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/\/
ABSTRACT

/\/

This thesis study deals with addressing some properties of spectral theory of
linear operator defined on a fuzzy normed spaces which is considered as an
expansion for the spectral theory of linear operator defined on normed spaces.

This also introduces some definitions of eigenvalue and eigenvectors

regular values ,resolvent set,spectrum,point spectrum,continuous

spectrum and residual spectrum of linear operator defined on fuzzy normed
spaces and some of their properties ,also we will introduce definition fuzzy
compact operator on fuzzy normed space which is considered as an
expansion for the compact operators on normed space and its relationship

spectral theory in fuzzy normed space (Spectral properties of fuzzy compact
linear operators on fuzzy normed spaces).



TABLE OF SYMBOLS

Symbols Meaning

I The closed interval [0,1]
IX The set of all functions defined from X into [
%,0 Binary operation from [ X I to [
R The set of all real numbers
R* The set of all positive real numbers
F Field (real or complex numbers)
7 The set of all integer numbers
Z* The set of all positive integer numbers
v For all
3 Such that
C The set of all complex numbers
A The closure of a fuzzy set A
Sup Supermum (least upper bound)
Inf Infemum (great lower bound)
I]. I Normed function from X to R
N Normed function from X x (0, o) to [0,1]
B(x,r,t) Open ball in fuzzy normed spaces
p(T) The set of all regular values A of T




o(T)
pp(T)
p(T)
o.(T)
R;(T)

L(X)

FB(X,Y)

The spectrum of T
The point spectrum of T
The continuous spectrum of T
The residual spectrum of T
The resolvent operator of T
The space of all linear operator from X in to

X

The space of all fuzzy bounded linear operator from X
intoY
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/\/
INTRODUCTION

/\/

The theory of fuzzy sets was introduced by L. A. Zadeh [24] in
1965.Aftar the pioneer work of Zadeh ,many researchers have extended this
concept in various branches ,many other mathematicians have studied fuzzy

normed space from several points of view [23],[18], [14]. Fuzzy Hilbert spaces
Is an extension to the Hilbert space. The definition of a fuzzy Hilbert space has

been introduced by M. Goudarzi and S. M. Vaezpour [9] in 2009 . T. Bag and
Samanta [4] in 2003 have definition compact set in fuzzy normed space.
In 2005, T. Bag and Samanta [5] introduced the concept of continuity and

boundedness of linear operator with respect to their fuzzy norm.

The present thesis consists of three chapters.

Chapter one ,deals with the concept of fuzzy sets and concept of binary
operations t-norm and t-conorm and fuzzy normed space and some
their properties .The concept of fuzzy Hilbert spaces and some their
properties .

Chapter two, deals with the concept of eigenvalue and eigenvectors

and regular value ,resolvent, spectrum, point spectrum, continuous




spectrum and residual spectrum of linear operator defined on fuzzy normed
and some their properties and we give an interdiction to spectral theory of

linear operator on fuzzy normed space and fuzzy Hilbert space.
Chapter three, deals with the concept of fuzzy compact linear operator
on fuzzy normed space and some of their properties . Also ,we
consider spectral properties of fuzzy compact linear operator T

on a fuzzy normed space.




CHAPTER ONE
Basic Concepts

This chapter deals with fuzzy normed space and fuzzy pre-Hilbert space.
It consists of four sections. Section one deals with the concepts of fuzzy sets
and some of their properties. Section two discusses the concepts of t-norm and
t-conorm and some of their basic properties and the relationship between them,
in addition to some examples. The concepts of the fuzzy normed space is dealt

with in section three. Section four deals with the concepts of fuzzy pre-Hilbert

space .




1.1 Fuzzy Sets

This section deals with the basic concepts of fuzzy sets and some of their
properties.
Let X be a non-empty set, and I denote for the closed interval [0,1] of real
numbers, i.e., I = [0,1] = {x € R: 0 < x < 1} and I* denotes all functions

fromXintol,i.e. I*X ={u:uisafunction from X to I}.

Definition (1.1.1) : [24] A fuzzy set u in X (or a fuzzy subset from X ) is a

function from X into I, i.e., u € I”*.

If u is a fuzzy set in X then u is a described as characteristic function which is

connect every x € X by real number u(x) in the interval I. u(x) is the grade of

membership function to x in u. u can be described completely as:
u={(xux)):x€X0<ulx) <1}

where u(x) is called the membership function for the fuzzy set u. Also, the

fuzzy set u may be termed as:

(e ex

Example (1.1.2) : Let X = {a, b, c}, and let the function u : X — [ whichis

defineas: u (a) = % , u(b) = % , u(c) :g represent a fuzzy set in X.

While the function v : X — R which is define as: v (a) = % ,v(b) = g , v(c)

=5 not represent a fuzzy set in X because v (b),v(c) > 1.




Example (1.1.3) : [12] Let R be the set of real numbers, and let u be fuzzy set

in R. Then we can define grade of membership function mathematical as:

x-1

u(x)={_ x> 1

0 ,x<1

Remark (1.1.4) : [12] If we want to know difference between fuzzy sets and
regular sets, we note if u is a regular set then define of grade of membership
take only two valuables 0,1. i.e.

-}

L XEU
X EUu

Therefore u(x) € {0,1}. While if u is fuzzy setin X, then 0 < u(x) < 1 for all

x € X, and thus the regular set become special case for the fuzzy sets.

Definition (1.1.5) : [6] Let u be a fuzzy setin X :

(1)The support of the fuzzy set u is denoted by u*or Supp(u) and is defined as:
u*= Supp (u) = {x € X: u(x) > 0}

(2)The point x € X is the crossover point for the fuzzy set u if u(x) = % :

(3)A fuzzy set u is called normal if there exists x, € Xsuch that u(x,) = 1, i.e.
{x €X:u(x)=1}# Q.

(4)The height of the fuzzy set u is denoted by ht(u) and defined as: ht(u) =
sup {u(x): x € X}.

And special case if u is normal, then ht(u) = 1, and so u is said to be finite if

u* is finite set, inverse that wu is said to be infinite.




Example (1.1.6) : Let X = {a, b, c} and let u be fuzzy set in X defined as:
u (@) =2,u(b) = ;,u(c) =0,
u*'={x€eX:ulx)>0}={a,b}

The point a is a crossover point for the fuzzy set u because u (a) = % and u is

not normal because there is no element whose image equal to 1 and
ht (u) =sup {u(x):x € X} = sup{%,%,O} = %

Definition (1.1.7) : [6] Let X be a non-empty set. A fuzzyset u: X = 11is

defined by u(x) = 0, forall x € X is called an empty fuzzy set and is denoted

by @ or 0. The fuzzy setu : X — I is called a non-empty if there exists at least

x € X such that u(x) # 0.

Definition (1.1.8) : [6] A fuzzy setu : X — I which is defined as: u(x) = 1,
for all x € X is called a universal fuzzy set and denoted by X or 1.
Definition (1.1.9) : [24] Let u, v be a two fuzzy sets in X. Denoted to union of
two sets u, v by u U v and defined as:

(U v)(x) = max {u(x),v(x)}
for all x € X, and so denoted to intersection of two sets u, v by u N v and

defined as:

(uNv)(x) = min {u(x),v(x)}.

Remark (1.1.10) : [24] If u,v are two fuzzy setsin X, then u U v, unwvare

two fuzzy sets in X.




Example (1.1.11) : Let X = {a, b, c} and u, v be two fuzzy sets in X such that
u(a) =% ,u(b) =% ,u(e) = 1—10 , v(a) =% , v(b) =% , v(c) = % Then:

(wUv)(a) = max {u(a),v(a)} = max{z,=} ==
(uU v)(b) = max {u(b),v(b)} = max{%,%} = %

(u U v)(c) = max {u(c),v(c)} = max{l—lo,g} = §

(uNv)(a) = min {u(a),v(a)} = min{%,%} =

Nk o=

(u N v)(b) = min {u(b),v(b)} = min{ gg} =

(unv)(c) = min {u(c),v(c)} = min{ 1—10%} = 1—10.




1.2 Norms and Their Complements of the Type t
This section discusses the concepts of t-norm and t-conorm and some of
their basic properties and the relationship between them. The section also

includes some examples.

Definition (1.2.1) : [12] Let * be a binary operation on the set I, i.e.,

x . [ X I — I is afunction. Then = is said to be t-norm (triangular-norm) on the
set I if the following axioms are satisfied :

()ax1 = a,forallael.

(2) = is commutative (i.e. axb = b=xa,foralla,b €1).

(3) = is monotone (i.e. if b,c € Isuchthath < c,thena* b < a*c, forall
a€l).

(4) = is associative (i.e. a *x(b*c) = (a*b) xc,forall a,b,c € 1),

If, in addition, * is continuous, then = is called a continuous t-norm.
The following theorem introduces the characteristics of the t-norm :

Theorem (1.2.2) : [12] Let * be a t-norm on the set /. Then

)11 = 1.
201 = 0.
(3)1x 0 = 0.
(4)0x 0 = 0.

(5)a*x a < a,foralla€l.
6)Ifa <c, b <d,thenax* b < cx* dforall a,b,c,d €.




Example (1.2.3) : [12] The basic t-norms are :

(i) A binary operation *,,, on I, which is defined by
a *, b =min {a, b} forall a,b € I isat-norm, and called the standard
Intersection.

(if) A binary operation %, on I, which is defined by a =, b=a.b for
all a,b € I is at-norm, and called the algebraic product.

(iit) A binary operation %, on I, which is defined by
a *, b=max{0,a+ b — 1} forall a,b € I is a t-norm, and called the bounded
sum or bounded difference.

(iv) A binary operation *,4 on I, which is defined by

a ,b=1
ax;b=1Db ,a=1
0 , 0.W.

forall a,b € I is a t-norm, and called the drastic intersection.

Theorem (1.2.4) :[12] a *4b < a *, b < a *, b < a *p,, b

foralla,b € 1.

Theorem (1.2.5) : [12] Let x be at-norm on a set I. Then *;<s<x, .




Definition (1.2.6) : [12] Let o be a binary operation on the set I i.e., o:

I X I — Iis afunction). o is said to be (t-conorm) on the set I if the following
axioms are satisfied :

()a o0 = a,forallael.

(2) o is commutative (i.e. a ob = boa, foralla,b €1).

(3) o is monotone (i.e. if b,c €1 suchthatb <c,thenao b <ao c forall
a€l).

(4) o is associative (i.e.a c(boc) = (aob)oc,foralla,b,c €l).

If, in addition, o is continuous then o is called a continuous t-conorm.
The following theorem introduces the characteristics of t-conorm:

Theorem (1.2.7) : [12] Let o be t-conorm on the set I. Then
(1) 0-0 =0.

(2) 100 = 1.
(3) 0ol = 1.
(4) 1ol =1.

(5)a o a = aforalla €.

6)Ifa < b, c < dthenaoc <b o d.

Example (1.2.8) : [12] The basic t-conorm is :
(i) A binary operation o, on I, which is defined b a °,,, b = max { a, b} for all

a,b € [ conorm, and called the standard union.

10




(i) A binary operation o, on I, which is defined a o, b = a + b — ab for all
a,b € I is t-conorm, and called the algebraic product.

(iii) A binary operation o, on I, which is defined a o, b = min {1,a + b}
forall a,b € I is t-conorm, and called bounded sum.

(iv) A binary operation o4 on I, which is defined by

a ,b=20
aogb=1b ,a=0
1 , 0.W.

forall a,b € I is t-conorm, and called drastic union.

Theorem (1.2.9) : [12] acn b < aopb < aoybh < aoyb foralla,b € 1.
Theorem (1.2.10) : [12] Let o be a t-conorm on a set I then o,<o<o4 for all
a,b €l

Definition (1.2.11) : [12] Let = be t-norm, and o be t-conorm. Then = and o are

said to be dual if they satisfies the following axioms :
@a*b=1-((1—a)e(1—0b)) foralla,b€el.
()ae b =1-((1—a)+(1—b))foralla,b el

Theorem (1.2.12) : [12] Let * be t-norm, and o be t-conorm .Then
(1) *,,,°,, are dual.

(2) *, op are dual.

(3) *p, opare dual.

(4) *,4, o4 are dual.

11




1.3 Fuzzy Normed Spaces

This section deals with the concept of fuzzy normed space and some of

its properties.

Definition (1.3.1) : [14] let X be a vector space over F, where F is either the
field of real numbers or the field of complex numbers.

A normon X is a function ||. ||: X — R having the following properties:

(D) |lx|| = 0, for all x € X.
(2)]|x]l = 0 ifand only if x = 0.
(3) l1Ax]| = |Alllx]l, forall x € X and A € F.
@ llx + yll < llxll + llyll, for all x,y € X.
The vector X over F together with ||. || is called a normed space and is denoted
by (X, ||.|]) or simply X.
Definition (1.3.2) : [23] Let X be a vector space over F, * be a continuous
t-norm on I, a function N: X x (0,o) — [0,1] is called fuzzy norm if it
satisfies the following conditions : forall x,y € X and t,s > 0,
(N.1) N(x,t) > 0,
(N.2) N(x,t) =1ifandonlyif x =0,

t

(N.3) N(ax,t) =N (x, Ial)' forall ¢ # 0,

(N.4) N(x,t) * N(y,s) < N(x +y,t +s),
(N.5) N(x,.):(0,00) — [0,1] is continuous,
(N.6) lim;_, N(x,t) = 1.

(X, N,*) is called fuzzy normed space.

12




Lemma(1.3.3) : [17] Let (X, N,*) be a fuzzy normed space. Then:
(i) N(x,.) is non-decreasing with respect to t for each x € X.
(ii) N(—x,t) = N(x,t) hence N(x — y,t) = N(y — x, t).

Remark (1.3.4) : [8]
(1) For any a4, a, € (0,1) with a; > a5, there exists a3 € (0,1) such that

a *xaz = ay.

(2) For any a, € (0,1), there exists ag € (0,1) such that

s * A5 = Uy.

Example (1.3.5) : [3] Let (X, ||.||) be a normed space. a x b = a. b for all
a,beXandforallx e X,t >0

t

N(x,t) = {t+||x||
1 ,x=0

X #0135

Then (X, N,*) is fuzzy normed space.

Solution: (N.1) if x=0 then N(,t)=1>0

t
t+]x|l

(N.2)Ifx =0 then N(x,t) =1

if x#0then N(x,t)=

t

IfN(x,t)=1= t+||x||=1 =|x[|=0= x=0
t
_ t — t — |a| — L
(N.3) N(ax,t) = e = 7o i N (x |a|)' forall  # 0.
(N.4N(x+y,t+5)—N(xt) *N(y,s) = ——0 - >

trs+latyll t+lxll s+l =
(N.5) N(x,.):(0,0) — [0,1] is continuous.
(N.6) lim;,,, N(x,t) = 1.

Therefore (X, N,x) is a fuzzy normed space.

13




Example (1.3.6) : [17] Let (X, ||.||) be a normed space. For all x € X,t > 0

N(x,t) = % Then (X, N,*) is not fuzzy normed space.

Solution: Letx =0 = N(x,t) = % * 1.

Therefore (X, N,*) is not a fuzzy normed space
Example (1.3.7): Let (X, ||.||) be a normed space . Defined

0 ,t<|lxl

Nt = {1,1: > JlxI

And a *,, b =min {a,b}foralla,b € X and forall x € X,t > 0 then
(X, N,*)is a fuzzy normed space

Solution: (N.1) and (N. 2) directly from definition (1.3.2).

(N.3) N(ax,t) = 1for t > ||ax||, forall @ # 0

=t > |a||lx]| = = > ||x|| then N (xi) =1

|l ||
Therefore N(ax,t) = N (x ﬁ) for all @ # 0 and same above when t < ||x]|

(N.4)we must prove that N(x + y,t +s) = min{N(x,t), N(y,s)}
Foreach t,s >0

N(x,t) =1for,t > ||x||

N(y,s) = 1for,s > ||y||

=t+s>|xll+llyllzllx+yll= Nx+yt+s)=1
ThenN(x + y,t +s) = min{N(x,t),N(y,s)}

Also same above when t < ||x]||

(N.5) N(x,.):(0,0) — [0,1] is continuous.
(N.6) lim;,,, N(x,t) = 1.

Therefore (X, N,*) is a fuzzy normed space.

14




Theorem (1.3.8) :[21] Let (X, N,*) be a fuzzy normed space, we further assume
that,

(N.7)a*a=a forall « € [0,1],

(N.8) N(x,t) > 0forallt > 0 ,then x =0.

Define ||x||, =inf{t >0: N(x,t) = a}. Then{||x]|, : @ € (0,1)} isan
ascending family of norms on X . We call these norms as a-norms on X

corresponding to fuzzy norm N on X.

Proof : Let « € (0,1). To prove [|x||, isanormon X, we will prove the

followings:

D [lx]l, =0 forall x € X,
(2) llx]l, = 0 ifand only if x = 0,
3) [Axlle = 141lIxlle |

@) llx + ylla < lixlla + llylla-
The prove of (1), (2)and (3) directly follows from the proof of the Theorem 2.1

in [4]. So, we now prove (4) :
x|z + |lyllg =inf {t >0:N(x,t) =a}+inf {s>0:N(y,s) = a}

=inf {t+s>0:N(x,t) = a,N(y,s) = a}
=inf{t+s>0: N, t)*N{y,s)=2a*a=a}
>inf{t+s>0:Nx+y,t+s)=>a}
= ||x + y||,, which proves (4).

Let0<a; <a, <1.

lxllq, =inf {t >0:N(x,t) = a;} and

lxllq, =inf {£>0:N(x,t) = ay}.

Sincea; <a,,{t>0:N(x,t)=a,}c{t>0:N(xt)=a;}

= inf{t>0:N(x,t)=a,} =>inf{t>0: N(x,t) = a; }

15




= |lxllg, = llxllg,. Thus, we see that { ||x]l, : a € (0,1)} is an ascending

family of norms on X.

1.4 Fuzzy Hilbert space

This section deals with the fuzzy Hilbert spaces and some of their properties

Definition (1.4.1) :[11] Let X be a vector space over the field F. An inner
product on X is a function (,) : X X X — F such that for all x,y,z € X and

a, f € F the following axioms are satisfied :

(IP){x,x) = 0,

(IP){(x,x) =0 & x =0,

(IP3){x,y) =(y,x),

(1P4)<6¥X + ﬁyr Z) = oc(x, Z) + ﬁ(y; Z)-

A pre-Hilbert ( or inner product ) space is a vector space with an inner product on
it.

Example (1.4.2) :[11] Let X = F™. Define (,) : X XX — F by

(x,y) =X x;y, for x = (x4, %9, e, %),V = V1, V2, -, Yn) EX. Then X isa
pre-Hilbert space.

Definition (1.4.3) : [11] A complete pre-Hilbert space is called Hilbert space.

Example (1.4.4) : [11] Let X = R"™, (x,y) = X}}=, x;y; such that
X = (%1,%3, e, %), ¥ = (V1, Y2, -, ¥n) € X . Then (R™, (,)) is a Hilbert space.

16




Definition (1.4.5) : [7] Let X be a real vector space, * be a continuous t-norm on

[ =[0,1]. A function H: X X X X R — [0,1] is called a fuzzy pre-Hilbert function

If it satisfies the following axioms for every x,y,z € X and s,t,7eER:

1 ,t>0

Note : h(t)={0 F<0

(DH(x,x,0) =0and H(x,x,t) >0 foreach t >0
(2)H(x,x,t) # h(t) forsome t € R ifandonly if x # 0

(H(x,y,t) = H(y,x,1t)
(4) For any real number «

H(x,y,é) ,a>0
H(ax,y,t) =< h(t) ,a=20
1—H(x,y,_—ta) ,a<0

B)H(x,x,t)*H(y,y,s) <Hx+y,x+yt+5s)
(6) supsyr=c(H(x,2,5) * H(y,z,7)) = H(x + y,7,t)
(7) H(x,y,.): R - [0,1] is continuous on R \ {0}.

(8) lim;, o, H(x,y,t) = 1.

(X, H,*) is a fuzzy pre-Hilbert space.
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Example (1.4.6) : [7] Let (X, (,)) be an ordinary pre-Hilbert space. We define a

function H : X x X x R — [0,1] as follows :

( 1
t2
T T ,a=>0,t>0
t2 + [{ax, y)|2
H(ax,y,t) =< t%
1-— : ,a<0,t>0
t2 + [{ax,y)|2
\ 0 ) t<o0

Definea* b = min{a,b } forall a,b € X. This is a fuzzy pre-Hilbert and called

the standard fuzzy pre-Hilbert induced by the pre-Hilbert ( ., .).

Definition (1.4.7) : [18] A t-norm = : [0,1] X [0,1] — [0,1] is called strong if it
has the two following properties :

(1) Foralla,b € (0,1), axb > 0,

(2) Forall a,b,c,d € [0,1]anda > b,c >dwehavea*b > c xd.

Theorem (1.4.8) : [7] Suppose that (X, H,*) be a fuzzy pre-Hilbert space, where
* is a strong t-norm and for each x,y € X,
sup{t € R,H(x,y,t) < 1} < co.
Define(.,.): XXX >R by (x,y)=sup{t € R, H(x,y,t) <1}
Then (X, (.,.)) is a pre-Hilbert space.

Corollary (1.4.9) :[7] Let (X, H,*) be a fuzzy pre-Hilbert space, where * is a
strong t-norm and for each x,y € X ,sup{t €R,H(x,y,t) < 1} < oo. If we

define ||x|| = (sup{t € R,H(x,x,t) < 1})z, then (X, ||.]]) isa normed space.
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CHAPTER, TWO SPECTRAL
THEORY OF LINEAR,
OPERATOR ON FUZZY

NORMED SPACES

In this chapter , the focuss will be on discussing spectral theory of linear
operator on fuzzy normed spaces . It consists of tow sections. Section one
deals with Eigenvalue and Eigenvectors in fuzzy normed spaces and some of
their properties . Section two deals with regular value ,resolvent,spectrum,the
point spectrum , the continuous spectrum and the residual spectrum in fuzzy
normed spaces and some of their properties.




2.1 Eigenvalue and Eigenvectors in fuzzy normed space

This section deals with Eigenvalue and Eigenvectors in fuzzy normed spaces
and some of their properties.

Definition (2.1.1) : [13] A function T : X — Y is called an operator from X into

Y if X and Y are linear spaces over the same field F.

Definition (2.1.2) : [13] A linear operator T is an operator such that:

T(ax + By) = aT(x) + BT (y)
forall x,y € X andforall «,5 € F.

Definition (2.1.3) : [19] Let (X, N;,*) and (Y, N,,*) be a fuzzy normed spaces .A
linear operator T : (X, Ny,*) — (Y, N,,*) is said to be fuzzy bounded if and only

if there exists >0, such that foreacht > 0
t
N,(T(x),t) = N, (x;) Vx € X,

Remark (2.1.4) :[21] Let (X, N,,*) and (Y, N,,*) be a fuzzy normed spaces over
F, FB(X,Y) is the space of all fuzzy bounded linear operator from X into Y.

Definition (2.1.5) :Let (X, N,*) be a fuzzy normed spaces over F and
T € L(X) then

(1)Ascalar A € F is called an eigenvalue of T, if there exists non zero
x € X such that T(x) = Ax

(2)A non zero vector x € X is called an eigenvector of T,if there exist

A € Fsuchthat T(x) = Ax
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Example (2.1.6) :Let X=R? and T : (X, N,x) - (X, N,x) Define

By T(x,v) = (—y,x) forall (x,y) € R? and N: R? X (0,%) - [0,1]
Define fuzzy norm in example(1.3.5) and T is linear operator has no
Eigenvalue.

Example (2.1.7) :Let X=R? and T : (X, N,*) = (X, N,*) Define

By T(x,vy) = (x + 2y,3x + 2y) for all (x,y) € R? and

N:R? x (0,%) - [0,1] Define fuzzy norm by equation(1.3.5) and T is linear
operator have eigenvalues 1 = —1,4A = 4

Solution:Suppose T(x,y) = A(x,y) = (x + 2y,3x + 2y) = A(x,y) =
(x+2y,3x+2y) = (Ax, ly) = x+ 2y =x,3x + 2y = Ay =

1-Dx+2y=0,3x+2-Dy=0= 1§’1 ZEA =0=

A=-1,1=4
Example (2.1.8) :Let X = #?and T : (X, N,*) - (X, N,*) Define
By T (x1,x2,..)=(0,x1,x2,...) forall(x1, x2,...) € ¥2and

N: £? x (0,00) - [0,1] Define fuzzy norm by equation(1.3.7)
and T is linear operator has no eigenvalue
Solution: Suppose T(x1, x2,...)= 1 (x1, x2,...)= (0, x1, x2,...)= 4 (x1, x2,...)
(0, x1,x2, ...)= (Ax1, Ax2,Ax5...) implies 0 = Ax1, x1= Ax2 , x2= Ax53 ,....
If 2 # 0, we divide by A and conclude x1=x>=....=0 If 1 = 0 we also
x1=x2=....=0 . T is linear operator has no eigenvalue .

Theorem (2.1.9) :Let (X, N,*) be a fuzzy finite dimensional normed spaces
over F and T € L(X) if x one eigenvector of Tcorresponding to the eigenvalues
Aand «a is any non zero scalar then ax is also an eigenvector of

T corresponding to the same eigenvalue A
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Proof: Since x is an eigenvector of T corresponding to the eigenvalue

Athen x #0 and T(x) = Ax since x#0anda #0 = ax # 0

T(ax)=a T(x) = a(Ax) = (al)x = (Aa)x = A(ax)

Therefore ax is an eigenvector of T corresponding to the eigenvalue 4
Remark(2.1.10):Corresponding to an eigenvalue A there may correspond more

than one eigenvectors.

Theorem (2.1.11) : Let (X, N,*) be a fuzzy finite dimensional normed spaces

over Fand T € L(X) if x an eigenvector of T.Then x cannot correspond to
more than one eigenvalues of T

proof:Let be an eigenvector of T corresponding to two distinct eigenvalues
Arand A,0f T, T(x) = A, x and also T(x) = A, x .Therefore we have
Ax=2Ax = Ax—21,x=0 = (4,1, x=0

sincex #0 = A,—1,=0= A41=1,

and a is any non zero scalar ,then ax is also an eigenvector of T

corresponding to the same eigenvector A

Definition (2.1.12) : [21] Let (X, H,*) and (Y, H,*) be fuzzy Hilbert spaces over
F,andlet T € FB(X,Y). A fuzzy Hilbert-adjoint operator T* of T is the operator
T*:(Y,H,x) - (X,H,*) such that:

sup{t € R,H(T(x),y,t) <1}=sup {t e R,H(x,T*(y),t) <1} forall
x€Xand y €Y.

Remark (2.1.13) : [21] We denoted FB(X, X) by FB(X).

Theorem (2.1.14) : [21] (Some Properties of fuzzy Hilbert-adjoint operator)
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Let (X, H,x) and (Y, H,*) be a fuzzy Hilbert spaces over F, and let
S,T € FB(X,Y). Then we have :

(@sup{teR,H(T"(y),x,t) <1} =sup {t e R,H(y,T(x),t) < 1} for all
x€EXandy€yY

(0O)(T + $)* =T* + §*
©(T) =T

Theorem (2.1.15) : [21] Let (X, H,*) be a fuzzy Hilbert space over F, and
T € FB(X).ThenT =0ifand only if sup{t e R,H(T(x),T(x),t) <1} =0

forall x € X.

Definition (2.1.16) :[7] Let (X, H,*) be a fuzzy pre-Hilbert space, where * is a
strong t-norm and for each x,y € X,sup{t € R, H(x,y,t) < 1} < o0

1
and ||x]| = (sup{t € R,H(x,x,t) < 1})z . We say that (X, H,*) is a fuzzy
Hilbert space if (X, N,*) is complete normed space.

Definition (2.1.17) :[21] Let (X, H,*) be a fuzzy Hilbert space over F and let
T € B(X). Tissaidtobe Normalif ToT* =T*oT.

Theorem (2.1.18) :Let T be a normal operator on a finite dimensional
Fuzzy Hilbert space X over F. Then

(1) T — Al'isnormal

(2)Every eigenvector of T is also eigenvector for T*
Proof:

(1) SinceTisnormal = ToT* =T*oT

(T — A1)* =T*— 21 by Theorem (2.1.14) (b)

(T— Ao (T—A)Y =(T—A)o(T*—AD)=ToT*—AT — AT* + A1
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(T— )Y o(T—AD)=(T*=AD) o(T— Al) =T*oT — AT — AT* + A1

= ToT*—AT — AT* 4+ A1

= (T— M) o(T—A) =(T— Al)o (T— A)*

Therefore T — Al is normal

(2)Let x be an eigevector of T corresponding to eigenvalue 4

=T(x) =Ax

sup{t e R, H(T(x),T(x),t) < 1} =sup{t e R, H(x,T*(T(x)),t) < 1}
=sup{te R, H(x,T" o T(x),t) < 1}
=sup{t R, H(x,T o T*(x),t) < 1}
=sup{t € R, H(x,T(T"(x)),t) < 1}

=sup{t e R, H(T"(x), T*(x),t) < 1}

Since T — Al is normal, therefore x € X, we have

sup{t € R, H((T — AD)(x), (T — AD(x),t) < 1}
=sup{t e R, H(T — A1 )" (x), (T — Al)*(x),t) < 1}

SinceT(x) =Ax = Tx) =Ax)= Tx)—Al(x) =0=(T—- AD)(x) =0
thenT — Al = 0 ,then sup{t e R, H((T — A (x),(T — AD)(x),t) <1} =0
by theorem(2.1.15), sup{t e R, H((T — Al )*(x),(T — Al)*(x),t) <1} =0
= (T— A1) =0 thenforeachxeX = (T— Al)"(x) =0
STX-21x)=0= T*x)= 11(x) = T*(x) = Ax

Therefore x is eigenvector of T* and corresponding eigenvalue is
A
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Definition (2.1.19) :A subspace M of a fuzzy normed space X is said to be
Invariant under a linear operator T : (X,N,x) - (X,N,*) if T(M) ¢ M

Definition (2.1.20) : [7] Let (X, H,*) be a fuzzy pre-Hilbert space. x,y € X is
said to be fuzzy orthogonal if H(x,y,t) = h(t)(Vt € R) and it is denoted by
x Ly.

Definition (2.1.21) : [9] Let (X, H,*) be a fuzzy pre-Hilbert space. A subset B of
X is called fuzzy orthogonal if x L y, for each x,y € B.

Lemma (2.1.22) : [7] If (X, H,*) be a fuzzy pre-Hilbert space , then (X, H,*) is

non decreasing with respect to t, for each x,y € X.

Definition (2.1.23) : [9] If B is a subset of the fuzzy pre-Hilbert space (X, H,*),
thenBt={x€eX:x1ly VyeB}.

Theorem (2.1.24) :[1]Let B be a non-empty subset of a fuzzy pre-Hilbert space
(X, H,*), then B+ is closed fuzzy subspace of X.

Proof: Since H(0,y,t) =h(t) Vy€B=0€ B! thenBL# ¢
Letx,y € Bt anda,B,7 €R

H(x,z,t) = h(r) Vz€B and
H(y,z,t) =h(r) Vz€B
Vz € B we have:

If >0, >0

H(ax + By, z,t) = Supgyi—r (H (x, Z, i) x H (y, Z, %))

-h() 4()
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= h(t) * h(s) = h(r) Vr eR
If a<0, <0

t S
H(ax + By, z,t) = supgyi=r (1 —H (x, Z'—_a:) *1—H (y, z,_—B)>
= h(r) Vr eR
If a<0,f =00ra =0,<0,0ora>0, =0,a =0,5>0
H(ax + By, z,t) =h(r) VreR
= ax + By € B+

Therefore B+ is a fuzzy subspace X.

Letx € BL 3 {x,}in B suchthatx, — x
Lety € B= H(x,y,t)=h(t)Vnez*
And t €ER (x, € B*VvneZzZt)

Since x,, —» x = H(x,,y,t) — H(x,y,t)
= H(x,y,t) = h(t) forally € B

— x €B-=BL=B!

= B is closed fuzzy subspace

Theorem (2.1.25) : [1] Let (X, H,*) be a fuzzy pre-Hilbert space . And A c X;
(1)The relation of Orthogonality symmetric (i.e.if x Ly then y L x)

Qifx Ly thenax Ly VtER

(3)Let A c B then Bt c At

(4)A c A

(5)Ac Bt < B c At
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B)Ifx Lx<— x=0 VteR

(7) Xt ={0}forallt eR
8)ANnAt={0}forallt e R
(9)Foreveryvectorx € X wehave0 LxVx e X

Definition (2.1.26):Let M be a closed of a fuzzy Hilbert space X and x ¢ M
said that projection of x € X onto M if thereisz € M

N(x—2z1t) = su'p{ Yy € M, t>0} ,we write y = Py (x)

t+|lx=yll

Theorem (2.1.27): If M is subspace of a fuzzy Hilbert space X,for x € X there
exista unique y € Msuchthat x —y L Mand y = Py(x)

Proof: Define (.,.) : X XX > R by (x,y) =sup{t € R H(x,y,t) <1}
from theorem (1.4.8) ,we have (X,(.,.)) isapre-Hilbert space. Also

l|x|| = (sup{t € R,H(x,x,t) < 1})z from corollary (1.4.9) we have (X, |[.]])
isa normed space .

Since X is a fuzzy Hilbert space then (X, ||.||) is complete normed space then
X Hilbert space .By using [16] for x € X there exist a unique y € M such that
x—y1lMandy = Py(x)

Then (x —y,z) =0Vz € Mthen sup{te€ R H(x,y,t) <1} =0 there fore

x—y1lM VzeM in X fuzzy Hilbert space , since y = Py(x) then by [16]
there is b € M such that

llx = bll = inf{llx — yll: y € M} then

lx=bll<llx=yll,LyeM = t+|lx=>bll<t+|lx -yl ,t>0=

L gu— , ¥ € M, t>0 therefore
t+lx-yll = t+llx—bl|
t
N(x —b,t) = sup {H”x_y” Yy € M, t>0} :
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Theorem (2.1.28): If M is subspace of a fuzzy Hilbert space X,then
X = M@®M-+, thatiseach x € X can be uniqully decomposed from x = y + z
withy € M, z € ML,

Proof: For all x € X and M is subspace there exist y so that x = x — y + y with
x—y€eMtandy €M suchthaty = Py(x)and z=x—y=x=y+z=

X = M+ Mt also since MNM+* = {0} by theorem (2.1.25) ,there fore
X = MOM-*.

Theorem (2.1.29):1f M is subspace of a fuzzy Hilbert space X, then M is fuzzy
closed iff M = M+

Proof: Since M ¢ M+ by theorem (2.1.25) ,we show that M1+ c M

Let x € M1+ then by theorem(2.1.28) x = y + z ,where y € M ,z € M+ since
M c M+t and Mt is subspace z = x —y € Mt but z € M+ =

z € MHnNMt

Since Mt+NM* = {0} then z = 0 ,thus x = y € M there fore M1t c M thus
M = Mt

Conversely suppose M = M1+ since (M+)+ = M+ is close set then
M is close set.

Theorem (2.1.30):Let M be a closed subspace of a fuzzy Hilbert space X over
F,and let T € FB(X).Then M is invariant under T iff M* is invariant under T*

Proof: Suppose M is invariant under T

Let y € M+ .To prove that T*(y) € Mt(i.e. T*(y) L M)
Let x € M,since M isinvariantunderT = T(x) € M
Sincey e Mt = sup{t€eR,H(T(x),y,t) <1}=0 =

sup {te R,H(x, T*(y),t) <1} =0.Thus T*(y) L M
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Conversely suppose that M * is invariant under T*.

Since M 1 is closed subspace of a fuzzy Hilbert space X by theorem (2.1.24)
and since M+ is invariant under T*, therefore by first case (M +)+ is invariant
under (T*)*but (M)t = M+t =Mand (T*)* =T* =T Therefore M is
invariant under T.

Definition (2.1.31) :Let M be a closed subspace of a fuzzy Hilbert X over F
and let T € FB(X) .We say that T is reduced by M if both M and M * are
Invariant under T .If T is reduced by M , then some times we also say that M
reduces T.

Theorem (2.1.32):A closed subspace M of a fuzzy Hilbert X over F reduces an
operator T iff M is invariant under both T and T*.

Proof: Suppose M reduces an operator T .Then by the definition of reducibility
both M and M * are invariant under T by theorem (2.1.30) ,if M+ is invariant
under T .Then (M 1)+, i.e. M is invariant T* .then M is invariant under both
Tand T*.

Conversely suppose that M is invariant under both T and T*
Since M is invariant under T* ,therefore by theorem (2.1.30), M + is invariant

under (T*)*,i.e. T .Thus both M and M + are invariant under T .Therefore M
reduces T.

Definition (2.1.33) :Let X be a fuzzy normed space over F ,T € FB(X) and let
A be eigenvalue of T. Then set consisting of all eigenvectors of T which
correspond to eigenvalue A together with the vector 0 is called eigenspace of

T corresponding to the eigenvalue A and is denoted by M,

(1)Since by definition an eigenvector is non zero vector,there fore the set M,
necessary contains some non zero vector.

(2)Since by definition of M, a non zero vector x is in M, iff T(x) = Ax
Also it is given that the vector 0isin M, the vector O defintly satisfies

The equation T'(x) = Ax therefor
My={xeX:Tx)=Ax}={xeX:(T-AD)x)=0}
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Thus M, is null space (or kernel of linear operator T — Al on X). Hence M, is
a subspace of X.

(3)Let x € X since M, is asubspace of X and 1 € F = Ax € M, since
X€E My=Tkx)=Ax=T(x) € M; = M, isaninvariantunder T

from (1),(2) and (3) we have M, is non zero subspace of X invariant under of
T.

(DIf T € FB(X) then M, is closed subspace of X ,M; is called eigenspace of
T ,corresponding to the eigenvalue A.

Theorem (2.1.34):1f T be a normal operator on n dimensional fuzzy Hilbert
Space X over F ,then each eigenspace reduces T

Proof:Let x; belong to M; the eigenspace of T and corresponding eigenvalue

be 4;,sothat T(x;) = A;x; since T is normal then by theorem(2.1.18)
eigenvalue for T*(i.e. T*(x;) = A;x; ) since M; is a subspace = 4;x; € M; =

T*(x;) € M; = M,; is invariant under T*,but M,; is invariant under T ,then by
Theorem(2.2.32) M; is reduces T .

2.2 Regular value ,resolvent set,spectrum, the point spectrum, the
continuous spectrum and the residual spectrum in fuzzy normed spaces.

This section deals with regular value ,resolvent,spectrum,the point spectrum,
the continuous spectrum and the residual spectrum in fuzzy normed spaces
and some of their properties.

Definition (2.2.1):[10]Let(X, N,*) be a fuzzy normed space.Then sequence
{x,} In X is said to fuzzy converges to x in X if for each € € (0, 1) and each
t>0,there exist n, € Z* such that N(x,, — x,t) > 1 — ¢, for all n = ny(or
eguivalently lim,_,, N(x, —x,t) = 1)

Definition (2.2.2) :[4]A subset A of a fuzzy normed space (X, N,*) is said to be

closure of asubset A of X in case for any x € 4 there exist a sequence {x,,} in
A such that lim,,_,,, N(x,, — x,t) = 1 for each t>0,
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on the other hand a subset A of a fuzzy normed space (X, N,*) is said to be
dense case 4 = X

Definition (2.2.3) :Let (X, N,*) be a fuzzy normed space over the field C
where X #{0} and N:X X (0,) — [0,1]and T: (X, N,*) = (X, N,*) be a
linear operator .A regular value A of T is complex number such that

(1R, (T) exist

(2) R4(T) is fuzzy bounded linear operator onrange of T, =T — Al

(3) R4 (T) is defined on a set which is dense in X

Where R,(T) = (T})~! = (T — AI)~* call resolvent operator of T and
The resolvent set p(T) of T is the set of all regular value A of T

Its complement o(T) = C— p(T) in complex plane C is called spectrum

of T ,A A1 € a(T) is called a spectral value of T.

Proposition(2.2.4):Let (X, ]||.||) be a normed space and let N be the fuzzy
norm defined by equation (1.3.5) foreachx € X and t € (0, ) then closure
of asubspace A of X with respect to ||. || is equal to the closure of A with

respect N.

Proof:Suppose 4 is closure of A with respect to ||. || . Then for each x € 4
there exist a sequence {x,} in A such that lim,,_,||x,, — x|| = 0 .Hence for

each t>0 lim,_ N(x, — x,t) = 1 .Thus each element of 4 is closure of A
with respect to N.

Conversely ,suppose 4 is the closure of A with respect to N .Then for each

x €A there exists sequence {x,} in A such that for each t>0

lim,, o N(x,, — x,t) =1 .Hence lim,,_,.||x,, — x|| = 0 .thus each element of
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A the closure of with respect to |. || then the closure of a subspace A of X

With respect to ||.|| is equal to the closure of A with respectto N.

Theorem(2.2.5):[13]Let X be a complex Banach space and T : X — X is
bounded operator , and A € p(T) . Assume that (a) T is closed or(b) T is
bounded then R, (T) is defined on the whole space X and is bounded.

Theorem(2.2.6):Let (X, ||.||]) be a Banach space over the field C where X#{0}
T : X - X be alinear operator on X , N be the fuzzy norm defined by equation
("1.3.5) and let A € p(T) with respect to (X, N,*) if T is fuzzy bounded on
X then R;(T) is fuzzy bounded on (X, N,x).

Proof: Suppose T is fuzzy bounded on X then there exist r > 0 such that for

eachx e Xand t € (0,0), N(T(x),t) > N (x f) Hence for each

t
L ' — Therefore T is L >_ ' _ —there exist

x € X and > >
t+[|T(x)| §+||x|| tHITCON — t+]rxl

r > 0 such that ||T(x)|| < r||x]|| fore each x € X there fore T is bounded
linear operator in X moreover , since A € p(T) with respect to (X, N,*)
Then R;(T) is exists and R;(T) is bounded on range T, and rang(T,)

is dense in (X, N,*) by proposition (2.2.4) rang(T) is dense in (X, ||.|])
that A belong to resolvent set of bounded linear operator T by theorem
(2.2.5) R4(T) is bounded linear operator in (X, ||.|) then there exist r > 0

Such that for each x € X ||R,(T)(x)|| < r]|x]|| then for each t>0 and for each

t S ¢
t+[RAMICON — t+]lrx]]

x €X t+R(MMI <t + rlixll =

t
t+|[Ra(T) (x|

S e

then there exist r >0 such that for each x € X and

t
E Il
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te(0,0) , N(Ry(T)(x),t) = N (x E) there fore R, (T) is fuzzy bounded

on (X, N,x).

Proposition(2.2.7):Let (X, ||.||) be a normed space and let N be the fuzzy
norm defined by equation (1.3.7) for eachx € X and t € (0,) then closure
of asubspace A of X with respect to ||. || is equal to the closure of A with

respect N.

Proof:Suppose 4 is closure of A with respect to ||. || .Then for each x € A
there

exist a sequence {x,} in A suchthat lim,,_,.||x, — x|| = 0 .That is for
€ € (0, 1) there exist a positive integer n, such that ||x,, — x|| < & for each

n > n, .There fore N(x,, —x,&) =1 foreach n = n, . Thus

lim, . N(x, — x,€) = 1 for each € >0 there fore ,cach element of A4 belong

to the closure of A with respectto N .

Conversely,suppose A is closure of A with respect to N .Then for each x € A

there exist a sequence {x,} in A such that for each t € (0, o)

lim, ,,, N(x, —x,t) =1 .fixa € (0,0) ,thuslim,,,, N(x, —x,t) =1>«a
For each t>0 .That is for each t>0 ,there exist n, € Z*,such that

N(x, —x,t) >a foreach n > n,.s0 ||x,, — x|| <t foreach n = n, .Hence
lim,,_,o||x, — x|| = 0 .Thus each element of A is closure of A with respect to
11

Then the closure of a subspace of X with respect to ||. || is equal to

the closure of A with respectto N.
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Theorem(2.2.8):Let (X, ||.||]) be Banach space over the field C, where X#{0}
T : X - X be alinear operator , N be the fuzzy norm defined by equation
((1.3.7) and let 1 € p(T) with respect to (X, N,*) if T is fuzzy bounded on

X then R, (T) is fuzzy bounded on (X, N,*).

Proof: Suppose T is fuzzy bounded on X then there exist r;>0 such that for
eachxe Xand t€ (0,0), N(T(x),t)= N (x ri) Assume for the

contrary there exist x; # 0 suchthat ||T(x,)|| > rillxq || .Let [T (x| = ¢,
Hence , N(T(x;),t,)=0 but N(r;x,,t,)=1 this is a contradiction .Then for
each x € X there exist r;>0 such that ||T(x)|| <y [|x]| .Then T is bounded
linear operator in X. Moreover , since A € p(T) with respect to (X, N,*)
Then R, (T) is exists and R;(T) is bounded on range T, and rang(T,)

is dense in (X, N,*) by proposition (2.2.7) rang(T) is dense in (X, ||.|])

thus A belong to resolvent set of bounded linear operator T by theorem
(2.2.5) R4(T) is bounded linear operator in (X, ||.||) then there exist r >0
Such that foreach x € X ||Ry(T)(x)|| < rl|x|| .Let x € X t € (0, ) then

we have two case :

(DIf t>[[Ry(T) (|| then N(R;(T)(x),t) =1 since [[Ry(T)()|| < [lrx]l

then either t < ||rx|| or ||rx|| < t.If t <|lrx| then N(rx,t) = 0 .Hence
NRL(T)(x),t) =1> N(rx, t) = N(xf) = 0 .If ||rx|| < t .Thus for each

x€X ,NRu(T)(x),t) = N(rx,t) =1
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IF [[RA(T) ()| = ¢t then N(Ry(T)(x),t) = 0 since [[Ry(T)(x)]l < [lrx||

N(rx,t) = 0 .Hence N(Ry(T)(x),t) = N (x 5) = 0 .There fore R,(T) is

T
fuzzy bounded on (X, N,*).

Theorem(2.2.9):Let (X, ||.|]) be Banach space over the field C where X#{0}
T : X - X be alinear operator , N be the fuzzy norm defined by equation
((1.45) and let 1 € p(T) with respect to (X, N,*) if T is fuzzy bounded on
X and lim,_,. N(x,,t) =1 foreach t € (0,),Then

lim,, o N(Ry(T)(x,),t) = 1.

Proof: Since lim,,_,,, N(x,,t) = 1 then for each € € (0, 1) and for each t>0
There exist n, € Z* such that N(x,,t) > 1 —¢,foralln > n,

Since T is fuzzy bounded on (X, N,*) and A € p(T) with respect to (X, N,*)
Then by Theorem(2.2.6) R;(T) is fuzzy bounded on (X, N,*) .Hence

There exist r >0 such that for each x € X and t € (0, )
t t
. NR(T)(x),t) = N (x ;) there fore N(R(T)(x,),t) = N (xn,;)
foralln € N since that N(x,,,t) > 1 — ¢, forall n > n,, t>0
Put t, ==>0 then N(R(T)(x,),t) = N (xn,f) =N(x,t,)>1—¢

foralln > ny, then N(Ry(T)(x,),t) >1—¢,foralln = n,

there fore lim,,,, N(R,(T)(x,,),t) = 1.

Theorem(2.2.10):Let (X, ||.]|) be Banach space over the field C where X#{0}
T : X - X be alinear operator , N be the fuzzy norm defined by equation

((1.3.7) and let 1 € p(T) with respect to (X, N,*) if T is fuzzy bounded on
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X and lim,_,. N(x,,t) =1 foreach t € (0,),Then

lirnn—mo N(RA(T) (xn)r t) =1.

Proof: Same is proof Theorem(2.2.9)
Example (2.2.11):Let (X, N,*) be a fuzzy normed space over field C where
X#{0} .1t is easy to check that p(I) = C— {1} and (0) = C — {0}, o(I) ={1}

a(0) = {0} ,where I is identity operator and 0 is the zero operator defined on X

Definition (2.2.12) :[18] Let (X, N,*) be a fuzzy normed space . We define
the open ball B(x,r,t) and closed ball B[x, r, t] with center x € X and
radius 0 < r < 1 ,as follows : For t >0

Bx,r,t)={yeX:Nx—y,t) >1—r}

Blx,r,t]={yeX:Nx—y,t) =1—1}

Definition (2.2.13) :[15] Let (X, N,) be a fuzzy normed space . U subset of X
Said to be open set ,if forall x e U ,3r € (0,1),t € (0,0) such that
B(x,r,t) cU.

Theorem(2.2.14) :[13] Let (X, ||. ||) be Banach space over the field C and

T : X — X is bounded operator then o (T) is compact and lies in the disk

given by [A] < ||T|| hence the resolvent set p(T) of T is not empty.

Theorem(2.2.15) : Let (X, ||.||) be Banach space over the field C where

X#{0}and let T: (X, N,*) = (X, N,x) be fuzzy bounded linear operator on X , N
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be the fuzzy norm defined by equation ("1.3.5).Then p(T) is nonempty set.

Proof: Suppose T is fuzzy bounded on X then there exist r > 0 such that for

eachx € Xand t € (0,o), N(T(x),t) =N (x f) Hence for each

t
i " — There fore T is L > ' —there exist

x € X and > >
t+HIT )l §+||x|| tHITGOI — t+|rx]|

r > 0 suchthat ||T(x)|| < r||x]|| fore each x € X there fore T is bounded
linear operator in (X, ||.||) then by Theorem(2.2.14) the resolvent set of T is
nonempty ,so there exist A € C such that R, (T) exists , R, (T) is bounded on

range T, and range T, is dense in (X, ||.|]) then by Theorem(2.2.5) R,(T) is
bounded linear operator in (X, ||.||) then there exist » > 0

Such that for each x € X ||R,(T)(x)|| < rl|x]|| then for each t>0 and for each

t t
t+[RAMICON — t+]lrx]]

x €X t+R(TMM <t + rlix]l =

t
t+|[Ra(T) (x|

S e

then there exist r >0 such that for each x € X and

=t
| = L

t € (0,0) , N(Ry(T(x),t) = N (x E) there fore R;(T) is fuzzy bounded

on (X, N,x) since range T, is dense in (X, ||.|]) then by proposition(2.2.4) range

T, is dense in (X, N,x) since R, (T) exists then p(T) is nonempty set.

Theorem(2.2.16) :[13] Let (X, ||. ||) be Banach space over the field C and T is

bounded linear operator on X then p(T) is open set and hence o (T) is closed set

Theorem(2.2.17) : Let (X, ||.||) be Banach space over the field C where
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X#{0}and let T: (X, N,*) = (X, N,*) be fuzzy bounded linear operator on X , N
be the fuzzy norm defined by equation ('1.3.7).Then p(T) is open set with

respect fuzzy norm N and hence o (T) is closed set with respect fuzzy norm N

Proof: Suppose T is fuzzy bounded on X then there exist ;>0 such that for
eachxe Xand t€ (0,0), N(T(x),t)= N (x ri) Assume for the
1

contrary there exist x; # 0 such that |[T(xp)|| > ryllxq || .Let |IT(x)|| = ¢,
Hence , N(T(x;),t,)=0 but N(rx,,t,)=1 this is a contradiction .Then for
each x € X there exist r;>0 such that ||T(x)|| <y [|x]| .Then T is bounded
linear operator in (X, |.||) then by Theorem(2.2.16) p(T) is open set then

for each A € p(T) there exist t > 0 such that B(4,t) € p(T)
BALt)={ceC:|A—c| <t}

To prove that B(A4,t) = B(A4,r,t) ,suchthatt >0and0 <r <1

Let A, € B(A,t) then |A— A, <tthen N(1—A44,t) =1>1—r there fore
A, € B(A,r,t) then B(A4,t) € B(A,r,t),suchthatt >0and 0 <r<1
LetA, € B(4,r,t) then N(A—A,,t) > 1 —1r then |1 — 4| < t there fore

A, € B(A,t) then B(A4,r,t) € B(A, t) thus B(A,t) = B(A,r,t) suchthatt > 0
and 0 < r < 1thus B(A4,r,t) € p(T) then p(T) is open set with respect fuzzy
norm N also since a(T) = C— p(T) then o(T) is closed set with respect

fuzzy norm N .

Theorem(2.2.18) : Let (X, ||.||) be Banach space over the field C where

X#{0}and let T: (X, N,*) = (X, N,*) be fuzzy bounded linear operator on X , N
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be the fuzzy norm defined by equation ('1.3.5) and A4, 8 € p(T) then

(@)The resolvent R; of T satisfies resolvent equation

Rg — Ry = (B — DRgR,

(b) R; commutes with any ¢ € FB(X) which commutes with T

(c) We have RjRp = RgR;

Proof: (a)Suppose T is fuzzy bounded on X then there exist r > 0 such that

foreachx €e Xand t € (0,0), N(T(x),t) = N (x E) Hence for each

t

t pot . t t .
x € X and > +——— .There fore T is > =there exist
tHITCON ™+l EHITCOIl = e+lrxl|

r > 0 suchthat ||T(x)|| < r||x]|| fore each x € X there fore T is bounded
linear operator in (X, ||.||) from theorem (2.2.4)and (2.2.5) the range of T,

is all of X .Hence I =T,;R; where I the identity operator on X .Also I = RgTj

Consequently Rg — Ry = Rg(ThRy) — Ry(RgTp) = Rp(Ty — Tp)R,
= Rg[T —A1 — (T — BDIR;
= (B — VRgR;
(b) By assumption , ¢T = T¢ .Hence ¢ T) =T, ¢ .Using 1 =THR; = R, Ty
We thus obtain

Ri¢=Ry¢THR; =Ry T ¢ Ry =¢p R,

(c) Rg commutes with T by (b) .Hence R; commutes with Rg by (b) .
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Definition (2.2.19) : Let (X, N,*) be a fuzzy normed space over the field
C where X #{0} and T:X — X be a linear operator the spectrumof T is
partitioned into three disjoint sets as follows:-

(1) The point spectrum o, (T) is the set such that R, (T)does not exists.
A € pp(T) is called an eigenvalue of T.

(2) The continuous spectrum a.(T) is the set such that R, (T") exists and
satisfying the condition (3) but not the condition (2) in definition (2.2.3).

(3) The residual spectrum o,.(T) is the set such that R;(T) exists (and may be
fuzzy bounded or not) but does not satisfy the condition (3) in definition (2.2.3).

Examples(2.2.20):
(1) Let (X, N,*) be a fuzzy normed space over the field C where X #{0} .
Then o, (I) ={1}= o (1) where | is the identity operator defined on X. On the

other hand, 0,,(0) ={1}= o(O) , where O is the zero operator defined on X .

(2) Let X = ¢2 ,thatis €% = {x = (x1, %3, .. ): nieqlxi|? < o0,x; € C}

1 1
For x € 2, defined ||x|| = (x,x)z = (X2,1x;|?)z .Let N:£% x (0,0) - [0,1]
Define fuzzy norm by equation(1.3.7).Consider T (x1, x2,...)= (0, x1, x2,...) for
all (x1, x2,...) € £2 We shall show that 0 € ¢,.(T) .To do that , itis clear T is
bounded linear operator with respect to ||.||. Moreover by using the same
last steps in proposition (2.2.7) one can get T is fuzzy bounded on #2 . On the
other hand,
T:¢? — ¢ isonetoone. Then T~1: R(T) — £? exists.Next,we show that
R(T) = {x € £?:x = (0,x4,x, , ... )} is not dense in £2. To do this, let x € £2
such thatx = (4,0,0,...) and lett = 0.3 > 0 and {x,,} be any sequence in

rang(T), that is,x,, = (0, x{",x%, ... ).Since

100, %7, %3, ) = (40,0, . )l = (=4, x7, %3, ..l
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1
= (16 + [x"|? + |x}|?+...)z, for each n then

0.3 < |[(—4,x1, x%, ...)]|| for any choose for x*, x7, ... Hence

N((0,xt, x%,...) — (4,0,0,...),0.3) = N((—4, x{", x3, ...),0.3) = 0 for each n.
So lim,,_,,, N(x,, — x,0.3) = 0 Thus for any sequence {x,,} in R(T) there
exists t=0.3>0 such that lim,,_,,, N (x,, — x,0.3) = 0 so x not belong to the

closure of R(T). Hence R(T) is not dense in 2 . Then 0 € ¢,.(T) .

Definition (2.2.21)[21] : Let X be a fuzzy Hilbert space over F, and let
T € FB(X). T is said to be self-adjointif T* =T.

The fuzzy Hilber -adjoint operator T* is defined by :

sup{t e R,H(T(x),y,t) < 1} =sup{t e R,H(x, T*(y),t) < 1}.
If T is self-adjoint we have :

sup{t € R,H(T(x),y,t) <1}=sup {t e R,H(x,T(y),t) < 1}.

Theorem (2.2.22):[22] Let X be a Hilbert space over F and T € L(X)be a self-
adjoint operator. Then o.(T) = ¢.

Theorem (2.2.23): Let X be a fuzzy Hilbert space over Fand T € FB(X)be a
self-adjoint operator. Then a,.(T) = ¢.

Proof:Suppose A € o,.(T) then R, (T) exists.

Define(.,.) : XXX > R by (x,y) =sup{t € R, H(x,y,t) <1} from
theorem (1.4.8) ,we have (X,(.,.)) isa pre-Hilbert space. Also

x| = (sup{t € R,H(x,x,t) < 1})z from corollary (1.4.9) we have (X, ||.])
Isa normed space

since X is a fuzzy Hilbert space then (X, |.|]) is complete normed space then
X is Hilbert space since T € FB(X) be a self-adjoint operator.Then

41




(T(x),y)=sup{teR,H(T(x),y,t) <1} =sup {t e R,H(x,T(y),t) <1}

= (x,T(y))

Hence T € L(X)be a self-adjoint operator and X is a Hilbert space.

From theorem(2.2.22)we have o.(T) = ¢ .Then R, (T) not exists and this is
contradiction.Hence ¢,.(T) = ¢ such that X be a fuzzy Hilbert space.

Examples(2.2.24):
(1) Let X = £%2and T : (X,N,x) - (X, N,x) Define
By T (x1,x2,..)=(0,x1,x2,...) forall (x1,x2,...) € £2 and
N: £? x (0,00) - [0,1] Define fuzzy norm by equation(1.3.7)
Suppose T(x1, x2,...)= A (x1, x2,...)= (0, x1, x2,...)= A (x1, x2,...)

(0, x1, x2, ...)= (Ax1, Ax2,Ax5...) implies 0 = Ax1, x1= Ax2 , x2= Ax53 ,....

If 1 # 0, we divide by A and conclude x1=x2=....=0 If A = 0 we also
x1=x2=....=0 . T is linear operator has no eigenvalue . Consequently
op(T) =¢.

(2) Let X = £?and T : (X,N,x) - (X, N,*) Define

By T (x1,x2,..)= (x5, X3, X4,...) for all (x1, x2,...) € £2 and Define fuzzy norm
by equation(1.3.7).

Suppose T(x1, x2,...)= A (x1, X2, X3..)= (X3, X3, X4,...)= (Ax1, Ax2, Ax3,...) IS
equivalent to Axi=x2, Ax2=x3 , Ax3 = X4, ...
consequently , x = (x;) 5=, With x;, = A%¥"1x for all k >2 .This sequence

belongs to #2 ifand only if X5, |x,|? =X |x,]14|?* converges or
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equivalently |A| <1thenN(4,1)=1=NAX1)=1>1—-r,

VO<r<1=0,(T)={1€C:N@A 1) >1-r}=B(0,r1).
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CHAPTER, THREE SPECIRAL
PROPERIIES OF FUZZY
COMPACT LINEAR OPERATOR,
ON FUZZY NORMED SPACES

This chapter deals with the focuss will be on discussing properties of fuzzy
compact linear operator on fuzzy normed spaces. It consists of three sections.
Section one deals with Compact set in fuzzy normed space and some of their
properties. Section two deals with fuzzy Compact linear operator on fuzzy
normed space and some of their properties. Section three we consider spectral
properties of fuzzy compact linear operator T : X — X on fuzzy normed
spaces X. For this purpose we shall again use the operator T, =T — Al and 1
spectral value .
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3.1 Compact set in fuzzy normed space

This section deals with Compact set in fuzzy normed space and some of their
properties.

Definition (3.1.1) : [4] Let (X, N,*) be a fuzzy normed linear space.
A subset B of X is said to be compact if any sequence {x,,} in B has a

subsequence converging to an element of B .

Lemma (3.1.2) : [2] Let (X, N,*) be a fuzzy normed space satisfying the
condition (N.8) and {x,, x,, ..., x,,} be a finite set of linearly independent
vectors of X. Then for each a € (0,1) there exists a constant C, > 0 such that

for any scalars a4, ay, ..., @, ,

n
sy + @y, ++ el = Co ) el
i=1

Where ||. ||, is defined in the Theorem (1.3.8).

Definition (3.1.3) : [20] Let (X, N,*) be a fuzzy normed linear space and
B c X. B is said to be fuzzy bounded if foreachr, 0 <r < 1,3t >0

such that N(x,t) >1—r, Vx €B.

Theorem (3.1.4) :Let (X, N,*) fuzzy normed linear space (X, N,*) satisfying the
conditions (N.7) a subset B of X is compact then B is closed and fuzzy
bounded in (X, N,*).

Proof : = Suppose that B is compact we have to show that B is closed

and bounded .Let x € B .Then there exist sequence {x,,} in B such that
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lim,,_, N(x, —x,t) = 1since B is compact ,there exist a subsequence {x,, }

of {x,, Jconverges to a point in B.Again {x, } — x so {x,, } — x and hence
x € B then B = B there fore B is closed . If possible suppose that B is not

bounded then 3 r ,0< r <1 such that for each positive integer n,3 x,, € B
suchthat N(x,,n) <1 —r .since B is compact there exist a subsequence
{xn,} Of {x,} converging to element x € B thus limy_ N(x,, —x,t) =1
Vv t>0.Also N(xnk, nk) <1l-r

Now 1—7= N(x,,,n) = N(x,, —x +x,n —k + k) where k>0 =
1—-r> N(xnk —x,k) * N(x,ny — k)

= 1—7r > limy_ N(xnk — X, k) % limy e N(x,n) — k) =
1-r>1%1=1by(N.7)and (N.5)= r < 0 which is contradiction

Hence B is bounded

Theorem (3.1.5) : In a finite dimensional fuzzy normed linear space (X, N,*)
satisfying the conditions (N.7) and (N.8) a subset B of X is compact if and
only if B is closed and fuzzy bounded in (X, N,*).

Proof : = First we suppose that B is compact we have to show that B is closed
and bounded .Let x € B .Then there exist sequence {x,,} in B such that
lim,,_, N(x, —x,t) = 1since B is compact ,there exist a subsequence {x, }

of {x,, Jconverges to a point in B.Again {x, } — x so {x,, } — x and hence
x € B then B = B there fore B is closed . If possible suppose that B is not

bounded then 3 r ,0< r <1 such that for each positive integer n,3 x,, € B
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suchthat N(x,,n) <1 —r .since B is compact there exist a subsequence
{xn, } of {x,} converging to element x € B thus limy_ N(x,, —x,t) =1
vV t>0 .Also N(xnk,nk) <1l-r

Now 1—7= N(x,,,n) = N(x,, —x +x,n —k+k) where k>0 =
1—7= N(x,, —xk)* NCe,n, — k)

= 1 —7r = lim,e N(xn, —x,k) *limy,e N(x,n — k) =

1—-r>1%1=1by(N.7)and (N.5)= r < 0 which is contradiction
Hence B is bounded

< part (2) : In this part, we suppose that B is closed and fuzzy bounded in the
finite dimensional fuzzy normed linear space (X, N,*). To show B is compact,

consider {x,} an arbitrary sequence in B. Since X finite dimensional,

letdim X = nand {e,, e,, ..., e,} be a basis of X. So for each x,
3 Bk, BX, ..., Bk € B such that

xp = Pre; + Pre, + -+ Pre, , k=12, ..

Since B is fuzzy bounded, {x;} is also fuzzy bounded. So 3 t, > 0 and r,

where 0 < 1, < 1 such that
N(xp, ty) >1—1r9=0a, Vk=12,... (2.1)
Let ||x]|, =A{t:N(x,t) = a},a € (0,1). So by (2.1) we have
lxlle, < to .. (2.2

Since {eq, e,, ..., e, } s linearly independent, by Lemma (2.3.1), 3 ¢ > 0 such
that vk = 1,2, ... ,

lxklle, = ||Z?=1,Bikei||ao > CZ{L=1|Blk| - (2.3)
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From (2.2) and (2.3) we have Y1, |B¥| s%" for k=1,2,..

= Foreachi, |B|< X, |pF| <= for k=12,.
= {ﬂi""} Is fuzzy bounded sequence, foreach i = 1,2,...,n
= {ﬁi"} has a fuzzy convergent subsequence say {ﬁikl}.

= (B, (X1, ..., (B} all are fuzzy convergent.

Let x;, = flel + ,Bflez + -+ ,’flen and
: k . k . k
ﬁl = llmn_)oo ﬁll ’ BZ = llmn_)oo le 5 see s ﬁn = hmn-ﬂ)o ﬁnl and

x = prer + frey + -+ Brey.
Now V t > 0, we have

N(xkz X, t) = Nz .Biklei — Yiz1 Biei,t)
= N(Z?=1(ﬁikl - ,Bi)ei t)

2 (81 pder ) e (65 Bu)en)

— —t —t
=N (el, n|ﬁfl_ﬁ1|> * * N <en'n|ﬁsl_ﬁn|>.

Since lim;_, 4, T
i —Pi

= limy o N(xp, —x,t) = 1*x1=1 Vt>0
= liml_mN(xkl — x,t) =1, Vt>0 .. (2.4)
Thus from (2.4) we see that
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limx,, =x = x €B [since B is closed ].

l—>0o0

= B is compact.

Theorem (3.1.6) :[21] ( Riesz Lemma ) Let VV be closed proper subspace of a

fuzzy normed linear space (X, N,*) and let A be a real number such that
0 < A < 1. Then there exists a vector x, € X such that N(x;,1) > 0 and

N(x; —x,A) =0forallx eV.

Proof : Since V is proper subspace of X,3v e X —V.

Denote d =A,epA{t>0:Nlv—x,t) >0}

We claimthatd > 0, i.e. AyeyA{t>0:Nwv—x,t)>0}=0

= foragiven e > 0,3 x(e) € Y such that
AN{t>0:Nv—x,t)>0}<e=Nw-—-x,¢s)>0.

Choose a € (0,1) suchthat Nov—x,e) >1—a. ie.y€e B(v,1 —a,e¢).
Since € > 0 is arbitrary, it follows that v is in the closure of V.

Since I/ is closed, it implies that v € V which is a contradiction.

Thusd > 0.We now take A € (0,1). So % > d. Thus for some x, € V, we

haved S A{t>0:N@W—x,t) >0} <K' <3 .. (2.5
Letx; = —=*. Now (x;, 1) = N(—=2, 1).
ie. N(x;,1) =N@-—xq,k") (2.6)

Now A{t>0:N(v—x5t)>0}<k'=Nw-—x,,k") > 0.
From (2.6) we have N(x;,1) > 0.

Now for x € v,
A{t>0:N(;—x,t)>0}=A{t>0:Nwv—x,—k'x,k't) >0}

=%/\{s>O:N(U—x0—k'x,5)>0}-
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e A{t>0:N(x; —x,t)>0} = % (since xo + k'x €V)

= A{t>0:N(x3-x,t)>0}>2 by(25)

l.e. N(x,l—x,/l)SO = N(x,l—x,/l)zO, Vxev.

Theorem (3.1.7) :[21] Let (X, N,*) be a fuzzy normed linear space and x # 0.
If supposethat A = {x € X : N(x,1) > 0} is compact, then X is finite

dimensional.

Proof : If possible suppose that dim X = co. Take x; € X such that
N(x;,1) > 0. Suppose V; is the subspace of X generated by x;.

Since dimV; = 1, itis a closed and proper subset of X.

Thus by the Lemma (3.1.6),

3 x, € X such that N(x,,1) >0 and N(x, — x4, %) = 0. The elements
X1, X, generate a two dimensional proper closed subspace of X.

By the Lemma (3.1.6), 3 x5 € X with N(x3,1) > 0 such that

N(x3—x1,%)=0, N(x3—x2 l)=0.

2
Proceeding in the same way, we obtain a sequence {x,} of elements
X, € A suchthat N(x,,,1) >0 andN(xn —xm,%) =0 (m #n).
It follows that neither the sequence {x,} nor its any subsequence

converges. This contradicts the compactness of A. Hence dim X is finite
dimensional.
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3.2 Fuzzy compact linear operator on fuzzy normed space

This section deals with fuzzy Compact linear operator on fuzzy normed space
and some of their properties.

Definition(3.2.1):Let X and Y be a fuzzy normed spaces with norm N .An

operator T : X — Y is called fuzzy compact linear operator if linear and if for

every fuzzy bounded sub set B of X that T(B) is compactinY.

Definition (3.2.2) :[21] Let (X, N,,*) and (Y, N,,*) be a fuzzy normed spaces
over the same field F. The operator T: (X, N;,*) — (Y, N,,*) is said to be fuzzy
continuous at x, € X if for every € € (0,1) and all t > 0 there exist

6 € (0,1) and s > 0 such that for all x € X:

Ni(x —x9,5)>1—6 = N,(T(x) —T(xy),t) >1—c¢.

Theorem (3.2.3) : [19] Let T : (X, N;,*) = (Y, N,,*) be a linear operator. Then T

Is fuzzy bounded if and only if T is fuzzy continuous .

Theorem (3.2.4):[17] Let X, Y be fuzzy normed spacesand let f : X — Y be a
linear function. If f is a fuzzy continuous at 0 then it is fuzzy continuous at
every point.

Lemma (3.2.5):Let X,Y be fuzzy normed spaces and space (Y, N,x) satisfying
the conditions (N.7) .Then every fuzzy compact linear operator T : X —» Y is
fuzzy continuous and hence fuzzy bounded.

Proof :Let B is fuzzy bounded sub set of X and x € Bthenx € X

Let T is not fuzzy continuous at 0 ,then3 ¢ € (0,1)and t > 0,V é € (0,1) and
s > 0 such that
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N;(x—0,s)>1—-8 = N,(T(x)—-T(0),t) <1-—¢
= N,(T(x),t) <1—¢sincexeB=T(x)eT(B)

Since T : X = Y fuzzy compact linear operator we have T'(B) is compact in
(Y, N,*) from theorem (3.1.4) we have T'(B) is bounded in Y .since
T(B) € T(B)thenT(x) € T(B) since N,(T(x),t) <1—¢eande € (0,1)

There fore T(B) is not bounded which is contradiction then T is fuzzy
continuous at 0 from theorem(3.2.4) we have T is fuzzy continuous at every
point there fore T is fuzzy continuous , also from theorem(3.2.3) we have T is
fuzzy bounded.

Theorem (3.2.6): Let X,Y be fuzzy normed spacesand T : X — Y is linear
operator .Then T is fuzzy compact linear operator if and only if it maps every
fuzzy bounded sequence {x,} in X onto a sequence {T(x,)} in Y which has a
fuzzy convergent subsequence.

Proof :If T is fuzzy compact linear operator and {x,,} is fuzzy bounded ,then

the closure of {T'(x,,)}inY is compact and from definition (3.1.1) shows that
{T (x,,)} contains a fuzzy convergent subsequence.

Conversely,assume that every fuzzy bounded sequence {x,} contains a
subsequence {x,,} such that {T (x,,)} fuzzy converges in Y.Consider any
fuzzy bounded subset B < X,and let {y,} be any sequence in T(B ) .Then

v = T(x,) for some x,, € B, and {x,,} is fuzzy bounded since B is fuzzy
bounded . By assumption , {T'(x,,)} contains a fuzzy convergent subsequence.
Hence m by definition (3.1.1) because {y,,} in T(B ) was arbitrary. By
definition , this shows that T is fuzzy compact linear operator.
Theorem (3.2.7)[17]: Let {x,,} , {y,} be a sequences in fuzzy normed space X
and for all @, € (0,1) there exist « € (0,1) suchthata * a > a;

(1)Every sequence in X has a unique fuzzy convergence.
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(2)If x,, — x then cx,, — cx,c € F — {0}, ( F is field)

fx, = x,y, = ythenx, +y, = x+y

Theorem (3.2.8):Let X and Y be a fuzzy normed spaces and for all «; € (0,1)
there exist a € (0,1) suchthata *a = a; and T; : X - Y is fuzzy compact
linear operator where j = 1,2 .Then T; + T, is fuzzy compact linear operator
and also cTj is fuzzy compact linear operator ,where c any scalar ¢ € F — {0},
(Fisfieldandj =1,2).

Proof :Let {x,} fuzzy bounded sequence in fuzzy normed space X .Since

T; : X »Y isfuzzy compact linear operator where j = 1,2 .Then from
theorem (3.2.6) we have {x,} contains a subsequence {x,,} such that
{T1(xy, )} and {T(x,,)} are fuzzy converges in Y ,then from theorem (3.2.7)
we have {T; (xy,,) + T2 (xy, )} is fuzzy converges in ¥ = {(T; + T5)(xy, )} is

fuzzy converges in Y ,there fore from theorem (3.2.6) we have T; + T, is fuzzy
compact linear operator .

Also since {T;(x,, )} is fuzzy converges in Y where j = 1,2.Then by theorem
(3.2.7) {cT;(xy, )} is fuzzy converges in Y where where c any scalar
c € F — {0}, (F isfield).Then from theorem (3.2.6) we have cT; is fuzzy

compact linear operator , where c any scalar ¢ € F — {0}, ( F is field and
j=1.2).

Theorem (3.2.9): Let X and Y be a fuzzy normed spaces and space

(Y, N,x) satisfying the conditions (N.7)and (N.8) and T : X — Y is linear
operator .Then if T fuzzy bounded and Y is finite dimensional ,the operator T
Is fuzzy compact.

Proof : Let {x,} be any fuzzy bounded sequence in fuzzy normed space X .
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Thenv 0 <r <1,3t>0 suchthat N(x,,,t) >1—1r,Vn

Also since T fuzzy bounded then there exist r; > 0 such that for each

t—l), Vx e X.Since N(x,,t)>1—r,vVn

T1

t, >0, N(T(x),t;) = N (x

1—7< N(x,t) =N(:—ixn,t) =N("—”,i),Vn

nn

Put y, =x—”=>yn € X,Vn=>N(yn,£) >1—7r,Vn
&1 L&t
. ty t
Since N(T(x),t,) = N (x 7), VX EX,t; > 0= NT(),t) = N (yn,r—).
1

SinceN(yn,Ti) >1—r,Vvn= NTO),t)>1—-r,Vn
1

1—r< N(T(Gp),t) = N(T (’;—")t) _ N(;T(xn), t) = N(T(x),7:0)
Putt, =nt=1t,>0 ' '

Thenv 0 <r <1,3t,>0 suchthat N(T(x,),t,) >1—r,V n,there fore

{T (x,)} is fuzzy bounded in Y since Y is finite dimensional then from theorem
(3.1.5) we have {T (x,)} is compact .It follows that {T (x,,)} has a fuzzy
convergent subsequence. Since {x,,} was an arbitrary fuzzy bounded sequence
in X ,the operator T is fuzzy compact by theorem (3.2.5).

3.3 Spectral Properties Of Fuzzy Compact Linear Operator On Fuzzy
Normed Spaces

In this section we consider spectral properties of fuzzy compact linear
operator T : X — X on fuzzy normed spaces X. For this purpose we shall again
use the operator T = T — Al and A spectral value .

Theorem (3.3.1):Let T : X — X be a fuzzy compact linear operator on a fuzzy

normed spaces X . Then for every 1 # 0 and A eigenvalue then null space
(eigenspace) NV (T,) of T, = T — Al is finite dimensional .
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Proof:We show that A = { x € X : N(x,1) > 0} is compact in '(T;) and then
apply theorem(3.1.7).

Let {x,,} is fuzzy bounded suchthatV 0 <r < 1,N(x,,1) >1—7r,Vn
Since N(x,,1) > 0,V nthen {x,} c A ,since {x,,} is fuzzy bounded and

T : X - X is fuzzy compact operator from theorem (3.2.6),then {T (x,,)}

has fuzzy convergent subsequence {T(x,, )} . Now x,, € A c NV (T;) implies

Ty (xn) = T(2n) — Al(xz) = 0,50 that x,, = 2T (2x,,) because 1 # 0 .
Consequently, {x,,} = {%T(xn )} from theorem (3.2.6) we have {x,,, } is fuzzy
converges .Let y point converges (e.i. {x,,} — ¥) .Since y € X and X fuzzy
normed space we have N(y,1) > 0 ,sothat y € A .Hence A is compact by

definition(3.1.1) because {x,} was arbitrary and {x,,} © A .This proves V' (T3)

Is finite dimensional by theorem(3.1.7).

Lemma (3.3.2): Let T: X — X be a fuzzy compact linear operator and S: X —
X be a fuzzy bounded linear operator on a fuzzy normed spaces X .
Then TS and ST are fuzzy compact linear operator.

Proof:Let B c X be any fuzzy bounded set .Since S is fuzzy bounded linear
operator there fore 3 r>0 3 Vt>0 such that

N(S(x),t) = N(xé), vVx €X.

Since B is fuzzy bounded set then Vv 0 < r; < 1,3t;>0 such that

N(xl,tl) > 1—T1,Vx1 EB

1—r, <N(xq,t;) = N(gxl,tl) = N(ﬂ,tr—l) ,V x; €B.

T
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Puty = % = y € X .Since § is fuzzy bounded linear operator there fore
3 r>03 Vt>0 such that

N(S(x),t) = N(x,g), Vx €X.

Then N(S(),t) 2 N(,2)=N(2,2)>1-n S NEG)6)>1-7

r r

X1

1-n <NESOLt) =N (5(2),6) =N (%S(xl), tl) = N(S(x), L))

Put t, =rt; = t,>0 .Let z=5(x;) .Hencev 0 <r; <1,3t,>0 such that

N(z,t,) >1—r, Vz € S(B) .Then S(B) is fuzzy bounded set .Since T is

fuzzy compact operator then T(S(B)) Is compact in X.Since

T(S(B)) = TS(B) then TS(B) is compact in X there fore TS is fuzzy compact
linear operator by definition(3.2.1).

We prove that ST is fuzzy compact linear operator .Let {x,,} be any fuzzy
bounded sequence in X. Since T is fuzzy compact linear operator then by

theorem (3.2.8) {T'(x,,)} has convergent subsequence {T (x,, )} ,since S is fuzzy

bounded then >0 3 Vt>0, such that
t
N(SCO), ) = N(x,;), Vx€EX.

Since {T (xy,, )} is fuzzy converges y € X = {T(x,, )} =y =
Ve € (0,1),Vt,>0,3n, € Z* such that N(T(xnk) -, to) >1—€,Vn=ny
Since N(S(x),t) = N (x, f) Vx € X, T(x,,) —y € X .Hence

N(S(T(xp) —y).t0) = N (T(xnk) Y tr_o)

Putt, =2 = t;>0. Then N(T(xy,) —y,tz) >1—€,Yn =ny =
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N(S(T(xn,) —¥),to) >1—€,¥n=ny N(ST(x,, ) =S, tp) >1—€
vn = n, .Hence {ST (x,, )} — S(¥) .Hence {ST (x,)} has fuzzy convergent

sequence .There fore ST is fuzzy compact operator by theorem(3.2.8).
Theorem(3.3.3)(Null spaces):In theorem (3.3.1)
dim(WV(T}"")) < o ,n =1.2....

Proof: Ty = (T — AD™ = Xp_o()T* (=)™ " = (=)™ + T Xi_o(H)T*
This can be written

Tt =w—pl . p=~(-D"
Where w =TS = ST and S denotes the sum on the right. T is fuzzy compact

and S is fuzzy bounded since T is bounded by theorem (3.2.5). Hence w fuzzy
compact by lemma (3.3.2), so that we obtain

dim(V(T;")) < o0,n =1.2....

By Appyling theorem (3.3.1).

Theorem(3.3.4):[13]Let T: X — X be a compact linear operator on a normed
space X .Then for every 4 # 0 the range of T, = T — A 1 is closed.

Theorem(3.3.5):Let T: X — X be a fuzzy compact linear operator on a fuzzy
normed space X where norm defined by equation(1.3.7) .Then for every A + 0
therange of T, = T —ATlisclosed in X .

Proof:Let B = {x € X:||x|| < 2} then B is bounded in X with respect ||. || =
N(x,2)=1.

leta€(0,]) >0< a<l=1-a<1= N(x,2)>1-athen

N(x,2) > 1-a,Vx € B there fore B is fuzzy bounded in X.
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Since T is fuzzy compact linear operator from definition(3.2.1) we have T'(B)

Is compact in fuzzy normed space X .

To prove m is compact in X with to respect ||. ||.

Let {y,} is sequence in T(B). Since T(B) is compact in (X, N,*) then T(B) has
subsequence {y,, } converging to element of T(B) (i.e. {y,,} = v,y € T(B))
= limy,eo N(yn,, —y,t) = 1 foreach ¢>0 . Fix B € (0,1) thus

limy 0 N(¥n, —y,t) = 1 > B for each t>0 .That is for each ¢>0 there exist
ny € Z* such that N(y,, —y,t) > B for each n > n, .Hence

limy o0 || ¥, — ¥|| = 0 .There fore T(B) is compact in X with to respct ||. ||
Hence T is compact linear operator in X with to respect ||. ||. From theorem

(3.3.4) we have range of T, = T — A lis closed in X with to respect ||. || .Also

from theorem(2.2.7) We have range of T, = T — A1 is closed in X with to
respct N.
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