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This thesis study deals with addressing some properties of spectral theory of 

linear operator defined on a fuzzy  normed  spaces which is considered as an 

expansion for the spectral theory of linear operator defined on normed spaces.  

This also introduces some definitions of eigenvalue and eigenvectors  

regular  values ,resolvent set,spectrum,point spectrum,continuous   

 spectrum and residual spectrum of linear operator defined on fuzzy  normed  

 spaces  and some of their properties ,also we will introduce definition fuzzy  

 compact operator on fuzzy normed space which is considered as an     

 expansion  for the compact  operators on normed space and its relationship    

 spectral theory in fuzzy normed space (Spectral properties of fuzzy compact 

linear operators on fuzzy normed spaces).    
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             The theory of  fuzzy sets was introduced by L. A. Zadeh [24] in  

1965.Aftar  the pioneer work of  Zadeh ,many  researchers  have  extended this 

concept in various branches ,many other  mathematicians have studied fuzzy 

 normed space from several points of view [23],[18], [14]. Fuzzy Hilbert spaces 

is an extension to the Hilbert space. The  definition of a fuzzy Hilbert space has 

been introduced by M. Goudarzi and S. M. Vaezpour [9] in 2009 . T. Bag and 

 Samanta  [4] in 2003 have  definition  compact  set in fuzzy normed space.  

 In 2005, T. Bag and Samanta  [5]  introduced  the concept of  continuity and 

 boundedness of  linear operator  with  respect to their fuzzy norm.  

The present thesis consists of three chapters. 

Chapter one ,deals with the concept of fuzzy sets and concept of  binary 

operations t-norm and t-conorm  and fuzzy normed  space and some   

properties .The concept of  fuzzy Hilbert  spaces   and some  their     their              

properties . 

Chapter  two, deals with  the concept of  eigenvalue and eigenvectors  

 and regular value ,resolvent, spectrum, point spectrum, continuous 

INTRODUCTION 
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 spectrum and residual spectrum  of linear operator defined on fuzzy  normed  

and some their  properties and  we  give an interdiction to spectral  theory of 

linear operator on fuzzy normed space and fuzzy Hilbert space. 

Chapter  three,  deals with  the concept of  fuzzy compact  linear operator 

on fuzzy normed space and some of  their  properties . Also ,we  

consider spectral  properties of fuzzy compact  linear operator    

on a fuzzy normed space. 
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          This chapter deals with  fuzzy normed space and fuzzy pre-Hilbert  space. 

It consists  of  four sections. Section one  deals with the concepts  of  fuzzy sets 

and some of  their properties. Section two discusses the concepts of  t-norm and 

t-conorm and some of their basic properties and the  relationship between them, 

in addition to some examples. The concepts of  the fuzzy normed space  is dealt 

with  in section three. Section four deals with the concepts of fuzzy pre-Hilbert 

space . 

  

CHAPTER ONE 

Basic Concepts 
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1.1  Fuzzy Sets 
  
      This section deals with the basic  concepts of  fuzzy sets and some of their 

properties. 

Let   be a non-empty set, and   denote for the closed interval ,   - of real 

numbers, i.e.,   ,   -  *         + and    denotes all functions 

from   in to  , i.e.,     *     is a function from   to  }. 

  

Definition (1.1.1) : [24] A fuzzy set   in   (or a fuzzy subset from   ) is a 

function from   in to  , i.e.,                                                                                                     

If   is a fuzzy set in   then   is a described as characteristic function which is 

connect every       by real number  ( ) in the interval  .  ( ) is the grade of 

membership function to   in  .   can be described completely as: 

                                {(   ( ))         ( )   },                                                              

where  ( ) is called the membership function for the fuzzy set  . Also, the 

fuzzy set   may be termed as:  

                                           {
 ( )

 
    }                          

Example (1.1.2) : Let    *     +, and let the function          which is 

define as:    ( )  
 

 
    ( )  

 

 
 ,  ( ) = 

 

 
   represent a fuzzy set in  .              

While the function        which is define as:    ( ) = 
 

 
 ,   ( ) = 

 

 
 ,  ( ) 

=    not represent a fuzzy set in   because   ( )  ( )   .  
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Example (1.1.3) : [12] Let   be the set of real numbers, and let   be fuzzy set 

in  . Then we can define grade of membership function  mathematical as: 

                                  ( )  {  
   

 
       

            
     

Remark (1.1.4) : [12] If we want to know difference between fuzzy sets and 

regular sets, we note if   is a regular set then define of grade of membership 

take only two valuables 0,1.  i.e.   

                                    ( )  { 
         
         

  

 

Therefore   ( )  *   +. While if   is fuzzy set in   , then    ( )    for all 

   , and thus the regular set become special case for the fuzzy sets.  

 

Definition (1.1.5) : [6] Let   be a fuzzy set in   :                                             

(1)The support of the fuzzy set   is denoted by   or     ( ) and is defined as:   

   =      ( )  *      ( )   +  

(2)The point     is the crossover point for the fuzzy set u if   ( )   
 

 
 . 

(3)A fuzzy set   is called normal if there exists     such that  (  )   ,  i.e. 

*     ( )   +   . 

(4)The height of the fuzzy set   is denoted by   ( ) and defined as:   ( )   

sup * ( )     +  

And special case if   is normal, then   ( )   , and so   is said to be finite if 

   is finite set, inverse that    is said to be infinite. 
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Example (1.1.6) : Let   *     + and let u be fuzzy set in   defined as:                                                                                                                  

                                        ( )  
 

 
  ( )  

 

 
  ( )   ,                                                                                

                                         *      ( )   +  *   +  

The point   is a crossover point for the fuzzy set   because   ( )  
 

 
  and   is 

not normal because there is no element whose image equal to 1 and        

                ( )      *  ( )     +      * 
 

 
 
 

 
  +  

 

 
 .    

                         

Definition (1.1.7) : [6] Let   be a non-empty set. A fuzzy set         is 

defined by  ( )    , for all      is called an empty fuzzy set and is denoted 

by   or 0. The fuzzy set        is called a non-empty if there exists at least 

    such that  ( )   .                                                                                                    

 

Definition (1.1.8) : [6] A fuzzy set        which is defined as:  ( )   , 

for all     is called a universal fuzzy set and denoted by    or 1.  

Definition (1.1.9) : [24] Let     be a two fuzzy sets in  . Denoted to union of 

two sets     by     and defined as:   

                        (   )( )      * ( )  ( )+       

for all    , and so denoted to intersection of two sets     by     and 

defined as:                                                                                                                              

                              (   )( )      * ( )  ( )+.     

 

Remark (1.1.10) : [24] If       are two fuzzy sets in  , then     ,      are 

two fuzzy sets in  .                                                                                 
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Example (1.1.11) : Let   *     + and     be two fuzzy sets in   such that  

 ( )  
 

 
     ( )  

 

 
     ( )  

 

  
    ( )  

 

 
     ( )  

 

 
     ( )  

 

 
. Then:  

                    (   )( )      * ( )  ( )+     * 
 

 
 
 

 
 +  

 

 
 

                  (   )( )      * ( )  ( )+     * 
 

 
 
 

 
 +  

 

 
 

                  (   )( )      * ( )  ( )+     * 
 

  
 
 

 
 +  

 

 
 

                  (   )( )      * ( )  ( )+     * 
 

 
 
 

 
 +  

 

 
 

 (   )( )      * ( )  ( )+     * 
 

 
 
 

 
 +  

 

 
 

 (   )( )      * ( )  ( )+     * 
 

  
 
 

 
 +  

 

  
. 
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1.2  Norms and Their Complements of the Type t  

             This section discusses the concepts of t-norm and t-conorm and some of 

their basic properties and  the relationship between them. The section also 

includes some examples.                                                                                                  

 

Definition (1.2.1) : [12] Let   be a binary operation on the set  , i.e.,                              

  :       is a function. Then   is said to be t-norm (triangular-norm) on the 

set   if the following axioms are satisfied :                                                                    

(1)          for all    . 

(2)   is commutative ( i.e.             for all      ). 

(3)   is monotone (i.e.  if        such that     , then          , for all 

   ). 

(4)   is associative (i.e.     (   )   (   )   , for all        ). 

If, in addition,   is continuous, then   is called a continuous t-norm.  

                                           

The following theorem introduces the characteristics of the  t-norm :  

 

Theorem (1.2.2) : [12] Let   be a t-norm on the set  . Then  

(1)           

(2)          

(3)           

(4)           

(5)          , for all    . 

(6) If            , then              for all           . 
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Example (1.2.3) : [12] The basic t-norms are :    

             ( ) A binary operation    on  , which is defined by 

       min {   } for all       is a t-norm, and  called the standard 

intersection.  

             (  ) A binary operation    on  , which is defined by        =         for 

all       is a t-norm, and called the algebraic product. 

             (   ) A binary operation    on  , which is defined by                    

      = max{0,      } for all       is a t-norm, and called the bounded  

sum or bounded  difference. 

             (  ) A binary operation    on  , which is defined by   

                               

                                       { 
                   
                   
                       

   

                                                           

for all       is a t-norm, and called the drastic intersection. 

 

Theorem (1.2.4) : [12]                                                             

for all      . 

 
Theorem (1.2.5) : [12] Let   be a t-norm on a set  . Then       m . 
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Definition (1.2.6) : [12] Let   be a binary operation on the set   i.e.   : 

      is a function).   is said to be (t-conorm) on the set   if the following 

axioms are satisfied : 

 (1)            for all    . 

(2)   is commutative ( i.e.                for all      ).                                        

(3)   is monotone (i.e.  if          such that     , then            for all 

   ). 

(4)   is  associative (i.e.   (   )   (   )      for all        ). 

If, in addition,   is continuous then   is called a continuous t-conorm.  

                                           

The following theorem introduces the characteristics of  t-conorm:   

Theorem (1.2.7) : [12] Let    be t-conorm on the set  . Then                     

(1) 0 0 = 0. 

(2) 1 0 = 1.                                                                                                                

(3) 0 1 = 1.                                                                                                        

(4) 1 1 = 1.                                                                                                                               

(5)           for all    . 

(6) If                                   

Example (1.2.8) : [12] The basic t-conorm is : 

( ) A binary operation    on  , which is defined b           *    + for all 

      conorm, and  called the standard union. 
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(  ) A binary operation    on  , which is defined               for all 

      is t-conorm, and  called the algebraic product.  

 (   ) A binary operation    on  , which is defined             *      + 

for all       is t-conorm, and  called bounded sum. 

             (  ) A binary operation    on  , which is defined by  

                                           

     { 
                   
                   
                       

                      

for all       is t-conorm, and  called drastic union. 

Theorem (1.2.9) : [12]    m      p       b     d    for all      . 

Theorem (1.2.10) : [12] Let   be a t-conorm on a set   then  m    d  for all 

     . 

Definition (1.2.11) : [12] Let   be t-norm, and   be t-conorm. Then    and    are 

said to be dual if they satisfies the following axioms : 

(a)          ((   )  (   ))  for all      . 

(b)          ((   )  (   )) for all      . 

Theorem (1.2.12) : [12] Let   be t-norm, and   be t-conorm .Then  

(1)        are dual.    

(2)    ,    are dual. 

(3)    ,   are dual. 

(4)    ,    are dual. 
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1.3  Fuzzy Normed Spaces     

         This section deals with the concept of  fuzzy normed space and some of  

its properties. 

Definition (1.3.1) : [14] let   be a vector space over  , where   is either the 

field of real numbers or the field of complex numbers.                                                                

A norm on   is a function ‖ ‖     having the following properties:   

(1) ‖ ‖     for all    .     

(2) ‖ ‖    if and only if     . 

(3) ‖  ‖  | |‖ ‖  for all     and    . 

(4) ‖   ‖  ‖ ‖  ‖ ‖  for all       . 

The vector   over   together with ‖ ‖ is called a normed space  and is denoted 

by (  ‖ ‖) or simply  .   

Definition (1.3.2) : [23] Let   be a vector space over  ,   be a continuous  

t-norm on  , a function     (   )  ,   - is called fuzzy norm if it  

satisfies the following conditions : for all        and      , 

      (   )  (   )   , 

      (   )   (   )    if and only if     , 

      (   )  (    )   .  
 

| |
/  for all    , 

      (   )  (   )   (   )   (       ), 

      (   )  (   ) (   )  ,   - is continuous, 

      (   )         (   )     

(     ) is called fuzzy normed space. 
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Lemma(1.3.3) : [17] Let (     ) be a fuzzy normed space. Then:                                            

( )  (   ) is non-decreasing with respect to   for each    .                              

(  )  (    )   (   ) hence  (     )   (     ).   

Remark (1.3.4) : [8]                                                                                                               

(1) For any        (   ) with      , there exists    (   ) such that  

        . 

(2) For any    (   ), there exists    (   ) such that  

        . 

Example (1.3.5) : [3] Let (  ‖ ‖) be a normed space.         for all 

      and for all             

              (   )  {
 

  ‖ ‖
        

                
       (     )     

Then (     ) is fuzzy normed space. 

Solution:  (   )  if          then        (   )                                  

if        then      (   )  
 

  ‖ ‖
   

(   )If        then  (   )    

If  (   )      
 

  ‖ ‖
=1   ‖ ‖          

(   )  (    )  
 

  ‖  ‖
 

 

  | |‖ ‖
 

 

| |
 

| |
 ‖ ‖

   .  
 

| |
/  for all    . 

(   ) (       )   (   )   (   )  
   

    ‖   ‖
 

 

  ‖ ‖
 

 

  ‖ ‖
  . 

(   )  (   ) (   )  ,   - is continuous.  

(   )         (   )   . 

Therefore  (     ) is a fuzzy normed space. 
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Example (1.3.6) : [17] Let (  ‖ ‖) be a normed space. For all    ,      

  (   )  
 ‖ ‖

   
  Then (     ) is not fuzzy normed space. 

Solution: Let       (   )  
‖ ‖

   
  .                                                                             

Therefore  (     ) is not a fuzzy normed space 

Example (1.3.7): Let (  ‖ ‖) be a normed space . Defined 

        (   )   {
       ‖ ‖

        ‖ ‖ 
…….(1.3.7) 

And        min {   }for all       and for all          then 

(     )is a fuzzy normed space 

Solution: (   ) and (   ) directly from definition (1.3.2).                                             

(   )  (    )    for    ‖  ‖  for all     

    | |‖ ‖  
 

| |
 ‖ ‖ then  .  

 

| |
/     

Therefore  (    )   .  
 

| |
/  for all     and same above when   ‖ ‖ 

 (   )                    (       )     * (   )  (   )+ 

For each  t,     

 (   )            ‖ ‖ 

 (   )    for,   ‖ ‖ 

     ‖ ‖  ‖ ‖  ‖   ‖    (       )    

Then  (       )      * (   )  (   )+ 

Also same above when   ‖ ‖ 

(   )  (   ) (   )  ,   - is continuous.  

(   )         (   )   . 

Therefore  (     ) is a fuzzy normed space. 
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Theorem (1.3.8) :[21] Let (     ) be a fuzzy normed space, we further assume 

that, 

        (   )        for all   ,   -  

        (   )  (   )    for all     ,then     . 

Define  ‖ ‖      *     (   )    +  Then * ‖ ‖    (   )+  is an 

ascending family of norms on     We call these norms as   -norms on   

corresponding to fuzzy norm   on  . 

Proof : Let   (   ). To prove ‖ ‖  is a norm on  , we will prove the 

followings:  

(1) ‖ ‖     for all      ,                                                                                         

(2) ‖ ‖    if and only if    ,                                                                                        

(3) ‖  ‖  | |‖ ‖  ,                                                                                             

(4) ‖   ‖  ‖ ‖  ‖ ‖ .                                                                                

The prove of (1), (2)and (3) directly follows from the proof of the Theorem 2.1 

in [4]. So, we now prove (4) : 

‖ ‖  ‖ ‖      *      (   )    +      *      (   )    + 

                              *        (   )      (   )    + 

                               *        (   )   (   )        + 

                              *        (         )    + 

                          ‖   ‖ , which proves (4). 

Let          . 

‖ ‖       *     (   )    +  and                                                           

‖ ‖       *      (   )     +. 

Since       , *      (   )     +  *      (   )     + 

    *      (   )     +     *      (   )     +  
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 ‖ ‖      ‖ ‖  . Thus, we see that * ‖ ‖     (   )+ is an ascending 

family of norms on  .                                                                                                                             

1.4   Fuzzy Hilbert space 

This section deals with the fuzzy Hilbert spaces and some of  their properties 

 

Definition (1.4.1) :[11]  Let   be a vector space over the field  . An inner 

product on   is a function 〈  〉        such that for all         and 

      the following axioms are satisfied :                                                                                                            

(   )〈   〉   ,                                                                                       

(   )〈   〉        ,                                                                                 

(   )〈   〉 =〈   〉,                                                                                     

(   )〈       〉   〈   〉   〈   〉    

A pre-Hilbert ( or inner product ) space is a vector space with an inner product on 

it. 

Example (1.4.2) :[11]  Let     . Define 〈  〉        by                      

  〈   〉  ∑     ̅
 
    for   (          )   (          )   . Then    is a 

pre-Hilbert space. 

Definition (1.4.3) : [11] A complete pre-Hilbert space is called Hilbert space. 

Example (1.4.4) : [11] Let     , 〈   〉  ∑     
 
     such that                             

  (          )   (          )    . Then (   〈 〉) is a Hilbert space. 
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Definition (1.4.5) : [7] Let   be a real vector space,   be a continuous   t-norm on 

   = [0,1]. A function          ,   - is called a fuzzy pre-Hilbert function 

if it satisfies the following axioms for every         and                        

   Note :       ( )  { 
           
           

   

(1)  (     )    and   (     )     for each       

(2)  (     )   ( ) for some       if and only if      

(3)  (     )   (     ) 

(4) For any real number   

 (      )  {

 (    
 

 
 )                   

 ( )                             

   (    
 

  
)          

  

    (5)  (     )   (     )   (           ) 

    (6)         ( (     )   (     ))   (       ) 

    (7)  (     )   ,   - is continuous on   * +.                                                                                           

    (8)         (     )       

(     ) is a fuzzy pre-Hilbert space. 
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Example (1.4.6) : [7] Let (  〈  〉) be an ordinary pre-Hilbert space. We define a 

function           ,   - as follows : 

 (      )  

{
 
 
 

 
 
  

 
 

 
 
  |〈    〉|

 
 

                      

  
 
 
 

 
 
  |〈    〉|

 
 

              

                                                    

 

Define         *     + for all      . This is a fuzzy pre-Hilbert and called 

the standard fuzzy pre-Hilbert induced by the pre-Hilbert 〈    〉. 

 

Definition (1.4.7) : [18] A t-norm    ,   -  ,   -  ,   - is called strong if it 

has the two following  properties :                                                                                                

(1) For all     (   )      ,                                                                            

(2) For all         ,   - and          we have          

Theorem (1.4.8) : [7] Suppose that (     ) be a fuzzy pre-Hilbert space, where 

  is a strong  t-norm and for each      ,                                                                       

                                    *     (     )   +                                                                           

Define 〈    〉          by  〈   〉     *      (     )    +                     

Then (  〈    〉) is a pre-Hilbert space.  

Corollary (1.4.9) :[7] Let (     ) be a fuzzy pre-Hilbert space, where   is a 

strong t-norm and for each           *       (     )   +     If we 

define ‖ ‖  (   *       (     )   +)
 

  , then (  ‖ ‖) is a  normed space.                                                               
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In this  chapter , the focuss will be on discussing  spectral theory of  linear 

operator  on fuzzy normed spaces . It consists of  tow  sections. Section one    

deals with  Eigenvalue and  Eigenvectors in fuzzy normed spaces and some of  

their properties . Section two deals with  regular value ,resolvent,spectrum,the 

point  spectrum , the continuous  spectrum  and  the residual spectrum  in  fuzzy 

normed spaces  and some of  their properties. 

 

  

CHAPTER  TWO SPECTRAL 
THEORY OF LINEAR 

OPERATOR ON FUZZY 

NORMED SPACES 
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2.1 Eigenvalue and  Eigenvectors in fuzzy  normed space 

This  section deals with  Eigenvalue and  Eigenvectors in fuzzy normed spaces 

and some of  their properties. 

 Definition (2.1.1) : [13] A function         is called an operator from   into 

  if   and   are linear spaces over the same field  .                                                        

Definition (2.1.2) : [13] A linear operator   is an operator such that:                                 

                             (     )    ( )    ( )                                                                       

for all         and for all      . 

 

Definition (2.1.3) : [19] Let (      ) and (      ) be a fuzzy normed spaces .A 

linear operator   (      )  (      ) is said to be fuzzy bounded if  and only 

if there exists     , such that for each                                                         

     ( ( )  )     (  
 

 
)          

Remark (2.1.4) :[21] Let (      ) and (      ) be a fuzzy normed spaces over 

 ,   (   ) is the space of all fuzzy bounded linear operator from   in to  . 

 

Definition (2.1.5) :Let   (     ) be a fuzzy  normed spaces over   and  

   ( ) then 

(1)A scalar      is called  an eigenvalue of    if there exists non zero 

    such that   ( )     

(2)A non zero vector     is called an eigenvector of  ,if there exist 

     such that   ( )     
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Example (2.1.6) :Let  =    and   (     )  (     ) Define 

By  (   )  (    ) for all (   )     and   :    (   )  ,   -  

Define fuzzy norm in example(1.3.5) and   is linear operator has no 

Eigenvalue. 

Example (2.1.7) :Let  =    and   (     )  (     ) Define 

By  (   )  (          ) for all (   )     and 

   :    (   )  ,   - Define fuzzy norm by equation(1.3.5) and   is linear 

operator have eigenvalues          

Solution:Suppose   (   )   (   )  (          )   (   )  

(          )  (     )                    

(   )       ,    (   )     |
    
    

|      

          

Example (2.1.8) :Let       nd   (     )  (     ) Define 

By      ( 1  2  )  (   1  2  ) for all( 1  2  )    2 and 

   :    (   )  ,   - Define fuzzy norm by  equation(1.3.7) 

and   is linear operator has no eigenvalue  

Solution: Suppose  ( 1  2  )    ( 1  2  )  (   1  2  )   ( 1  2  ) 

(   1  2   )  (  1   2,    ) implies     1,  1   2 ,  2     ,…. 

If      we divide by    and conclude  1=  2=….=0 .If      we also  

  1=  2=….=0 .   is linear operator has no eigenvalue . 

Theorem (2.1.9) :Let  (     ) be a fuzzy finite dimensional  normed spaces 

over   and    ( ) if   one eigenvector of   corresponding to the eigenvalues 

  and    is any non zero scalar then    is also an eigenvector of 

  corresponding to the same eigenvalue   
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Proof: Since   is an eigenvector of    corresponding to the eigenvalue 

  then    ≠0   and   ( )      since    ≠0 and               

 (  )=   ( )   (  )  (  )  (  )   (  ) 

Therefore    is an eigenvector of    corresponding to the eigenvalue   

Remark(2.1.10):Corresponding to an eigenvalue   there may correspond more 

than one eigenvectors. 

 

Theorem (2.1.11) : Let  (     ) be a fuzzy finite dimensional  normed spaces 

over   and    ( ) if   an eigenvector of   .Then   cannot correspond to 

more than one eigenvalues of  . 

proof:Let be an eigenvector of    corresponding to two distinct eigenvalues 

 1 and   2 of   ,   ( )   1    and also  ( )     2   .Therefore we have 

 1      2        1     2   =0     (  1−   2)   =0 

since   0     1−   2=0     1=   2 

and   is any non zero scalar ,then    is also an eigenvector of     

corresponding to the same  eigenvector   

 

Definition (2.1.12) : [21]  Let (     ) and (     ) be  fuzzy Hilbert spaces over 

 , and let      (   ). A fuzzy Hilbert-adjoint operator    of    is the operator  

   (     )  (     )  such that :                                                                                     

     *       ( ( )    )   +      *       (    ( )  )   +     for all 

    and     . 

 Remark (2.1.13) : [21] We denoted   (   ) by   ( ). 

 

Theorem (2.1.14) : [21] (Some Properties of fuzzy Hilbert-adjoint operator)               
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 Let (     ) and (     ) be a fuzzy Hilbert spaces over  , and let               

       (   )  Then we have :  

( )    *       (  ( )    )   +      *       (   ( )  )   + for all 

    and           

(b)(   )        

(c)(  )    

Theorem (2.1.15) : [21] Let (     ) be a fuzzy Hilbert space over  , and 

    ( )  Then     if and only if     *      ( ( )  ( )  )   +     

for all                                                                                                                                 

Definition (2.1.16) :[7] Let  (     ) be a fuzzy pre-Hilbert space, where   is a 

strong  t-norm and for each          *     (     )   +                                                                                                                                         

and ‖ ‖  (   *       (     )   +)
 

  . We say that (     ) is a fuzzy 

Hilbert space if (     ) is complete  normed space. 

Definition (2.1.17) :[21] Let (     ) be a fuzzy Hilbert space over   and let 

   ( )     is said to be Normal if           . 

Theorem (2.1.18) :Let   be a normal operator on a finite dimensional 

Fuzzy Hilbert space   over    Then 

(1)       is normal 

(2)Every eigenvector of    is also eigenvector for    

Proof: 

(1) Since   is normal             

(      )      ̅     by Theorem (2.1.14) (b) 

(     )   (      )  (     )  (    ̅  )        ̅         ̅ 
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(      )  (     )  (    ̅  )   (     )         ̅        ̅  

                                                                                                                                   ̅         ̅ 

 

  (      )  (     )   (     )   (      )  

Therefore        is normal 

(2)Let   be an eigevector of    corresponding to eigenvalue   

   ( )        

   *       ( ( )  ( )  )   +     *       (    ( ( ))  )   + 

                                                      *       (      ( )  )   + 

                                      *       (      ( )  )   + 

                                      *       (   (  ( ))  )   + 

                                      *       (  ( )   ( )  )   + 

 

Since         is normal, therefore      we have  

   *       ((     )( ) (     )( )  )   +

    *       ((      ) ( ) (      ) ( )  )   + 

Since  ( )         ( )    ( )    ( )    ( )     (     )( )     

then         ,then     *       ((     )( ) (     )( )  )   +     

by theorem(2.1.15)    *       ((      ) ( ) (      ) ( )  )   +     

 (      )      then for each      (      ) ( )    

   ( )   ̅  ( )       ( )    ̅  ( )      ( )    ̅  

Therefore   is eigenvector of     and corresponding eigenvalue is 

 ̅ 
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Definition (2.1.19) :A  subspace    of a fuzzy normed space   is said to be 

Invariant under a linear operator   (     )  (     ) if  ( )     

Definition (2.1.20) : [7] Let (     ) be a fuzzy pre-Hilbert space.       is 

said to be fuzzy orthogonal  if   (     )   ( )(    ) and it is denoted by 

     

Definition (2.1.21) : [9] Let (     ) be a fuzzy pre-Hilbert space. A subset   of 

  is called fuzzy orthogonal if     , for each      . 

Lemma (2.1.22) : [7] If (     ) be a fuzzy pre-Hilbert space , then (     ) is 

non decreasing with respect to  , for each      . 

Definition (2.1.23) : [9] If   is a subset of the fuzzy pre-Hilbert space  (     ), 

then    *                +. 

Theorem (2.1.24) :[1]Let   be a non-empty subset of a fuzzy  pre-Hilbert space 

 (     ), then    is closed fuzzy subspace of    

Proof: Since  (     )   ( )              then      

Let         and            

 (     )   ( )         and 

 (     )   ( )        

     we have: 

If   0,     

  (         )          ( .    
 

 
/   .    

 

 
/) 

                                      .
 

 
/    .

 

 
/ 
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                                        ( )      ( )   ( )                                                

If   <0,  <0 

 (         )          (   (    
 

  
)     (    

 

  
)) 

                                 ( )                                                

 If   <0,     or      <0,or     ,             

 (         )   ( )                                                

           

Therefore    is a fuzzy subspace    

Let          *  + in    such that       

Let        (      )   ( )        

And       (            ) 

Since          (      )   (     ) 

   (     )   ( )  for all     

              

     is closed fuzzy subspace 

 

Theorem (2.1.25) : [1] Let (     ) be a fuzzy pre-Hilbert space . And         

(1)The relation of  Orthogonality symmetric (i.e. if        then      ) 

(2)If       then              

(3)Let     then       

(4)       

(5)            
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(6)If                 

(7)    * + for all     

(8)      * + for all     

(9)For every vector     ,we have           

Definition (2.1.26):Let   be a closed of  a fuzzy Hilbert space   and     

said that projection of      onto   if there is        

     (     )      {
 

  ‖   ‖
         } ,we write     ( ) 

 

Theorem (2.1.27): If    is subspace of a fuzzy Hilbert space  ,for     there 

exist a unique     such that       and     ( ) 

Proof: Define 〈   〉          by  〈   〉     *      (     )    +  

from theorem (1.4.8)  ,we have (  〈    〉)   is a pre-Hilbert space. Also                  

‖ ‖  (   *       (     )   +)
 

  from  corollary  (1.4.9) we have (  ‖ ‖) 

is a  normed space .   

 Since    is a fuzzy Hilbert space then  (  ‖ ‖) is complete  normed space  then  

    Hilbert space  .By using [16]  for     there exist a unique     such that 

      and     ( ) 

Then   〈     〉         then      *      (     )    +     there fore  

              in     fuzzy Hilbert space , since     ( )   then by [16] 

there is       such that 

‖   ‖     *‖   ‖     +  then 

 ‖   ‖   ‖   ‖            ‖   ‖     ‖   ‖ ,       

     
 

   ‖   ‖
 

 

   ‖   ‖
 ,            therefore 

  (     )      {
 

  ‖   ‖
         } .                  



 
28 

Theorem (2.1.28): If    is subspace of a fuzzy Hilbert space  ,then                     

            that is each     can be uniqully decomposed from       

with     ,     . 

Proof: For all     and   is subspace there exist   so that         with  

       and      such that     ( ) and                  

            also since      * + by theorem  (2.1.25)   ,there fore 

        . 

 

Theorem (2.1.29):If    is subspace of a fuzzy Hilbert space    then   is fuzzy 

closed iff       

Proof: Since       by theorem  (2.1.25)    ,we show that         

Let       then by theorem(2.1.28)       ,where     ,     since 

       and     is subspace            but        

          

Since        * + then     ,thus        there fore        thus  

      

                                                                                                                                  

Conversely suppose              (  )                          

                    

                    

Theorem (2.1.30):Let   be a closed subspace of a fuzzy Hilbert space   over 

   and let      ( ) Then   is invariant under   iff     is invariant under     

Proof: Suppose    is invariant under   

Let       .To prove that    ( )    (i.e.    ( )   )  

Let      since   is invariant under      ( )     

Since             *       ( ( )    )   +       

    *       (    ( )  )   +     Thus     ( )    
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Conversely suppose that     is invariant under   . 

Since     is closed subspace of a fuzzy Hilbert space   by theorem (2.1.24)  

and  since     is invariant under   , therefore by first case (   )  is invariant 

under (  ) but   (   )          and   (  )        Therefore   is  

invariant under  . 

 

Definition (2.1.31) :Let    be a closed subspace of a fuzzy Hilbert   over   

and  let     ( ) .We say that   is reduced by   if both   and     are 

Invariant  under    .If    is reduced by   , then some times we also say that   

reduces  . 

Theorem (2.1.32):A closed subspace   of a fuzzy Hilbert   over   reduces an 

operator   iff    is invariant under both   and   . 

Proof: Suppose    reduces an operator   .Then by the definition of reducibility 

both   and     are invariant under   by theorem (2.1.30) ,if      is invariant 

under   .Then (   ) , i.e.   is invariant    .then    is invariant under both 

 and   . 

Conversely  suppose that    is invariant under both   and     

Since   is invariant under     ,therefore by theorem (2.1.30),     is invariant  

under  (  ) ,i.e.   .Thus both   and     are invariant under   .Therefore   

reduces  . 

Definition (2.1.33) :Let   be a fuzzy normed space over    ,     ( ) and let 

  be eigenvalue of     Then set consisting of all eigenvectors of    which 

correspond  to eigenvalue   together with the vector  0 is called eigenspace of  

  corresponding to the eigenvalue   and is denoted by     

(1)Since by definition an eigenvector is non zero vector,there fore the set    

necessary contains some non zero vector. 

 (2)Since by definition of     a non zero vector   is in    iff   ( )        

Also  it  is given that the vector  0 is in     the vector 0 defintly satisfies 

The equation  ( )     therefor                                                                          

    *     ( )     +  *    (    )( )    +             
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Thus     is null space (or  kernel of linear operator       on  ). Hence    is 

a subspace of   . 

 (3)Let      since    is  a subspace of   and              since 

         ( )       ( )            is an invariant under    

from (1),(2) and (3) we have     is non zero subspace of   invariant under of  

 . 

(4)If      ( ) then    is closed subspace of        is called eigenspace of  

  ,corresponding to the eigenvalue  . 

Theorem (2.1.34):If    be a normal operator  on  n dimensional fuzzy Hilbert 

Space   over   ,then each eigenspace  reduces   

Proof:Let    belong to     the eigenspace of   and corresponding eigenvalue  

be    , so that  (  )        since   is normal then by theorem(2.1.18)  

eigenvalue for   (i.e.   (  )       ) since    is a subspace             

  (  )        is invariant under   ,but     is invariant under   ,then by 

Theorem(2.2.32)    is reduces   . 

 

2.2 Regular  value ,resolvent set,spectrum, the point  spectrum , the 

continuous  spectrum  and the residual spectrum in fuzzy  normed spaces. 

This  section deals with  regular  value ,resolvent,spectrum,the point  spectrum , 

the continuous  spectrum  and the residual spectrum  in  fuzzy normed spaces  

and some of  their properties. 

 

Definition (2.2.1):[10]Let(     ) be a fuzzy normed space.Then sequence 

*  + in   is said to fuzzy converges to   in   if for each    (   ) and each 

  0,there exist       such that  (      )       for all     (or 

eguivalently          (      )   ) 

Definition (2.2.2) :[4]A subset   of a fuzzy  normed space (     ) is said to be 

closure of  a subset    of   in case for any     there exist a sequence  *  + in 

  such that          (      )    for each   0 , 
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on the other hand a subset    of a fuzzy normed space (     ) is said to be 

dense case       

 

Definition (2.2.3) :Let  (     ) be a fuzzy normed space over the field    

where   ≠* + and  :   (   )  ,   - and   (     )  (     ) be a  

linear operator .A regular value   of    is complex number such that 

(1)  ( ) exist 

(2)   ( ) is fuzzy bounded linear operator on range of          

(3)   ( ) is defined on a set which is dense in    

Where    ( )   (  )
   (    )   call resolvent operator of    and 

The resolvent set  ( ) of    is the set of all regular value   of    

Its complement   ( )        ( ) in complex plane   is called spectrum 

of   ,A      ( ) is called a spectral value of   .  

 

Proposition(2.2.4):Let  (  ‖ ‖) be a normed space and let   be  the fuzzy  

norm defined by equation (1.3.5) for each     and      (   )  then  closure  

of  a subspace    of    with respect  to ‖ ‖ is equal to the closure of    with  

respect  . 

Proof:Suppose    is closure of    with respect to ‖ ‖ .Then for each     

there exist a sequence  *  +  in   such that         ‖    ‖    .Hence for 

each   0           (      )    .Thus each element of    is closure of    

with respect  to   . 

Conversely ,suppose      is the closure of    with respect to   .Then for each  

      there exists sequence  *  +  in    such that for each    0 

        (      )    .Hence         ‖    ‖    .thus each element of 
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   the closure of  with respect to ‖ ‖ then  the closure of a subspace    of     

With  respect  to ‖ ‖ is equal  to  the closure of    with respect to   . 

 

Theorem(2.2.5):[13]Let   be a complex Banach space  and        is 

bounded operator , and      ( ) . Assume that (a)   is closed or(b)   is 

bounded  then   ( ) is defined on  the whole space    and is bounded. 

 

Theorem(2.2.6):Let (  ‖ ‖) be a  Banach space over the field   where   ≠* + 

       be a linear operator on   ,   be the fuzzy norm defined  by equation 

 (`1.3.5)  and  let      ( ) with respect to (     ) if    is fuzzy bounded on 

   then   ( )  is fuzzy bounded on  (     )   

Proof: Suppose    is fuzzy bounded on   then there exist      such that for  

each     and      (   ) ,    ( ( )  )    .  
 

 
/     Hence for  each  

     and  
 

  ‖ ( )‖
 

 

 
 

 
 ‖ ‖

 .Therefore   is  
 

  ‖ ( )‖
 

 

  ‖  ‖
  there exist 

    such that  ‖ ( )‖    ‖ ‖  fore  each      there fore   is bounded  

linear operator  in    moreover , since      ( ) with  respect  to (     ) 

Then    ( )  is  exists and    ( )  is bounded on range      and  rang(  ) 

is dense  in  (     ) by proposition (2.2.4)  rang(  ) is dense in (  ‖ ‖) 

that   belong  to resolvent set of  bounded linear operator   by  theorem 

(2.2.5)   ( )  is bounded linear operator  in  (  ‖ ‖) then there exist       

Such that for each      ‖  ( )( )‖    ‖ ‖  then for each   0  and for each 

        ‖  ( )( )‖      ‖ ‖   
 

  ‖  ( )( )‖
 

 

  ‖  ‖
   

 

  ‖  ( )( )‖
 

 

 
 

 
 ‖ ‖

   then there exist    ˃0 such that for each      and    
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  (   )  ,    (  ( )( )  )    .  
 

 
/   there fore   ( ) is fuzzy bounded  

on (     ). 

 

Proposition(2.2.7):Let  (  ‖ ‖) be a normed space and let   be  the fuzzy  

norm defined by equation (1.3.7) for each     and      (   )  then  closure  

of  a subspace    of    with respect  to ‖ ‖ is equal to the closure of    with  

respect    

Proof:Suppose    is closure of    with respect to ‖ ‖ .Then for each     

there  

exist a sequence  *  +  in   such that         ‖    ‖    .That is for  

  (   ) there exist a positive integer     such that  ‖    ‖     for each  

     .There fore   (      )     for each       . Thus  

        (      )    for each   ˃0  there fore ,each element of    belong  

to the closure  of    with  respect to   . 

Conversely,suppose    is closure of    with respect to   .Then for each      

there  exist a sequence  *  +  in   such that for each     (   )   

        (      )    .fix    (   )  ,thus         (      )    ˃   

For each    0 .That is for each    0 ,there exist      ,such that  

 (      ) ˃    for each        so ‖    ‖     for each       .Hence  

       ‖    ‖    .Thus each element of     is closure of    with respect to 

 ‖ ‖ . 

Then  the closure of  a subspace  of    with respect  to ‖ ‖ is equal to  

the closure of    with respect to     
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Theorem(2.2.8):Let (  ‖ ‖) be  Banach space over the field    where   ≠* + 

       be a linear operator ,   be the fuzzy norm defined  by equation 

 (`1.3.7)  and  let      ( ) with respect to (     ) if    is fuzzy bounded on 

   then   ( )  is fuzzy bounded on  (     )   

 

Proof: Suppose    is fuzzy bounded on   then there exist       such that for  

each     and      (   ) ,     ( ( )  )    .  
 

  
/   Assume for the  

contrary  there  exist        such that  ‖ (  )‖    ‖  ‖ .Let ‖ (  )‖     

Hence  ,    ( (  )   )=0  but   (       )=1 this is a contradiction .Then for 

each      there exist     0 such that  ‖ ( )‖     ‖ ‖  .Then   is bounded 

linear operator  in     Moreover , since      ( ) with  respect  to (     ) 

Then    ( )  is  exists and    ( )  is bounded on range      and  rang(  ) 

is dense  in  (     ) by proposition (2.2.7)  rang(  ) is dense in (  ‖ ‖) 

thus   belong  to resolvent set of  bounded linear operator   by  theorem 

(2.2.5)   ( )  is bounded linear operator  in  (  ‖ ‖) then there exist    ˃0   

Such that for each      ‖  ( )( )‖    ‖ ‖ .Let          (   ) then 

we  have  two case : 

 

(1)If    ‖  ( )( )‖  then   (  ( )( )  )  1 since  ‖  ( )( )‖  ‖  ‖ 

then  either      ‖  ‖  or  ‖  ‖     .If     ‖  ‖  then  (    )    .Hence 

 (  ( )( )  )  1˃  (    )    .  
 

 
/    .If  ‖  ‖     .Thus for each  

     ,  (  ( )( )  )    (    )    
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(2)If ‖  ( )( )‖     then  (  ( )( )  )    ,since  ‖  ( )( )‖  ‖  ‖ 

 (    )    .Hence  (  ( )( )  )    .  
 

 
/    .There fore   ( ) is 

fuzzy bounded on (     ). 

 

Theorem(2.2.9):Let (  ‖ ‖) be  Banach space over the field   where   ≠* + 

       be a linear operator ,   be the fuzzy norm defined  by equation 

 (`1.4.5)  and  let      ( ) with respect to (     ) if    is fuzzy bounded on 

  and          (    )     for each     (   ),Then 

         (  ( )(  )  )    . 

Proof: Since          (    )     then for each    (   ) and for each   0 

There exist       such that   (    )       for all      

Since    is fuzzy bounded on (     ) and     ( ) with respect to (     ) 

Then  by  Theorem(2.2.6)   ( ) is fuzzy bounded on (     ) .Hence 

There exist   ˃0 such that for each     and      (   ) 

,    (  ( )( )  )    .  
 

 
/ ,there fore  (  ( )(  )  )    .   

 

 
/  

for all      since that   (    )       for all     ,   0 

Put     
 

 
  0  then  (  ( )(  )  )    .   

 

 
/   (     )      

for all      ,  then   (  ( )(  )  )      , for all      

there fore          (  ( )(  )  )   . 

 

Theorem(2.2.10):Let (  ‖ ‖) be  Banach space over the field   where   ≠* + 

       be a linear operator ,   be the fuzzy norm defined  by equation 

 (`1.3.7)  and  let      ( ) with respect to (     ) if    is fuzzy bounded on 
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  and          (    )     for each     (   ),Then   

         (  ( )(  )  )    . 

 

Proof: Same  is  proof  Theorem(2.2.9) 

Example (2.2.11):Let  (     ) be a fuzzy normed space over field   where  

  ≠* + .It is easy to check that   ( )    * + and ( )    * + ,  ( ) =* +  

 ( )  * + ,where   is identity operator and   is the zero operator defined on    

 

Definition (2.2.12) :[18] Let  (     ) be a fuzzy normed space . We define  

the open  ball   (     ) and closed ball  ,     - with center      and 

radius        ,as follows : For       

 (     )  *       (     )     +  

 ,     -   *       (     )     +  

 

 

Definition (2.2.13) :[15] Let  (     ) be a fuzzy normed space .   subset of     

Said  to be open  set ,if  for all       ,     (   ) ,   (   )  such that 

 (     )    . 

Theorem(2.2.14) :[13] Let (  ‖ ‖) be  Banach space over the field   and  

      is bounded operator then   ( ) is compact and lies in the disk 

given by | |  ‖ ‖ hence the resolvent set  ( ) of    is not empty. 

 

Theorem(2.2.15) : Let (  ‖ ‖) be  Banach space over the field   where  

  ≠* + and let   (     )  (     ) be fuzzy bounded linear operator on   ,    
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be the fuzzy norm defined  by equation (`1.3.5).Then  ( ) is nonempty set. 

 

Proof: Suppose    is fuzzy bounded on   then there exist      such that for  

each     and      (   ) ,    ( ( )  )   .  
 

 
/     Hence for  each  

     and  
 

  ‖ ( )‖
 

 

 
 

 
 ‖ ‖

 .There fore   is  
 

  ‖ ( )‖
 

 

  ‖  ‖
  there exist 

    such that  ‖ ( )‖    ‖ ‖  fore  each      there fore   is bounded  

linear operator  in  (  ‖ ‖) then by Theorem(2.2.14)  the resolvent set of    is  

nonempty  ,so there exist      such that   ( ) exists ,   ( ) is bounded on 

 range     and range     is dense in (  ‖ ‖) then by Theorem(2.2.5)   ( )  is 

bounded linear operator  in  (  ‖ ‖) then there exist       

Such that for each      ‖  ( )( )‖    ‖ ‖  then for each   0  and for each 

        ‖  ( )( )‖      ‖ ‖   
 

  ‖  ( )( )‖
 

 

  ‖  ‖
   

 

  ‖  ( )( )‖
 

 

 
 

 
 ‖ ‖

   then there exist    ˃0 such that for each      and    

  (   )  ,    (  ( )( )  )    .  
 

 
/   there fore   ( ) is fuzzy bounded  

on (     ) since range     is dense in (  ‖ ‖) then by proposition(2.2.4) range 

     is dense in (     ) since   ( ) exists then   ( ) is nonempty set. 

 

 

Theorem(2.2.16) :[13] Let (  ‖ ‖) be  Banach space over the field   and   is  

bounded linear operator on   then  ( ) is open set and hence  ( ) is closed set 

 

Theorem(2.2.17) : Let (  ‖ ‖) be  Banach space over the field   where  
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  ≠* + and let   (     )  (     ) be fuzzy bounded linear operator on   ,    

be the fuzzy norm defined  by equation (`1.3.7).Then  ( ) is open  set with  

respect  fuzzy norm   and hence  ( ) is closed set with respect  fuzzy norm   

 

Proof: Suppose    is fuzzy bounded on   then there exist       such that for  

each     and      (   ) ,     ( ( )  )    .  
 

  
/   Assume for the  

contrary  there  exist        such that  ‖ (  )‖    ‖  ‖ .Let ‖ (  )‖     

Hence  ,    ( (  )   )=0  but   (       )=1 this is a contradiction .Then for 

each      there exist     0 such that  ‖ ( )‖     ‖ ‖  .Then   is bounded 

linear operator  in  (  ‖ ‖) then by Theorem(2.2.16)  ( ) is open set then 

for each      ( ) there exist     such that  (   )    ( )  

 (   )  *     |   |   + 

To prove  that   (   )   (     ) ,such that     and        

Let       (   ) then  |    |    then   (      )         there fore 

     (     ) then   (   )   (     ) , such that     and       

Let     (     )  then    (      )       then |    |    there fore 

     (   ) then  (     )    (   ) thus  (   )   (     )  such that      

and       thus  (     )    ( ) then  ( ) is open set with respect  fuzzy  

norm    also since  ( )        ( ) then   ( ) is closed set with respect 

 fuzzy norm   .  

 

 

 Theorem(2.2.18) : Let (  ‖ ‖) be  Banach space over the field   where  

  ≠* + and let   (     )  (     ) be fuzzy bounded linear operator on   ,    



 
39 

be the fuzzy norm defined  by equation (`1.3.5) and       ( ) then 

 

(a)The  resolvent     of    satisfies resolvent equation  

       (   )     

(b)    commutes with any     ( ) which commutes with   

(c) We have            

Proof: (a)Suppose    is fuzzy bounded on   then there exist      such that  

for each     and      (   ) ,    ( ( )  )    .  
 

 
/     Hence for  each  

     and  
 

  ‖ ( )‖
 

 

 
 

 
 ‖ ‖

 .There fore   is  
 

  ‖ ( )‖
 

 

  ‖  ‖
  there exist 

    such that  ‖ ( )‖    ‖ ‖  fore  each      there fore   is bounded  

linear operator  in  (  ‖ ‖) from theorem (2.2.4)and (2.2.5) the range of       

is all of    .Hence         where    the identity operator on   .Also        

 

 

Consequently          (    )    (    )    (     )   

                                                                                                ,      (     )-    

                                                                                    (   )        

(b) By assumption ,       .Hence            .Using               

We thus  obtain  

                                       

(c)    commutes with    by  (b) .Hence    commutes with    by  (b) .      
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Definition (2.2.19) : Let (     )  be a fuzzy normed space over the field 

   where   ≠ {0} and T:    be  a linear operator  the spectrum of     is 

partitioned into three disjoint sets as follows:- 

 

 

 (1) The point spectrum   ( )  is the set such that   ( )does not exists. 

    ( )  is called an eigenvalue of       

 

(2) The continuous spectrum   ( )   is the set such that   ( ) exists and 

satisfying the condition (3) but not the condition (2) in definition (2.2.3). 

 

 

 (3) The residual spectrum    ( )  is the set such that   ( ) exists (and may be 

fuzzy bounded or not) but does not satisfy the condition (3) in definition (2.2.3). 

 

 

Examples(2.2.20): 

(1) Let (     ) be a fuzzy normed space over the field     where   ≠ {0}   . 

Then    ( ) ={1}=   (I) where I is the identity operator defined on X. On the 

other hand,   ( ) ={1}=  (O) , where O is the zero operator defined on   . 

 

 

(2) Let       , that is    *  (       ) ∑ |  |
  

            + 
 

For      , defined ‖ ‖  〈   〉
 

  (∑ |  |
  

   )
 

  .Let   :    (   )  ,   -  

Define fuzzy norm by equation(1.3.7).Consider    ( 1  2  )  (   1  2  ) for 

 

 all ( 1  2  )    2 .We shall show that     ( ) .To do that , it is clear   is  

bounded  linear  operator  with  respect  to ‖ ‖. Moreover  by  using  the same  

last steps in proposition (2.2.7) one can get    is fuzzy bounded on    . On the  

other hand, 

 

         is one to one . Then      ( )     exists.Next,we show that  

 

 ( )  *       (          )+ is not dense in   . To do this, let      

 

such that    (       )  and let         and *  + be any sequence in  

 

rang( ), that is,   (    
 ,  

   ).Since  

                                
‖(    

    
   )  (       )‖  ‖(     

    
   )‖ 
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                                                         (   |  
 |  |  

 |     )
 

 , for each n then 

 

      ‖(     
    

   )‖ for any choose for   
    

    Hence  

 
 ((    

    
   )  (       )    )   ((     

    
   )    )    for each n.  

 

So         (        )    Thus for any sequence *  +  in  ( ) there  

 

exists  =0.3>0 such that         (        )    so   not belong to the  

 

closure of  ( ). Hence  ( ) is not dense in  2   . Then     ( ) .  
 

 

                                                                                                                                                                                         

Definition (2.2.21)[21] : Let   be a fuzzy Hilbert space over  , and let  

    ( ).   is said to be self-adjoint if      .                                                            

The fuzzy Hilber -adjoint operator    is defined by :                                                                                           

             *      ( ( )    )   +     *      (    ( )  )   +                                                                         

If   is self-adjoint we have :                                                                                              

             *       ( ( )    )   +      *       (   ( )  )   +. 

Theorem (2.2.22):[22] Let    be a Hilbert space over   and    ( )be a self-

adjoint operator. Then   ( )   . 

 

 

Theorem (2.2.23): Let    be a fuzzy Hilbert space over   and     ( )be a 

self-adjoint operator. Then   ( )   . 

 

Proof:Suppose     ( ) then   ( ) exists. 

 Define 〈   〉          by  〈   〉     *      (     )    +  from 

theorem (1.4.8)  ,we have (  〈    〉)   is a pre-Hilbert space. Also                  

‖ ‖  (   *       (     )   +)
 

  from  corollary  (1.4.9) we have (  ‖ ‖) 

is a  normed space    

 since    is a fuzzy Hilbert space then  (  ‖ ‖) is complete  normed space  then  

  is  Hilbert space since     ( ) be a self-adjoint operator.Then 
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〈 ( )  〉      *       ( ( )    )   +      *       (   ( )  )   + 

                                    〈   ( )〉   

 

Hence    ( )be a self-adjoint operator and   is a  Hilbert space.     

From theorem(2.2.22)we have   ( )    .Then   ( ) not exists and this is 

contradiction.Hence   ( )    such that   be a fuzzy Hilbert space. 

 

 

Examples(2.2.24): 

 

(1) Let       nd   (     )  (     ) Define 

By      ( 1  2  )  (   1  2  ) for all ( 1  2  )    2 and 

   :    (   )  ,   - Define fuzzy norm by equation(1.3.7) 

Suppose  ( 1  2  )    ( 1  2  )  (   1  2  )   ( 1  2  ) 

(   1  2   )  (  1   2,    ) implies     1,  1   2 ,  2     ,…. 

If      we divide by    and conclude  1=  2=….=0 .If      we also  

  1=  2=….=0 .   is linear operator has no eigenvalue . Consequently 

   ( )    .  

(2) Let       nd   (     )  (     ) Define 

By      ( 1  2  )  (          ) for all ( 1  2  )    2 and Define fuzzy norm 

by equation(1.3.7). 

Suppose  ( 1  2  )    ( 1  2,    )  (          )  (  1   2,      ) is  

equivalent  to    1= 2 ,   2=   ,           

consequently ,   (  )   
  with          1 for all   ≥2 .This sequence  

belongs  to      if and only if  ∑ |  |
  

    =∑ |  || |
   

    converges or  
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equivalently  | |    then  (   )      (   )         , 

          ( )  *      (   )      +   (     ). 
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This chapter deals with the focuss will be on discussing  properties of  fuzzy 

compact  linear operator  on fuzzy normed spaces.  It consists of  three  sections. 

Section one deals with  Compact  set in fuzzy normed space and some of  their 

properties. Section two deals with fuzzy Compact  linear operator on  fuzzy 

normed space and some of  their properties. Section  three we consider  spectral  

properties of  fuzzy compact  linear  operator        on fuzzy normed  

spaces  . For this purpose we shall again use the operator         and   

spectral value . 

 

   

CHAPTER  THREE SPECTRAL 
PROPERTIES OF FUZZY 

COMPACT LINEAR OPERATOR 

ON FUZZY NORMED SPACES 
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3.1 Compact  set in fuzzy normed space 

This  section deals with  Compact  set in fuzzy normed space and some of  their 

properties.  

 

Definition (3.1.1) : [4] Let (     ) be a fuzzy normed linear space.                

A subset   of   is said to be compact if any sequence *  + in   has a  

subsequence converging to an element of   . 

 

  Lemma (3.1.2) : [2] Let (     ) be a fuzzy normed space satisfying the 

condition (   ) and *          + be a finite set of linearly independent 

vectors of  . Then for each   (   ) there exists a constant      such that 

for any scalars            ,  

‖                ‖    ∑|  |

 

   

 

Where ‖ ‖  is defined in the Theorem (1.3.8). 

Definition (3.1.3) : [20] Let (     ) be a fuzzy normed linear space and  

   .   is said to be fuzzy bounded if for each  ,      ,        

such that   (   )                

 

Theorem (3.1.4) :Let (     ) fuzzy normed linear space (     ) satisfying the 

conditions (   ) a subset   of   is compact then   is closed and fuzzy 

bounded in (     ). 

 Proof :    Suppose that   is compact we have to show that   is closed 

 

and  bounded .Let       .Then there exist sequence *  + in   such that 
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         (      )    since    is compact ,there exist a subsequence *   +  

 

of *  +converges to a point in  .Again *  +    so *   +    and hence   

     then       there fore   is closed . If possible suppose that   is not  

 

bounded then     ,0<   1 such that for each positive integer   ,         
 
such that       (    )      .since   is compact  there exist a subsequence 
  

*   + of *  + converging to element       thus          (       )    

 

      .Also  (      )      

 

Now        (      )    (              )  where         

 
      (       )    (      )  

 

             (       )          (      )   

 
          by (   ) and (   )       which is contradiction  
Hence   is bounded 
  

 Theorem (3.1.5) : In a finite dimensional fuzzy normed linear space (     ) 

satisfying the conditions (   )     (   ) a subset   of   is compact if and 

only if   is closed and fuzzy bounded in (     ).   

Proof :   First we suppose that   is compact we have to show that   is closed 

 

and  bounded .Let       .Then there exist sequence *  + in   such that 

 

         (      )    since    is compact ,there exist a subsequence *   +  

 

of *  +converges to a point in  .Again *  +    so *   +    and hence   

     then       there fore   is closed . If possible suppose that   is not  

 

bounded then     ,0<   1 such that for each positive integer   ,         
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such that       (    )      .since   is compact  there exist a subsequence 
  

*   + of *  + converging to element       thus          (       )    

 

      .Also  (      )      

 

Now        (      )    (              )  where         

 

      (       )    (      )  

 

             (       )          (      )   

 
          by (   ) and (   )       which is contradiction  
Hence   is bounded 
 

  part (2) : In this part, we suppose that   is closed and fuzzy bounded in the 

finite dimensional fuzzy normed linear space (     ). To show   is compact, 

consider *  + an arbitrary sequence in  . Since   finite dimensional,       

 let dim     and *          + be a basis of  . So for each   , 

    
    

      
     such that  

                    
      

        
              

Since   is fuzzy bounded, *  + is also fuzzy bounded. So        and    

where        such that  

                           (     )                         (2.1) 

 Let ‖ ‖    *   (   )   +    (   )  So by (2.1) we have 

                                           ‖ ‖                           ...     (2.2)  

Since *          + is linearly independent, by Lemma (2.3.1),       such 

that            , 

           ‖  ‖   ‖∑   
   

 
   ‖

  
  ∑ |  

 |            
        (2.3)  
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From (2.2) and (2.3) we have   ∑ |  
 | 

    
  

 
    for             

 

 

 

  For each  ,   |  
 |  ∑ |  

 | 
    

  

 
    for           

  *  
 + is fuzzy bounded sequence, for each                                                        

  *  
 + has a fuzzy convergent subsequence say *  

  +.                                                      

 *  
  +, *  

  +, … , *  
  +  all are fuzzy convergent.                                                        

Let        
       

         
      and                                                               

           
   ,            

   , … ,            
    and                                                    

                  .                                                                                

Now      , we have                                                                                             

         (        )   (∑   
     ∑        ) 

 
   

 
    

                                 (∑ (  
   

      )     ) 

                                 ((  
     )    

 

 
)         ((  

     )   
 

 
) 

                                 (   
 

 |  
     |

)          (   
 

 |  
     |

). 

Since       
 

 |  
     |

  , we see that        (   
 

 |  
     |

)                            

         (        )                                                                                    

         (        )                              …   (2.4)                                    

Thus from (2.4) we see that                                                                                   
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                [ since   is closed ].                                                         

    is compact. 

 

Theorem (3.1.6) :[21] ( Riesz Lemma ) Let   be closed proper subspace of a  

fuzzy normed  linear space (     ) and let   be a real number such that  

       Then there exists a vector       such that   (     )    and   

 (        )    for all      

Proof : Since   is proper subspace of  ,        . 

Denote         *      (       )    +  

We claim that        i.e.      *      (        )    +            

   for a given         ( )    such that  

  *      (        )    +      (      )     

Choose   (   ) such that   (      )        i.e.    (         )  

Since     is arbitrary, it follows that   is in the closure of   . 

Since   is closed, it implies that     which is a contradiction.         

Thus       We now take    (   )  So  
 

 
    Thus for some      , we  

have     *      (       )   +     
 

 
     …    (2.5) 

Let    
    

  
 . Now (     )   ( 

    

  
 , 1). 

                           i.e.      (     )   (        )       …          (2.6) 

Now    *      (        )    +      (        )     

From (2.6) we have  (     )     

Now  for      , 

 *      (       )   +    *     (             )    + 

                                                           
 

  
 *     (            )    +  
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i.e.  *     (          )    +    
 

  
 (                  ) 

    {      (   –     )    }        by (2.5) 

i.e.       (   –     )       (   –     )              

 

Theorem (3.1.7) :[21] Let (     ) be a fuzzy normed linear space and        

If suppose that   *      (   )   + is compact, then   is finite  

dimensional.   

Proof : If possible suppose that dim      Take      such that  

 (    )   . Suppose    is the subspace of   generated by   .  

Since dim       it is a closed and proper subset of  .  

Thus by the Lemma (3.1.6),  

                  (     )          (        
 

 
)   . The elements 

      generate a two dimensional proper closed subspace of                     

By the Lemma (3.1.6),         with   (    )     such that  

                       .       
 

 
/          .       

 

 
/     

Proceeding in the same way, we obtain a sequence *  + of elements  

      such that  (      )          .       
 

 
/     (   )           

It follows that  neither the sequence  *  + nor its any subsequence  

converges. This contradicts the compactness of  . Hence dim   is finite 

dimensional. 
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  3.2 Fuzzy compact  linear operator on fuzzy normed space 

 This  section deals with fuzzy Compact  linear operator on  fuzzy normed space 

and some of  their properties.  

 

Definition(3.2.1):Let   and   be a fuzzy normed spaces with norm   .An 

 operator        is called  fuzzy compact linear operator if  linear and if for  

every fuzzy bounded sub set   of    that  ( ) is compact in  . 

 

Definition (3.2.2) :[21] Let (      ) and (      ) be a fuzzy normed spaces 

over the same field  . The operator   (      )  (      ) is said to be fuzzy  

continuous at      if for every   (   ) and all     there exist                    

  (   ) and     such that for all    :   

                (       )            ( ( )   (  )  )      . 

 

Theorem (3.2.3) : [19] Let   (      )  (      ) be a linear operator. Then   

is fuzzy bounded if and only if   is fuzzy continuous . 

Theorem (3.2.4):[17] Let     be fuzzy normed spaces and let       be a 

linear function. If   is a fuzzy continuous at 0 then it is fuzzy continuous at 

every point.  

 

Lemma (3.2.5):Let      be fuzzy normed spaces and space  (     ) satisfying 

the conditions (   ) .Then every fuzzy compact linear operator         is 

fuzzy continuous  and  hence  fuzzy bounded. 

 

 

Proof :Let   is fuzzy bounded sub set of    and      then     

 

Let   is not fuzzy continuous at 0 ,then     (   ) and          (   ) and 

    such that  
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                (      )            ( ( )   ( )  )       

   ( ( )  )        since       ( )   (  ) 

Since        fuzzy compact linear operator  we have  ( ) is compact in 

(     ) from theorem (3.1.4) we have  ( ) is bounded in   .since         

 (  )   ( ) then  ( )   ( ) since   ( ( )  )       and   (   ) 

There fore  ( ) is not bounded which is contradiction then   is  fuzzy 

continuous at 0 from theorem(3.2.4) we have   is fuzzy continuous at every 

point  there fore     is fuzzy continuous , also from theorem(3.2.3) we have   is 

fuzzy bounded. 

 

Theorem (3.2.6): Let      be fuzzy normed spaces and       is linear 

operator   .Then   is fuzzy compact linear operator if  and  only if it maps every 

fuzzy bounded  sequence  *  + in   onto a sequence * (  )+ in   which has a  

fuzzy convergent subsequence. 

 

 

Proof :If   is  fuzzy compact linear operator and *  + is fuzzy bounded ,then  

 

the closure of  * (  )+ in   is compact and from definition (3.1.1) shows that 

* (  )+ contains a fuzzy convergent subsequence. 

 

Conversely,assume that  every  fuzzy bounded sequence *  + contains a  

 

subsequence *   +  such that * (   )+ fuzzy converges in  .Consider any 

 

 fuzzy bounded  subset     ,and let *  + be any sequence in  (  ) .Then 

 

      (  ) for some       and *  + is fuzzy bounded since   is fuzzy  

 

bounded . By assumption , * (  )+ contains a fuzzy convergent subsequence. 

 

 Hence  ( ) by definition (3.1.1) because *  + in  (  ) was arbitrary. By  

 

definition , this shows  that    is fuzzy compact linear operator. 

 

 

Theorem (3.2.7)[17]: Let *  + , {  } be a sequences in fuzzy normed space   

and for all     (   ) there exist   (   )  such that        

  

(1)Every sequence in   has a unique fuzzy convergence.  
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(2)If       then       ,    * +, (   is field) 

  

(3)If      ,      then    +        

 

 

Theorem (3.2.8):Let   and   be a fuzzy normed spaces and for all     (   ) 
there exist   (   )  such that        and         is fuzzy compact 

linear operator where        .Then       is fuzzy compact linear operator 

and also     is fuzzy compact linear operator ,where    any scalar     * +,          

(   is field and       ). 

 

 

Proof :Let *  + fuzzy bounded sequence in fuzzy normed space   .Since 

 

          is fuzzy compact linear operator where       .Then from  

 

theorem (3.2.6) we have  *  + contains a subsequence *   +  such that  

 

*  (   )+ and *  (   )+ are fuzzy converges in   ,then from theorem (3.2.7)  

 

we have *  (   )    (   )+ is fuzzy converges in     *(     )(   )+ is 

 

 fuzzy converges in   ,there fore from theorem (3.2.6) we have       is fuzzy  

compact  linear operator . 

 

Also since *  (   )+ is fuzzy converges in   where      .Then by theorem  

 

(3.2.7) *   (   )+ is fuzzy converges in   where where    any scalar  

 

      * +,  (   is field).Then from theorem (3.2.6) we have      is fuzzy  

 

compact linear operator , where    any scalar     * +, (   is field and 

      ). 

 

Theorem (3.2.9): Let   and   be a fuzzy normed spaces and space 

 (     ) satisfying the conditions (   )    (   ) and       is linear 

operator  .Then if    fuzzy bounded and    is finite dimensional ,the operator   

is fuzzy compact. 

 

Proof : Let *  + be any fuzzy bounded sequence in fuzzy normed space   . 
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Then                such that  (    )      ,      

 

Also  since   fuzzy bounded then there exist      such that for each 

 

       ( ( )   )    .  
  

  
/           Since  (    )      ,     

 

      (    )   .
  

  
    /   .

  

  
 
 

  
/ ,     

 

Put    
  

  
       ,       .   

 

  
/      ,      

 

Since  ( ( )   )    .  
  

 
/                ( (  )  )    .   

 

  
/  

 

Since  .   
 

  
/      ,        ( (  )  )      ,      

 

      ( (  )  )    ( (
  
  
)   )    (

 

  
 (  )  )    ( (  )    ) 

Put             

 

Then                 such that  ( (  )   )      ,     ,there fore  

 

* (  )+ is fuzzy bounded in   since   is finite dimensional then from theorem  

 

(3.1.5) we have * (  )+ is compact .It follows that * (  )+ has a fuzzy  

 

convergent  subsequence. Since *  + was an arbitrary fuzzy bounded sequence 

in   ,the operator   is fuzzy compact by theorem (3.2.5). 

 

 

3.3 Spectral  Properties Of  Fuzzy Compact  Linear  Operator  On Fuzzy 

Normed  Spaces 

 

In this section we consider  spectral  properties of  fuzzy compact  linear  

operator        on fuzzy normed  spaces  . For this purpose we shall again 

use the operator         and   spectral value . 

 

Theorem (3.3.1):Let       be a fuzzy compact linear operator on a fuzzy 

normed spaces   . Then for every     and   eigenvalue then null space 

(eigenspace)  (  ) of          is finite dimensional . 
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Proof:We show that   *      (   )   + is compact in  (  ) and then 

apply  theorem(3.1.7). 

 

Let *  + is fuzzy bounded such that          (    )      ,      

 

Since  (    )    ,     then *  +    ,since *  + is fuzzy bounded and  

 

      is fuzzy compact operator from theorem (3.2.6),then * (  )+  
 

has fuzzy convergent subsequence * (   )+ . Now       (  ) implies 

 

  (  )   (  )    (  )    ,so that    
 

 
 (  ) because     .  

 

Consequently, *   +  *
 

 
 (   )+ from theorem (3.2.6) we have *   + is fuzzy  

 

converges .Let   point converges (e.i. *   +   ) .Since     and   fuzzy  

 

normed space  we have  (   )     ,so that      .Hence   is compact by  

 

definition(3.1.1) because *  +  was arbitrary and *  +    .This proves  (  )  
 

is finite  dimensional by theorem(3.1.7). 

 

 

 

Lemma (3.3.2): Let       be a fuzzy compact linear operator  and      
  be a fuzzy bounded linear operator  on a fuzzy normed spaces   . 

Then    and     are fuzzy compact linear operator. 

 

Proof:Let     be any fuzzy bounded set .Since   is fuzzy bounded linear 

operator  there fore               such that 

 

 ( ( )  )    (  
 

 
)           

 

Since   is fuzzy bounded set then                  such that 

 

  (     )       ,       . 

 

      (     )   .
 

 
     /   .

  

 
 
  

 
/ ,       . 
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Put   
  

 
      .Since   is fuzzy bounded linear operator  there fore  

             such that 

 

 ( ( )  )    (  
 

 
)           

 

Then   ( ( )   )    .  
  

 
/   .

  

 
 
  

 
/          ( ( )   )       

 

      ( ( )   )   . .
  
 
/    /   (

 

 
 (  )   )   ( (  )    ) 

 

Put               .Let     (  ) .Hence                 such that 

 (    )       ,    ( ) .Then  ( ) is fuzzy bounded set .Since   is 

fuzzy compact  operator  then   ( ( )) is compact in  .Since 

  ( ( ))     ( ) then   ( ) is compact in   there fore    is fuzzy compact  

linear operator  by definition(3.2.1). 

We prove that    is fuzzy compact linear operator .Let *  + be any fuzzy 

 bounded  sequence in  . Since   is fuzzy compact linear operator then by  

theorem (3.2.8) * (  )+ has convergent subsequence * (   )+ ,since   is fuzzy  

bounded  then            , such that  

 ( ( )  )    (  
 

 
)           

 

Since * (   )+ is fuzzy converges      * (   )+       

   (   )               such that   ( (   )      )      ,       

 

   Since    ( ( )  )    .  
 

 
/            (   )      .Hence 

 

                    ( ( (   )   )   )    . (   )    
  

 
/  

 

Put    
  

 
      . Then   ( (   )      )      ,         
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   ( ( (   )   )   )      ,        (  (   ))   ( )   )       

 

      .Hence *  (   )+   ( ) .Hence *  (  )+ has fuzzy convergent  

 

sequence .There fore    is fuzzy compact operator by theorem(3.2.8). 

 

Theorem(3.3.3)(Null spaces):In theorem (3.3.1) 

  

    ( (  
 ))             

 

Proof:   
  (    )  ∑ ( 

 
)   

   (  )    (  )    ∑ ( 
 
)     

    

This can be written  

    
        ,    (  )   

Where          and    denotes the sum on the right.   is fuzzy compact 

 and   is fuzzy bounded  since   is bounded by theorem (3.2.5). Hence    fuzzy 

compact by lemma (3.3.2), so that we obtain   

     ( (  
 ))             

 

By Appyling theorem (3.3.1). 

 

       

Theorem(3.3.4):[13]Let       be a  compact linear operator on a normed 

space    .Then for every     the range of       −     is closed. 

 

Theorem(3.3.5):Let       be a fuzzy compact linear operator on a  fuzzy 

normed space    where norm defined by equation(1.3.7) .Then for every     

the range of       −     is closed in   . 

Proof:Let    *    ‖ ‖   + then   is bounded in   with respect ‖ ‖   

 (   )=1. 

Let   (   )            −        (   )    –   then  

 (   )    –         there fore   is fuzzy bounded in  . 
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Since   is fuzzy compact linear operator from definition(3.2.1) we have  ( )  

is compact in fuzzy normed space    . 

To prove   ( ) is compact in   with  to respect ‖ ‖. 

Let *  + is sequence in  ( ). Since  ( ) is compact in (     ) then  ( ) has  

subsequence {   } converging to element of   ( ) (i.e. {   }        ( ) ) 

          (       )     for each       . Fix    (   ) thus  

        (       )      for each     .That is for each     there exist  

      such that   (       )    for each       .Hence  

       ‖     ‖    .There fore  ( ) is compact in   with  to respct ‖ ‖. 

Hence   is compact linear operator in   with  to respect ‖ ‖. From theorem 

 (3.3.4) we have  range  of       −     is closed in   with  to respect ‖ ‖ .Also 

 from theorem(2.2.7) We have  range  of       −     is closed in   with to 

        . 
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فً ْذِ انزصانة َتُأل بعض خصائص نُظزٌة الاطٍاف نهًؤثز انخطً انًعزف عهى انفضاء انًعٍاري 

انضبابً انذي ٌعتبز تٕصٍع نُظزٌة الاطٍاف نهًؤثز انخطً انًعزف عهى انفضاء انًعٍاري .حٍث تقذو 

تعارٌف ٔانًبزُْات الاصاصٍة فً انفضاء انًعٍاري انضبابً ٔانفضاء انضبابً ٔانفضاء انذراصة بعض ان

ْهبزت الابتذائً انضبابً انذي ٌكَٕاٌ تٕصٍعا نهفضائٍٍ انًعٍاري ْٔهبزت الابتذائً ٔكذنك قذيُا 

تعارٌف انتً تتعهق بُظزٌة انطٍف نهًؤثز انخطً انًعزف عهى انفضاء انًعٍاري انضبابً ٔيٍ ْذِ 

نتعارٌف  يتجّ انذاتً ٔقًٍة انذاتٍة ٔانطٍف ٔانطٍف انُقطً ٔانطٍف انًضتًز ٔانطٍف انًتبقً ٔ قًٍة ا

انًُتظًة ٔيجًٕعة انًحههة  ٔبعض انًبزُْات انًتعهقة فٍٓى ايا فً انفصم الاخٍز َتُأل بعض 

عهقة فٍّ ٔكًا انتعارٌف حٕل انًجًٕعة انًتزاصة فً انفضاء انًعٍاري انضبابً ٔبعض انًبزُْات انًت

قذيُا انتعارٌف ٔانًبزُْات حٕل انًؤثز انخطً انًزصٕص ضبابٍا ً عهى انفضاء انًعٍاري انضبابً 

انذي ٌعتبز تٕصٍع نهًؤثز انخطً انًزصٕص انًعزف عهى انفضاء انًعٍاري َٔذرس اٌضا خصاص 

 انطٍف  نهًؤثز انخطً انًزصٕص ضبابٍا اًنًعزف عهى انًؤثز انًعٍاري انضبابً .
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