
1 

 

Republic of Iraq 

Ministry of Higher Education and Scientific Research 

University of AL-Qadisiya 

College of Computer of sciences & Mathematics 

Department of Mathematics 

 

A Comparison  Between Spectral Analysis 

and Artificial Neural Networks to 

Determine the Best Prediction Model with 

Application 

A thesis 

Submitted to the Council of the College of Computer Sciences & Mathematics of 

Al -Qadisiyah University as a Partial Fulfillment of the Requirements for the 

Degree of Master of Sciences in Mathematics 

 

By 

Emaan Yousif Abdoon Al-Shabbani 

Supervised By 

 Prof. Dr. Mohammed Habib Al- Sharoot 
 

 

1439 A.H                                                                                                 2017 A.D                                 



i 

 

 بسم اه الرحمن الرحيم

يَرْفعَِ اللهَُ الذَِينَ آمَنُوا مِنكُمْ واَلذَِينَ أوُتُوا  
 الْعِلْمَ دَرجََات  

 
 11آية   /سورة المجادلة

 

 

 

 

 



ii 

 

 إِهداء
 اى رمز الرجوة والتضحي§..

 اى مＷ علＶي الصＶود ها ★بدل☆ الظرو】.. 

 اى مＷ حصد اشوا‒ عＷ دري لمهد ي طريق العم..

 اى الشＶع§ الي حر【 ل يوを لتيء دري و★بدد ظلＶي..

 اى مＷ أ مل أ مه بل خر .. اى أ ي 

 أ هدي مرة هدي و صري..

 اماぁ يوسف

 

 

  



iii 

 

 

ACKNOWLEDGEMENTS 

     First, thankfulness and glorification to Almighty Allah Who helped and 

inspired me to write this piece of work. 

     I would like to express my sincere gratitude to my supervisor Prof. Dr 

Mohammed Habib Al-Sharoot for his valuable suggestions, extensive 

discussions, encouragement and continuous guidance. 

     Also, I am deeply indebted to Professor Tahir Reisan for his help and 

guidance. 

Finally, I would like to thank my family for their generosity and support at 

a challenging time. 

 

Emaan, 2017. 

  









vii 

 

 List of Abbreviations and Symbols

Symbols Definitions 

SACF Autocorrelation Function Sample 
SPACF Partial Autocorrelation Function Sample 

AR Autoregressive Model 

MA Moving Average Model 

ARMA Autoregressive Moving Average Model 

ARIMA 
Autoregressive Integrated Moving Average 

Model 

ADF Augmented Dickey – Fuller Test 

P.P Phillips – Perron Test 

KPSS Kwiatkowski – Phillips – Schmidt – Shin Test 

LM Multiple Lagrange Test 

EML Exact Maximum Likelihood     Box – Pierce Test     Ljung-Box (Modified Box – Pierce) Test 

AIC Akaike Criterion 

BIC Bayesian Information Criterion 

H-Q Hannan – Quinn Criterion 

ANN Artificial Neural Network 

b Bias   Learning Rate 

BP Backpropogation Algorithm   Momentum 

MSE Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 
 



viii 

 

Table of Contents 
C

h
ap

te
r 

T
it

le
 

Se
ct

io
n

 

T
it

le
 

  P
ag

e 

N
u

m
be

r 

Fi
rs

t 

 
In

tr
od

u
ct

io
n

 
an

d
 

Li
te

ra
tu

re
 

R
ev

ie
w

 1-1 Introduction 1 

1-2 The Research Objective 2 

1-3 Literature Review 2 

Se
co

n
d

 

T
h

e 
T

h
eo

re
tic

al
 S

id
e

:
 -T

im
e 

S
er

ie
s 

A
n

al
ys

is
 

-S
p

ec
tr

al
 A

n
al

ys
is

 
 

-A
rt

ifi
ci

al
 N

eu
ra

l N
et

w
o

rk
s

 

2-1-1 Time Series 9 

2-1-2 Autocovariance Function 9 

2-1-3 Autocorrelation Function 10 

2-1-4 Partial Autocorrelation Function 10 

2-1-5 Stationarity 11 

2-1-6 Time Series Models 12 

2-1-7 
Autoregressive Integrated Moving 

Average Model 

14 

2-1-8 Box – Jenkins Methodology 15 

2-1-9 Model Selection Criteria 20 

2-2-1 Spectral Analysis 21 

2-2-2 Harmonic Analysis 21 

2-2-3 Analysis of Harmonic Model 22 

2-2-4 Periodogram Analysis 24 

2-2-5 The Search for Hidden Periodicities 25 

2-2-6 Selection of Harmonic Model 27 

2-2-7 Spectrum 28 

2-2-8 Spectrum of ARMA Models 30 

2-2-9 
The Relationship Between the Spectrum 

and the Autocorrelation Function 

31 



ix 

 

2-2-10 Methods of Spectrum Estimation 32 

2-3-1 Artificial Neural Network 39 

2-3-2 Artificial Neural Network Structure 39 

2-3-3 Artificial Neural Networks Architecture 43 

2-3-4 Training Algorithms 47 

2-3-5 Hebb Learning Rule 48 

2-3-6 Least Mean Square (LMS) Algorithm 51 

2-3-7 Backpropagation Algorithm 54 

2-3-8 Criteria of Model Selection 58 

T
h

ir
d 

T
h

e 
A

pp
lic

at
io

n
 S

id
e

 -A
rt

ifi
ci

al
 N

eu
ra

l N
et

w
or

ks
 -S

p
ec

tr
al

 A
n

al
ys

is
 

   
  

3-1 Data Set 59 

3-2 Artificial Neural Network Methodology 61 

3-3 Spectral Analysis 83 

3-4 Conclusion and Recommendations 

94 

 

 

 

 

 

 

 



x 

 

List of Tables 

Table 

Number 
Title 

Page 

Number 

2-1 
Behaviour of Theoretical ACF and PACF for Stationary 

Process 

17 

2-2 
Coefficients for Calculating Approximate Probability 

Limits for Cumulative Periodogram Test 

26 

3-1 Exchange Rate of Iraqi Dinar vs US Dollar 60 

3-2 Tests Results of The Original Time Series    64 

3-3 Tests Results of The Transformed Time Series    66 

3-4 Estimated Parameters of ARIMA(p,d,q) Models 67 

3-5 Estimated Criteria of ARIMA(p,d,q) Models 68 

3-6 Autocorrelation Coefficients of the Residuals 70 

3-7 Results of Ljung-Box Test 71 

3-8 First Model: ANN(1) 73 

3-9 Second Model: AAN(2) 73 

3-10 Third Model: ANN(3) 74 

3-11 Forth Model: ANN(4) 74 

3-12 Fifth Model: ANN(5) 75 

3-13 Minimum Values of the Criteria 75 

3-14 
Values of the Criteria During Momentum Change and 

Fixed Learning Rate 

79 

3-15 Values of the Criteria When Data Partitioning 80 

3-16 Values of Criteria for Final Model Without Processing 80 

3-17 Final Values of Weights and Biases 81 

3-18 Periodogram Analysis of    84 

3-19 Cumulative Periodogram of    87 

3-20                                  89 



xi 

 

3-21 Autocorrelation Coefficients of Residuals 90 

3-22 Box-Ljung Test 91 

3-23 Cumulative Periodogram of Residuals 92 

3-24 
Comparison between Artificial Neural Networks and 

Spectral Analysis 

93 

 

 

 

 

 

 

 

 
 
 



xii 

 

List of Figures 

Figure 

Number 
Title 

Page 

Number 

2-1 Spectrum of AR(1) 37 

2-2 Spectrum of MA(1) 38 

2-3 Artificial Neuron 40 

2-4 Linear Function 41 

2-5 Sigmoid Function 42 

2-6 Hyperbolic Function 42 

2-7 Single-Layer Artificial Neural Network 44 

2-8 Multi-layer Artificial Neural Network 46 
2-9 Linear Associator 48 

2-10 Adaptive Linear Neural Network 52 

3-1 Exchange Rate of Iraqi Dinar vs US Dollar 62 

3-2 Correlogram of the Original Time Series    63 

3-3 Correlogram of The Transformed Time Series    65 

3-4 Correlogram of Residuals 69 

3-5 The Final Artificial Neural Network Model 82 

3-6 Periodogram 85 

3-7 Cumulative Periodogram of    88 

3-8 Autocorrelation Function for Residuals 91 

3-9 Cumulative Periodogram of Residuals 93 

 

 



xiii 

 

 Abstract 

     The variability of exchange rate, especially the unexpected rapid 

increase and decrease, has a significant effect on the national economy of 

any country. Iraq is no exception; therefore, the accurate prediction of 

Iraqi dinar exchange rate with respect to the US dollar is a crucial matter 

that affects the planning processes to secure economic stability in Iraq. This 

thesis aims to compare the spectral analysis methodology with the artificial 

neural networks methodology in terms of the prediction of Iraqi dinar 

exchange rate with respect to the US dollar within a ten-year time period 

that extends from 30/01/2004 to 30/12/2014. In this comparison, mean 

square error MSE, mean absolute error MAE and mean absolute percentage 

error MAPE were used as statistical criteria to compare the two 

methodologies. The results show that the neural network methodology is 

better than the spectral analysis methodology to predict the exchange rate 

of Iraqi dinar with respect to the US dollar.  

 



 

 

 

 

 

 

Chapter One 
Introduction and Literature 

Review 
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1. Introduction and Literature Review 

(1-1) Introduction 

     Recently, the interest has increased in analyzing the time series for a 
certain phenomenon and predicting its future values based on the past 
observations of the phenomenon. The fluctuation that occurs in time series is 
usually analyzed in the time domain. However, there are some variations 
that occur in some phenomena due to hidden periodicities that cannot be 
detected in the time domain. Therefore, the analysis of  the phenomenon is 
performed in the frequency domain using the spectral analysis methodology. 
In addition, the analysis in the time domain is normally performed using Box 
- Jenkins approach, which provides good predictions of linear time series 
only.  However, some time series consists of linear and nonlinear 
components or only nonlinear component, which makes the prediction 
process more difficult and complicated.  Therefore, the use of neural 
network methodology is considered a proper choice to model this type of 
series since this methodology offers the ability to analyze nonlinear 
relationship in the data. 

     The exchange rate is a phenomenon that is characterized by rapid, 
sometimes unexpected, variations. These variations have significant effects 
on the Iraqi national economy, which makes the accurate prediction of such 
variations play an important role in securing the economic stability of Iraq. 
Therefore, the analysis of this phenomenon using the neural network 
methodology in the time domain and the spectral analysis methodology in 
the frequency domain is a crucial and necessary matter to obtain the best 
model to represent the data and provide accurate predictions.  

     This thesis consists of three chapters. The first chapter consists of four 
sections that include the introduction, research problem, research objective, 
and a review for the previous literature related to the thesis topic. The 
second chapter consists of three sections. The basic concepts of time series 
and Box-Jenkins methodology are explored in the first section of this 
chapter. In the second section, the basic principles of spectral analysis 
methodology are explored, which include periodogram, spectrum, and 
spectrum estimation methods.  The third section includes definition of neural 
network and its components as well as the training algorithms of the 
network, the backpropagation algorithm in particular.  
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     The last chapter of the thesis consists of three sections. The first section 
presents an introduction about Iraqi Dinar exchange rate against the US 
Dollar in addition to the data table. In the second section, neural network 
methodology has been applied on the exchange rate data to find the best 
prediction model while the spectral analysis methodology has been applied 
on the same data in the third section to find harmonic model that represents 
the significant harmonic components in the data. The third section includes 
conclusions and recommendations of the researcher. 

(1-2) The Research Objective 

     This research aims at building two models using two different 
methodologies, the first methodology is the artificial neural networks to 
build the first model whereas the second one is the spectral analysis to build 
the second model in order to predict the Iraqi Dinar exchange rate with 
respect to the US Dollar and comparing the two models relying on MSE, 
MAE and MAPE as statistical criteria to perform the comparison. 

 (1-3) Literature Review 

     In ( 2001) [3], the author conducted a comparison between two of the 
available spectral methods and three generalized methods in the case of 
univariate, in addition to two suggested methods. The application was 
performed on bivariate autoregressive model by applying simulation 
experiments of different sample sizes. The author concluded that the 
suggested method is better compared with the other estimation methods in 
the context of multi spectrum smoothing where the absolute value of eigen 
values is more than (0.5) for all sample sizes. 

     In (2001) [22], the authors used the ANN methodology to renewable 
energy problems especially the modeling of the solar energy field (solar 
steam generation plant). The backpropagation algorithm was used to train 
the network which consisted of more than one hidden layer. The data was 
processed and scaled down to the fit in the period [-1,+1] which allows for 
better training results. This approach proved that the ANN provides 
competitive results in this field comparing to the other techniques.  

     In (2003) [63], a comparison was conducted between the Autoregressive 
Integrated Moving Average (ARIMA) model and the Artificial Neural 
Networks (ANN) model in prediction. The data that was used in this work 
consists of three sets: sunspot, Canadian lynx and British Pound/US Dollar 
exchange rate. A hybrid methodology, combine ARIMA and ANN, was 
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used by using single hidden layer feedforward network with logistic 
activation function in the hidden layer. There was no rule to choose the 
number of the nodes in the hidden layer in this work. The MAD and MSE 
criteria was used in the comparison between the ARIMA, ANN, and the 
hybrid models. The results showed that the hybrid model provided more 
precise results.  

     In (2003)  [29] the authors used the Elman Jordan Recurrent Network to 
predict the exchange rate of the US dollar and four other currencies: Swiss 
Franc, Europeans Money (EURO), Japanese Yen, and the Great Britain 
Pound (GBP). The data was reprocessed by using the normalization formula 
in order to remove the data correlation before applying the data to the 
network. They used 100 nodes in the hidden layer and the logistic activation 
function in both the hidden layer and the output layer, and the results 
showed that the neural network was successful in prediction.  

      In (2004) [4], the author studied the problem of determining the best 
estimation of spectral density that is consistent with the actual spectral 
density function to describe the behavior of nucleic acid chain of eight living 
beings. Based on simulation error square mean and simulation absolute 
errors mean as criteria, the author concluded that Parzen weight function is 
better that than Priestley weight function, Kaiser weight function, and the 
rest of the other functions that were used to determine the best consistent 
estimation of the spectral density function. 

     In  (2004) [23], a comparison study of three training algorithms was 
conducted to predict the exchange rate of the Australian Dollar. These 
algorithms were: Standard Backpropagation SBP, Scaled Conjugated 
Gradient SCG, and Backpropagation with Bayesian Regularization BPR. 
The data were collected from the Reserve Bank of Australia between 1991- 
2002. The data were divided into two set; training set (500 observations) and 
testing set (65 observations). The stopping criteria were set between 5000-
10000 iterations. The network was designed in 30 different designs with 
different weights and learning parameters based on the MAE and the 
normalized means square error NMSE. The results showed that the SCG 
algorithm provided better prediction results than the other algorithms, and 
the retraining of the network by using new data is a good approach to obtain 
precise prediction. The results also showed that the convergence of the SBP 
algorithm was highly dependent on the learning rate and the momentum. In 
addition, the number of the nodes in the hidden layer had a high effect on the 
behaviour of the network and it was calculated by trial and error. 
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     In (2004( [27] conducted a comparison study between the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model and the 
Artificial Neural Networks (ANN) model in the prediction of three sets of 
data: Airline, Tourist and Nottem Data. The Automatic Relevance 
Determination (ARD) approach was used to identify the input variables of 
the neural networks. The neural network was trained by using the 
backpropagation with Levenberg-Marquard optimization technique. A linear 
activation function was used in the output layer, while the hyperbolic 
tangent activation function was used in the hidden layer. Based on the mean 
euclidean distance criteria MED, the results showed that the ARD-based 
method was better than the SARIMA-based method in prediction.  

     In (2005) [5], the author studied the two stages of identification and 
diagnostic checking of Box-Jenkins methodology. He compared the 
identification tools with the rank selection criteria and the diagnostic 
checking tests based on the concept of simulation. The author concluded that 
each of ACF, PACF, and inverse autocorrelation function IACF works 
properly in identifying and determining the rank of model MA(1) and model 
AR(1) while it cannot determine the rank of model ARMA(1,1). In addition, 
the author found that IACF can give more accurate results than PACF, and 
that the suggested extended sample inverse autocorrelation function ESIACF 
method is better than extended sample autocorrelation function ESACF  in 
identifying the ARMA (1,1) model. 

     A comparison study [64] was conducted in (2005) to compare the 
SARIMA model and the ANN model in the prediction of the simulation and 
real data. The feed forward neural network was used with the 
backpropagation with Levenberg-Marquard optimization technique to train 
the network, the logistic activation function in the hidden layer and identity 
activation function in the output layer. Four models were build based on the 
type of the data that was applied to the network. The first model (O) was 
built by using the original time series, the second model (DT) was built by 
using the series after removing the trend, the third model (DS) was built by 
the series after removing the seasonal component, the fourth model (DTDS) 
was built by the series after removing both the trend and the seasonal 
component. Based on the root mean square error RMSE, MAPE and MAE, 
the results showed that the network model with DTDS data provided better 
results and did better than the SARIMA model in prediction. The results also 
showed that the network model was affected by the type of the data whether 
it has trend component or seasonal component or both. The results also 
showed that it is necessary to remove both trend component and seasonal 
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component from the data before applying it to the network because these 
two components can lead to bad results if they still exist in the data.  

     In (2007)  [52], the authors conducted a comparison between an 
approximate conditional-mean ACM-type filter algorithm and robust least 
square RLS filter algorithm in terms of cleaning time series by robust way to 
obtain a robust spectral density estimator. Based on the simulation results, 
they concluded that the ACM- filter algorithm is better. Then, they applied 
the competitive method on actual heart rate variability measurement of 
diabetes patients.  

     A comparison between four methods was conducted in (2008) [31], 
which included curve fitting, Box-Jenkins, ANN, and extrapolation with 
periodic function to predict the wind speed in the atmosphere. The data was 
collected between 1992 and (2001) from the Indian costal station. In the 
ANN approach, the feed forward network was used with error 
backpropagation algorithm to train the network in addition to the data 
preprocessing by using the normalized formula. The logistic activation 
function was used in the hidden layer and the error trial method was used to 
find the number of nodes in the hidden layer. Based on the root mean square 
error  RMSE criterion, both ANN and Box-Jenkins filed to predict the wind 
speed. However, the extrapolation using periodic curve fitting was better and 
showed a better precision in prediction.  

     In (2009) [16]  , the authors introduced a test called periodogram 
coefficient of variation test (PCOV) that is based on spectral analysis 
technique to check the consistency of periodogram ordinates throughout 
different sections resulted from broken sample record. The purpose of the 
check was to assess the weak stationarity, and the application was performed 
using simulated and experimental data. The results showed that the 
suggested test can be considered as a useful tool for exploratory analysis of 
time series. 

     In (2010)  [55], four types of networks were considered in a comparison 
study to predict the daily closing price of the IBM stock. The networks were: 
Backpropagation Network BPN, Layer Recurrent Network LRN, Radial 
Basis Network RBN, and Generalized Regression Network GRN. The data 
that was used covered the period from (1980( to (1992( and it was obtained 
from http://robjhndman.com. The data was divided into training set (70%), 
and the 30% was considered for testing. In the BPN, the backpropagation 
algorithm was used to train the network. The training iterations number is set 

http://robjhndman.com/
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to 3000 and the number of nodes in the hidden layer was increased to ensure 
that the RMSE decreased. When the optimal number of nodes in the hidden 
layer was identified, the model was further enhanced by changing the value 
of the learning rate and the momentum. The authors found that when 
increasing the number of nodes in the hidden layer, the RMSE started to 
decrease and then back to increase again, and the same happened when 
increasing the number of the input variables, and this can be generalized for 
all the sets of data.  

     A hybrid model of the ANN was suggested in (2010) [26]. This model 
included Box-Jenkins model which is known as the ARIMA model for 
prediction. Real data was used in the training consisting of three groups: 
Sunspot, Canadian Lynx and British Pound/US Dollar exchange rate. The 
one-step-ahead forecasting was used. The authors compared the following 
four models: ARIMA, ANN, Zhang’s Hybrid and proposed model. In this 
hybrid model, the model consisted of the application of ARIMA model for a 
group of data by using Box-Jenkins methodology and then the residuals 
were applied to the network. The ARIMA model was implemented by using 
EVIEWS software and the network was implemented by using MATLAB. 
The Sunspot data was represented by the AR(9), and the Canadian Lynx was 
represented by AR(12), and the British Pound data was represented by the 
Random Walk Model. Based on the MSE values for the testing set of each 
group of data, the results showed that the suggested hybrid model is better 
than the other models in prediction. 

     A comparison was conducted by [44] in (2011( between neural network 
model and the Hidden Markov model to predict the Nigerian foreign 
exchange rate vs three different currencies: EURO, Yen and the GBP. The 
data were  set of 800 observations that was downloaded from the famous 
currency exchange website www.oanda.com. The Multi-Layer Perceptron 
Network was used with three hidden layers and learning rate of 0.10. The 
Backpropagation algorithm was used to train the neural network. The data 
set was divided into three categories: 500 observations as a training set, 200 
observations as a validation set, and 100 observations was used as a testing 
set. Based on the MSE criterion for the forecast error, the results showed that 
the prediction efficiency was 81% while the Hidden Markov was 69%. 
MATLAB software was used in this work. 

     In (2012)  [19], the author developed a statistical methodology to analyze 
non-stationary categorical time series in frequency domain through a 
spectral envelope tool that relies on summarizing information from spectrum 
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matrix and easily displaying the understood information. In addition, the 
author suggested Tree-Based Adaptive Segmentation (TBAS) method to 
estimate the spectral envelope based on Piecewise stationary process model 
where the application was performed on simulated and real data. The results 
showed that this methodology can work quite well in the segmentation and 
correctly divide the DNA sequence into coding and noncoding sequence. 
Moreover, this methodology provides the solution of the spectral analysis of 
nonstationary time series. 

     In (2012) [20], the authors investigated testing problems for spectral 
densities of time series with unequal sample sizes. They concluded that the 
natural approach to use periodogram-based distances for testing hypothesis 
about different spectras has not turned out to be very promising due to the 
inconsistency of the periodogram. 

     In (2013) [46], the authors studied the stationary processes using unequal 
sample sizes where they introduced theoretical detailed framework to test 
equality of spectral densities in bivariate case. Then, they generalized their 
approach to the m-dimensional case and apply it on cluster financial time 
series data with different sample lengths.  

      In (2014) [36], the authors made a comparison between three different 
approaches of prediction that included ANN, Ramirez-Verduzco and 
Knothe-Steidley method. Biodiesel Kinematic Viscosity data, consisting of 
150 samples, was used. The ANN was used, and the backpropagation with 
Levenberg-Marquard optimization technique was used to train the network. 
The hyperbolic tangent activation function was used in the hidden layer and 
the linear activation function was used in the output layer. One hidden layer 
with four nodes was also used. The data, set of 73 samples, was divided into 
three main sets: training set 70%, testing set 15%, and 15% for the 
validation. Based on the MSE as a performance function, the results proved 
that the ANN is superior to the other approaches in prediction. 

     In (2015) [38], the author studied the problem of determining the number 
of differences required to stationary time series. He conducted a comparison 
between unit root tests, ADF and P.P, and stationary tests, KPSS and LM. 
The application was performed through the simulation using different 
sample sizes. The results showed similarity in the results between ADF and 
P.P, and between LM and KPSS tests for all sample sizes. In addition, the 
results showed that the increase in sample size leads to stationary time series 
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for ADF and P.P test while the increase of sample size has lower effect on 
stationarity of the series for KPSS and LM tests. 

     In (2016) [12], the authors optimized the averaged periodogram 
methodology, which relies on Fast Fourier transform, to estimate power 
spectral density of electrical activity signals in the atmosphere by suggesting 
a satisfactory method to choose the optimal number of segments to be 
averaged.  

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

Chapter Two 
     The Theoretical Side: 

     - Time Series Analysis 

     - Spectral Analysis  

     - Artificial Neural  

       Networks                               
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The Theoretical Side 
2.1 Time Series Analysis 
 (2-1-1) Time Series 岷       峅 
     Time series is sequential independent observations for a certain 
phenomenon during a specific time interval. Time series can be classified 
into two main categories as follow:  

1- Continuous Time Series   

     In this type of time series, the observations are continuous with time and 
can be represented in the following formula: 岶                                     岼 
2- Discrete Time Series 

     In this type of time series, the observations are recorded at fixed time 
intervals that can be either minutes, hours, days, months, seasons or even 
years. This type of time series, the discrete time series, can be represented in 
the following formula: 岶                                     岼 
It is important to note that the observations of the discrete time series are 
recorded at equal intervals. 

(2-1-2) Autocovariance Function 岷          峅 
     This function is represented by the symbol    and defined as follows:       岫       岻                                                    岫   岻                   
        岷岫    岻岫      岻峅                                                               岫   岻 
Where     岫  岻             
To estimate the autocovariance function of a time series    consisted of N 
observations, the following formula is used: 

     ∑岫    ̅岻岫      ̅岻 
                                                           岫   岻 

where       ̅    ∑           
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 (2-1-3) Autocorrelation Function (ACF) 岷             峅 
       This function is represented by the symbol    and defined as follows:       岫       岻√    岫  岻√    岫    岻                                              岫   岻                                                                                                                   岫   岻 
where          岫  岻             
To estimate the autocorrelation function for a time series    consisted of N 
observations, the following formula is used:                                                                                                                 岫   岻      ∑ 岫    ̅岻岫      ̅岻      ∑ 岫    ̅岻                                                             岫   岻 
where      ̂  

The equation (2-6) is called the sample autocorrelation function SACF. The 
properties of the Autocorrelation Function are: 

a)    is an even function and symmetric about the lag zero.  
      i.e.         

b)      
c) |  |    

 

(2-1-4) Partial Autocorrelation Function 岫    岻 岷             峅  
     This function is an indicator that shows the relation between two 
variables    and      after removing the effect of all the variables between 
them (    ,     , …,       ). 
By using Durbin method, the partial autocorrelation function can be 
represented as follow:               ∑                ∑                                                               岫   岻 
and 
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                                                          岫   岻   
In order to estimate the partial autocorrelation function for a time series 
consisted of N observations, the following formula is used:  ̂             ∑  ̂              ∑  ̂                                                            岫    岻 
and  ̂       ̂    ̂        ̂                                   岫    岻 
It is important to know that the plot of rk against the lag k, and  ̂ against the 
lag k is called  correlogram. 

(2-1-5) Stationarity 岷                峅 
     The time series is called stationary if the data is oscillating (fluctuating) 
around a certain level without any increasing or decreasing trends. The 
stationarity can be classified into two types: 

1- Strictly Stationary  

     The time series can be called as strictly stationary if the joint probability 
distribution for any set of observations in not affected by the shift of the time 
interval either forward or backward, which means:   (             )    (                   ) 
Where  

 tm = time  

2- Weakly Stationary 

     The time series is called weakly stationary if meet the following 
conditions:  岫  岻                                                                                                   岫    岻     岫  岻   岫    岻                                                                 岫    岻    岫       岻   岷岫    岻岫      岻峅                              岫    岻 
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 (2-1-6) Time Series Models 岷     峅 
The time series models are classified into three main types: 

1- Autoregressive Model AR(p)  

     The stationary time series can follow the autoregressive model of the 
order p if it can be written in terms of its past observations     ,     , …,      and the random error    as shown below:                                                             岫    岻    =∑                                                                                     岫    岻     

where    : jth Autoregressive parameters and  j= (1, 2, … ,p(   : Deviation of the original time series from its mean    : Random error ,     岫    岻 
     The autoregressive model of the order p, which is denoted by AR(p), can 
be written in terms of the backshift operator L as shown below:   岫 岻                                                                                               岫    岻 
where    岫 岻  (                  )               

The stationary condition of the AR(p)  is that the roots of the equation   岫 岻    should lie outside the unit circle. 

The properties of the AR(p) are:  岻   岫  岻                                                                                          岫    岻  岻      岫  岻                                                   岫    岻  岻                                                     岫    岻  岻                                                    岫    岻 
     In practice, it can be recognized if the time series follows the AR(p) 
model or not through the behaviour of the SACF and the SPACF where the 
SACF of  the AR(p) model is gradually decreasing in an exponential or 
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sinusoidal way according to the signal   (          ) to approach zero, 
while the SPACF of the AR(p) cut off after the lag p. 

2- Moving Average Model MA(q) 

     The stationary time series    can follow the general moving average of 
the order q if it can be written in the form of its past random errors as follow:                                                                  岫    岻    =  ∑                                                                         岫    岻     

where 

くτ :  τth moving average parameters and    = (1, 2, … ,q( 

the moving average model of an order q, MA(q), can be written in terms of 
the backshift operator as follow:      岫 岻                                                                                            岫    岻 
Where    岫 岻  (                  )  
The invertible condition of  the MA(q) model is that the roots of the 
equation   岫 岻    should lies outside the unit circle.  

The properties of the MA(q) model are:  岻  岫  岻                                                                                           岫    岻  岻     岫  岻  (               )                                    岫    岻  岻    峪(                          )                                                                                                                                                                                                                                        岫    岻 
 岻    [ (                          )                                                                                                          岫    岻 
     In practice, it can be recognized if the time series follows the MA(q) 
model or not through the behaviour of  the SACF and  the SPACF where  
the SACF of the MA(q) model is cut off after the lag q, while the SPACF of 
the MA(q) gradually decreasing in an exponential or sinusoidal way 
according to the signal   (          ) to approach zero. 
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3- Autoregressive Moving Average Model ARMA(p,q) 

     There are many time series that cannot be represented by the AR or the 
MA models, so that there is a need to use the mixed model that is called the 
Autoregressive Moving Average Model.  

     It can be said that the stationary time series    follows the 
Autoregressive Moving Average Model of order (p,q) if it can be written in 
terms of its past observations and its past random errors as shown below:                                                

                                                                                                          岫    岻             
    =∑        ∑                                                       岫    岻         

The Autoregressive Moving Average Model of order (p,q), which is denoted 
by  ARMA(p,q) can be written in terms of the backshift operator  as shown 
in the formula below:   岫 岻     岫 岻                                                                                岫    岻  
     The stationary condition of  the ARMA(p,q)  model matches the 
stationary condition of the AR(p) model, while the invertible condition of 
the ARMA(p,q) model matches the invertible condition of the MA(q) model. 

The properties of the ARMA(p,q) model are: 

A)  岫  岻                                                                                            岫    岻    
B)                                                 岫    岻 
C)                                                岫    岻 
Both the SACF and the SPACF of the ARMA(p,q)  decay gradually either in 
an exponential or sinusoidal way. 

(2-1-7) Autoregressive Integrated Moving Average Model 
ARIMA(p,d,q) 岷          峅 
     Majority of real time series    are not mean stationary. In order to 
transform those time series to the stationary status, the difference of an order 
d (normally d = 1 or d = 2) is calculated for those series. For that reason, the 
ARIMA model of the order (p,d,q) is used to represent the difference 
stationary series. The ARIMA(p,d,q) can be defined by the following 
formula: 
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  岫 岻岫   岻      岫 岻                                                                  岫    岻   岫 岻     岫 岻                                                                                 岫    岻 
where 

     岫   岻    ,    d= Degree of difference  ,     = Original time series 

(2-1-8) Box – Jenkins Methodology 岷             峅 
     Box – Jenkins methodology, which was first produced by G. E. Box and 
G. M. Jenkins in 1970, is considered as one of the statistical tools that can be 
used to build a model for the time series and predict the variations that will 
happen in the future based on the patterns variations that were happened in 
the past intervals. One of the characteristics of this methodology is that it 
does not require the assumption of the independence between observations, 
but it make use of the correlation between observations through the ARIMA 
models which has the ability to invert lots of the real time series. 

Box – Jenkins Methodology consists of four repetitive steps: 

1- Step one: Model Identification (Selection of an Initial Model) 

     The identification stage is the most important stage that is used to analyse 
the time series, in which the model that will be used to represent the 
stationary data will be chosen. In this step, it will be decided whether the 
time series is stationary or not. This can be done in many ways: 

A) Plot Time Series 岷 峅 
     Plotting the raw data of the time series is very important to discover the 
outlier points, seasonality and trends whether it is increasing or decreasing. 
The time series is called stationary if there are no outlier points and no 
fluctuations around certain level. 

B) Correlogram Checking 岷  峅 
     The time series can be checked whether it is mean stationary or not by 
checking the correlogram for the raw data and especially the SACF. If the 
autocorrelation coefficients are not significantly different from zero after the 
first and the second lags then the time series is considered mean stationary. 

C) Tests Application 岷        峅 
     The following test can be used to check if the time series is stationary or 
not: 
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a. Portmanteau Test 
b. Augmented Dickey – Fuller Test (ADF) 
c. Phillips – Perron Test (P.P) 
d. Kwiatkowski – Phillips – Schmidt – Shin Test (KPSS) 

 
Augmented Dickey – Fuller test will be considered in this work.  

The ADF is one of the unit root tests that is used to check the non-stationary 
in any time series and find the degree of differences by finding the number 
of roots that equal to 1 which represents the differences that are required to 
transform the time series to the stationary status. 

The statistic test ADF, represented by   , is defined in the formula below:     ̂  ( ̂)                                                                                               岫    岻 
where                    ∑        and   ̂ is least squares estimator for    
The statistic test   ,  is used to examine the following hypothesis:          (i.e. there is a unit root and the series is non stationary ) 

against         岫                                                       岻 
for the following three models: 

          ∑   
                                                                      岫    岻 

             ∑   
                                       岫    岻 

                 ∑   
                          岫    岻 

where      ∑                           
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If the value of the test statistic    , is greater than the critical value, it can be 
concluded that the raw data is stationary.  

If the above-mentioned methods are applied and they are founded that the 
time series is stationary then the model of the time series can be identified 
by comparing the SACF and the SPACF of the time series with the 
behaviour of the ACF and the PACF as shown in the table below: 

Table (2-1) 

Behaviour of Theoretical ACF and PACF for Stationary Process岷  峅 
Model ACF PACF 

MA(q) Cuts off after lag q 
Exponential decay and/or 

damped sinusoid 

AR(p) 
Exponential decay and/or 

damped sinusoid 
Cuts off after lag p 

ARMA(p,q) 
Exponential decay and/or 

damped sinusoid 
Exponential decay and/or 

damped sinusoid 
 

     However, If the above-mentioned methods are applied and it is founded 
that the time series is non-stationary then the difference of the series is taken 
in order to make the time series mean stationary and the Box-Cox 
transformation will be applied as follow:   岫  岻                                                                                               岫    岻 
where  λ is the transformation parameter to make the series  variance 
stationary . 

2- Step two: Parameter Estimation (Estimation the Model Coefficients) 岷  峅 
     To estimate the ARIMA model, we can use one of the following methods 
of estimating: 

 The Moments Method  The Ordinary Least Square Method   The Conditional Maximum Likelihood Method   The Exact Maximum Likelihood Method  
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we will use that the exact maximum likelihood method as follows:  

If the stationary time series    follow AR(1) model then the maximum 
likelihood function of this series is written as follow:    岫     岻   岫     岻    
    峙       (岫     岻    ∑ 岫         岻     )峩                   岫    岻        岫 岻        ̂    ̂      ∑        ̂ ∑      

                                       岫    岻  
    

by solving (2-43), we have the exact maximum likelihood estimator as 
follows:  ̂          ∑           ∑                                                                             岫    岻 
3- Step three: Diagnostic Checking (Analysing the Residuals) 岷  峅 
     Before using the model for prediction, it is crucial to check the reliability 
of the model to represent the data by testing the compatibility of the model. 
This can be done by applying the available data to the model and then 
checking the estimated residuals which represent the white noise.  

The check can be done by using one of the following approaches:  

A- Correlogram Check for Residuals  

     If the autocorrelation coefficients of the residuals are lied within the 

period (
     √       √ ) , which means that the autocorrelation coefficients of the 

residuals are not significantly different from zero, then it can be said that the 
residuals represent the white noise.  

B- Portmanteau Tests (Goodness of Fit Tests) 岷     峅 
     The importance of the Portmanteau Tests is that they are used to check all 
of the autocorrelation coefficients in a small group rather than checking ever 
one of them individually. Each group normally has 20 or 24 lags.  

The Portmanteau tests are used to check the hypothesis: 
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against                                    

where h is the number of lags  

The Portmanteau tests include: 

 

1- Box – Pierce Test 

     This test is suggested in 1970 by Box and Pierce and it is defined as: 

     ∑    
                                                                                          岫    岻 

where       岫   岻 and g is the number of estimated parameters in the 
model.  

If the P-value of the test  statistic     is greater than the significant level, 
this leads to the conclusion that the residuals represent the white noise. 

2- Ljung-Box (Modified Box – Pierce) Test  

     This test is suggested in 1978 by Ljung and Box and it is written as 
follow: 

     岫   岻∑岫     岻     
                                                            岫    岻 

where       岫   岻 
If         岫   岻  then the alternative hypothesis    is accepted.  

The tests     and     can be applied in the first step of  Box – Jenkins by 
applying g = 0.  

4- Step four: Forecasting  

     After successfully passing the three steps then the model is ready for 
prediction and can be written as follow:  
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 ̂ 岫 岻   岫    岻 
            =   岫      岻         (        )     岫      岻                         (      )   岫    岻                                             岫    岻 
Where   is the interval that will be predicted. 

(2-1-9) Model Selection Criteria 岷          峅 
     The aim to analyse the time series by using Box – Jenkins methodology 
is to find the unique model that will represent the data. For that reason, 
certain criteria to choose the right model is suggested as follow:  

1- Information Criterion of Akaike  
This criterion (AIC) is calculated as follow:  

       (  ∑ ̂   
   )                                                                    岫    岻 

2- Bayesian Information Criterion  
This criterion (BIC) is calculated as follow:  

       (  ∑ ̂   
   )    岫 岻                                                        岫    岻 

This criterion is denoted by SC sometimes because it was suggested by 
Schwarz in 1978. 

3- Hannan – Quinn Criterion  
     This criterion (H-Q), which was suggested by E. J. Hannan and B. J. 
Quinn in 1979, is calculated as follow: 

       (  ∑ ̂   
   )     (  岫 岻)                                        岫    岻 
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2.2 Spectral Analysis 
)2-2-1( Spectral Analysis  

The variations in time series of specific phenomenon are usually analysed in 
the time domain using the autocorrelation function. However, several time 
series contain some variations that rely on the frequency. To analyse such 
series, the spectral analysis methodology is utilized, which analyses the time 
series in the frequency domain using the spectrum. The spectrum of time 
series is a distribution of the series variance as a function of frequency. The 
goal of spectral analysis is to study and estimate the spectrum.  

)2-2-2) Harmonic Analysis 岷    峅 
Let   , where (t = 1,2,3,...), be a time series that consists of a cosine wave 
with a specific amplitude, it is possible to write the sinusoidal model of the 
series in the following formula:        岫    岻                                                                         岫    岻 
Where   : Amplitude  : Phase 

λ: Frequency   : Purely stationary process 

The resulted wave from the sinusoidal model shown in equation (2-51) 
fluctuates around zero mean while the high points of the wave represents the 
peaks while the low points represent the troughs. The vertical distance 
between the zero and any peak or between the zero and any trough 
represents the amplitude. It is worth mentioning that the distance between 
two subsequent peaks or troughs represents the wave length, so called the 
period, which is usually referred to as P and can be defined in the following 
formula:                                                                                                             岫    岻 
This means that the wave length is the reverse of the frequency. It is possible 
to write the model in equation (2 – 51) in the following formula:     岷   岫  岻    岫 岻     岫  岻     岫 岻峅                               岫    岻  



11 

 

        岫  岻      岫  岻                                                          岫    岻 
Where          岫 岻                                  岫 岻 
The part [    岫  岻      岫  岻] represents the harmonic component of the 
series    while the equation (2 – 54) is called the harmonic model. 

(2-2-3) Analysis of Harmonic Model 岷      峅 
If the time series    consists of more than one harmonic component, its 
harmonic model is defined in the following formula:         岫      岻                                                  岫    岻          岫   岻       岫   岻                               岫    岻   
Where            岫  岻                                   岫  岻 
By estimating each of    and    by the least squares method, we can obtain 
the following: 

 ̂     ∑[     (   )       (   )]     
                                岫    岻 

Where     ̂              ̂                   ̂                     
The equation (2 – 57) is called Fourier series representation while    is 
called Fourier frequencies or standard frequencies and can be defined in the 
following formula:                                                                                      岫    岻  
From (2 – 58), we conclude that the value of frequency depends on the 
sample size.  

If the number of observation of     is odd, then the harmonic model can be 

written as in (2 – 57) where  = 
      while   ,    and    which represents the 

least squares estimators of   ,   and    can be calculated  for the model 
shown in (2 – 57) by using the following formulas: 
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    ̂    ∑                                                                                  岫    岻 
    

    ̂    ∑      (   )                                                               岫    岻 
    

    ̂    ∑      (   )                                                               岫    岻 
    

Where                   

If the number of observations of the series is even, the harmonic model of 
the series can be written in the following formula 

      ∑[     (   )       (   )]   
         岫   岻       岫    岻 

Where       and    ,       ,    can be calculated using the following 

formulas :     ̂   ̅                                                                                           岫    岻      ̂    ∑      (   )                                                               岫    岻 
    

    ̂    ∑   岫  岻                                                                  岫    岻 
    

    ̂    ∑      (   )                                                               岫    岻 
    

Where                     

By using (2 – 55) and (2 – 57), we obtain the following:      (   )       (   )       岫      岻                                 岫    岻 
and from that, we can obtain the estimated amplitude of the jth harmonic by 
using the following formula: 
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 ̂  √                                                                                               岫    岻 
In addition, we can obtain the estimated phase of the jth harmonic by using 
the following formula:  ̂       峭     嶌                                                                                岫    岻 
where 

j={                                                                                                                  
 

 (2-2-4) Periodogram Analysis 岷          峅 
Periodogram is a tool that is used to analyse time series that consist of sine 
and cosine waves with different frequencies. The importance of the 
periodogram comes from its capability in searching for hidden periodicities 
and examining the randomness of time series. The periodogram can be 
defined by a plot of  the intensities I(  ) against the frequencies   . The 
values of intensities can be calculated using the following formulas: 

1- If the number of observations of the series is odd ,then  (  )    (       )                                                             岫    岻 
1- If the number of observations of the series is even ,then  (  )    (       )   岫  岻                                        岫    岻  
Where  岫  岻       
There are other equivalent formulas to define the periodogram but they are 
different as shown below: 

 (  )     |∑         
   |                                                                    岫    岻 

where                 
and 
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 (  )     崛(  ∑      (   ) 
   )  (  ∑      (   ) 

   ) 崑 岫    岻 
where               
The difference in defining the periodogram between researchers comes from 
the use of negative frequencies or the use of cyclic frequencies f instead of 
the angular frequencies      . 

(2-2-5) The Search for Hidden Periodicities 岷 峅 
It was explained in (2-2-4) that the periodogram is used to search for hidden 
periodicities (systematic sinusoidal components) by examining the following 
hypothesis:               
against                 (   )       (   )     
To examine the hypotheses above, one of the following tests can be utilized. 

(2-2-5-1( Fisher’s Test 岷          峅 
This test was first derived by Fisher in 1929. The test statistic for this test is 
given by the following formula :    岫 岻岫 岫 岻岻∑  岫  岻                                                                                            岫    岻 
Where   岫 岻( 岫 岻)     { (  )}                                                     岫    岻 
and m=h if  (  ) is defined as in (2 – 70) or m=h-1 if  (  ) is defined as in 
(2 – 71). 
If the calculated value of  T is less than the critical value (      ), the null 
hypothesis should be accepted meaning that the time series represent 
Gaussian white noise, which means that there is no hidden periodic 
component in the time series. It is worth mentioning that if the critical value 
is not available for all m values, it can be calculated using the following 
formula:  
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 (        )                                                                               岫    岻 
Where     (        )   岫        岻     and  

        significant level 

(2-2-5-2) Cumulative  Periodogram  Test 岷       峅 
In 1966, Bartlett explained that the cumulative periodogram can help in 
uncovering the hidden periodicities (periodic randomness). This can be 
performed by calculating the following test statistic:  岫  岻  ∑  (  )    ∑  (  )                                                                  岫    岻 
Where the value of m and the calculation of  (  ) can be chosen in the same 
way of Fisher test.  
After calculating  岫  岻, which is usually referred to as the normalized 
cumulative periodogram, Kolmogorov smirnov test is applied by 
determining its limits as follow: 
The middle line, so called theoretical line, should be plotted from (0,0( to (π, 
1), then the upper and lower limits should be plotted as well through the 
following formulas 

Upper limit = theoretical line +  
       √                                             (2 – 78)                                     

Lower limit = theoretical line - 
       √                                              (2 – 79)                                     

Where         can be determined by using table (2 – 2)  
 

Table (2-2) 
Coefficients for Calculating Approximate Probability Limits for 

Cumulative Periodogram Test岷 峅 
alpha 0.01 0.05 0.10 0.25         1.63 1.36 1.22 1.02 

 
If the value of  岫  岻 lies outside the two limits, lower and upper limits, we 
conclude that the time series contain hidden periodic sinusoidal component. 
However, if the value of  岫  岻 lies between the two limits, we conclude that 
the data do not contain periodic randomness. 
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(2-2-6) Selection of Harmonic Model 

     In general, the harmonic model consists of one or more harmonic 
components, which all should be significant. Therefore, after calculating the 
periodogram using the formulas in (2 – 70) or (2 – 71) according to the 
number of the series observations and after ensuring that hidden periodic 
components exist in the data using one of the two tests explained in (2-2-5), 
it is necessary to determine the number of significant harmonic components 
that consist the model. To do that, one of the following two methods can be 
followed: 

1. Method one: 岷     峅 
Application of  Fk statistic:     岫   岻  岫  岻 ∑  (  )                                                                  岫    岻 

Where the    statistic follows the   distribution with two degrees of 
freedom (N-3) and 2.    statistic can examine the following hypotheses: 
             

against                        

By comparing the calculated Fk with the critical       岫     岻 , we can 
accept the alternative hypothesis if Fk >       (2, N-3), which means that the 
harmonic component k is significant.  
 

2. Method TWO: 岷      峅 
     The contribution percentage of the harmonic component in the variance is 
calculated using the following formula: 
A) If the number of observations of the stationary time series is odd, the 
following formula should be used         ̂                                                                      岫    岻 
Where 

      ∑岫    ̅岻  
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   ∑ (  ) 
    

   ∑ ̂   
    

 

B) If the number of observations of the stationary time series is even, the 
following formula should be used:         ̂                                                                岫    岻 
Where       ∑  ̂     

     ̂   
while the contribution percentage of the harmonic component j=h can be 
calculated using the following formula:         ̂                                                                                            岫    岻 
After calculating H.C.V values, it should be ranked descending. Then, the 
statistic   , shown in method one, should be applied on the harmonic 
components that have contribution percentage equal to or more than 95%.  
 

(2-2-7) Spectrum 岷        峅 
     The spectrum is a tool that is used to analyse time series in the frequency 
domain. This tool can explain the variance distribution of time series in 
specific domain of frequencies. The spectrum is mathematically defined as 
shown below: 

Kintchine and Wiener explained that for each stationary random process 
with autocovariance function   , there is a monotically increasing function  岫 岻 that satisfy the equation 

   ∫    岫  岻  岫 岻                                                                          岫    岻 
  

This equation is called the spectral distribution equation.  
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By looking at (2 – 84), we can find that the physical interpretation of the 
spectral distribution function is that   岫 岻  represents the contribution to the 
variance of the series, which is accounted for by frequencies in the range (0, 
λ(. This function can satisfy the following conditions: 

1-  岫 岻                                                                               岫    岻 
2-  岫 岻                                                                                         岫    岻 

Because this function is monotically increasing, it is possible to analyse it to 
two functions   岫 岻 and   岫 岻 Where  岫 岻    岫 岻    岫 岻                                                                           岫    岻 
where   岫 岻 is a non-decreasing continuous function and   岫 岻 is a non-
decreasing step function. 

This analysis is similar to Wold decomposition where   岫 岻 is related to the 
indereministic component of the process and   岫 岻 is related to the 
deterministic component of the process. Consequently, for purely 
indeterministic processes, we can get   岫 岻 = 0. As a result,  岫 岻 will be 
continuous function at 岷   峅 for indeterministic discrete time series. 

By deriving  岫 岻 with respect to λ at (0, π(, it is possible to obtain the 
spectrum, referred to as  岫 岻, as shown in the following formula:  岫 岻      岫 岻                                                                                       岫    岻 
By substitution of (2 – 88) in (2 – 84), we can obtain 

   ∫    岫  岻  岫 岻  岫 岻                                                                   岫    岻 
  

The formula in (2–89) represents the spectral representation for 
autocovariance function.  

By reversing the above relationship, we can get  岫 岻    ∑                               
                                     岫    岻 

From (2 – 90), we find that the spectrum represents Fourier transform of the 
autocovariance function. In addition, because    is an even function, it is 
possible to write (2 – 90) in the following formula: 
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 岫 岻    [    ∑      岫  岻   
   ]                                                   岫    岻 

     There are several formulas to define the spectrum that differs among each 
other by the constant multiple and the range of the definition of  岫 岻  
 The most common definition of the spectrum is  岫 岻     ∑          

                                                      岫    岻 
which can be obtained by reversing the following relationship: 

   ∫       岫 岻  岫 岻                                                                        岫    岻  
   

The characteristics of the spectrum 

1-  岫 岻 is a continuous real-valued non-negative function 
i.e. |  岫 岻| =  岫 岻 

2-  岫 岻 is periodic with period    
i.e.  岫 岻   岫    岻 

3-  岫 岻 is a symmetric even function 
i.e.  岫 岻   岫  岻 

4- ∫   岫 岻 岫 岻                                                                          岫    岻 
 
This means that if the spectrum is plotted, the fourth character means that 
the total area under the spectrum curve represents the process variance. 

(2-2-8) Spectrum of ARMA Models 岷        峅 
Let   , where k = 0,  1,  2,…, a sequence of autocovariancies. Thus, the 
autocovariance generating  function  can be defined in the following 
formula:  岫 岻  ∑                                                                                        岫    岻 

     

by comparing equation (2 – 95) with equation (2 – 92), we can obtain  岫 岻       (    )                                                                                岫    岻 
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If    is indeterministic stationary time series with a zero mean, it is possible 
to write it using Wold representation in the following formula:      岫 岻              岫 岻  ∑       

                                   岫    岻  
In addition, the autocovariance generating  function for this series can be 
defined by the following formula  岫 岻       岫 岻 岫   岻                                                                        岫    岻  
and by assuming that the series    follow ARMA model, we can obtain    岫 岻     岫 岻                                                                               岫    岻   
and by comparing equation (2 – 99) with equation (2 – 97), we obtain   岫 岻    岫 岻  岫 岻                                                                                      岫     岻  
and by substituting equation (2 – 100) in equation (2 – 98), we obtain   岫 岻         岫 岻  岫 岻     岫   岻  岫   岻                                                             岫     岻 
and thus  (    )     |  (    )  岫    岻|                                                                   岫     岻 
and by substituting equation (2 – 102) in equation (2 – 96), we obtain  岫 岻            |  (    )  岫    岻|                                                               岫     岻 
The formula in (2 – 103) represent the spectrum of the model ARMA (p,q). 

(2-2-9) The Relationship Between the Spectrum and the Autocorrelation 
Function 岷    峅 
Most of the time, it is useful to use the normalized form of the spectrum that 
can be obtained as shown below  岫 岻   岫 岻                                                                                            岫     岻 
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and by using equation (2 – 92), we obtain   岫 岻     [   ∑      岫  岻   
   ]                            岫     岻  岫 岻 is often referred to as the normalized spectrum or the spectral density 

function where ∫  岫 岻   dλ = 1 which means that  岫 岻 has the same 
characteristics of the ordinary probability density function. 

(2-2-10) Methods of Spectrum Estimation 岷  峅 
Spectral analysis is a name that is given to the methods of spectrum 
estimation or the spectral density function. There are several methods 
including: 
 

1-  The First Method 岷  峅 
By using function (2 – 92), we can obtain the spectrum estimator of the time 
series    that consists of N observations as shown in the following 
formulas:  ̂岫 岻     ∑         岫   岻

   岫   岻                                                             岫     岻 
  ̂岫 岻     岷    ∑       岫  岻        峅                                            岫     岻 
Where equation (2 – 107) is called the sample spectrum. 
 

2-  The Second Method 岷 峅 
It is possible to rewrite equation (2 – 70) of the periodogram as follow:  (  )    岫      岻岫      岻                                                      岫     岻   (  )                                                                                            岫     岻  
Where     is the complex conjugate of   . By using the values of   ,    from 
(2 – 60) and  (2 – 61), we obtain       ∑   岷   岫  岻      岫  岻峅                                                 

    

     ∑                                                         
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     ∑岫    ̅岻                                                                      岫     岻 
    

      ∑岫  ̀   ̅岻     ̀                                                                岫     岻 
 ̀   

and by substituting equation (2 – 110) and (2 – 111) in equation (2 – 109), 
we obtain  岫 岻    ∑ ∑岫    ̅岻 岫  ̀   ̅岻 

 ̀      岫   ̀岻                        岫     岻  
    

Since     ∑岫    ̅岻 岫      ̅岻   
    

The transformation k =    ̀ transforms equation (2 – 112) into   岫 岻   ∑         岫   岻
   岫   岻                                                                 岫     岻 

 岫 岻   [    ∑       岫  岻     
   ]                                 岫     岻 

and by comparing equation (2 – 114) with equation (2 – 107), the spectrum 
estimator as a function of the periodogram can be given in the following 
formula:  ̂岫 岻      岫 岻                                                                                     岫     岻 
 
3- The Third Method: Smoothing 岷     峅 
The spectrum estimator that were obtained using the first and the second 
method is unbiased estimator, yet not consistent. To obtain a consistent 
estimator of the spectrum, it is possible to smooth the periodogram or the 
spectrum sample in the frequency domain. 
The periodogram smoothing in the frequency domain is performed by 
smoothing the periodogram locally in the neighboring targeted frequency    
by using the weighting function   岫  岻 as follow: 
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 ̂ (  )  ∑   岫  岻 ̂岫     岻                                                  岫     岻  
Where     represents the number of frequencies used in the smoothing and    
represents Fourier frequencies while   岫  岻 satisfies the following 
conditions: 
1-     ∑   岫  岻                                                                               

2-      岫  岻    岫   岻                                                                        
3-         ∑    岫  岻                                                                   岫  岻 is called the spectral window. 
It is also possible to smooth the sample spectrum using the same method but 
using the following formula  ̂ (  )  ∫   岫 岻 ̂岫   岻 

                                                           岫     岻 
Where   represents the frequencies in (- π, π( while   岫 岻 satisfies the 
following conditions: 
a-  ∫   岫 岻                                                                                    
b-    岫 岻    岫  岻                                                                             
c-          ∫    岫 岻                                                                      
it is worth mentioning that the spectral window is also defined as Kernel. 
It is also possible to smooth the spectrum in the time domain using the lag 
window by applying the weighting function on the sample autocovariances 
as shown in the following formula:  ̂ 岫 岻     ∑  岫 岻        岫   岻

   岫   岻                                                岫     岻 
The weights of the weighting function are selected in a proportional way 
with the lag magnitude k. The weighting function is defined by the following 
formula:  岫 岻   (  )                                                                                     岫     岻 
Where M is called the truncation point, and its value depends on the sample 
size N. 
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The weighting function is often derived from a bounded even continuous 
function  岫 岻 where it satisfies the following conditions: 

a-| 岫 岻|                                                                                            
b-   岫 岻                                                                                             
c-   岫 岻   岫  岻                                                                              
d-   岫 岻                                    | |                                            
The weighting function  岫 岻 is defined as the lag window, which is related 
to the spectral window   岫 岻 by the following formula:    岫 岻  ∑   岫 岻                                                                   岫     岻  
From equation (2 – 120), we can find that the spectral window represents 
Fourier transformation to the lag window. Thus, it is possible to obtain the 
lag window by reversing Fourier of the spectral window as shown below:   岫 岻  ∫   岫 岻     

                                       岫     岻 
The most frequently used windows are: 

 

A- The Rectangular (Truncated) Window 
The rectangular window is defined by the following formula    岫 岻  |                                            | |                                               | |                                岫     岻 
Where       and M is called the window parameter.  
The rectangular spectral window can be obtained by using equation (2 – 
120) as shown in the following formula    岫 岻           岫 岫  岫  ⁄ 岻岻岻    岫  ⁄ 岻                                                    岫     岻 
The rectangular spectral window is also defined as Dirichlet Kernel or Fejer 
Kernel.  
 

B- Bartlett’s )Triangular( Window 
Bartlett’s lag window is defined by the following formula     岫 岻  |  | |  ⁄                                        | |                                                             | |                  岫     岻 
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While the Bartlett’s spectral window is obtained by the following formula :    岫 岻            岫   ⁄ 岻    岫  ⁄ 岻                                                                岫     岻 
 

C- The Blackman – Tukey window 
The Blackman – Tukey window is defined by the following formula:    岫 岻  |            岫   ⁄ 岻           | |                                                           | |                     岫     岻 
Where        

While the Blackman – Tukey spectral window can be obtained using 
function (2 – 120) as shown in the following formula:     岫 岻      岾    峇  岫    岻   岫 岻      岾    峇 岫     岻 
If   = 0.23, the Blackman – Tukey window is called the Tukey – humming 
or the humming  window. 
 

D- Parzen Window 
Parzen lag window is defined by the following formula:     岫 岻  |   岫  ⁄ 岻   岫| |  ⁄ 岻     | |  岫  ⁄ 岻              岫  | |  ⁄ 岻                          岫  ⁄ 岻  | |                                                              | |                          (2 – 128) 

While the Parzen spectral window can be obtained using equation (2 – 120) 
as shown in the following formula:    岫 岻       峪     岫   ⁄ 岻岫  ⁄ 岻    岫  ⁄ 岻崋                                                  岫     岻 
 

4- The Fourth Method岷        峅 
Based on equation (2 – 103), it is possible to estimate the spectrum for 
ARMA models as follow: 
a- The Spectrum of AR (1) Model  

The spectrum estimation of AR (1) model can be obtained using the 
following formula:  ̂岫 岻                ̂     ̂      岫 岻                                       岫     岻 
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The spectrum shape of AR (1) model relies on     signal. If      0, the 
spectrum is dominated by low frequency components. However, if     0, 
the spectrum is dominated by high frequency components. Figure (2 – 1) 
shows the spectrum of AR (1) model when  1    0.  
 

 
Figure (2-1) 

Spectrum of AR(1) 岷  峅 
 
 
b- The Spectrum of MA (1) Model 
The spectrum estimation of MA (1) model can be obtained using the 
following formula:  ̂岫 岻            (   ̂     ̂    岫 岻)                                          岫     岻 
The spectrum shape of MA (1) model also relies on  1  signal. If  1    0, the 
spectrum is dominated by low frequency components. However, if  1    0, 
the spectrum is dominated by high frequency components.  Figure (2 – 2) 
shows the spectrum of MA (1) model when  1    0.  
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Figure (2-2) 

Spectrum of MA(1) 岷  峅 
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2.3 Artificial Neural Networks 
 

 (2-3-1) Artificial Neural Networks Definition 

     The Artificial Neural Network (ANN) is a computational technique 
designed to mimic the human brain behaviour in order to perform a 
particular task. ANN processes information in parallel throughout special 
processing units called nodes or neurons. The importance of ANN is its 
ability to learn and model linear and nonlinear relationships by using 
previous examples of both inputs and/or outputs of the relationships. 

     One of the main functions of the ANN is to understand the process in 
which the human brain processes and analyses information and obtains the 
data features by learning, differentiation, recognising, and makes use of all 
of these features in order to build a mathematical model which is capable of 
analysing data and then predicting outputs.   

     ANN is used in different fields starting from medicine where it is used 
for disease diagnosis and early warnings for instance.  
 

(2-3-2) Artificial Neural Network Structure 岷     峅 
In general, the ANN consists of three levels: 

1- Input Level  
     This level consists of one layer called the input layer, which consists of a 
number of units called the input units. 
 

2- Hidden Level  
     This level consists of one layer or more called the hidden layer(s). Every 
hidden layer has its own processing units called the hidden nodes. 
 

3- Output Level  
     This level consists of one layer called the output layer. This layer consists 
of a number of processing units called the output nodes.  
    These three levels are connected to each other by a connections strength 
called the weights that connects each level to the next or previous level. The 
processing units, which is called neurons or nodes, consist of two parts as 
shown in figure (2-3 ): 



40 

 

 

*Figure (2-3) 

Artificial Neuron 

a: Summation Function  

     This function collects the input signals to the nodes and puts it in a linear 
combination in order to produce one signal called the net input as shown 
below:                                                 
    ∑                                                                                 (2-132) 

Where  

s: net input     : input variable     : weights  

Normally, a bias node is added to the inputs nodes, and then equation (2-
132) can be written as:   ∑               :                                                                         (2-133) 

where b represents the bias. 

*Work of the researcher 
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b: Activation Function  

     This function represents the second part of the processing unit, which is a 
mathematical formula that can be linear or nonlinear. This function 
processes the net input (s) and then produces the output of the processing 
node in a range that fits with the limits of the activation function of that 
node. The importance of the activation function is to prevent the output of 
the processing node and then then output of the particular layer from 
exceeding the limits of the activation function and reaching high values that 
can stop the learning process or the overall net to be collapsed [21]. The 
activation function is used only in the hidden layers and the output layer, and 
it is sometimes called transformation or squashing. 

    In theory, every continuous function can be considered an activation 
function if it is differentiable but in practice every bounded, monotically 
increasing and differentiable function can be used as an activation function 
[11].  

The commonly used activations functions in the processing nodes are: 

1- Linear Function  
g(s)=s                                                                                   (2-134) 
g  (s(=1 
 

 
Figure (2-4) 

Linear Function 
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2- Sigmoid Function   岫 岻                                               岫 岻          岫     岻  ̀岫 岻   岫 岻岫   岫 岻岻 

 

 

Figure (2-5) 

Sigmoid Function 
 

3- Hyperbolic Function   岫 岻                                                              岫 岻          岫     岻      ̀岫 岻      岫 岻 

 

Figure (2-6) 

Hyperbolic Function 
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     It is important to mention that the activation function in the input layer 
has nothing to do with the input signal and there is no processing at the input 
layer of the neural network. The only function of the input layer is to collect 
the input and pass it to the next layer (hidden layer). The number of the input 
units matches the number of the input variables of the neural network.  

 (2-3-3) Artificial Neural Networks Architecture 岷        峅 
     The architecture of the artificial neural networks means how the nodes 
form the layers of the network and the layers are connected to each other. 
The ANN can be classified according to the number of the layers into two 
main types: 

 (2-3-3-1) Single Layer Networks 岷     峅 
     This type of ANN has only input and output layers, which means that 
there is no hidden layer. This type of ANN has one layer of weights that 
connects the input and the output layers. When applying the input signal    
to this type of ANN, the output signal will be calculated as follow:      岫  岻 
       (∑            )                                                     岫     岻 
 This type of ANN is used to solve the problem of patterns classification. 
Perceptron and Adaline are types of this ANN. Figure (2-7) show the single-
layer ANN. 
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*Figure  (2-7)  

Single-Layer Artificial Neural Network 
 
 

(2-3-3-2) Multi-Layer Networks 岷     峅 
     This type of ANN consists of three levels: the input level, the hidden 
level and the output level. The hidden level can be one hidden layer of nodes 
or more. This type of ANN has the ability to solve complex problems that 
cannot be solved by the single layer network. The reason for that is the 
existence of the hidden level that contains one or more hidden layers that 
gives the ANN more ability and flexibility to model the relationship between 
the inputs and the outputs. This type of ANN takes much more time to learn 
than the single layer ANN, but it gives much more powerful models than the 
single layer ANN.  
 
 
 
 
*Work of the researcher 
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When applying input to this type of ANN, the out is calculated as follow:           岫           岻                            岫     岻  
Where: 
N: number of hidden layers  
Zm+1: output vector of the layer m+1 
gm+1 : activation function of the layer m+1 
bm+1: bias vector of the layer m+1  
Xm+1: weights matrix of the layer m+1 
Z0 = V, and V is the input vector.  
The multi-layer network is shown in figure (2-8) below: 
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*Figure  (2-8)  
Multi-layer Artificial Neural Network 

*Work of the researcher 
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(2-3-4) Training Algorithms 岷           峅 
     The training in ANN means adjusting the values of the weights and 
biases in the network, and this process is sometimes called the learning 
process. The main aim of the training is to teach the network to do specific 
tasks.  
The training algorithms are divided into three main categories: 
 

 (2-3-4-1) Supervised Training 岷     峅 
     During the supervised training, the training data is applied as two pairs of 
vectors: the first pair is the input vector and the second pair is the desired 
vector. When the input vector is applied to the network, the ANN starts 
comparing the output of the network with the desired data. The ANN then 
uses the comparison result (error) to update the weights of the network and 
the biases in order to reduce the error or the difference between the network 
output and the desired output.  
The error is calculated as follow 
Error = target output – actual output                                              (2-139)   
Perceptron learning rule is an example of the supervised training.  
 

(2-3-4-2) Unsupervised Training 岷     峅 
     The unsupervised learning is used when there is only an input vector and 
there is no output vector. In this case, the ANN will figure out the properties 
of the input values and then stimulate its nodes and weights based on the 
training algorithm and the input vectors.  
There some types of ANN that uses this type of training such as Hamming 
Network. The unsupervised training sometimes called the competitive 
training.  
 

 (2-3-4-3) Reinforcement (Graded) Training 岷     峅 
     This type of training is considered an intermediate training form between 
the supervised and unsupervised training. Data is applied to the network in 
this type of training as an input vector only, exactly as in the unsupervised 
training, and then the training algorithm is applied which is considered the 
performance indicator as mentioned in the supervised training. This type of 
training is not commonly used, and it is used in control systems applications 
and the self-organising neural training.  
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(2-3-5) Hebb Learning Rule 岷        峅 
     Hebb learning rule is the first rule that had been used to train the ANN in 
1949, proposed by Donald Hebb to train the network and adapt the weights 
of it. The linear associator is one of the networks that are trained by the 
Hebb Learning Rule as shown in figure below: 

 
Figure (2-9) 岷  峅 
Linear Associator 

 

     After applying the input vector V for the linear associator, then the output 
vector Z is calculated as follow: 
Z = XV                                                                                         (2-140) 
where 
 X :  weights matrix 
The output vector can also be obtained as follow:    ∑                                                                                                     (2-141) 
     It can be concluded from equation (2-141) that the weights vector 
represents the connection between the input vector V and the output vector 
Z. This explains  the Hebb’s postulate: “if two neurons on either side of a 
synapse are activated simultaneously, the strength of the synapse will 
increase”. This mean that if both Zi and Vj are positive then Xij should 
increase. Thus, the mathematical expression of the Hebb’s postulate  will be:                   (   )  (   )                                                          (2-142)     
Where      : represents the jth element in the input vector Vj     : represents the ith element in the input vector Zi  
η : positive constant called the learning rate 
f i gj : activation functions 
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for simplification, equation (2-142) can be written as:                                                                                                   (2-143)  
From equation (2-143), it can be concluded that the change in the weight is 
not only increased when both Zi and Vj are positive, but also increased when 
both of them are negative, and then decreased when they have different 
polarity (one is positive and the other is negative). 
Hebb’s Rule is classified into two types: 
 

(2-3-5-1) Unsupervised Hebb Learning Rule 岷     峅 
     Equation (2-143) is considered as a definition to the Hebb Rule for 
unsupervised learning because this method does not require any information 
about the desired output. This rule can be written in vector form as:                                                                                                  (2-144)  
Where η was assumed to be 1 for simplification. 
  
(2-3-5-2) Supervised Hebb Learning Rule 岷     峅 
     The supervised Hebb Learning was obtained by replacing the network 
output in equation (2-143) by the desired output as follow:                                                                                                      (2-145)  
 Where η is assumed to be 1 for simplification. 
Equation (2-145) can be re-written in a vector notation:                                                                                                 (2-146)  
If (input/output) pairs, {   1, d1}, {    2, d2}, …, {   Q, dQ}, was applied to the 
neural network assuming that the initial weights equal to zero so equation 
(2-146) can be re-written as follow:    ∑                                                                                                     (2-147)  
and equation (2-147) can be written in matrix form  
X = DVT                                                                                                                                               (2-148) 
Where D = [d1   d2 …  dQ] is the desired output, and 
 V = [  1     2 …   Q] is the input vector.  
If    is an input to the network, then the output vector is:       

     嵜∑      
   崟    
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    ∑   
   (     )                                                                               岫     岻 

 
Now there are two cases:  
Case 1: if the vectors    are orthonormal then:                                                                                                         岫     岻  
This means that the output of the network matches the desired output, which 
means that Hebb’s rule will produce the correct output for every input. 

Case 2: if the vectors    are not orthonormal then: 

     ∑      
                                                                                岫     岻 

Where the second term on the right hand side of equation 岫     岻 
represents the error which means that Hebb’s rule will not produce the right 
output in this case.  

     One of the methods that are used to reduce the error caused by the input 
variables in case of the non-orthogonal is the Pseudoinverse rule as follow:    岫   岻                                                                                     岫     岻 
Where A+ represents the Pseudoinverse of the matrix A. The importance of 
this rule is to decrease the performance index: 

 岫 岻  ∑           
                                                                 岫     岻 

When the input vectors    are non-orthogonal, by solving the equation                                                                                                        岫     岻 
by using the pseudoinverse rule to find the weights matrix  .  

     One of the main problem of the Hebb’s Rule is that it leads to high 
weights. There are some ways that can be followed to reduce the weights: 

a- Make the learning rate lower than 1 as follow                                                                               岫     岻 
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b- Add a decay term that makes the learning rate behave like a 
smoothing filter       岫   岻                                                                    岫     岻 

 
If け = 0 then Hebb’s rule will be a standard rule, and if け = 1 then Hebb’s 
rule will forget the old input patterns and only remember the most recent 
patterns, so that the け is normally a positive constant with a value of less 
than 1 to prevent the weights from a non-bounded increment. 
Equation 岫     岻  can be re-written by replacing the desired output by the 
difference between the actual output and the desired output as follow:            岫     岻                                                             岫     岻 
Equation 岫     岻 is called the Delta Rule, which is working to reduce the 
mean square error and then provide results similar to the pseudoinverse 
results. 
 

(2-3-6) Least Mean Square (LMS) Algorithm 岷        峅 
     This algorithm is an example of the supervised training and it is 
considered as an introduction to the back propagation algorithm. This 
algorithm was proposed in 1960 by Widrow-Hoff so that it is known also as 
a Widrow-Hoff algorithm. The LMS algorithm is considered as more 
powerful and more applicable than the perceptron algorithm. 
When applying the input vectors and the targeted vectors as pairs {v1 ,d1}, { 
v2 ,d2} … {vQ ,dQ} to the ANN and calculating the network output, then the 
LMS algorithm starts updating the weights of the network to reduce the 
mean square error. The LMS algorithm can be applied to many networks 
such as the Adaptive Linear Neural Network which is written as ADALINE 
and has a basic structure that matches the perceptron except that the 
ADLINE has a linear activation function as shown in figure below 
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Figure (2-10) 岷  峅 
Adaptive Linear Neural Network 

 

The output of the ADALINE can be calculated as follow:      岫    岻                                                                                                     岫     岻 
The weights and biases of the ADALINE can be updated by using LMS 
algorithm. 
By using the vectors     峙  峩                      [    ]                                 [              ]  

Where: 
P = the input vector  
Y = the parameters vector (weights and biases) 
The performance index (mean square error) can be written as:   岫 岻   岷  峅 
              岷岫     岻 峅                                                                   岫     岻 
The main idea of the LMS algorithm is to estimate the mean square error  岫 岻 by:   ̂岫 岻  岫 岫 岻   岫 岻岻  
             岫 岻                                                                                       岫     岻 
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where the expectation of error squared in equation 岫     岻 is replaced by 
the squared error in each iteration k as shown in equation 岫     岻. 
The gradient estimate, or what is called as the stochastic gradient, can be 
estimated as follow:  ̂ 岫 岻     岫 岻                                                                                  岫     岻 
The first element R of     岫 岻 are derivatives of the weights, and R+1 of     岫 岻 are derivatives of the biases which means:  岷   岫 岻峅          岫 岻                                                    
                       岫 岻        岫 岻                                                           岫     岻 岷   岫 岻峅         岫 岻                            
                            岫 岻     岫 岻                                                        岫     岻 
 
where         岫 岻     岫 岻                                                                            岫     岻     岫 岻                                                                                            岫     岻 
Thus, the gradient of the mean square error can be written as:  ̂ 岫 岻     岫 岻 
                  岫 岻 岫 岻                                                                      岫     岻 
By substituting the value of the estimated gradient in the steepest descent 
algorithm which has the following formula:                                                                                             岫     岻 
Where       岫 岻|     

 
We get             岫 岻 岫 岻                                                                  岫     岻 
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  岫   岻    岫 岻     岫 岻 岫 岻                                                岫     岻  岫   岻   岫 岻     岫 岻                                                                岫     岻 
 

Both equations 岫     岻 and 岫     岻 represent the LMS algorithm for 
updating the weights and the biases for any ANN with single layer 
(including ADALINE).  If ANN with single layer has more than one output 
node, then the LMS algorithm can be written as:  岫   岻    岫 岻      岫 岻 岫 岻                                              岫     岻    岫   岻    岫 岻      岫 岻                                                            岫     岻 
Where  ei(k) is the ith element at the iteration k 
The LMS algorithm can be also written in a matrix form:   岫   岻   岫 岻     岫 岻                                                            岫     岻  岫   岻   岫 岻     岫 岻                                                               岫     岻 
The LMS algorithm normally known as delta rule or an Approximate 
Gradient Descent Algorithm. 
 

(2-3-7) Backpropagation Algorithm 岷        峅 
     The Backpropagation Algorithm is considered a generalization of the 
Least Mean Square algorithm, and it is used to train the multi-layer 
networks. This algorithm is sometimes called the steepest descent 
backpropagation algorithm because it is an approximation of the steepest 
descent algorithm. The Backpropagation Algorithm (BP or SDBP) is 
considered one of the most commonly used algorithms among all the 
supervised training algorithms in neural networks [26] [41]. The training of 
the neural networks by using the BP algorithm has three main stages: 

(2-3-7-1) Forward Propagation Stage 岷     峅 
     In this stage, the inputs are applied to the network and the weights are 
randomly generated with small values in addition to identifying the learning 
rate within a period (0,1). The data is processed starting from the input layer 
then the hidden layer(s) and ending at the output layer. The inputs in the 
node (i) can be described as:     ∑          

                                                                            岫     岻  
Where nm-1 represents the number of the nodes in the hidden layer (m-1). 
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The weights are adapted by using steepest descent algorithm to approximate 
the mean square error as follows:      岫   岻       岫 岻           ̂                                                      岫     岻    岫   岻     岫 岻         ̂                                                      岫     岻 
     Because the error is indirect function of the weights in the hidden layer, 
the chain rule is used to calculate the partial derivatives:         ̂        ̂                                                                           岫     岻       ̂        ̂                                                                         岫     岻 
Based on the definition of the inputs in equation 岫     岻, we get                                                                                    岫     岻 
 by set           ̂                                                                                          岫     岻 

Where     is the sensitivity of the  ̂ to changes in the ith element of the net 
input at layer m.  
By using equations 岫     岻 and 岫     岻, the equations 岫     岻  and 岫     岻 can be written as follow:         ̂                                                                                         岫     岻       ̂                                                                                               岫     岻 
By substituting equation 岫     岻 and 岫     岻 in the equations 岫     岻 and 岫     岻 respectively, the final formula of to update the weights 
and biases can be written as follow:      岫   岻       岫 岻                                                              岫     岻    岫   岻     岫 岻                                                                    岫     岻 
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Equation 岫     岻 and 岫     岻 can be written in a matrix form as 
follows:   岫   岻    岫 岻     岫    岻                                              岫     岻   岫   岻    岫 岻                                                                   岫     岻 
where          ̂  峪       ̂           ̂                  ̂    崋                 岫     岻 

 
(2-3-7-2) Backward Propagation Stage 岷     峅 
     The sensitivity is calculated in this stage starting from the last layer and 
backward to the hidden layer(s) and ending at the input layer. This 
calculation is based on the errors of the output layer and the weights that are 
calculated in the forward propagation. This process is called the 
backpropagation since it describes the recurrent relationship where the 
sensitivity at the layer m is calculated based on the sensitivity at the layer 
m+1. In order to describe the recurrent process, the Jacobian matrix with 
size nm x nm+1 is defined as:                                                                               

               嵜∑                  
   崟 

                     ̇ (   )                                                                         岫     岻 
Where  ̇ (   )         (   )                                                                    岫     岻 
The Jacobian matrix can then be written as:               ̇ 岫  岻                                                               岫     岻 
Where  ̇ 岫  岻 is a diagonal matrix nm x nm and the main diagonal elements 
are:   ̇ (   )                                              
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by using the chain rule, the recurrent relation can be written in a matrix 
form:      ̇ 岫  岻岫    岻                                                                 岫     岻 
Where m=3,1,…,M-1 

It is clear that the sensitivity    is calculated starting from the last layer and 
ending at the first layer:               
The sensitivity at the last layer (output layer) is calculated as follows:            ̂     

                

            ∑ (     )      
 

         (     ) ̇ (   )                                                              岫     岻                               
Where  

  ̇ (   )         (   )                                                                 岫     岻                                
Equation 岫     岻 can be written as a matrix form:       ̇ 岫  岻岫   岻                                                               岫     岻     
    

 (2-3-7-3) Weights Adaptation Stage 岷     峅 
     After the forward and backward propagation, the process of adapting 
weights and biases is started based on the results of the previous two stages:   岫   岻    岫 岻     岫 岻                                                   岫     岻                            
Where    岫 岻      岫    岻                    岫   岻    岫 岻     岫 岻                                                    岫     岻                         
Where    岫 岻       

By using momentum filter, the weights and biases can be adapted as follows: 
 
 
 



ヵΒ 

 

  岫   岻    岫 岻      岫   岻  岫   岻   岫    岻      岫     岻          岫   岻    岫 岻      岫   岻  岫   岻                       岫     岻                         
 
Where       
 
(2-3-8) Criteria of Model Selection 岷  峅 
     The following criteria are used to compare between the models to choose 
the best model to represent the data.  

1- Mean Square Error (MSE)         ∑(     ̂ )  
                                                                 岫     岻 

 
Where  
N: number of observations    : the real observations   ̂ : the estimated observations  
 

2- Mean Absolute Error (MAE)         ∑|     ̂ | 
                                                                 岫     岻 

 

3- Mean Absolute Percentage  Error (MAPE)          ∑|     ̂   | 
                                                                 岫     岻 
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3. The Application Side 
(3-1)  Data Set 

     The exchange rate can be defined as a number of units of a certain 
currency that is exchanged with one unit of another currency. In addition, 
the exchange rate can also be defined as the value of two different currencies 
that is obtained from the relationship between them. For example, the Iraqi 
dinar is the national currency in Iraq, which is strongly related to the US 
dollar at a certain exchange rate as the federal budget of Iraq is based on US 
dollar. The exchange rate between the Iraqi Dinar and the US Dollar 
witnessed many fluctuations during the 1990s because of the war and the 
conflicts afterwards. The exchange rate has a high level of importance 
because the national economic is highly dependent on it. 

     The inside economic balance represents the nearly fixed prices with a 
slight economic growth, while the outside economic balance represents the 
ratio between the outcome or external payments and the general income. In 
other words, the economic balance represents the general commercial 
exchange with the outside world and the move of capital from and to Iraq.  

     Under the golden pricing system, the exchange rate between any two 
currencies is counted based on the golden value of each currency compared 
to the other currency. This system helps to limit the fluctuation in exchange 
rates to the minimum levels with very little tolerance based on the price of 
the gold which is semi-constant.  

     After the independence of the currency value from gold, the exchange 
rates witnessed high fluctuation rates, and they become highly dependent on 
the interest rate, economic growth and many other factors. 

     The exchange rate data of the Iraqi dinar and the US dollar has been 
gathered from the Central Bank of Iraq from 30/01/2004 to 30/12/2014. 

     During this study, we have used R and SPSS software to analyse the data.  
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Table (3-1) 

Exchange Rate of Iraqi Dinar vs US Dollar 

Month 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
1 1467 1453 1483 1323 1224 1179 1185 1185 1206 1226 1222 
2 1409 1459 1480 1299 1225 1178 1185 1185 1236 1231 1222 
3 1423 1469 1480 1290 1222 1178 1185 1185 1240 1255 1222 
4 1443 1474 1481 1284 1216 1179 1185 1187 1263 1267 1218 
5 1462 1473 1485 1275 1212 1187 1185 1196 1250 1270 1222 
6 1460 1468 1485 1269 1205 1180 1185 1197 1241 1237 1213 
7 1463 1476 1486 1261 1202 1184 1185 1197 1253 1218 1214 
8 1463 1480 1488 1253 1196 1184 1185 1199 1248 1209 1213 
9 1463 1481 1488 1249 1188 1183 1185 1200 1228 1211 1204 
10 1463 1475 1486 1245 1185 1183 1185 1200 1200 1220 1207 
11 1463 1477 1467 1240 1183 1183 1188 1200 1207 1218 1200 
12 1462 1479 1394 1216 1180 1185 1195 1218 1222 1222 1205 
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(3-2) Artificial Neural Network Methodology  

     The success of designing artificial neural network depends on the 
understanding of the problem that needs to be solved, and identifying the 
input variables that are required to build the network for prediction purposes. 

     It is commonly known that the data collection process depends on the 
problem that needs to be solved, while in neural network design, the data 
collection depends on the training algorithm that will be used to train the 
neural network. If the training algorithm is one of the supervised algorithms 
then these is a need to have both the input and output data. However, if the 
training algorithm is unsupervised algorithm then no need to have the output 
data where the input data will be enough. 

(3-2-1) Identifying the Input Nodes  

     The most important aspect of designing neural networks is to identify the 
nodes that are required in each level. The number of input nodes is the same 
as the number of the input variables. In the case of causal problems data 
such as the regression problems, it is easy to identify the number of the input 
nodes where it will be the same as the number of the input variables. 
However, in time series data there is no rule to identify the input variables. 
For this reason, the Box – Jenkins methodology will be applied to choose the 
input variables. 

 Applying Box – Jenkins Methodology  
1- Model Identification  

     In this stage, the time series    is plotted for the data of the Iraqi 
Dinar exchange rate according to the US dollar as shown in figure (3-
1)  
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Figure (3-1)  

Exchange Rate of Iraqi Dinar vs US Dollar 
 
By examining figure (3-1), it is clearly shown that the time series is 
not fluctuating or oscillating around a certain level, and it has a 
general decreasing trend that proves the time series    is not mean 
stationary and not variance stationary.  
It is also clearly shown in figure (3-2) below that the SACF is slowly 
exponentially decreasing toward zero and is not cut off after the 
second lag or the third lag which also means that the time series is not 
mean stationary. 
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Figure (3-2) 

 Correlogram of the Original Time Series    
 
The non-stationarity of the time series    has also been proved by 
applying the ADF, P.P, KPSS tests as shown in table (3-2) below  
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Table (3-2)  
Tests Results of the Original Time Series Yt 

 

By checking the P-value in table (3-2) for the three models of the tests  ADF 
and P.P, the null hypothesis is accepted which means that the time series    
has a unit root and this means that the time series is non-stationary. 

By comparing the value of the test statistic with the critical value in table (3-
2) for the two estimated models in the KPSS test, then the alternative 
hypothesis is accepted which means that the time series    is non-stationary.  

In order to achieve the stationary in variance, the Box-Cox transformation is 
applied as given in the equation (2-41) where λ=0. This means that the 
logarithmic transform of the time series     has been calculated in order to be 
variance stationary and then the first difference is taken in order to be mean 
stationary. 

To test the stationary of transformed data, we checked the correlogram of the 
transformed series    岫   岻(   岫   岻) s shown in figure (3–3), where 
we notice that SACF is cut off after the first lag which means that the time 
series     is mean stationary.  

Test Model Test 
Statistic 

Critical 
Values p-Value 

ADF 

without constant -0.837279 -1.943304 0.3514 
With constant -0.979861 -2.883756 0.7591 

With constant and time 
trend 

-1.307575 -3.444756 0.8817 

P.P 

without constant -1.397307 -1.943304 0.1504 
With constant -1.46627 -2.883756 0.5477 

With constant and time 
trend 

-1.200101 -3.444756 0.9059 

KPSS 
With constant 0.937165 0.643000  

With constant and time 
trend 

0.277682 0.146000  
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Figure (3-3)  

Correlogram of the Transformed Time Series     
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The ADF, P.P, and KPSS tests have been applied to the series    and the 
results are shown in table (3-3): 

Table (3-3) 

Tests Results of the Transformed Time Series Wt 

Test Model Test 
Statistic 

Critical 
Values 

p-Value 

ADF 

without constant -8.18208 -1.943304 0.0000 
With constant -8.197312 -2.883756 0.0000 

With constant and time 
trend 

-8.149873 -3.444756 0.0000 

P.P 

without constant -8.344295 -1.943304 0.0000 
With constant -8.382012 -2.883756 0.0000 

With constant and time 
trend 

-8.343332 -3.444756 0.0000 

KPSS 
With constant 0.214289 0.643000  

With constant and time 
trend 

0.098436 0.146000  

 

By checking the P-value in table (3-3) for the three models of the tests ADF 
and P.P, the alternative hypothesis is accepted which means that the time 
series    has no unit root (there is no need to take further differences) which 
means that it is stationary. 

By comparing the value of the test statistic with the critical value in table (3-
3) for the two estimated models in the KPSS test, then the null hypothesis is 
accepted which means that the time series    is stationary.  

After checking the stationarity of the time series   , the figure (3-3) has 
been checked again in order to identify the model. Based on the behavior of 
the SACF and the SPACF, the ARIMA (1,1,1) model has been recognized 
and identified as a primary model to represent the data. 
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2- Parameters Estimation  
  In this stage, the suggested primary model has been estimated by the Exact 
Maximum Likelihood Estimation method. Some models have been 
suggested which are very close to the primary model as:  ARIMA(1,1,0), 
ARIMA(2,1,0), ARIMA(2,1,2), ARIMA(2,1,1), ARIMA(1,1,2) and ARIMA 
(0,1,1) model as showen in table (3-4) . 

  To select the best model to represent the data, we calculated all the criteria 
including AIC, H-Q, BIC, MSE, MAE and MAPE of each estimated model 
as shown in table (3 – 5). 

Table (3-4) 
Estimated Parameters of ARIMA(p,d,q) Models 

ARIMA Parameters P-Value 

(2,1,2) 

 ̂  -0.180371 0.1145  ̂  -0.501118 4.14e-06  ̂  0.635411 1.28e-015  ̂  0.834250 7.00e-034 

(1,1,2) 
 ̂  -0.332391 0.0773  ̂  0.836455 4.24e-07  ̂  0.515426 4.44e-09 

(1,1,0)  ̂  0.431265 6.57e-08 

(1,1,1) 
 ̂  0.404445 0.0293  ̂  0.0338880 0.8672 

(2,1,1) 
 ̂  0.866848 0.5128  ̂  -0.227888 0.6809  ̂  -0.412057 0.7584 

(0,1,1)  ̂  0.0347870 3.32e-05 

(2,1,0(  
 ̂  0.443303 5.82e-013  ̂  -0.0253968 0.7719 
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Table (3-5) 
Estimated Criteria of ARIMA(p,d,q) Models 

 

 

 by checking the P-value of the estimated parameters for every model in 
table (3-4), the following models have not been considered: 

ARIMA(2,1,0), ARIMA(2,1,2), ARIMA(2,1,1), ARIMA(1,1,2), 
ARIMA(1,1,1). 

The reason for not considering the above models is because they have some 
non-significant parameters.  

Based on the value of the criteria in table (3-5) for ARIMA (1,1,0) and 
ARIMA (0,1,1) model, the ARIMA (1,1,0) model has been chosen as the 
best model to represent the time series. It is also noted that the estimated 
results in table (3-4) shows that the ARIMA (1,1,0) model satisfies the 
stationary condition |α1| = |0.431265| < 1. 

3- Diagnostic Checking 
      In this stage, both SACF and SPACF have been calculated and 
plotted for the residuals series of the ARIMA(1,1,0) model as shown in 
figure (3-4) and table (3-6) below: 

 
 

ARIMA AIC H-Q BIC MSE MAE MAPE 

(2,1,2) -856.127 -850.285 -841.751 
8.2251E-

05 
0.005552 0.077613 

(1,1,2) -855.403 -850.733 -843.905 
8.4133E-

05 
0.00549 0.076745 

(1,1,0) -850.17 -847.833 -844.419 
8.8425E-

05 
0.005308 0.07414 

(1,1,1) -848.21 -844.705 -839.585 
8.8409E-

05 
0.005307 0.074141 

(2,1,1) -846.496 -841.823 -834.996 
8.8286E-

05 
0.005339 0.074591 

(0,1,1) -845.428 -843.092 -839.678 
9.0732E-

05 
0.0054472 0.076101 

(2,1,0) -848.239 -844.734 -839.614 
8.8399E-

05 
0.005309 0.074167 
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Figure (3-4) 

 Correlogram of Residuals 

 

 

 

 

 

 

 

 

 

 

-0.2

-0.1

 0

 0.1

 0.2

 0  5  10  15  20  25

lag

Residual ACF

+- 1.96/T^0.5

-0.2

-0.1

 0

 0.1

 0.2

 0  5  10  15  20  25

lag

Residual PACF

+- 1.96/T^0.5



70 

 

Table (3 – 6) 

Autocorrelation Coefficients of the Residuals 
 

 
 

It is shown in figure (3-4) that all the autocorrelation coefficients of 
the residuals are not significantly different from zero and they lie 

within the period (
     √   ,  

     √ ) at significance level of alpha = 0.05. 

This means that the residuals represent white noise. 
The Ljung – Box test has been applied in this stage as well and the 
results are shown in table (3-7) below: 
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(3-7)Table  

Results of Ljung-Box Test 

Ljung-Box Statistic (   )   岫                岻 P-value 

14.0623 35.172 0.9251 

 

By checking the P-value of the test statistic, the null hypothesis is accepted 
which means that the residuals represent the white noise. 

Based on the Box – Jenkins methodology to represent the time series of the 
Iraqi Dinar exchange rate against the US Dollar, it can be concluded that the 
neural network input variable is the      variable which means that the input 
level of the neural network has only one node.  

(3-2-2) Identifying the Output Nodes  

     The output node is set to be only one because the goal is to predict one-
step-a head. The backpropagation algorithm has been chosen to train the 
neural network so that the input variable is set to be      and the output 
variable is set to be   .  
(3-2-3) Data Processing  

     It is rare to feed the neural network with both input and output data 
directly, and normally the data is being processed and scaled between lower 
bound and upper bound. [50] showed that the data processing is essential to 
simplify the learning of the neural networks and meet the requirements of 
the training algorithm. According to [63], showed that the data 
preprocessing helps avoid the calculations problems.  

The commonly used formula to preprocess data is:  岫 岻  岫   岻      岫 岻   岫 岻     岫 岻                                                         岷  峅 
Where: 

c , b : constants  

V: data vector  
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Usually, b = 0 and c = 1 which results in normalized formula that scale the 
data to be between 0 and 1. Another adjusted normalized formula can be 
done by setting  b = -1 and c = 1 which scale the data to be between -1 and 
+1. 

There are other formulas such as the standardized formula that scale the data 
between -1 and +1, and the simple formula that scales the data between 0 
and 1. 

(3-2-4) Activation Functions Selection  

     It is important to choose the activation functions before applying any data 
to the network in order to choose the right preprocessing formula for the data 
before applying it to the network.  

There is no standard rule to choose the activation functions in the hidden 
layer or the output layer of the network. Both [49,62] and [61,62] chose a 
specific activation function for each node in the layer. However, the majority 
of the networks have one type of activation function for all the nodes in a 
certain layer. Most papers reported the use of the logistic function in the 
hidden layer, while in the output layer the linear function was used when the 
training algorithm is conducted for classification. 

The non-linear activation functions are normally used when the training 
algorithm is used for prediction. [21] showed that the non-linear activation 
function is more efficient for financial data. Because there is no rule to 
choose the activation function, five models have been designed in this thesis: 

First Model: hyperbolic activation function for the hidden layer nodes and 
sigmoid activation function for the output layer node.  

Second Model: sigmoid activation function for the hidden layer nodes and 
sigmoid activation function for the output layer node.  

Third Model: hyperbolic activation function for the hidden layer nodes and 
Identity activation function for the output layer node.  

Forth Model: sigmoid activation function for the hidden layer nodes and 
Identity activation function for the output layer node.  

Fifth Model: hyperbolic activation function for the hidden layer nodes and 
hyperbolic activation function for the output layer node.  
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In tables (3-8) to (3-12), the data processing formula is set based on the 
activation function in the output layer.  

The models are shown in tables (3-8) to (3-12): 

 
Table (3-8)  

First Model: ANN(1) 

Activation Function 
for Hidden Layer 

Hyperbolic tangent 

Activation Function 
for Output  Layer Sigmoid 

Data Preprocessing 
Formula Normalized 

Number 
of 

Hidden 
Nodes 

MSE MAE MAPE 

Number 
of 

Hidden 
Nodes 

MSE MAE MAPE 

1 355.3003 13.8103 1.0669 6 244.4384 10.8591 0.8442 
2 239.2133 10.7915 0.8421 7 240.6842 10.4926 0.8174 
3 314.3509 12.3766 0.96 8 320.4959 12.2783 0.9625 
4 363.1231 14.0481 1.0874 9 268.5468 11.936 0.9279 
5 299.6979 12.6116 0.9751 10 276.1918 11.8453 0.9259 

 
 

Table (3-9)  
Second Model: ANN(2) 

Activation Function 
for Hidden Layer Sigmoid 

Activation Function 
for Output  Layer Sigmoid 

Data Preprocessing 
Formula Normalized 

Number 
of 

Hidden 
Nodes 

MSE MAE MAPE 

Number 
of 

Hidden 
Nodes 

MSE MAE MAPE 

1 308.7995 12.6732 0.98 6 400.6688 13.8814 1.0779 
2 399.0621 14.5312 1.0978 7 366.3151 14.5746 1.1027 
3 337.6484 12.7363 1.0029 8 272.8888 9.5703 0.7261 
4 246.7104 10.5956 0.8088 9 297.0384 12.5679 0.9652 
5 256.438 11.5061 0.8838 10 272.4871 11.658 0.9101 
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Table (3-10) 

 Third Model: ANN(3) 
Activation Function for 

Hidden Layer Hyperbolic tangent 

Activation Function for 
Output  Layer Identity 

Data Preprocessing 
Formula Normalized 

Number 
of Hidden 

Nodes 
MSE MAE MAPE 

Number 
of Hidden 

Nodes 
MSE MAE MAPE 

1 177.339 7.6599 0.5865 6 184.5194 8.0842 0.6196 
2 173.3501 7.6115 0.5843 7 196.4128 8.754 0.6751 
3 198.175 8.6334 0.6629 8 179.8835 7.9118 0.6056 
4 183.9683 8.0917 0.6195 9 182.1894 7.9497 0.6101 
5 183.2493 7.9365 0.6103 10 184.5148 8.1362 0.6227 

 

 

Table (3-11)  
Forth Model: ANN(4) 

 

 
 
 
 

Activation Function for 
Hidden Layer Sigmoid 

Activation Function for 
Output  Layer Identity 

Data Preprocessing 
Formula Normalized 

Number 
of Hidden 

Nodes 
MSE MAE MAPE 

Number 
of Hidden 

Nodes 
MSE MAE MAPE 

1 211.7407 9.3136 0.7118 6 182.8886 8.0308 0.6238 
2 222.3407 9.6718 0.7421 7 198.721 8.6888 0.6715 
3 185.2495 8.2581 0.6293 8 181.8466 7.9717 0.6123 
4 195.651 8.7934 0.6728 9 220.4262 9.1451 0.7009 
5 191.5193 8.686 0.6657 10 185.0319 8.1435 0.6259 
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Table (3-12)  
Fifth Model: ANN(5) 

Activation function for 

hidden layer 
Hyperbolic tangent 

Activation function for 

output  layer 
Hyperbolic tangent 

Data preprocessing 

formula 
Adjusted normalized 

Number 

of 

Hidden 

Nodes 

MSE MAE MAPE 

Number 

of 

Hidden 

Nodes 

MSE MAE MAPE 

1 298.7304 12.7281 0.9971 6 307.0816 12.5883 0.992 

2 183.2822 8.6717 0.6709 7 284.4868 11.752 0.9224 

3 175.6466 8.3228 0.6452 8 267.8135 11.5292 0.899 

4 274.034 11.7873 0.9162 9 281.4044 11.748 0.923 

5 283.5786 11.9748 0.9335 10 304.3154 12.8228 1.0107 

 

Table (3-13) 

Minimum Values of the Criteria 

Model MIN 
MSE 

Number of  
Hidden 
Nodes 

MIN 
MAE 

Number of  
Hidden 
Nodes 

MIN 
MAPE 

Number of  
Hidden 
Nodes 

ANN(1) 239.2133 2 10.4926 7 0.8174 7 
ANN(2) 246.7104 4 9.5703 8 0.7261 8 
ANN(3) 173.3501 2 7.6115 2 0.5843 2 
ANN(4) 181.8466 8 7.9717 8 0.6123 8 
ANN(5) 175.6466 3 8.3228 3 0.6452 3 
 

 (3-2-5) Identifying the Number of the Hidden Layers  

     In theory, a neural network with one hidden layer and enough number of 
nodes in this layer, can estimate any continuous function [21]. However, in 
practice, the neural network is normally trained by using one hidden layer, 
and if the target is not achieved then it will be trained by using two hidden 
layers. Many studies showed that any neural network with more than four 
hidden layers will not get better results so that the models is table (3-8) to 
table (3-12) will be designed with one hidden layer. 
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(3-2-6) Identifying the Number of the Hidden Nodes 

     There is no specific rule to choose the number of the nodes in the hidden 
layer. However, the common approach to choose the number of the nodes in 
the hidden layer is the error and trial approach where the training process 
starts with small number of nodes in the hidden layer and then the number is 
increased as the mean square error decreases. In addition, there are some 
formulas that were suggested by researchers to identify the number of the 
nodes in the hidden layer according to the number of the input nodes (R): 

1- Number of hidden nodes = R                                   岷  峅 
2- Number of hidden nodes = 2R                                 岷  峅 
3- Number of hidden nodes = 2R +1                            岷  峅 
4- Number of hidden nodes = R/2                                岷  峅 
5- Number of hidden nodes = 

岫     岻                   岷  峅 
Where    : number of input nodes     : size of the training data  

e ≤ 0.125  

6- Number of hidden nodes =  √                            岷  峅 
Where    :  the number of the output nodes    : multiplication factor 

In this work, the formulas 1, 2 and 3 that are mentioned above, have been 
used in the models in tables (3-8) to table (3-12). In addition, the error and 
trial method has been used to choose between 4 to 10 nodes for every model.  

(3-2-7) Data Partitioning  

     Before applying it to the neural network, the data is divided into two 
groups called: the training data and the testing data. The training data is 
normally bigger than the testing data and it is used by the neural network to 
learn the patterns. The size of the testing data is normally 10% to 30% of the 
overall size of the  data. The testing data is used to check the ability of the 
neural network to learn the patterns of the data 岷  峅. 
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The models in tables (3-8) to (3-12) has been designed with a training data 
set of sizes 100% of the raw data which means that the ability of the neural 
network will be examine based on the training data set only.  

(3-2-8) Training  

     After identifying the requirements of the neural network, the training 
process is then started. The main goal of the training process is to find the 
optimal weights that produce the lowest error which means the lowest 
difference between the output of the neural network and the desired output. 
The training process requires the following parameters to be set: the initial 
weights, the learning rate and the momentum. Setting the initial weights 
values is the first thing to do in the training process and normally they are 
randomly set to small values. 岷  峅 showed that the initial weights based on 
the type of the neural network. For multi-layer neural networks, the initial 
weights are chosen to be between -0.5 and +0.5 if the training data set are 
within the period [-1, +1] 岷  峅  
The initial weights have been randomly set for every model in the tables  

(3-8) to (3-12) by using SPSS software.  

The learning rate η and the momentum   are normally set in a random way 
where 0 < η <1 and 0 <   ≤ 1. Initially, the learning rate is set to 0.5 and the 
momentum is set to 0.9 for all the models in tables (3-8) to (3-12). 

When the training process starts to find the optimal weights, there should be 
a termination criterion to stop the process and below are some of them: 

1- Time  
2- Relative Cyclic Error  

The relative cyclic error is the error allowed in every iteration, and 
when the calculated error is equal to or less than the cyclic error then 
the training process will stop. 

3- Number of Iterations  
There should be a realistic number of iteration which is normally set 
to be 10000 iterations. However, some researcher reported to 3000 
iterations岷  峅 and 5000 iterations岷  峅. 

All the three above-mentioned criteria have be used to stop the training in all 
of the models that are mentioned in tables (3-8) to (3-12) where the time is 
set to 15 minutes, the cyclic error is set to 0.0001 and the maximum number 
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of iterations is set to 10,000 iteration. When one of the criteria conditions is 
met, the training process will be stopped.  

(3-2-9) Implementation  

     All the models that are mentioned in tables (3-8) to (3-12) have been 
implemented and then the MSE, MAE, and MAPE have been calculated for 
each model. 

Comparing the ability of the models in tables (3-8) to (3-12) to extract the 
minimum value of the MSE, MAE, and MAPE to the five models in table 
(3-13), it can be seen that the minimum value of the MSE, MAE and MAPE 
is in the third model in table (3-10) regardless of the number of the hidden 
nodes.  

Further checking the table (3-10), it can be seen that the best activation 
function in the hidden layer is the hyperbolic tangent activation function, 
and of the output layer is the linear activation function. Thus, the suitable 
data preprocessing approach is the normalized formula. Regarding the 
number of the nodes in the hidden layer, it can be seen from table (3-10) that 
the minimum values of  MSE, MAE, and MAPE appear when the number of 
the nodes in the hidden layer are 2. This means that the second formula of 
choosing the number of the nodes in the hidden layer is successful.  

Based on the third model in table (3-10) with 2 nodes in the hidden layer, the 
value of the momentum was changed while the learning rate and the other 
model requirements are fixed in order to set the right value of the 
momentum that is suitable for the learning rate of 0.5 as shown in table (3-
14) 
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Table (3-14) 

Values of the Criteria During Momentum Change and Fixed Learning 
Rate 

Learning 
Rate Momentum Time MSE 

0.5 0.9 0:00:00.09 173.3501 

0.5 0.8 0:00:00.08 184.3754 

0.5 0.7 0:00:00.05 171.2072 

0.5 0.6 0:00:00.05 170.5924 

0.5 0.5 0:00:00.17 188.2508 

0.5 0.4 0:00:00.37 180.5767 

0.5 0.3 0:00:00.08 173.5609 

0.5 0.2 0:00:00.03 171.6374 

0.5 0.1 0:00:00.09 197.1893 
 

From table (3-14), it is clearly shown that the best momentum value is 0.6 
based on the MSE criterion, and the value of the momentum effects on the 
training time where this time reaches its maximum value when the 
momentum was 0.2, while in momentum 0.6 the least MSE can be achieved 
in a suitable time.  

Based on the results that are obtained previously, the data has been divided 
into two sets: the training set and the testing set as mentioned in table (3-15) 
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Table (3-15) 

 Values of the Criteria When Data Partitioning 

Training Data Testing Data MSE 
100 0 173.3501 
90 10 184.357 
80 20 183.1978 
70 30 180.9971 
60 40 188.8886 
50 50 179.1047 
40 60 198.5476 
30 70 189.0676 
20 80 204.1265 
10 90 185.3909 

 

From table (3-15), it can be seen that the lowest error can be achieved based 
on the MSE when the training set is 100% of the overall data while the 
maximum MSE is achieved when the training set is 20% of the overall data.  

Based on the results of the final model with hyperbolic tangent activation 
function for the hidden layer and linear activation function for the output 
layer in addition to a momentum of 0.6, the final model has been used in two 
cases: the first one where the data was not processed, and the second one 
when the data was processed using the normalized preprocessing formula, 
and the results are shown in table (3-16). 

Table (3-16) 

Values of Criteria for Final Model with and without Processing 

Final Model MSE MAE MAPE 
Without Processing 13345.0652 99.8602 7.5583 

With Processing by Normalized 
Formula 

170.5924 7.5583 .5800 

 

By checking the above table and based on the values of the MSE, MAE and 
MAPE, it can be found that criteria is highly increased when the training 
data is not processed which means that the data should be processed before 
being applied to the network. 
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Applying the last model, the optimal weights and biases are shown in table 
(3-17) that gives the lowest MSE = 170.5924, MAE = 7.5583 and MAPE = 
0.5800.  

Table (3-17) 

Final Values of Weights and Biases 

Hidden Layer Weights and Biases Output layer Weights and Biases       .254       207       .974       1.102     -.441    .275     -.187   
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Figure (3-5) 

The Final Artificial Neural Network Model 
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 (3-3) Spectral Analysis  

     The Spectral Analysis is approach based on analyzing the stationary data 
in the frequency domain, so that the most important step is to generate the 
frequencies of the stationary time series. Based on the stationary time series    that resulted from Box–Jenkins methodology (3-2-1), the Fourier 
frequencies have been generated by using the formula (2-58) as shown in 
table (3-18) where 65 standard frequencies have been generated because the 
number of observations of the    is odd.  

(3-3-1)  Search for Hidden Periodicities  

     The use of the spectral analysis to build harmonic model to represent the 
data, mainly depends on the existence of the periodicities (harmonic 
components)  hidden in the stationary data. So that the detection of the 
hidden periodicities in the data is a crucial step that govern whether to use 
the spectral analysis or not.  

In order to detect the hidden periodicities in the    time series, the 
periodogram  has been calculated by using the formula (2-70) as shown in 
table (3-18) and figure (3-5( where both Ƹj and Ωj have been estimated by 
using formula (2-60) and (2-61) respectively.  

In addition to that, the wave length of the     time series has been calculated 
by using the formula (2-52) as shown in table (3-18) below: 
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Table (3-18) 

Periodogram Analysis of    
j Frequency Period       Amplitude Phase Periodogram 
1 0.04796325 20.8492975 7.079433e-04 -3.307630e-03 0.0033825436 1.35994424 7.494249e-04 
2 0.09592649 10.4246488 1.431931e-03 2.602334e-03 0.0029702810 -1.06776213 5.778783e-04 
3 0.14388974 6.9497658 -1.660042e-03 2.361398e-03 0.0028865100 0.95806557 5.457421e-04 
4 0.19185299 5.2123244 -1.057219e-03 -1.432414e-03 0.0017803154 -0.93497568 2.076037e-04 
5 0.23981623 4.1698595 6.907379e-04 -1.340426e-03 0.0015079326 1.09497412 1.489379e-04 
6 0.28777948 3.4748829 8.760026e-04 2.201576e-03 0.0023694553 -1.19210338 3.677379e-04 
7 0.33574273 2.9784711 -1.694825e-03 1.152857e-03 0.0020497585 0.59732830 2.751989e-04 
8 0.38370597 2.6061622 -7.703295e-04 -2.223622e-03 0.0023532748 -1.23730538 3.627326e-04 
9 0.43166922 2.3165886 1.112947e-04 6.335595e-05 0.0001280644 -0.51751207 1.074232e-06 
10 0.47963247 2.0849298 -7.756589e-04 3.382998e-03 0.0034707814 1.34541046 7.890342e-04 
11 0.52759571 1.8953907 -1.071563e-03 2.255256e-03 0.0024968837 1.12723366 4.083551e-04 
12 0.57555896 1.7374415 1.226869e-03 -2.036024e-03 0.0023770990 1.02848120 3.701143e-04 
13 0.62352221 1.6037921 1.523896e-03 -1.452157e-03 0.0021049983 0.76129763 2.902317e-04 
14 0.67148545 1.4892355 -2.849056e-03 5.581426e-04 0.0029032121 0.19345444 5.520760e-04 
15 0.71944870 1.3899532 -3.324620e-03 -3.815690e-04 0.0033464453 -0.11427072 7.335146e-04 
16 0.76741195 1.3030811 -6.058610e-05 -6.516940e-04 0.0006545042 -1.47809570 2.805862e-05 
17 0.81537519 1.2264293 3.992304e-04 1.720010e-03 0.0017657352 -1.34272555 2.042173e-04 
18 0.86333844 1.1582943 -5.347976e-04 1.077578e-03 0.0012029894 1.11011643 9.479051e-05 
19 0.91130169 1.0973314 -3.786098e-04 -1.707657e-03 0.0017491249 -1.35261267 2.003932e-04 
20 0.95926493 1.0424649 3.652009e-04 -1.827602e-03 0.0018637327 1.37356885 2.275142e-04 
21 1.00722818 0.9928237 -2.190613e-04 5.006453e-04 0.0005464737 1.15833728 1.956050e-05 
22 1.05519143 0.9476953 -2.440567e-03 -1.415041e-04 0.0024446655 -0.05791519 3.914535e-04 
23 1.10315467 0.9064912 -1.399170e-03 -1.496164e-03 0.0020484589 -0.81888554 2.748501e-04 
24 1.15111792 0.8687207 6.120694e-04 -3.864795e-04 0.0007238752 0.56321041 3.432169e-05 
25 1.19908117 0.8339719 -1.507334e-03 7.399063e-04 0.0016791421 0.45631752 1.846784e-04 
26 1.24704441 0.8018961 -1.252173e-03 -8.397729e-04 0.0015076987 -0.59075700 1.488917e-04 
27 1.29500766 0.7721962 2.248463e-03 -1.856158e-03 0.0029156316 0.69011101 5.568095e-04 
28 1.34297091 0.7446178 1.040600e-03 -1.651796e-03 0.0019522497 1.00862326 2.496388e-04 
29 1.39093415 0.7189413 -1.153633e-03 -1.196109e-03 0.0016617904 -0.80347318 1.808813e-04 
30 1.43889740 0.6949766 -2.000057e-03 -1.215087e-04 0.0020037445 -0.06067807 2.629820e-04 
31 1.48686065 0.6725580 -1.684346e-04 2.189918e-04 0.0002762746 0.91516007 4.999460e-06 
32 1.53482389 0.6515405 1.661626e-03 3.536203e-04 0.0016988374 -0.20968754 1.890362e-04 
33 1.58278714 0.6317969 1.703586e-05 -1.653322e-03 0.0016534096 1.56049267 1.790615e-04 
34 1.63075039 0.6132146 -1.036664e-03 -2.648826e-03 0.0028444593 -1.19775397 5.299571e-04 
35 1.67871363 0.5956942 8.291315e-04 -5.393994e-04 0.0009891465 0.57676847 6.408590e-05 
36 1.72667688 0.5791472 2.320018e-04 5.888433e-04 0.0006328991 -1.19547665 2.623676e-05 
37 1.77464012 0.5634945 3.076818e-04 -1.367872e-03 0.0014020490 1.34954405 1.287561e-04 
38 1.82260337 0.5486657 7.966094e-04 -1.493402e-03 0.0016925823 1.08077200 1.876467e-04 
39 1.87056662 0.5345974 3.951427e-04 -2.576959e-04 0.0004717467 0.57789160 1.457669e-05 
40 1.91852986 0.5212324 -3.668132e-05 -3.362969e-04 0.0003382915 -1.46215162 7.495895e-06 
41 1.96649311 0.5085195 2.758703e-04 -7.867621e-04 0.0008337260 1.23355143 4.552899e-05 
42 2.01445636 0.4964118 -3.849164e-05 -3.839125e-04 0.0003858373 -1.47086878 9.751014e-06 
43 2.06241960 0.4848674 1.228237e-03 -5.733382e-04 0.0013554644 0.43673462 1.203421e-04 
44 2.11038285 0.4738477 -4.790360e-04 -4.077087e-05 0.0004807679 -0.08490562 1.513953e-05 
45 2.15834610 0.4633177 -5.107497e-04 -6.366272e-04 0.0008161859 -0.89467013 4.363344e-05 
46 2.20630934 0.4532456 1.210339e-03 -7.011997e-05 0.0012123689 0.05786945 9.627441e-05 
47 2.25427259 0.4436021 2.256535e-04 -3.054342e-04 0.0003797493 0.93450455 9.445724e-06 
48 2.30223584 0.4343604 -1.495696e-04 -1.186235e-04 0.0001908994 -0.67051872 2.386990e-06 
49 2.35019908 0.4254959 1.096871e-03 -3.403344e-04 0.0011484568 0.30085888 8.639142e-05 
50 2.39816233 0.4169860 5.478249e-04 -2.295263e-04 0.0005939650 0.39675844 2.310803e-05 
51 2.44612558 0.4088098 3.180891e-04 -5.428895e-04 0.0006292135 1.04079514 2.593208e-05 
52 2.49408882 0.4009480 -3.528393e-04 6.147261e-04 0.0007087904 1.04973040 3.290614e-05 
53 2.54205207 0.3933830 3.334777e-04 8.110359e-04 0.0008769188 -1.18069359 5.036862e-05 
54 2.59001532 0.3860981 2.075319e-03 3.923407e-04 0.0021120793 -0.18684569 2.921876e-04 
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55 2.63797856 0.3790781 1.148417e-03 -1.121643e-03 0.0016052868 0.77360450 1.687899e-04 
56 2.68594181 0.3723089 -5.626839e-04 -4.030420e-04 0.0006921387 -0.62157207 3.137817e-05 
57 2.73390506 0.3657771 1.820756e-03 -1.943188e-04 0.0018310956 0.10632180 2.196157e-04 
58 2.78186830 0.3594706 1.727725e-03 -5.538987e-04 0.0018143426 0.31024183 2.156155e-04 
59 2.82983155 0.3533779 1.556185e-04 -1.921047e-03 0.0019273403 1.48996571 2.433090e-04 
60 2.87779480 0.3474883 3.654281e-04 3.333941e-04 0.0004946608 -0.73959027 1.602715e-05 
61 2.92575804 0.3417918 1.150607e-03 1.125550e-03 0.0016095833 -0.77439011 1.696947e-04 
62 2.97372129 0.3362790 1.726059e-03 -2.961115e-04 0.0017512740 0.16989970 2.008859e-04 
63 3.02168454 0.3309412 1.081432e-03 -1.309441e-03 0.0016982730 0.88047699 1.889106e-04 
64 3.06964778 0.3257703 -3.246632e-04 8.699341e-05 0.0003361161 0.26179988 7.399799e-06 
65 3.11761103 0.3207584 1.507766e-03 -1.383658e-04 0.0015141012 0.09151244 1.501589e-04 

 

 

Figure (3-6) 

Periodogram 

It is clear from figure (3-6) that the changes in periodogram are not random, 
and they have a certain pattern. It is also noted from figure (3-6) and table 
(3-18) that there are three distinctive peaks at the frequencies:     = 0.04796325     = 0.47963247     = 0.71944870 
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this indicates that there is a periodic in the data. In order to get more precise 
results, the Fisher test has been conducted, which is given in formula (2-74), 
and the result is:  

T = 0.05961395  

And because there is no critical value for Fisher test at h = 65, then the 
critical value has been calculated by using formula (2-76) at significant level 
alpha = 0.05 and the result is:         = 0.1059853503 

By comparing the critical value         with the Fisher statistic T, then the 
null hypothesis is accepted which means that the data of the    is random 
and there is no hidden periodicities.  

Due to the results conflicts between the periodogram and the Fisher test, the 
cumulative periodogram test has been applied by calculating the cumulative 
periodogram by using the formula (2-77) as shown in table (3-19) and then 
apply the Kolmogorov Smirnov test by plotting the  theoretical line from the 
point (0,0( to the point (π, 1(. The upper limit and lower limit have also been 
plotted by using the formulas (2-78) and (2-79) respectively as shown in 
figure (3-6). 
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Table (3-19) 

Cumulative Periodogram of    
I Frequency Cumulative 

Periodogram 
I Frequency Cumulative 

Periodogram 
1 0.04796325 0.05662134 34 1.63075039 0.78135100 
2 0.09592649 0.10028182 35 1.67871363 0.78619289 
3 0.14388974 0.14151430 36 1.72667688 0.78817516 
4 0.19185299 0.15719940 37 1.77464012 0.79790307 
5 0.23981623 0.16845211 38 1.82260337 0.81208035 
6 0.28777948 0.19623583 39 1.87056662 0.81318167 
7 0.33574273 0.21702796 40 1.91852986 0.81374800 
8 0.38370597 0.24443351 41 1.96649311 0.81718786 
9 0.43166922 0.24451467 42 2.01445636 0.81792458 
10 0.47963247 0.30412862 43 2.06241960 0.82701679 
11 0.52759571 0.33498110 44 2.11038285 0.82816063 
12 0.57555896 0.36294436 45 2.15834610 0.83145727 
13 0.62352221 0.38487226 46 2.20630934 0.83873110 
14 0.67148545 0.42658329 47 2.25427259 0.83944475 
15 0.71944870 0.48200256 48 2.30223584 0.83962509 
16 0.76741195 0.48412247 49 2.35019908 0.84615223 
17 0.81537519 0.49955171 50 2.39816233 0.84789811 
18 0.86333844 0.50671342 51 2.44612558 0.84985736 
19 0.91130169 0.52185374 52 2.49408882 0.85234352 
20 0.95926493 0.53904314 53 2.54205207 0.85614902 
21 1.00722818 0.54052100 54 2.59001532 0.87822469 
22 1.05519143 0.57009651 55 2.63797856 0.89097729 
23 1.10315467 0.59086227 56 2.68594181 0.89334800 
24 1.15111792 0.59345538 57 2.73390506 0.90994064 
25 1.19908117 0.60740840 58 2.78186830 0.92623105 
26 1.24704441 0.61865762 59 2.82983155 0.94461378 
27 1.29500766 0.66072628 60 2.87779480 0.94582468 
28 1.34297091 0.67958725 61 2.92575804 0.95864564 
29 1.39093415 0.69325339 62 2.97372129 0.97382318 
30 1.43889740 0.71312249 63 3.02168454 0.98809596 
31 1.48686065 0.71350021 64 3.06964778 0.98865504 
32 1.53482389 0.72778247 65 3.11761103 1.00000000 
33 1.58278714 0.74131112    
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Figure (3-7) 

Cumulative Periodogram  of    
 

From figure (3-7), it is clear that the cumulative periodogram lies outside the 
upper limit which means that the series    is not random and has hidden 
periodic components. Based on the cumulative periodogram results and the 
periodogram plot, it is concluded that the series     is not random and it has 
hidden harmonic components.  

(3-3-2) Choosing the Harmonic Model 

     After checking that there are hidden harmonic components,     statistic 
was calculated using formula (2 – 80), as shown in table (3 – 20), in order to 
find the significant harmonic components in the harmonic model. 
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Table (3-20)    Statistic Application Results 

 

 

 

k Frequency F-Statistic k Frequency F-Statistic 
1 0.04796325 3.841263532 34 1.63075039 2.669436583 
2 0.09592649 2.921839197 35 1.67871363 0.311388428 
3 0.14388974 2.752365939 36 1.72667688 0.127117126 
4 0.19185299 1.019842640 37 1.77464012 0.628702526 
5 0.23981623 0.728369720 38 1.82260337 0.920394664 
6 0.28777948 1.828973830 39 1.87056662 0.070561791 
7 0.33574273 1.358951182 40 1.91852986 0.036266160 
8 0.38370597 1.803378278 41 1.96649311 0.220910593 
9 0.43166922 0.005194758 42 2.01445636 0.047184775 
10 0.47963247 4.057155804 43 2.06241960 0.587240968 
11 0.52759571 2.037417789 44 2.11038285 0.073289431 
12 0.57555896 1.841133116 45 2.15834610 0.211682804 
13 0.62352221 1.434848268 46 2.20630934 0.468935871 
14 0.67148545 2.785700301 47 2.25427259 0.045706437 
15 0.71944870 3.754928909 48 2.30223584 0.011544125 
16 0.76741195 0.135962744 49 2.35019908 0.420481252 
17 0.81537519 1.002945982 50 2.39816233 0.111931911 
18 0.86333844 0.461655906 51 2.44612558 0.125638041 
19 0.91130169 0.983876631 52 2.49408882 0.159510775 
20 0.95926493 1.119362529 53 2.54205207 0.244482597 
21 1.00722818 0.094722730 54 2.59001532 1.444736099 
22 1.05519143 1.950520308 55 2.63797856 0.826708920 
23 1.10315467 1.357191961 56 2.68594181 0.152086419 
24 1.15111792 0.166390435 57 2.73390506 1.079846238 
25 1.19908117 0.905629647 58 2.78186830 1.059851496 
26 1.24704441 0.728141247 59 2.82983155 1.198527339 
27 1.29500766 2.810633769 60 2.87779480 0.077591585 
28 1.34297091 1.230307102 61 2.92575804 0.831197742 
29 1.39093415 0.886751384 62 2.97372129 0.986333087 
30 1.43889740 1.297400132 63 3.02168454 0.926683895 
31 1.48686065 0.024183504 64 3.06964778 0.035800975 
32 1.53482389 0.927308872 65 3.11761103 0.734409593 
33 1.58278714 0.877707418    
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By comparing the statistic    for every harmonic component with the critical 
value of the distribution F at a degree of freedom (2,128(, we obtain three 
significant harmonic components at the frequencies   ,     and      because 
the calculated F at these frequencies are greater than the critical value 
F(2,128) = 3.00 so that the alternative hypothesis is accepted at these 
frequencies only.  

The harmonic model to represent the data of the    can be written as follow:  ̂  ∑ 岷     岫   岻       岫   岻峅                   where t = 1, 2, …, N 

(3-3-3) Check the Suitability of Harmonic Model  

     It is assumed that the residuals of the harmonic model are purely random 
and are not containing hidden periodic component, and to check that the 
following tests are applied on the residuals series: 

1- Calculate and plot the SACF of the residuals and then apply the Ljung – 
Box test by using the formula (2-46)  and this is shown in figure (3-7), 
table (3-21), and table (3-22) respectively. 

 
Table (3-21) 

Autocorrelation Coefficients of Residuals 
Lag=k SACF=    Lag=k SACF=    

1 0.120 13 -0.053 
2 0.058 14 -0.043 
3 -0.101 15 -0.036 
4 0.089 16 -0.100 
5 0.061 1 -0.114 
6 -0.127 18 -0.057 
7 -0.048 19 0.014 
8 0.001 20 0.077 
9 0.081 21 0.011 
10 0.036 22 -0.003 
11 -0.007 23 -0.041 
12 0.093 24 -0.031 
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Figure (3-8) 

Autocorrelation Function for Residuals 
 

Table (3-22) 

Box-Ljung Test 

(   )   岫                岻 p-value 

25.244 28.869 0.3926 

 

       From  figure  (3-8)  and  table  (3-22), it  can  be  concluded  that  the   

       residuals represent the white noise 

2- The Fisher test has been applied to the residual series by using the 
formula (2-74) and the results is T = 0.05270805. by comparing the value 
of the statistic T with the critical value        = 0.1059853503, it can be 
concluded that the residuals are not containing any hidden periodic 
component. 

3- The cumulative periodogram test has been applied to the residuals by 
using the formula (2-77) as shown in table (3-23). Then the Kolmogorov 
Smirnov has been applied as shown in figure (3-9). 
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Table (3-23) 
Cumulative Periodogram of Residuals 

I Frequency 
Cumulative 
Periodogram I Frequency 

Cumulative 
Periodogram 

1 0.04796325 0.002456905 34 1.63075039 0.642122953 
2 0.09592649 0.049364103 35 1.67871363 0.649462408 
3 0.14388974 0.086998336 36 1.72667688 0.653215022 
4 0.19185299 0.097763410 37 1.77464012 0.660930585 
5 0.23981623 0.104318645 38 1.82260337 0.673069633 
6 0.28777948 0.127416094 39 1.87056662 0.678540542 
7 0.33574273 0.142645394 40 1.91852986 0.681636745 
8 0.38370597 0.164689285 41 1.96649311 0.682242938 
9 0.43166922 0.166435225 42 2.01445636 0.686899243 
10 0.47963247 0.168892129 43 2.06241960 0.710910509 
11 0.52759571 0.209350655 44 2.11038285 0.711466656 
12 0.57555896 0.232573413 45 2.15834610 0.717534644 
13 0.62352221 0.260324792 46 2.20630934 0.724477876 
14 0.67148545 0.305013206 47 2.25427259 0.730865416 
15 0.71944870 0.307470111 48 2.30223584 0.732205159 
16 0.76741195 0.310084383 49 2.35019908 0.734456228 
17 0.81537519 0.320399035 50 2.39816233 0.741049085 
18 0.86333844 0.325930308 51 2.44612558 0.748517399 
19 0.91130169 0.335472151 52 2.49408882 0.760232087 
20 0.95926493 0.359116209 53 2.54205207 0.762898112 
21 1.00722818 0.359307275 54 2.59001532 0.803427931 
22 1.05519143 0.384229510 55 2.63797856 0.825174296 
23 1.10315467 0.410139975 56 2.68594181 0.832473328 
24 1.15111792 0.413911360 57 2.73390506 0.852261452 
25 1.19908117 0.423220586 58 2.78186830 0.893125736 
26 1.24704441 0.429838196 59 2.82983155 0.906569946 
27 1.29500766 0.468594839 60 2.87779480 0.907918926 
28 1.34297091 0.508039434 61 2.92575804 0.920170941 
29 1.39093415 0.522508111 62 2.97372129 0.957748156 
30 1.43889740 0.551785197 63 3.02168454 0.967072495 
31 1.48686065 0.555959171 64 3.06964778 0.972255970 
32 1.53482389 0.579790583 65 3.11761103 1.000000000 
33 1.58278714 0.595965747    
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Figure (3-9) 

Cumulative Periodogram of Residuals 

From figure (3-9), it can be concluded that the residuals are not containing 
any hidden harmonic component. This proves the efficiency of the harmonic 
model to represent the data.  

By comparing the spectral analysis methodology and the neural network 
methodology in prediction of the exchange of the Iraqi dinar vs the US 
Dollar, it can be clearly seen that the neural network methodology is better 
than the spectral analysis methodology according to the three criteria below: 

Table (3-24) 
Comparison between Artificial Neural Networks and Spectral Analysis 

Methodology MSE MAE MAPE 
Artificial Neural Networks 170.5924 7.5583 .5800 

Spectral Analysis 394.7326 11.2156 .81900 
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(3-4) Conclusions and Recommendations 

(3-4-1) Conclusions 

The following conclusions have been discovered:  

1-  The series of the exchange rate (raw data) is not mean 
stationary as    seated in figures (3-1) and (3-2) respectively. 
 
2-  The raw data is not variance stationary as shown in figure 
(3-1) and table (3-2). 
 
3-  The criterion AIC tends to overestimate the models while 
the BIC criterion  successfully identifies the best model to 
represent the data as stated in table (3-5). 
 
4-  The Box–Jenkins methodology showed that the best model 
to represent the data is the ARIMA(1,1,0) model . 
 
5-  Based on the MSE, MAE, and MAPE, the best activation 
function among all is the hyperbolic tangent activation function 
for the hidden layer, and the linear activation function for the 
output layer as stated in table (3-13) . 
 
6-  The best way to choose the number of the hidden nodes in 
the hidden layer that consists of one hidden layer is to choose 
the second formula (2R) as stated in (3-2-6) and in table (3-10). 
 
7-  In the neural networks methodology, if the sample size is 
small then it is not preferable to split the data into two portions 
(training set and testing set) as stated in table (3-15). 
 
8- There is no specific rule to choose the value of the 
momentum and the learning rate, so that it is preferred to start 
with more than one value and then decide which one is the best 
because the value of the momentum affects the training time 
and the cyclic error as stated in table (3-14). 
 
9-  Processing the data before applying it to the network is 
crucial and needs to be done in advance as stated in table (3-
16). 
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10-  The best neural network model to predict the exchange rate 
of the Iraqi Dinar vs the US Dollar is the design with hyperbolic 
activation function in the hidden layer, linear activation 
function in the output layer, 2 nodes in the hidden layer, 
learning rate = 0.6, momentum = 0.5, and with weights and 
biases as shown in table (3-17). 
 
11- The stationary exchange rate series contains hidden 
periodicities as stated in figures (3-5) and (3-6) respectively. 
 
12-  The Fisher test fails in detecting the hidden periodic 
component in the exchange rate series which is clearly shown in 
section (3-3-1) . 
 
13-  The statistical approaches aim at  helping the specialist in 
financial and banking science to make the proper decisions that 
achieve the desired interest and promoting their business 
management. 
 
14-   The artificial neural networks methodology is better than 
the spectral ananlysis methodology in making accurate 
predictions on the exchange rate of the Iraqi dinar against the 
USdollar.  
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(3-4-2) Recommendations 

 
1- Comparing the backpropagation networks and the Jordan or Elman 

networks in predicting the exchange rate. 
2- Appling the hybrid methodology to predict the exchange rate. Then 

comparing the hybrid model and the pure neural network model to 
choose the best. 

3- Conducting a research on choosing the truncation point in the spectral 
windows and the lag windows as show in (2-2-10) in order to estimate 
a consistent spectrum. 

4- We recommend obtaining of the advanced statistical approaches by 
the specialists in financial and banking science to study the behavior 
of the exchange rate, to build future predictions and to make proper 
decisions. 
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 الخاصة
غيゲ ارゅヘゎعヱ れゅاانゅヘガضれゅ الゅヘヨجるゃ اラ التقلれゅら التي ゎحدゐ في سعゲ الصゲف ヱخصヲصゅ ا
るلヱد ヵمي أヲد القゅعلى ااقتص ゲيらك ゲيをأゎ ゅヰل るقعヲتヨاق, الゲالع ゅヰレمヱ  ゲبسع ペؤ الدقيらレالت ラا فأグل

 るليヨفي ع りゲをؤヨالヱ るヨヰヨر الヲمن اام ゲらيكي يعتゲار اامヱبل الدゅاقي مقゲر العゅレف الديゲص
  .اقتصゅدヵ للعゲاقاالتガطيط ヱالヨحゅفظる على التヲاヱ ラコااستقゲار 

التらレؤ الى الヨقゅرنる بين اسلゆヲ التحليل الطيヘي ヱالشらكれゅ العصらيる ااصطゅレعيる في  هグا الらحث يヰدف
الى   30/01/2004بسعゲ صゲف الديゅレر العゲاقي مقゅبل الدヱار اامゲيكي للヘتりゲ الゴمレيる من 

 MAE متヲسط مطلペ الガطأ ゎヱ MSE ヱم ااعتゅヨد على متヲسط مゲبع الガطأ 30/12/2014
ヱ يらسレطأ الガال ペسط مطلヲمت MAPE بي るضلゅヘヨلل るئيゅاحص ゲييゅعヨئج كゅتレال ろレقد بيヱ جينクヲヨレن ال
ラا ゆヲاسل るيらالعص れゅكらالش るعيゅレافضل من  ااصطレي في التヘالتحليل الطي ゆヲؤ.اسلら 



 جヲヰヨريる العゲاق 

 コヱارり التعليم  العゅلي ヱالらحث العلヨي                    

るدسيــゅالق るمعــــゅج 

ヱ ゆヲسゅالح ュヲعل るكليれゅضيゅيゲال 

れゅضيゅيゲقسم ال                                                                                                                                                                                    
     

 العصبية والشبكات الطيفي التحليل بين مقا茨نة
 مع للتنبؤ نمو稲ج أفضل لتحديد ااصطناعية

 التطبيق
 

るمقدم るلゅإلى                           رس 
جゅمعる القゅدسيヱ –                                                                         るالゲيゅضيゆヲ れゅلュヲ الحゅسكليる عمجلس 

    れゅضيゅيゲال ュヲفي عل ゲجستيゅم るنيل درج れゅらء من متطلゴكج 
                                                             

 من قらل  

 الشباني  ايمان يوسف عبدعون
 

 بإشゲاف

 حمد حبيب الشا茨وطأ. 逸. م  
 

 م 1037            ه                                         3419
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