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Abstract 
 

The purpose of this  thesis is to study the differential subordination and super-
ordination results in geometric function theory.  It studies differential subordi-
nation   for   univalent  functions.    We  investigate  and  obtain  subordination 
results  for  generalized  deriving function of  a new  class of  univalent  analytic 
functions  in the open  unit disk.  Also,  we  have discussed  some  properties of 
differential sandwich results  of  p-valent  functions  defined by  Liu-Srivastava 
operator.        Results  on  differential  subordination  and  superordination  are  
obtained. Also, some sandwich theorems are derived. 

We have  also  undertaken  the study of  third-order  differential subordination 
results for meromorphic univalent functions associated with linear operator.  

Here,  new results  for  third-order  differential subordination in the punctured 
unit disk are obtained. 

We have  also  dealt with  third-order  differential  superordination  results  for 
p-valent  meromorphic  functions  involving  linear operator.  We  derive  some 
third-order  differential  superordination  results  for  analytic  functions in the 
punctured open unit disk by using certain classes of admissible functions. 

We have also studied the fourth-order differential subordination and superor-
dination results  for  multivalent  analytic  functions. Here,  we  introduce new 
concept  that is  fourth-order  differential  subordination  and  superordination 
associated with differential linear operator   (   ) in open unit disk. 

  



  
 

 

 

Introduction 
 

 

          The classical study of the subject of analytic univalent functions has been 
engaging the attention of researchers at least till  as early as 1907.  This has be-
en growing vigorously with added research.   This field captioned as Geometric 
Function Theory is found to be a mixing or an interplay of geometry and analy-
sis. Despite the classical nature of the subject,  unlike contemporary areas, this 
field  has  been  fascinating  researchers,  with  stress  on  the  interest based on 
investigations by  function  theorists.  The main ingredient motivating this line 
of thought is based on the famous conjecture called the  Bieberbach conjecture 
or  coefficient  problem  offering  vast  scope  for  development  from 1916, till a 
positive  settlement  in 1985  by  de Branges  where  innumerable  results  were 
obtained based on this problem. Since then,  Geometric Function Theory was a 
subject in its own right. Geometric function is a classical subject. Yet it contin-
ues  to  find   new   applications  in  an  ever-growing  variety  of  areas  such  as 
modern mathematical physics, more traditional fields of physics such as fluid 
dynamics,  nonlinear integrable systems theory and the theory of partial differ-
ential equations.   

Detailed treatment of univalent functions are available in the standard books 
of Duren [23] and Goodman [27]. 

         A function    analytic in a domain     of  the complex plane    is said to be 
univalent or one-to-one in   if  it never takes the same value more than once in 
 . That is, for any two distinct points     and    in  ,  (  )   (  ).  The choice 
of the unit disc,   *  | |   + as a domain for the study of analytic univalent 
functions  is  a matter  of  convenience  to  make the  computations  simple and 
leads  to  elegant  formulae.  There  is  no loss of  generality in this choice, since 
Riemann Mapping Theorem  asserts  that any simply connected proper subdo-
main of   can be mapped onto the unit disk by univalent transformation. 

The class of  all analytic functions in  the open unit disk     with  normalization 
 ( )      and     ( )     will be denoted by   , consisting of  functions of  the 
form : 

 

                                          ( )    ∑   
 

 

   

             (   )                                    

 

 



  
 

 

 

Geometrically, the normalization  ( )    amounts to only a translation of the 
image domain and    ( )    corresponds to rotation and stretching or shrink-
ing of the image domain.We denote the class of all analytic univalent functions 
with the above normalization by  . 

   The function  ( ) called the Koebe function, is defined by  

 ( )  
 

(   ) 
              

which maps     onto  the complex plane except for a slit along the negative real 

axis from      to   
 

 
 ,  is a leading  example  of  a function in   . It plays a very 

important  role  in  the study of  the class   . In fact,  the Koebe function and its 

rotations         (    )          are  the  only  extremal  functions  for  various 

extremal problems in  .   The study of univalent and multivalent functions was 
initiated by  Koebe  (1907) [37]. He discovered that the range of all functions in 

   contain  a common disk  | |  
 

 
   later  named  as the  Koebe domain for the 

class   in honour of him. 

    For functions  in the class  , [23], it is well known that the following growth 

and distortion estimates hold respectively as for              

 

(   ) 
 | ( )|  

 

(   ) 
  

and  

   

(   ) 
 |  ( )|  

   

(   ) 
  

   Further for functions   in the class  , [23], it is well known that the following 
rotation property holds: 

|     ( )|  

{
 
 

 
                              

 

√ 

     
  

    
         

 

√ 
 

 

where | |     . The bound is sharp. 

   In [23] 1916, Bieberbach studied the second coefficient    of a function      

He has shown that   |  |   ,  with equality  if and only if     is a rotation of  the 
Koebe function and he mentioned ”|  |    is generally valid ”. This statement 
is known as the Bieberbach conjecture. 



  
 

 

 

In  1923  Löwner [41] proved the Bieberbach conjecture for    , many others 
investigated the Bieberbach conjecture for certain values of  . Finally, 1985 de 
Branges  [22]  proved  the  Bieberbach  conjecture  for all  coefficients  with the 
help of  hypergeometric functions. 

   Since the  Bieberbach conjecture  was difficult to settle,   several authors have 
considered classes defined by geometric conditions.    Notable among them are 
the   classes of  starlike  functions,       convex  functions  and  close –to–convex   
functions. 

   Subordination between analytic functions return back to  Littlewood  [42,43] 
and   Lindelöf   [39],  where   Rogosinski    [60,61]    introduced   the   term  
and established the basic results involving subordination. Quite recently 
Srivastava and Owa  [67]  investigated  various  interesting  properties  of the  
generalized hypergeometric function by applying the concept of subordination. 

Ma and Minda [45] showed that many of these properties can be obtained by a 
unified method. For this purpose they introduced the  classes   ( )  and    ( ) 
of functions   ( )   ,  for some analytic function   ( )  with positive real part 
on  , with   ( )       ( )    and    maps the open unit disk   onto a region 
starlike with respect  , symmetric with respect to the real axis, satisfying: 

 

  
   ( )

  ( )
  ( )          

   ( )

 ( )
  ( )  (   )  

They  developed  a new  method  in  geometric  function  theory  known  as  the 
method  of  differential  subordination or the  method of  admissible functions. 
This method is very effective to obtain new results. 

Interest  in  geometric  function  theory  has  experienced  resurgence  in recent 
decades as the methods of  function theory on  compact  Riemann surfaces and 
algebraic geometry. 

   Early string theory models depends on elements of geometric function theory 
for the computation of so called Veneziano amplitudes was appeared [34].       

       

         

 

 



  
 

 

 

The  thesis  is  organized  as  follows.  In  chapter  one,  we  present  a brief 
introduction to some  background  of complex  concepts  and the basic ideas of 
geometric function theory. 

    Chapter two  consists  of  two  sections,  in the  first section,  we deal with the 
study   of   differential   subordination   for   univalent   functions.    We   obtain   
subordination   results  for   generalized  deriving  function   of  a new   class  of 
univalent analytic functions in the open unit disk. 

Section two is devoted for the study of some properties of differential sandwich 
results  of  p-valent  functions  defined  by  Liu-Srivasava  operator.  We  obtain 
results  on  differential  subordination  and   superordination.  Also,  we  derive   
some sandwich theorems. 

   Chapter three  has  been  divided into three sections,  setion one  deals  with a 
third-order differential subordination results for meromorphic univalent 
functions associated with linear operator.Here, we obtain new results for third 
–order  differential  subordination in the  punctured  unit disk.  In section two, 
we  have  introduced  the  third-order  differential  superordination  results  for     
p-valent  meromorphic  functions  involving  linear  operator.  We  derive some 
third-order  differential  superordination  results  for  analytic  functions in the 
punctured  open unit disk of  meromorphic  p-valent functions by using certain 
classes  of  adimissible  functions.  Section  three  deals  with  the   fourth-order 
differential subordination and superordination results for  multivalent analytic 
functions.  Here,  we  introduce  new  concept  that  is  fourth-order differential 
subordination and superordination associated  with differential linear operator 
  (   ) in open unit disk. 

  



  
 

 

 

Chapter One 
 
 

 
 
Introduction: 
         This chapter includes three sections with some examples,  the first section 
reviews the basic definitions that can be found in  the standard text books with 
some examples see Churchill [18], Duren [23],Hayman [30], Kozdron [36] and 
Miller and  Mocanu  [47],    where this  section is  about analytic functions  and  
unvialent, multivalent (P-valent) functions, generalized hypergeometric funct-
ions, Ruscheweyh derivatives, also subordination and superordination. 

Section two is about some classes of analytic functions.    Some well-known the  
class  of  starlike  functions,  convex  functions,  close  to  convex  functions 
  starlike functions and   convex functions see [5],[23],[35],[59] and [68].  

In section three,  basic  lemmas and  theorems  have been  mentioned they are 
essential and needed for the proofs of our principal results     see [6], [11], [23], 
[47] and [71]. 

 

 

 

 

 

 

 

 

  
      

 

      
 

 
 

Complex Variable Concepts in 
Geometric Function Theory 



  
 

 

 

 

1.1  Basic Definitions  
 
 
 
Definition 1.1.1 [23]:  Suppose that     *    | |   +  denotes  the open 
unit disk in the complex plane  . A function   of the complex variable is said to 
be analytic at a point    if it’s derivative exists not only at    but also each point 
  in some neighborhoods of   . It is analytic in the unit disk   if it is analytic at 
every point in  . We say that   is entire function if it’s analytic at every point in 
complex plane  . 

Example 1.1.2 [18]:  The function   ( )   
  ⁄

   is analytic  whenever       , 

and since  

 ( )   
  ⁄
 
     (     )

(     ) 
   

The two functions  

 (   )   
   

(     ) 
                  (   )  

     

(     ) 
    

the partial derivatives             are continuous in all the value (   )  (   )  
Cauchy-Riemann equations are satisfied because  

   
        

(     ) 
                           

        

(     ) 
 

   
        

(     ) 
                           

        

(     ) 
  

Then  

      
        

(     ) 
          

        

(     ) 
  

Hence   is analytic for all        

Example 1.1.3 [18]:  The function  ( )        is entire function. 

 



  
 

 

 

Definition 1.1.4 [6]:  Let   ( ) be  the class of  functions which are  analytic 
in the open unit disk  

  *    | |   +   

For      *       + , and      let  

 

 ,   -  *   ( )   ( )       
       

       +   

and also let    ,   - and    ,   -   

Definition 1.1.5 [23]:  A function    analytic  in domain  D    ,  is said to be 
univalent  (schilcht),  there   if it  does not  take  the  same  value  twice,  that  is    
 (  )   (  ) for all pairs of distinct points     and    in D. In other words,    is 
one to one or  (injective) mapping of  D  onto  another domain. The theory of 
univalent functions is so much deep, we need certain simplifying assumptions. 
The most obvious one in our study is to replace the arbitrary  domain D  by one 
that is convenient, and is the open unit disk 

                                                      *    | |   +. 

As exmples, [23] the function   ( )    is univalent in    while  ( )     is not 

univalent in  . Also  ( )    
 (    )

    
 is univalent in   for all positive integer    

We shall denote by   the class of all those functions   which are analytic in the 
open unit disk   and normalized by the conditions  ( )    and   ( )   . 

Definition 1.1.6 [23]:  Let    denotes the class of  all functions    in the class  

  of  the form: 

                                          ( )    ∑   
 

 

   

             (   )                                    (     ) 

which are univalent in the open unit disk                                                              
We also deal with  function which is  meromorphic  univalent in the punctured 
unit disk       *      | |   +    * +   Meromorphic function defined 
as a function    analytic in a domain D     except for a finite number of  poles 
in D.  

 

 



  
 

 

 

Definition 1.1.7 [23]:  Let   denotes the class of function   of the form: 

                                       ( )  
 

 
 ∑   

 

 

   

             (   )                                       (     ) 

which are meromorphic univalent in the punctured unit disk     

Definition 1.1.8 [23]:  A function    is said  to be locally  univalent at a point  
     if it is univalent in some neighborhood of   . For analytic function   ,the 
condition   (  )    is equivalent to local univalence at   .                         
Example 1.1.9 [36]:  Consider the domain 
 

  {      | |              
  

 
}  

and the function         given by  ( )      It is clear that   is analytic on D 
and locally univalent at every point     , since   (  )        for all       
However,   is not univalent on D, since  

 (
 

 √ 
  

 

 √ 
*   ( 

 

 √ 
  

 

 √ 
*  
 

 
   

Definition 1.1.10 [23]:  A function   is said to be conformal at a point     if it 
preserves  the angle between oriented curves  passing through     in magnitude  
as well as  in  sense.  Geometrically,  images of  any  two oriented  curves  taken  
with their corresponding  orientations make  the same angle of  intersection  as  
the curves at     both in  magnitude  and  direction. A function    ( ) is said 
to  be  conformal in  the domain  D     if it is  conformal  at each  point of  the 
domain. Any analytic univalent function is a conformal  mapping because of its  
angle – preserving property. 

Definition 1.1.11 [23]:  A Möbius  transformation, or called a bilinear trans- 
formation, is a rational function       of the form  

 ( )  
    

    
   

where            are fixed and          

Example 1.1.12 [36]:  Perhaps the most important member of   is the Koebe  

function which is given by  

 



  
 

 

 

 

 ( )  
 

(   ) 
   

We can compute the Maclaurin series for    by differential the series for   
 

(   ) 
 

and then multiplying by   . 

 ( )  
 

(   ) 
 ∑                

 

   

 

and  maps the  unit disk to the  complement of  the ray    .    
 

 
1   This can be 

verified by writing      

 ( )  
 

 
(
   

   
*
 

 
 

 
   

Note that for this function        for all     We  now show that the image of     
under  is a slit domain that is a domain consisting of the entire complex plane 
except that a slit is cut out of it. To determine  ( )  consider the next sequence 
of functions:  

  ( )  
   

   
    ( )  

 

 
  
 ( )              ( )    ( )  

 

 
   

Where noting that 
   

   
 maps the unit disk conformally onto the right half-plane 

* * +   +  see Fig (1.1.1).   

 
Figure (1.1.1) 

 

The Koebe function maps   conformally onto   .    
 

 
1  

Now                             



  
 

 

 

        ( )  
 

 
6(
   

   
*
 

  7  
 

(   ) 
  

Note that    is the Möbius transformation that functions maps   onto the right 
half-plane  whose  boundary is  the  imaginary axis.   Also,      is  the sequaring 
function, while   translates the image one space to the left and then multiplies 

it by a factor of  
 

 
   

Definition 1.1.13 [30]:  Let    be a function  analytic in  the  unit disk.  If  the 
equation   ( )     has never  more  than    solutions in   ,  then    is said to 
be   valent in    The class of all    valent analytic functions is denoted by    

expressed in one of the following forms: 

                 

 ( )     ∑     
           (          *       +  )                  (     )

 

   

 

or 

 ( )     ∑    
         (          *       +  )                        (     )

 

     

 

And, let   be a function analytic in the punctured unit disk        If the equation 
 ( )    has never more than   solutions in     then   is said to be   valent 
in     The class of all   valent meromorphic functions is denoted by   

  and 

expressed in one of the following forms: 

             ( )      ∑   
              (     *       +) 

 

   

                               (     ) 

or 

             ( )      ∑    
           (     *       +) 

 

     

                                (     ) 

Definition 1.1.14 [23]:  If functions   and   belonging to  the class   ,  given  

by  

         ( )    ∑   
 

 

   

                       ( )    ∑   
 

 

   

   



  
 

 

 

 

then the Hadamard product or (convolution) of functions    and    denoted by 
    is defined by  

  (   )( )     ∑     
  (   )( )      

 

   

   (    )                              (     ) 

Example 1.1.15 [21]:  C0nsider the Hadamard product of the Koebe function  

 ( )  
 

(   ) 
   

and the horizontal strip map, 

    ( )  
 

 
   (
   

   
*   

To find  the Hadamard   ( )   ( ),  we need  to compute the  Maclaurin series 
for    Since, see[18]  

 

   
                   (| |   )  

and by integration both sides, we have 

   (   )   ∑
    

   
 

 

   

 

Also 

 

   
                   (| |   )  

and by integration both sides, we have 

         (   )  ∑
(  )     

   
 

 

   

 

Therefore,  

   (
   

   
*     (   )     (   )  ∑

(  )     

   
 ∑

    

   

 

   

 

   

 

                    

                          
  

 
 
  

 
 
  

 
 
  

 
     

  

 
 
  

 
 
  

 
 
  

 
   



  
 

 

 

                          
  

 
  
  

 
    ∑

     

    
 

 

   

 

then 

   
 

 
   (
   

   
*  ∑

     

    
 

 

   

 

Thus, 

 ( )   ( )  
 

(   ) 
 
 

 
   (
   

   
*  ∑   

 

   

 ∑
     

    

 

   

 

                                            (               )  4  
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                                             (          ) 

                                            
 

    
  

That is,  

 ( )   ( )  
 

(   ) 
 
 

 
   (
   

   
*  

 

    
  

 
 

 
                    

 
 
 
 
 
 

Figure (1.1.2) 
 
 

The Koebe  function  convoluted  with a horizontal strip map yields   
a double-slit map 

 



  
 

 

 

Definition 1.1.16 [44]:  The Pochhammer  symbol  or  (the shifted  factorial) 
which is denoted by ( )  is defined (in terms of the Gamma function) by  

 

( )   
  (   )

 ( )
  {
                                          * + 

 (   ) (     )              
                      (     ) 

Definition 1.1.17 [32]:  For a  complex  parameters     where  (         ) 
and  

 
 where  (            ) such that  ( 

 
                           ), the 

generalized hypergeometric function   
 (                    ) is given by, see 

[ 24,25]: as follows : 

  
 (                    )   ∑

(  )   (  ) 
(  ) 

  (  ) 

 

   

  

  
 

 
                               (                  * +     )   

where  ( )  is the Pochhammer symbol or (shifted factorial ) defined in (     ). 

Definition 1.1.18 [32]:  For the function     , the Ruscheweyh derivative 

operator              is defined by  

    

       ( )  
  (     ( ))     

(     ) 
 

  

(   )   
  ( )           

When       ,   then it  was  introduced  by  Ruscheweyh  [63], and the symbol  
       was  introduced by  Goel  and  Sohi [26]. Therefore, we  call the symbol 
      to be the Ruscheweyh derivative of order (     )     

Definition 1.1.19 [23]:  A function           is said to be Schwarz function 
, if for all             * +, then  

| ( )( )|   (| | )  ,  where ” capital   ” is defined as follows:  

Let  *  + and  *  + be any  two  sequences and       , for all n. f there exists a 
constant number     suth that       (for all  ), then we write     (  ). 

Definition 1.1.20 [47]:   Let   ( ) and   ( ) are analytic functions in   .  The 
function  ( ) is said to be subordinate to   ( ) or   ( ) is superordinate to  ( )  

 



  
 

 

 

if  there  exists a  Schwarz function   ( ), which is analytic in    with   ( )         
and | ( )|       (   ), and such that   ( )   ( ( )).  In such case, we write 

   ,  or   ( )   ( ). 

If the function  ( ) is univalent in    then we have the following equivalence:   
                                   ( )   ( )   ( )   ( )  and   ( )   ( ). 

Definition 1.1.21 [47]:  Let             and   ( ) be univalent in   . f  
 ( ) is analytic in   and satisfies the second–order differential subordination: 

  ( ( )    ( )     ( )  )   ( )                                                  (     )                                                                            

then    ( )  is  called  a  solution  of  the  differential  subordination  (     )     A 
univalent function  ( ) is called a dominant of the solutions of the  differential 
subordination (     ),  moreover simply dominant, if    ( )   ( )  for all   ( )  
satisfying (     )  A univalent dominant   ̃( ) that satisfies   ̃( )   ( )  for  all 
dominants  ( ) of (     ) is said to be the best  dominant of (     )  

Definition 1.1.22 [48]:  Let           and the function  ( ) be analytic 
in  .  If  the functions    ( )  and   ( ( )    ( )     ( )  )  are univalent in    
and if  ( ) satisfies the second–order differential superordination:      

 ( )   ( ( )    ( )     ( )  )                                               (      )                                                                       

then   ( ) is  called  a solution  of the  differential  superordination (      )  An  
analytic function  ( ) is called a subordinant of the solutions of the differential 
superordination (      )  or  more simply a  subordinant, if   ( )   ( )  for all  
 ( ) satisfying (      )   A univalent subordinant  ̃( ) that satisfies  ( )   ̃( )  
for all subordinants  ( ) of (      ) is said to be the best subordinant. 

Definition 1.1.23 [48]:  Let     the set of  all functions   ( )  that are analytic 
and injective on  ̅   ( ) , where   ̅    *    +  *    | |   +  and 

                                               ( )  {             ( )    },  

and are such that   ( )    for         ( ). Futher, let the subclass of   for 
which  ( )    be denoted by   ( ), and  ( )        ( )      

Definition 1.1.24 [11]:  Let          and the function  ( ) be univalent 
in  . If the function  ( ) is analytic in   and satisfies the following third–order 
differential subordination: 

 

 



  
 

 

 

                                   ( ( )     ( )      ( )      ( )  )   ( )                      (      )                      

then  ( ) is called a solution of the differential subordination. A univalent fun- 
ction   ( ) is called a dominant of  the solutions of  the differential subordinat- 
ion or  more simply a dominant if    ( )   ( )  for all   ( )  satisfying (      ).  
A dominant  ̃( ) that satisfies   ̃( )   ( ) for all dominants  ( ) of  (      ) is 
said to be the best dominant. 

Definition 1.1.25 [71]:  Let            and the function  ( ) be analytic 
in  . If the functions  ( ) and  

                                ( ( )    ( )     ( )     ( )  ), 

are  univalent  in    and  if   ( )  satisfy  the  following third–order  differential 
superordination: 

                                  ( )   ( ( )     ( )      ( )      ( )  )                       (      )  

then   ( ) is  called a  solution of  the  differential  superordination. An analytic 
function   ( ) is called a subordinant of  the solutions of  the differential super- 
ordination or more simply a subordinant  if   ( )   ( )  for all   ( ) satisfying 
(      ).  A univalent subordinant   ̃( ) that satisfies the condition   ( )   ̃( ) 
for all subordinants   ( ) of (      ) is said to be  the best subordinant. 

Definition 1.1.26 [11]:  Let    denote  the set of  functions   that are analytic 
and univalent on the set  ̅  ( ), where   ̅    *    +  *    | |   +  
and 

                                             ( )  {             ( )   }, 

is such that min |  ( )|      for        ( )  Further, let the subclass of    
for which  ( )    be denoted by   ( ) and   ( )       ( )      

Definition 1.1.27 [11]:  Let   be a set in       and      * +. The class of 
admissible functions    ,   - consists of those functions            that 
satisfy the following admissibility condition: 

 (         )     
whenever  

   ( )          ( )     (
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    ( )

  ( )
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where           ( ), and    . 

Definition 1.1.28 [71]:  Let    be a set in        ,   -  and    ( )   . The 
class of admissible functions   

 ,   - consists of those functions        ̅  
   that satisfy the following admissibility condition: 

 (         )      

whenever  

   ( )      
   ( )
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where          , and       .  

  



  
 

 

 

 

1.2  Some Classes of Analytic Functions 
        

       Since the Bieberbach conjecture was difficult to settle, several authors have 
considered  classes defined by  geometric  condition.  Notable among  them are 
the  classes of  starlike, convex,  and  close  to convex functions. In this section, 
we introduce some well-known of these classes of analytic functions. 

1.2.1  The class of starlike functions [23] 

       A set     is said to be starlike with  respect to a point      if the linear  
segment joining   to every other point     lies entirely in    i.e. 

(   )                      

and a function    which  maps  the  open unit disk    onto a  starlike  domain is 
called a starlike function, the set of all starlike functions is denoted by    which 
is analytically expressed as 

   8     4
   ( )

 ( )
5   9                                                          (     ) 

The class       was first studied by Alexander  [5]  and the condition  (     )  for 
starlikeness is due to Nevanlinna [53].It is well-known that if analytic function 
  satisfies (     )  and   ( )       ( )      then    is univalent and starlike in 
   

1.2.2  The class of convex functions [23] 

A set     is said to be convex if it is starlike with respect to each of its points; 
that is, if the linear segment joining any two points of   lies entirely in  , i.e. 

(   )                                  

Let      Then   maps   onto a convex domain, if and only if  

 

  8       4  
   ( )

  ( )
5   9                                                   (     ) 

 

 



  
 

 

 

Such function    is said to be convex in    or (briefly convex).  The condition of 
(     ) was first stated by Study [68].Löwner [40] also studied the class of con- 
vex functions.   One can alter the condition (     )  and  (     ) by setting other  

limitations on the behavior of   
   ( )

 ( )
  and of    

   ( )

  ( )
  in       In this way many 

interesting classes of analytic functions have been defined, see Hayman[30]. 

Thus           Note that the Koebe function see (Example 1.1.12) is starlike 
but not convex.  There is a closely analytic connection between  the convex and 
starlike mapping. Alexander [5] first observed this in 1915. 

1.2.3  The class of   starlike and   convex functions [49] 

Robertson [59] in 1936, introduced the class   ( )  ( ) of starlike and convex 
functions of order          which are defined by  

  ( )  8      4
   ( )

 ( )
5             9                  (     ) 

  

 ( )  8      4  
   ( )

  ( )
5             9           (     ) 

In particular    ( )          ( )      where     is the class of starlike functions 
with respect to the origin and   is the class of convex functions. 

1.2.4  The class of close to convex functions [23] 

We now turn to an interesting subclass of   which contains   and has a simple 
geometric description. This is the class of close to convex functions, introduced 
by Kaplan [35] in 1952.                                                                                                     

A function   analytic in the open unit disk is said to be close to convex  if  there 
is a convex function   such that  

 8
  ( )

  ( )
9     (   )  

We shall denoted by     the class of close to convex  functions    normalized by 
the usual conditions ( )    and   ( )     Note that   is not required a priori 
to be univalent.  Note also that the associated function   need not be normaliz- 
ed.    The additional condition that      defines a proper subclass of    which  

 



  
 

 

 

 

will be denoted by     

Every convex function is obviously close to convex. More generally,  every star-
like function is close to convex. Indeed, each      has the form  ( )     ( )  

for some      and  

   8
  ( )

  ( )
9   8

   ( )

 ( )
9     

Then from above, we conclude that  

             

and this means that, every close to convex function is univalent. 

1.2.5  The class of meromorphic starlike and meromorphic convex     

            functions [54] 

Let      which is analytic and univalent in      then   is called meromorphic 
starlike of order   (     ) if  ( )    in    and  

  8
   ( )

 ( )
9     (    )  

where  the class of  meromorphic  starlike  functions of  order    is  denoted  by 
   ( )   Similary,  a function      which is analytic and univalent in       is 
called meromorphic convex of order   (     ) if   ( )    in    and  

            8  
   ( )

  ( )
9     (    )   

where  the  class of  meromorphic  convex  functions  of order     is  denoted by 
  ( )   

 

  



  
 

 

 

 
1.3  Fundamental Lemmas 

 

The following lemmas are needing in the proofs of our  results in this research.  

Lemma 1.3.1 [23]  (Schwarz Lemma):  Let     be  analytic function  in  the 
open unit disk     with   ( )     and  | ( )|     in      Then,   |  ( )|     and 
| ( )|  | | in    Strict inequality holds in both estimates unless    is a rotation 

of the disk  ( )        

Lemma 1.3.2 [47]:  Let  ( ) be univalent in    and     be analytic function in 

domain D containing   ( ). f     ( )  ( ( )) is starlike, and  

                                           ( )  ( ( ))      ( )  ( ( ))                                        (     ) 
then     
          ( )   ( ) and  ( ) is the best dominant of (     )  

Lemma 1.3.3 [20]:  Let  ( ) be a convex function in   , and let    be analytic 
function in a domain D containing    ( ),        set    ( )     ( )   ( ( ))  and 
suppose  that  

  4
  ( )

  ( )
5   4  ( ( ))        

   ( )

  ( )
 5            

then   is univalent. Moreover, if  ( ) is analytic function in   with   ( )   ( ) 
and   ( )  D, and  

                                        ( )   ( ( ))      ( )   ( ( ))                                   (     )                               
then                                                                                                                              
 ( )   ( ) , and  ( ) is the best dominant of (     )  

Lemma 1.3.4 [64]: Let  ( ) be a convex univalent function in  and let     
        * + with  

 8   
   ( )

  ( )
9     {     (

 

 
*}        

f  ( ) is analytic function in    and  

             ( )      ( )     ( )      ( )                                                                 (     )                                                             

then  

          ( )   ( ) , and  ( ) is the best dominant of (     )  



  
 

 

 

Lemma 1.3.5 [47]:  Let  ( ) be univalent in    and  let   and   be analytic in 

a domain D containing  ( ) with ,  ( )     when     ( ). Set  

 ( )      ( ) ( ( ))  ( )   ( ( ))   ( )  and suppose that  

( )  ( ) is a starlike function in    

(  )  8
    ( )

 ( )
9                     

f   ( ) is analytic in  , with   ( )     ( ) ,  ( )    and  

 ( ( ))     ( ) ( ( ))   ( ( ))     ( ) ( ( ))            (     )                                            

then 

          ( )   ( )  and  ( ) is the best dominant of (     )  

Lemma 1.3.6 [62]:  The function  ( )  (   )     where       is univa- 
lent in   if and only if  |     |   . 

Lemma 1.3.7 [48]:  Let  ( ) be convex univalent function in   and let        
with   ( )   . If   ( )   , ( )  --    and 

  ( )      ( ) is univalent in    then 

                                          ( )      ( )   ( )      ( )                                    (     )                                     

which implies that  ( )   ( )  and  ( ) is the best subordinant of (     )  

Lemma 1.3.8 [6]:  Let  ( ) be convex univalent in    Let    and   be analytic 
in a domain D containing  ( ). Suppose that  

( )  ( )      ( ) ( ( ))  is a starlike function in    

(  )  8
   ( ( ))

 ( ( ))
9     

, for all       If   ( )   , ( )  --       with  ( )     such that 

  ( ( ))     ( ) ( ( ))  is univalent in    and  

                              ( ( ))     ( ) ( ( ))   ( ( ))     ( ) ( ( ))         (     )           

then  ( )   ( )  and  ( ) is the best subordinant of (     )  



  
 

 

 

Lemma 1.3.9 [23]:  Let    be analytic in  D, with   ( )    ( )     . Then   
       if and only if      ( )  ( )   ⁄    (where     is the class of all function    
analytic and having positive real part in D, with  ( )   )  

Theorem 1.3.10 [11]:  Let     ,   - with      * + , and let     ( ) and 
satisfy the following conditions:  

 4
    ( )

  ( )
5    |

   ( )

  ( )
|      

where            ( ) and    . If   a set in   ,     ,   - and  

                                                   ( ( )     ( )      ( )      ( )  )      

then 

                                                                  ( )   ( )        (   )  

Theorem 1.3.11 [71]:  Let    ,   - and      
 ,   -. If 

                                               ( ( )    ( )     ( )     ( )  ) is univalent in    and                                           
    ( )  satisfy the following conditions: 

            

 4
    ( )

  ( )
5    |

   ( )

  ( )
|  
 

 
   

where     , and       ,  

then 

  * ( ( )     ( )      ( )      ( )  )    +   

implies that  

 ( )   ( )        (   )  

Theorem 1.3.12 [23] (Alexander’s Theorem):  Let   be an analytic funct- 
ion in   with  ( )    ( )       Then,     if and only if         

  

 

 

  

 

 



  
 

 

 

   

 

 

Chapter Two 

 

 

 

 

   

 

Introduction: 

      In [46] Miller and Mocanu extended the study of differential inequalities of 
real-valued  functions  to  complex-valued  functions  defined in  the  unit  disk.   
Following Miller and Mocanu [47,48],Bulboacâ [19] and others [6,14,50,52,64] 
studied differential classes of analytic functions, by means of differential 
subordination and superordination. 

      In this chapter,  we concentrate in particular on the study of applications of 
subordination and superordination of univalent and multivalent functions. 
This chapter consists of two sections. 

     Section one deals with the study of  differential  subordination for  univalent 
functions. Here, we obtain some results, like, let the function  ( ) be univalent 

in the unit disk  ,   ( )     and     ( ) ( ( ))    is starlike function in   . If 

    ( ) satisfies the subordination  

   
   ( )( )

 (   )( )
 
  (   )( )

 (   )( )
 
      ( )

 ( )
         

Some Results on Differential 
Subordination and superordination of  
Univalent and Multivalent Functions 
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 (   )( )
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  ( )       (              )  

and  ( ) is the best dominant. 

   

     

    Section two is devoted for the study of some properties of differential sandw-
ich results of p-valent functions defined by Liu-Srivastava operator. We obtain 
results  on  differential  subordination  and  superordination.   Also,  we  derive 
some  sandwich  theorems,  like,     let   ( )  be  a  convex  univalent  in     with 
 ( )         .      and suppose that 

    8  
   ( )

  ( )
9     {    (

 

  
*}  

If     Wp satisfies the subordination    ( )   ( )      
 ( )  

where 

  ( )  (     ) 6
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then   

           6
       ,    - ( )
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   ( )    

and  ( ) is the best dominant.



  
 

 

 

2.1  Differential Subordination for Univalent 
        Functions 
 

Let   ( ) denote the class of functions of the form: 

 ( )    ∑  

 

   

  
  .  ⁄ /      *       +                                                      (     ) 

 

which are analytic in the open unit disk       *        | |    +  and satisfying 
the normalized condition   ( )    ( )      . Also,  

let   ( ) denote the subclass of the class   ( ) of functions of the form:  

 ( )    ∑  

 

   

  
  .  ⁄ /      *       +                                            (     ) 

which are analytic in   and satisfying the normalized condition 

  ( )    ( )       

We note that ( ) by generalized deriving. 

Hints to the work done by the authors   [17] , [38]     when        and discusse 
around generalize this idea with formula special in next Theorems.   

Theorem 2.1.1:  Let the function   ( ) be univalent in the unit disk     ( )  

   and     ( ) ( ( ))     is starlike function in   .    f       ( )  satisfies the 

subordination  
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then                  
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and  ( ) is the best dominant of (     )  

 



  
 

 

 

Proof.  Define the function    
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then 
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Setting    ( )   
  
 

  it can easily observed that   ( ) is analytic function in   , 

then, we have ,   ( ( ))  
  
 ( )

     and    ( ( ))  
  
 ( )

 .  

From (     ) and simple a computation shows that                 

   ( ) ( ( ))     
   ( )( )

 (   )( )
 
  (   )( )

 (   )( )
                                              (     ) 

together (     ) and (     ), we get                               

   ( ) ( ( ))  
      ( )

 ( )
      ( ) ( ( ))   

Thus by applying Lemma 1.3.2, we obtain  ( )   ( )  and by using (     ), we 
have the required result, and  ( ) is the best dominant of (     )   

Taking  ( )  
    

     
  where                   in the Theorem 2.1.1,  we have the 

next result. 

Corollary 2.1.2:  f     ( ) satisfies the subordination  
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 (              )   

and  ( )  
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For       and         in the above corollary, we obtain the following result.  

C0rollary 2.1.3:  f     ( ) satisfies the subordination 
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 (              )   

and  ( )  
     

      
  is the best dominant of (     )  

Theorem 2.1.4:  Let the function   ( ) be a convex univalent in   and  ( )  
 . f     ( ) satisfies the subordination  
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  ( ) (              )    

and  ( ) is the best dominant of (     ).  

Proof.  f, we consider the function                                 
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putting   ( )  
 

 
     

 

 
 , it can easily observed that   ( ) is analytic in 
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From (      ) and (      ), we have         
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                                     (      ) 

together (     ) with (      ), we get  

                                             ( )   ( ( ))      ( )   ( ( )). 

So by Lemma 1.3.3,  we obtain   ( )   ( )  and by using (      ),  we have the 
required result.  

Let us consider  ( )         in Theorem 2.1.4, we get the following result. 

Corollary 2.1.5:  f      ( ) satisfies the subordination 
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        (            )     

and  ( )        is the best dominant of (      )  

Theorem 2.1.6:  Let the function  ( ) be a convex univalent in          ( )    
and suppose that                        
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f     ( ) satisfies the subordination 
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Proof.  Let denotes 
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A simple computation, we get, 
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From (      ) and (      ), we have  
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Now, using Lemma 1.3.4, where    
  
 
       and from  (      )   we obtain 

the required result . 

Let us assume   ( )       in the Theorem 2.1.6, we have the following result. 

Corollary 2.1.7:  Let      ( ) and suppose that   2       
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f   satisfies the subordination  
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and  ( )       is the best dominant of (      )  

Again by assume   ( )  
    

     
 , where                 in Theorem 2.1.6, we get 

the next result. 

Corollary 2.1.8:   Let      ( ) and suppose that 



  
 

 

 

 {
    

    
 
 

 
  }      

f   satisfies the subordination  
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Theorem 2.1.9:  Let        and        , let  ( ) be univalent in   and 
  satisfy the following condition :  
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f     ( ) satisfies the subordination 
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and  ( ) is the best dominant of (      ).  

Proof.  We begin by setting  
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then by a computation shows that  
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by setting  

                  
 ( )           ( )                                                                      (      )                                                  

then  ( ) and  ( )  is analytic in   . Also if, we suppose  
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from  assumption (      )   we yield that   ( ) is starlike function in    and, we 
get 
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A simple computation together with (      ) and (      )  we have ,  
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therefore the subordination (      ) becomes  

                                   ( ) ( ( ))   ( ( ))     ( ) ( ( ))   ( ( ))  

By applying Lemma 1.3.5 and using (      )  we obtain our result. 

Further taking    ( )  
    

     
 ,   where                    and        in Theorem 

2.1.9, we obtain  the following  result. 

Corollary 2.1.10:  Let       , and  ( )   , with suppose that                                       
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2.2  Some Properties of Differential Sandwich 

        Results of p-valent Functions Defined by 

        Liu-Srivastava Operator 

 

Let   ( ) denote the class of functions analytic in the open unit disk     =*   
  | |   +. For      and     *       +, let     ,   -  *   ( )  ( )  
     

       
           +, with      ,   -. 

 

Let Wp be the subclass of  ( ) consisting of functions of the form: 

 ( )     ∑    
         (           )                                                           (     )

 

     

 

and W =   . For functions  ( )   Wp, given by (     ) and g(z) given by  

 ( )       ∑    
               (           )                                          (     )

 

     

 

the Hadamard product (or convolution) of   and   is defined by  

(   )( )      ∑      
  (   )( )      

 

     

   (           )               (     ) 

Related results on subordination can be found in [28,29,32,51,55,58].  

Ali et al.  [6],   and  Aouf et al [12],   obtained  sufficient  conditions  for  certain  
normalized analytic functions   to satisfy: 

  ( )  
    ( )

 ( )
   ( )                                                            (     ) 

where    and    are given univalent functions in   with     ( )    ( )      So 
newly , Shanmugam et al.[64,65] ,and Goyal et al. [28] obtained it called sand-
wich results for certain classes of analytic functions .   Further superordination 
results can be found in [1,2,6,7,12,13].  

 



  
 

 

 

For a complex parameters      where  (        ) and   
 
 where  (          ) 

such that  ( 
 
                           ) ,  the generalized hypergeometric  

function   
 (                    ) is given by, see [ 24,25]: as follows : 

  
 (                    )   ∑

(  )   (  ) 
(  ) 

  (  ) 

 

   

  

  
 

 
                             (                   * +     ) ,  

where  ( )   is the Pochhammer symbol ( or shifted factorial ) defined in terms 
of the Gamma function by  

( )   
  (   )

 ( )
  {
                                          * + 

 (   ) (     )              
 

Corresponding to a function   (                    ) defined by  

             (                    )   
    
 (                    ) 

Liu-Srivastava [44] consider a linear operator  

      (                    ) : Wp   Wp defined by the following Hadamard 

product (or convolution): 

         (                    ) ( )    (                    )     ( ) (     )      

This operator was encourage essentially by Dziok and Srivastava ([24,25] ;  see  
also  [44] )  .  The theory of differential subordination in   is a generalization of 
differential disparity in  , and this theory of differential subordination was ini- 
tiated by the works of Miller and Mocanu [46] , many important works on diff- 
erential subordination were great by Miller and Mocanu, and their monograph 
[47] complied their huge efforts in introducing and developing the same. 
Newly Miller and Mocanu in [48]  investigated the dual problem of differential 
superordination,   while  Bulboacâ  [20]  investigates  both  subordination  and 
superordination. 

For      and function    Wp, in the form (     )  The Ruscheweyh deriva-
tive of order (     )    is denoted by         and consider as following:  

 

 



  
 

 

 

See[26,63], 

       ( )  
  (     ( ))     

(     ) 
 

  

(   )   
  ( )  

In [32] define the linear operator        ,    - on Wp as follows: 

          ,    - ( )         ,  -    
      ( )  

                           

     ∑       (  )  (       )   
  

 

     

 

where  

  
∏  ( 

 
) 

   

∏  (  )
 
   

              (  )  
∏  (      )
 
   

∏  ( 
 
    ) 

   

 

and  

 (       )   (
         

     
*                                                                    (     ) 

Then, we have  

 (       ,    - ( ))
           ,      - ( )  (    )       ,    - ( ) (     ) 

that easily to verify it by applying (     ), see [32]. 

Theorem 2.2.1:  Let  ( ) be a convex univalent in   with  ( )           

     and suppose that               

                                                8  
   ( )

  ( )
9     {    (

 

  
*}                           (     ) 

If     Wp satisfies the subordination  

  ( )   ( )      
 ( )                                (     ) 

where  

  ( )  (     ) 6
       ,    - ( )

  
7

 
 

    



  
 

 

 

                                                     6
       ,    - ( )

  
7

 
        ,      - ( )

       ,    - ( )
       (      ) 

then   

           6
       ,    - ( )

  
7

 
 

   ( )                                                                              (      )  

and  ( ) is the best dominant of (     )  

Proof.  Define the analytic function          

                                                    ( )  6
       ,    - ( )

  
7

 
 

                              (      )  

differentiating (      ) logarithmically with respect to  , we get   

     
   ( )

 ( )
  
 

 
 <
 .       ,    - ( )/

 

       ,    - ( )
  = 

 

and using the identity (     ), we have  

   ( )

 ( )
  
  
 
6 
       ,      - ( )

       ,    - ( )
  7   

Therefore  

     ( )      6
       ,    - ( )

  
7

 
 

 6 
       ,      - ( )

       ,    - ( )
  7    

hence the subordination (     ) and from hypothesis, yield  

                     ( )       ( )   ( )      ( ). 

By applying Lemma 1.3.4 for special case     ,  and      , leads to  (      )  

consequently the proof of Theorem 2.2.1 is completed. 

Putting  ( )  
    

     
, where                  in the Theorem 2.2.1, the condition 

(     ) reduces to: (see[13,51]). 



  
 

 

 

  {
    

    
}     {    (

 

  
*}                                      (      )  

It is easy to verify that the function   ( )  
   

   
 , | |  | | , is convex in   , and 

since  ( )   ( ) for all | |  | | it follows that  ( ) is a convex domain sym-

metric with respect to the real axis , hence  

   { (
    

    
*     }  

  | |

  | |
                                             (      ) 

Then, the inequality (      ) is equivalent to         

                                     (
 

  
*  
| |   

| |   
  

hence, we have the following result. 

Corollary 2.2.2:  Let                , and            with  

   {    (
 

  
*}  

  | |

  | |
  

If    Wp and   ( ) is given by (      )  satisfies the subordination  

  ( )  
     

    
  
   (   ) 

(    ) 
                                                     (      ) 

then    

            6
       ,    - ( )

  
7

 
 

 
    

    
 

and  ( )  
    

     
 is the best dominant of (      )  

For     and      , the last corollary becomes. 

Corollary 2.2.3:  Let      , and      with   .
 

  
/   . If    Wp and   

  ( ) is given by (      ), satisfies the subordination                 

  ( )  
    

   
  
     

(   ) 
                                         (      ) 

then                                                 

            6
       ,    - ( )

  
7

 
 

 
   

   
   

 



  
 

 

 

and  ( )  
   

    
 is the best dominant of (      )    

Theorem 2.2.4:  Let  ( ) be univalent in    with   ( )     and   ( )    for 

all    .  Let            and           ,  with        .   Let    Wp  and 
suppose  that   and   satisfy the following condition: 

(   )     {        ,      - ( )          ,    - ( )}               (      )             
and            

 8   
    ( )

  ( )
 
   ( )

 ( )
 9                                                 (      ) 

If  

  
 

 
 <
  .       ,      - ( )/

 
   .       ,    - ( )/

 

        ,      - ( )          ,    - ( )
  =  

                                                                                                     

          
   ( )

 ( )
      (      )  

then  

[(   )     {        ,      - ( )          ,    - ( )}]
 

    ( ), 

and  ( ) is the best dominant of (      ). 

Proof.  According to (      ), we consider the analytic function                   

 ( )  [(   )     {        ,      - ( )          ,    - ( )}]
 

            (      ) 

with  ( )   .        

By logarithmically differentiating of (      ) yields 

   ( )

 ( )
  
 

 
 <
  .       ,      - ( )/

 
   .       ,    - ( )/

 

        ,      - ( )          ,    - ( )
  =                

let us consider the functions 

 ( )      ( )   
 

 
   

 

 



  
 

 

 

then    is analytic in   and  ( )    is analytic in   . 

If we suppose       

  ( )     ( ) ( ( ))   
   ( )

 ( )
           

 ( )   ( ( ))   ( )      
   ( )

 ( )
      

From the assumption  (      )   we see that   ( )  is starlike function in     and 
also have    

    8
     ( )

 ( )
9   8   

    ( )

  ( )
 
   ( )

 ( )
 9          

Now, by Lemma 1.3.5, we derive the subordination (      ) implies  ( )   ( ) 
and the function  ( ) is the best dominant of (      )  

Letting             and   ( )  
    

     
  in the Theorem 2.2.4, it is easy to 

view that the assumption (      ) holds whenever                   which leads 
to the following result. 

Corollary 2.2.5:  Let               , and         . Let    Wp and suppose 
that            ,    - ( )                                                                                       
If 

         
 

 
<
 .       ,    - ( )/

 

       ,    - ( )
  =     

(   ) 

(    )(    )
                    (      ) 

then  

            [          ,    - ( )]
 
  
    

    
   

and  ( )  
    

     
 is the best dominant of (      )  

Taking                  (        )   
 

  
   

 

 
  where        

and    ( )  (   )       in  Theorem  2.2.4,     then  merge  this together  with 
Lemma  1.3.6, we obtain the next result.  

Corollary 2.2.6:  Let            such that    |     |   .   Let     Wp  and  

 

 



  
 

 

 

suppose that      ( )    for all     . If 

  
 

 
6
   ( )

 ( )
  7  

   

   
                                                     (      ) 

then  

           ,    ( )-  (   )      

and  ( )  (   )      is the best dominant of (      )  

Again by setting                   (        )    
   

      
 , where  

       | |  
 

 
    

 

 
  and   ( )  (   )         

   
 in Theorem 2.2.4, we 

obtain the next result, due to Aouf et al [13].  

Corollary 2.2.7:  Let        and assume that                                                                                           

|             |    

such that | |  
 

 
 . Let    Wp, and     ( )    for all     . If                             

  
   

     
6
   ( )

 ( )
  7  

   

   
                                            (      ) 

then                               

,    ( )-  (   )         
   
  

 

and  ( )  (   )         
   

 is the best dominant of (      )  

Theorem 2.2.8:  Let   ( ) be univalent in  , with   ( )     let          and  

        such that        . Let     Wp and suppose that    and    satisfy   

the next conditions: 

 (   )     {        ,      - ( )          ,    - ( )}              (      )               

and   
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   ( )

  ( )
9     {    (

 

 
*}                                                        (      ) 

If 

 



  
 

 

 

  ( )  [(   )
     {        ,      - ( )          ,    - ( )}]
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:
  .       ,      - ( )/

 
   .       ,    - ( )/

 

        ,      - ( )          ,    - ( )
  ;=       (      ) 

and                                     

  ( )    ( )     
 ( )                                                              (      )                                                                                                              

then 

           [(   )     {        ,      - ( )          ,    - ( )}]
 

   ( ) ,  

and  ( ) is the best dominant of (      )  

Proof.  We begin by define the function 

   ( )  [(   )     {        ,      - ( )          ,    - ( )}]
 

          (      )          

from (      ) the function  ( ) is analytic in    with   ( )     and differentiat- 

ing (      ) logarithmically with respect to   , we have  

   ( )

 ( )
  
 

 
 <
  .       ,      - ( )/

 
   .       ,    - ( )/

 

        ,      - ( )          ,    - ( )
  =    

and hence  

           ( )   
 ( )

 
 <
  .       ,      - ( )/

 
   .       ,    - ( )/

 

        ,      - ( )          ,    - ( )
  =   

Setting 

               ( )             ( )                    Then, we get 

               ( )     ( ) ( ( ))      ( )      

               ( )   ( ( ))   ( )     ( )      ( )      

 



  
 

 

 

From the assumption (      )      we see that   ( )  is starlike function in    and 
we also have  
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    ( )

 ( )
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    ( )

  ( )
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Now, application of Lemma 1.3.5 the proof of Theorem 2.2.8  is complete . 

Letting            ( )  
    

     
 in Theorem 2.2.8, where                 

and according to (      ) the condition (      ) becomes   

   {    (
 

 
*}  

  | |

  | |
 

we obtain the next result. 

Corollary 2.2.9:  Let                , and let        such that  
 

   {    (
 

 
*}  

  | |

  | |
 

  

Let    Wp and suppose that           ,      - ( )          

If  

[          ,      - ( )]
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:
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       ,      - ( )
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  (   ) 

(    ) 
       (      ) 

then  

[          ,      - ( )]
 
  
    

    
 

and  ( )  
    

     
 is the best dominant of (      )  

Taking                           (               )  and   ( )  
   

    
  in 

Theorem 2.2.8, then, we get. 



  
 

 

 

Corollary 2.2.10:  Let     Wp  such that      ( )     for all       and  let 
    . If  

,    ( )-
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   ( )

 ( )
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(   ) 
                          (      )  

then 

                    ,    ( )-
 
  
   

    
   

and 

 ( )  
   

    
 is the best dominant of (      )  

Theorem 2.2.11:  Let  ( ) be a convex univalent function in    with  ( )   , 
let            with   ( )    . Let    Wp such that 

                                            
       ,    - ( )

  
         

 and suppose that   satisfies the condition: 

6
       ,    - ( )

  
7

 
 

   , ( )  -     

If the function   ( ) given by (      ) is univalent in   and satisfies 

                                            ( )       ( )    ( )                                               (      )                                                 

then 
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and  ( ) is the best subordinant of (      )  

Proof.  We begin by setting 

 ( )  6
       ,    - ( )

  
7

 
 

                               (      ) 

then  ( ) is analytic function in    with  ( )   . 

by differentiating (      ) logarithmically with respect to  , we have 



  
 

 

 

   ( )

 ( )
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 .       ,    - ( )/

 

       ,    - ( )
  =   

A simple computation and using the identity (     )  shows that  

 ( )       ( )   

     (     ) 6
       ,    - ( )

  
7

 
 

      6
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       ,      - ( )

       ,    - ( )
   

now by applying Lemma 1.3.7 ,we obtain the required result. 

By taking  ( )  
    

     
 in Theorem 2.2.11, where                 we get the next 

result. 

Corollary 2.2.12:  Let  ( ) be a convex in   with   ( )   , let          
   with  ( )    . If    Wp such that    

                            
       ,    - ( )

  
         

and suppose that   satisfies the condition 

                                              6
       ,    - ( )

  
7

 
 

  , ( )  -      

If    ( )  given by (      ) is univalent in   and satisfies the superordination               

                       
    

    
 
   (   ) 

(    ) 
   ( )                                                  (      ) 

then  
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       ,    - ( )
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and  ( )  
    

     
 is the best subordinant of (      )  

Theorem 2.2.13:  Let  ( ) be a convex univalent in   with  ( )     let      

    and           such that          and   2
   ( )

 
3     Let    Wp and  

  satisfies the following condition: 

 



  
 

 

 

(   )     {        ,      - ( )          ,    - ( )}               (      )                 

and  

     [(   )     {        ,      - ( )          ,    - ( )}]
 

   , ( )  -      

If the function   ( ) given by (      ) is univalent in  , and 

                                 ( )      ( )    ( )                                                            (      )                                                           

then 

            ( )  [(   )     {        ,      - ( )          ,    - ( )}]
 

  ,  

and  ( ) is the best subordinant of (      )  

Proof.  Consider the analytic function  

 ( )  [(   )     {        ,      - ( )          ,    - ( )}]
 

            (      )                       

with   ( )   . 

By differentiating (      ) logarithmically with respect to  , yields  

           
   ( )

 ( )
  
 

 
 <
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        ,      - ( )          ,    - ( )
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then 
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  .       ,      - ( )/
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        ,      - ( )          ,    - ( )
  =   

Setting the function  

                                       ( )            ( )                    , 

then   and   is analytic in   , with  ( )    for all     .  

Also, we have  

 ( )     ( ) ( ( ))      ( ) , is starlike univalent function in    and 
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by simple computation , shows that  

                                                  ( )    ( )     
 ( )                                          (      )                                            

From (      ) and (      )  with applying of Lemma 1.3.8, we have  ( )   ( ) 
and using (      )  we obtain the required result. 

Combining  results  of  differential subordinations and superordinations, to get 
at the following sandwich results . 

Theorem 2.2.14:  Let    ( )  and    ( )  be a convex univalent functions in  ,  

with   ( )    ( )    , let             with   ( )   . Let    Wp such 
that  
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and suppose that   satisfies the condition: 
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If the function   ( ) given by (      ) is univalent in   and satisfies 
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and         are  respectively,   the  best subordinant and   the  best dominant of  

(      )  

Theorem 2.2.15:  Let    ( )  and    ( )  be a convex univalent functions in  ,  
with    ( )    ( )   ,  let            and             such that          , 

suppose    satisfies  2
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3    and     satisfies (      )  Let    Wp  satisfy 

the next conditons: 
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If the function   ( ) given by equation (      ) is univalent in  , and 
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Chapter Three 

 

 

 

 

   

 

Introduction: 

    This chapter is completely devoted for the study of (Third and Fourth)-order 
differential  subordination   and  superordination  results  for  multivalent  and 
meromorphic functions,  having Taylor and Laurent series expansion containi-
ng  positive  and  negative  terms.  Actually a differential  subordination  in  the 

complex plane is  the generalization of a differential inequality on the real line. 
The concept of  differential subordination plays a very important role in functi-
ons of real variable.   This concept also enables us to study the range of original 
function. In the theory of complex-valued function,  there are several different-
ial  applications in which a  characterization of a function is determined from a 
differential  condition.  Miller  and  Mocanu  [47]  have  contributed number of 
papers on  differential  subordination.  The  study of differential  subordination 
stems  out  from  text  books  by  Duren  [23], Goodman [27] and Pommerenke 
[56]. 

   This chapter is divided into three sections. The first section is concerned with 
the third-order  differential  subordination  results for  meromorphic univalent 
functions associated with linear operator, like, Let     ,   -  If the functions  
    

   and       satisfy the following conditions: 
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  ( )
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and  
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* (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )    +     

then  

  (   ) ( )   ( )  (   )  

     The second section deals with  the  third-order  differential  superordination   
results  for  p-valent  meromorphic  functions  involving  linear  operator.    We 
derive some third-order differential superordination results for analytic functi-
ons in  the  punctured  open  unit  disk of  meromorphic  p-valent  functions by 
using  certain  classes  of  admissible  functions,   like,  let      ,   -.  If  the 
function     

        
  ( )     and      with   ( )    satisfy the following 

condition: 

 4
    ( )

  ( )
5     |

      
    ( )

  ( )
|  
 

 
     

and  

 (      
  ( )        

    ( )        
    ( )        

    ( )  )  

is univalent in  , and 

  { (      
  ( )        

    ( )        
    ( )        

    ( )  )    }    

then  

 ( )   
     
  ( )  (   )  

    Section  three  discusses  the  fourth – order  differential  subordination  and  
superordination results  for multivalent analytic functions. Here, we introduce 
new concept that is fourth–order differential subordination and  superordinat-
ion associated with differential linear operator   (   ) in open unit disk. 

  



  
 

 

 

3.1  On Third-Order Differential Subordination    

        Results for Meromorphic Univalent    

        Function Associated with Linear Operator 

 

Let  ( ) be the class of functions which are analytic in the open unit disk:  

                                                          *       | |   + . 

For      *       + , and      , let 

                               ,   -  *   ( )   ( )       
       

       +   

with     ,   -  

Let   
  denote the class of functions of the form: 

                        ( )  
 

 
  ∑  

 

   

                                                                                   (     ) 

which are analytic and meromorphic univalent in the punctured unit disk: 

                                              *      | |   +    * + . 

We consider linear operator    (   )  on the class    
  of meromorphic functions 

by the infinite series  

                (   ) ( )  
 

 
 ∑(

   

   
*
 

   
 

 

   

  (   )                                 (     ) 

the operator   (   ) was studied on class of meromorphic multivalent function 

by [10]. It is easily verified from (     ) that 

                                   
         ,  (   ) ( )-

  (   )  (     ) ( )     (   ) ( )                        (     )                            

In  recent  years,   several  authors  obtained  many  interesting  results  for  the 
theory  of  second order  differential  subordination  and  superordination  for 
example [8,9,10,16,33,66], thus the aim of  this section to investigate extension 
to the third order differential subordination. 

The  first  authors  investigated  the third order, Ponnusamy  [57]  published in 
1992.  In 2011,  Antonino and Miller [11] extended  the theory of second order 



  
 

 

 

differential  subordination  in  the  open  unit  disk  introduced  by   Miller  and 
Mocanu [47] to the third order case. They determined properties of functions 
  that satisfy the following third order differential subordination: 

          * ( ( )    ( )     ( )     ( )  )    +                                         (     )                                                                

Recently,   the  only  a few  of  authors  discussed  the  third order  differential 
subordination  and  superordination for  analytic  functions  in     for  example 
[3,4,31,52,69].  

We determine  certain  suitable  classes of  admissible functions and investigate 
some third-order differential subordination properties of analytic function. We 
first define the  following class of  admissisble functions,  which are required in 
proving the  differential  subordination  theorem involving the operator   (   ) 
defined by (     )  

Definition 3.1.1:  Let   be a set in       * +, and let        . The class 
of admissible functions   ,   - consists of those functions          that 
satisfy the following admissibility condition: 

 (         )      

whenever  
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    ( )    ( )
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where           ( ) and    . 

Theorem 3.1.2:  Let      ,   -.  If the functions      
   and       satisfy 

the following conditions:         
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and  

* (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )    +      
(     ) 

then   

                                                            (   ) ( )   ( )  (   ). 

Proof.  Define the analytic function  ( ) in   by  

 ( )    (   ) ( )                                        (     )                                        

Then, differentiating (     ) with respect to   and using (     ), we have  
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Define the transformation from    to   by 

 

  (       )             (       )  
    

   
        (       )  

  (    )     

(   ) 
   

 and  

 (       )  
   (   )  (        )     

(   ) 
   

Let      

 (         )   (         ) 

  4  
    

   
 
  (    )     

(   ) 
 
   (   )  (        )     

(   ) 
  5  

(      )                
 



  
 

 

 

The proof will make use of  Theorem 1.3.10. Using equations (     ) to (      )  
and from (      ), we obtain  

 ( ( )    ( )     ( )     ( )  )   

 (  (   ) ( )   (     ) ( )   (     ) ( )    (     ) ( )  )      (      )  

Hence (     ) becomes  

                                            ( ( )    ( )     ( )     ( )  )    . 

Note that  

 

 
   

(   )      

(   )    
      

and    

          
 

 
 
(   ) ,(   )   (   ) -  (       ) 

(   )    
 (        )  

Thus, the admissibility condition for      ,   - in Definition 3.1.1 is equival-
ent to the admissibility condition for      ,   -  as given in Definition 1.1.27 
with    . Therefore, by using (     ) and Theorem 1.3.10, we have 

                                                           ( )    (   ) ( )   ( )  

The next result is an extension of Theorem 3.1.2 to the case where the behavior 
of  ( ) on    is not known. 

Corollary 3.1.3:  Let       and    be univalent in     with   ( )      Let    

  [    ] for some    (   ), where    ( )   (  ).  If the function      
   and  

   satisfy the following conditions: 
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  (     ) ( )

  
  ( )

|        .          (  )/     (      ) 

and  

         (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )    , 

then  

                                                          (   ) ( )   ( )  (   )    

Proof.  By using Theorem 3.1.2, yields  



  
 

 

 

                                                         (   ) ( )    ( )  (   )                  

The result asserted by Corollary  3.1.3  is now deduced from  the subordination  

                                                                    ( )   ( )    (   )    

If        is  a simply connected  domain,  then      ( )  for some conformal 
mapping   ( )  of      onto   .  In this  case,  the class    , ( )  -   is written as 
   ,    -.  The following two  results  are  immediate consequence  of  Theorem 
3.1.2 and Corollary 3.1.3. 

Theorem 3.1.4:  Let     ,   -. If the function     
  and      satisfy the 

condition (     ) and  

        (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )   ( )                                          
(      )           

then  

                                                         (   ) ( )   ( )  (   )      

Corollary 3.1.5:  Let       and    be univalent in    with   ( )   .  Let    
  ,     -  for some    (   ), where    ( )   (  ).   If the function     

  and 

   satisfy the condition (      ), and  

       (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )   ( )       
(      ) 

then         

                                                        (   ) ( )   ( )  (   )    

The next  theorem  yields the  best dominant of  the  differential  subordination 
(3.1.14). 

Theorem 3.1.6:  Let the function   be univalent in   , and let           
and   be given by (      ). Suppose that the differential equation  

 ( ( )    ( )     ( )     ( )  )   ( )                    (      )                           

has  a solution   ( )  with   ( )     and  satisfies  the  condition  (     ).  If the 
function     

  satisfies condition (      ) and   

                 (  (   ) ( )   (     ) ( )   (     ) ( )    (     ) ( )  ) 

is analytic in  , then  



  
 

 

 

                                                   (   ) ( )   ( ) , 

and  ( ) is the best dominant. 

Proof.  From  Theorem  3.1.2,   we  deduce  that     is  a dominant of   (      ).  
Since   satisfies (      ), it is also a solution of  (      ) and therefore    will be 
dominated by all dominants. Hence    is the best dominant. 

In the special case   ( )            , and in view of Definition 3.1.1, the class 
of admissible functions   ,   -, denoted by    ,   - is expressed as follows. 

Definition 3.1.7:  Let     be a set in          * +  and      .    The class of 
admissible functions   ,   - consists of those functions           such 
that  
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Corollary 3.1.8:  Let      ,   -. If the function     
   satisfies  

|   (     ) ( )|      (        ), 

and  

            (  (   ) ( )   (     ) ( )   (     ) ( )   (     ) ( )  )      

then  

|  (   ) ( )|    . 

In  the  special  case      ( )  *  | |   +,   the  class    ,   -  is  simply 
denoted by    , -. Corollary 3.1.8 can now be written in the following form: 

Corollary 3.1.9:  Let      , -. If the function     
   satisfies the following 

condition: 
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and          
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then  
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By taking    (         )    
   

   
      in Corollary 3.1.9,  we obtain the next 

result. 

Example 3.1.10:  Let    ( )  
   

 
      and      .  If the function      
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then  
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Example 3.1.11:  Let               * +   and      .    If the function      
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Proof.  Let 
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where  
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In order to use Corollary  3.1.8, we need to show that     ,   - , that is , the 
admissibility condition (      ) is satisfied. This follows easily, since  
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whenever                 and     .  The  required  result  now  follows  from 
Corollary 3.1.8.                                                                                                       

Definition 3.1.12:  Let     be a set in        * +,  and let            The 
class of admissible functions       ,   -  consists of  those functions          

   that satisfy the following admissisbility condition:                                                                                                                                            
 (         )     

whenever  
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    ( )

   ( )
9   

where           ( ) and    . 

Theorem 3.1.13:  Let       ,   -.  If the function     
   and       satisfy 

the following conditions: 
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Proof.  Define the analytic function  ( ) in   by 
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By using (     ) and (      ), we get 
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Define the transformation from    to   by 
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The proof will make use of Theorem 1.3.10.Using equations (      ) to (      )   

, and from (      ), we obtain  
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Hence (      ) becomes     
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Thus,     the  admissibility  condition  for         ,   -  in Definition  3.1.12  is 

equivalent to the admissibility condition for      ,   - as given in Definition 
1.1.27 with     . Therefore, by using (      ) and Theorem 1.3.10, we have  

 ( )  
  (   ) ( )

 
  ( )   

If        is a simply  connected  domain,  then     ( )  for some  conformal 
mapping   ( ) of     onto   .  In  this  case,  the class      , ( )  -  is written as 

     ,   -. The next results is an immediate consequence of  Theorem 3.1.13. 

Theorem 3.1.14:  Let        ,    -. If the function     
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the condition (      ) and  
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In the special case when  ( )            and in view of Definition 3.1.12 
,  the  class  of  admissible  functions       ,    -   is  denoted  by       ,    -,  is 

described below.                                                                                             
Definition 3.1.15:  Let     be a set in             * +  and     .  The class of 
admissible  functions      ,    -  consists  of  those  functions              

such that  
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Corollary 3.1.16:  Let       ,   -. If the function     
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In the special case, when     ( )  *  |   |   +,  the class      ,   - is 

simply denoted by      , - and Corollary 3.1.16 has the following form: 



  
 

 

 

Corollary 3.1.17:  Let         , -.   If  the function      
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condition:  
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Proof.  By taking  
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in Corollary 3.1.17, the result is obtained. 
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   . The proof is complete. 

 



  
 

 

 

3.2  On Third-Order Differential  
         Superordination Results for P-valent 

         Meromorphic Functions Involving Linear 

         Operator 

 

Let   
  denote the class of functions of the form : 
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            (     *       +) 

 

   

                         (     ) 

which are analytic and p-valent in the punctured unit disk: 

                                      *      | |   +    * +  

For functions     
 , we define the linear operator: 
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and ( in general)  
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where  the  operator         

 (   )( )   was  studied  on  class  of    meromorphic 

p-valent function by [15]. From (     ) it is easy to verify that           
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Let  ( ) be the class of functions which are analytic in the open unit disk  

  *      | |   +   

For      *       + , and      let  

 ,   -  *   ( )   ( )       
       

       +   

with     ,   -   
In recently  years, there  are  many researchers dealing with  the second order 
subordination  and  superodination problems for analytic function for example  
[8,9,10, 16, 33, 66], therefore in this section we investigate extend to the third  
order  differential  superordination.   The  first  authors  investigated  the  third 
order, Ponnusamy [57] published in 1992. In 2014, [71] extended the theory of 
second order differential superordination in the open unit disk introduced by 
Miller and Mocanu [48] to the third order case.They determined properties of 
functions   that satisfy the following third order differential superordination:  

  * ( ( )    ( )     ( )     ( )  )    +  

Recently,     the only a few authors are dealing with the third order differential 
subordination  and  superordination  for  analytic  functions  in     for example        
[3, 4,11, 31, 70, 71]. 

By using the third order differential superordination results by Tang et al [71]     
,    we  define  certain  classes  of  admissisble  functions  and  investigate  some 
superordination properties of meromorphic p-valent functions associated with 
the operator     

  defined by (     )   

we consider the class of admissible functions is given in the next definition. 

Definition 3.2.1:  Let   be a set in   and      with     ( )   . The class of 
admissible functions   ,   - consists of those functions        ̅     that 
satisfy the following admissibility condition: 
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where               * + and      

Theorem 3.2.2:  Let     ,   -. If the function     
        

  ( )     and 

     with   ( )    satisfy the following condition: 
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Proof.  Define the analytic function  ( ) in   by 
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In view of the relation  (     )  and differentiating (     )  with respect to   , we 
have  
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Further computations show that  
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We now define the transformation from    to   by 
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The proof will make use of  Theorem 1.3.11.  Using equations  (     )  to (     )   

we find from (      ) that                                                                                         
 ( ( )    ( )     ( )     ( )  )   

    (      
  ( )        

    ( )        
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    ( )  )                   (      ) 
Since     ,   -, from (      ) and (     ) yield  
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From (      ) and (      ), we have  
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Now,  we see that the admissible condition for      ,   -  in Definition 3.2.1 
is  equivalent to the  admissible  condition  for     as  given in Definition  1.1.28 
with     .  Hence      

 ,   -, and by using  (     )  and  Theorem 1.3.11, we 
obtain  
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If       is  a simply  connected  domain,  and     ( )  for  some  conformal 
mapping   ( )  of    onto   ,  then  the  class    , ( )  -  is  written  simply as 
   ,    -.   With proceedings similar as in the previous section,  the next result 
is an immediate consequence of  Theorem  3.2.2.  

Theorem 3.2.3:  Let      ,   -  and the function    be analytic in  .  If the 
function     

        
  ( )     and     with   ( )    satisfy the condition 
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is univalent in  , 
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implies that  
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Theorem 3.2.2 and Theorem 3.2.3 can only be used to obtain subordinations of 
the  third order  differential  superordination of  the forms (     ) or  (      ).  
The following Theorem proves the existence of the best subordinant of (      ) 
for a suitable chosen. 

Theorem 3.2.4:  Let the function    be analytic in  , and let        ̅      
and   be given by (      )   Suppose that the differential equation  

                 ( ( )     ( )      ( )      ( )   )   ( )                                    (      ) 

has a solution  ( )    .  If the functions      
         

  ( )     and       

with   ( )    satisfy the condition (     ) and       

 (      
  ( )        

    ( )        
    ( )        

    ( )   )  

is univalent in    then  

     ( )   (      
  ( )        

    ( )        
    ( )        

    ( )   )  
implies that  

 ( )   
     
  ( )  (   )  



  
 

 

 

and  ( ) is the best subordinant. 

Proof.  By applying Theorem  3.2.2,  we deduce that   is a subordinant of (     
  )  Since   satisfies (      )   it is also a solution of  (      )   and  therefore,   
will be subordinanted by all  subordinants. Hence  ( ) is the best subordinant. 

In view of Definition 3.2.1, in the special case when  ( )          the class 
  ,   - of admissible functions,  denoted simply by    ,   -   is expressed as 
follows.  

Definition 3.2.5:  Let     be a set in         * +   and      . The  class  of 
admissible  functions     ,   -  consists  of  those  functions         ̅      
such that  
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Corollary 3.2.6:   Let     ,   -. If the function     
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In  the  special  case  when      ( )  *  | |   +,   the   class    ,   -  is 
simply denoted by    , -. 

Eaxmple 3.2.7:  Let              * +  and       .  If  the  function      
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Definition 3.2.8:  Let    be a set in   and      with    ( )   . The class of 
admissible functions     ,   - consists of those functions        ̅    that 
satisfy the following admissibility condition: 
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The proof will make use of Theorem 1.3.11.Using equaitions (      ) to (      )  
, and from (      ), we have  
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Since        ,   -  it follows from (      ) and (      ) yield  

  * ( ( )     ( )      ( )      ( )  )    +  

From   (      )   and   (      )    we    see   that   the   admissible   condition   for 
      ,   -  in Definition  3.2.8  is equivalent to the admissible condition for  

   as given in Definintion  1.1.28 with     . Hence      
 ,   -, and by using 

(      ) and Theorem 1.3.11, we get 

 ( )   ( )  
    
    ( )

    
  ( )

  (   )  

If       is a  simply  connected  domain,  and     ( )  for  some  conformal 
mapping  ( ) of    onto   ,  then  the  class      , ( )  -  is  written  simply as 

     ,    -. With  proceedings  similar as in the  previous  section, the following 

result is an immediate consequence of  Theorem 3.2.9. 

Theorem 3.2.1o:  Let       ,   - and the function   be analytic in  . If the 

function     
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(      ), 

 and  

 4
    
    ( )

    
  ( )

 
    
    ( )

    
    ( )

 
    
    ( )

    
    ( )

 
    
    ( )

    
    ( )

  5  



  
 

 

 

is univalent in  ,  

then  
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implies that  
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  ( )
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In the particular case   ( )              the class     ,   - of admissible 

functions in  Definition  3.2.8  is simply denoted by       ,   -, is expressed as 

follows. 

Definition 3.2.11:  Let     be a set in         * +,  and      .  The class of 
admissible  functions      ,   -  consists of  those  functions         ̅      

such that  
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Corollary 3.2.12:  Let       ,   -. If the function     
  satisfies 
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then  
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In the special case    ( )  *  |   |   +  the class     ,   - is  simply 

denoted by      , -. 

Example 3.2.13:  Let              * +,   and         If the function     
  

satisfies the following conditions: 
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Proof.  By taking  (         )        and     ( ),  

where   
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Using Corollary 3.2.12, we need to show that        ,   -. 
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Whenever          and       The proof is complete.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

 

 

3.3  On Fourth-Order Differential  

         Subordination and Superordination  

     Results for Multivalent Analytic Functions  

 

Let  ( ) be the class of functions which are analytic in the open unit disk 

  *      | |   +   

For     *       +, and    , let   ,   -  *   ( )   ( )       
  

     
       +  and also let    ,   -. 

Let   denote the class of all analytic functions of the form: 

    ( )     ∑    
           *       +      

 

     

                                         (     ) 

We consider a linear operator    (   ) on the class     of  multivalent functions 

by the infinite series 

   (   ) ( )    
  ∑ (

   

   
*
 

   
   (    )                            (     )

 

     

 

The operator   (   ) was studied by [9]. It is easily verified from (1.2) that 

         [  (   ) ( )]
 
 (   )  (     ) ( )     (   ) ( )                         (     ) 

For several past years,    there are many authors introduce and dealing with the 
theory  of   second order  differential  subordination  and  superordination  for 
example  [8,9,10,16,33,66]    recently  years,   the  many  authors  discussed  the 
theory  of   third order  differential   subordination   and   superordination   for  
example [11, 3,4,31,69,70,71].   In the  present section, we investigate extend  to  
the fourth order.  In 2011,  Antonino  and  Miller  [11]  extended  the  theory of 
second order  differential  subordination  in  the open unit disk  introduced by  
Miller  and  Mocanu  [47]   to  the  third order  case,  now,   we  extend  this  to 
fourth order  differential   subordination.        They   determined  properties  of  
functions     that satisfy following the fourth order differential subordination: 

* ( ( )    ( )     ( )     ( )     ( )  )    +       



  
 

 

 

In  2014,   Tang et al   [71]   extended  the  theory  of  second order  differential 
superordination in the open unit disk introduced by Miller and Mocanu [48] to 
third order case, now, we extend this to fourth order differential superordin-
ation. They  determined  properties  of  functions     that  satisfy  the  following 
fourth order differential superordination: 

  * ( ( )    ( )     ( )     ( )     ( )  )    +  

To prove our main results,  we need the basis concepts in theory of the fourth  
order. 

Definition 3.3.1:  Let            and the function   ( )  be univalent in 
   If  the function   ( ) is analytic in   and  satisfies the following fourth–order 
differential subordination: 

                                ( ( )    ( )     ( )     ( )     ( )  )   ( )          (     ) 

then   ( ) is called a solution of the differential subordination. A univalent fun- 
ction  ( )  is called a dominant of  the  solutions of  the differential subordinat- 
ion or  more simply a dominant if    ( )   ( )  for all    ( )  satisfying   (     )   
A dominant   ̃( )  that satisfies   ̃( )   ( )  for all dominants  ( ) of  (     ) is 
said to be the best dominant.                                                                                
Definition 3.3.2:  Let      be a set in           and       * +.  The  class of 
admissible functions   ,   - consists of those functions              that 
satisfy the following admissibility condition: 
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where           ( ), and    . 

Definition 3.3.3:  Let      ,   -   with       * +.  Also,  let     ( ) and 
satisfy the following conditions:  
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    ( )

  ( )
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where           ( ) and    . If   a set in   ,     ,   - and  



  
 

 

 

 ( ( )    ( )     ( )     ( )     ( )  )      

then 

 ( )   ( )        (   )  

Definition 3.3.4:  Let           and the function  ( ) be analytic in  . 
If the functions  ( ) and  

                               ( ( )    ( )     ( )     ( )     ( )  ), 

are univalent in    and  if   ( )  satisfy  the following  fourth–order  differential 
superordination: 

       ( )   ( ( )    ( )     ( )     ( )     ( )  )            (     ) 

then   ( ) is  called a solution  of  the differential  superordination.  An analytic 
function   ( ) is called a subordinant of  the solutions of  the differential super- 
ordination or more  simply a subordinant  if   ( )   ( )  for all   ( ) satisfying 
(     )   A univalent  subordinant   ̃( )  that satisfies the condition   ( )   ̃( ) 
for all subordinants   ( )  of  (     ) is said to be the best subordinant. We note 
that the best subordinat is unique up to a rolation of  . 

Definition 3.3.5:  Let    be a set in    ( )   ,   - and   ( )   . The class 
of  admissible functions    

 ,   -  consists of  those functions          ̅     
that satisfy the following admissibility condition: 
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where          , and       . 

Definitions 3.3.6:  Let    ,   - and      
 ,   -. If 

                            ( ( )    ( )     ( )     ( )     ( )  ) is univalent in    and 
   ( ) satisfy the following conditions: 



  
 

 

 

           

 4
    ( )

  ( )
5    |

    ( )

  ( )
|  
 

  
   

 

where     ,      and       ,  

then 

  * ( ( )     ( )      ( )      ( )     ( )  )    +   

implies that  

 ( )   ( )        (   )  
We first define the following class of  admissible functions,  which are required 
in  proving   the   differential   subordination  theorem   involving  the  operator 
  (   ) defined by (     ). 

Definition 3.3.7:  Let     be  a set  in   ,  and  let          .   The  class  of 
admissible functions   ,   - consists of  those functions              that 
satisfy the following admissibility condition: 
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Theorem 3.3.8:  Let      ,   -.  If the functions        and       satisfy 

the following conditons: 
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  ( )
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       { (  (   ) ( )    (     ) ( )    (     ) ( )  
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then 

  (   ) ( )   ( )  (   ). 

Proof.  Define the analytic function  ( ) in   by  

 ( )    (   ) ( )                                     (     ) 

Then, differentiating (     ) with respect to   and using (     ), we have  
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Further computations show that                                           
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Define the transformation from    to   by 
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The proof will make use of Definition 3.3.3. Using equations (     ) to (      )  
we have from (      ) that 
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  (     ) ( )   (     ) ( )   (     ) ( )  )         (      )   

Hence (     ) becomes 
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Therefore,  the  admissibility  condition  for      ,   -  in Definition  3.3.7  is 
equivalent to the admissibility condition for      ,   - as given in Definition 
3.3.2 with     . Therefore, by using (     ) and Definition 3.3.3, we obtain 

 ( )    (   ) ( )   ( )  

The  next  Corollary  is an extension  of  Theorem  3.3.8  to the  case  where  the 
behavior of   ( ) on    is not known. 

Corollary 3.3.9:  Let        and let the function   ( ) be univalent in   with   

 ( )   .  Let      [    ]  for  some    (   ),  where     ( )   (  ).  If  the 

function  ( )     and   ( ) satisfy the following conditions: 
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then 

  (   ) ( )   ( )  (   )  

Proof.  By using Theorem 3.3.8,  yields     (   ) ( )    ( ).   Then we obtain 

the result from    ( )   ( )    (   )  

If       is a simply  connected  domain,  then     ( )  for  some  conformal 
mapping   ( )  of     onto   . In  this  case,  the  class    , ( )  -  is  written  as 
   ,    -.  The following  two  results  are  immediate  consequence of  Theorem 
3.3.8 and Corollary 3.3.9. 

Theorem 3.3.10:  Let       ,   -.  If  the function      and       satisfy 

the condition (     ) and  
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Corollary 3.3.11:  Let       and   be univalent in   with   ( )      Let    
  ,     -  for some    (   ), where    ( )   (  ). If the function        and  

   satisfy the condition (      ), and 

 (  (   ) ( )   (     ) ( )   (     ) ( )  

   (     ) ( )   (     ) ( )  )   ( )          (      )               

then         

                                                        (   ) ( )   ( )  (   )   

Our  next  theorem  yields the best dominant of  the  differential  subordination 
(      ). 

Theorem 3.3.12:  Let the function    be univalent in  . Also let        
   and suppose that the differential equation  

                                                        

 4 ( ) 
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has  a solution   ( )  with   ( )     and  satisfies  the  condition  (     ). If  the 
function      satisfies condition (      ) and   

                 

 (  (   ) ( )   (     ) ( )   (     ) ( )  

   (     ) ( )   (     ) ( )  )  

is analytic in  , then  



  
 

 

 

  (   ) ( )   ( )  

and  ( ) is the best dominant. 

Proof.  By using Theorem 3.3.8, that  ( ) is a dominant of (      ). Since  ( ) 
satisfies  (      )   it  is  also a solution  of  (      )  and  therefore   ( )  will be 
dominated by all dominants. Hence   ( ) is the best dominant. 

In the special case   ( )         , and in view of Definition 3.3.7, the class 
of admissible functions   ,   -, denoted by    ,   - is defined below. 

Definition 3.3.13:  Let     be  a set in   ,  and     .  the class of  admissible 
functions    ,   -  consists of those functions            that satisfy the 
admissibility condition: 
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where            (     )  (   )  ,  (     )    and   (     )     

for all     and    . 

Corollary 3.3.14:  Let      ,   -.  If the function       satisfies  the next  

conditions: 
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In  the  special  case      ( )  *  | |   +    the  class     ,   -  is  simply 
denoted by    , -.  

Example 3.3.15:  Let          and    . If the function      satisfies  
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then  
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Proof.  Let 
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where 
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Using Corollary 3.3.14, we need to show that       ,    -                             
Snice 
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whenever       (     )  (   )    (     )     and   (     )    for 

all       and    . The proof is complete. 

We   obtain  fourth order  differential   superordination   and   sandwich type 
results for multivalent functions  associated  with the operator    (   ) defined 

by (     )  For this aim,the class of admissible functins is given in the following 
definition. 

Definition 3.3.16:  Let   be a set in   and      with   ( )   . The class of 
admissible functions    

 ,   -  consists of those functions        ̅      that 
satisfy the following admissibility condition: 
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where                 and      

Theorem 3.3.17:  Let     
 ,   -. If the functions  ( )     and    (   ) ( ) 

    satisfy the following conditions:  



  
 

 

 

 4
    ( )

  ( )
5    |

  (     ) ( )

  ( )
|  
 

  
                     (      ) 

 

 (  (   ) ( )   (     ) ( )   (     ) ( )  

   (     ) ( )   (     ) ( )  ) 

is univalent in  , and  

  { (  (   ) ( )   (     ) ( )   (     ) ( )  
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then  
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Proof.  Let the functions   ( )  be defined by  (     )  and     by (      ). Since  
    

 ,   -. Thus from (      ) and (      ) yield 

  * ( ( )     ( )      ( )      ( )     ( )  )    +   

In view from (      ) that the admissible condition for     
 ,   - in Definiton 

3.3.16 is equivalent the admissible condition for     as given in Definition 3.3.5 
with    . Hence      

 ,   -, and by using (      )  and Definition 3.3.6, we 
have  

 ( )   ( )    (   ) ( )  

Therefore, we completes the proof of  Theorem 3.3.17. 

If        is a simply  connected  domain,  and     ( )  for  some  conformal 
mapping   ( )  of     onto   ,  in  this  case  the  class    

 , ( )  -   is  written as  
  
 ,   -. The next Theorem is directly consequence of Theorem 3.3.17. 

Theorem 3.3.18:  Let     
 ,   -. Also, let the function  ( ) be analytic in  . 

If  the  function           (   ) ( )      and         satisfies the condition 
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Theorem 3.3.19:  Let the function   be analytic in  , and let       ̅      
and   be given by (      ). Suppose that the differential equation  

  ( ( )     ( )      ( )      ( )     ( )   )   ( )                                  (      ) 

has a solution  ( )    . If the functions          (   ) ( )      and        

with   ( )    satisfy the condition (      ), 
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then 
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and  ( ) is the best subordinant of (      )  

Proof.  The  proof  is similar to that of Theorem  3.3.12  and it is being omitted 
here. 

By Combining Theorem  3.3.10  and  Theorem  3.3.18, we obtain  the  following 
sandwich type result. 

Corollary 3.3.20:  Let the functions    ( )     ( ) be analytic in   and let the 
function     ( )  be  univalent in   ,     ( )       with      ( )    ( )      and 
      ,     -      

 ,     - .    If   the  function       ,   (   ) ( )        , 

{ (  (   ) ( )   (     ) ( )   (     ) ( )  

  (     ) ( )    (     ) ( )  )    }  
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 المستخلص

 
. يةالعليا في نظرية الدالة الهندس التفاضلية والتابعية  التفاضلية بعيةالغرض من هذه الرسالة هو دراسة نتائج التا

لدالة مشتقة معممة لصنف   ائج التابعيةالتفاضلية للدوال احادية التكافؤ حيث حصلنا على نت  هي دراسة التابعية
ناقشنا  أيضاً  بعض  خواص  نتائج     قرص الوحدة  المفتوح.   جديد من الدوال احادية  التكافؤ  التحليلية  في

تم الحصول على نتائج حول . سرفستافا -بواسطة  مؤثر ليو الساندوج التفاضلية للدوال متعددة  التكافؤ  المعرفة 
تفاضلية و التابعية التفاضلية العليا و اشتقينا ايضاً بعض مبرهنات الساندوج.   تم دراسة نتائج التابعية التابعية ال

من الرتبة الثالثة للدوال احادية التكافؤ الميرمورفية  و المعرفة  بواسطة المؤثر الخطي و هنا تم الحصول على 
قرص الوحدة المثقوب.نتائج جديدة للتابعية التفاضلية من الرتبة الثالثة في   

المعرفة وتعاملنا  ايضاً مع نتائج  التابعية  التفاضلية العليا من الرتبة الثالثة للدوال متعددة  التكافؤ الميرمورفية  
للدوال التحليلية في قرص الوحدة المثقوب   بواسطة المؤثر الخطي. اشتقينا بعض نتائج التابعية التفاضلية العليا

درسنا ايضاً نتائج التابعية  التفاضلية       اصناف اكيدة من الدوال المقبولة   )المسموح بها(.من خلال استخدام 
 والتابعية التفاضلية العليا من الرتبة الرابعة للدوال التحليلية المتعددة التكافؤ. هنا قدمنا مفهوم جديد وهو التابعية 

رابعة والمعرفة بواسطة المؤثر الخطي التفاضلي التابعية التفاضلية العليا من الرتبة ال التفاضلية و   (   ) في  

 قرص الوحدة المفتوح.
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