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CHAPTER 1

INTRODUCTION

Since its introduction in 1991 [1], optical coherence tomography has found wide

application as an important non-invasive imaging modality, notably in ophthalmology

where it is used to image the retina and the optic nerve head. These high resolu-

tion images have generated a better understanding of the structural consequences of

ocular diseases and as such, has found increasing application in the diagnosis and

management of numerous diseases. The early generation scanners were time-domain

systems that acquired up to six circular/radial scans in 2-D. The latest generation of

scanners, however, are Fourier-domain systems (which became commercially available

in 2007) that possess several advantages over the older time-domain scanners. Not

only do the Fourier-domain OCT images (FD-OCT) provide true volumetric data, the

scans also boast higher resolutions (5µm vs. 8-10µm in time-domain OCT) making

the FD-OCT images considerably larger than their time-domain counterparts. For

instance, a time-domain dataset acquired using a 6-radial scan protocol (obtained on

the Stratus OCT-3, Carl Zeiss Meditec, Inc., Dublin) has a size of 6 × 128 × 1024

pixels while many FD-OCT images (obtained on the Cirrus, Carl Zeiss Meditec) have

dimensions of 200 × 200 × 1024 pixels.

The need for automated methods grows with the increasing availability of data to

ophthalmologists, but at present, on optic nerve head (ONH) scans the commercial

scanners only segment the retinal nerve fiber layer (RNFL), potentially disregarding

valuable indicators from the other layers. It is also likely that the method used for

this segmentation is a 2-D approach that does not use any of the 3-D contextual

information available in the new volumetric data. This is also the case with most of

the retinal layer segmentation methods that have been proposed thus far. However,

the advantages of segmenting medical volumetric images in 3-D is balanced by the

complexity of the problem and the difficulty faced in reaching an optimal solution,
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which grows with the size of the dataset. In this regard, the method described by Li

et. al [2] is of significance, as it segments multiple surfaces simultaneously from an

n-D volume, assures optimality and is a low polynomial-time algorithm. This graph-

based method transforms the segmentation problem into an optimization problem

that aims to find a feasible set of surfaces with the minimum cost.

The advantages of such a segmentation method has been amply established by

Garvin [3] and Lee [4], who used such an approach for the segmentation of retinal

layers at the macula. Garvin [3] was the first to propose the use of a graph-based

approach for the simultaneous segmentation of the retinal surfaces, and also proposed

additions to the original formulation of the problem in the form of varying feasibility

constraints that are learned from a training set, and the incorporation of “true”

regional information in the cost function. The method described by Lee [4] on the

other hand, did not incorporate any of these changes, but uses a multi-resolution

approach in which the surfaces are segmented in a number of graph-searches instead

of being detected simultaneously. The method’s key advantage is its small run-time

of a few minutes.

In this thesis, we present a method for the segmentation of retinal layers from OCT

scans centered on the ONH, a region that has thus far, remained largely unexplored.

To the best of our knowledge, there are no known validated techniques that currently

segment the layers at the ONH region. The method described herein combines key

aspects of the segmentation techniques proposed by Garvin et. al [3] and Lee [4], and

uses a multi-resolution approach, while also incorporating learned varying feasibility

constraints and regional information. We have also proposed and validated a new

technique for the flattening of the OCT datasets, and provided a comparison to the

approach adopted by Garvin et. al [3]. The challenges posed by the neural canal

and the large blood vessels characteristic to this region have also been addressed. In

addition to the validation on normal and as well as diseased (glaucomatous) eyes, we
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also present some measurements that could be clinically relevant.
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CHAPTER 2

BACKGROUND

2.1 The Retina

The retina is a complex structure consisting of several layers of neurons, and forms

a continuous lining inside the eye and is the structure responsible for vision. The light

sensitive photoreceptors, known as rods and cones, convert light into electrical signals

that are relayed to the brain via the optic nerve. The rods and cones face the incoming

light, but only sense the light that is reflected back towards them. When stimulated

by light, these cells spark a chemical reaction that is propagated through the layers

until it finally reaches the ganglion cells, and thereafter transmitted to the brain. The

macular region contains the largest number of photoreceptors, while the optic nerve

head is the point from which the optic nerve leaves the eye.

(a) (b)

Figure 2.1: Lithograph plates showing the layers of the retina. These images from
Gray’s Anatomy (originally published in 1918 and has since lapsed into public domain)
show (a) a cross-sectional view of the ten retinal ten layers, (b) the various cells found
in the retina.
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The structures and layers seen in the retina are as illustrated in Fig. 2.1, and are

described briefly below:

• Inner Limiting Membrane (ILM) is the boundary between the retina and the

vitreous body.

• Retinal Nerve Fiber Layer (RNFL) consists of axons of the ganglion cells that

form the optic nerve.

• Ganglion Cells Layer (GCL) contains the nuclei of the ganglion cells.

• Inner Plexiform Layer (IPL) contains axons of bipolar and amacrine cells, and

the dendrites of the ganglion cells.

• Inner Nuclear Layer (INL) contains the nuclei of horizontal, bipolar, amacrine

and Müller cells.

• Outer Plexiform Layer (OPL) consists of photoreceptor axons, and dendrites of

horizontal and bipolar cells.

• Outer Nuclear Layer (ONL) consists of the cells bodies of the photoreceptor

(both rods and cones) cells.

• External Limiting Membrane (ELM) separates the inner-outer segments of the

photoreceptors (both rods and cones) from their cell bodies.

• Photoreceptor Layer contains the segments (light reactive parts) of the photore-

ceptors (both rods and cones) and is roughly divided into two layers, the inner

segments (IS) and the outer segments (OS).

• Retinal Pigment Epithelium (RPE) is a single layer of cells between the retina

and the choroid.
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(a)
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(c)

Figure 2.2: OCT images from the optic nerve head. (a) Fundus Photograph showing
the location of OCT scans with respect to a retinal fundus photograph. (b) A central
xz-slice from the 3-D OCT dataset showing the various layers of the retina as well as
the neural canal opening. (c) Shows the surfaces on a central xz-slices from a macular
OCT dataset.
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In the OCT images, the surface between the GCL and IPL layers is not consistently

seen and is therefore, not segmented. The same is true of the ELM as well. Thus,

the 6 layers that are segmented include the RNFL, the combined GCL and IPL, INL,

OPL, ONL (which includes the ELM) and the OS-Photoreceptor complex (Fig. 2.2).

The optic nerve head (Fig. 2.2(a)) is the location where the ganglion cell axons leave

the eye to form the optic nerve. There are no photosensitive cells at this region and

is thus, insensitive to light and is called the blind spot. The optic nerve head also

show a number of large blood vessels as this is the location from which the vessels

that supply the ocular tissue enter and leave the eye.

2.2 Clinical Motivation

In this work, we focus on the possible clinical applications of peripapillary layer

segmentation for the diagnosis and management of glaucoma. This disease is the

most common optic nerve disorder, and affects 1-2% of the U.S. population [5,6] and

is the second leading cause of blindness worldwide. Glaucoma is often characterized

by an increase in intraocular pressure (IOP) and in the past, was often defined by

this symptom. But recent studies have showed that up to a sixth of patients with

glaucomatous damage never show increased IOP values, and one-third to one-half of

patients do not have elevated IOP values in the initial stages of the disease. Glaucoma

is now defined as a progressive disease of the optic nerve that can cause severe vision

loss if left untreated.

As this disease affects peripheral vision, it often goes unnoticed by the patient

until considerable damage has already occurred. The disease is treatable and perma-

nent vision loss can be avoided if the disease is detected early. Visual field tests are

good indicators of visual acuity, but the reproducibility is poor in patients that have

suffered moderate to severe visual field loss. Thus, reliable methods that can diagnose

and monitor the progression of the disease are extremely important. Furthermore,

structurally the disease is known to affect the nerve fiber layer which is discernible in
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OCT images. The thinning of the RNFL is an important marker used by ophthalmol-

ogists in the diagnosis of the disease. It has also been used to differentiate between

glaucomatous and normal eyes [7–10]. Despite the fact that this is a known marker of

the disease, the commercial scanners only provide quantitative measurements along

a circular path around the optic disc. Further information solely consist of quali-

tative indicators of possible thinning. The presence of further indicators within the

quadrants [11] is also known, but again, is not available to clinicians at present. Mea-

surements that could reveal vital clues include volumetric measurements in the whole

scan, within selected sectors/quadrants and radial distances. In this work, we present

some of these measurements and show the possible clinical applications of a tool that

provides complete layer segmentations from OCT datasets.

2.3 Previous Work

Most of the previously reported intraretinal layer segmentation approaches deal

solely with the macular region and were designed to deal with the smaller time-domain

datasets. The commerically available scanners do provide some information about the

RNFL in the form of thickness at a particular radial distance from the center of the

volume. The scanners also indicate regions that show considerable thinning, but pro-

vide no actual quantitative measurements in this regions or volumetric measurements

of the whole layer. It is also likely that the method used, like the majority of the

proposed segmentation methods, is a 2-D approach. [9, 12–16] proposed retinal layer

segmentation techniques that rely heavily on edge information in each A-scan line

and use 2-D contextual information to verify the detected edges. For instance, the

methods [9, 12–15] follow four main steps. 1) The datatsets are filtered, 2) edges are

detected in each A-scan line, 3) the large gradient that marks the location of surface

6 (Fig.2.2) is used to align the A-scan lines (flatten the dataset) and 4) the detected

edges are verified using 2-D contextual information and then connected to form a

smooth surface. [16] proposed the mapping of grayscale intensities as an additional
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feature, but the method’s ability to deal with diseased datasets where the images

sometimes show poor contrast was not adequately demonstrated.

More recently, [3,4] have presented graph-based 3-D approaches for the segmenta-

tion of intraretinal layers at the macula. Garvin et. al [3] was the first to propose the

use of a 3-D graph-search to segment multiple surfaces from retinal OCT scans. This

approach incorporated two key additions to the original 3-D graph-based segmen-

tation method [2]. 1) The feasibility constraints used were learned from a training

set and varied as a function of (x, y) location, and 2) the cost function incorporated

“true” regional information. Lee [4] also proposed a segmentation method that aimed

to deal with the large memory and run-time requirements of the previous method,

and differs in two aspects. 1) The cost function is derived from edge gradients and

does not use any form of regional cost terms, and 2) the segmentation method itself

is a multi-resolution approach that does not segment all the retinal surfaces simul-

taneously, but uses multiple graph-searches to obtain the final result. These two

methods used thin-plate splines to flatten the datasets, but Garvin et. al [3] used a

3-D thin-plate spline with a smoothing regularization term, that flattened the dataset

with respect to a smoothed surface, while Lee [4] used a 2-D spline with a very small

regularization term that flattened each B-scan separately.
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CHAPTER 3

3-D GRAPH-BASED SURFACE DETECTION

In this chapter, we review graph search concepts as described in [2, 17] and the

extensions described in [18, 19].

3.1 Graph-Based Surface Segmentation

The graph-search approach for the segmentation of images, as described in [2,17],

transforms the segmentation problem into an optimization problem, where the aim is

to find a set of surfaces that form a minimal cost closed set. (A closed set in a graph is

defined as a subset of vertices such that no directed edges of the graph leave the set.)

The transformation of the problem begins with the construction of a vertex-weighted

graph which uses two main descriptors: constraints that describe the feasiblity of the

surfaces and the cost of the surfaces, which are further described below. The optimal

solution is then computed on this graph to obtain the set of surfaces that satisfy the

predefined constraints.

3.1.1 Feasibility Constraints

Consider a volumetric image I(x, y, z) of size X × Y × Z, where each surface S

is defined by a function S(x, y), where x ∈ x = {0... X-1}, y ∈ y = {0... Y-1} and

S(x,y) ∈ z = {0... Z-1}. Each (x, y) location is associated with a z-column of voxels,

and therefore the surface S intersects each column at a single pixel location.

The feasibility of each surface can be expressed using two parameters, namely

the smoothness constraints and the surface interaction constraints. [2, 17] define the

smoothness constraints ∆x and ∆y, as the maximum permitted distance between two

adjacent voxels in the x and y directions, respectively. For instance, if I(x, y, z1) and

I(x + 1, y, z2) are two adjacent voxels on a surface, then

|z1 − z2| ≤ ∆x . (3.1)
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∆y is expressed in a similar manner for adjacent voxels in the y-direction. An

extension to this is described in [18], where the smoothness constraints are allowed

to vary with respect to the (x, y) location of the voxel. The smoothness constraint

in the x-direction when moving from location (x1, y1) to (x2, y2) is now defined as

follows:

−∆u
(x1,y1),(x2,y2)

≤ f(x1, y1) − f(x2, y2) ≤ ∆l
(x1,y1),(x2,y2)

, (3.2)

where, ∆u
(x1,y1),(x2,y2)

and ∆l
(x1,y1),(x2,y2)

represent the smallest and largest allowed

change in z-value, respectively.

z

x (or y)

(x1,y1) (x2,y2)

z

x (or y)

(x1,y1)

(x1,y1)

(x2,y2)

(x2,y2)

Surface 1

Surface 2

(a) (b)

Figure 3.1: Varying feasibility constraints. (a) Shows the varying smoothness con-
straints. (b) Shows the varying surface-interaction constraints

The second feasibility constraint, the surface-interaction constraint, defines the

relationship between the surfaces, such as the ordering of the surfaces as well as the

expected distances between them. For instance, it may be be known that surface i is

above surface j and that the minimum and maximum allowed distances between them

is δmin
i,j and δmax

i,j , respectively. The surface-interaction constraints, like the smoothness
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constraints, can be defined as constant values for pairs of adjacent surfaces [2, 17] or

they can be allowed to vary as a function of the (x, y) location, [3, 18] and can be

expressed as follows:

δmin
i,j (x, y) ≤ Sj(x, y) − Si(x, y) ≤ δmax

i,j (x, y) , (3.3)

where, δmin
i,j (x, y) and δmax

i,j (x, y) represent the minimum and maximum allowed

distance between surfaces i and j at location (x, y).

3.1.2 Cost of a Feasible Set of Surfaces

The cost function is an important aspect of the problem description and can be

designed using a combination of on-surface and region-based costs. In the original

formulation [2], the regional costs were derived from a small region around each

voxel. [3, 19] described a cost function that incorporates “true” regional information

in addition to edge gradients. In such a scenario, n non-intersecting surfaces would

divide the volume into n + 1 regions, thus associating each voxel with n on-surface

costs and n + 1 region based cost terms, as shown in Fig. 3.2. The on-surface

cost terms reflect the unlikelihood that the voxel lies on surface i, i ∈ i = {1...n},

while the region cost terms reflect the unlikelihood that the voxel belongs in region

i, i ∈ i = {0....n}. If CSi(x,y) represents the total cost of surface Si, then

CSi
=

∑

(x,y,z)|z=Si(x,y)

cSi(x,y) , (3.4)

where, cSi(x,y) represents the on-surface costs terms associated with surface i.

Similarly, the “true” regional cost term CRi
that reflects the total costs of the ith

region can be defined as:

CRi
=

∑

(x,y,z)∈Ri

cregi
(x, y, z) , (3.5)



13

x
y

z

Figure 3.2: Illustration of the regional and on-surface costs terms in a 2 surface
segmentation problem. Here, the two surfaces divides the volume into 3 regions.

where, cregi
(x, y, z) represents the region costs associated with region i. The total

cost CT , associated with the set of n surfaces can now be expressed as a sum of the

on-surface and regional cost terms:

CT =

n
∑

i=1

CSi
+

n
∑

i=0

CRi
. (3.6)

3.1.3 Graph Construction

A vertex-weighted graph can now be constructed using the cost terms and the

feasibility constraints. The weights of the vertices are set so that the cost of each

closed set corresponds to the cost of the set of surfaces. [3, 18] defines the weight wi

of each vertex as the sum of two terms, wsi
and wri

, related to the on-surface and

in-region costs, respectively.

The arcs between the nodes are inserted to reflect the pre-defined feasibility con-

straints. For this, a sub-graph is created for each surface whose structure reflects the

smoothness constraints for that particular surface. The sub-graphs are then connected

by arcs such that the varying surface-interaction constraints are maintained [2,3,18].
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Multiple surfaces can now be detected by computing the minimum-cost closed set

on this closely related graph, through a minimum-cost s − t cut [2, 17].
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CHAPTER 4

SEGMENTATION OF INTRARETINAL SURFACES IN ONH

CENTERED OCT SCANS

Input 
Image

3-D 
Anisotropic 
Diffusion 

Filter

Segment 
Outer Retinal  

Surfaces 

Flatten 
Dataset

Segment Inner 
Retinal 
Surfaces

Detected 
Surfaces

Global 
Feasibility 
Constraints

On-Surface 
Cost Terms

Varying 
Feasibility 
Constraints

On-Surface & 
Regional 

Cost Terms

Figure 4.1: Overview of the segmentation method.

In this chapter, we describe the method used to segment 7 retinal surfaces from

ONH-centered OCT images. Fig. 4.1 briefly describes the various steps of the seg-

mentation technique. The datasets are first filtered using a 3-D gradient anisotropic

diffusion filter as proposed in [20], which helps reduce the speckling characteristic to

OCT images. The segmentation can be roughly divided into two stages – the outer

surface segmentation and dataset flattening, and the inner surface segmentation –

and are described in detail in the following sections.

4.1 Flattening the OCT Volume

The retinal surfaces in the OCT images obtained from the scanner (Fig. 4.2)

are far from flat, and in fact distorted in different ways in the B-scan (xz-slices, see

Fig. 4.2(a), Fig. 4.4) and C-scans slices (yz-slices, see Fig. 4.2(b)). These artifacts

are thought to be the result of a number of factors such as the corneal curvature,

motion of the eye and the positioning of the camera. Flattening the dataset can
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eliminate these effects, and makes visualization easier by bringing the dataset into

a more consistent shape. It also centers the data in a manner that allows for the

efficient truncation of the volume to include only the surfaces that are of interest.

(a) (b)

Figure 4.2: OCT scans before flattening. (a)Central B-scan showing the curvature
commonly seen in these slices. (b) Central C-scan showing artifacts characteristic to
yz-slices.

The memory requirements of the algorithm are largely dictated by the size of

the graph, which in turn depends on the size of the dataset. Thus, flattening and

truncating the volume to only include the region of interest offers savings in memory

requirements as well as run-time.

As the OCT volumes are flattened with respect to surface 6, the flattening process

begins with the detection of the outer surfaces, namely surface 1, 6 and 7 (Fig. 2.2).

As depicted in Fig. 4.3, the outer surfaces are found through a multi-resolution

approach in 3 steps, at (1/8)th, (1/4)th and the full resolution, using the 3-D graph-

based approached discussed in the previous chapter. The cost functions and feasibility

constraints used in this stage are as described below.
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Flatten Dataset With 
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Flatten Dataset

Filtered Dataset

Flattened Dataset

Figure 4.3: Flowchart showing main steps involved in the flattening process.

4.1.1 Construction of the Graph

4.1.1.1 Cost Function

The outer surfaces (surfaces 1, 6 and 7) mark the border between dark and bright

regions, therefore, the on-surface costs can be set using gradient information. The

gradients are obtained using a combination of vertical and horizontal edge detectors.

The horizontal gradient is negligible or absent in most regions of the image, and only

provides a response at the neural canal opening (NCO) and vessel shadows. Since

the vertical gradients, in these specific areas are extremely small, the horizontal edge

information can be used to enhance the overall edge response in the image. Thus,

the intensity of the gradient at voxel location (x, y, z) can be expressed as:
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(a) Slice 0 (b) Slice 21 (c) Slice 46 (d) Slice 67 (e) Slice 96

(f) Slice 67 (g) Slice 83 (h) Slice 96 (i) Slice 108 (j) Slice 127

(k) Slice 136 (l) Slice 153 (m) Slice 166 (n) Slice 181 (o) Slice 195

Figure 4.4: Slices from an ONH-centered OCT dataset.
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Figure 4.5: 3-D edge detectors. (a) 3-D vertical edge mask. (b) 3-D horizontal edge
mask.

G(x, y, z) = ~V (x, y, z) + H(x, y, z) , (4.1)

where, ~V (x, y, z) represents the directed vertical gradient response and H(x, y, z)

represents the absolute horizontal gradient response. Fig. 4.5 shows the 3-D edge

detectors used.

Although the gradients are sufficiently strong in the full resolution dataset, in the

lower resolutions the images show a considerable amount of noise despite the filtering.

But filtering the images further is not an option, as this blurs the edges leading to

low gradient responses. Another challenge faced in the lower resolution images, is the

large inter-slice variability. Since the dataset has not been flattened yet, the large

C-scan artifacts reduce the effectiveness of the 3-D edge detectors. To tackle these

two challenges, we use a normalized column-wise cumulative image, where the pixel

intensity at (x, y, z) is defined as follows:

p(x, y, z) = p(x, y, z) + p(x, y, z − 1), z = {1, 2.....Z − 1} , (4.2)

where, p(x, y, z) is the voxel intensity at the location (x, y, z). The gradients
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found on the sum of this cumulative image and the OCT volume are stronger, as the

cumulative image incorporates 2-D information and reduces the noise in the image.

This cumulative image is used in the detection of the ILM and surface 6. Similarly,

the edge magnitudes for surface 7 can be enhanced by using a reversed cumulative

image, where:

p(x, y, z) = p(x, y, z) + p(x, y, z + 1), z = {0, 1, 2.....Z − 2} , (4.3)

Thus, if I represents the image, and C represents the cumulative image, then

Ic(x, y, z) = I(x, y, z) + C(x, y, z), (4.4)

Ci(x, y, z) = ~V (Ic(x, y, z)) + H(Ic(x, y, z)) (4.5)

where, Ci is the cost function for the surface Si.

4.1.1.2 Feasibility Constraints

The feasibility constraints used for the segmentation of the outer surfaces are

not derived from a training set, and as such do not vary as a function of the (x, y)

location. The photoreceptor layer does not show large variations in thickness and any

variability in the thickness between surfaces 1 and 6 is inconsequential, as the ILM

and OS-photoreceptor layer complex are found separately in the higher resolutions.

The smoothness constraints are also defined globally, but are adjusted within the

neural canal as the surfaces behave differently within this region. The ILM sees large

rapid changes as it dips into the neural canal, but surfaces 6 and 7 become indistinct.

To compensate for this, the smoothness constraints are relaxed for the ILM and

reduced for surfaces 6 and 7 to prevent large (most likely erroneous) variations in the

detected surfaces.
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4.1.2 Methodology

At the lowest resolution ((1/8)th of the original), the ILM and the two photore-

ceptor surfaces are segmented simultaneously using a 3-D graph-search. Fig. 4.6(a)

shows the three surfaces found on a central xz-slice at this resolution.

The obtained result is used to flatten the dataset in the next resolution (down-

sampled by a factor of 4) with respect to surface 6. For this, a thin-plate spline is fit

to surface 6 (while avoiding the neural canal by using a circular mask) in order to find

a smooth surface at the next (higher) resolution, followed by the translation of all the

columns of the dataset such that the spline-fitted surface is reduced to a flat plane.

At this resolution, surfaces 6 and 7, and the ILM are found through two separate

graph searches. This helps reduces the size of the graphs as the separate graphs only

include a small region around the ILM and the OS-photoreceptor complex, where as

a simultaneous search for the 3 surfaces would have included a much larger section

of the image that contained all the layers of the retina. Separating the two graph-

searches also allows us to multi-thread the process, which exploits the multiple cores

of the processor and can reduce the processing time by up to a factor of 2 in dual-core

processor systems.

In the third and final stage of the segmentation, the result obtained in the previous

stage is once more used to localize the graph search in the original resolution and the

ILM and surfaces 6 and 7 are again segmented via two graph searches.

Once the outer surfaces have been segmented, the dataset can be flattened by the

vertical re-alignment of the columns of the dataset with respect to a plane, which is

determined by fitting a thin-plate spline to surface 6. The two main challenges that

are faced while flattening are:

• The neural canal, as the surfaces become indiscernible within this region.

• The two distinct distortions seen in the B-scans and the C-scans. The B-scans
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Figure 4.6: Outer surfaces segmented in lower resolutions. (a) Central B-scan show-
ing the intermediate result at the lowest resolution ((1/8)th original image). (b)
Segmentation result at the next resolution ((1/4)th original image).

Segmented 
Surface 6

Fit Spline Using 
Equal Number of Control 

Points Along Both Axis
& Flatten

Fit Spline Using 
More Control 

Points Along y-axis
& Flatten

Figure 4.7: Overview of method to determine flattening plane. The flattening plane is
determined by fitting a spline to surface 6 twice, to eliminate the two distinct artifacts
seen in these images.

show a smooth curvature, while the layers in C-scans sometimes show large

ripples.

Control points from within the neural canal can be avoided by using a circular

mask to approximate the region. Thus, the flattening plane is not influenced by the

unreliability of the detected surfaces within this region. To compensate for the two

different artifacts seen in the dataset, the flattening is done in two steps:

• A thin-plate spline is fit to surface 6 using equal number of control points in

both of the axial directions, and a smoothing regularization term of 0.1. The
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(a) (b) (c)

Figure 4.8: Construction of the flattening plane. (a) Surface 6 as segmented from
the original unflattened dataset. (b) Surface 6 after the first stage of flattening with
respect to the plane found after the first spline-fit. (c) The final flattened surface
obtained after the second spline-fit.

dataset is flattened with respect to this flattening plane.

• A thin-plate spline is fit to the flattened surface using a larger number of control

points in the y-direction than the x-direction, and the dataset is flattened once

more with respect to the new flattening plane. The regularization term used

in this step is a little smaller (0.07) to better approximate the rapid variations

seen along the y-direction.

As Fig. 4.7 shows, the thin-plate spline found in the first stage is sufficient to

approximate the overall curvature of the dataset, but is not capable of handling the

high frequency rippling seen in the C-scans, thus, requiring a second spline fit. Fig. 4.8

shows surface 6 from an example dataset at the various stages of flattening. The first

spline-fit, fits a gross smooth surface to the segmented surface 6. As depicted in Fig.

4.8(b), this smooth approximation of surface 6 is not sufficient to completely remove

the artifacts seen in the y-direction. But as shown in Fig. 4.8(c), the second-spline
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fit which uses a larger number of control points as well as a smaller regularization

factor is capable of doing so.

4.2 Segmentation of Inner Retinal Surfaces

The four inner surfaces, like the outer surfaces, (Fig. 4.9) are detected using a

multi-resolution approach, but the graph constructed shows two key changes:

• The overall cost function incorporates regional cost terms in addition to on-

surface cost terms.

• The feasibility constraints vary as a function of the (x, y) location, and are

determined a priori from a training set.

Flattened 

Dataset

Segmented 

Outer 

Surfaces

Learned 

Feasibility 

Constraints

Segmented 

Inner Retinal 

Surfaces

Detect Inner Retinal 

Surfaces 

Simultaneously in 

Dataset Down-

sampled By 2

Detect Surface 2 in 

Full Resolution 

Volume

Detect Surfaces 3 & 4 

in Full Resolution 

Volume

Detect Surface 5 in 

Full Resolution 

Volume

Figure 4.9: Flowchart showing the main steps for the segmentation of the inner retinal
surfaces.
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4.2.1 Construction of the Graph

4.2.1.1 Cost Function

The cost functions, as described in section 3.1.2, can be defined as combination

of on-surface cost terms and regional cost terms. The on-surface cost terms are

computed using the 3-D edge detectors as described in section 3.1.1.1. Note that for

the inner retinal surfaces, the cumulative image cannot be used as it tends to blur the

gradients (which are smaller in comparision to those seen in the outer layers). Thus,

the on-surface cost terms are computed as the sum of the directed vertical and the

absolute horizontal gradients.

The regional cost terms reflect the likelihood that a pixel belongs to a certain

region. For this, we use Gaussian functions as described in [19], to map the normalized

intensity values to a likelihood of belong to a particular class. On inspection of the

images, we see that the layers can be roughly classified into dark, bright and medium

classes. Thus, the in-region cost terms can be derived from these fuzzy memberships.

For instance, let fd(x) represent the probability that a pixel belongs to the dark class,

then

fd(x) =











1 for x ≤ ∆d

e(x−∆d)2/2σ2

for x > ∆d

(4.6)

where, ∆d is the threshold for the dark class. Similarly, functions are defined for

the medium and bright classes.

fm(x) =























e(x−(cm−∆m))2/2σ2

for x ≤ cm − ∆m

1 for cm − ∆m < x < cm + ∆m

e(x−(cm+∆m))2/2σ2

for x ≥ cm + ∆m

(4.7)

fb(x) =











e(x−(1−∆b))/2σ2

for x < 1 − ∆b

1 for x > 1 − ∆b .
(4.8)
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To allow for variability between images, the values of ∆d, ∆m, ∆b are derived from

the images. At this stage, the location of the outer surfaces is known, and therefore,

can be in conjunction with the learned expected thicknesses to assess average inten-

sities within the three region. Since the ONL is a dark layer, ∆d can be computed

as the mean intensity of voxels between surface 6 and the minimum learned distance

between surfaces 5 and 6. Similarly, ∆b is set to the mean value between surface 1 and

the learned minimum distance between surfaces 1 and 2, and ∆m is set to the average

intensity between the minimum distance from surface 1 to surface 3, and maximum

distance between surface 1 and surface 3. Fig. 4.10 shows the limits used to compute

these values. cm and σ are set to appropriate small constants.

Bright RNFL

Medium GCL/OPL

Dark ONL/INL

Minimum Distance
From ILM to surface 2

Maximum Distance from 
Surface 1 to Surface 3 

Minimum Distance from
Surface 5 to Surface 6

Minimum Distance
From ILM to surface 3

Figure 4.10: The bounds used for the estimation of regional parameters. The region
used for the estimation of ∆d, ∆m and ∆b is fixed using the outer surface segmentation
result and the learned thickness constraints.

Thus, the overall cost function can now be expressed as the weighted sum of the

regional and on-surface cost terms:
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CT = α

n
∑

i=1

CSi
+ (1 − α)

n
∑

i=0

CRi
, (4.9)

where, αi determines the ratio between the regional and on-surface cost terms

for surface i. The αi values used and the method of their determination is further

discussed in Section 4.2.3.

4.2.1.2 Feasibility Constraints

As described in Section 3.1, the constraints that describe the feasible set of sur-

faces can be allowed to vary as a function of the (x, y) location and were learned

from a manually traced training set (see Section 5.1). For a four-neighbor system,

the varying smoothness constraints are calculated in the x and y directions, each of

which are expressed using a minimum ∆l
(x1,y1),(x2,y2)

, and a maximum ∆u
(x1,y1),(x2,y2)

,

allowed change in the z-value when moving from (x1, y1) to (x2, y2). These limits are

calculated using the mean and standard deviation of the changes in z-values noted

in the training set. First the mean µs and standard deviation σs are calculated, then

the two limits are set as follows:

∆l
(x1,y1),(x2,y2)

= µs − 3.2 ∗ σs, (4.10)

∆u
(x1,y1),(x2,y2) = µs + 3.2 ∗ σs . (4.11)

The value of 3.2 is chosen, so that these limits are large enough to account for at

least 99% of expected changes in z-values.

Similarly, the varying thickness constraints are determined for each (x, y) location,

using the mean and standard deviation of the thicknesses encountered in the training

set.
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δmin
i,j (x, y) = µt − 3.2 ∗ σt, (4.12)

δmax
i,j (x, y) = µt + 3.2 ∗ σt . (4.13)

Care is taken to make sure that δmin
i,j does not assume values less than 0.

4.2.2 Methodology

The segmentation of the inner surfaces begins with the simultaneous segmentation

of the four inner surfaces in the lower resolution (1/2 of the original) flattened volume.

The graph is constructed as described in Sec. 3.2.1.1-2, and the four inner surfaces

are found simultaneously.

In the full resolution, the four surfaces are segmented via three separate graph-

searches (which can be run simultaneous by multi-threading the processes). Surface

5 is detected in a graph constructed from a small region around the surface detected

in the lower resolution. Similarly, surface 2 is segmented as a single surface, while

surfaces 3 and 4 are segmented together due to their close proximity to one another.

The lower resolution result not only provides information about the location of

the surface, it can also be used to provide much better estimates for the regional

cost term parameters, ∆d, ∆m and ∆b. The parameters are now computed from

regions that are specified by the approximate locations of the surfaces found in the

lower resolution. For instance, ∆d is now computed from the region demarcated by

surfaces 6 and the lower resolution approximate location of surface 5. Similarly, ∆m

is set to the mean intensity between the previously detected surfaces 2 and 3, and ∆b

is set to the mean intensity between surfaces 1 and the detected surface 2.

The most important advantage of the multi-resolution approach over the simulta-

neous segmentation of the the inner surfaces in the full resolution is the considerable

reduction in run-time. In the lower resolution, the graph is considerably smaller, thus
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Table 4.1: Weights
of on-surface cost
terms.

Surface Weight
2 54
3 32.3
4 74
5 99

providing considerably savings in terms of memory requirements as well as processing

time. Similarly, in the full resolution, the use of multiple smaller graphs reduces the

size of the overall graph.

4.2.3 Determining the Cost Function Parameters

The overall cost function is expressed as a weighted sum of the regional and the

on-surface cost terms, but it must be noted that the on-surface costs for each surface

can also be weighted in a similar manner to achieve optimal results.

The value of α is determined by testing the segmentation results against the

manually edited bronze standard (described in Section 5.2.1), as described by [21],

and is it set to the value that minimizes the error. A similar procedure was used to

determine the weights of the on-surface cost terms that produced the smallest error

on the bronze standard. The values used are tabulated in Table 4.1.

Note, that the value of alpha and the surface cost term weights were determined

using a preliminary version of the segmentation method that did not use the multi-

resolution approach.
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CHAPTER 5

EXPERIMENTAL METHODS

In this chapter we describe the various experimental methods used to validate the

methods described in the previous chapter.

5.1 Reference Standard for the Flattening

Technique

Tang et. al [22] describes a method for the reconstruction of the shape of the optic

nerve head from stereo fundus photographs. The 3-D shape estimate is obtained by

finding corresponding pixels from two stereo images of the optic nerve head, taken

from two slightly different angles. The two image planes are known to be horizontally

displaced, but can be assumed to be co-planar. Since the horizontal disparity is

known to be inversely proportionaly to the depth associated with the 3-D pixel, a

disparity map can be created using pixel correspondences. The disparity maps show

the shape of the retina at the ONH region, and since the disparity maps are created

from fundus photographs, they are free from the curvature artifacts associated with

OCT scans. Thus, the disparity maps can be used to evaluate the effectiveness of the

flattening procedure.

First, the disparity maps are registered to the OCT images to bring them into

the same reference plane; then, the images are smoothed. As the disparity maps also

show considerable amounts of noise, in order to retain as much information about the

shape of the optic nerve head region, a 2-D thin-plate is fit to the disparity map. Fig.

5.1 shows the resulting smoothed image. The normalized disparity map can now be

compared to the flattened ILM to guage the effectiveness of the flattening procedure.

5.2 Reference Standards Used for the

Validation of the Segmentation Method

[21] describes the use of two reference standards for the training and testing of

the segmentation method. The “bronze” standard was compiled from the 7 training
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Figure 5.1: Fundus photograph and its corresponding disparity maps. (a) The fundus
photograph of a glaucomatous eye. (b) The disparity map constructed from the
fundus photographs. (c) The smoothed disparity map obtained after the spline-fit.
(d) The disparity map in 3-D. (e) The smoothed disparity map in 3-D showing the
overall shape of the optic nerve head.

datasets, and was created from edited manual tracings (from a single observer) of the

entire volume. This was done using a special tracing/editing tool and was used to

determine the varying feasibility constraints. The “gold” standard consists of manual

tracings from 2 independent observers of 10 slices for each testing dataset. The

reference standard was then created from the average of the two observer’s tracings.

Further details regarding each of the reference standard is discussed in the sections

below.
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Another important aspect that must be considered while validating the segmen-

tation method is the neural canal. Within the neural canal, the surfaces become

indistinct and while a human expert may be able to gauge the expected location (but

not definitively trace) a surface, it is hard for an automated technique to achieve the

same. Thus, this region must be avoided altogether while tracing as well as segment-

ing the surfaces. Hu et. al [23] describes a graph-based method for the automated

segmentation of the NCO from OCT datasets. The method begins with the creation

of a projection image (mean intensity along the z-axis) from a small number of slices

near surface 6. The method also incorporates the location of blood vessels as they

are quite large at the ONH. The blood vessels are segmented using the approach

developed by Niemeijer et. al [24] from the projection image created from the entire

flattened dataset. The approach uses a kNN classifier (k=31) and Gaussian filter

derivatives up to and including order 2 (i.e. L, Lx, Ly, Lxx, Lxy, Lyy) at scales equal

to 1, 2, 4, 8, and 16 pixels are used as features. Each pixel is then assigned a soft

label to form a posterior map, which can then be thresholded to obtain a map of the

large dominant blood vessels (Fig. 5.2(a)). The location of the blood vessels is used

to modify the cost function after which, the inner and outer boundaries of the NCO

are segmented simultaneously using a graph-search. Fig. 5.2 shows the projection

image overlaid with the detected NCO mask.

Once the NCO boundary has been detected, it can be used to avoid trying to

validate the performance of the segmentation method within the neural canal. The

NCO mask is dilated before being used in the validation process to ensure that no

region in the optic canal is included.

5.2.1 Bronze Standard

The bronze standard was created for learning the expected layer thickness and

surface smoothness parameters. The slices were traced using a combination of auto-

mated segmentation and manual editing. First, the volume was divided into 10 slabs
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(a) (b) (c)

Figure 5.2: NCO boundary detection. (a) The soft-label vessel map created using
the pixel classification method [24]. (b) The projection image created from a small
number of slices near Bruch’s membrane. (c) The projection image overlaid with the
mask of the detected NCO boundary.

and a random slice from each slab was traced manually using the tracing tool. An

early version of the segmentation method was then used to segment the surfaces on the

entire volume using the traced slices as “anchor” points. The anchoring was achieved

by adjusting the cost functions to favor the traced “known” surfaces. The early ver-

sion of the segmentation method did not use regional terms or varying constraints as

the constraint parameters had not been learned yet. Instead, the constraints were set

to large enough values to enable the segmentation method to find the surfaces with

as much accuracy as possible.

The segmented surfaces were then loaded back into the tracing tool and edited

(by a single observer) to form the bronze standard.

5.2.2 Gold Standard

The gold standard, as mentioned earlier, was created for the purposes for validat-

ing the segmentation method. Each volume in the dataset was divided into 10 equal

sized section, and a slice was chosen at random from each section. These 10 slices

were then manually traced by two independent observers to form the gold standard.
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The reference standard is formed from the average of the two independent observers’

tracings.

5.3 Data Used to Validate the Methods

The images used for the validation were obtained from a spectral-domain OCT

scanner (Cirrus, Carl Zeiss Meditec Inc., Dublin, CA) and had dimensions of 6mm×

6mm × 2mm and 200×200×1024 voxels. The test set for the flattening method

consisted of 30 OCT scans from 15 patients diagnosed with glaucoma, while the test

set for the segmentation method consisted of the gold standard created on 5 normal

scans from 5 normal subjects, as well as 10 glaucomatous scans obtained from 10

glaucomatous patients.
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CHAPTER 6

VALIDATION AND RESULTS

6.1 Flattening of the Datasets

The flattening method was validated using the disparity maps created as described

in Section 5.1. Before the unsigned differences are computed between the disparity

maps and the ILM surface, they are normalized to fractional values between 0 and

1. The detected ILM surface - unflattened, flattened using a single spline-fit and

flattened using the two-spline approach - are normalized by dividing all the depths

by 800 and then scaling the values to within 0 and 1. This is done as the maximum

depth of the surface in the unflattened case can exceed the depth of the neural canal,

which is the maximum depth seen in the flattened cases.

As the disparity maps are created from the fundus photographs and can sometimes

show only a small region around the optic disc, care was taken to ensure that the

difference was only calculated in areas where the disparity map was well defined.

The optic disc was also avoided. Table 6.1 shows the results obtained on a subset of

the test set (only the right eyes), and Fig. 6.1 show some of the flattening results,

including the best and worst cases.

Table 6.1 shows the mean unsigned difference between the disparity maps and

the ILM in the original unprocessed dataset, the partially flattened dataset (after the

1st stage of flattening) and the final flattened dataset. The mean unsigned difference

computed over all 30 datasets datasets flattened using the single-spline and two-spline

approach was found to be 0.215± 0.056 and 0.129 ± 0.030, (p < 0.001) respectively.

6.2 Intraretinal Layer Segmentation

The testing set consisted of 5 datasets from 5 normal subjects and 10 datasets from

10 patients diagnosed with glaucoma. The border positioning errors are expressed

as the mean ± standard deviation expressed over all of the datasets. The results

consist of comparisons between the algorithm and each of the observers as well as the
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Figure 6.1: Comparison of flattening method. Each row of images show the original
segmented ILM, the ILM after the first spline-fit, the ILM after the second spline-fit
and the corresponding disparity map created from fundus photographs.
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Figure 6.2: Behavior of surface 6 through the flattening process. Each row shows
3-D images of surface 6 before being flattened, flattened after the first spline-fit and
flattened after the second spline-fit.
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Table 6.1: Mean unsigned difference between the disparity maps and the
ILM before and after flattening.⋆

Dataset Disparity Map vs. Disparity Map vs. Disparity Map vs.
ILM in Original ILM in Partially ILM in Flattened

Volume Flattened Volume Volume
1 0.196 0.176 0.129
2 0.168 0.156 0.110
3 0.274 0.265 0.133
4 0.296 0.303 0.129
5 0.199 0.202 0.129
6 0.193 0.201 0.099
7 0.059 0.069 0.050
8 0.247 0.259 0.137
9 0.192 0.197 0.119
10 0.231 0.234 0.114
11 0.267 0.264 0.139
12 0.184 0.189 0.128
13 0.156 0.159 0.111
14 0.202 0.197 0.156
15 0.189 0.197 0.149

Average§ 0.212 ± 0.059 0.215 ± 0.056 0.129 ± 0.030
⋆ Differences were computed in regions were the disparity maps where

well defined. The optic disc was also avoided.

§ Mean ± standard deviation.

the average of the two manual tracings, and the inter-oberser variability. The mean

unsigned error of the algorithm when compared against the reference standard was

found to be comparable to the inter-oberserver variability, with values of 7.25±1.08

µm and 6.32±1.33 µm, respectively. Table 6.2 shows the mean unsigned errors and

Table 6.3 shows the signed errors on the normal test set. The datasets that show the

smallest and largest errors are also depicted in Fig. 6.3 and Fig. 6.4, respectively.

The results obtained on the glaucomatous test set are tabulated in Table 6.4 and

Table 6.5, and the segmented surfaces on 5 traced slices from the dataset showing the

smallest and largest overall errors are shown in Fig. 6.5 and Fig. 6.6 respectively.

The performance of the algorithm against the reference standard were again found
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to be comparable to the inter-observer variability, and show mean unsigned errors of

8.94 ± 3.76 µm and 8.52 ± 3.61 µm, respectively.

Table 6.2: Mean unsigned border positioning errors† computed
on the normal test set.⋆

Surf- Algo. vs. Algo. vs. Algo. vs. Obs. 1
ace Obs. 1 Obs. 2 Avg. Obs. vs. Obs. 2
1 4.70±1.59 3.74±0.23 4.09±1.08 4.65± 1.61
2 9.86±1.97 9.38±1.78 10.07±2.16 9.92±2.65
3 9.36 ±1.22 8.21±0.68 9.35 ±1.65 7.48± 1.89
4 8.90 ±1.34 7.85 ±1.03 9.13 ±2.14 7.07 ±1.40
5 10.21±1.52 9.50±1.01 10.04±1.55 7.04 ±1.31
6 2.95±1.58 2.41±0.48 2.89 ±1.05 3.37 ±1.20
7 4.99 ±2.99 5.72±1.73 5.17±1.41 4.74± 2.05

Average 7.28±1.21 6.69 ±0.53 7.25±1.08 6.32±1.33
† Mean ± SD in µm.

⋆ For each boundary, differences were not computed in the
neural canal.
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(a) Slice 6 (b)

(c) Slice 51 (d)

(e) Slice 97 (f)

(g) Slice 134 (h)

(i) Slice 167 (j)

Figure 6.3: Segmented surfaces from a normal test set image that showed the smallest
error with respect to the manual tracings of Observer 1. Every other traced slice has
been displayed, with the dilated NCO marked in red as applicable. The dataset
showed an unsigned error of 5.91 ± 2.61µm.
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(a) Slice 15 (b)

(c) Slice 43 (d)

(e) Slice 82 (f)

(g) Slice 139 (h)

(i) Slice 174 (j)

Figure 6.4: Segmented surfaces from a normal test set image that showed the largest
error with respect to the manual tracings of Observer 1. Every other traced slice
has been displayed, with the dilated NCO marked in red as applicable. The dataset
showed an unsigned error of 9.21 ± 3.16µm.
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(a) Slice 9 (b)

(c) Slice 65 (d)

(e) Slice 110 (f)

(g) Slice 156 (h)

(i) Slice 187 (j)

Figure 6.5: Segmented surfaces from a glaucomatous test set image that showed
the smallest error with respect to the average manual tracings of both observers.
Every other traced slice has been displayed, with the dilated NCO marked in red as
applicable. The dataset showed an unsigned error of 6.04 ± 2.49µm.
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(a) Slice 6 (b)

(c) Slice 52 (d)

(e) Slice 84 (f)

(g) Slice 138 (h)

(i) Slice 167 (j)

Figure 6.6: Segmented surfaces from a glaucomatous test set image that showed the
largest error with respect to the average manual tracings of both observers. Ev-
ery other traced slice has been displayed, with the dilated NCO marked in red as
applicable. The dataset showed an unsigned error of 12.16 ± 6.52µm.
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Table 6.3: Mean signed border positioning errors† computed
on the normal test set.⋆

Surf- Algo. vs. Algo. vs. Algo. vs. Obs. 1
ace Obs. 1 Obs. 2 Avg. Obs. vs. Obs. 2
1 2.63±0.78 0.57±1.81 1.35±1.92 -1.68±1.79
2 -3.48±1.75 -6.26±1.93 -4.85±3.85 -1.89±2.36
3 -5.75±1.19 -3.99±0.81 -5.63±0.78 2.23 ±1.68
4 -5.39±1.71 -4.40±2.12 -6.20±1.76 0.96 ±2.10
5 -8.36±0.98 -8.80±1.49 -8.91±1.69 0.26 ±2.45
6 0.48 ±0.52 -0.34±1.09 -0.47±1.09 -1.03±1.42
7 -0.69±2.45 -2.34±3.56 -1.39±2.62 -1.25±3.62

† Mean ± SD in µm.

⋆ For each boundary, differences were not computed in the
neural canal.

Table 6.4: Mean unsigned border positioning errors† computed on the
glaucomatous test set.⋆

Surf- Algo. vs. Algo. vs. Algo. vs. Obs. 1
ace Obs. 1 Obs. 2 Avg. Obs. vs. Obs. 2
1 5.26 ±1.61 4.66 ± 1.58 4.90 ± 1.54 4.90 ±1.37
2 14.29 ± 6.28 15.12 ± 4.44 14.43 ± 5.63 12.79 ± 3.36
3 10.32 ± 2.75 14.17 ± 4.98 10.96 ± 4.06 13.74 ± 2.04
4 10.77 ± 3.37 10.44 ± 3.06 10.46 ± 2.79 9.28 ± 3.00
5 10.27 ± 2.82 11.04 ± 3.05 10.73 ± 2.78 7.67 ± 1.69
6 3.73 ± 1.26 4.07 ± 1.30 3.87 ± 1.32 4.69 ± 1.26
7 7.73 ± 1.59 6.98 ± 1.75 7.24 ± 1.74 6.58 ± 1.53

Average 8.94 ± 1.97 9.50 ± 4.39 8.94 ± 3.76 8.52 ± 3.61
† Mean ± SD in µm.

⋆ For each boundary, differences were not computed in the neural
canal.
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Table 6.5: Mean signed border positioning errors† computed on the
glaucomatous test set.⋆

Surf- Algo. vs. Algo. vs. Algo. vs. Obs. 1
ace Obs. 1 Obs. 2 Avg. Obs. vs. Obs. 2
1 2.56 ± 2.61 2.29 ± 1.69 2.80 ± 1.73 0.04 ± 2.19
2 -3.73 ± 1.89 6.28 ± 6.02 7.26 ± 5.78 0.12 ± 4.47
3 -5.94 ± 1.10 10.18 ± 6.02 4.90 ± 5.61 -11.33 ± 2.12
4 -5.221 ± 1.51 -2.01 ± 4.03 -2.37 ± 4.14 -0.80 ± 2.80
5 -8.11 ± 0.99 -5.50 ± 2.93 -5.46 ± 3.21 -0.18 ± 1.79
6 0.01 ± 1.16 1.29 ± 1.60 1.19 ± 1.47 -0.18 ± 1.79
7 -0.96 ± 2.50 1.58 ± 1.84 1.16 ± 2.90 -0.41 ± 2.80

† Mean ± SD in µm.

⋆ For each boundary, differences were not computed in the neural
canal.
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CHAPTER 7

POSSIBLE CLINICAL APPLICATIONS

Glaucoma is known to thin the RNFL as it progresses, and the degree of thinning

(currently available on a 2-D circular scan) is often used for the diagnosis of the

disease. To demonstrate a possible application of this segmentation method, we

have tabulated the layer thickness values (of the RNFL and other layers) on a set

of 26 normals and 70 glaucomatous datasets. Table 7.1 and Fig. 7.1 show the mean

layer thickness values computed on all 6 layers that were segmented. The RNFL, as

expected, shows a marked reduction in the thickness with average values of 73.72 ±

32.72 µm in normals and 60.38 ± 25.22 µm in glaucomatous eyes. The optic disc

region has not been included in the evaluation of the thickness maps as the surfaces

become indistinct and the layers are hard to define in this region. The area has been

approximated using a circular mask.

Table 7.1: Average Layer thicknesses† in
normal and glaucomatous eyes.

Layer Normals Glaucomatous
1 73.72 ± 32.72 60.38± 25.22
2 44.61± 14.79 42.37± 11.21
3 19.40± 2.04 17.74 ±2.24
4 20.32± 4.56 20.10 ±4.79
5 74.10± 6.03 69.48± 7.80
6 59.15± 2.50 58.25± 3.53

† Thickness in mean ± standard devi-
ation µm.

⋆ Average was computed from 26 nor-
mal and 70 glaucomatous datasets.

The thinning of the RNFL is also known to be localized and thus, there is known to

be some advantages to calculating the mean thicknesses in sectors instead of the entire
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Figure 7.1: Mean thickness maps of normal and glaucomatous eyes.
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Figure 7.2: Protocols used in the computation of mean RNFL thickness values.

volume. Fig. 7.2 shows the different methods that were used to divide the image into

sectors. In addition to the neural canal, the peripheral regions were also excluded as

it is the nerve fibers closer to the optic disc that show thinning in glaucomatous eyes.

Apart from this, we also evaluated mean thickness values in a narrow “doughnut”

shaped region, within two radial distances. If the largest circle that can be drawn in

the 200×200 pixel image is assumed to have a radius of 10, then the doughnut-shaped

region is defined between radial distances of 7 and 8.

The graphs shown in Fig. 7.3 show the average RNFL thicknesses computed

within the narrow doughnut-shaped region, while dividing the image into 4, 6 and

12 sectors. The plot shows us the sectors that show the largest difference in layer

thicknesses (thinning) between normal and glaucomatous scans.
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Table 7.2: Average RNFL thicknesses † in normal and glaucomatous eyes
in 12 equal sectors. ⋆

Sector within r=8 Sector within r1=7, r2=8
Sector Normals Glaucomatous Normals Glaucomatous

1 69.38± 25.03 69.79± 26.63 47.93± 2.54 49.62± 4.12
2 95.45± 34.11 88.17± 32.31 65.98± 7.56 59.94± 4.51
3 110.34± 43.27 89.72± 34.34 70.8± 6.61 60.08± 2.74
4 138.76± 33.89 96.76± 27.36 107.31± 14.06 72.29± 6.84
5 104.26 ±29.34 82.89± 22.3 83.77± 17.76 63.24± 7.12
6 60.11± 20.81 68.67± 22.61 42.22± 6.14 46.3± 3.89
7 71.75± 22.39 62.84± 21.63 53.18± 8.48 41.01± 2.89
8 113.28± 27.26 81.59± 19.71 93.38± 15.44 64.87± 10.83
9 124.77± 34.12 99.59± 26.95 93.13± 15.92 72.67± 6.76
10 98.49± 36.54 85.13± 36.68 64.51± 4.34 51.83± 3.83
11 102.69± 30 75.07± 29.75 74.17± 6.09 49.54± 3.03
12 76.53 ±27.2 62.7± 24.68 53.91± 5.94 43.23± 1.09

† Thickness in mean ± standard deviation µm.

⋆ Average was computed from 26 normal and 70 glaucomatous datasets.

Table 7.3: Average RNFL thicknesses † in normal and glaucomatous eyes
in 6 equal sectors. ⋆

Sector within r=8 Sector within r1=7, r2=8
Sector Normals Glaucomatous Normals Glaucomatous

1 73.02± 26.39 66.18± 25.89 50.95± 5.47 46.39± 4.38
2 102.95± 39.70 88.95± 33.35 68.39± 7.50 60.01± 3.73
3 121.35± 36.06 89.76± 25.88 95.39± 19.89 67.71± 8.32
4 65.83± 22.37 65.81± 22.32 47.63± 9.19 43.69± 4.33
5 119.07± 31.43 90.66± 25.29 93.25± 15.67 68.77± 9.84
6 100.61± 33.46 80.05± 33.73 69.40± 7.17 50.67± 3.63

† Thickness in mean ± standard deviation µm.

⋆ Average was computed from 26 normal and 70 glaucomatous datasets.
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Table 7.4: Average RNFL thicknesses † in normal and glaucomatous eyes
in 4 equal quadrants. ⋆

Sector within r=8 Sector within r1=7, r2=8
Sector Normals Glaucomatous Normals Glaucomatous

1 79.84± 29.67 70.26± 28.11 55.90± 9.47 48.55± 5.69
2 120.03± 38.90 92.15± 30.11 87.72± 19.64 66.05± 7.10
3 75.33± 26.69 68.88± 22.02 56.66± 15.70 47.98± 7.56
4 113.38± 35.13 89.71± 31.05 83.25± 18.82 62.39± 12.04

† Thickness in mean ± standard deviation µm.

⋆ Average was computed from 26 normal and 70 glaucomatous datasets.
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(a)

(b)

(c)

Figure 7.3: Graph of normal and glaucomatous RNFL thicknesses computed between
r1=7 , r2=8. (a) Shows the plot of the mean values computed in the 12 sectors. (b)
Shows the plot of the mean values computed in the 6 sectors. (c) Shows the plot of
the mean values computed in the 4 sectors.
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CHAPTER 8

DISCUSSION

This thesis presents an automated 3-D graph-based method for the segmentation

of 7 surfaces (6 layers) from OCT scans centered on the ONH. In addition, we also

describe a new method for flattening the OCT datasets and provide some possible

clinical applications of the segmentation method.

The flattening method, as described earlier, uses two levels of spline-fits in order

to compensate for the two distinct artifacts seen in OCT scans. While it is possible to

attain the same results using a large number of control points in a single spline-fit, the

memory and time requirements of such an approach makes it less practical. The use

of two spline-fits also allows us to use larger values for the spline regularization which

makes the method less dependent on the segmentation results. But it is not possible

to completely eliminate this dependence and the accuracy of the segmentation still

plays a big role in the result. Similarly, the validation is also dependent on the

accuracy of the disparity maps, which are prone to noise. Another aspect that affects

the validation is the size of the region that the disparity maps reconstructs, which is

limited to a small region around the optic nerve head, while the OCT scans image a

much larger region. This limits the area that can be used to validate the flattening

process, and it is often limited to a narrow band on either side of the optic nerve

head.

The segmentation method proposed incorporates two key aspects of two 3-D

graph-based approaches that have been proposed for the segmentation of surfaces

at the macula. Garvin et. al [3] incorporated regional information in the cost func-

tion, and used varying feasibility constraints that were derived from a training set.

But this method shows large run-times and memory requirements. To tackle these is-

sues, Lee [4] proposed a multi-resolution approach that used several graph-searches to

find the surfaces instead of detecting them simultaneously. This method does not in-
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corporate regional information or varying feasibility constraints, and boasts run-times

of a few minutes. The method proposed in this thesis uses varying constraints and

regional information, as well as the multi-resolution approach. The method is robust

and is capable of providing comparable results on normal as well as diseased cases.

The most common errors seen in the normal test set were on surfaces 3, 4 and 5, and

it is likely that the optimization of the cost function parameters will provide a better

solution. Also, the errors seen in surface 7 could possibly be fixed by the inclusion

of regional information and smaller learned constraints. Another aspect that must

be considered is the learned constraints itself. Although the thickness constraints are

not affected by flattening, the smoothness constraints (especially in the y-direction)

are likely to show very large variations which are no longer seen in the datasets that

have been flattened with the new technique. Thus, further editing of the training set

to reflect the likely y-axis smoothness might prove useful. The large blood vessels at

the optic disc also pose quite a challenge and while the method is capable of dealing

with the smaller vessel shadows, it fails within regions where multiple vessel shadows

occur close together. The incorporation of vessel information, possibly to adjust the

cost function or the feasibility constraints, might also help reduce such errors.

The glaucoma scans show much larger errors, due to a combination of the above

mentioned factors as well as low contrast in the images itself. This is reflected in the

inter-oberserver variability, which reflects the difficulty faced by the observers while

tracing the scans manually. The inclusion of glaucomatous scans in the training

set could prove useful, as the training set would now reflect scans with strong edge

information as well as scans that typically show poor contrast. The incorporation of

texture information in addition to the regional information might also help make the

method more robust, as the texture information would not be entirely dependent on

intensity values.
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CHAPTER 9

CONCLUSION

We have presented an automated 3-D method for the segmentation of intraretinal

layers from spectral-domain OCT scans centered on the ONH. We have also described

and quantitatively validated an alternative flattening approach that address the ar-

tifacts common to OCT datasets. Although various methods for the same have been

proposed, thus far, none have validated the results quantitatively.

The flattening technique addresses the two distinct artifacts seen in OCT datasets,

and the advantages of this method over other flattening methods has been demon-

strated by comparing the results with 3-D reconstructions of the optic nerve head.

The intraretinal surface segmentation method addresses the challenges posed by

the presence of the optic disc and the large blood vessels found at this region of the

retina. It is sufficiently robust to deal with normal as well as diseased scans (which

often show low contrast), and produced border-positioning errors that are comparable

with inter-observer variability.
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[3] M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka,
“Automated 3-D intraretinal layer segmentation of macular spectral-domain op-
tical coherence tomography images,” IEEE Transactions on Medical Imaging,
vol. 28, no. 9, pp. 1436–47, 2009.

[4] K. M. Lee, “Segmentations of the intraretinal surfaces, optic disc and retinal
blood vessels in 3-D OCT scans,” Ph.D. dissertation, The University of Iowa,
2009.

[5] B. Klein, R. Klein, W. Sponsel, T. Franke, L. Cantor, J. Martone, and
M. Menage, “Prevalence of glaucoma. the beaver dam eye study.” Ophthalmology,
vol. 99, no. 10, p. 1499, 1992.

[6] D. Friedman, R. Wolfs, B. O’colmain, B. Klein, H. Taylor, S. West, M. Leske,
P. Mitchell, N. Congdon, and J. Kempen, “Prevalence of open-angle glaucoma
among adults in the united states,” Archives of Ophthalmology, vol. 122, no. 4,
p. 532, 2004.

[7] J. E. DeLeón-Ortega, S. N. Arthur, G. McGwin, A. Xie, B. E. Monheit, and
C. A. Girkin, “Discrimination between glaucomatous and nonglaucomatous eyes
using quantitative imaging devices and subjective optic nerve head assessment,”
Invest Ophthalmol Vis Sci, vol. 47, no. 8, pp. 3374–3380, Aug. 2006.

[8] H.-Y. Chen and M.-L. Huang, “Discrimination between normal and
glaucomatous eyes using Stratus optical coherence tomography in Taiwan
Chinese subjects,” Graefes. Arch. Clin. Exp. Ophthalmol., vol. 243, no. 9, pp.
894–902, 2005. [Online]. Available: http://dx.doi.org/10.1007/s00417-005-1140-
y

[9] H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S.
Schuman, “Macular segmentation with optical coherence tomography,” Invest
Ophthalmol Vis Sci, vol. 46, no. 6, pp. 2012–2017, Jun. 2005.



56

[10] F. Medeiros, L. Zangwill, C. Bowd, R. Vessani, R. S. JR, and R. N. Weinreb,
“Evaluation of retinal nerve fiber layer, optic nerve head, and macular thick-
ness measurements for glaucoma detection using optical coherence tomography,”
American Journal of Ophthalmology, vol. 139, no. 1, pp. 44–55, 2005.

[11] A. Dichtl, J. Jonas, and G. Naumann, “Retinal nerve fiber layer thickness in
human eyes,” Graefe’s Archive for Clinical and Experimental Ophthalmology,
vol. 237, no. 6, pp. 474–479, 1999.

[12] D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection
of retinal layer structures on optical coherence tomography images,” Opt Express,
vol. 13, no. 25, pp. 10 200–10 216, 2005.

[13] M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of
retinal features in optical coherence tomography,” Med Eng Phys, vol. 29, no. 4,
pp. 432–441, May 2007.

[14] M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of
retinal layers imaged by optical coherence tomography,” Am J Ophthalmol, vol.
139, no. 6, pp. 1056–1061, Jun. 2005.

[15] A. Chan, J. S. Duker, H. Ishikawa, T. H. Ko, J. S. Schuman, and J. G. Fujimoto,
“Quantification of photoreceptor layer thickness in normal eyes using optical
coherence tomography.” Retina, vol. 26, no. 6, pp. 655–660, 2006.

[16] A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thick-
ness profiles of retinal layers by optical coherence tomography image segmenta-
tion,” Am J Ophthalmol, pp. 679–687, Nov 2008.

[17] X. Wu and D. Z. Chen, “Optimal net surface problems with applications,” in
Proceedings of the 29th International Colloquium on Automata, Languages, and
Programming (ICALP), LNCS 2380. Springer-Verlag, 2002, pp. 1029–1042.
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