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Abstract

The purpose of this thesis is to study the differential subordination and super-
ordination results in geometric function theory. It studies differential subordi-
nation for univalent functions. We investigate and obtain subordination
results for generalized deriving function of a new class of univalent analytic
functions in the open unit disk. Also, we have discussed some properties of
differential sandwich results of p-valent functions defined by Liu-Srivastava
operator. Results on differential subordination and superordination are
obtained. Also, some sandwich theorems are derived.

We have also undertaken the study of third-order differential subordination
results for meromorphic univalent functions associated with linear operator.

Here, new results for third-order differential subordination in the punctured
unit disk are obtained.

We have also dealt with third-order differential superordination results for
p-valent meromorphic functions involving linear operator. We derive some
third-order differential superordination results for analytic functions in the
punctured open unit disk by using certain classes of admissible functions.

We have also studied the fourth-order differential subordination and superor-
dination results for multivalent analytic functions. Here, we introduce new
concept thatis fourth-order differential subordination and superordination
associated with differential linear operator I, (n, 1) in open unit disk.



Introduction

The classical study of the subject of analytic univalent functions has been
engaging the attention of researchers at least till as early as 1907. This has be-
en growing vigorously with added research. This field captioned as Geometric
Function Theory is found to be a mixing or an interplay of geometry and analy-
sis. Despite the classical nature of the subject, unlike contemporary areas, this
field has been fascinating researchers, with stress on the interest based on
investigations by function theorists. The main ingredient motivating this line
of thought is based on the famous conjecture called the Bieberbach conjecture
or coefficient problem offering vast scope for development from 1916, till a
positive settlement in 1985 by de Branges where innumerable results were
obtained based on this problem. Since then, Geometric Function Theory was a
subject in its own right. Geometric function is a classical subject. Yet it contin-
ues to find new applications in an ever-growing variety of areas such as
modern mathematical physics, more traditional fields of physics such as fluid
dynamics, nonlinear integrable systems theory and the theory of partial differ-
ential equations.

Detailed treatment of univalent functions are available in the standard books
of Duren [23] and Goodman [27].

A function f analyticin a domain Q of the complex plane C is said to be
univalent or one-to-one in Q if it never takes the same value more than once in
Q. That is, for any two distinct points z; and z, in Q, f(z,) # f(z,). The choice
of the unit disc, U = {z : |z| < 1} as a domain for the study of analytic univalent
functions is a matter of convenience to make the computations simple and
leads to elegant formulae. There is no loss of generality in this choice, since
Riemann Mapping Theorem asserts that any simply connected proper subdo-
main of C can be mapped onto the unit disk by univalent transformation.

The class of all analytic functions in the open unit disk U with normalization
f(0)=0 and f'(0) =1 will be denoted by A, consisting of functions of the
form :

f(2) =2+ Z azt,  (zeU).



Geometrically, the normalization f(0) = 0 amounts to only a translation of the
image domain and f'(0) = 1 corresponds to rotation and stretching or shrink-
ing of the image domain.We denote the class of all analytic univalent functions
with the above normalization by S.

The function K(z) called the Koebe function, is defined by

K(z) = =z+2z>+323+ -,

z
(1-2)?
which maps U onto the complex plane except for a slit along the negative real
axis from —oo to —i , is a leading example of a function in §. It plays a very

important role in the study of the class §. In fact, the Koebe function and its
rotations e 'K (ew‘z), a € R are the only extremal functions for various

extremal problems in §. The study of univalent and multivalent functions was
initiated by Koebe (1907) [37]. He discovered that the range of all functions in

§ contain a common disk |[w| < %, later named as the Koebe domain for the
class § in honour of him.

For functions fin the class §, [23], it is well known that the following growth
and distortion estimates hold respectively as for z = re'?,0 <r < 1

r < < r
m— |f (2)] —m,

and
1—r < [f! - 1+4+7r
T s If' (@] < a—n

Further for functions f in the class §, [23], it is well known that the following
rotation property holds:

1
4sin~1r, r< \/_E

jargf'(2)] < 2 X
T[+10gm, r Zﬁ,

where |z| = r < 1. The bound is sharp.
In [23] 1916, Bieberbach studied the second coefficient a, of a function f € S.

He has shown that |a,| < 2, with equality if and only if f is a rotation of the
Koebe function and he mentioned ”|a,,| < n is generally valid ”. This statement
is known as the Bieberbach conjecture.



In 1923 Lowner [41] proved the Bieberbach conjecture for n = 3, many others
investigated the Bieberbach conjecture for certain values of n. Finally, 1985 de
Branges [22] proved the Bieberbach conjecture for all coefficients with the
help of hypergeometric functions.

Since the Bieberbach conjecture was difficult to settle, several authors have
considered classes defined by geometric conditions. Notable among them are
the classes of starlike functions, convex functions and close —to—convex
functions.

Subordination between analytic functions return back to Littlewood [42,43]
and Lindelof [39], where Rogosinski [60,61] introduced the term
and established the basic results involving subordination. Quite recently
Srivastava and Owa [67] investigated various interesting properties of the
generalized hypergeometric function by applying the concept of subordination.

Ma and Minda [45] showed that many of these properties can be obtained by a
unified method. For this purpose they introduced the classes C(¢) and S*(¢)
of functions f(z) € A, for some analytic function ¢(z) with positive real part
on U, with ¢(0) =1,¢'(0) > 0 and ¢ maps the open unit disk U onto a region
starlike with respect 1, symmetric with respect to the real axis, satisfying:

2f"(2) 2f'(2)
Fy < ¢@ and s

They developed a new method in geometric function theory known as the
method of differential subordination or the method of admissible functions.
This method is very effective to obtain new results.

1+

<¢(z),(zel).

Interest in geometric function theory has experienced resurgence in recent
decades as the methods of function theory on compact Riemann surfaces and
algebraic geometry.

Early string theory models depends on elements of geometric function theory
for the computation of so called Veneziano amplitudes was appeared [34].



The thesis is organized as follows. In chapter one, we present a brief
introduction to some background of complex concepts and the basic ideas of
geometric function theory.

Chapter two consists of two sections, in the first section, we deal with the
study of differential subordination for univalent functions. We obtain
subordination results for generalized deriving function of anew class of
univalent analytic functions in the open unit disk.

Section two is devoted for the study of some properties of differential sandwich
results of p-valent functions defined by Liu-Srivasava operator. We obtain
results on differential subordination and superordination. Also, we derive
some sandwich theorems.

Chapter three has been divided into three sections, setion one deals with a
third-order differential subordination results for meromorphic univalent
functions associated with linear operator.Here, we obtain new results for third
—order differential subordination in the punctured unit disk. In section two,
we have introduced the third-order differential superordination results for
p-valent meromorphic functions involving linear operator. We derive some
third-order differential superordination results for analytic functions in the
punctured open unit disk of meromorphic p-valent functions by using certain
classes of adimissible functions. Section three deals with the fourth-order
differential subordination and superordination results for multivalent analytic
functions. Here, we introduce new concept that is fourth-order differential
subordination and superordination associated with differential linear operator
L,(n, ) in open unit disk.



Chapter One

Complex Variable Concepts in
Geometric Function Theory

Introduction:

This chapter includes three sections with some examples, the first section
reviews the basic definitions that can be found in the standard text books with
some examples see Churchill [18], Duren [23],Hayman [30], Kozdron [36] and
Miller and Mocanu [47], where this section is about analytic functions and
unvialent, multivalent (P-valent) functions, generalized hypergeometric funct-
ions, Ruscheweyh derivatives, also subordination and superordination.

Section two is about some classes of analytic functions. Some well-known the
class of starlike functions, convex functions, close to convex functions
a —starlike functions and o —convex functions see [5],[231,[35],[59] and [68].

In section three, basic lemmas and theorems have been mentioned they are
essential and needed for the proofs of our principal results see [6], [11], [23],

[47] and [71].



1.1 Basic Definitions

Definition 1.1.1 [23]: Supposethat U ={z € C: |z| < 1} denotes the open
unit disk in the complex plane C. A function f of the complex variable is said to
be analytic at a point z, if it’s derivative exists not only at z, but also each point
z in some neighborhoods of z,. It is analytic in the unit disk U if it is analytic at
every point in U. We say that f is entire function if it’s analytic at every point in
complex plane C.

Example 1.1.2 [18]: The function f(z) = i/zz is analytic whenever z # 0,

and since
: 2xy + i(x? — y?)
= l =
f(z) /ZZ (x2 + y2)?
The two functions
2xy x? —y?
u(x,y) = m ) v(x,y) = m,

the partial derivatives u,, Uy, Uy, Vy are continuous in all the value (x, y) # (0,0).
Cauchy-Riemann equations are satisfied because

. 2y3 — 6x%y - 2x3 — 6xy?
* T2+ y2) YT k2 + y2)3
- 6xy? — 2x3 . 2y3 — 6x%y
* = k2 4 y2)3 Y T x4 y2)3
Then
2y3 — 6x%y 2x3 — 6xy*?
WS GE 0 T T T G

Hence f is analytic for all z # 0.

Example 1.1.3 [18]: The function f(z) = sinz is entire function.



Definition 1.1.4 [6]: Let 7 (U) be the class of functions which are analytic
in the open unit disk

U={z€eC:|z|<1}.
For ne N={1,2,3,..},and a € C, let

Hlan]={feHWU): f(z) =a+a,z"+ a,;12"1+...},
and also let H, = [0,1] and H, = [1,1].

Definition 1.1.5 [23]: A function f analytic in domain D c C, is said to be
univalent (schilcht), there ifit does not take the same value twice, that is
f(z,) # f(z,) for all pairs of distinct points z, and z, in D. In other words, f is
one—to—one or (injective) mapping of D onto another domain. The theory of
univalent functions is so much deep, we need certain simplifying assumptions.
The most obvious one in our study is to replace the arbitrary domain D by one
that is convenient, and is the open unit disk

U={zeC:|z| <1}.

As exmples, [23] the function f(z) = zis univalent in U, while f(z) = z? is not
(2n+1)
univalent in U. Also f(z) = z + 2 =

p—v) is univalent in U for all positive integer n.

We shall denote by A the class of all those functions f which are analytic in the
open unit disk U and normalized by the conditions f(0) = 0 and f'(0) = 1.

Definition 1.1.6 [23]: Let § denotes the class of all functions f in the class

A of the form:

f(2)=z+ ) ayz*, (z € V), (1.1.1)
; .

which are univalent in the open unit disk U.

We also deal with function which is meromorphic univalent in the punctured
unitdisk U*={z€C:0<|z| <1} =U\ {0}. Meromorphic function defined
as a function f analytic in a domain D c C except for a finite number of poles
in D.



Definition 1.1.7 [23]: Let M denotes the class of function f of the form:

(0]

+ z a,z", (zel), (1.1.2)

k=0

f(2) =

N|m

which are meromorphic univalent in the punctured unit disk U™.

Definition 1.1.8 [23]: A function f is said to be locally univalent at a point
z, € Cif it is univalent in some neighborhood of z,. For analytic function f ,the
condition f'(z,) # 0 is equivalent to local univalence at z,.

Example 1.1.9 [36]: Consider the domain

3
D={zE(C:1<|z|<2, 0<argz<7},

and the function f:D — C given by f(z) = z2. Itis clear that f is analytic on D
and locally univalent at every point z, € D, since f'(z,) = 2z, # 0 for all z, € D.
However, f is not univalent on D, since

f(3+'3>f<3 ,3)9_

i =fl- — i =—1.

V2 2V2 V2 22/ 4

Definition 1.1.10 [23]: A function f is said to be conformal at a point z, if it
preserves the angle between oriented curves passing through z, in magnitude
as well as in sense. Geometrically, images of any two oriented curves taken
with their corresponding orientations make the same angle of intersection as
the curves at z, both in magnitude and direction. A function w = f(z) is said
to be conformal in the domain D c C ifitis conformal at each point of the

domain. Any analytic univalent function is a conformal mapping because of its
angle — preserving property.

Definition 1.1.11 [23]: A Mobius transformation, or called a bilinear trans-
formation, is a rational function f: C — C of the form

az+b
cz+d’

f(2) =

where a, b, c,d € C are fixed and ad — bc # 0.
Example 1.1.12 [36]: Perhaps the most important member of § is the Koebe

function which is given by



Z

We can compute the Maclaurin series for K by differential the series for TEEy

and then multiplying by z.

(00

z
K(z) =—=ann =z+2z>+323+ -,
a-22" 4
n=
and maps the unit disk to the complement of the ray (—00, — ﬂ This can be
verified by writing
1/1+2° 1
k@ =5(=) -1

Note that for this function a,, = n for all n. We now show that the image of U
under Kis a slit domain that is a domain consisting of the entire complex plane
except that a slit is cut out of it. To determine K (U), consider the next sequence
of functions:

1+z
1_

W@ =1, w@ =B, usl) =) .

4

Where noting that g maps the unit disk conformally onto the right half-plane
{R{z} > 0}; see Fig (1.1.1).

®
|
|
"J

{Re{z} = 0} 3 C\(—22,0] oy (—oo ]
Figure (1.1.1)

The Koebe function maps U conformally onto C \ (—00, — ﬂ

Now



_ z
(-7

1[/1+ 2\2
u30u20u1(2)=z (1_2) —1

Note that u, is the Mobius transformation that functions maps U onto the right
half-plane whose boundary is the imaginary axis. Also, u, is the sequaring
function, while ustranslates the image one space to the left and then multiplies

it by a factor of i.

Definition 1.1.13 [30]: Let f be a function analytic in the unit disk. If the
equation f(z) = w has never more than p —solutionsin U, then f is said to
be p —valent in U. The class of all p —valent analytic functions is denoted by §,
expressed in one of the following forms:

(0.0]

f(z) =2zP + Z ak+pzk+p , (ze U;peN={1,23,..} ) (1.1.3)
k=1
or
f(z)=2zP + Z az® . (ze U;peN=1{1,23,..}) (1.1.4)
k=p+1

And, let f be a function analytic in the punctured unit disk U*. If the equation
f(z) = w has never more than p —solutions in U*, then f is said to be p —valent
in U*. The class of all p —valent meromorphic functions is denoted by M'*, and
expressed in one of the following forms:

f(z)=zP+ z a,z"? , (peN={123..)), (1.1.5)
k=1
or
f(z)=z"P+ Z apz® , (peN={123..1}. (1.1.6)
k=p+1

Definition 1.1.14 [23]: If functions f and g belonging to the class A, given
by

f(2) =Z+Zakzk, g(2) =Z+Zbkzk,
k=2 k=2



then the Hadamard product or (convolution) of functions f and g denoted by
f * g is defined by

@ =2+ ) ah* =(g+H@  @eU), (1.1.7)
k=2

Example 1.1.15 [21]: Consider the Hadamard product of the Koebe function

z
K(z) = a-o7

and the horizontal strip map,
F(z) = 11 <1 + z>
z) =z log|T— |-
To find the Hadamard K(z) * F(z), we need to compute the Maclaurin series
for F. Since, see[18]

——=14+z+2z2+23+-, (z| <),
1—2z
and by integration both sides, we have
log(1—2z) =—
n=0
Also
=1—-z+z2-2z23+-, (z] <),

1+z

and by integration both sides, we have

© (—l)nZn+1

1 =
og(1+ 2) ——
n=0

Therefore,

1+ 2 (—1)nzn*1 © SN+l
log(1 >—log(1+z) log(1—2) = Z—+Zn+1

n=0
z2 73 z* Z° z2 73 z* Z°

:Z_?-l_?_z-l_?_.“+Z+?+?+Z+E+“.



3 25 o Z2n+1
=2z4+2=+4+2—+ =2z ,
fregmg Ty 2n + 1
n=0
then
1 142z 2n+1
E ( ) 2n+1
Thus,
K(2) » F&) z 1 (1+Z) i . izznﬂ
%k =—*— *
z z 1-2? 2 nz >
n=1 n=0
(z+2z* +32° +4z* + ) +Z3 z Z
e cee k R R R .
Z Z VA Z VA 3 5 7
=z+2z34+2°+77 + -
=z(1+2* +z* + 2%
_ Z
1 —z?
That is,
K(z)  F(2) VA 1l (1+z> Z
* = — % — = )
DB = A 2 %% \1 =) T 1= 22
11
(N
I lgl
. convoluted results
D with | | in
171
11
11
Figure (1.1.2)

The Koebe function convoluted with a horizontal strip map yields
a double-slit map



Definition 1.1.16 [44]: The Pochhammer symbol or (the shifted factorial)
which is denoted by (x),, is defined (in terms of the Gamma function) by

_I'(x+n) 11 ifn=0,x€C =C\{0}
(3)n = r(x) { x(x+1)..(x+n—-1) ifneN,x eC. (1.1.8)
Definition 1.1.17 [32]: For a complex parameters a; where (i = 1,2, ..., q)

and B where (i =1,2,..., s)such that B,#0,-1,-2,.;i=1,2,..,s), the
generalized hypergeometric function gF (ay, ... ,aq; B,, .. , B; Z) is given by, see
[ 24,25]: as follows :

(al)n (a )nZn
Flay, ..,ag B, B;2) = Z (,5'1 (ﬂ:)nm

(q<s+1;q,s eNy= N U{0};z€U),
where (x),, is the Pochhammer symbol or (shifted factorial ) defined in (1.1.8).

Definition 1.1.18 [32]: For the function f € §,, the Ruscheweyh derivative
operator D"*P~1:§, — &, is defined by

(2" Hf ()Pt 2P
(n+p—1D!  (1=2z)np «f(z), n>—p.

When p =1, thenit was introduced by Ruscheweyh [63], and the symbol
D™"*P~1 was introduced by Goel and Sohi [26]. Therefore, we call the symbol
D™*P~1t0 be the Ruscheweyh derivative of order (n + p — 1)th.

D™ (7) =

Definition 1.1.19 [23]: A function f: R — C is said to be Schwarz function
,if forall c € R,n € N, = NU {0}, then

|f™ ()| = 0(Iz|€) , where ” capital O ” is defined as follows:

Let {a,}and {b,} be any two sequences and b, > 0, for all n. If there exists a
constant number n > 0 suth that a,, < nb,(for all n), then we write a,, = 0(b,,).

Definition 1.1.20 [47]: Let f(z) and F(z) are analytic functions in U. The
function f(z) is said to be subordinate to F(z) or F(z) is superordinate to f(z)



if there exists a Schwarz function [(z), which is analyticin U with w+(0) =0
and |w(z)] <1 (z € U), and such that f(z) = F(w(z)). In such case, we write

f<F,or f(z) < F(2).

If the function F(z) is univalent in U, then we have the following equivalence:
f(z) < F(z) < £(0) = F(0) and f(U) c F(U).

Definition 1.1.21 [47]: Let ¢ : C3 X U — C and h(z) be univalentin U . If
p(2) is analytic in U and satisfies the second—order differential subordination:

¥ (p(2),2p'(2),2°p"(2); 2) < h(2), (1.1.9)

then p(z) is called a solution of the differential subordination (1.1.9). A
univalent function q(2) is called a dominant of the solutions of the differential
subordination (1.1.9), moreover simply dominant, if p(z) < q(z) for all p(2)
satisfying (1.1.9). A univalent dominant §(z) that satisfies G(z) < q(z) for all
dominants q(z) of (1.1.9) is said to be the best dominant of (1.1.9).

Definition 1.1.22 [48]: Lety :C3 x U — C and the function h(z) be analytic
in U. If the functions p(z) and Y(p(2),zp’(2),z*p"(2);z) are univalentin U
and if p(z) satisfies the second—order differential superordination:

h(z) < Y(p(2),zp'(2),2°p"(2); 2), (1.1.10)

then p(z)is called asolution of the differential superordination (1.1.10). An
analytic function q(z) is called a subordinant of the solutions of the differential
superordination (1.1.10) or more simply a subordinant, if q(z) < p(z) for all
p(z) satisfying (1.1.10). A univalent subordinant §(z) that satisfies q(z) < G(2)
for all subordinants g(z) of (1.1.10) is said to be the best subordinant.

Definition 1.1.23 [48]: Let Q the set of all functions f(z) that are analytic
and injective on U \E(f) ,where U =UU{z € 0U} = {z € C:|z| < 1}, and

E(f) ={C €U :lim,; f(z) =},

and are such that f'(z) # 0 for { € dU \ E(f). Futher, let the subclass of Q for
which f(0) = a be denoted by Q(a), and Q(0) =Q, , Q(1) =Q;.

Definition 1.1.24 [11]: Let y: C* x U — C and the function h(z) be univalent
in U. If the function p(z) is analytic in U and satisfies the following third—order
differential subordination:



Y(p(2),2p’ (2),2°p" (2),2°p" (2);2) < h(2), (1.1.11)

then p(z2) is called a solution of the differential subordination. A univalent fun-
ction q(z) is called a dominant of the solutions of the differential subordinat-
ion or more simply a dominant if p(z) < q(z) for all p(z) satisfying (1.1.11).
A dominant §(z) that satisfies G(z) < q(z) for all dominants g(z) of (1.1.11) is
said to be the best dominant.

Definition 1.1.25 [71]: Let ¢:C* x U — C and the function h(z) be analytic
in U. If the functions p(z) and

Y((2),2p' (2), 2°p" (2), 2°p" (2); 2),

are univalent in U and if p(z) satisfy the following third—order differential
superordination:

h(z) < Y(p(2),zp’ (2),2°p" (2),2°p" (2); 2) (1.1.12)

then p(z)is called a solution of the differential superordination. An analytic
function q(z) is called a subordinant of the solutions of the differential super-
ordination or more simply a subordinant if q(z) < p(z) for all p(z) satisfying
(1.1.12). A univalent subordinant §(z) that satisfies the condition q(z) < §(2)
for all subordinants q(z) of (1.1.12) is said to be the best subordinant.

Definition 1.1.26 [11]: Let Q denote the set of functions g that are analytic
and univalent on the set U\E(q), where U=UU{z € dU}={z€ C:|z| <1},
and

E(q) = {C € dU: lim,_,; q(z) = 00},

is such that min |q'({)| = p > 0 for { € dU\E(q). Further, let the subclass of Q
for which q(0) = a be denoted by Q(a) and 9(0) =Q,, 2(1) = Q.

Definition 1.1.27 [11]: Let Qbeasetin C, g € Q and n € N\{1}. The class of
admissible functions W,,[(, q] consists of those functions 1 : C* x U — C that
satisfy the following admissibility condition:

Y(r,s, t,w;z) € Q,
whenever

_ o t ¢q"({)
r=q({) , s=xiq'(z) , ‘R<S+1)2 KER( %) +1>,



and

w ¢%q" ()
®(5)2 "2““( 6 >
where z € U,{ € dU\E(q), and k > n.

Definition 1.1.28 [71]: Let Qbeasetin C, q € H[a,n] and q'(z) # 0. The
class of admissible functions W}, [, q] consists of those functions 1 : C* x U —
C that satisfy the following admissibility condition:

Y(r,s, t,w;{) €Q,

whenever

_ _2q'(2) e\ 1, (20'@
r=q@ , s=+2 sn(—+1)s—sn(q,(z)+1>,

and

s/~ m? q'(z)

9%(K) < 1 9{(qum(z)>’

where z€ U, € 0U,and m >n > 2.



1.2 Some Classes of Analytic Functions

Since the Bieberbach conjecture was difficult to settle, several authors have
considered classes defined by geometric condition. Notable among them are
the classes of starlike, convex, and close to convex functions. In this section,
we introduce some well-known of these classes of analytic functions.

1.2.1 The class of starlike functions [23]

A set E c Cis said to be starlike with respect to a point w, € E if the linear
segment joining wyto every other point w € E lies entirely in E, i.e.

1-Dw+Aw, € E, 0<A1<1,

and a function f which maps the open unit disk U onto a starlike domain is
called a starlike function, the set of all starlike functions is denoted by S* which
is analytically expressed as

. o (2f'(2)
S* = {f € c,q.m( & ) > 0}. (1.2.1)

The class S* was first studied by Alexander [5] and the condition (1.2.1) for
starlikeness is due to Nevanlinna [53].1t is well-known that if analytic function
f satisfies (1.2.1) and f(0) =0, f'(0) # 0, then f is univalent and starlike in
U.

1.2.2 The class of convex functions [23]

A set E c Cis said to be convex if it is starlike with respect to each of its points;
that is, if the linear segment joining any two points of E lies entirely in E, i.e.

(1_A)W1+AWZE E, VWl,erE, OS/’{,Sl.

Let f € §. Then f maps U onto a convex domain, if and only if

c = {f €s: R (1 + Zj’:é?) > 0}. (1.2.2)



Such function f is said to be convex in U or (briefly convex). The condition of
(1.2.2) was first stated by Study [68].Lowner [40] also studied the class of con-
vex functions. One can alter the condition (1.2.1) and (1.2.2) by setting other

limitations on the behavior of fo(_S) and of 1+ Z]]:,—(iz)) in U. In this way many

interesting classes of analytic functions have been defined, see Hayman[30].

Thus C c §* c §. Note that the Koebe function see (Example 1.1.12) is starlike
but not convex. There is a closely analytic connection between the convex and
starlike mapping. Alexander [5] first observed this in 1915.

1.2.3 The class of a —starlike and a —convex functions [49]

Robertson [59] in 1936, introduced the class §*(a), C(«) of starlike and convex
functions of order @, 0 < a < 1, which are defined by

2f'(2)
@

S*(a)={f€c/l:9?< )>a,0$a<1,zeU}, (1.2.3)

zf"(z)

f'(2)
In particular §*(0) =§*, C(0) = C, where §* is the class of starlike functions
with respect to the origin and C is the class of convex functions.

C(a)={f€cfl:9%<1+ )>a,0§a<1,zEU}. (1.2.4)

1.2.4 The class of close to convex functions [23]

We now turn to an interesting subclass of § which contains § *and has a simple
geometric description. This is the class of close to convex functions, introduced
by Kaplan [35] in 1952.

A function f analytic in the open unit disk is said to be close to convex if there
is a convex function g such that

f'(z)
iR{g,(Z)} >0,(ze€l).

We shall denoted by K the class of close to convex functions f normalized by
the usual conditionsf(0) = 0 and f'(0) = 1. Note that f is not required a priori
to be univalent. Note also that the associated function g need not be normaliz-
ed. The additional condition that g € C defines a proper subclass of K which




will be denoted by K.

Every convex function is obviously close to convex. More generally, every star-
like function is close to convex. Indeed, each f € §* has the form f(z) = zg'(2)

PO (@
“R{g%z)} - SR{ @ } >0

Then from above, we conclude that

for some g € G, and

CcS*"cKy,cKCcS,
and this means that, every close to convex function is univalent.
1.2.5 The class of meromorphic starlike and meromorphic convex
functions [54]

Let f € M which is analytic and univalent in U*, then f is called meromorphic
starlike of ordera (0 < a < 1)if f(z) # 0in U* and

—R {zf’(z)} >a,(zeU),

f(2)

where the class of meromorphic starlike functions of order a is denoted by
MS*(a). Similary, a function f € M which is analytic and univalentin U*, is
called meromorphic convex of order a (0 < a < 1) if f'(2) # 0in U* and

2f"(2)
'@

where the class of meromorphic convex functions of order a is denoted by
McC(a).

—9{{1+ }>a,(z€U*),



1.3 Fundamental Lemmas

The following lemmas are needing in the proofs of our results in this research.

Lemma 1.3.1 [23] (Schwarz Lemma): Let f be analytic function in the
open unit disk U with f(0) =0 and |f(z)] <1 in U. Then, [f'(0)] <1 and
|f(2)| < |z| in U. Strict inequality holds in both estimates unless f is a rotation
of the disk f(z) = ez

Lemma 1.3.2 [47]: Let q(2) be univalentin U and 6 be analytic function in
domain D containing q(U). If zq'(z) 8(q(2)) is starlike, and

zr'(2) B(r(z)) < zq'(2) H(q(z)) , (1.3.1)
then
r(z) < q(2) and q(2) is the best dominant of (1.3.1).

Lemma 1.3.3 [20]: Let g(2) be a convex function in U, and let 6 be analytic
function in a domain D containing q(U), set h(z) =zq'(2) +6(q(2)) and
suppose that

hW(2)\ _ , zq"(2)
ER(C['(Z)) - SR<e (q(Z)) + 1+ ql(Z)

then q is univalent. Moreover, if r(z) is analytic function in U with r(0) = q(0)
and r(U) c D, and

zr'(z) + B(r(z)) <zq'(z)+ H(q(z)), (1.3.2)

>>0,Z€U,

then
r(z) < q(2) , and q(2) is the best dominant of (1.3.2).

Lemma 1.3.4 [64]: Let g(z) be a convex univalent function in Uand let 1 € C
,Y € C* = C\ {0} with

{ Zq"(Z)} A
RI1+ — >max{0,—‘ﬁ<—)},z€U.
q'(2) 14
If r(z) is analytic function in U, and
Ar(z) + yzr'(z) < Aq(2) + yzq'(2), (1.3.3)

then

r(z) < q(z) , and q(z) is the best dominant of (1.3.3).



Lemma 1.3.5 [47]: Let g(z) be univalent in U, and let 6 and ¢ be analytic in
a domain D containing q(U) with , ¢(2) =0 when & € q(U). Set

Q(2) = zq'(2)$(q(2)), h(z) = 0(q(2)) + 2(z) and suppose that
(i) Q(2) is a starlike function in U,

zh'(z)
Q(z)

If r(z) is analytic in U, with r(0) = ¢q(0),r(U) €D and
0(r(2)) + zr’(z)q[)(r(z)) < B(q(z)) + zq’(z)qb(q(z)) , (1.3.4)

(ii)iR{ }>0,f0rallz eU.

then
r(z) < q(z), and q(z) is the best dominant of (1.3.4).

Lemma 1.3.6 [62]: The function q(z) = (1 — z)~%2® where a, b € C" is univa-
lent in U if and only if |2ab ¥ 1] < 1.

Lemma 1.3.7 [48]: Let q(z) be convex univalent function in U and let € C,
with R(t) > 0.If r(2) € H[q(0),1]] n Q and

r(z) + tzr'(2) is univalent in U, then
q(z) +12q'(z) < r(z) + 121" (2), (1.3.5)
which implies that q(z) < r(z), and q(z) is the best subordinant of (1.3.5).

Lemma 1.3.8 [6]: Let gq(2) be convex univalent in U. Let 6 and ¢ be analytic
in a domain D containing q(U). Suppose that

(i) Q(2) = zq’(2)(q(2)) is a starlike function in U,

9'(q(z))} o

(ii) ER{
¢(q(2)
,forall ze U.If r(z) € H[q(0),1]] n Q, with r(U) € D, such that

6(r(2)) + zr'(2)¢(r(2)) is univalent in U, and

G(q(z)) + zq’(z)q,’)(q(z)) < H(r(z)) + Zr’(z)¢(r(z)) ,  (13.6)
then q(z) < r(z), and q(2) is the best subordinant of (1.3.6).



Lemma 1.3.9 [23]: Let f be analyticin D, with f(0) = f'(0) — 1 = 0. Then
fes* ifandonlyif zf'(z)/f(z) € P (where P is the class of all function ¢
analytic and having positive real part in D, with ¢(0) = 1).

Theorem 1.3.10 [11]: Let p € H[a,n] with n € N\{1}, and let q € Q(a) and
satisfy the following conditions:

2((O)0 [0

<K,

q'(0) q'(Q)
where z € U, € dU\E(q) and k = n.If Qasetin C,y € ¥,[Q, q] and

Y(p(2),zp' (2),z°p" (2),2%p" (2);z) € Q,

then

r(z) <q(z), (z€l).

Theorem 1.3.11 [71]: Letq € H[a,n] and ¢ € ¥, [Q,q]. If
Y(p(2),zp' (2),z%p" (2),z3p" (2); z) is univalent in U, and
p € Q(a) satisfy the following conditions:

z q"(2)
SR( q'(2) ) =0

where z€e U,and m >n > 2,

zp'(9)| _ 1
q@) | " m’

then
Qc{Y@),2p'(2) ,2°p"(2) ,2°p" (2);2):z € U},
implies that
q(z) <p(2), (z€el).

Theorem 1.3.12 [23] (Alexander’s Theorem): Let f be an analytic funct-
ion in U with f(0) = f'(0) — 1 = 0. Then, f € Cifand only if zf' € §*.



Chapter Two

. . )
Some Results on Differential

Subordination and superordination of
Univalent and Multivalent Functions
\_

Introduction:

In [46] Miller and Mocanu extended the study of differential inequalities of
real-valued functions to complex-valued functions defined in the unit disk.
Following Miller and Mocanu [47,48],Bulboaca [19] and others [6,14,50,52,64]
studied differential classes of analytic functions, by means of differential
subordination and superordination.

In this chapter, we concentrate in particular on the study of applications of
subordination and superordination of univalent and multivalent functions.
This chapter consists of two sections.

Section one deals with the study of differential subordination for univalent
functions. Here, we obtain some results, like, let the function g(z) be univalent
in the unit disk U, q(z) # 0 and zq'(z)6(q(2)) # 0 is starlike function in U. If

f € T*(y) satisfies the subordination

2fM(@)  zf" V()  -82q' (2)

et reem S a0

then




1
(n-1) &
[u6<q(z), (z eU ,d € C),

fr=2(2)

and q(z) is the best dominant.

Section two is devoted for the study of some properties of differential sandw-
ich results of p-valent functions defined by Liu-Srivastava operator. We obtain
results on differential subordination and superordination. Also, we derive
some sandwich theorems, like, let g(z) be a convex univalent in U with
q(0) =1,0 < § < 1. f € C* and suppose that

R {1 + Z;,”((ZZ))} > max {0 —R (61,8)}

If f € WX, satisfies the subordination Y;(z) < q(2) + §8zq'(2),

where

Sl

.9,S [al: ]f(Z)

VAL

Yi(2) =1 —a1f) [

F slag,v f(Z)] 0,q,S la; + 1,v]f(2)
pqs 0.’1, ]f(Z) ,

then

F S 1 %
p.q, [azpv]f(z)] <q(2),

and q(z) is the best dominant.



2.1 Differential Subordination for Univalent

Functions

Let T*(y) denote the class of functions of the form:

f(2)=z+ Z a, 2Ny =343, (2.1.1)
k=1

which are analytic in the open unitdisk U ={z € C : |z| <1} and satisfying
the normalized condition f(0) = f'(0) —1 = 0. Also,

let T~ () denote the subclass of the class T (y) of functions of the form:

(0]

f(2) =z~ z a. 20N | y=0@234.3,a.20, (2.1.2)

k=1

which are analytic in U and satisfying the normalized condition

fO)=7(0)-1=0.
We note that (n) by generalized deriving.

Hints to the work done by the authors [17],[38] when n = 3, and discusse
around generalize this idea with formula special in next Theorems.

Theorem 2.1.1: Let the function g(z) be univalent in the unit disk U, q(z) #
0 and zq'(2)0(q(z)) # 0 is starlike functionin U. If f € T*(y) satisfies the
subordination

2fM@  z2f" V(@)  -62q' (2)

BRI e R TTes MTey
then

(2.1.3)

D) <q(z), (z€U,s € C),

and q(z) is the best dominant of (2.1.3).

!me—n ol



Proof. Define the function

(n-1) %
r(z) = [%‘ ,(z €U ,6 € C), (2.1.4)
then
, 1 Zf(n_l)(Z)% zfM(z)  zf"V(2)
zr'(z) = 5 —f(n—z)(z)] [1 + FD () — D) | (2.1.5)

Setting 6(w) = _75 it can easily observed that 6(w) is analytic function in C*,
then, we have , 6(r(2)) = % and 6(q(2)) = % .
From (2.1.5) and simple a computation shows that

(n) (n-1)
@00 @) =17 e fo(n—m((zz)) ’

together (2.1.3) and (2.1.6), we get
zr (Z)H(r(z)) < —F

(2.1.6)

6zq' (z)
q(z)

Thus by applying Lemma 1.3.2, we obtain r(z) < q(z), and by using (2.1.4), we
have the required result, and q(z) is the best dominant of (2.1.3).

=2q'(2)0(q(2)).

. 1 .
Taking q(z) = ~ where —1<B<A<1 in the Theorem 2.1.1, we have the
1+Bz

next result.
Corollary 2.1.2: If f € T*(y) satisfies the subordination

z2f™(z) zf*D(z) - —6(A—B)z
TFanp) T FoD) A+ A0 LB

(2.1.7)

then

1
=D 1+4
[Zf ) z (z €U ,5 € C),

<
f("‘z)(z) 1+ Bz’

+AZ
TTBZ is the best dominant of (2.1.7).

and q(z) = -



For A =1and B = —1 in the above corollary, we obtain the following result.
Corollary 2.1.3: If f € T*(y) satisfies the subordination

zfMW(z) zf@D(z) —2z68
-1 ~ f-D(p) + Fn=2)(z) = (1—2z2) "’ (2.18)
then

1
< *
[f(n-2>(z) 1_Z,(zeU,86(C),

and q(z) = 111_5 is the best dominant of (2.1.8).

Theorem 2.1.4: Let the function g(z) be a convex univalent in U and g(0) =
0.If f € T*(y) satisfies the subordination

1 [Z fo (Z)] [Zf "V (2)

1
5 1 . 1
E f(n—l)(Z) f(n—z)(z) ] < z CI (Z) + g [Q(Z)]l 8 - ECI(Z); (219)

then

1
(n—-1) S5
[Zf (2) < q(2), (z eU ,5 € C),

foD(2)
and q(z) is the best dominant of (2.1.9).

Proof. If, we consider the function

D]

r(z) = [W] ,(z e U,s€C), (2.1.10)
then
, 1 zf(”_l)(z) S Zf(n)(z) zf("‘l)(z)
zr'(z) = El—f(”‘z) D [1 t D) T Feag (2.1.11)

1, : . .
1+6 _ Z . it can easily observed that 6(w") is analytic in

putting 8(w) = %w p

C, then, we have

0(r(2)) = 5 [r@1™*° —37(2), 0(a() =351a@]**° —3q(2). (21.12)



From (2.1.11) and (2.1.12), we have

, 1[z fP(2)|[2f ™V (2) 5
zr’(2) + 0(r(2)) = 5 [f("—l)(z)] [f("‘z)(z) ] ,

together (2.1.9) with (2.1.13), we get
zr'(z)+0(r(2)) <zq'(2) + H(q(z)).

So by Lemma 1.3.3, we obtain r(z) < q(z), and by using (2.1.10), we have the
required result.

(2.1.13)

Let us consider q(z) = ze*4? in Theorem 2.1.4, we get the following result.

Corollary 2.1.5: If f € T"(y) satisfies the subordination

1
Lzf®@| [ D@ 1. 2° sz 1Az
slFfe || feop | S\t stse ze*?, (2.1.14)
then

zf "V (2)
f®=2(2)
and q(z) = ze*4* is the best dominant of (2.1.14).

1
5
] < zeM? (z €U,d €C"),

Theorem 2.1.6: Let the function g(z) be a convex univalentin U, q’(z) # 0

and suppose that
zq"(z) 1 }
RI1+ — =¢>0.
{ q'(z) ¢
If f € T*(y) satisfies the subordination

Yij Zf(n—l)(z) % zf(”)(z) Zf(”‘l)(z) —B ,
5[f<n-2>(z)] [ﬂ“-l)(z)_ faagy | 5 1@ Fa(@) (2.1.15)

then

!Zf "D (2)

5
Wl <q(Z), (Z EU,8 E@*)

and q(z) is the best dominant of (2.1.15).



Proof. Let denotes

Zf(n—l) (Z) %

W (z e U, €eC), (2.1.16)

r(z) = [
then

Lzr'(z) = ﬂ[ zf"” 1)(2)] [1 + zfP @) _ Zf(n_l)(Z)].
F8 ) Vg

A simple computation, we get,

1
—p plf T V@DP[2f P (@) 2"V
BT = [f(" 5%) ] [f("‘”(Z) R0 117
From (2.1.16) and (2.1.18), we have
L)+ pr' () < Fal) + pad (),
Now, using Lemma 1.3.4, where 1 = —’8 y = f and from (2.1.16), we obtain

the required result .

AAz

Let us assume q(z) = e”“# in the Theorem 2.1.6, we have the following result.

Corollary 2.1.7: Let f € T (y) and suppose that R {1 + 1Az — %} >0.

If f satisfies the subordination

Bzt (”‘1)(Z)§ z2fW() z2f"V(@) 1\ a4z
3[f<n-2>(z)] [f("‘l)(Z)_ f@2 () ]<(Mz‘5)ﬁ” ' (2.1.18)
then

zf "V (2) g 24z .

[W < e, (z €U ,5 €C),

and q(z) = e*4? is the best dominant of (2.1.18).

Again by assume q(z) = where —1 <B <A <1inTheorem 2.1.6, we get

the next result.

1+B ’

Corollary 2.1.8: Let f € T*(y) and suppose that



{1—Bz 1 }>O
1+Bz § '

If f satisfies the subordination

(=D (NP5 [ 7 F (n-1) _ _
ﬂ[Zf 1(2)6[Zf (z)  zf (Z)]< p(1+Az) P(A-B)z (2119)

5[ D@ | [foD@ ~ 700@ |~ s+ | A+E

then

1
(n-1) S5

VA VA 1+ Az

S >] zeU,sec)

fn=2)(z) 1+ Bz’

1+Az . .
115, 8 the best dominant of (2.1.19).

and q(z) =

Theorem 2.1.9: Let 0 < § <1and 4,8 € C’, let q(2) be univalent in U and
q satisfy the following condition :

sn{1 + Z;’,"(S)} > max{o,sn (?)} (2.1.20)

If f € T*(y) satisfies the subordination

Zf(n—l)(Z) % yl Zf(n)(Z) Zf(”‘l)(z)
[f(H)(z) {E [_1_f("‘1)(2) ¥ f<n-2><z)]+ﬂ}<

pq(z) — 1zq'(z), (2.1.21)
then
( 1)( ) %

zf " (z

[ < *

!f(n‘z)(z)] q(z), (z € U,d €C),
and q(z) is the best dominant of (2.1.21).
Proof. We begin by setting

D

)=, |

(z € U,5 €C), (2.1.22)




then by a computation shows that

1 [Zf(n_l)(z)f[ A f(n) (Z) Zf(n—l) (Z)

7' =57 | |1 Fehe T 7o | (2.1.23)
by setting
O(w) = pw, p(w)=-1, weCcC, (2.1.24)

then 8 (w?) and ¢(w’) is analytic in C . Also if, we suppose
Q(z) = 2q'(2)$(q(2)) = —1zq'(2) , and
h(z) = 0(q(2)) + 2(2) = Bq(2) — 22q'(2) ,

from assumption (2.1.20), we yield that Q(z) is starlike function in U, and, we
get

z h'(Z)} { zq" (z) ,3}

R =R{il+ ———-=:>0, z€ U.
{ Q(z) q'(z) 4

A simple computation together with (2.1.23) and (2.1.24), we have,

S ODDP (2 2@ A @
f("‘z)(z) {E [_ _f(”_l)(z) + f(n—z)(z)]ﬂ},

therefore the subordination (2.1.21) becomes

zr'(2)$(r(2)) + 6(r(2)) < 24" (2)p(q(2)) + 6(q(2)).
By applying Lemma 1.3.5 and using (2.1.22), we obtain our result.

zr’(z)qb(r(z)) + B(r(z)) = [

11:;122 , where —1<B<A<1 and A =1 in Theorem

2.1.9, we obtain the following result.

Further taking q(z) =

Corollary 2.1.10: Let 0 < 6§ < 1, and R(B) > 0, with suppose that

{1—BZ

175, } > max{0, R (A)}.

If f € T*(y) satisfies the subordination



1
Zf(n—l)(z) 5 (1 zf(")(z) Zf("_l)(z)
[W {3 [_1_f<"-1><z) o) M }<

1+ Az (A—B)z
1+Bz (1+Bz)?’

(2.1.25)

then
(n—=1) 3
n— 5
lZf(n_z) (2) 1+Az’ (z€U,5 eC)
f (Z) 1+Bz
1+Az . .
and q(z) = 15, IS the best dominant of (2.1.25).



2.2 Some Properties of Differential Sandwich
Results of p-valent Functions Defined by

Liu-Srivastava Operator

Let 7€ (U) denote the class of functions analytic in the open unit disk U={z €
C:|z]| <1}.Fora€ C andne N ={1,23,..},let H[a,n]={f e HU):f(z) =
a+a,z"+ ayz™" + -,z € U}, with ; = H[1,1].

Let WX, be the subclass of H (U) consisting of functions of the form:

f(2) = 2P + z az%, (zeU,peN) , (2.2.1)
k=p+1
and WX =WZX, . For functions f(z) € WZ,, given by (2.2.1) and g(z) given by

g(z) =zP + z by z* , (z€eU,peN) , (2.2.2)
k=p+1
the Hadamard product (or convolution) of f and g is defined by

(0.0]

(9@ =2+ Y abzt=(g+NE) , e U,peN), (22.3)

k=p+1
Related results on subordination can be found in [28,29,32,51,55,58].

Alietal. [6], and Aoufetal [12], obtained sufficient conditions for certain
normalized analytic functions f to satisfy:

zf'(2)
f(2)

where g, and g, are given univalent functions in U with ¢,(0) = q,(0) = 1. So
newly , Shanmugam et al.[64,65] ,and Goyal et al. [28] obtained it called sand-
wich results for certain classes of analytic functions. Further superordination
results can be found in [1,2,6,7,12,13].

q1(z) < < qz(2), (2.2.4)



For a complex parameters a; where (i =1,.., g)and g, where (i=1,..., s)
such that (5, #0,-1,-2,..;i=1,2,.. ,s), the generalized hypergeometric

function jF (ay, ... ,aq; By, -, B, z) is given by, see [ 24,25]: as follows :

) (al)n (a )nzn
O DN 2 r

(g<s+1;9,s eNy= N U{0};z€U),

where (x),, is the Pochhammer symbol ( or shifted factorial ) defined in terms
of the Gamma function by

Fx+n) (1 ifn=0,x€C* =C\{0}
r(x) {x(x+1)...(x+n—1) ifneN,xeC.

Corresponding to a function £, (ay, ... ,aq; B,, ... , B; z) defined by

hp(al, s U B ,ﬂs;z) = zP gF(ocl, s Ugs P s B Z)

Liu-Srivastava [44] consider a linear operator

(X)n =

Hpos(ah, . ag; By, B z) : WE, — WX, defined by the following Hadamard
product (or convolution):

Hp,q,s(al' 'aq; ﬂli 'ﬁs;z)f(z) = ’hp(ab ;aq; ﬂl’ ;ﬂS;Z) * f(Z) (225)

This operator was encourage essentially by Dziok and Srivastava ([24,25] ; see
also [44]) . The theory of differential subordination in C is a generalization of
differential disparity in R, and this theory of differential subordination was ini-
tiated by the works of Miller and Mocanu [46] , many important works on diff-
erential subordination were great by Miller and Mocanu, and their monograph
[47] complied their huge efforts in introducing and developing the same.
Newly Miller and Mocanu in [48] investigated the dual problem of differential
superordination, while Bulboaca [20] investigates both subordination and
superordination.

For v > —p and function f € WX, in the form (2.2.1). The Ruscheweyh deriva-
tive of order (v + p — 1)th is denoted by DV*?~1 and consider as following:



See[26,63],

Zp(Zv—lf(Z))v+p—1 B 7P

DT (2) = (v+p-—1)! (1 - z)vtp *f(2).

In [32] define the linear operator F, , ; [a;, v] on WZ;, as follows:

Foqs [a1,v1f(2) = Hpgslai] = D"*P7f(2)

= zP + z Aoy p(ay) e(v+p —1,k)a,z",

k=p+1
where
P LS00 BN | A R )
T T@) T3 +k—p)
and

v+p—1+k—1>

ow+p-10= ( o

Then, we have
z(Ey g5 la, vIf(2)) = a4F, g5 (g + L,v]f(2) — (@ — DB, 45 [a1, V]f (2), (2.2.7)

that easily to verify it by applying (2.2.6), see [32].

(2.2.6)

Theorem 2.2.1: Let q(z) be a convex univalent in U with q(0) = 1,0 < 6 < 1.

S € C* and suppose that

zq" () , 1
R {1 + e } > max {0, R <6ﬂ)}' (2.2.8)
If f € WX, satisfies the subordination
Y;(2) < q(2) + 66zq' (2), (2.2.9)

where

F, o5 [an v]f (D)5
p.q p ] +

Yi(2) = (A=) [



r.9,S alr f(Z)] .9, 0(1 + 1 U]f( )
, 2.2.10
alﬂ[ pqs 0{1, ]f(Z) ( )
then
1
E , 5
[ p.4.5 [“Z1pv]f(Z)] <q(2), (2.2.11)
and q(z) is the best dominant of (2.2.9).
Proof. Define the analytic function
r(z) = [ P4 al’ (Z)] (2.2.12)

differentiating (2.2.12) logarithmically Wlth respect to z, we get

(Fp,q,s [y, v]f(z))l B
Foas L, vIf () T

zr'(z) 1
r(2) -5

and using the identity (2.2.7), we have

zr'(z) oy [Fp,q,s [a, + 1,v]f(2) _ 1]

r(@) 8| Fpgslanvlf(2)

Therefore

SIBZT' (Z)_alﬂ[pqs[ali ]f(Z)] [ pqs[afl'l'1 v]f(Z)—ll,

zP Fp,q,s [a1, ]f(Z)

hence the subordination (2.2.9) and from hypothesis, yield

r(z) +8pzr'(z) < q(2) + 649" (2).
By applying Lemma 1.3.4 for special case A =1, and y = §f, leads to (2.2.11)

consequently the proof of Theorem 2.2.1 is completed.

where —1 < B < A<1in the Theorem 2.2.1, the condition

Putting q(z) = 1+ B ,

(2.2.8) reduces to: (see[13,51]).



R {1 ; gi} > max{o; <5ﬂ>} z€U. (2.2.13)

It is easy to verify that the function ¢({) = , |¢] < |B]|,is convexin U , and

1+(
since ¢>(( ) = ¢ () for all || < |B] it follows that ¢ (V) is a convex domain sym-
metric with respect to the real axis , hence

'fiR(l_BZ)- eU}—l_lBI 2.2.14
m{ 1+Bz)° 1+ |B| (22.14)
Then, the inequality (2.2.13) is equivalent to
|B| — 1
91( ,B) |B| + 1’

hence, we have the following result.

Corollary 2.2.2: Let—1<B<A<1,and0< 6 <1, B€ C" with

fo-2 () <5

If f € WZ, and Y; (z) is given by (2.2.10), satisfies the subordination
1+A4z 6B(A—B)z

< 2.
Y1(2) 1+ Bz * (1+Bz)?2 "’ (22.15)
then
1
E, qs a1, vIf (2)|6 < 1+ Az
zP 1+ Bz
and q(z) = 1447 ;< the best dominant of (2.2.15).

1+Bz

For A =1and B = —1, the last corollary becomes.

Corollary 2.2.3: Let0 < § < 1,and g€ C* with R (%B) >0.If f eWZ,and

Y; (z) is given by (2.2.10), satisfies the subordination
Y, (2) < 1+z N 260z
1\ 1-z (A-2)%

(2.2.16)
then

)

1
E, g5 la,vif(2)]° < 1+2z
zb 11—z



and q(z) = % is the best dominant of (2.2.16).

Theorem 2.2.4: Let q(z) be univalent in U with ¢(0) =1 and q(z) # 0 for
allze U. Let §,yeC* and a,x,4 €C, with x+¢4 #0. Letf € WX, and
suppose that f and g satisfy the following condition:

(x + ) 27 P{xF, o5 [y + LIf(2) + yF, g5 [a, vIf(2)} #0, ze U, (22.17)
and

2q" () 2q'(2)

9%{1 YD e @ }> 0, z €U. (2.2.18)

If
v [ (Bas e +1 VIf ) +y7 (Fgs [ vIf ()
TS| xFpgslar + LUIf(2) + 9F, s [ay, VI (2) P
zq'(z)
<a+y ok (2.2.19)

then

[ + 4) 27 P{xF, .6 [ay + L]f (2) + 4B, g5 [a, vIFDI]° < q(2),
and q(z) is the best dominant of (2.2.19).

Proof. According to (2.2.17), we consider the analytic function

r(z) = [(x +y) 1z p{x vas T Lvlf(2) + yF, g6 [ al,v]f(z)}]%, (2.2.20)
with r(0) = 1.

By logarithmically differentiating of (2.2.20) yields

Zr (Z) 1 (qus [6(1 +1 U]f(Z)) + ’g)Z( r.q,S [alr ]f(Z)),

r@) 6| aBgslas + Lulf (D) + ghygs lanvlf(z) |’

let us consider the functions

o) =a,  d(w) = M%



then @ is analytic in C and ¢ (w?) # 0 is analytic in C".

If we suppose

2 (Z),z e U, and
q(z)

b = () + 20 = a+y L,

From the assumption (2.2.18), we see that Q(z) is starlike function in U, and
also have
14 (Z)} { 2q"(z) zq'(2) }
R =R{1+ — > 0, z € U.
{ Q(2) q'(z)  q(2)

Now, by Lemma 1.3.5, we derive the subordination (2.2.19) implies r(z) < q(z)
and the function q(z) is the best dominant of (2.2.19).

9(2) =2q'(2)¢(q(2)) =y

z € U.

Letting x =0, gy =a =1and q(2) = 11125 in the Theorem 2.2.4, it is easy to

view that the assumption (2.2.18) holds whenever —1 < B <A <1 which leads
to the following result.

Corollary 2.2.5: Let —-1<B<A<1,and §,y € C*. Let f € WX, and suppose
that z7PF, ;¢ [ay,v]f(2) #0, z € U.

If

v [2(Fras L vlf @) 4By

4 < S

1+5 Fp,q,s [al,v]f(Z) p 1+y(1+AZ)(1+BZ)’ (2221)
then
1 14+ Az
|27PE, ¢ [a1, vIf (2)]8 < T 5,

and q(z) = 44z is the best dominant of (2.2.21).

1+BZ

Takingx =0,p=y=a=1,a;= (i =12,..5),y =ib,6 =2 where a,b € C’

ab’” " b
and q(z) = (1—2)"2% in Theorem 2.2.4, then merge this together with
Lemma 1.3.6, we obtain the next result.

Corollary 2.2.6: Let a,b € C* suchthat |2ab+ 1| <1. Let f €e WX, and



suppose that z71f(z) # 0 forall z € U. If

14X [Zf'(z) _ 1] <1tz (2.2.22)
al f(2) 1—2z
then
[ f (@] < (1 - 2)72.
and q(z) = (1 — z)72%" is the best dominant of (2.2.22).
Againbysetting x =0,p=y=a=1a,=41=12,..5),y = — Ci:;m , where

a,b € C*,|m| < g = % and q(z) = (1 —z)~2% cosme™™ jn Theorem 2.2.4, we
obtain the next result, due to Aouf et al [13].

Corollary 2.2.7: Leta,b € C* and assume that
|2ab cosme™™ F 1| < 1
such that |m| < % .Let f e WZp,and z71f(z) # Oforall z € U.If

e™ [zf'(2) <1+Z
acosm| f(z) ] 1-2

(2.2.23)
then

[Z_lf(z)]b < (1—-z)% COSme‘im’

i

and q(z) = (1 — z)~2@bcosme™™ is the best dominant of (2.2.23).

Theorem 2.2.8: Let g(z) be univalent in U, with q(0) = 1,let §,y € C* and
a,x,4 € Csuchthat x + ¢ # 0. Let f € WX, and suppose that f and q satisfy
the next conditions:

(x+y) 27 P{xF, o5 [y + L]f(2) + yF, g5 a1, vIf(2)} £ 0, z€ U, (2.2.24)

and

R {1 + Z;,”((ZZ))} > max {O; —R (%)} (2.2.25)

If



SN

Y,(2) = [(x + )27 P{xF, 4 [y + 1,v]f(2) + 4F, g5 [y, vIf(2)}]° x

)

a+z Xz (qus[al'l'lv]f(z)) +/y’Z(pqs[a1 ]f(Z)),—p , (2_2_26)
prqs[al‘l'lv]f(Z)‘l"y' pqs[ 1,V ]f(Z)

and
Y,(2) < aq(2) +vzq'(2), (2.2.27)
then

[(x +’y‘) Z p{x D.q,S la; + 1,v]f(2) + ¢F D.q,5 1»v]f(z)}]g <q(z2),
and q(z) is the best dominant of (2.2.27)
Proof. We begin by define the function

r(2) =[G+ ) 2P xFy g Loy + LI (D) + 9Fy g lan VIF )P, (2.2.28)
from (2.2.24) the function r(z) is analytic in U, with r(0) = 1, and differentiat-

ing (2.2.28) logarithmically with respect to z , we have

37 (Fyqs [ + LU (D) +92 (Fys [0 v/ ()
xFy s 1 + 1, 01f(2) + 9Fy g5 a1, vIf (2) P

zr'(z) 1

r(z) 6

and hence

r(z)
)

zr'(z) =

37 (Fyqs [0 + LU (D) +92 (Fyqs [0 v/ ()
XFy 05 la; + LUIf(2) + 9Fy g5 a1, v1f (2) P

Setting
O(w)=aw , ¢(w)=vy, w€C. Then, we get

Q(2) = zq'(2)$(q(2)) = vzq'(2), z € U,
h(z) = 6(q(2)) + Q(2) = @ q(2) +y2q'(2), z€ U.



From the assumption (2.2.25), we see that Q(z) is starlike function in U, and

we also have
zh'(2)] _ ([« zq" (z)
WO fe 1 O

Now, application of Lemma 1.3.5 the proof of Theorem 2.2.8 is complete .

Lettingx =a=1,4 =0, q(2) = 11125 in Theorem 2.2.8, where —1<B<A<1

and according to (2.2.14) the condition (2.2.25) becomes

0 920{ <1—|B|
max{’ (7)}—1+|B|

we obtain the next result.

Corollary 2.2.9: Let —1<B<A<1,andlet §,y € C* such that

oG <
TV T 1B

Let f € WX, and suppose that zPF, , ¢ [a; + 1,v]f(2) # 0, z € U.
It

z (Fp,q,s [a; + 1,v] f(z))

Fp,q,s [al + 1r U]f(Z)
1+A4z y(A—B)z

|

[z‘pr,q,s [a; +1, v]f(z)] 1 +§ —p

2.2.2
1+Bz+(1+Bz)2' ( %)
then
1 1+ Az
[z‘pr,q,S [a; +1, v]f(z)]‘S < T 5z
1+AZ . :
and q(z) = A the best dominant of (2.2.29).
: _ 1+Z .
Taking x = y=p=1,4=0, a;=p(i=12,.., s) and q(2) =, in

Theorem 2.2.8, then, we get.



Corollary 2.2.10: Let f € WX, suchthat z71f(z) # 0 forall z € U, and let
SecC.If

[z‘lf(z)]% !a + %(zf’(z) — 1)] < ai tj + a EZZ)Z , (2.2.30)

f()

then
@I < 1

and

q(z) = ;_LZZ is the best dominant of (2.2.30).

Theorem 2.2.11: Let q(z) be a convex univalent function in U, with q(0) = 1,
let0 <6 <1, pe C*with R(P) > 0. Let f € WX, such that

Fp,q,s [“1f v]f(z)
A4

+0,z€eU,

and suppose that f satisfies the condition:

[Fp,q,s [azlz;v]f (Z)r € H[q(0),1] N Q.

If the function Y; (z) given by (2.2.10) is univalent in U and satisfies
q(2) + 629" (z) < Y1(2), (2.2.31)
then

1
Fp,q,s [alr v]f(z)]g
zP ’

q(z) < [

and q(z) is the best subordinant of (2.2.31).
Proof. We begin by setting

r(z) =

then r(z) is analytic function in U, with r(0) = 1.

!Fp,q,s [y, vIf (Z)F’Z cU (2.2.32)
7D

by differentiating (2.2.32) logarithmically with respect to z, we have



zr'(z) 1|2 (Fp,q,s [“1'U]f(2)),
7@ 8| Fogslanvlf(@)
A simple computation and using the identity (2.2.7), shows that
r(z) + 6pzr'(z) =

— p .

(1—-a1 B

IMA%ﬂﬂﬂ%+ By s o, VIF DT By s lar + 1,017 ()
zP alﬁ zP Fp,q,s [ali ’U]f(Z) ,

now by applying Lemma 1.3.7 ,we obtain the required result.

1+AZ
1+BZ

By taking q(z) = in Theorem 2.2.11, where —1 < B < A <1, we get the next

result.

Corollary 2.2.12: Let g(z) be a convexin U with q(0) =1,let 0<§ < 1,5€
C* with R(pB) > 0. If f € WX, such that

Fp,q,s [“1: U]f(Z)

zb
and suppose that f satisfies the condition

[Fp,q,s [ay, V]f(Z)r € ]
zD

#0,z€eU,

q(0),1]nQ.

If Y;(z) given by (2.2.10) is univalent in U and satisfies the superordination
1+Az+6ﬂ(A—B)z<Y() 2233
1+ Bz (1+Bz)? 2 (22.33)

then

1
1 + AZ < Fp’q’s [all v]f(z) g
1+ Bz zP ’

and q(z) = A2

+BZ

11 is the best subordinant of (2.2.33).

Theorem 2.2.13: Let q(2) be a convex univalent in U with q(0) = 1,1let 6,y €

aq'(z)

C*,and a,x,y4 € C suchthat x + ¢ # 0 and ER{ } > (. Let f € WX, and

f satisfies the following condition:



(x+y)1z- {x vas a1+ L,v]f(2) + ¢F qs[al,v]f(z)}io,zeU, (2.2.34)

and

(e + )7 2P (g [0 + LUIF() + 9y 0 las, vIF @ € H[q(0),1] 1 Q
If the function Y, (z) given by (2.2.26) is univalent in U, and
aq(z) +yzq'(z) < Y,(2), (2.2.35)
then

°>|>-‘

(Z)<[(x+’y‘) Z p{x D.q,S la; + 1,v]f(2) + ¢F D,q,S lay, v (Z)}]
and q(z) is the best subordinant of (2.2.35).

Proof. Consider the analytic function

r(z) = [(x + y) z {x 0.9,5 [a; + Lv]f(2) + ¢k 0.q,S ap”]f(z)}]gl (2.2.36)
with r(0) = 1.
By differentiating (2.2.36) logarithmically with respect to z, yields

- (Z) 1 l (Fp,q,s [, +1, v]f(z)) + /guZ( s LA ]f(Z)), B p‘

T'(Z) 5 pr,q,s [al + 1,U]f(Z) + y‘ ».q,S [alr ]f(Z)
then
, _ T(Z) xz (qus [“1 + 1 U]f(Z)) + /y’z( P.q,S [al' ]f(Z)),
G i S - P Wy o R P O R

Setting the function

Ow) =aw, ¢w) =y, weC,
then 6 and ¢ is analytic in C, with ¢(w?) = 0 forallw- € C.
Also, we have

Q(z) = zq'(2)$(q(2)) = yzq'(2) , is starlike univalent function in U, and



ER{M} — QR{M} > O,Z (= U’
¢(q(2)) v
by simple computation , shows that
Y,(z) = ar(z) + yzr'(z). (2.2.37)

From (2.2.35) and (2.2.37), with applying of Lemma 1.3.8, we have q(z) < r(2)
and using (2.2.36), we obtain the required result.

Combining results of differential subordinations and superordinations, to get
at the following sandwich results .

Theorem 2.2.14: Let g,(z) and g,(2) be a convex univalent functions in U,
with q;(0) = ¢,(0) =1,let0 <6 <1,pB€ C* with R(B) > 0. Let f € WX, such
that

Fp,q,s [alr U]f(Z) "
VAL

0

and suppose that f satisfies the condition:

1
By qs lay, vIf (2)]8
[”q g ] € #[q(0),11n Q.
If the function Y; (z) given by (2.2.10) is univalent in U and satisfies
q1(2) + 8Pzq1(2) < Y1(2) < q2(2) + 6Pq2(2), (2.2.38)
then
1
Eyqs lay, vIf (2)]°
0 (2) < [ e ] < 4:(2),

and q,, g, are respectively, the best subordinant and the best dominant of
(2.2.38).

Theorem 2.2.15: Let q,(z) and g,(z) be a convex univalent functions in U,
with ¢;(0) =q,(0) =1, let §,y€C* and a,x,4 € C suchthat x+y #0,

suppose g, satisfies R {%(Z)} > 0 and g, satisfies (2.2.25). Let f € WX, satisfy
the next conditons:

(x + y;)_lz‘p{pr,q’s [a; + 1,v]f(2) + ¢F, 45 [a4, v]f(z)} +0, z€eU,



and

[+ 4) 27 P{xE, g6 [a1 + L 0]f (2) + 4B, g s [y, vIf (2)}]° € H[q(0),1] N Q.
If the function Y, (z) given by equation (2.2.26) is univalent in U, and

aq,(z) +yzq1(2) < Y3(2) < aqy(2) +vzq,(2), (2.2.39)
then

q1(z) < [(x + ’y*)_lz_p{pr,q,s [a; + 1L, v]f(2) + Yy 4.5 [y, U]f(Z)}]S < q;(2),

and q,, g, are respectively, the best subordinant and the best dominant of
(2.2.39).



Chapter Three

On (Third and Fourth)-Order Differential\
Subordination and Superordination
Results for Multivalent and Meromorphic
Functions
\-

Introduction:

This chapter is completely devoted for the study of (Third and Fourth)-order
differential subordination and superordination results for multivalent and
meromorphic functions, having Taylor and Laurent series expansion containi-
ng positive and negative terms. Actually a differential subordination in the
complex plane is the generalization of a differential inequality on the real line.
The concept of differential subordination plays a very important role in functi-
ons of real variable. This concept also enables us to study the range of original
function. In the theory of complex-valued function, there are several different-
ial applications in which a characterization of a function is determined from a
differential condition. Miller and Mocanu [47] have contributed number of
papers on differential subordination. The study of differential subordination
stems out from text books by Duren [23], Goodman [27] and Pommerenke

[56].

This chapter is divided into three sections. The first section is concerned with
the third-order differential subordination results for meromorphic univalent
functions associated with linear operator, like, Let ¢ € ®,[Q, q]. If the functions
f € X and q € Q, satisfy the following conditions:

m(( (J"(C)> >0, L(n+1,0f(2)
q'($) q'($)

-_— )

and



{(]5(11(11, A)f(Z),Il(Tl + 1,A)f(z),11(n + Z,A)f(Z),Il(Tl + 3,/1)f(Z);Z):Z € U} - 'Q:
then
L(n,Df(z) <q(z), (z€eU).

The second section deals with the third-order differential superordination
results for p-valent meromorphic functions involving linear operator. We
derive some third-order differential superordination results for analytic functi-
ons in the punctured open unit disk of meromorphic p-valent functions by
using certain classes of admissible functions, like, let ¢ € ®,[Q, q]. If the
function f € X;,2P D}, f(2) € Q; and q € H; with q'(z) # 0 satisfy the following

condition:
zq" (Z))
R >0,
< q'(2)

B (27D f (2), 2P DI f(2), 2P DI f(2), 2P D3 (2);2),
is univalent in U, and

O c{¢(2PD},f(2) ,2PDi ' f(2) ,zPD]3?f(2) , 2P D} f (2); z): z € U},

zPDf(2)
q'(2)

1
m

and

then
q(z) <zPD},f(2), (z € U).

Section three discusses the fourth — order differential subordination and
superordination results for multivalent analytic functions. Here, we introduce
new concept that is fourth—order differential subordination and superordinat-
ion associated with differential linear operator I,,(n, 1) in open unit disk.



3.1 On Third-Order Differential Subordination
Results for Meromorphic Univalent

Function Associated with Linear Operator

Let 7€ (U) be the class of functions which are analytic in the open unit disk:
U={z:z€C :|z| <1}.
For neN={1,23,..},and a € C, let
Hlan]={f e HWU): f(z) =a+a,z"+ a,.,z"1+...},
with H, = [1,1].

Let 27 denote the class of functions of the form:

1 (00
f) =—+ ) azt, (3.11)
k=0
which are analytic and meromorphic univalent in the punctured unit disk:
Ur={zeC:0<|z| <1} =U\{0}.

We consider linear operator I;(n,4) on the class Xj of meromorphic functions
by the infinite series

1 o /k+1\"
zl(n,A)f(z)=E+Z(A_L1) az®,  @A>1), (3.1.2)
k=0

the operator I,,(n, 1) was studied on class of meromorphic multivalent function
by [10]. It is easily verified from (3.1.2) that

zZ[L(n, Df (2] = A= Dh(n+1,Df (2) = AL(n, Df (2). (3.1.3)

In recent years, several authors obtained many interesting results for the
theory of second—order differential subordination and superordination for
example [8,9,10,16,33,66], thus the aim of this section to investigate extension
to the third—order differential subordination.

The first authors investigated the third order, Ponnusamy [57] published in
1992. In 2011, Antonino and Miller [11] extended the theory of second—order



differential subordination in the open unit disk introduced by Miller and
Mocanu [47] to the third—order case. They determined properties of functions
p that satisfy the following third—order differential subordination:

W (2),zp'(2),z°p"(2),z3p" (2);2):z€ U} c Q. (3.1.4)

Recently, the only afew of authors discussed the third—order differential
subordination and superordination for analytic functions in U for example

[3,4,31,52,69].

We determine certain suitable classes of admissible functions and investigate
some third-order differential subordination properties of analytic function. We
first define the following class of admissisble functions, which are required in
proving the differential subordination theorem involving the operator I, (n, 1)
defined by (3.1.2).

Definition 3.1.1: Let Qbeasetin C,A € C\{1}, and let g € 9, N H;. The class
of admissible functions ®,[(), q] consists of those functions ¢: C* x U — C that
satisfy the following admissibility condition:

d(u,v,x,y;z) € Q,

whenever
! A
w=q(0), v= K{q (i):rl q(C),
(A - 1)% — 22u ¢q"(9)
m{ o —2/1}2 Km{q,@ +1},
and
A—=—D?[A—-1Dy—-3A+ Dx]+ (223 +31%)u )
ER{ G- Dv _iu + (32 +6/1+2)}

e (20" (D)
=K sn{ q'(0) }

where z € U,{ € dU\E(q) and k > 2.

Theorem 3.1.2: Let ¢ € ®,[Q,q]. If the functions f € X] and g € Q, satisfy
the following conditions:

m(( q"(()) 0, L(n+1,1D)f(2)

q'({)

(3.1.5)

—_ )

q' ()




and

{d)(ll(nt A)f(Z),Il(n + 11 A)f(Z),Il(n + Z,A)f(Z),Il(n + 3,A)f(Z);Z):Z € U} c -Q;
(3.1.6)

then
L, A)f(z) < q(2), (z€U).
Proof. Define the analytic function p(z) in U by
p(z) =1L,(n,)f(2). (3.1.7)
Then, differentiating (3.1.7) with respect to z and using (3.1.3), we have
zp'(z) + Ap(2)

Lin+1,0)f(2) = o1 (3.1.8)
Further computations show that
2p"(2) + 21+ 1)zp'(2) + A*
L+ 2,0)f(z) = z°p"(z) + ( )zp'(z) + 1*p(2) (3.1.9)

(A —1)2 '
and

11(n + 3,A)f(Z) _ Z3pII/(Z) + 3(). + 1)Zzp”(Z) + (3/12 + 31+ 1)Zp’(Z) + /13P(Z) |

(1-1)3
(3.1.10)
Define the transformation from C* to C by
S+ Ar t+ 21+ s + A%r
u(T',S,t,W) =T, v(rlsltlw) = 1—-1 ’ X(T,S,t,W) = ( (A_l))z ’
and

w+3A+ 1Dt + BA%2+31+1)s + A3r
(1-1)3 '

y(r,s, t,w) =

Let

Y(r, s, t,w;z) = dp(u,v,x,y;z)

B s+ Ar t+ 21+ 1)s + A*r W+3(/1+1)t+(3/12+3/1+1)s+/13r_
“P\"rmrT -z (A—1)3 )

(3.1.11)



The proof will make use of Theorem 1.3.10. Using equations (3.1.7) to (3.1.10),
and from (3.1.11), we obtain

Y(p(2),2p'(2),2°p" (2),2°p" (2); 2) =
U (n,AD)f(2), I(In+ LAD)f(2), L(n+2,)f(2), [(n+3,1)f(2);z). (3.1.12)
Hence (3.1.6) becomes
Y(p(2),2p'(2),2°p" (2),2°p" (2);2) € Q.
Note that

t (A—1)%x — 2%u
1=
S A—1Dv—Au

— 24,

and

— 1)2 —_ — 3 2
% _ A-1D=[@(1 1)3(/}L _33[:_1;:;] + (224° + 31°)u G +61+2)

Thus, the admissibility condition for ¢ € ®,[Q, g] in Definition 3.1.1 is equival-
ent to the admissibility condition for y € W, [, q] as given in Definition 1.1.27
with n = 2. Therefore, by using (3.1.5) and Theorem 1.3.10, we have

p(z) = L(n,A)f (2) < q(2).

The next result is an extension of Theorem 3.1.2 to the case where the behavior
of q(z) on AU is not known.

Corollary 3.1.3: Let Q c C and g be univalentin U with q(0) = 1. Let ¢ €
@[, q,] for some p € (0,1), where q,(2z) = q(pz). If the function f € ¥} and
q, satisfy the following conditions:

{40)
9%( 2 @) >0,

L(n+ 1,0)f(2)
q, (©)

<x, (z€U,¢€aV\E(gy)) (31.13)

and

¢(11(Tl, A)f(Z), Il(n + 1,/1)f(Z), Il(n + Z,A)f(Z), Il(n + 3,A)f(Z), Z) € 'Q‘ )
then

L(n,Df(z) <q(2), (z € ).
Proof. By using Theorem 3.1.2, yields



L(n Df(2) < q,(2), (z € U).
The result asserted by Corollary 3.1.3 is now deduced from the subordination
qp(2) < q(z) , (z € V).

If Q=+ C is asimply connected domain, then Q = h(U) for some conformal
mapping h(z) of U onto Q. Inthis case, the class ®;[h(U),q] is written as
®,[h,q]. The following two results are immediate consequence of Theorem
3.1.2 and Corollary 3.1.3.

Theorem 3.1.4: Let ¢ € ®,[h, q]. If the function f € X} and q € Q, satisfy the
condition (3.1.5) and

U (M Df(2), IIn+ 1L, D)f(2), L(n+2,1)f(2), L(n+3,1)f(2);2) < h(2),
(3.1.14)

then
Il(n,l)f(Z) < CI(Z) ) (Z € U)

Corollary 3.1.5: Let Q c C and g be univalentin U with q(0) = 1. Let¢ €
®,[h,q,] for some p € (0,1), where q,(z) = q(pz). If the function f € ] and

q, satisfy the condition (3.1.13), and

¢(11(n1 )l,)f(Z), Il(n + 1,/1)f(Z), Il(n + Z,A)f(Z), Il(n + B’A)f(z)lz) < h(Z),
(3.1.15)

then
L(n,Df(2) < q(z), (z € ).

The next theorem yields the best dominant of the differential subordination
(3.1.14).

Theorem 3.1.6: Let the function h be univalentin U, andlet¢ : C* x U — C
and ¥ be given by (3.1.11). Suppose that the differential equation

¥((2),2q'(2),2%q"(2),2°q" (2); 2) = h(2), (3.1.16)

has a solution q(z) with q(0) =1 and satisfies the condition (3.1.5). If the
function f € X7 satisfies condition (3.1.14) and

(]5(11(11, }l)f(Z), Il(n + 1) A)f(Z), Il(n + Z,A)f(Z), Il(n + 3,/1)f(Z);Z)

is analytic in U, then



L(n,D)f(2) < q(2),
and q(z) is the best dominant.

Proof. From Theorem 3.1.2, we deduce that q is a dominant of (3.1.14).
Since q satisfies (3.1.16), it is also a solution of (3.1.14) and therefore g will be
dominated by all dominants. Hence q is the best dominant.

In the special case q(z) = Mz, M > 0, and in view of Definition 3.1.1, the class
of admissible functions ®,[Q, q], denoted by ®,[Q, M] is expressed as follows.

Definition 3.1.7: Let Q beasetin C, 1 € C\{1} and M > 0. The class of
admissible functions @®,[Q, M] consists of those functions ¢ : C* x U — C such
that

Mol K+/1M o L+ 122+ Dic + 22]Me'®
(Mg Me™ A—1)2 '
N+3(A+ DL+ [(32% + 31+ D + 23] Me®?
FEENE iz e, (3.1.17)

whenever z € U, R(Le ) = (k — 1)xM, and R(Ne™*%) = 0forall 6 € Rand
K= 2.

Corollary 3.1.8: Let ¢ € ®,;[Q, M]. If the function f € X] satisfies
| L(n+ 1L, AD)f(2)| <xkM (k=2;M > 0),
and
d(LL(n, D)f(2), L(n+ L AD)f(z), [(n+2,1)f(2), [(n+3,1)f(2);z) € Q,
then
L, Df ()| <M.

In the special case Q =qU) ={w : |w| < M}, the class ®;[Q, M] is simply
denoted by ®;[M]. Corollary 3.1.8 can now be written in the following form:

Corollary 3.1.9: Let ¢ € ®,;[M]. If the function f € X] satisfies the following
condition:

| L(n+ 1L, ADf@)| <kM(x=2;M>0),

and
|¢)(11(Tl, A)f(Z), Il(n + 1,A)f(Z), Il(n + Z,A)f(Z), Il(n + 3,A)f(Z),Z)| < M)

then



|L(n, D) f (2)] <M.

By taking ¢ (u,v,x,y;z) =v = % Me® in Corollary 3.1.9, we obtain the next
result.

Example 3.1.10: Let R(1) > 1;—K, k=2 and M > 0. If the function f € X
satisfies

|L(n+ 1L, A)f(2)| < kM,
then
I, (n, Df(2)] < M.
Example 3.1.11: Let k > 2, 1€ C\{1} and M > 0. Ifthefunction f € X}

satisfies
|L(n+ 1L,A)f(2)| < kM,
and
K+1
I+ LA (2) = b Df D) < =g M,
then
1L, Df(2)| < M.
Proof. Let
o(u,v,x,y;z) =v—u, Q=h),
where
W) =<1y M >0
(Z) - |/1 _ 1| VA ) .

In order to use Corollary 3.1.8, we need to show that ¢ € ®,[Q, M], that is, the
admissibility condition (3.1.17) is satisfied. This follows easily, since

Mo K+/1M o L+ 122+ D+ 2*IMe®
e\ Me g Me™ (- 1)2 :

N+3A+ 1L+ [(32%2 +31+ 1)k + 13]|Me'? )
3 Z

(4-1)3




L +1
-1
kK +1 Iy
T

whenever z€ U, 6 € R and k = 2. The required result now follows from
Corollary 3.1.8.

i0

Me

Definition 3.1.12: Let Q beasetin C, 21 € C\{1}, andlet q € 9, N H;. The
class of admissible functions ®,,[€, q] consists of those functions ¢ : C* x U
— C that satisfy the following admissisbility condition:

d(u,v,x,y;,z) € Q

whenever

/ A+1
w=q(Q) v="1 (Z);Sf )9()

(A—1D%x— A+ D?u ¢q" ()
WEDE GO ) 0O )

and
% A-—13y—-0Br+6)[1—1)*x— 1A+ 1D?*u]— (1 +1)3u
{ A-Dv—-—>A+Du

+ (322 + 121

q' ()
where z € U, { € 0U\E(q) and k > 2.

+ 11)} > Kan{(Zq'"“)},

Theorem 3.1.13: Let ¢ € &;,[Q, q]. If the function f € £] and q € Q, satisfy
the following conditions:

{q"() L(n+1,2)f(2)
iR( e ) >0, e <k, (3.1.18)
and
Ln,Df(2) L(n+1,)f(2) [L(n+2,D)f(z) L(n+3,1)f(2)
{d)( 7 ’ 7 ’ Z ) 2 ,Z) VAL U}
cQ (3.1.19

then



hn Df ) ’l)f @) 0(2), (z€ ).

Proof. Define the analytic function p(z) in U by

I,(n, A
(o) - BOD@

By using (3.1.3) and (3.1.20), we get

Lin+1,10)f(z) zp' (2) + Ap(2)
A B A—-1 '

Further computations show that

L(n+2,M)f(z) z°p" (2) + QA+ 3)zp' (2) + (A + 1)*p(2)
z B (A—1)2 ’

and

Ln+3,1)f(2)
z

23p" (2) + BA+6)z%p" (2) + BA2+921+7zp' (2) + (A + 1)3p(2)

(1-1)3
Define the transformation from C* to C by
s+ A+ Dr
u(r,s,t,w) =r, v(rstw)= :
A—-1
(r st )_t+(2/1+3)s+(/1+1)2r
x\r,s,t,w) = (A—l)z )
and
W) W+ BA+6)t+ B +9IA+T)s+ (A + 1)r
Y(T;S; ,W - (/,1_1)3 .
Let

(3.1.20)

(3.1.21)

(3.1.22)

.(3.1.23)

stA+Dr t+2A+3)s+ A+ 1)%r

l/J(T', s, t,w; Z) = ¢(u' U,X,Y; Z) = d) (T;

A-1 7 (1-1)?

)



w+(BA+6)t+ (B2 +94+7)s+ (A +1)°r
(1—-1)3 '

z>. (3.1.24)

The proof will make use of Theorem 1.3.10.Using equations (3.1.20) to (3.1.23)
, and from (3.1.24), we obtain
Y(p(2),zp’ (2),2°p" (2),2°p" (2);2) =
s (Il(n, MNf(z) LIn+1,D)f(z) [(n+2,0)f(z) L(n+3,1)f(2) ; z).

) ) )

z z z z
Hence (3.1.19) becomes
Y(p(2),2p' (2),2°p" (2),2°p" (2);2) € Q.

Note that
£+1: (/1—1)2x—(1+1)2u_2(/1+1)
S A-Dv—-A+Du ’
and
w
? =

A=13y—-0BAr+6)[A1-—1)*x— A+ 1D?*u]l— (1 +1)3u

2
A—Dv—0+ Du + (322 + 121 + 11).

Thus, the admissibility condition for ¢ € ®;,[€Q,q] in Definition 3.1.12 is
equivalent to the admissibility condition for ¢ € W,[(, q] as given in Definition
1.1.27 with n = 2. Therefore, by using (3.1.18) and Theorem 1.3.10, we have

_ L@
N Z

p(2) q(2).

If Q=+ C isasimply connected domain, then Q = h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class ®;,[h(U),q] is written as
®, ;[h, q]. The next results is an immediate consequence of Theorem 3.1.13.

Theorem 3.1.14: Let ¢ € ®;,[h,q]. If the function f € 2] and q € Q, satisfy
the condition (3.1.18) and

9 (11 (n,Df(2) hin+1,1)f(2) L(n+2,)f(2) L(n+3,Df(2) .,

VA VA VA Z

) < h(2),

(3.1.25)



then

M< q(2), (z €U).

In the special case when q(z) = 1 + Mz, M > 0, and in view of Definition 3.1.12
, the class of admissible functions @;,[Q,q] is denoted by &;,[Q,M], is
described below.

Definition 3.1.15: Let Q beasetin C, A€ C\{1} and M > 0. The class of
admissible functions ®;[Q,M] consists of those functions ¢ : C*x U — C

such that

(k+A+DMe® + (1 +1)
i0
¢<1+Me ) -1 )

L+[(22+3)k+ (A1 + 1)?]Me®® + (A1 + 1)?

(1—1)2 '

N+ GBA+6)L+[(32+91+ Dk + (A+ 1)3Me? (1 + 1)3
1-1)3

;z> ¢ 0, (3.1.26)
whenever z € U, R(Le ) > (x — 1)kM, and R(Ne ) >0 forall & € R and
K= 2.

Corollary 3.1.16: Let ¢ € ®;,[h, M]. If the function f € X] satisfies
L(n+1,A)f(2)

<kM, (k=2;M>0),

z
and
Ln,D)f(2) [L(n+1,)f(z) L(n+2,D)f(z) L(n+3,1)f(2)
¢< z ’ z ’ z ’ VA ;Z> €8
then
L) 1‘ oy
z

In the special case, when Q = q(U) = {w : |w — 1| < M}, theclass &;,[Q, M]is
simply denoted by @, ,[M] and Corollary 3.1.16 has the following form:



Corollary 3.1.17: Let ¢ € ®;,[M]. If the function f € X] satisfies the next
condition:

Ln+1LAf(@)] _ kM, (k=2;M>0)

z
and
d(Mm?ﬂ@ﬁM+t@ﬂ@ﬁ@+?@ﬂ@ﬁM+?Mﬂ@ﬂ>—1<M
then

am?ﬂ@_4<M

Example 3.1.18: Let R(1) > _TK A€ C\{1} k =2 and M > 0. If the function
f € X satisfies

Ln+1,A)f(2) < KM,
A
and
L(n+1,2
1(n )f(2) 1l <M,
z
then
Li(n A
1@)ﬂ@_4<M
z
Proof. By taking
(k+ A+ 1DMe® + (1 +1)
o(w,v,x,y;z) =v—1= -1,

A—-1
in Corollary 3.1.17, the result is obtained.

Example 3.1.19: Letk > 2, 1 € C and M > 0. If the function f € X} satisfies

Lin+1,1)f(2)
z

< kM,




and

(1-1)3 —A=-D?*(1+1)

LL(n+3,1)f(z) L(n+2,A)f(z)
z z

<2(|22+ 5] + |2+ 2|H)M,
then

L A)f(2)

VA

1| <

Proof. By taking

¢, v,x,y;2z) =(A-1)°y - (A-1*@A+ D,
and Q = h(U), where h(z) = 2(|2A+ 5| + |1 + 2|*)Mz, M > 0.
Using Corollary 3.1.16, we need to show that ¢ € ®,,[Q, M].

Since
o (k+ A+ 1DMe? + (1 +1)
i6
‘d) <1 + Me"™, -1 ,
L+[(22+3)k+ (A1 + 1)?]Me’® + (1 + 1)?
(1—1)2 '
N+ @BA+6)L+[(32+91+ 7k + A+ 1)3Me® + (1 +1)3
A
1-1)3 '

= [N+ (22 +5)L + k(2 + 2)*Me'|

Ne @ + (21 +5)Le™® + k(1 + 2)°M
o—i6

v

R(Ne @) + |24 + 5|R(Le™) + k|2 + 2|*M
> |21+ 5|(k — 1D)kM + k|2 + 2|?°M = 2(|2A+ 5| + |A + 2|>)M,
whenever z € U, R(Le ™) > (x — 1)xM, and R(Ne ) >0 forall € R and

k = 2. The proof is complete.



3.2 On Third-Order Differential
Superordination Results for P-valent
Meromorphic Functions Involving Linear

Operator

Let X, denote the class of functions of the form :

flz)=z"P+ z a,z® , (peN={123,..]), (3.2.1)
k=0

which are analytic and p-valent in the punctured unit disk:
Ur={zeC:0<|z| <1} =U\{0}.
For functions f € X, we define the linear operator:
Dy, f(2):Z, — %, (A=0; peN; neNy,=NuU{0})by
Dypf (2) = f(2),
Dipf (2) = Dapf (2) = (L= Df(2) + 2277 (27 f (2))

7Py 2[1 Ak + p)lagz® ,(A=0; pEN),
k=0

(0]

D2, f(2) = Dy, (Dapf(2)) = 277 + Z [14+ Atk + p)|2apzt ,(1=0; p €N),

k=0

and ( in general)

Di,f(z) =27 + 2[1 + Ak +p)]"arz® ,(A=0; peN; neNy), (3.2.2)

where the operator D, (f * g)(z) was studied on class of meromorphic
p-valent function by [15]. From (3.2.2) it is easy to verify that



D3, f @] =2 D3 @~ (3+0) D@, (> 0) (3.23)
Let H'(U) be the class of functions which are analytic in the open unit disk

U={z:z€C:|z| <1}.
For ne N={1,2,3,..},and a € C, let
Hlan]={f € HWU): f(z) =a+ a,z"+ a,12"1+...},
with #, = [1,1].

In recently years, there are many researchers dealing with the second—order
subordination and superodination problems for analytic function for example
[8,9,10, 16, 33, 66], therefore in this section we investigate extend to the third-
order differential superordination. The first authors investigated the third
order, Ponnusamy [57] published in 1992. In 2014, [71] extended the theory of
second—order differential superordination in the open unit disk introduced by
Miller and Mocanu [48] to the third—order case.They determined properties of
functions p that satisfy the following third—order differential superordination:

Q< {Y(2),zp'(2),2p"(2),2°p" (2);2): z € U}.

Recently, the only a few authors are dealing with the third—order differential
subordination and superordination for analytic functions in U for example

[3, 4,11, 31, 70, 71].

By using the third—order differential superordination results by Tang et al [71]
, we define certain classes of admissisble functions and investigate some
superordination properties of meromorphic p-valent functions associated with
the operator D', defined by (3.2.2).

we consider the class of admissible functions is given in the next definition.

Definition 3.2.1: Let Q be asetin Cand g € H; with q' (z) # 0. The class of
admissible functions ®,[(, q] consists of those functions ¢ : C* x U — C that
satisfy the following admissibility condition:

¢(u,v,x,y;¢) €Q,

whenever

, m
zq (Z)+TCI(Z) x—2v+u zq"(z)

1
u=4q(), v= % ' SR{W}SEER{ q'(z) +1}’




and

y—u—3x—v)—3A(x—2v+u) 1 z%2q" ()
m{ 2w-u +2}Sm2m{ q'(2) }

where z € U, { € U, 1 € C\{0} and m > 2.

Theorem 3.2.2: Let ¢ € @,[Q, q]. If the function f € X, 2D}, f(z) € Q; and
q € H, with q'(z) # 0 satisfy the following condition:

zq"(z)
n(0) 20

B (2" D}, f (@), 27D f(2), 2P D f(2), 2P DY (2);2),
is univalent in U, and
Qc{d)(zpDﬁpf(z),zp sl f(2),2P Dy f(2) 2P D 7;3f(z);z):ze U}, (3.2.5)
then

zP Dy f (2)
q'(z)

1
_m

(3.2.4)

and

q(z) <zPD},f(2), (z € U).
Proof. Define the analytic function p(z) in U by
p(z) = zPD},f(2) . (3.2.6)

In view of the relation (3.2.3), and differentiating (3.2.6) with respect to z, we
have

1
AzpDn“f(z) = Ap(z) + zp'(2). (3.2.7)

Further computations show that
inDn+2f(Z) = ip(z) + (E + 1) Zp,(Z) + Z2 ”(Z) (3 2 8)
A2 212 1 2.
and
1 1 3 3 3
FE ZpD/{l;3f(Z) = FE p(Z) + (/13 + — 7 + 1) Zp'(z) + (I ) 2 II(Z) + Z3p"’(Z)

(3.2.9)



We now define the transformation from C* to C by

2

T+ o+ (G+1)s+t

u(r,s,t,w) =r, v(r,s, t,w) = T x(r,s, t,w) = T

2 2
(3.2.10)

and
A3+(/133+/31+1) (j+3)t+w

y(r,s, t,w) = T (3.2.11)

3
Let

Y(r, s, t,w;z) = dp(u,v,x,y; z)
r r 2 3 3 3
) T+ /1—2+(I+1)s+t /13+(/13+/1+1) (/1+3)t+w.
_qb T, 1 1 1 3 Z .
2 12 A3

(3.2.12)
The proof will make use of Theorem 1.3.11. Using equations (3.2.6) to (3.2.9),

we find from (3.2.12) that
Y(p(2), zp'(2), 2°p"(2), z°p"(2);2) =

¢(2PD},f (2),2PDy3" f(2) , 2P Dy 3*f (2) , 2P Dy f (2); 2). (3.2.13)
Since ¢ € ®;[Q, q], from (3.2.13) and (3.2.5) yield
Qc{Ylp(2),2p'(2),2°p"(2) ,2°p" (2); 2): z € U}
From (3.2.10) and (3.2.11), we have
t x—2v+u w_ y—u—3x-v)-3Ux—2v+u

s+1_ Av—w) = s A2(v—u)

Now, we see that the admissible condition for ¢ € ®,[Q, q] in Definition 3.2.1
is equivalent to the admissible condition for i as given in Definition 1.1.28
with n = 2. Hence ¢ € ¥;[Q, q], and by using (3.2.4) and Theorem 1.3.11, we
obtain



q(z) <p(2) = z°Dy,f(2),  (z€).

If O+ C is asimply connected domain, and Q = h(U) for some conformal
mapping h(z) of U onto Q, then the class ®,[h(U),q] is written simply as
®p[h,q]. With proceedings similar as in the previous section, the next result
is an immediate consequence of Theorem 3.2.2.

Theorem 3.2.3: Let ¢ € ®,[h, q] and the function h be analytic in U. If the
function f € X;,2zP D}, f(2) € Q; and q € Hywith q'(z) # 0 satisfy the condition
(3.2.4), and

¢(2PD},f(2) 2P DJ3 f(2) , 2P DI £ (2) , 2P DI (2) 5 2)
is univalent in U,
then
h(z) < ¢(zPD},f(2),2PD}3" f(2) , 2P Di2f(2) , 2P D33 f (2) ; ), (3.2.14)
implies that
q(z) <zPD},f(2), (z € V).

Theorem 3.2.2 and Theorem 3.2.3 can only be used to obtain subordinations of
the third—order differential superordination of the forms (3.2.5) or (3.2.14).
The following Theorem proves the existence of the best subordinant of (3.2.14)
for a suitable chosen.

Theorem 3.2.4: Let the function h be analyticin U, andlet ¢p : C* x U — C
and Y be given by (3.2.12). Suppose that the differential equation

¥(q(2),2q'(2) ,2%q"(2) ,2°q" (2);2) = h(2), (3.2.15)

has a solution q(z) € Q;. If the functions f € X, zPD;,f(2) € Q; and q € H;
with q'(z) # 0 satisfy the condition (3.2.4) and

¢(2° D3, f (2),2° D3y f(2) , 2P D3y 2 f (2) , 2P D3y ° f (2) 5 2),
is univalent in U, then
h(z) < ¢(2PDy,f(2) 2P Dy  f(2) , 2P Dy f(2) , 2P Dy f(2) 5 2),
implies that

q(z) <zPD},f(2), (z € U).



and q(z) is the best subordinant.

Proof. By applying Theorem 3.2.2, we deduce that g is a subordinant of (3.2.
14) Since g satisfies (3.2.15), it is also a solution of (3.2.14). and therefore, q
will be subordinanted by all subordinants. Hence q(z) is the best subordinant.

In view of Definition 3.2.1, in the special case when q(z) = Mz, M > 0, the class

®,[Q, q] of admissible functions, denoted simply by ®,[Q, M], is expressed as
follows.

Definition 3.2.5: Let Q beasetin C, 4 € C\{0}, and M > 0. The class of

admissible functions @,[Q, M] consists of those functions ¢ : C*x U — C
such that

Mei9%+% L+[(/21+1)1 ] e
" T Me” 1 '
,1 A2
1v+3(%+1)L+[(,fz;r,gﬁl)1 %Mle;z €Q, (3.2.16)
3

whenever z € U, R(Le ) = (—— 1)— and R(Ne~?) >0, forall 6 € R and
m = 2.

Corollary 3.2.6: Let ¢ € ®,[Q, M]. If the function f € X} satisfies

|22 DI (2)] < M (mz2 mM>0),
m
and
O c{¢(2PD},f(2) ,2PDi3 " f(2) , 2P D] 3?f(2) ,zPD}33f (2); z): z € U},
then
|zPD},f(D| <M, M>0.

In the special case when Q =qU) ={w : |w| < M}, the class ®,[Q, M] is
simply denoted by ®,[M].

Eaxmple 3.2.7: Let m>2, 1€ C\{0} and M > 0. If the function f € X}
satisfies



M
p n+1 .
|zP DA f(2)] < —,

and

1 2
| (n+3f(Z) n+2f(Z) S<|i_|_1 _

1|2+3| M
211 2’
then

|zPD},f(D| <M, M>0.

Proof. We define

1 1

o(u,v,x,y;z) = /1_3y —/1—3x

Using Corollary 3.2.6 with Q = h(U), where,
h@ = (v 1] —12+3)Y
@ = (|3 2[3+3])77

Now we show that ¢ € ®,[Q, M]. Since

1.1 2 0
¢ Meie’m;AMei9,L+[(/1+1)1 ]M l’
1 12
N+3(%+1)L+[(/1321+i+1) ]Mel"’Z
3

_ N+(2+3)L+(1+1)2Me”
N A A m

. 2 . 1 *M
—if - —-if _ —
> R(Ne )+‘A+3|§R(Le )+|/1+1

> (o] - 2f2+5)) 2

—\1 217 2

whenever z € U, R(Le ) > (—— 1)— and R(Ne~ ) >0, forall 6 € R and
m = 2.




Definition 3.2.8: Let Q beasetin Cand q € #; with g'(z) # 0. The class of
admissible functions @, ;[(, q] consists of those functions ¢ : C* x U — C that
satisfy the following admissibility condition:

qb(u,v,x,y; () € -Q:

whenever

) (=30t 1 pee
ma ()] v—u “m e@

u=q(z),v=41 [ q(z) +

and

% (xv? — xuv — 3uv? + 5u’v — 2ud) + % (xuv + 2uv? — 4u?v + 2uv — v?

Buv—u)® (w—u)
A3 u

—u +u3)+3 (xuv—xv —xv — 2u? + ud + uv? — 2u? v+3uv)+ (v u)?

Buv—u)® (Ww-u)

A3 u
2
+i—;‘(v—3uv—u+u2 + 3v?) —33;—;7+7(u—v)
Buv—w)?  (w—uw) X [z(v—u)]
A3 u
1 2 n
< Lag () ’
m? q (Z)
where z € U,{ € 0U, A € C\{0} and m > 2.
Theorem 3.2.9: Let ¢ € ®p,[Q, q]. If the function f € £}, l;’l,'lp ;((Z)) € Q, and
Apl 2
q € H, with q'(z) # 0 satisfy the following conditions:
" n+2 7 1
iR(Zq, (Z)> >0, n+1 p /(2) <—, (3.2.17)
4 @) e @]~ m

and

¢< e 1 (2) Dip*f(2) Di°f(2) Diy*f(2) )
Dinf(2) "D}y f(2) Dy f (2) D"”f(Z)



is univalent in U, and

DI (2) Diy*f(2) Disif(2) Di*f(@) \
e {d) < Dapf(Z) D}f“f(z) Dn+2f(z) D}f;%f(z) > zZE€ U} ) (3.2.18)
then
n+1
q(z) < D,1 ]{(( )) (z € U).
P
Proof. Define the analytic function p(z) in U by
DI f(2)
p(z) = DI f(z) (3.2.19)

Using equation (3.2.3) and differentiating (3.2.19) with respect to z, we have

D/{f;zf(z) . 1 Zp’ (Z)
Df(z) [_p(z) T ] (3.2.20)
Further computations show that
1 Zp’ (Z) Zp’ (Z) 2 2 " (Z)
D/{f,';3]‘(z)_/1 zp' (z)+ 72p" (2) + p(2) _( p(2) ) 4 2P 2 p() o
D,{fng(z) - p(2) 1p(z) 4 zp’(()z) p(z),
p(z
(3.2.21)
and
Dy f(2)
DR f(2)

6(zp'(2))? + 3zp'(2)p(2) + 3z%p" (2) + SZPI(ZA)pz(Z) + 1 [3(Zgé§§))2 +

e T B




3¢zp'(@)® | 32°%p'(@p" @) , ; zp' (@)’
2(2) + 2 (2) +2zp'(2) + 32%p"(2) + z3p (z)] + 12 [(m) +

! ! ! 2 ! 4
2zp (j)p(Z) +2p'(2) + 229" (2) +2(25(S))2 N A(Zg(g)) L2 p(zz()f) (2)

32°p'(2)p" (2) | Z4p’(2)p”’(2)]

p*(z) p*(z)
229" (D) | iy 4 gy + 2P D) (@Y 23p' (2)p" (2)
7 P P p(@) p(2) p%(2)
(3.2.22)
We define the transformation from C* to C by
u(r,s, t,w) =r v(rstw)=r+l(£)
) ) ) ) ) ) ) T‘ )
S S (S\* t
X s tw) =1+ A ;M r_ (rS) rl (3.2.23)
—_ + —_
AT

and
y(r,s, t,w)
2 2 3
652 +3sr+3t+ o5 4235 435 43t Lo L g wl|+
A T 12 T
N 2sr 252 s\2 st
T+S+t+7+ﬂ(;) +T_2
2[(S)* 4 35t | sw
A [(r) + r?2 +r2]
28T 252 s\2 st
T+S+t+7+ﬂ(;) +T_2
(3.2.24)

Let

Y(r, s, t,w;z) = p(u,v,x,y; 2)



2 2

2+2-(3) +5 652+35r+3t+35/{ +

=¢ r,r+/1()r+/1 -+ 3 5 5
: TS | Y E
1+7 sttt +5

A[Sr +3;52 +3 +S+3t+W]+/12[ ) +3T52t+r2
— o — 1z |.(3.2.25)
S+ +t+—+/1() + >

The proof will make use of Theorem 1.3.11.Using equaitions (3.2.19) to (3.2.22)
, and from (3.2.25), we have

Y((2),2p" (2),2%p" (2),2°p" (2);2) =
¢< B () DRRRf(2) Dyif(2) Disif(2) )
Diof(2) "Diytf(2) DYy f(2) Dip°f(2)
Since ¢ € @ 4[Q, q], it follows from (3.2.26) and (3.2.18) yield
Q< {Yp(2),2p'(2),2°p"(2) ,2°p" (2);2):z € U}

From (3.2.23) and (3.2.24), we see that the admissible condition for
¢ € p,[Q,q] in Definition 3.2.8 is equivalent to the admissible condition for
Y as given in Definintion 1.1.28 with n = 2. Hence ¢ € ¥;[, q], and by using
(3.2.17) and Theorem 1.3.11, we get

(3.2.26)

Dy f(2)
Dp,f(@)

If O+ C isa simply connected domain, and Q = h(U) for some conformal
mapping h(z) of U onto Q, then the class ®j4[h(U),q] is written simply as
®p4[h,q]. With proceedings similar as in the previous section, the following
result is an immediate consequence of Theorem 3.2.9.

q(z) <p(z) = (z € V).

Theorem 3.2.10: Let ¢ € @, [h, q] and the function h be analytic in U. If the

n+1

function f € X}, ?,’lp ;((ZZ)) € 9, and g € H; with q'(z) # 0 satisfy the condition
Ap

(3.2.17),

and

] ( i) Disf(2) DiPf@) Distf(D) )
D}, f @ 'Di'f(2) Dy @) Dinf ()



is univalent in U,

then
o< (3 7 s O o) 02
implies that
q(z) < D;:]{(( )) (z € U).

In the particular case q(z) =1+ Mz, M > 0, the class ®,,[(, q] of admissible
functions in Definition 3.2.8 is simply denoted by &, ,[Q, M], is expressed as
follows.

Definition 3.2.11: Let Q beasetin C, 2 € C\{0}, and M > 0. The class of
admissible functions @, ,[Q, M] consists of those functions ¢ : C*x U — C
such that

AMe'?
m(1 + Mei®)

¢(1+ Me®, 1+ Me' +

i0 _
/ 1 1+ Me'"" + 21 (1+Melg)\ o,

1+ Me® + 2 — |
\m(l + Meif) m(1 + Mei®)Z + \Mei®

6Me'® 3(1 + Me'6)’ s

A

2(1+ Me'?) 2Met®
[1+ A +m(1+Mei9)

A>Me'? 3Me'? Me'® “\ mei®
m(1+Mei9)2+A(1+m(1+Mei9)+3(m(1+Mei9)) m

i0 i i0
AMe . ]Me [1+ Me , ]L

m(1+ Met?)2[ m m(1 + Me't)?2

+3(1+ Me') +

AmlL ]
m(1+ Mei?)2 + AMei® |’

_|_




AMe'® A*Me'? AMe™®
[1 A+ m(1 + Me'?) T m(1 + Meie)z] 3L+ 4 [1 + m(1 + Mew)z] N
[1+2(1+Mei9) 2Met? 4 AMei® ] e“9 [1+ Met? ]
A m(1+ Me®)  m(1+ Me®)2] m m(1 + Me'?)?
,Z) EQ,

whenever z € U, R(Le ) > (— — 1)— and R(Ne ) >0, forall € R and
m = 2.

Corollary 3.2.12: Let ¢ € @ ,[Q, M]. If the function f € X, satisfies

n+2f(Z) M
D}:;lf(z) <E, (mZZ, M>0),
and
o2 @) DG Dif@) DG ered]
D}pf(2) "D f(2) D2 f(2)’ D}ﬁf(z) '
then
n+1f(Z)
o) 1< m.

In the special case QO = q(U) = {w : |w — 1| < M}, the class & ;[Q, M]is simply
denoted by & ,[M].

Example 3.2.13: Let m>2, 1€ C\{0}, and M > 0. If the function f € X,
satisfies the following conditions:

Dip S| _M
DI @) =
and
Di2f(z) D3'f(2) |AIM
D}f@  Df() | T 20+ My

then



DIf@)
Dy f(@)

Proof. By taking ¢(u,v,x,y;z) =v—u,and Q = h(U),

< M.

where

h(z) = 1A|Mz M>0
2 =00+ Mz’ '

Using Corollary 3.2.12, we need to show that ¢ € ®,,[Q, M].

Since
) , AMet® .
14+ Me® 1+ Me® + — 1+ Me'? +
‘(P( m(1+ Me'?)
; AMe'®
/ 1+ Me® + 21— :
1 0 )
1 m(1 + Me'?) Mei® +

— + - -
\m(1+Me‘9) m(1+ Mei®)2 + AMei®

, 0N\ 2
6Me'® oy 3(1+ Me'?)
+3(1+ Me') +
AmL ] [ m ( ) A
m(1+ Me®)2 + A\Me'®]’ [ 2(1 + Mei?) 2Mei®
1+ 7
A m(1+ Me?)

m(1 + Me'?)?2 m(1+ Me'?) m(1+ Me'?) m
AMet® ]Meie Me'® ]
m(1+ Mei?)2[ m m(1 + Mei?)?2

207,160 i0 i0 2 i0
L AMe +A<1+ 3Me +3( Me ))]Me N

+ +[1+

AMe® A*Met®

[1+A+m(1+Mei9) m(1+Mei9)2]3L+/1[1+

2(1 + Mei?) 4 2Mei® 4 AMei® ]Meie
A m(1+ Me®)  m(1+ Me®)z2[f m

AMet® ]
m(1 + Me'?9)2

Me® !
m(1 + Me“g)z]

,Z)

[1+ +[1+



AMe'®
m(1 + Me?)

|A|M
= 2(1+ M)

Whenever z € U, § € R and m = 2. The proof is complete.



3.3 On Fourth-Order Differential
Subordination and Superordination

Results for Multivalent Analytic Functions

Let 7 (U) be the class of functions which are analytic in the open unit disk
U={z:z€C:|z| <1}.

ForneN={1,23,..},anda € C,let H[a,n]={f e HWU): f(z) =a+ a,z" +
a,+12"1+...}, and also let 7, = [0,1].

Let X, denote the class of all analytic functions of the form:

f(z) =2zP + Z a,z®, pEN={123,..}. (3.3.1)

k=p+1

We consider a linear operator I,(n, 1) on the class X, of multivalent functions
by the infinite series

L(n,D)f(z) = zP + z (k il A) a,z", 1> —p). (3.3.2)

k=p+1
The operator I,,(n, 1) was studied by [9]. It is easily verified from (1.2) that
2L, DF@)] = (0 + DL+ 1L,AD)f(2) — AL,(n, D)f(2). (3.3.3)

For several past years, there are many authors introduce and dealing with the
theory of second—order differential subordination and superordination for
example [8,9,10,16,33,66] recently years, the many authors discussed the
theory of third—order differential subordination and superordination for
example [11, 3,4,31,69,70,71]. Inthe present section, we investigate extend to
the fourth—order. In 2011, Antonino and Miller [11] extended the theory of
second—order differential subordination in the open unit disk introduced by
Miller and Mocanu [47] to the third—order case, now, we extend this to
fourth—order differential subordination. They determined properties of
functions p that satisfy following the fourth—order differential subordination:

{W((2),zp'(2),2°p"(2), z°p" (2), z"p" (2); 2): z € U} € Q.



In 2014, Tangetal [71] extended the theory of second—order differential
superordination in the open unit disk introduced by Miller and Mocanu [48] to
third—order case, now, we extend this to fourth—order differential superordin-
ation. They determined properties of functions p that satisfy the following
fourth—order differential superordination:

Q< {Yp(2),2p'(2),2p" (2),2°p" (2),2*p" (2); 2): 2 € U}.

To prove our main results, we need the basis concepts in theory of the fourth—
order.

Definition 3.3.1: Let 1 : C° x U — C and the function h(z) be univalent in
U.If the function p(z) is analytic in U and satisfies the following fourth—order
differential subordination:

Y(p(2),zp'(2),2°p"(2), 2°p" (2), 2*p" (2);2) < h(2),  (3.3.4)

then p(z) is called a solution of the differential subordination. A univalent fun-
ction q(z) is called a dominant of the solutions of the differential subordinat-
ion or more simply a dominant if p(z) < q(z) forall p(z) satisfying (3.3.4).
A dominant G(z) that satisfies §(z) < q(z) for all dominants q(z) of (3.3.4) is
said to be the best dominant.

Definition 3.3.2: Let Q beasetin C, g € Q@ and n € N\{2}. The class of
admissible functions A,,[(, q] consists of those functions 1 : C° x U — C that
satisfy the following admissibility condition:

Y(r,s, t,w,b;z) & Q,

whenever

r=q@ . s=aq@ . R(c+1)2 x%(if,(g)ﬂ),

W (P40 b 4" Q)
n(@)=en(Ga) w6)= e (Ter),

where z € U,{ € 0U\E(q), and k = n.

and

Definition 3.3.3: Let p € H[a,n] with n € N\{2}. Also, let q € 9(a) and
satisfy the following conditions:

¢? q”’(()) z°p"(2)
”( 7@ )=" [0
wherez € U,{ € 0U\E(qg) and k > n.If Qasetin C,y € A,,[Q, q] and

2.1
2

—_ )




Y(©(2),2p'(2),2°p" (2),2°p" (2),z*p" (2); 2) € Q,
then

r(z) <q(2), (zel).

Definition 3.3.4: Let ¢ : C° x U — C and the function h(z) be analytic in U.
If the functions p(z) and

Y(p(2),2p'(2),2°p" (2), 2°p" (2), 2*p"" (2); 2),

are univalent in U and if p(z) satisfy the following fourth—order differential
superordination:

h(z) < Y(p(2),2p'(2),2°p" (2),2°p" (2),2*p" (2); 2), (3.3.5)

then p(z) is called a solution of the differential superordination. An analytic
function g(z) is called a subordinant of the solutions of the differential super-
ordination or more simply a subordinant if q(z) < p(z) for all p(z) satisfying
(3.3.5). Aunivalent subordinant G(z) that satisfies the condition q(z) < G(2)
for all subordinants g(z) of (3.3.5) is said to be the best subordinant. We note
that the best subordinat is unique up to a rolation of U.

Definition 3.3.5: Let QbeasetinC, q(z) € H[a,n] and q'(z) # 0. The class
of admissible functions A’,[Q, q] consists of those functions ¢ : C°>°x U — C
that satisfy the following admissibility condition:

Y(r,s, t,w,b;{) €Q,

whenever

r=q(z) , s=Zq,(Z) ) %(£+1)§lﬂi<zq”(z)+1>,

m

and

w 1 z%q" (2) b 1 z3q" (2)
—\)< —<
%(3) < m2m< 7' @) ) g‘R<s>— o\ " )
where z€ U, € 0U,and m >n > 3.

Definitions 3.3.6: Letq € H[a,n] and ¢ € A},[Q, q]. If
Y(p(2),zp' (2),2%p" (2),z3p" (2), z*p" (2); z) is univalent in U, and
p € Q(a) satisfy the following condltlons



z°p" (2) <
q (Z)

2 III(Z)
PR

where z€ U, € 0U and m > n > 3,

mz'

then

Qc{Y@(2),2p'(2),2°p"(2) ,2°p" (2),2*p" (2); 2): z € U},
implies that

q(z) <p(2), (z€U).

We first define the following class of admissible functions, which are required
in proving the differential subordination theorem involving the operator
I,(n, 1) defined by (3.3.2).

Definition 3.3.7: Let Q be aset in C, and let g € 9, N H,. The class of
admissible functions B, [Q, q] consists of those functions ¢ : C°> x U — C that
satisfy the following admissibility condition:

d(u,v,x,v,9;2) ¢ Q,

whenever

_x¢q'(9) +2q(9) (p + 1)%x — 2%u {q" ()
© v SEOHO ), (D)

{(p + )2[(p+ D)y — BA+3)x] + (223 + 31%)u

2
CEITE + (322 + 61 + 2)}

e (24" (D)
=K 9%{ q'(0) }

and

+D[p+21)3g—(pP+12@2+6)y+ (p+1)(82A%2+ 181+ 11)x —
{ (p+ v —Au

(843 + 1842 + 224+ 6)v] + (BA* + 643 + 1142 + 6/1)u} 5 {{3q”"(()}
> KR -
(p+Dv—Au q' ()
where z € U,1 > —p,{ € 0U\E(q) and x > 3.



Theorem 3.3.8: Let ¢ € B,[(Q, q]. If the functions f € X, and q € Q, satisfy
the following conditons:

¢ q" ()
n(S 02 =0.

L(n+2,2)f(2)
q' ()

< K?, (3.3.6)
and
{p(L, (M, Df (2), I,(n+ L,D)f(2), L(n+2,1)f (2),

L(n+3,0f(2),l,(n+40)f(2);z):zeU}cQ, (33.7)
then

L(n,)f(2) < q(z), (z € V).
Proof. Define the analytic function p(z) in U by
p(z) = I,(n, )f (2). (3.3.8)
Then, differentiating (3.3.6) with respect to z and using (3.3.3), we have
zp'(2) + Ap(2)

Lin+1,1)f(2) = m—) (3.3.9)
Further computations show that
z?2p"(z) + A+ 1)zp'(2) + 1*p(2)
L(n+2,1)f(2) = T 1) ) (3.3.10)
z3p"(z) + BA+3)z%p"(2) + BA2 + 31+ 1)zp'(2) + /'13p(z)
L,(n+3,)f(2) = TER)E
(3.3.11)

and

Z4p""(Z) + (4/1 + 6)Z3p’"(Z) + (4)'2 + 121 + 7)22 "(Z) +

L(n+4,1)f(z) =

(» + )*
A3 + 422 + 41 + Dzp' (2) + M*p(z
( )zp'(2) p( )_ (33.12)
(p + D)*
Define the transformation from C> to C by
s+ Ar t+ QA+ 1)s + A%r
u(r,s, t,w,b) =r, v(r,s,t,w,b) = , x(r,s,t,w,b) = ( )

+2 R



w+ BA+3)t+(BA%2+31+1)s+ A3r

y(r,s,t,w,b) = CER)E ,
and
g(r,s, t,w,b)
b+ (42 +6)w + (422 + 121+ Dt + (423 + 422 + 41 + 1)s + A*r
= . (3.3.13)
(p+)*
Let
Y(r,s, t,w,b;z) =dp(u,v,x,5,9;2)
B S+HAr t+QRA+1Ds+22r w+ BA+3)t+ BA2+31+1)s+ 3r
AT (p + 1)? ’ (p+2)3 ’
b+ (42 +6)w + (422 + 121+ Dt + (423 + 422 + 41 + 1)s + A*r
L iz ). (3.3.14)

The proof will make use of Definition 3.3.3. Using equations (3.3.8) to (3.3.12),
we have from (3.3.14) that

Y(p(2),2p' (2),2%p" (2),2°p" (2), z*p" (2); 2) = $p(I,(n, Df (2), L,(n + 1, ) f (2),
L(n+2,0f(2),,(n+3,Df(2),,(n+4,1)f(2);z). (3.3.15)
Hence (3.3.7) becomes

Y(p(2),zp'(2), z°p"(2),2°p" (2), z*p" (2) ; z) € Q.
We note that

t (0 +)°x — 2u
_+1= _ZA;
S (p+A)v—Au
+D)%[(p + Dy — BA+ 3)x] + 223 +31%)u
w_ 0+ D[+ Dy = (32 +3)x] + ( | @it 61+2),
S (p+Av—Au

and

b (p+D+1)°g—@+D?°@1+6)y+(+ (B +181+ 11)x -
s (p+A)v—Au




(843 + 1812 + 2221+ 6)v] + (BA* + 643 + 1112 + 6)u
(p+D)v—Au '

Therefore, the admissibility condition for ¢ € B;[Q, q] in Definition 3.3.7 is
equivalent to the admissibility condition for y € A;[£, q] as given in Definition
3.3.2 with n = 3. Therefore, by using (3.3.6) and Definition 3.3.3, we obtain

p(z) = I,(n,)f (2) < q(2).

The next Corollary is an extension of Theorem 3.3.8 to the case where the
behavior of q(z) on dU is not known.

Corollary 3.3.9: Let Q c C, and let the function ¢(z) be univalent in U with
q(0) = 0. Let ¢ € B;[Q,q,] for some p € (0,1), where q,(z) = q(pz). If the
function f(z) € Z, and q,(2) satisfy the following conditions:

m(?ﬂlﬁ’(()) >0 L(n+2,2)f(2)
qp (9) qp ()

and
(L, (0, Df (), I,(n + 1L, Df (2),I,(n + 2,)f (2),
L,(n+3,0)f(2),L,(n+4,0f(2);z) € Q,

<x?, (z€U,{€dU\E(q,)) (33.16)

then
L,(n,)f(z) < q(z2), (z € U).

Proof. By using Theorem 3.3.8, yields I,(n,1)f(z) < q,(z). Then we obtain
the result from q,(z) < q(2) , (z € U).

If O # C isasimply connected domain, then Q = h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class B;[h(U),q] is written as
B;[h,q]. The following two results are immediate consequence of Theorem
3.3.8 and Corollary 3.3.9.

Theorem 3.3.10: Let ¢ € B;[h,q]. If the function f € £, and q € Q, satisfy
the condition (3.3.6) and

¢(L, (1, )f (2), L,(n + 1, Df (2), I, (n + 2, 1) f (2),
L(n+3,0f(2),,(n+40f(2);z) <h(z), (33.17)



then
L,(n,D)f(z) < q(2), (z € U).

Corollary 3.3.11: Let Q c C and g be univalent in U with q(0) = 0. Let ¢ €
B;[h,q, ] for some p € (0,1), where q,(z) = q(pz). If the function f € X, and
q, satisfy the condition (3.3.16), and

d(L,(, Df (@), L,(n + 1, Df (2),I,(n + 2, ) f (2),
L(n+3,Df(2),I,(n+4,1f(2);z) <h(z), (3.3.18)
then
I,(n,)f(z) < q(z), (z€ ).

Our next theorem yields the best dominant of the differential subordination
(3.3.17).

Theorem 3.3.12: Let the function h be univalentin U. Alsolet ¢ : C° X U —
C and suppose that the differential equation

zq'(z) + Aq(2) z°q"(2) + 21+ 1)zq'(2) + 1*q(2)
p+A ’ (p + 1)? ’

¢ <q(Z),

z3q"(2) + BA+3)z%q¢"(z) + BA2 + 31+ 1)zq'(2) + 13q(2)
(p+2)?° '
z*q" (z) + (41 +6)z3q" (2) + (422 + 122+ 7)z%q" (2) +
(p +D*
(42° + 422 + 40+ 1)zq'(2) + 2*q(2) \
o T ) .,Z) = h(z), (3.3.19)

has a solution q(z) with q(0) = 0 and satisfies the condition (3.3.6). If the
function f € X, satisfies condition (3.3.17) and

¢ (I, (0, ) f (2), L,(n + 1, Df (2), I, (n + 2, ) f (2),
L,(n+3,)f(2),L,(n+ 4,0)f (2); z),

is analytic in U, then



I,(n,Df (z) < q(2),
and q(z) is the best dominant.

Proof. By using Theorem 3.3.8, that q(z) is a dominant of (3.3.17). Since q(z)
satisfies (3.3.19), it is also a solution of (3.3.17) and therefore q(z) will be
dominated by all dominants. Hence q(z) is the best dominant.

In the special case q(z) = Mz, M > 0, and in view of Definition 3.3.7, the class
of admissible functions B;[(), q], denoted by B,;[Q, M] is defined below.

Definition 3.3.13: Let Q be asetin C, and M > 0. the class of admissible
functions B,;[Q, M] consists of those functions ¢ : C> x U — C that satisfy the
admissibility condition:

Meie,—Me ,
p+A (p + )2 T o (p+ A3

qb( K+A o L+[Q2A+ D+ 22Me®® N+ (31+3)L +

[(3A%2 + 31+ D + 23]Me'® A+ (41 + 6)N + (422 + 121+ 7)L +
(p+1)3 ’ (»+)*
[(423 + 422 + 42 + Dk + 1*]Me®
(p+D*

where p > -2,z € U, R(Le ™) = (kx — DM, R(Ne ) = 0 and R(4e ) =0
forall 8 € Rand k > 3.

;z> ¢0Q, (3.3.20)

Corollary 3.3.14: Let ¢ € B,[Q, M]. If the function f € X, satisfies the next
conditions:

| L,(n+2,D)f(@)| <k?M, (k=3;M > 0),
and
o(L,(, Df (@), I, (n + 1, D)f (2),I,(n + 2,)f (2),
L(n+3,0f(2),L,(n+4,0f(2);z) € Q,
then
|L,(n, Df (2)| < M.



In the special case Q =q(U) ={w : |w| < M}, the class B;[Q,M] is simply

denoted by ®;[M].

Example 3.3.15: Letk = 3,1 > —p and M > 0. If the function f € X, satisfies

|L,(n+2,Df(2)| < kM
and

|0 + D*L,(n+ 4,1 f(2) — A(p + D3, (n + 3, Df (2)| <

(A3 + 22 +31+ 1|+ 2|22 +91+ 7))3M

then
|Ip(n,/1)f(z)| < M.
Proof. Let
¢(wv,x,y,9;2) = (p+ g — Ap + D%y, Q= h(),
where

h(z) = (JA3+ 22+ 31+ 1] + 2|22 +91+ 7|)3Mz, M > 0.

Using Corollary 3.3.14, we need to show that ¢ € B; 1[Q, M].
Snice

o (me kA e LY [(22+ D+ 22 ]Me™® N + (31 +3)L +
‘p+4 (» + A)? T (@t A3
[(32% + 31 + 1)k + 23] Me®®
(+2)3 '

A+ (41 + 6)N + (422 + 122+ 7)L + [(423 + 422 + 41 + Dk + A1*]Me

(» + )*
=[A+ BA+6)N+ (A2 +92+7)L + (2> + 22 + 32+ 1)kMe"|

= [Ae™® + 31+ 6)Ne ™ + (A2 + 94 + 7)Le™ 0 + (A3 + A2 + 31 + 1)kM|

=

i
)

R(Ae ) + |32+ 6|R(Ne @) + |22 + 94+ 7|R(Le™0) + |22 + 22 + 32 + 1|kM



> A3+ 22+ 32+ 1|kM + |A2 4+ 91+ 7|k(k — 1)M
> (A3 4+ 22 +31+1]|+ 2|22 +91+7|)3M

whenever z € U, R(Le ) = (k — D)xM, R(Ne ) = 0 and R(4e™?) = 0 for
all 8 € R and k > 3. The proof is complete.

We obtain fourth—order differential superordination and sandwich—type
results for multivalent functions associated with the operator I,(n, 1) defined

by (3.3.2). For this aim,the class of admissible functins is given in the following
definition.

Definition 3.3.16: Let Q be asetin C and q € H,, with q’(z) # 0. The class of
admissible functions B;[(), q] consists of those functions ¢ : C> x U — C that
satisfy the following admissibility condition:

o(u,v,xy,9,0) €EQ,

whenever

B _2q'(2) + mq(2) (p + 1)*x — 1%u 1 (zq"(2)
u=q(), v= p+A)m ° { (p+Av—IAu _ZA}SE%{q’(z) +1}'

. {(p +2)2%[(p+ D)y — BA+3)x]+ (223 +31%)u

2
CE TRy + (32 +6/1+2)}

1 qu”,(Z)
- mzm{ q'(2) }

and

{(p +D[P+1)3g—(p+D?Ur+6)y+ (p+21)(8A% + 181+ 11)x —
R
(p+ v —Au

(843 + 1812 + 2221+ 6)v] + (BA* + 613 + 1112 + 6 )u 1 z3q" (2)
< R ,
(p+ v —Au m3 q'(2)
wherez € U,{ € 0U, A > —p,and m > 3.
Theorem 3.3.17: Let ¢ € B;[Q, q]. If the functions f(z) € X, and I,(n, 1)f(2)

€ Q, satisfy the following conditions:



1

_m2,

L(n+2,1)f(2)
q'(2)

224" (2)
9%( o) ) > 0, (3.3.21)

¢(I,(n, Df(2), 1, (n + 1L,Df (2), I, (n + 2, Df (2),
L(n+3,1)f(2),L,(n+4,1)f(2); z)

is univalent in U, and
Q c{p(L,(nDf (2),L,(n+ 1, D)f (2),I,(n+ 2, D)f (2),
L(n+3,0)f(2),l,(n+4,1f(2);z):z€e U}, (3.3.22)
then
q(z) < I,(n, D) f (2).

Proof. Letthe functions p(z) be defined by (3.3.8) and v by (3.3.14). Since
¢ € B;[Q, q]. Thus from (3.3.15) and (3.3.22) yield

Qc@p(2),2p'(2),2°p"(2) ,2°p" (2), 2"p" (2);2): z € U}.

In view from (3.3.13) that the admissible condition for ¢ € B;[(), q] in Definiton
3.3.16 is equivalent the admissible condition for 1 as given in Definition 3.3.5
with n = 3. Hence ¢ € A%[Q, q], and by using (3.3.21) and Definition 3.3.6, we
have

q(z) < p(z) = L,(n,D)f (2).
Therefore, we completes the proof of Theorem 3.3.17.

If Q=+ C isasimply connected domain, and Q = h(U) for some conformal
mapping h(z) of U onto Q, in this case the class B;[h(U),q] is written as
B;[h, q]. The next Theorem is directly consequence of Theorem 3.3.17.

Theorem 3.3.18: Let ¢ € B/[h, q]. Also, let the function h(z) be analyticin U.
If the function f€X,, I,(n,A)f(2) €Q, and q € H, satisfies the condition

(3.3.21),
{p(L,Df (@), L,(n+ L,Df(2),I,(n+ 2,)f (2),
L,(n+3,)f(2),L,(n+ 4,/1)f(z);z):z € U},

is univalent in U, and



h(z) < ¢(I,(n, D) f (2),L,(n+ 1, ) f (2),I,(n+ 2,)f (),
Ln+3,0f(),,(n+4,1f(2);z), (3.3.23)
then
q(z) < I,(n, D) f (2).

Theorem 3.3.19: Let the function h be analyticin U, andlet ¢ : C> x U — C
and ¥ be given by (3.3.14). Suppose that the differential equation

¥(q(2),2q'(2) ,2%q"(2) ,2°q" (2),2*q" (2);2) = h(2), (3.3.24)

has a solution q(z) € Q,. If the functions f € X,,,1,(n,1)f(z) € 9, and q € H,
with q'(z) # 0 satisfy the condition (3.3.21),

(oL, Df (@), L, (n + 1L, Df (2),I,(n + 2, D f (2),

L,(n+3,)f(2),[,(n+4,1f(2); z): Z E U},
is univalent in U, and
h(z) < ¢(I,(n, D) f (2),L,(n+ 1, D) f(2),I,(n+ 2,)f (2),

L(n+3,)f(2),[,(n+4,1f(2); z),
then
q(z) < I,(n,Df (2),

and q(z) is the best subordinant of (3.3.23).

Proof. The proof is similar to that of Theorem 3.3.12 and it is being omitted
here.

By Combining Theorem 3.3.10 and Theorem 3.3.18, we obtain the following
sandwich type result.

Corollary 3.3.20: Let the functions h,(z), q,(z) be analytic in U and let the
function h,(z) be univalentin U, q,(z) € Q, with ¢,(0) =¢,(0) =0 and
¢ € B;[hy,q;] N Bi[hy,q,]. If the function f €X,,I,(n,1)f(2) € Qo NHy,

(L Df(2),,(n+ 1,D)f(2),I,(n+ 2, D)f (2),
L,(n+3,)f(2),L,(n+ 4,/1)f(z);z):z € U},

is univalent in U, and the conditions (3.3.6) and (3.3.21) are satisfied,



h(2) < (L, Vf(2), L, (n + 1, ) f (2), I,(n + 2,)f (),

L(n+3,1)f(2),[,(n+4,2)f(2); z) < hy(2),
then

q1(2) < I, (n, ) f (2) < q2(2).
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