

with respect to each of its points, that is, if the line segment joining any two 

points of   lies entirely in  . 
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Definition(1.1.5)[1]: We say that     is normalized if   satisfies the 

conditions  ( )    and   ( )   . 

Definition(1.1.6)[14]: A function   is said to be conformal at a point    if it 

preserves the angle between oriented curves passing through    in 

magnitude as well as in sense. Geometrically, images of any two oriented 

curves taken with their corresponding orientations make the same angle of 

intersection as the curves at    both in magnitude and direction. A function 

   ( ) is said to be conformal in the domain    , if it is conformal at 

each point of the domain. An analytic univalent function is called a 

conformal mapping because of its angle– preserving property. 

Definition(1.1.7)[21]: A Möbius transformation, or a bilinear transformation, 

is a rational function       of the form 

 ( )  
    

    
    

where           are fixed and        . 

Example(1.1.2)[25]: Perhaps the most important member of   is the Koebe 

function which is given by  

 ( )  
 

(   )
 

              

and maps the unit disk to the complement of the ray .    
 

 
]. This can be 

verified by writing  

 ( )  
 

 
(
   

   
)

 

 
 

 
   

and noting that 
   

   
 maps the unit disk conformally onto the right half- 

plane *  * +   + (see Fig. (1.1.1)).
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Fig. (1.1.1): The Koebe function maps   conformally onto   .    
 

 
]. 

We note that    ( )  
   

   
    ( )  

 

 
  

 ( )    ( )    ( )  
 

 
  

Now 

         ( )  
 

 
(
   

   
)

 

 
 

 
 

 

(   ) 
  

and    Möbius transformation that maps   onto the right half–plane whose 

boundary is the imaginary axis. Also,    is the squaring function, while    

translates the image one space to the left and then multiplies it by a factor of 

 

 
. 

Definition (1.2.8)[20]: Let   be a function analytic in the unit disk    If the 

equation  ( )    has never more than p-solution in  , then   is said to be 

p-valent in    

 The class of all p-valent analytic functions is denoted by  ( ) expressed 

in one of the following forms:  

    ( )     ∑     
 
                 (    *       +    )        (   ) 

or  

 ( )     ∑   

 

     

            (    *       +    )                (   ) 
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and, let   be a function analytic in the punctured unit disk     If the equation 

 ( )    has never more than p-solution in   , then   is said to be p-valent 

in meromorphic   . 

The class of all p-valent meromorphic functions is denoted by   
 , and 

expressed in one of the following forms:  

         ( )      ∑         
     (    *       +)                     (1.4) 

        ( )      ∑      
     (    *       +)                           (1.5) 

Definition(1.1.9)[14]: A function     is said to be starlike function of 

order   if 

        .
   ( )

 ( )
/       (  ( )                )                         (1.6)    

Denotes the class of all starlike functions of order   in   by   ( ) and    

the class of all starlike functions of order  ,   ( )    . Geometrically, we 

can say that a starlike function is conformal mapping of the unit disk onto a 

domain starlike with respect to the origin. For example, the function 

 ( )  
 

(   ) (   )
   

is starlike function of order  . 

Definition(1.1.10)[14]: A function     is said to be convex function of 

order   if 

              .  
    ( )

  ( )
/    (           )                                (1.7) 

Denote the class of all convex functions of order   in   by  ( ) and   for 

the class of all convex functions of order 0 by  ( )   . 

Definition(1.1.11)[14]: A function     is said to be close – to – convex 
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of  order  (     ) if there is a convex function      such that  

                  .
  ( )

  ( )
/    (  ( )         )                                    (1.8) 

We denote by  ( ), the class of close – to – convex functions of order  .  

We note that   ( )    ( )   ( )  

Note that the Koebe function is starlike, but not convex. 

Definition(1.1.12)[10]: Let  ( ) denote the class of analytic  –valently 

functions in   of the form:  

                ( )     ∑      
      (        )                         (1.9) 

We say that   is  –valently starlike of order  ,  –valently convex of order 

  and  –valently close– to– convex of order  (     ), respectively if: 

  (
   ( )

 ( )
)         (  

    ( )

  ( )
)         (

  ( )

    
)     

Definition(1.1.13)([14],[29]): Let us denote by   
  the class of meromorphic 

 –valently functions   of the form: 

                     ( )      ∑      
         (        )                   (1.10) 

which are  –valent in the punctured unit disk    *      | |   +  

We say that   is  –valently meromorphic starlike of order  (     ) if 

                  .
    ( )

  ( )
/    (      )                                                 (1.11) 

Also,   is  –valently meromorphic convex of order  (     ) if 

                     .  
    ( )

  ( )
/    (      )                                       (1.12) 
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Note that if      we have defined meromorphic starlike of order  (  

   ) and meromorphic convex of order  (     ) respectively. 

Definition(1.1.14)[14]: Radius of starlikeness of a function   is the largest 

         for which it is starlike in | |    . 

Definition(1.1.15)[14]: Radius of convexity of a function   is the largest 

          for which it is convex in | |    . 

Definition(1.1.16)([31],[33]): The convolution (or Hadamard product) for 

functions   and   denoted by     is defined as following for the functions 

in  ( ) and   ( ) respectively: 

(i) If 

 ( )     ∑       ( )     ∑      

 

     

 

     

 

then  

                               (   )( )     ∑         
                             (1.13) 

(ii) If    

         ( )      ∑     

 

   

           ( )      ∑     

 

   

  

then  

                          (   )( )      ∑        
                                   (1.14) 

Example(1.1.3)[10]: Consider the convolution of the function  

 ( )  
 

   
 ∑    
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which maps   onto the half – plane {  ( )   
 

 
} and the Koebe function 

(see Example (1.1.2)), 

 ( )  
 

(   ) 
 ∑     

 

   

 

Then 

  ( )   ( )  
 

   
 

 

(   ) 
 ∑    ∑    

 

   

 

   

 

                                    (         )  (            ) 

                  (            )  
 

(   ) 
 

 

Fig.(1.1.2) 

Right half-plane map convoluted with the Koebe function yields the 

Koebe function. 

Definition (1.1.17)[27]: The weighted mean    of the functions   and   is 

defined by  

  ( )  
 

 
((   ) ( )  (   ) ( ))                    

Also  

 ( )  
 

 
∑   ( )
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is the arithmetic mean of the functions   ( ) (           )  

Definition(1.1.18)[27]: Let   and   be analytic functions  in the unit disk  . 

Then   is said to be subordinate to  , written     or  ( )   ( ), if there 

exists a Schwarz function  , which is analytic in    with  ( )    and 

| ( )|    (   ), such that  ( )   ( ( ))  (   )  In particular, if 

the function   is univalent in  , we have the following equivalence 

relationship holds true: 

 ( )   ( )(   ) if and only if  ( )   ( ) and  ( )   ( )  

Definition(1.1.19)[27]: Let   and   be any sets in  , let   be an analytic 

function in the open unit disk   with  ( )    and let  (       )    

    . The heart of this monograph deals with the generalizations of the 

following implication: 

         * ( ( )    ( )      ( )  )     +         ( )            (1.15) 

 If   is a simply connected domain containing the point   and    , then 

there is a conformal mapping   of   onto   such that  ( )   . In this case, 

(1.15) can be written as:  

* ( ( )    ( )      ( )  )     +         ( )   ( )  

If   is also a simply connected domain and    , then there is a conformal 

mapping   of   onto   such that  ( )   (       ).If in addition, the 

function  ( ( )    ( )      ( )  ) is analytic in  , then (1.15) can be 

written as:  

           ( ( )    ( )      ( )  )   ( )     ( )   ( )                (1.16) 
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Definition(1.1.20)[27]: Let            and    is univalent in   with 

     Miller and Mocanu [28] consider the problem of determining 

conditions on admissible functions   such that  

                     ( ( )    ( )      ( )  )   ( )                                    (1.17) 

implies  ( )   ( ), for functions  ( )   ,   - that satisfy the 

differential subordination (1.7), moreover, they found conditions so that   is 

the smallest function with this property, called the best dominant of the 

subordination (1.17).  

A dominant  ̃  that satisfies  ̃    for all dominants   of (1.17) is said to be 

the best dominant of (1.17). 

Definition(1.1.21)[27]: Denote by   the set of all functions   that are 

analytic and injective on    ( ), where         and 

                             ( )  {             ( )   }                          (1.18) 

and are such that   ( )    for       ( ). Further, let the subclass of   

for which  ( )    be denoted by  ( )  ( )       and  ( )    . 

Definition(1.1.22)[25]:A continuous function        is said to be a 

complex–valued harmonic function in a domain     if both   and   are 

real harmonic in  . If        is harmonic, then we can find analytic 

functions  ,   such that        and       , thus 

      
   

 
 

   

 
  

where   and   are analytic in   and we say that   is analytic part and   co–

analytic part of  . 
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Definition(1.1.23)[25]: The harmonic function        is sense–preserving 

and locally injective if  

      ( )  |  ( )|  |  ( )|        , where    denotes the Jacobian 

of  . If       is harmonic, sense–preserving and injective, then we say 

that   is harmonic univalent. 

Definition(1.1.24)[28]: Let    . A point     is called an extreme point 

of    if it has no representation of the form: 

     (   )        

as a proper convex combination of two distinct points   and   in  . 
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     In this section, we mention some results, which we have used in our 

research. 

Lemma(1.2.1)[3]: Let           and      Then,   ( )   |   |  

   if and only if   ( (      )      )     where   be any complex number. 

Lemma(1.2.2)[3]: Let      Then   ( )    if and only if |  (   )|  

|  (   )|  where   be any complex number. 

Lemma (1.2.3)[9]: (Schwarz Lemma)  

Let   be analytic function in the unit disk   with  ( )    and | ( )|    

in  . Then |  ( )|    and | ( )|  | | in  . Strict inequality holds in both 

estimates unless   is a rotation of the disk  ( )        

Lemma(1.2.4)[14]: (Caratheodory's Lemma)  

Let   the class of all functions   analytic and having positive real part in   

with  ( )   . If     and  

1.2 Some Standrd Results 

D          Section Two
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 ( )    ∑   

 

   

    

then |  |             .This inequality is sharp for each  . 

Theorem(1.2.1)[14]: (Bieberbach Conjecture)  

The coefficients of each     satisfy |  |    for            

The strict inequality holds for all   unless   is the Koebe function or one of 

its rotation. 

Theorem(1.2.2)[14]: (Growth Theorem)  

For each      

                              
 

 (   ) 
 | ( )|  

 

(   ) 
  | |                          (1.19) 

For each         equality occurs if and only if   is a suitable rotation of the 

Koebe function. 

Theorem(1.2.3)[14]: (Distortion Theorem)  

For each      

                         
   

(   ) 
 |  ( )|  

   

(   ) 
  | |                           (1.20)           

For each         equality occurs if  and only if  ( ) is a suitable 

rotation of the Koebe function. 

Theorem(1.2.4)[14]: (Littlewood’s Theorem)  

For the constant  , the coefficients of each function     satisfy |  |     

for          .   

Theorem(1.2.5)[14]: (Alexander’s Theorem)  
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Let   be an analytic function in   with  ( )    ( )     . Then,     

if and only if    ( )    . 

 

Theorem(1.2.6)[14]: (Maximum Modulus Theorem)  

Suppose that a function   is continuous on boundary of   (  any disk or 

region). Then, the maximum value of | ( )|, which is always reached , 

occurs somewhere on the boundary of   and never in the interior.  

 Theorem(1.2.7)[16]: If the functions   and   are analytic in   with    , then 

for     and       (     )   

                               ∫ | ( )|    ∫ | ( )| 
  

 

  

 
                               (1.21) 
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On Subclasses with  Some Subordination 

Properties of Univalent Functions 

 

 

 

 

 

 

 

 

 

 

Introduction:  

     The chapter two is devoted for the study of  subclasses with subordination  

properties of univalent functions. This chapter is divided into three sections. 

In section one, we have introduced and studied a new subclass 

 (            ) of univalent functions defined by Dziok- Srivastava linear 

operator of the form:  

 ( )    ∑   
 

 

   

     (        )     

and satisfying the following condition: 

  {
  .    (  ) ( )/

   
    .    (  ) ( )/

  

  .    (  ) ( )/
  
 (   ) .    (  ) ( )/

 }           

where,                                    * +   

    Chapter Two 
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We obtain some geometric properties, like, a necessary and sufficient 

condition for a function   to be in  the class  (            )  extreme 

points, Hadamard product techniqes, integral mean, closure theorem, radii of 

starlikeness, convexity and close - to – convexity. 

The section two consists of the discussion some properties of a class of 

meromorphic univalent functions  (   )  Here, we introduced the new class 

 (   ) of meromorphic univalent functions with negative coefficients of the 

form: 

 ( )      ∑  

 

   

   (          *     +)  

and satisfying the following condition: 

||

      ( )
   ( )

  

(    )  
       ( )

   ( )

||        

where               

We obtained some results, like, coefficient inequality, convex linear 

combination, closure theorem, distortion bounds, extreme points, radius of 

convexity, neighborhoods of a function       

In section three, we have discussed some subordination properties of 

univalent functions, we obtain some properties, like, let the function   be 

univalent in the open unit disk       ( )    and   ́( ) ( ( ))     is 

starlike in    If     satisfies the subordination: 
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  4
   ( )  .    ( )   ( )/

  ( )     ( )
5  

    ( )

  ( )
,  then 

 0
  ( )     ( )

   
1
 

  ( ) (        * +)  and  ( ) is the best dominant. 
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2.1 On a New Subclass of Univalent Functions 

Defined by Dziok – Srivastava Linear Operator 

   

     Let   denote the class of functions of the form : 

                            ( )    ∑  

 

   

   (        )                 (   ) 

which are analytic and univalent in the unit disk   *    | |   +. 

Let the function   given by (   ) and  

 ( )    ∑   

 

   

    

Then the Hadamard product of   and   denoted by (   )( )  (   )( ) is 

defined by 

                             (   )( )    ∑  

 

   

   
                          (   ) 

For {          }    and {          }    *         +   

               * +   *      +       *     +  

 

Section One     
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the generalized hypergeomtric function 

   (                       )  ∑
(  )    (  ) 
(  )  (  )   

 

   

                          (   ) 

(            ) , where ( )  is the Pochhammer symbol defined in 

terms of Gamma function  , by  

( )  
 (   )

 ( )
 {

                                                     (   )

 (   ) (     )            (   ) 
 

 Dziok – Srivastava linear operator (see [15],[16]),  

    (                     )    , is defined by the Hadamard product 

as follows : 

     (                     )   (                       ) 

 

                                                         ( )             

                                                        
 
   (  )   

  (       ) (   ) 

where  

                                        (  )  
(  )    (  )   

(  )    (  )   (   ) 
                         (   )  

For brevity, we write  

    (                     ) ( )      (  ) ( )  

A function     is said to be in the class   ( ) if  

  8
   ( )

 ( )
9            (         )  
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the elements of this class are called starlike functions of order  . 

A function      is said to be in the class C(α) if  

  8  
    ( )

  ( )
9           (         )  

the elements of this class are called convex  functions of order  . 

Definition (2.1.1): Let    . Then   is in the class  (            ) if it 

satisfies the following condition: 

         {
  .    (  ) ( )/

   
    .    (  ) ( )/

  

  .    (  ) ( )/
  
 (   ) .    (  ) ( )/

 }                    (   ) 

where,                                       

 

 In The following theorem, we obtain a necessary and sufficient condition for a 

function   to be in the class   (            ). 

Theorem(2.1.1): The function  ( )    is said to be in the class 

 (            ) if and only if 

     ∑  [(   )((   )     )   (   )]  (  )   (   )       (   )

 

   

 

where                             

  (  )  
(  )      (  )   

(  )      (  )   (   ) 
 . 

Proof: Suppose that the inequality (2.7) holds true and | |     in view of 

(2.6), we need to prove that   
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  {
  .    (  ) ( )/

   
    .    (  ) ( )/

  

  .    (  ) ( )/
  
 (   ) .    (  ) ( )/

 }                    

Let  ( )    .    (  ) ( )/
   

    .    (  ) ( )/
  

 and  ( )  

  .    (  ) ( )/
  
 (   ) .    (  ) ( )/

 
.  

By Lemma (1.2.2), it suffices to show that   

| ( )  (   ) ( )|  | ( )  (   ) ( )|   , for  (     ). 

But 

| ( )  (   ) ( )| 

 |∑ (   ), (   )   -  (  )   
 

 

   

 (   ),∑ ((   )  (   ))  (  )   
  (   ) -

 

   

| 

 |∑ [(   )( (   )    (   ))  (   )(   )]  (  )   
 

 

   

 (   )(   ) | 

 | ∑ ,(   )((   )    (   )]  

 

   

(   )(   )-  (  )   
 

 (   )(   ) | 

 ∑ [(   )((   )    (   ))  (   )(   )]  (  )  | |
 

 

   

 (   )(   )| |  

also 

| ( )  (   ) ( )| 
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  |∑ (   ), (   )   -  (  )   
  

 

   

(   ), ∑ ((   )  (   ))  (  )   
  ( 

 

   

  ) -| 

 |∑ ,(   )(  (   )   

 

   

 (   )  (   )(   )-  (  )   
  (   )(   ) | 

 ∑ ,(   )( (   )    (   )  (   )(   )-  (  )  | |
 

 

   

 (   )(   )| |  

and so 

| ( )  (   ) ( )|  | ( )  (   ) ( )| 

 ∑ ,(   ) ( (   )       )    (   )-  (  )    (   )

 

   

 

  ∑ [(   ) ((   )     )   (   )]  (  )    (   )    

 

   

 

This is equivalent to 

∑ [(   )((   )     )   (   )]  (  )   (   ) 

 

   

  

by hypothesis. Then by maximum modulus Theorem, we have 

   (            ). 

Conversely, assume that  

   {
  .    (  ) ( )/

   
    .    (  ) ( )/

  

  .    (  ) ( )/
  
 (   ) .    (  ) ( )/

 } 
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       8
  (   ),  (   )   -  (  )   

  
   

   ((   )  (   ))  (  )     (   )  
   

9          (   ) 

 we can choose the value of   on the real axis and let       through real 

values, so we can write(2.8) as  

∑ [(   )((   )     )   (   )]  (  )   (   )      

 

   

 

Finally, sharpness follows if we take 

       ( )    
(   )

 [(   )((   )    )  (   )]  (  )
                                       (2.9) 

 

Corollary (2.1.1) : Let    (            ). Then  

   
(   )

 [(   )((   )     )   (   )]  (  )
    (   )  

 

  In the next theorem, we will find extreme points for the class 

 (            ).  

Theorem(2.1.2): Let   ( )    and   ( )    
(   )

 [(   )((   )    )  (   )]  (  )
  . 

Then  ( ) in the class  (            ) if and only if it can be expressed in the 

form  ( )       
 
   ( )  where   =.

 

 
/
 
 (   ) and       

   . 

Proof : Assume that  ( )       
 
   ( ) 

                                              
(   )  

 [(   )((   )    )  (   )]  (  )
 
       

Then it follows that 
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∑
 [(   )((   )     )   (   )]  (  )

(   )
  

(   )

 [(   )((   )     )   (   )]  (  )

 

   

 

         
 
     . 

Therefore,    (            ). 

Conversely, assume that    (            ), then by (2.7), we have 

   
(   )

 [(   )((   )    )  (   )]  (  )    
            (   ). 

Setting 

   
 [(   )((   )     )   (   )]  (  )

(   )
   

and          
 
   .  

Hence,  ( )       
 
   (  )     ( )     

 
     ( ). 

This completes the proof. 

 

       In the following theorem, we obtain the Hadamard product for the function 

  in the class  (            ). 

Theorem(2.1.3): Let      (            ). Then      (            ) 

for  

 ( )    ∑  

 

   

    ( )    ∑  

 

   

   

and 

   ( )         
 
     , 

where 
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(   )(   )(     )  [(   )((   )    )  (   )]

 

(   )(   )
. 

Proof : Let      (            ) and so  

∑
0 .(   )((   )     )   (   )/1

(   )
  (  )  

 

   

                      (    ) 

and                      

∑
0 .(   )((   )     )   (   )/1

(   )

 

   

  (  )                       (    ) 

We have to find the smallest number   such that 

    ∑
 [(   )((   )     )   (   )]

(   )
  (  )    

 

   

                   (    ) 

By Cauchy – Schwarz inequality  

∑
 [(   )((   )     )   (   )]

(   )
  (  )√    

 

   

                  (    ) 

Therefore, it is enough to show  

 [(   )((   )     )   (   )]

(   )
  (  )     

 [(   )((   )     )   (   )]

(   )
  (  )√      

That is  

      √    

 
[(   )((   )     )   (   )]

[(   )((   )     )   (   )]
                                     (    ) 

From (2.12) 

√     
(   )

 [(   )((   )    )  (   )]
. 
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Thus, it is enough to show that  

(   )

 [(   )((   )     )   (   )]
 

[(   )((   )     )   (   )]

[(   )((   )     )   (   )]
   

which simplifies to   

  
(   )(   )(     )  [(   )((   )    )  (   )]

 

(   )(   )
. 

Theorem(2.1.4)[23]: If the functions   and   are analytic in   with    , 

then 

 ∫ | (    )|
 
   ∫ | (    )|

 
           

  

 

  

 
              (2.15)     

Applying (2.7) and Theorem(2.1.4), we prove the following theorem. 

Theorem(2.1.5): Let    . If   ( )    (            ) and 

* (                )+   
  are non-decreasing sequences, then for       and 

       on has 

∫ | (    )|
 
   ∫ |  (  

  )|
 
                  

  

 

  

 
                             (2.16)                           

where   ( )    
(   )

 (                )
    

 (                )   [(   )((   )     )   (   )]  (  )  

Proof: Let  ( ) of the form (2.9) and   ( )    
(   )

 (                )
  . 

Then, we must show that  

∫ |  ∑   
   

 

   

|

 

   ∫ |  
(   )

 (                )
 |

 

   
  

 

  

 

 

By Theorem(2.1.4), it suffices to show that 
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  ∑    
   

 

   

   
(   )

 (                )
   

Setting 

     ∑   
   

 

   

   
(   )

 (                )
 ( )                       (    ) 

Form(2.17) and (2.7),we obtain 

| ( )|  |∑
 (                )

(   )
   

   

 

   

| 

        | |∑
 (                )

(   )
  

 

   

 

                                     | |     

This completes the proof of Theorem(2.1.5). 

Theorem(2.1.6): Let      for           and    
 
       if the 

functions   ( ) defined by   ( )          
  ( 

            

       )                                                                                              (2.18) 

are in the class  (            ) for every          , then the function 

 ( ) defined by  

 ( )     (       
 
   )   

   , 

in the class   (            )  

Proof: Since     (            )  it follows from Theorem(2.1.1) that 

∑ [(   )((   )     )   (   )]  (  )     (   ) 
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for every          . 

Hence  

∑ [(   )((   )     )   (   )]  (  ) (∑      

 

   

)  

 

   

 

 ∑  

 

   

(∑ [(   )((   )     )   (   )]

 

   

  (  )    ) 

 (   )∑  

 

   

 (   )  

By Theorem(2.1.1), it follows that  ( )   (            )  

We concentrate upon getting the radii of close – to – convexity, convexity 

and starlikeness. 

Theorem(2.1.7): Let the function  ( ) defined by (2.1) be in the class 

 (            )  Then  ( ) is close – to – convex of order   (    

 ) in | |    (              )  where 

  (              )        2
(   ) [(   )((   )    )  (   )]  (  )

(   )
3

 

   
    (2.19) 

The result is sharp, with the extermal function  ( ) given by (2.9). 

Proof: We must  show that |  ( )   |      for | |    (              )  

where   (              ) is given by (2.19). Indeed, we fined from (2.1) 

that  

|  ( )   |  ∑   

 

   

| |     

Thus 



Chapter Two                                                                                                                    Introduction  
 

 

22 

         |  ( )   |      if   .
 

   
/   

 
   | |                      (2.20)  

But by Theorem(2.1.1), we have 

                  
 [(   )((   )    )  (   )]  (  )

(   )
      

                        (2.21)  

Hence (2.20) will be true if  

 | |   

   
 

 [(   )((   )     )   (   )]  (  )

(   )
 

equivalently if  

   | |  2
(   )[(   )((   )    )  (   )]  (  )

(   )
3

 

   
 (   )                   (2.22) 

The theorem follows from (2.22). 

Theorem(2.1.8): Let   defined by (2.1) be in the class  (            )   

Then   is convex of order   for       in | |    (              )  

where 

  (              )        2
(   )[(   )((   )    )  (   )]  (  )

(   )(   )
3

 

   
     (2.23) 

The result is sharp with extremal function   given by (2.9). 

Proof: We must show that                                                                                 

|
    ( )

  ( )
|       for | |    (              )                                 (2.24) 

Substituting the series expansions of    ( ) and   ( ) in the left hand of (2.23), 

we have 

|
    ( )

  ( )
|  |

   (   )   
    

   

       
    

   

|  
  (   )   
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The last expression above is bounded by (   ) if 

           
 (   )

   
   

    
                                                           (2.25) 

 (   )

   
| |    

 [(   )((   )     )   (   )] 
 
(  )

(   )
  

or  | |  2
(   )[(   )((   )    )  (   )]  (  )

(   )(   )
3

 

   
                        (2.26) 

Theorem(2.1.8) follows easily from(2.26). 

 

Theorem(2.1.9): Let   defined by (2.1) be in the class  (            )   

Then   is starlike of order   (     ) in | |    (              )  where 

  (              )        2
(   ) [(   )((   )    )  (   )]  (  )

(   )(   )
3

 

   
      (2.27) 

The result is sharp with extremal function   given by (2.9). 

Proof: It suffices to show that 

           |
   ( )

 ( )
  |       for | |    (              )                                  

We have |
   ( )

 ( )
  |  

 (   )   
    

   

      
    

   
  

Thus 

       |
   ( )

 ( )
  |       if   

(   )

   
   

    
                                   (2.28) 

Hence(2.28) will be true if 

(   )

   
| |    

 [(   )((   )     )   (   )] 
 
(  )

(   )
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or equivalently 

| |  2
(   ) [(   )((   )    )  (   )]  (  )

(   )(   )
3

 

   
 (   )                     (2.29)                       

Theorem follows easily from(2.29). 
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2.2 Some Properties of a Class of Meromorphic  

Univalent Functions 

 

 

 

 

   

 

 

 

     

     Let   denote the class of functions analytic and meromorphic in the punctured 

unit disk    *      | |   +    * + and let   denote the subclass of   

consisting of functions of the form :- 

        ( )         
 
      (          *     +)                (2.30) 

which are meromorphic univalent in the punctured unit disk     

A function     is said to be meromorphically starlike of order   if   

    2
    ( )

 ( )
3    (       * +      )                              (2.31) 

and a  function     is said to be meromorphically convex of order   if  

     2 (  
    ( )

  ( )
)3    (       * +      )                  (2.32) 

        We denote by   ( )  ( ), respectively, the classes of univalent 

meromorphic starlike functions of order   and univalent meromorphically 

 

Section Two   
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convex functions of order   . Similar classes have been extensively studied 

by Clunie[13], Miller[26] and Atshan([6],[4]). 

Definition(2.2.1): A function     is said to be in the class  (   ) if the 

following condition is satisfied:- 

     |

      ( )

   ( )
  

(    ) 
       ( )

   ( )

|                                             (2.33)                  

     The following theorem gives a necessary and sufficient  condition for a 

function   to be in the class  (   )  

Theorem(2.2.1): Let      . Then    (   ) if and only if   

  ,        -                               
    (2.34) 

The result is sharp for the function   given by 

       ( )      
       

 ,        -
                                                               (2.35) 

Proof: Suppose that the inequality (2.34) holds true and | |   , then, we have 

 |      ( )      ( )|   |(    )   ( )         ( )|          

  |     ∑     
 

 

   

|   |(    )    ∑  ,     -   
 

 

   

|    

  ∑      

 

   

(    )   ∑ ,     -   

 

   

  

  ,        -   ,       -    
    , 

by hypothesis. Thus by maximum modulus principle,    (   )  

Conversely, assume that 
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||

      ( )
   ( )

  

(    )  
       ( )

   ( )

||  |

      ( )     ( )

(    )        ( )
|  |

           
  

   

 (    )      ,     -   
  

   

|      

Since   ( )  | | for all  , we have 

                  2
           

  
   

 (    )      ,     -   
  

   
3                                             (2.36) 

We choose the value of   on the real axis and     . Through real values, we 

obtain inequality (2.34). 

Corollary(2.2.1): Let    (   ). Then  

                     
       

 ,        -
    (   )                                                           (2.37) 

      In the next theorem, we show that the class  (   ) is closed under convex 

linear combination. 

Theorem(2.2.2): The class  (   ) is closed under convex linear combination. 

Proof: Let   ( )           
 
      and   ( )           

 
      belong 

to the class  (   ), for        

We must show that the function   defined by  ( )     ( )  (   )  ( )  

 (   )  

Since    and     (   ), then by Theorem(2.2.1), we have   ,     
   

    -             ,   ,        -             
    . 

Now,   ( )     ( )  (   )  ( )       [      (   )    ]
 
       

Then 

∑ ,        -[      (   )    ]

 

   

  ∑ ,        -     (   )∑ ,        -    

 

   

 

   

 

        (       )  (   )(       )           
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Then by Theorem(2.2.1), we have  ( )   (   ) and the proof is complete. 

Theorem(2.2.3): Let the function    defined by 

   ( )           
 
      (                    ) 

be in The class  (   ) for every          . Then the function   defined by  

 ( )         
 
      (            )  also  belongs to the class 

 (   ), where    
 

 
      

 
    

Proof: Since    ( )   (   ), we have  

  ,        -             
    for every          .  

Hence   ,        -     ,        -(
 

 
     )

 
      

      
    

           
 

 
∑(

 

   

∑ ,        -    ) 

 

   

 

                                            
 

 
 (       )          

    

Therefore, by Theorem(2.2.1), we have    (   )  

In the following theorem, we prove distortion bounds associated with the class 

introduced in (2.33). 

Theorem(2.2.4): If     (   ), then  

 

 
 

       

,       -
 | ( )|  

 

 
 

       

,       -
 (  | |     )     (    ) 

The result is sharp for the function   given by (2.35).  

Proof: Let  ( )    (   ). Then by Theorem(2.2.1), we get                               

                   
 
    

       

,       -
                                                                              (2.39) 
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since  ( )         
 
     , then 

     | ( )|  
 

| |
    

 
   | |  

 

| |
 | |   

 
    

 

 
 

       

,       -
         (2.40)                                          

Similarly 

          | ( )|  
 

 
 

       

,       -
                                                                        (2.41) 

From (2.40) and (2.41), we get (2.38) and the proof is complete. 

       In the next theorem, we obtain extreme points for the class  (   ).  

Theorem(2.2.5): Let   ( )      and   ( )      
       

 ,        -
     Then   ( ) 

is in the class  (   ) if and only if it can be expressed in the form  ( )  

     ( )
 
   , where      (   ) and       

   . 

Proof: Assume that  ( )       ( )
 
       

    
(       )  

 ,        -
   

     

Then it follows that  
 ,        -

(       )
 
     

(       )

 ,        -
       

     

Therefore    (   ). 

Conversely, assume that    (   )  then by(2.34), we have 

   
       

 ,        -
 (   )  

Setting 

      
 ,        -

(       )
   and         

 
     

Hence,  ( )       ( )
 
       ( )       ( )

 
     

This completes the proof . 
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       In the following theorem, we obtain the radius of convexity for the functions 

in the class  (   ).    

Theorem(2.2.6): Let    (   ). Then   is univalent meromorphic convex 

of order   (     ) in the disk | |   , where  

        8
(   ),        -

(     ),       -
9

 
   

  

The result is sharp for the function  given by (2.35).  

Proof: It is sufficient to show that   

            |
    ( )

  ( )
  |             | |                                               (2.42) 

But  

|
    ( )

  ( )
  |  |

    ( )     ( )

  ( )
|  

  (   )  | |
    

   

      | |
    

   

   

Thus, (2.42) will be satisfied if  

                      
  (   )  | |

    
   

      | |
    

   

      

or if   

                     
 (     )

   
  | |

       
                                                   (2.43) 

Since    (   ), we have   

                   ∑
 ,        -
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Hence, (2.42) will be true if  

 (     )

   
| |    

 ,        -

       
  

or equivalently 

 | |  8
(   ),        -

(     ),       -
9

 
   

 (   )  

which follows the result. 

Next, we determine  the inclusion relation involving (   ) –neighborhoods. 

Following the earlier works on neighborhoods of analytic functions by 

Goodman[19], Ruscheweyh[34] and Raina and Srivastava[32] but for 

meromorphic function studied by Liu and Srivastava[24] and Atshan[6]. 

We define the (   ) –neighborhoods of a function  ( )    by  

    ( )  *     ( )          
        |     |        

   
 
   +         (2.44) 

Definition(2.2.2): A function  ( )    is said to be in the class  (   )  if there 

exists a function  ( )   (   ) such that 

          |
 ( )

 ( )
  |      (         )                                                 (2.45) 

Theorem(2.2.7): Let  ( )   (   ) and  

                 
 (       )

          
                                                                            (2.46) 

Then     ( )   (   )   

Proof: Let  ( )      ( )  Then, we have from (2.44) that  

               ∑  |     |    

 

   

   (   )  
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              ∑|     |    

 

   

   (   )  

Also, since  ( )   (   )  we have from Theorem(2.2.1) 

             ∑  

 

   

 
       

       
   

so that 

 |
 ( )

 ( )
  |  |

 (     ) 
  

   

        
  

   
|  

 |     |
 
   

   |  |
 
   

 
 (       )

          
      

Thus, by Definition(2.2.2),  ( )   (   )  for   given by (2.46). 

This completes the proof. 
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2.3 Some Subordination Properties of Univalent 

Functions 

    

 

      Let   be denote the class of functions  ( ), in the open  unit disk   of the 

form :- 

                                     ( )       
 
                                        (2.47) 

which are analytic in the open unit disk   *    | |   + and 

satisfying 

 ( )    ( )     .  

A function     said to be starlike of order   if   

  8
   ( )

 ( )
9    ( ( )           * +      )                

Denote this class by   ( ). 

A function     is said to be convex of order    if   

  84  
    ( )

  ( )
59    (         )                   
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Denote this class by  ( ). 

Lemma (2.3.1)[27]: Let   be convex univalent function  in the open unit 

disk   and       * + with   2  
    ( )

  ( )
 

 

 
3   . 

If   is analytic in   and    ( )         ( )      ( ), then  ( )  

 ( ), and    is the best dominant. 

Lemma (2.3.2)[27]: Let   be univalent function  in the open unit disk   

and   be analytic in domain   containing  ( ). If    ( ) ( ( ))  

   ( ) ( ( ))  then  ( )   ( ), and   is the best dominant. 

Lemma (2.3.3)[30]: Let   be convex univalent function  in the open unit 

disk    and let   be analytic in domain   containing  ( ). Assume that 

  2 ( ( ))    
    ( )

  ( )
3   . 

If   is analytic in   with  ( )   ( ) and  ( )   , and 

    ( )   ( ( ))     ( )   ( ( ))  then  ( )   ( ), and   is the 

best dominant. 

Theorem (2.3.1): Let the function   be univalent in the open unit disk    

  ( )    and    ( ) ( ( ))   , is starlike in  . If     satisfies the 

subordination 

  4
   ( )  .    ( )   ( )/

  ( )     ( )
5  

    ( )

  ( )
,                                     (2.48)                        

then 0
  ( )     ( )

   
1
 

  ( ) (        * +)  

and  ( ) is the best dominant. 
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Proof: Define the function   by 

           ( )  0
  ( )     ( )

   
1
 

      ,                                          (2.49) 

then    ( )    0
  ( )     ( )

   
1
 

 6
   ( )  .    ( )   ( )/

  ( )     ( )
7                   (2.50)                   

by using   ( )  
  

  
 , it easy observed that  ( ) is analytic in   * +. 

Then we obtain that  ( ( ))  
  

  ( )
  and  ( ( ))  

  

  ( )
  . 

From (2.50), we have  

   ( ) ( ( ))    6
   ( )  .    ( )   ( )/

  ( )     ( )
7                                        (2.51)                    

and by (2.48) and (2.51), we get 

   ( ) ( ( ))  
   ́( )

  ( )
    ( ) ( ( ))  

Therefore, by Lemma (2.3.2), we get  ( )   ( ) and then by using 

(2.49), we obtain the result.  

By taking  ( )  
    

    
  (        ) in Theorem(2.3.1), we obtain 

the following corollary: 

Corollary(2.3.1): If     satisfies the subordination 

  6
   ( )  .    ( )   ( )/

  ( )     ( )
7  

(   ) 

 (    )(    )
, 

then 0
  ( )     ( )

   
1
 

  
    

    
 , and  ( )  

    

    
  is the best dominant. 
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By taking  ( )  
   

   
   in Theorem(2.3.1), we obtain the following 

corollary: 

Examble(2.3.1):If     satisfies the subordination 

  6
   ( )  .    ( )   ( )/

  ( )     ( )
7  

   

 (   )(   )
  , 

then 0
  ( )     ( )

   
1
 

  
   

   
 , and  ( )  

   

   
  is the best dominant. 

Theorem(2.3.2): Let the function   be convex univalent in the open unit 

disk      ( )    and assume that 

  2  
    ( )

  ( )
  3   .(       * +⁄ )                                        (2.52)                 

If     satisfies the subordination 

  0
  ( )     ( )

   
1
 

[   6
   ( )  .    ( )   ( )/

  ( )     ( )
7]     ( )      ( ), 

(2.53)                   

then 0
  ( )     ( )

   
1
 

  ( )  and  ( )  is the best dominant. 

Proof: Define the function   by 

  ( )  0
  ( )     ( )

   
1
 

 (       * +⁄ )                                        (2.54)                    

then    ( )    0
  ( )     ( )

   
1
 

  6
   ( )  .    ( )   ( )/

  ( )     ( )
7  

It can easily observed that 
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   ( )      ( )    6
  ( )      ( )

   
7

 

[   6
   ( )   (    ( )    ( ))

  ( )      ( )
7]  

Then by (2.53) and (2.54), we get 

   ( )      ( )     ( )      ( ). 

By setting      in Lemma (2.3.1), we get  ( )   ( ). By using (2.54), 

we obtain the result. 

By taking  ( )  
    

    
  (        ) in Theorem(2.3.2), we obtain 

the result. 

Corollary(2.3.3): If      and assume that   2
    

    
   3   . If    

satisfies the subordination 

  0
  ( )     ( )

   
1
 

[   6
   ( )  .    ( )   ( )/

  ( )     ( )
7]    

    

    
 

 (   ) 

(    ) 
  , 

then 0
  ( )     ( )

   
1
 

  
    

    
 , and  ( )  

    

    
  is the best dominant. 

Corollary(2.3.4): If     and assume that   2
    

    
   3   . If    

satisfies the subordination 

  0
  ( )     ( )

   
1
 

[   6
   ( )  .    ( )   ( )/

  ( )     ( )
7]  

 [  (   )(   ) ( (   ) (   )) ]

(   ) 
    

then  0
  ( )     ( )

   
1
 

 
 (   )

(   )
   and  ( )  

 (   )

(   )
  is the best dominant. 

By taking  ( )       in Theorem(2.3.2), we obtain the following 

corollary: 
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Corollary(2.3.5): If     and assume that   *        +   . If    

satisfies the subordination. 

  0
  ( )     ( )

   
1
 

[   6
   ( )  .    ( )   ( )/

  ( )     ( )
7]  (     )     , 

then 0
  ( )     ( )

   
1
 

     , and  ( )       is the best dominant. 
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Some Geometric Properties of New Subclasses 

of Multivalent and Multivalent Harmonic 

Functions 

       

 

 

 

 

 

 

 

 

Introduction:  

           Chapter three is fully devoted for the study of some geometric properties 

of new subclasses of multivalent and multivalent harmonic functions.               

     This chapter is divided into two sections. In section one, we discuss a  

subclass  of multivalent functions defined by Hadamard product                

of the form : 

        ∑   

 

     

                               

and satisfying the condition: 

  {
                               

                                  
}

  |
                               

                                  
  |      

where                                       . 
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We obtain some properties, like, a necessary and sufficient condition for a 

function   to be in  the class                 distortion bounds, closure 

theorem, radius of starlikeness, and convolution properties. In section two, we 

have introduced a new class of multivalent harmonic functions defined by 

integral operator. We obtain some results, like, coefficient bounds, convex 

combination, integral operator and  distortion theorem. Several authors studied 

multivalently harmonic functions, like, Atshan, Kulkami and Raina[5] studied a 

class of multivalent harmonic functions involving a generalized Ruscheweyh 

type operator. Ahuja and Jahangiri[2] studied linear combinations of a class of 

multivalently harmonic functions.           
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3.1 On a Subclass of Multivalent Functions 

Defined by Hadamard product 

 

     

     Let        denote the class of functions of the form:     

            ∑   
 
                                                     (3.1)     

which are analytic and multivalent in the open unit disk U=     | |    . If 

         is given by (3.1) and          given by  

        ∑    
  

               then the Hadamard product                

is defined by 

                           ∑     
 
                                              (3.2) 

Definition(3.1.1): Let   and   be given by (3.1) , is said to be in the class 

               if and only if satisfies the inequality:-  

  ,
                               

                                  -   |
                               

                                    |    ,(3.3)    

where                                        and for 

each         , we have 

                    ∑          
    

                                    (3.4) 

 

Section One    
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 {

                                             

                    
}                   (3.5) 

     

     The following theorem gives a necessary and sufficient condition for a 

function   to be in the class                        

Theorem(3.1.1): Let the function   be in the form (3.1), then   is in the class 

               if and only if 

∑            [               ]                [              ]  
     (3.6) 

where                                     . 

The result is sharp for the function   given by 

          
           [              ]

           [               ]  
  

                            (3.7) 

Proof: Let                 . Then   satisfies the inequality (3.3) which is 

equivalent to 

  {
                               

                                  
(      )      }     

 by using Lemma (1.2.2) 

  {
*                  (            +(      )     [                                  +

                                  }    (3.8)  

Let        [                               ](      )  

                        [                                  ]   

                                                 . 

Then (3.8) is equivalent to 
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 |              |   |              | for        . 

 |              |  |[
              

      
        

∑
              

      
     

      
                     

      
         

 

     

 

 ∑
                     

      
      

     

 

     

+ (      ) 

     [
       

      
            ∑

       

      
          

     

 

     

 

 
              

      
        ∑

              

      
     

     

 

     

] 

       *
       

      
            ∑

       

      
          

      
       

  
              

      
        ∑

              

      
      

      
     +| 

 
       

      
[       (      )                 (      ) 

                                                ]| |       

 ∑
       

      
[                                          

 

     

 

                                                ]    | |
       

Similarity, 

|              |  |[
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 ∑
              

      
     

      
                     

      

 

     

+         

 ∑
                     

      
      

     ](      )

 

     

 

     [
       

      
            ∑

              

      
     

     ]

 

     

 

      *
              

      
        ∑

              

      
          

     

 

     

 

 
              

      
        ∑

              

      
     

     

 

     

+| 

 
       

      
[                                                  

                                      ]| |      

 ∑
       

      

 

     

[                                        

                                                ]    | |
       

Therefore, 

|              |  |              |   

        

      
[              ]   ∑

       

      

 

     

[                        

Hence  

∑            [               ]                [              ] 
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Conversely, by considering (3.6), we must show that 

  {
*                  (            +(      )     [                                  +

                                  }      (3.9) 

Upon choosing the values of   on the positive real axis where        , 

          |   |     and letting    , we conclude to(3.9) by using 

(3.6) in the left hard of (3.7). 

Corollary(3.1.1): Let                 . Then  

                 
           [              ]

           [               ]  
                                         (3.10)   

where                                    

    

     In the following theorem, we obtain the distortion bounds for the 

function                     

Theorem(3.1.2): Let the function                 . Then 

*  
     [              ]

       [                 ]  
| | +       | |    |       |  

*  
     [              ]

       [                 ]  
| | +       | |                                               (3.11)                      

The result is sharp for the function  given by (3.7).  

Proof: Let         ∑    
  

       then 

                                 ∑          
    

         

   where         
  

     
 {

                                             

                    
}   

   

By (3.10), we get 
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|       |        | |    
           [              ]

     [               ]  

| |            

                                | |    
           [              ]

       [                 ]    

| |      

|       |  *  
     [              ]

       [                 ]  
| | +       | |            (3.12) 

and similarly, we can get 

    |       |  *  
     [              ]

       [                 ]  
| | +       | |          (3.13)   

From (3.12) and (3.13), we get (3.11) and the proof is complete.  

 

If    , Theorem(3.1.2) would provide the growth property of function in the 

class               . For      the results may be looked upon as the 

distortion properties for the class                 

 

     Let the functions                   be defined by  

                          ∑      
  

      , (       .                                  (3.14)                                         

We shall prove the closure property of the functions in the 

class               . 

 Theorem (3.1.3): Let the functions                   be defined by (3.14) 

be in the class               . Then the function      defined by      

∑        
 
            is also in the               , where ∑      

   . 

Proof: According to the definition of       it can be written as 

     ∑  (   ∑      
 

 

     

)
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                         ∑    
  

    ∑ ∑        
  

     
 
       

        ∑ ∑       
 

 

   

 

     

  

Furthermore, since the functions                   are in the 

class               , then  

∑  

 

     

          [               ]                [              ]  

Hence  

∑  

 

     

          [               ]  (∑      

 

   

)                        

 ∑  [ ∑  

 

     

          [               ]                                 

 

   

 

            [              ]                                                                  

which implies that      be in the class               . 

 

     In the following theorem, we obtain the radius of starlikeness for the 

function in the class                   

Theorem (3.1.4): Let                   . Then   is p-valent starlike of 

order          in the disk | |   , where 

      { *
     [           [               ]]  

     [           [              ]]
+

 

   
}                     (3.15) 

    The result is sharp for the function         
           [              ]

           [               ]  
  . 
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Proof: It is sufficient to show that |
      

    
  |      for | |     

we have       |
      

    
  |  

∑        | |
    

     

  ∑   | |
    

     

  

Thus 

       |
      

    
  |       if ∑ (

   

   
)   | |

      
                                (3.16) 

By using Theorem(3.1.1), (3.16) will be true if 

   

   
| |     

           [               ]  

           [              ]
 

     or equivalently 

    | |  { *
     [           [            ] ]  

     [           [            ]
+

 

   
}             .                 (3.17) 

   The theorem follows easily from (3.17). 

       

     In the following theorem, we obtain convolution properties of the class   

              .  

Theorem (3.1.5): Let the function                 defined by          

∑      
  

      be in the class                 Then the function   defined by 

        ∑ (    
      

 )   
     ,                                                        (3.18)                                                                                                                          

belongs to the class               , where  

  
 

       
[  

 

 
 

           [                ] 

             [              ]
]  

Proof: We must find the largest   such that 
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 ∑
           [               ]

           [              ]
(    

      
 )     

      

Since                               , then  

∑
           [               ]

           [              ]
          

       

and   ∑
           [               ]

           [              ]
         

     . 

Therefore 

∑ ,
           [               ]

           [              ]
      -

 

  
      

,∑
           [               ]

           [              ]
      

 
     -

 

                                      (3.19)                                           

and ∑ ,
           [               ]

           [              ]
      -

 

  
      

,∑
           [               ]

           [              ]
      

 
     -

 

                                      (3.20) 

Combining the inequalities (3.19) and (3.20), gives  

∑
 

 
{
           [               ]  

           [              ]
}

 

(    
      

 )    

 

     

 

But                    if and only if 

∑
           [               ]  

           [              ]
(    

      
 )     

                                (3.21) 

The inequality(3.21) will be satisfied if  

  
           [               ]

           [              ]
 

 

 
,
           [               ]

           [              ]
-
 

  

This is,  
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[  

 

 
 

           [               ] 

             [              ]
]  
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3.2 A New Class of Multivalent  Harmonic  
Functions Defined by Integral Operator   

 

  

A continuous function        is a complex valued harmonic function 

in a complex domain   if both   and   are real harmonic in   . In any simply 

connected domain     we can write      ̅ , where   and   are analytic 

in   . We call   the analytic part and   the co- analytic part of   . 

A necessary and sufficient condition for   to be locally univalent and sense-

preserving in   is that |     |  |     | in  , see Clunie and Sheil-Small [12]. 

Denote by      the class of function      ̅ that are harmonic multivalent 

and sense- preserving in the unit disk       | |     . The class      was 

studied by Ahuja and Jahangiri [1].  

For      ̅       , we may express the analytic function   and   as  

        ∑        
      

         ∑        
      

    |  |           (3.22) 

Let    denote the subclass of      consisting of function      ̅  ,where 

  and   are given by  

        ∑        
      

            ∑        
      

             (3.23)               

 

Section Two    
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where 

                       |  |                    

An integral operator    was introduced by Salagean [11] which is given below 

in a slightly modified form as Stated by [12] 

(i)              

(ii)               ∫         

 
    

(iii)         (        )          

where                  
     and         The class of 

analytic functions in  . The modified Salagean integral operator of      ̅ 

given by (3.22) is defined [4] as 

  (    )    (    )    (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                   (3.24)   

where  

   (    )     ∑ (
 

     
)
 

 
          

       and 

            ∑ (
 

     
)
 

 
          

                                               (3.25) 

for       ,    . 

Definition(3.2.1): We define a new class             of harmonic functions     

of the form (3.22) that satisfy the inequality:           

|
                       

                             
|   ,                                                        (3.26) 
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where                    ,      ,      ,     1. 

We further denote by         the subclass of             that satisfies the 

relation 

                                                                                   (3.27) 

 

In the following theorem , we determine the sufficient condition for the 

function      ̅ to be in the class            .  

Theorem(3.2.1): Let       (  and    being given by (3.22)). If 

  ∑         [         (              )]

 

   

(
 

     
)
 

|      |    

   ∑         [                        ] 
   (

 

     
)
 

|      | 

      [                   ]                                                    (3.28) 

  

where               ,      ,      ,      ,    1, 

then   is harmonic p- valent sense – preserving in   and              . 

Proof: When the condition (3.28) holds for the Coefficients of      ̅, it is 

shown that the inequality (3.26) is satisfied. Write the left side of inequality 

(3.26) as  

 |                        |   |   (      )
  
                |   

         | |  ∑               (
 

     
)
 

|      || |
     

 

   

 

 ∑              (
 

     
)
 

|      || |
     

 

   

   (            )| |  

  ∑                       (
 

     
)
 

|      || |
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  ∑                      (
 

     
)
 

|      || |
     

 

   

      

  

  ∑       [                         ] (
 

     
)
 

|      |

 

   

   

 ∑       [                       (
 

     
)
 

|      |               

 

   

 

   [                     ]          

The harmonic functions  

       

 ∑ 
 [                     ]   

       [                         ] (
 

     
)
 

      

      

 

   

 

 ∑  
 [                     ]   

       [                       (
 

     
)
 
      

             
              (3.29) 

where  

   (∑|  |  ∑|  |

 

   

 

   

  [                     ])  

show that the coefficients bounds given by (3.28) is sharp. 

The functions of the form (3.29) are in             because in view of 

(3.29), we infer that 

  ∑         [                      ]

 

   

(
 

     
)
 

|      | 

 ∑       [                       

 

   

(
 

     
)
 

|      | 

 ∑|  |  ∑|  |

 

   

 

   

  [                     ]   
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The restriction placed in Theorem (3.2.1) on the moduli of coefficients of 

       implies that for arbitrary rotation of the coefficients of   , the 

resulting functions would still be harmonic multivalent and               .  

The following theorem shows that the condition (3.28) is also necessary for 

function   to belong to the class            . 

Theorem(3.2.2): Let        with   and   are  given by (3.23). Then 

               if and only if 

   ∑       [         (              )]

 

   

(
 

     
)
 

       

 ∑         [                        ]

 

   

(
 

     
)
 

       

    [                   ]                                                     (3.30) 

where               ,      ,      ,      ,    1. 

Proof: By noting that                          , the sufficiency part of 

Theorem (3.2.2) follows at once from Theorem (3.2.1). To prove the necessary 

part, let us assume that              . Using (3.26), we get 

           ,
                       

                             
- 

   {
         ∑         

      
    ∑         

      
   

 (            )   ∑         
      

    ∑         
      

   

}

     

Such that:                 (
 

     
)
 

 

L=                       (
 

     
)
 
  

If we choose   to be real and let     , we obtain the condition (3.30). 
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Theorem(3.2.3): Let               . Then  

(    )| |
  

 [                   ]    

     [       (        )]
| |      |      |   

    (    )| |
  

 [                   ]    

     [                 ]
| |       

  

Proof: Let              . Then, we have  

     [                ]∑ (
 

     
)
 

 

 

   

                

     [                   ]       

 which implies that  

∑(
 

     
)
 

 

 

   

               
 [                   ]    

     [                ]
   

Applying this inequality in the following assertion , we obtain 

|      |  |   ∑ (
 

     
)
 

       
      ∑ (

 

     
)
 

      

 

   

 

   

         | 

       (    )| |
  ∑ (

 

     
)
 

 

 

   

               | |
      

            (    )| |
  

 [                   ]    

     [                ]
| |       

Also , on the other hand, we obtain 

|      |  (    )| |
  ∑(

 

     
)
 

 

 

   

               | |
                     

                 (    )| |
  

 [                   ]    

     [                ]
| |       
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Now, we prove the class    ̅              is closed under convex combination 

of  these members . 

Theorem(3.2.4): The class in             is closed under convex combination. 

Proof: For           , let                , where    is given  

         ∑          
     

 

   

 ∑           ̅ 
     

 

   

   

Then by (3.28) , we have 

∑        [         (              )]

 

   

(
 

     
)
 

         

 ∑        [                        ]

 

   

(
 

     
)
 

         

   [                   ]                                                            (3.31) 

 

For ∑   
 
              , the convex combination of    may be written as 

∑       

 

   

    ∑ (∑          

 

   

)      

 

   

 ∑ (∑          

 

   

)  ̅      

 

   

   

Then , by (3.28), we have 

∑       [                         ] (
 

     
)
 

(∑          

 

   

)

 

   

 

 ∑       [                         ] (
 

     
)
 

(∑          

 

   

)

 

   

 

 ∑  

 

   

{∑       [         (              )] (
 

     
)
 

        

 

   

 

 ∑       [                         ] (
 

     
)
 

        

 

   

} 

 ∑    [ (            )]

 

   

   [                   ]  
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therefore  

     ∑       

 

   

                          

This complete this proof . 

    Definition(3.2.2)[17]: The Jung – Kim – Srivastava integral operator is                                                                                                                        

    defined by 

              
      

     
∫ (   

 

 
)
 
                                      

 

 
               (3.32) 

    If           ∑        
                 

    

    then               ∑  (
   

   
)
 
       

                           
             (3.33) 

    also     is a linear operator. 

  Remark(3.2.1): If                 , where  

        ∑       
                ∑      

 

   

 

   

        |      |       

    then 

                                                                                               (3.34)     

 

   Theorem(3.2.5): If               , then      is also in            . 

   Proof: By (3.33) and (3.34) , we obtain  

             (   ∑        
      ∑       

 

   

 

   

          )                  

             ∑  (
   

   
)
 

       
      ∑  (

   

   
)
 

      

 

   

 

   

             

   since               , then by Theorem (3.2.2), we have 

  ∑         [         (              )]

 

   

(
 

     
)
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 ∑        [                        ]

 

   

(
 

     
)
 

       

   [                   ]                                                      (3.35) 

  we must show  

  ∑         [         (              )]

 

   

(
 

     
)
 

(
   

   
)
 

       

 ∑         [                        ]

 

   

(
 

     
)
 

(
   

   
)
 

       

    [ (            )]                                                                    (3.36) 

                                        

But in view of (3.35) the inequality in (3.36) holds true if  

      (
   

   
)
 

    

since     and     ,therefore (3.36) holds true and this gives the  

result.    
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ً وظشٌح انذانح احادٌح  انغشض مه ٌزي انشسانح ٌو دساسح تعط انمواظٍع انخاصح ف      

مه انذوال احادٌح                  وانمتعذدج انتكافؤ ودساسح صىف جزئً جذٌذ انتكافؤ 

سشفٍستافا انخطً . اعطٍىا تعط انخواص , مثم ,  -انمعشفح تواسطح مؤثش دٌزاٌوك انتكافؤ

, انىقاغ                   كً تكون فً انصىف  انعشوسي وانكافً نهذانح انششغ 

تكىٍكاخ ظشب ٌادماسد , متوسػ انتكامم , مثشٌىح الاوقلاب , اوصاف اقطاس انمتطشفح , 

دٌح تعط انخواص نىصف مه انذوال احا شوا اٌعآاعتثمٍح , انتحذب وانقشٌثح انى انتحذب . انىج

مه       ∑ ٌىا قذمىا صىف جذٌذ .        ∑انمٍشوموسفٍح احادٌح انتكافؤمه انذوال  انتكافؤ 

حعشوا تعط انىتائج , متم , راخ انمعاملاخ انسانثح .  انمٍشوموسفٍحانذوال احادٌح انتكافؤ 

, انىقاغ  ًمثشٌىح الاوقلاب, حذود انتشوٌانمعامم , انتشكٍة انخطً انمحذب ,  متشاجحح

قذمىا اٌعا تعط خواص انتثعٍح .  ∑  نهذانح  ساخ, انجوا وصف قطش انتحذب,  انمتطشفح

انتفاظهٍح نهذوال احادٌح انتكافؤ . حٍث حصهىا عهى تعط انىتائج . واقشىا اٌعا صىف جزئً مه 

حصهىا عهى  .               انذوال متعذدج انتكافؤ انمعشفح تواسطح ظشب ٌادمشد  

كً تكون فً انصىف     تعط انخواص , مثم انششغ انعشوسي وانكافً نهذانح

و خواص   , مثشٌىح الاوغلاق , وصف قطش انىجمٍح ً, حذود انتشوٌ               

ظشب الانتواء . دسسىا اٌعا صىف جذٌذ مه انذوال متعذدج انتكافؤ انتوافقٍح انمعشفح تواسطح 

انمؤثش انتكامهً حٍث حصهىا عهى تعط انىتائج , مثم , حذود انمعامم , انتشكٍة انمحذب , 

   . ًح انتشوٌمؤثش تكامهً و مثشٌى
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