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ABSTRACT

Papilledema is a particular type of optic disc swelling caused by elevated intracra-

nial pressure. By observing the visible features from fundus images or direct fun-

duscopic examination, a typical method of assessing papilledema (i.e., the six-stage

Frisén grading system) is qualitative and frequently suffers from low reproducibility.

Compared to fundus images, spectral-domain optical coherence tomography (SD-

OCT) is a relatively new imaging technique and enables cross-sectional information

of the retina to be acquired. Using SD-OCT images, quantitative measurements,

such as the retinal volume or depth, are intuitively more robust than the traditional

qualitative approach to evaluate papilledema. Also, multiple studies suggest that

deformation of the peripapillary retinal pigment epithelium and/or Bruch’s mem-

brane (pRPE/BM) may reflect intracranial pressure change. In other words, mod-

eling/quantifying the pRPE/BM shape can potentially be another indicator of pa-

pilledema. However, when the optic disc is severely swollen, the retinal structure is

dramatically deformed and often causes the commercial SD-OCT devices to fail to

segment the retinal layers. Without an appropriate layer segmentation, the retinal

measurements are not reliable.

To solve the issue of inconsistently assessing papilledema severity, a comprehen-

sive machine-learning framework is proposed in this doctoral work to achieve the

goal by accomplishing the following four aims. First, robust approaches are devel-

oped to automatically segment the retinal layers in 2D and 3D SD-OCT images,

including cases in which the optic discs are severely swollen. Second, semi- and fully

automated methodologies are designed to segment the pRPE/BM opening under the

swollen inner retina in these SD-OCT images. Third, 2D/3D pRPE/BM shape mod-

els are constructed by extending the pre-segmented pRPE/BM opening in both 2D

and 3D SD-OCT images, and then the 2D/3D pRPE/BM shape measures are com-

puted. Finally, based on the previous segmented retinal layers, eight OCT 2D/3D

global/local measurements of retinal structure are reliably computed. Considering
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both the 2D/3D pRPE/BM shape measures and these eight OCT features as an in-

put set, a machine-learning framework using the random forest technique is proposed

to compute a papilledema severity score (PSS) on a continuous scale. The newly

proposed PSS is expected to be an alternative to the traditional qualitative method

to provide a more objective measurement of assessing papilledema severity.
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PUBLIC ABSTRACT

Papilledema is a specific type of optic-nerve-head (ONH) swelling due to elevated

intracranial pressure, and it can indicate serious underlying conditions. Head injury,

brain tumor, brain inflammation, subarachnoid hemorrhage, blockage of cerebrospinal

fluid (CSF) flow, reduction in CSF reabsorption, idiopathic intracranial hypertension

(IIH) are the possible reasons that may cause intracranial hypertension. To diagnose

the severity of papilledema, clinicians commonly examine the visible features using

either 2D retinal photos or direct observation of the retina. Then, a severity scale

from 0 (normal) to 5 (severe) is decided based the clinician’s judgment. However,

this type of method is not stable, so different clinicians may frequently disagree with

each other. Moreover, sometimes even the same clinician may have different decisions

after multiple observations of the same retinal image.

Optical coherence tomography (OCT) is a new imaging technique and enables the

cross-sectional information of the retina to be acquired. Therefore, the volume of the

retina at the ONH region is able to be computed as an indicator to reflect the degree

of the optic disc swelling. Similarly, the thickness of certain retinal regions as well as

the shape of certain retinal layers are also potentially useful for the same purpose.

In this thesis, a system was proposed to use computers to mimic how clinicians

make decisions when measuring the degree of the optic disc swelling. A technique

called random forest was used to achieve this goal by automatically deciding the best

feature combination from the input feature set, including the previously discussed

retinal volume, thickness, and shape measures. It is expected that the output of this

machine-learning system is very close to the decisions that clinicians would make;

more importantly, this proposed system would have the same results every time if the

input features are the same, and the processing takes much less time than clinicians

do for similar tasks.
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CHAPTER 1
INTRODUCTION

Optic disc edema due to raised intracranial pressure, also called papilledema, may

be caused by several situations, including head injury, brain tumor, brain inflamma-

tion, subarachnoid hemorrhage, and idiopathic intracranial hypertension (IIH) [1, 2].

The six-stage Frisén grading system is a typical assessment of papilledema in clin-

ics [3]. To assign a Frisén grade, neuro-ophthalmologists examine the visible features

of retinal vessels and tissue structures of the optic disc and peripapillary retina from

direct funduscopic observation or digital color fundus photographs and evaluate the

degree of the optic disc edema using a scale from 0 (normal) to 5 (severe). Since

the Frisén grading system is a qualitative method, inherent limitations may include

the need for specialized clinical expertise, outputs of non-continuous scale, and high

intra-/inter-observer variability [4–7]. Thus, there is a strong clinical need to develop

quantitative and more objective approaches for the purpose of reliably assessing pa-

pilledema severity.

In comparison with traditional fundus photographs, optical coherence tomography

(OCT) [8] is a relatively new imaging technique that potentially provides a promis-

ing alternative for quantitatively assessing papilledema. Unlike fundus photographs,

which only capture the projective appearance of the back of the eye, the OCT images

contain high-resolution, cross-sectional views to enable the depth and/or volume of

the retinal structure to be directly measured. The first-generation OCT works in

the time domain (TD-OCT, commercially available since 2003) and is primarily a 2D

imaging technique, as only up to six cross-sectional scans can be acquired during a sin-

gle acquisition. Take the optic-nerve-head (ONH) protocol for an example: TD-OCT

supports six circular B-scans centered at the optic disc opening and also provides

the automated measurements of the peripapillary retinal nerve fiber layer (RNFL)

and total retinal (TR) thicknesses. Previous studies showed that the RNFL and TR
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thicknesses are promising measurements for assessing mild papilledema [4,9,10]. How-

ever, when it comes to more severe cases, these thickness-based measurements become

unstable because the commercial retinal segmentation approaches often fail [4].

The second-generation OCT works in the frequency domain (SD-OCT, commer-

cially available since 2007), and such machines further allow true volumetric informa-

tion of the retina to be acquired. Particularly, the volumetric ONH measurement is

appealing in cases of the optic disc swelling, because measuring the entire extent of

the optic disc edema intuitively makes much more clinical sense than using only the

thickness measurements from an arbitrary peripapillary circle. However, although

SD-OCT supports true 3D image information, most of the commercial SD-OCT ma-

chines still separately segment the retinal layers in each individual B-scan and include

crucial assumptions about the distances among different homogeneous retinal layers.

Segmenting severely swollen retinal layers using commercial SD-OCT software has a

high failure rate, due to the unresolved issues related to dealing with a dramatically

deformed inner retina [11,12].

In addition to the previously discussed OCT measures (i.e., the ONH volume,

the RNFL and TR thicknesses), recent studies showed that the shape of the peri-

papillary retinal pigment epithelium and/or Bruch’s membrane (pRPE/BM) layer

may also indirectly reflect the intracranial pressure change [13, 14]. Specifically the

shape of the pRPE/BM layer in patients with increased intracranial hypertension

(ICP) is contorted anteriorly toward the vitreous, and this shape difference is not

otherwise explained by disc edema alone. Additional interventions that lower the

ICP, including a spinal tap, a shunting procedure, or medical treatments, will restore

the pRPE/BM layer to its normal shape, bending away from the vitreous [15]. To

quantify the deformation of the pRPE/BM shape, the pRPE/BM shape model was

originally constructed by using ten equidistant landmarks that were manually placed

from the pRPE/BM opening along the pRPE/BM boundary at both nasal and tem-
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poral directions in the central B-scan from a high-definition 5-line raster (HD-5LR,

Carl Zeiss Meditec, Inc., Dublin CA) scan for each available subject [14]. However,

the step of manually placing equidistant landmarks on the pRPE/BM boundary is

very time-consuming, so there is a strong need to develop a new methodology to accel-

erate these manual steps so that the pRPE/BM shape models can be applied/tested

in larger datasets.

To generate the pRPE/BM shape models of papilledema eyes, Bruch’s membrane

opening (BMO) needs to be identified first. The current challenge in this topic is

that the region around BMO is often obscure in SD-OCT images when the optic

discs are severely swollen. The swollen retinal tissue reduces the depth that the OCT

signals can penetrate and results in image shadows. This type of artifact significantly

increases the difficulty of directly finding the true BMO points in regular volumetric

SD-OCT images. Without obtaining the correct BMO location, the pRPE/BM shape

direction and precise angle cannot be properly measured, which are potentially very

important parameters to indicate how much the abnormal intracranial pressure affects

the retina [13,14]. HD-5LR scans, on the other hand, provide a renewed promise for

this particular BMO segmentation problem. The SD-OCT devices with HD-5LR pro-

tocol first repeatedly scan the same horizontal narrow regions at five indicated retinal

areas of interest and then average these repeated scans to construct new individual

HD B-scans. However, the trade-off between the image quality and scanning range

limits the HD-5LR protocol to merely working in 2D. Therefore, how to combine the

information that is obtained from the HD B-scans (2D) and regular SD-OCT volumes

(3D) introduces a new and interesting research topic.

Overall, the main goal of this doctoral work is to develop a comprehensive method-

ology to reliably assess papilledema severity on a continuous scale by addressing the

challenges mentioned above. In particular, the thesis has the following aims:

• Aim 1 – Develop automated retinal layer segmentation algorithms specifically
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for a swollen optic disc in both 2D high-definition 5-Line raster (HD-5LR) and

3D volumetric SD-OCT scans. The proposed algorithms segment retinal layers

using an existing graph-based approach (Li et al. [16]), but the input cost func-

tions and surface constraints are completely re-designed to adapt the need for

segmenting a severely swollen optic disc in both 2D and 3D SD-OCT images.

• Aim 2 – Develop frameworks for combining the information from a HD-5LR

scan and the corresponding SD-OCT volume to identify the true Bruch’s mem-

brane opening (BMO) under the shadow of the swollen retinal tissue. This is

completed by first registering the HD B-scans to the appropriate locations in

the corresponding SD-OCT volume, then adopting the information from the HD

B-scan to help design the cost images of the volumetric image, and finally ap-

plying a graph-theoretic algorithm to identify the visible BMO in the SD-OCT

volume.

• Aim 3 – Construct 2D and 3D shape models of the peripapillary retinal

pigment epithelium and/or Bruch’s membrane (pRPE/BM) and compute the

pRPE/BM shape measures to reflect the degree of the pRPE/BM oriented to-

ward/away from the vitreous. Based on the segmented BM surface from Aim 1,

the pRPE/BM statistical shape models are generated using the HD-5LR central

B-scan (2D) and the volumetric scan (3D). Furthermore, the pRPE/BM shape

measures are extracted from the 2D/3D shape models.

• Aim 4 – Assess papilledema by outputting a severity score on a continuous scale

using a machine-learning system with the input of meaningful OCT features.

The proposed papilledema severity score (PSS) is the first machine-learned as-

sessment of papilledema on a continuous scale using quantitative features from

the SD-OCT images. This aim is accomplished using random forest classifiers

with all of the available OCT features that are obtained from the previous aims.
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The PSS is expected to provide a more robust measurement of papilledema

severity than the traditional qualitative method does.

1.1 Thesis Organization

The rest of this thesis is organized as follows.

• Chaper 2 introduces the clinical background of what papilledema is and its

symptoms as well as the common measurements. The well-known Frisén grade

system, popular OCT measurements, and recent shape analysis are all briefly

addressed in this chapter.

• Chaper 3 discusses more technical details regarding time-domain and frequency-

domain OCT imaging, what the challenges and common approaches are for

developing automated algorithms to perform the retinal layer segmentation in

OCT images, and an overview of how a graph-based algorithm segments retinal

layers and the Bruch’s membrane opening.

• Chaper 4 summarizes the automated retinal layer segmentation methods that

are heavily used in this doctoral work. Details about how to design the 2D and

3D cost images in multiple resolutions are revealed. The processes of repairing

the truncated SD-OCT images are also discussed.

• Chaper 5 addresses the difficulty of segmenting Bruch’s membrane opening

(BMO) in cases of a severely swollen optic disc. Semi-/fully automated methods

are addressed here, and the technique of combining information from both 2D

and 3D SD-OCT to help segment the BMO is also introduced.

• Chaper 6 provides the details of how to generate 2D and 3D pRPE/BM shape

models and compute the shape measures based on the BMO segmentation re-

sults from Chapter 5.
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• Chaper 7, first, illustrates how to compute common OCT features based on

the retinal segmentation results from Chapter 4, including the ONH volume and

peripapillary RNFL as well as TR thicknesses. Next, region-based volumetric

OCT measurements are discussed. Then, a preliminary machine-learning sys-

tem is provided to test the correlation between the Frisén grades and all the

other OCT features in a relatively small dataset. Finally, an overall framework

using a random forest algorithm is introduced to obtain a papilledema severity

score on a continuous scale, and the results are tested in a larger dataset of a

recently finished nation-wide clinical trial (i.e., Idiopathic Intracranial Hyper-

tension Treatment Trial – IIHTT).

• Chaper 8 concludes the previous chapters and discusses the possible limitations

and the potential future work.
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CHAPTER 2
CLINICAL BACKGROUND

2.1 Papilledema

Papilledema is a specific type of optic-nerve-head (ONH) swelling due to elevated

intracranial pressure, and it can indicate serious underlying conditions [1]. Head

injury, brain tumor, brain inflammation, subarachnoid hemorrhage, blockage of cere-

brospinal fluid (CSF) flow, reduction in CSF reabsorption, idiopathic intracranial hy-

pertension (IIH) are the possible reasons that may increase intracranial pressure [1].

Fig. 2.1 shows a posterior view of the retina. Because the skull is a bony struc-

ture, the total volume inside the skull is fixed. Therefore, any enlargement of cranial

constituents may press the other constituents and/or lead to the CSF pressure in-

creasing [1]. CSF normally exists in the subarachnoid space around the brain side

instead of the optic nerve side. When the intracranial pressure abnormally elevates,

CSF would flow from the brain side to the optic nerve side in the subarachnoid space.

Then, the surrounding CSF may inflame the ONH and results in optic disc swelling.

In particular, it is not papilledema if the ONH swelling is caused by any other reason

(e.g., ischemic optic neuropathy and optic neuritis) other than elevated intracranial

pressure.

2.2 Symptoms

Although blindness can happen to patients with severe papilledema, rapid vision

loss is not a typical symptom for early stages of papilledema. However, headaches,

nausea, and vomiting are very common during this period. When papilledema is

developing, patients might temporarily have difficulty seeing clearly, including gray

and/or double visions. These visual symptoms, also called the transient visual ob-

scurations (TVO), only last a matter of seconds at the onset, but the severity and

frequency of occurrence increase as the time goes by. In general, TVO occurs when

patients suddenly change their positions, such as standing up quickly or severe cough-
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Figure 2.1: Posterior view of an eye. (The image is obtained, with permission, from
http://ihrfoundation.org/hypertension/info/C140.)

ing [17]. In the later stage, papilledema patients often suffer unbearable headaches,

and urgent treatments are necessary.

Because papilledema can be caused by several reasons, correcting the underlying

cause is the direct treatment. If there is no identifiable causes of increased intracra-

nial pressure (i.e., idiopathic intracranial hypertension), medical treatments, such as

weight loss and diet, acetazolamide and furosemide, are common options [1, 18–20].

However, if patients fail the maximum medical therapy, for example the patient

continues to suffer severe intractable headache and/or progressive vision loss, sur-

gical interventions, such as optic nerve sheath fenestration (ONSF), CSF diversion

(shunting) and venous sinus stent placement, are potential options [1,20,21]. There-

fore, there is a strong need to develop reliable assessments of papilledema so that

neuro-ophthalmologists can promptly adjust their treatments based on longitudinal

papilledema evaluation.
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2.3 Quantifying Papilledema Using Fundus
Images

2.3.1 Frisén Grading System

The six-stage Frisén grading system [3] was introduced in 1982 and has been the

standard of measurement for papilledema. In practice, neuro-ophthalmologists ex-

amine the visible features of the peripapillary retina and the optic disc from direct

funduscopic observation or digital color fundus photographs. Then, based on the

observations, clinicians assign a severity grade from 0 to 5 to quantify the optic disc

swelling; grade 0 indicates normal, grades 1 and 2 represent mild swelling, grade 3

shows moderate abnormality, and a grade of 4 or 5 means that the situation is severe

and the optic disc starts to atrophy [3]. Fig. 2.2 shows the digital fundus images

with Frisén grade 0 to 4 in order from the left to right. Although the Frisén grading

scheme is commonly used in both clinical and research fields, poor reproducibility,

high intra- and inter-observer variability, tedious processing steps, specific expertise,

and discretized outputs are the major limitations [4–7]. So, modified versions of the

Frisén grading scheme have often been studied. For example, to improve the system-

atic reliability on diagnosing severe papilledema, Scott et al. [4] modified the original

Frisén scale scheme by observing key features at different stages. To minimize the

intra- and inter-observer variability and accelerate the processing speed, Ecbegaray

et al. [5] proposed an automated feature-classifying approach for predicting Frisén

scale grades, for which the features included blood vessel, peripapillary texture, and

disc margin obscuration features from the fundus photographs.

Although the latest generation of fundus cameras has supported high-definition

image quality and full-color information, this imaging technique is still fundamentally

limited to 2D. Thus, the volumetric information of the optic disc is difficult to be

directly observed and quantified. Stereoscopic fundus photographs could be used to

indirectly reconstruct the 2D information into 3D. However, this method is sensitive
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Figure 2.2: Digital fundus images with the Frisén grade from 0 to 4.

to eye-movements and fixation instabilities; also, the step of registering two input

stereo fundus image is tedious [22].

2.4 Quantifying Papilledema Using Optical
Coherence Tomography

2.4.1 Two-Dimensional Thickness Measurements

Optical coherence tomography (OCT) is a relatively new imaging technique and

is able to provide cross-sectional images of the optic nerve head (ONH) and/or retina.

The original idea of OCT came from Huang et al. [8] in the time domain (TD), and

such machines were commercially available after 2003. TD-OCT machines typically

capture at most six cross-sectional 2D scans (with an axial resolution of 8 to 10

µm) around the ONH during one acquisition, where the highest scan-dimension is

128 × 6 × 1024 (Cirrus, from Carl Zeiss Meditec, Inc., Dublin, CA). Automated

algorithms for segmenting the retinal layer(s) are available on the commercial TD-

OCT machines and supported peripapillary thickness measurements of the retinal

nerve fiber layer (RNFL) as well as the total retina (TR). Several studies have used

the peripapillary RNFL and/or TR thickness measurements for alternatives of the

traditional Frisén grading system to quantify papilledema severity [4,9,10]. However,

none of these TD-OCT devices can reliably measure the retinal thickness when the

input optic disc is severely swollen, because the segmentation step often fails due to

the deformation of the swollen retinal structure. To increase the accuracy of assessing

the severity of papilledema in cases of the severely swollen optic discs, Scott et al.
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suggested using the TR thickness as the reference instead of the RNFL thickness [4].

Overall, using TD-OCT commercial machines to measure papilledema severity most

likely only works in cases of mild swelling.

2.4.2 Three-Dimensional Volumetric Measurement

Spectral domain OCT (SD-OCT) [23–25] has been commercially available since

2007. Compared to TD-OCT, SD-OCT provides a much better image resolution.

Take Cirrus OCT images (Cirrus, from Carl Zeiss Meditec, Inc., Dublin, CA) for

example. An SD-OCT volume covering 6 × 6 × 2 mm3 can contain 200 × 200 ×

1024 voxels using the ONH protocol or 512 × 128 × 1024 voxels using the Macular

protocol. Because of the extensively increased amount of the available B-scans in a

single SD-OCT volume, volumetric measurements of ophthalmic structures become

possible (Fig. 2.3). Compared to the 2D retinal thickness measurements along the

arbitrary peripapillary circle, the 3D measurements can be particularly appealing

because the volumetric information is intuitively more representative of the degree

of optic disc edema. Unfortunately, most of the commercial SD-OCT machines still

face the same difficulty as the TD-OCT machines did of not having the ability to

robustly and accurately segment the swollen retinal layers. A possible cause of why

these commercial OCT devices often fail to accurately segment the retinal layers

of swollen optic discs is that the dramatically thickened retina might violate the

initial quantitative assumptions in these segmentation algorithms, and then the error

propagations contradict the entire layer segmentation [11, 12]. Another challenge for

the current commercial SD-OCT devices is that the tip of the optic disc may get

truncated when imaging severely swollen optic discs due to the limitation of the SD-

OCT image dimensions in the z direction. In this case, the quantitative measurements

provided from these commercial devices are often significantly underestimated.
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Figure 2.3: An example of papilledema in SD-OCT image. (a) A 3D image cube. (b)
3D presentation of two perpendicular 2D slices, where the optic disc swelling can be
clearly observed.

2.4.3 Shape Measure

Recent studies also have demonstrated that an inverted-U shape (towards the vit-

reous) of peripapillary retinal pigment epithelium/Bruch’s membrane (pRPE/BM),

as visible from the ONH SD-OCT scans, may suggest increased intracranial pres-

sure [13–15], which results in developing papilledema. Therefore, measuring the

pRPE/BM shape can potentially be another clinical indicator to represent the severity

of papilledema. However, even though regular SD-OCT enables retinal cross-sectional

images to be acquired, the shadows from a severely inflated inner retina often eclipses

the true image signal response from the outer retina around the Bruch’s membrane

opening (BMO) so that the image visibility around the BMO region is dramatically

deteriorated.

Another SD-OCT protocol is called high-definition 5-line raster (HD-5LR) scan,

which highly increases the image visibility in each individual B-scan by repeatedly

scanning the same retinal region. However, HD-5LR scan only supports five HD B-

scans. Due to the difficulties of directly observing the true BMO in the SD-OCT

volumes, most recent studies [14, 26] have commonly used HD-5LR scans to analyze
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the BMO structure in cases of optic disc swelling. For example, Sibony et al. orig-

inally designed a 2D pRPE/BM shape model by manually placing 20 equidistant

landmarks on the BM layer at both nasal and temporal sides in the central HD-5LR

B-scan to inspect the magnitude of the anterior/posterior displacement of the BM

layer [14]. This study successfully demonstrated that the BM layer is more inwardly

bowed toward the vitreous in papilledema eyes than normal or anterior ischemic op-

tic neuropathy (AION) eyes. However, this method has an extremely tedious step of

manually placing equidistant landmarks on the pRPE/BM boundary for each input

HD B-scan. Therefore, it is not feasible to directly apply the pRPE/BM shape model

to lager datasets when the landmarks are completely manually placed.

2.5 Summary

The Frisén grading system, based on direct funduscopic observation or digital color

fundus photographs, is a standard method of qualitatively assessing the severity of

papilledema; however, high intra-/inter-observer variability, need of specific expertise,

and tedious processing steps make this traditional method have very low reproducibil-

ity. On the other hand, newly introduced SD-OCT enables cross-sectional information

of the retina to be acquired and supports quantitative measurements. Also, recent

studies have started to use the OCT-based features to evaluate mild papilledema.

However, the retinal layers are dramatically deformed when the optic disc is severely

swollen. Under this circumstance, most of the current commercial OCT devices can-

not provide dependable OCT segmentation and measurements. Therefore, there is

a strong need to develop algorithms/approaches to have the ability of segmenting

severely swollen retinal layers and further provides reliable OCT measurements (such

as the RNFL and TR thicknesses, total and regional ONH volumes, and pRPE/BM

shape measures) to reflect the papilledema severity.
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CHAPTER 3
TECHNICAL BACKGROUND

3.1 Optical Coherence Tomography

Optical coherence tomography (OCT) has been increasingly used since its intro-

duction in 1991 [8] because of its ability to extract cross-sectional information of the

retina. The first generation of OCT operates in the time domain (TD-OCT) us-

ing low-coherence interferometry. By linearly or circularly scanning the area at the

retina (usually the macular or peripapillary region), an image slice, a.k.a. B-scan,

is composed from all of the acquired A-scans. Stratus OCT-3 (Carl Zeiss Meditec,

Dublin, CA) is an example of a TD-OCT machine (commercially available in 2003),

and each B-scan has typical dimensions of 128× 1024 pixels. Due to the limitations

of the scanning speed, Stratus OCT-3 can only provide six non-successive B-scans

per image.

Fourier-domain OCT (FD-OCT) [23–25,27] [i.e., spectral-domain OCT (SD-OCT)]

is a more recent OCT technique. Basically, SD-OCT improves TD-OCT by immo-

bilizing the moving reference mirror and replacing the photo-detector by a low-pass

spectra-meter [28–30] to dramatically increase the scanning speed, which provides

the ability to image the true 3D contextual information. For example, Zeiss Cirrus

OCT (Carl Zeiss Meditec, Dublin, CA) can acquire an ONH image volume with a

resolution of 200 × 200 × 1024 voxels, covering 6 × 6 × 2 mm3 of the retina in the

physical domain in only about two seconds.

Another SD-OCT protocol is called “high-definition 5-line raster” scans (i.e., HD-

5LR scans, which was mentioned in Sec. 2.4.3), which consists of 4096 A-scans pene-

trating a 2 mm axial depth for each scanning line and includes a few adjustable pa-

rameters, such as the length, angle, and distance between scanning lines (by default,

an HD B-scan covers 9 mm in width, and the spacing between each two successive

B-scans is 0.25 mm). HD-5LR scans provides better image quality by repeatedly scan-
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Figure 3.1: Central B-scans from a SD-OCT volume (left) and an HD-5LR scan
(right). Retinal nerve fiber layer (RNFL), ganglion cell - inner plexiform layer
(GCL+IPL), and retinal pigment epithelium (RPE) complex are indicated in both
central B-scans. The HD-5LR B-scan has better image quality than the regular SD-
OCT B-scan.

ning five parallel linear regions and averaging these repeated scans to construct five

individual HD B-scans. HD-5LR scans support better image quality of each B-scan

compared to the B-scans in the regular SD-OCT volumes, but a HD-5LR scan can

only support “five” B-scans, which are not sufficient to construct a true volumetric

image. Therefore, it results in a very interesting new topic of how to combine the 2D

detailed information from the HD B-scans and 3D contextual information from the

corresponding SD-OCT volumes. Fig. 3.1 shows the resolution difference between two

central B-scans from an SD-OCT and HD-5LR scan, and Fig. 3.2 is an example that

shows the physical mapping of each HD-5LR B-scan in the corresponding SD-OCT

volume.

3.2 Challenges of Automated Retinal Layer
Segmentation in OCT

Developing reliable, automated methods to quantitatively measure the retinal

properties has been a popular topic in the field of OCT image processing because

of the tremendous advantages. Compared to manual tracing, automated methods

can reduce not only processing time but also the inter- and intra-observer variability.
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Figure 3.2: The matching relationship between a 5-line raster scan and its corre-
sponding SD-OCT image. (a) RPE projection image from the SD-OCT image, and
(b) HD 5-line raster scan.

Because of the fact that different retinal tissue and nerve cells have distinct reflective

properties in the OCT images, many automated layer-segmentation algorithms are

designed to distinguish the retinal layers by identifying their varied intensity values.

For example, the retinal nerve fiber layer (RNFL) has much higher intensity reflection

than the ganglion cell inner plexiform layer (GCIPL) has in the inner retina, and the

retinal pigment epithelium (RPE) complex consists of two bright bands at the bottom

part of the retina (Fig. 3.1). These physiological properties are generally very useful

prior information for program developers to make initial assumptions to simplify

an algorithm’s complexities. Although OCT images demonstrate the potential for

automated analysis by computer algorithms, the program developers are still facing

a few inherent challenges of segmenting retinal layers in these OCT images [31]:

1. Speckle noise [32,33] – It is a type of granular noise and an intrinsic characteristic

of coherent images. Speckle noise occurs due to several reasons. In general,

multiple scattered photons with different scattering angles is a major cause,

and the physical parameters of the OCT machines (such as the angle of the

incident light, the aperture size of the signal detector, etc.) also have some
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degrees of influence. Speckle noise degrades the quality of the OCT images

and blurs the boundaries among retinal layers. Suppressing speckle noise is

typically the first step of segmenting the retinal layers in the OCT images from

the perspective of automated retina-layer-segmentation algorithms.

2. Signal attenuation at deeper retinal layers – OCT machines acquire images by

receiving the signal reflection from the tissue and comparing it to the referenced

signal. When the signal detector receives weaker reflection from the target areas,

the image intensity/quality decreases. This situation happens in cases of optic

disc swelling, in particular because it is more difficult for the incident OCT

signal to fully penetrate the entire swollen retina. Image shadows are often

observed around the region near the Bruch’s membrane opening (BMO), and

this artifact causes most of the automated methods to overestimate the true

BMO region size [34].

3. Shadows from blood vessels – When the OCT machines are scanning the reti-

nal tissue under blood vessels, the different scattering properties between the

retinal tissue and blood vessels cause the tube-shaped shadows to manifest in

the images. These blood vessel shadows obscure and disjoint the boundaries of

the retinal layers, which can possibly make the automated layer-segmentation

algorithms locally fail.

4. Motion artifacts [35,36] – A scanning beam traveling from an OCT machine light

source to the retinal tissue and then scattering back to the reflection detector

needs a certain time to finish the entire itinerary. Although the signal traveling

time is relatively short, it is still possible for a patient’s eyeball to move or

quiver during image acquisition. These movements affect the continuity of B-

scan compositions in OCT images and appear in a form of sections of successive

B-scans shifting in the same direction together.
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Overall, to cope with these artifacts, the layer segmentation algorithms working

in 3D (which means the algorithms consider the entire OCT volume as one input)

are more robust than algorithms working in 2D (which means the algorithms perform

segmentation on individual B-scan separately and then merge the results together).

Compared to the 2D algorithms, the 3D algorithms take the advantage of using the

contextual information to avoid local segmentation failures when the artifacts locally

affect the SD-OCT image quality or the retinal structure dramatically deforms in

certain regions.

3.3 Automated Methods of Retinal Layer
Segmentation in OCT

Since the introduction of commercially available OCT machines, the development

of automated layer segmentation methods in OCT images has become an important

topic. Compared to manually tracing the retinal layers in the OCT images, auto-

mated methods have advantages, such as improved time-efficiency, and low intra-

/inter-observer variability. Based on relevant retinal segmentation results, quanti-

tative measurements can be reliably computed and provide ophthalmologists with a

more objective reference. For example, the thinning of GCIPL could imply that the

ganglion cells have been dying; with an accurate retinal layer segmentation, ophthal-

mologists can not only qualitatively observe the cell loss in the OCT images (i.e., a

thinning retina) but also quantitatively measure the amount of the cell layer has atro-

phied within the precision of a micro-meter. By quantitatively knowing how much cell

loss, ophthalmologists can more precisely adapt their therapies based on treatment

results over time.

To segment retinal layers in OCT images, intensity peak detection along each

A-scan is an early common method, and the process usually follows these steps:

1. Suppress speckle noise using low-pass filtering [37], median filtering [38–42],

nonlinear anisotropic diffusion filtering [43], or Gaussian smoothing filtering [42,
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44].

2. Apply intensity peak (and/or valleys) detection for each individual A-scan [37–

44].

3. Post-process to interpret and/or integrate pre-detected intensity peaks using

Markov boundary model [38], prior clinical knowledge of the strengths from a

kernel response [39], coherence information of retinal layer structure [43], adap-

tive thresholding techniques [40, 41], dynamic programming [42], or averaging

multiple nearby A-scan picks [44].

4. Smooth segmented layers using cubic B-splines [38], linear interpolation [43], or

polar interpolation [40,41].

Intensity-based layer segmentation approaches also have some variability, which

may include using the correlation between adjacent A-scans instead of searching and

mapping each A-scan individually [45], non-denoising approaches using an intensity-

based iterative thresholding technique [46], with prior knowledge of vessel sections,

and a layer segmentation using a Canny edge detector [47]. The main limitation of the

intensity-based approaches is that the texture information is not totally considered,

so these approaches are sensitive to speckle noise, blood vessel shadows, and motion

artifacts (Sec. 3.2).

In addition to the intensity-based approaches (as discussed above), active-contours-

based methods [48–50], machine-learning-based methods [51–53], and shape mod-

els [54, 55] are also common algorithms for segmenting the OCT retinal layers. Al-

though all these methods are capable of extracting the retinal structure, shape, and

regional texture information in 2D or partially in 3D, they also face additional chal-

lenges, such as high computational complexity, requiring a ground truth for the train-

ing processes, less flexibility because the testing images need to be highly similar to

the training images, not fully automated algorithms, difficulties in selecting clinically
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meaningful features, and not truly considering the global 3D information from the

OCT volumes.

Graph-based searching, generally speaking, is a more robust option for addressing

the segmentation problem in OCT images by applying an implicit transformation

from pixels/voxels in an image to nodes in a graph. Classic graph algorithms (for

example, dynamic programing and Dijakstra’s method) for finding the shortest path

have been applied to segment retinal boundaries in OCT B-scans [56–58]. Even

though these approaches work and have been tested on 3D OCT volumes, they are

actually not “true 3D” approaches due to the fact that these algorithms only process

individual B-scan separately and then merge the segmentation results together rather

than considering the entire SD-OCT volume as a complete input.

When it comes to the “true 3D” retinal layer segmentation, Garvin et al. [59]

first applied a 3D graph-theoretic approach [16, 60] to simultaneously detect multi-

ple retinal surfaces in SD-OCT macular scans. Later, Lee et al. [61] introduced a

multi-resolution technique to accelerate the processing time and extended this graph-

theoretic algorithm to SD-OCT optic nerve head (ONH) scans. Although the graph-

theoretic algorithms require a few parameters as inputs to constrain the behaviors of

the output surfaces, the step of parameter selection is generally straightforward and

user-friendly for experienced developers based on the regularity of the retinal structure

properties. In addition, the graph-theoretic algorithms compute the mathematically

optimal surfaces based on the pre-designed input cost-functions, so the layer segmen-

tation results can be precisely performed when the cost-functions are well-defined.

Initially, these input cost images for the graph search algorithms were designed by

domain experts. Recently, Antony et al. [62] proposed a machine-learning method

considering texture information to create probability maps, which can be converted

into the cost functions, and this technique makes the processes of designing the input

cost functions easier and more efficient. A year later, Antony et al. [63] tested the
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robustness of their method in the OCT images of humans, mice and canines. Besides

improving the method for designing cost images, Song et al. [64] proposed a novel idea

of incorporating the shape and context prior knowledge to increase the algorithm’s

robustness [16]. In the graph domain, the shape-prior and the context-prior terms can

penalize the local change from the expected retinal shape and surface properties. By

adding the prior information, the graph-theoretic algorithm has added the ability to

entirely consider both global and local optimization and achieves better robustness.

More technical details about how to construct graphs in a graph-theoretic algorithm

and its usage will be discussed in the next section.

3.4 Graph-Search Algorithm

To achieve the “true 3D” consideration, a particular kind of graph-search algo-

rithm [16, 60, 64] was used in this doctoral study. Garvin et al. [59] first applied this

graph-theoretic algorithm [16] to the field of OCT image segmentation. This method

has the ability to simultaneously compute the globally optimal solutions for all the

target retinal surfaces based on the input cost-function images and proper surface

feasibility constraints. It converts the original image layer segmentation problem into

an optimization problem of labeling feasible minimum-cost closed sets in newly con-

structed graphs. To build the graphs, the input cost images are transferred into the

node costs, and the surface feasibility constraints are transformed to the rules of graph

node connections. After the graph is appropriately generated, minimum-cost closed

sets are computed by applying a minimum s-t cut algorithm [16, 60]. More details

regarding to the surface feasibility constraints and surface set costs are provided in

the following two subsections.

3.4.1 Smoothness and Surface-Interaction Constraints

Assume that a volumetric image can be described as I(x,y, z) with dimensions

X × Y × Z, and the target surface S : (x, y) → S(x, y) is a terrain-like surface in
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I intersecting only one voxel of each column, Col(x, y), is parallel to the z-axis (for

example, an A-Scan in a SD-OCT volume) and spans the entire x× y domain. When

S(x, y) is regarded “feasible,” the smoothness constraints (∆x,∆y at x,y directions,

respectively) are applied to guarantee the surface connectivity within a certain degree

of freedom, which means if I(x, y, z1) and I(x+ 1, y, z2) are two adjacent voxels on a

feasible surface along the x direction then |z1−z2| ≤ ∆x [on the other hand, along the

y direction, for I(x, y, z1) and I(x, y+ 1, z2) then |z1− z2| ≤ ∆y]. Further, Garvin et

al. [59] demonstrated that ∆x,∆y can be varied among different adjacent voxel pairs,

so the smoothness constraint can be written as

−∆u
{(x1,y1),(x2,y2)} ≤ S(x1, y1)− S(x2, y2) ≤ ∆l

{(x1,y1),(x2,y2)},

where for each adjacent Col(x1, y1), Col(x2, y2) pair, ∆l
{(x1,y1),(x2,y2)} and ∆u

{(x1,y1),(x2,y2)}

represents the maximum increase and decrease in the z-direction, respectively.

When there are more than one target surfaces in the segmentation problem, in

addition to the previously discussed smoothness constraints for each individual target

surface, the surface-interaction constraints are also introduced to limit the minimum

(δl) and maximum (δu) distant relationship between each two neighbor target surfaces

for all the A-scans [16]. Take a two surface segmentation for example. Assume that

surface Si(x, y) is above Sj(x, y), the surface-interaction constraints at each Col(x, y)

can be written as

δl(x, y) ≤ Si(x, y)− Sj(x, y) ≤ δu(x, y),

where δl(x, y) is the minimum distance constraint for the z-value of a voxel on feasible

surface Si(x, y) minus the z-value of a voxel on feasible surface Sj(x, y); δu(x, y) is the

same idea but for the maximum distance constraint between feasible surfaces Si(x, y)

and Sj(x, y).



23

3.4.2 Cost of Feasible Surfaces

The cost functions for the graph-theoretic algorithm can be decomposed into edge-

based and region-based cost functions. A typical edge-based cost image IcS (x,y, z) is

designed to reflect the voxels on the target surface with very low cost values obtained

from the first and/or second derivatives of the image intensity function. For surface

Si(x, y), the edge-based cost can be described as CSi(x,y) =
∑

{(x,y,z)|z=Si(x,y)}
IcSi

(x, y, z).

For a multiple n surface set {S1(x, y), . . . ,Sn(x, y)}, the total edge-based costs can

be computed by C{S1(x,y),...,Sn(x,y)} =
n∑
i=1

CSi(x,y).

On the other hand, the region-based cost image IcR(x,y, z) is designed to reflect

the unlikeness of a voxel belonging to particular regions. Following the above multiple

n surface example, the number of the regions will be n + 1 regions. For region Ri,

the region cost can be written as CRi
=

∑
(x,y,z)∈Ri

IcRi
(x, y, z). Therefore, the region

costs of the entire n surfaces is C{R0,...,Rn} =
n∑
i=0

CRi
. Therefore, the entire cost of n

surface set can be expressed as:

CTotal = C{S1(x,y),...,Sn(x,y)} + C{R0,...,Rn}

=
n∑
i=1

CSi(x,y) +
n∑
i=0

CRi

(3.1)

3.4.3 Soft Constraints with Shape-Prior Knowledge

Although Garvin et al. [59] showed that the smoothness and surface-interaction

constraints can be variables at arbitrary Col(x, y) and its adjacent neighbors, the

method did not grant the penalty of the deviation inside the allowed constraints.

Under this circumstance, only hard constraints were used so the surfaces can only be

feasible or not feasible.

A modified version of the graph-search algorithm is to add extra soft constraints

based on some given prior shape information [64]. The cost of the surface set will

be penalized by a convex function f(h) if the change of the surface is deviated from
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a statistic model (i.e., the mean shape in this case). Therefore, the shape defor-

mation inside the shape constraints can be suppressed. Assume that the mean

shape prior is m(x1,y1),(x2,y2) for each two adjacent Col(x1, y1), Col(x2, y2) column-

pair on a feasible surface Si(x, y), the cost of the shape term can be written as

CSpi =
∑

{(x1,y1),(x2,y2)∈Nc}
f(Si(x1, y1)−Si(x2, y2)−m(x1,y1),(x2,y2)), where Nc represents

a set of neighboring columns. So, the cost of the entire n surface set can be rewritten

as:

CTotal = C{S1(x,y),...,Sn(x,y)} + C{R0,...,Rn} + C{SSp1
,...,SSpn}

=
n∑
i=1

CSi(x,y) +
n∑
i=0

CRi
+

n∑
i=1

CSspi .
(3.2)

In order to represent the cost term, adding the extra weighted arcs to the s-t cut

formulation of the graph is needed. Take a 2D graph for example: Assume that the

smoothness constraint in the x direction is a constant ∆x, the intra-column and inter-

column arcs can be connected with the arc weight of +∞ (i.e., the hard constraints).

When the mean shape prior (m(x1,x2)) is given for each two adjacent Col(x1), Col(x2)

column-pair for a feasible boundary S(x), the soft constraints are added by penalizing

the shape deviation from the mean shape, where the shape prior penalty can be

expressed by f(S(x1) − S(x2) − m(x1,x2)). Let h = S(x1) − S(x2) − mx1,x2 , so the

shape prior penalty can be rewritten as f(h). The second derivative of the convex

function f(h) can be expressed as [f(h)]′′ = [f(h+ 1)− f(h)]− [f(h)− f(h− 1)], and

the first derivative is [f(h)]′ = f(h+1)−f(h). For each −∆x < h < ∆x, if [f(h)]′ ≥ 0,

an arc is added from node(x1, z) to node(x2, z −m(x1,x2) − h) with an arc weight of

[f(h)]′′. if [f(h)]′ < 0, and an arc is added from node(x2, z) to node(x1, z+m(x1,x2)+h)

with an arc weight of [f(h)]′′.

Assume that the smoothness constraint is one (i.e ∆x = 1), Fig. 3.3 (a) illustrates

the 2D graph construction with hard constraints. If the shape prior now is given and

known a horizontal line, the mean shape change will be 0 (i.e., mx1,x2 = 0), Fig. 3.3

(b) shows the graph construction with both hard and soft constraints.
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Figure 3.3: A 2D example of the graph construction with arc weights. (a) Hard
constraints with the smoothness constraint ∆x = 1. (b) Adding soft constraints with
the mean shape change mx1,x2 = 0, where the source and sink nodes are not shown.

3.5 Segmentation of Bruch’s Membrane
Opening in OCT

Although the original design of the graph-search method was to segment a 1D

boundary passing throughout an entire x direction in a 2D image or to segment a

2D surface completely covering the (x,y) plane in a 3D volume, this method can be

extended to segment the boundary of a closed circular region in 2D or the surface of a

3D tubular object [16,65]. A good application for this extension is to solve the Bruch’s

membrane segmentation problems in OCT images [66]. In an SD-OCT retinal pig-

ment epithelium (RPE) complex en-face image (which is a type of intensity-projection

image between two surfaces), the projected Bruch’s membrane opening (BMO) is an

oval-like closed region. To apply the graph-search algorithm to segment the BMO,

the RPE en-face image needs to be unwrapped from the center. In this unwrapped

image, the original circular BMO close contour is transformed to a horizontal-like

boundary. Here, the 2D graph-search algorithm for the single boundary detection
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can be applied. After converting the horizontal segmented boundary back to the

original RPE en-face image domain, the BMO contour is segmented. More details

can be found in the work of Hu et al. [66]. Recently, Antony et al. proposed an

iterative graph-search approach to segment the BMO and surrounding surfaces in the

SD-OCT volumes of glaucoma patients [67].

3.6 Summary

OCT, which has the ability to support 2D/3D cross-sectional information, is a

relatively new technique of acquiring retinal images in ophthalmology. Based on

appropriate layer segmentations, measurements from the retina (such as the peripap-

illary RNFL and TR thicknesses, the total ONH volumes, and the pRPE/BM shape

measure) help ophthalmologists have more objective references to trace retinal longi-

tudinal changes. However, artifacts in OCT images dramatically increase the difficul-

ties of developing robust segmentation algorithms in an automated fashion. Common

methods of segmenting retinal layers have been addressed in this chapter, and a par-

ticular type of graph-theoretic algorithms was introduced to provide a “true 3D”

solution with the input of pre-designed cost function images and surface-feasibility

constraints. This graph-search method converts the original layer segmentation prob-

lem in the image domain into a minimum closed-set problem in the graph domain.

The following chapters will elaborate more details about how to extend this method

to fit the need of segmenting swollen optic discs.
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CHAPTER 4
AUTOMATED RETINAL LAYER SEGMENTATIONS IN SWOLLEN

OPTIC DISCS USING SD-OCT (AIM 1)

4.1 Introduction

Papilledema is a specific term to reflect optic disc edema due to elevated intracra-

nial pressure, which may indicate fatal conditions [1], so it has been an important

topic in modern ophthalmology to have a rapid, reliable method to measure its sever-

ity. A well-known qualitative method is the Frisén scale scheme [3], which assesses

the severity of papilledema using a grade from 0 (normal) to 5 (severe) by neuro-

ophthalmologists examining the visible features of the optic nerve head (ONH) and

the peripapillary retinal region from direct funduscopic observation or digital color

fundus photographs. Although the Frisén grading scheme has became a clinical stan-

dard, major limitations (such as high intra/inter-observer variability, specific expertise

in interpreting retinal features, tedious processing steps) are still unavoidable [4].

On the other hand, the newly introduced OCT techniques [8] impressively enable

quantitative measurements of the retina (e.g., the thickness, volume, and shape).

Generally speaking, current commercial SD-OCT machines only need a few seconds

to acquire one retinal scan (for example, around 2.4 seconds per scan for the Cirrus

HD-OCT using the 512 × 128 Macular protocol) without invasive procedures, and

the accompanying segmentation algorithms have the ability to compute the peripap-

illary retinal nerve fiber layer (pRNFL) and total retina (pTR) thicknesses, which

are quantitative metrics and are potentially reasonable alternatives to the qualitative

Frisén scheme grades [4, 9, 10].

However, the layer-segmentation algorithms from the commercial SD-OCT devices

are designed to work in cases of non-swollen retina and often fail to output dependable

results when the optic disc swelling is more severe than mild [11,12]. A possible reason

to explain the high failure rate is that the “iceberg shape” of the swollen optic disc

commonly violates the pre-defined thickness constraints among the retinal layers in
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these commercial SD-OCT segmentation algorithms. In addition, these algorithms

only find the boundaries of the desired retinal layers on each B-scan individually rather

than simultaneously considering the complete 3D retinal structure. When the retinal

tissue is obscure and/or the retinal profile rapidly changes among B-scans in the input

OCT images, the performance of these segmentation algorithms is highly unstable.

Therefore, a 3D segmentation algorithm, which can utilize the contextual benefits

of considering neighbor B-scans, potentially has a better capability for accurately

identifying retinal layers in severe swollen optic discs than traditional 2D algorithms.

An existing 3D graph-search method had been successfully applied to segment the

non-swollen retinal layer in the SD-OCT images [16, 59, 61], but the original setting

does not work for severely swollen optic discs.

Thus, the objective of Aim 1 in this doctoral work is to develop automated

algorithms which are capable of reliably segmenting retinal layers for both normal

and swollen optic discs in SD-OCT images (which includes both the ONH HD-5LR

and volumetric scans) by re-designing the input cost function images and surface-

constraints using an existing graph-search algorithm. Having robust layer segmenta-

tion algorithms is important, because all the future retinal measurements/features in

this thesis will depend on accurate segmentation results. Aim 1 has three sub-goals:

1) to provide the retinal layer segmentation in HD-5LR scans, 2) to provide the reti-

nal layer segmentation for volumetric scans, and 3) to recover the segmentation when

the inner retinal tissue gets truncated due to the severe optic disc swelling. Aim 1

provides a solid foundation for the following research aims, which include the Bruch’s

membrane opening (BMO) detection (Aim 2), 2D/3D pRPR/BM shape model con-

structions and measurements (Aim 3), and retinal feature computations as well as

machine learning framework for estimating the papilledema severity (Aim 4).

For the publication of Aim 1, the proposed SD-OCT volumetric segmentation

method, which works for both normal and swollen optic discs, was first published
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in [7], which will be elaborated in Section 7.2. Also, studies [11, 12, 68] used both

accompanying algorithms of the commercial SD-OCT devices (Zeiss, Cirrus) and

the proposed segmentation algorithm to segment swollen optic discs. Compared to

the commercial algorithms, the proposed algorithm has demonstrated that its seg-

mentation failure rates are noticeably lower [11, 12]. The method for correcting the

underestimated SD-OCT ONH measurement was published in [69].

4.2 Two-Dimensional Layer Segmentation in
Swollen Optic Discs Using HD-5LR Scans

In this section, an automated algorithm is designed for segmenting the inner limit-

ing membrane (ILM) and the top as well as bottom boundaries of the retinal pigment

epithelium complex (called topRPE and botRPE boundaries for simplification) in

swollen optic discs on individual B-scans using HD-5LR scans (Fig. 4.1). In this

scenario, the 2D version of the graph-search algorithm [16] is a suitable approach to

achieve this goal. With appropriate pre-processing of the boundary feasibilities based

on the prior knowledge of the retina, the computed theoretically optimal minimum-

cost-closed sets are matched with the desired boundary segmentations in the input

OCT B-scans. In other words, the retinal layer boundaries are the theoretically op-

timal solutions of being labeled based on the input cost-function images. Boundary

feasibilities include two types of constraints: 1) the smoothness constraint, which

limits the local changes in the depth direction (i.e., the A-scan direction) for each

given boundary to a specified range, and 2) boundary interaction constraint, which

limits distances between pairs of neighboring boundaries for each A-scan to a specified

range. Theoretical details about these constraints were discussed in Section 3.4.

4.2.1 Layer Segmentation in 2D – No Prior
Information of Bruch’s Membrane Opening

The task here is to segment the ILM, topRPE and botRPE boundaries in the cen-

tral three B-scans from the input HD-5LR B-scans (2D layer segmentation) without
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Extrapolation

(c) (d)

Figure 4.1: Layer segmentations of the eye with optic disc edema in an HD raster
B-scan. (a) The central B-scan of an HD-5LR scan in the original resolution. (b) The
D-to-B cost image for ILM [i.e., the red boundary in (d)] and topRPE [i.e., the green
boundary in (d)]. (c) The B-to-D cost image for botRPE [i.e., the yellow boundary
in (d)]. (d) Layer segmentation results.

prior information of the Bruch’s membrane opening (BMO). The automated segmen-

tation is developed using a multi-resolution technique, as described in the following

steps:

1. Extract the middle three B-scans from the input HD-5LR scan.

2. Segment the retinal layers for each extracted B-scan in an image that is down-

sampled by 16 in the z direction using the following steps:

(a) Down-sample the input B-scan by 16 in the z direction.

(b) Smooth the downsampled image and use a Sobel filter to generate a dark-

to-bright (D-to-B) boundary cost image.
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(c) Perform the 2D graph-search algorithm with the input D-to-B cost images

to simultaneously segment both the ILM and topRPE boundaries.

(d) Use the thin-plate-spline (TPS) interpolation algorithm [70] to smooth

the pre-segmented topRPE boundary and “truncate” the region above the

smooth boundary. (Note: “truncate” means assigning very high costs in

this region in the cost image). The cost image of the topRPE boundary is

then updated.

(e) Perform the 2D graph-theoretic algorithm again on the updated D-to-B

cost image for the topRPE. The layer segmentation in the down-sampled-

by-16 resolution is complete.

3. Up-sample the previously obtained segmentation results into the image down-

sampled by 8 and perform the following steps:

(a) Downsample the input B-scan by 8 in the z direction.

(b) Smooth the downsampled B-scan and compute the D-to-B cost image using

a Sobel filter and the bright-to-dark (B-to-D) cost image using an inverse

Sobel filter.

(c) Based on the topRPE segmentation results from the previous resolution,

truncate the outer retina in the D-to-B cost image.

(d) Perform the 2D graph-theoretic algorithm to only segment the ILM with

the modified D-to-B cost image.

(e) Based on the segmented ILM, truncate the inner retina in both D-to-B

and B-to-D cost images.

(f) Perform the 2D graph-theoretic algorithm again to simultaneously segment

both topRPE and botRPE boundaries using the updated D-to-B and B-

to-D cost images.
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(g) Use the TPS algorithm to smooth the segmentation results.

4. Repeat the same processes of refining the segmentation results at higher resolu-

tions until the segmentation is finally performed at the original image resolution.

Fig. 4.1 is an example of a central HD-5LR B-scan and its segmentation results.

4.2.2 Layer Segmentation in 2D – Given Two Bruch’s
Membrane Opening Points

In this task, two BMO points are manually determined. The goal is the same

as what was discussed in the previous section (i.e., to segment ILM, topRPE, and

botRPE boundaries for each input HD raster B-scan), but the segmented botRPE

boundary is expected to pass through (or at least very close to) the given BMO

points. The segmentation steps in this task are very similar to the steps that have

been discussed in the previous section. The only difference is that since the positions

of the two BMO points for each input HD B-scan are given, there exists more flexibility

to manipulate the cost images by imposing very low-cost values to bias the cost image

such that the layer segmentation prefers to pass through the desired regions. Fig. 4.2

shows another example of the same B-scan from Fig. 4.2.1 but with two given BMO

points considered.

4.2.3 Conclusions

Although there is no particular measurement in this section, it is very important

to have the ability to segment retinal layers in HD-5LR scans with and without given

BMO points, because this segmentation is a necessary step for future usage, including

the BMO segmentation described in Aim 2 (Chapter 5) and the pRPE/BM shape

model generation described in Aim 3 (Chapter 6). This segmentation algorithm also

has been tested and qualitatively validated in the Idiopathic Intracranial Hyperten-

sion Treatment Trial (IIHTT) longitudinal dataset, for which the failure rate was

2.4% (19/782 scans). The limitation of this algorithm is that the outer retina must
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Figure 4.2: Layer segmentations of the eye with optic disc edema in HD raster B-scan
with two given BMO points. (a) The central B-scan. (b) The modified D-to-B cost
image. (c) The modified B-to-D cost image. (d) Layer segmentation results with the
two given BMO points (pink dots).

completely appear in the HD-5LR B-scan, because the botRPE is one of the first

boundaries to be segmented in multi-resolution processes. When the botRPE is not

correctly identified at low resolution, the errors propagate to higher resolutions and

cause a segmentation failure.

4.3 Three-Dimensional Layer Segmentation in
Swollen Optic Discs Using SD-OCT

Volumes

For this goal, the focus in how to extend the previous discussed 2D layer segmenta-

tion algorithm into a 3D version. The target surfaces are the ILM, the bottom surface

of the RNFL (called botRNFL), the top and bottom surfaces of the RPE complex

(i.e., topRPE and botRPE in the previous section). A 3D version of the graph-search

algorithm [16] is used to segment the target surfaces, and the surface feasibilities are
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defined by 1) smoothness constraints, which limit local changes along the z direction

for each desired surface to a specified range, and 2) surface interaction constraints,

which limit the minimum and maximum distances between pairs of surfaces for each

x− y column to a specified range (more details are in Section 3.4).

4.3.1 Three-Dimensional Cost Function Image Design

The processes of generating cost images in 3D can be easily extended from 2D by

using the 3D Gaussian filers for smoothing the input SD-OCT images and applying

3D Sobel filters (3×3×3) for computing the D-to-B and B-to-D cost function images.

4.3.2 Three-Dimensional Layer Segmentation

The steps in the 3D automated segmentation algorithm are very similar to the

2D case, except for the usage of 3D cost function images as the inputs. The ma-

jor difference is that the D-to-B cost images are used for detecting the ILM and

topRPE surfaces and the B-to-D cost images are good for segmenting the botRNFL

and botRPE surfaces. Use of a multi-resolution technique is important in the 3D

processing, because the surface searching ranges can be dramatically reduced by trim-

ming the input cost function images based on the segmentation results at lower image

resolution. Under these circumstances, the computational time can be significantly

decreased (from several hours to minutes). Fig. 4.3 (a) is the central B-scan of the

SD-OCT volume from the same subject in the previous section, and Fig. 4.3 (b) shows

its layer segmentation results.

On the other hand, motion artifacts often occur during SD-OCT imaging and

appear in the form of retinal tilting in B-scans. To set up a regular reference frame,

the segmented botRPE surface will be considered as a reference surface. The entire

retina in the SD-OCT volume is flattened by realigning each A-scan until the reference

surface is flat. Although the retinal flattening process essentially does not change any

quantitative measurement results, the images are more consistently aligned [Fig. 4.3
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Figure 4.3: Layer segmentation of the eye with optic disc edema in a SD-OCT Volume.
(a) The input central B-scan. (b) Layer segmentation results of the input B-scan. (c)
The flattened central B-scan. (d) Layer segmentation results of the flattened B-scan.

(c) and (d)] and more readily used for registration in Section 5.2.2. More examples

will be shown in Section 7.2, including 3D visualizations for different degrees of optic

disc swelling (Fig. 7.2).

4.3.3 Conclusions

The focus in this section is on the development of a methodology which has the

ability to automatically segment severely swollen retina considering 3D contextual

information, using a graph-search algorithm. This automated segmentation approach

is very important, because all the retinal measurements/features that are computed

using SD-OCT volumetric images depend on these segmentation results. To the best

of my knowledge, there is still no commercial software that has the ability to reliably

process the layer segmentation problems when the optic disc is severely swollen [11,12].
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Section 7.2 has more details about the computations and correlations among the

common OCT measurements [including the ONH volume, peripapillary retinal nerve

fiber layer (pRNFL) and total retina (pTR) thicknesses]. This 3D segmentation

algorithm also has been tested and qualitatively validated in the IIHTT longitudinal

dataset. Among the 1564 ONH-centered SD-OCT volumetric scans, 37 scans are

excluded due to a failure of the segmentation (i.e., a failure rate of 2.4%). Again, as

we previously discussed in Section 4.2.3, most of the segmentation failures are caused

by the fact that the botRPE surface, which is one of the most important surfaces in

the multi-resolution processes, is not complete in the SD-OCT volumes.

4.4 ILM Recovery for Incomplete SD-OCT
Volumes

SD-OCT enables the 3D cross-sectional information from the ONH region to be

acquired and supports volumetric measurements based on the retinal layer segmen-

tations. However, in cases of severe optic disc edema, the inner retina deforms and

becomes too swollen to be fully enclosed by the SD-OCT image window in the z

direction, causing the “top of the iceberg” to be cut off. In such scans, the border

of the ILM is missing from the portion of the nerve projecting the furthest into the

vitreous. The goal in this task is to develop an automated methodology to detect and

recover the missing part of the ILM so that the optic-nerve-head (ONH) volumetric

measurement can be corrected from the underestimation.

4.4.1 Thin-Plate-Spline (TPS) Interpolation

A thin-plate-spline (TPS) interpolation algorithm [70] is used to help recover

the missing parts of the ILM in incomplete SD-OCT volumes. The ILM-recovery

approach is developed by accomplishing the following steps:

1. Detect the cut-off region in the input SD-OCT volume by checking the ILM

layer segmentation results, which are obtained from Section 4.3.
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2. Select the contour voxels of the cut-off region as important landmarks, and then

randomly sample the other landmarks from the segmented ILM surface.

3. Perform the TPS interpolation based on the landmarks we obtained from the

previous step, and the missing ILM can be regenerated.

4.4.2 Experimental Methods and Results

Eleven complete 3D SD-OCT ONH-centered papilledema scans (including right

and/or left eyes from The University of Iowa) were used as inputs. The data selection

criterion here was that each of these 11 SD-OCT scans was swollen enough so that

the artificial truncation from the top of the swollen disc would not reach out the non-

swollen region. The selected 11 SD-OCT images with severe optic disc edema were

first segmented using the 3D graph-search algorithm. Then, based on the segmenta-

tion results, the ILM tip of each input SD-OCT scan can be detected. To compare

the recovered ILM with the original ILM for each input SD-OCT volume, 50, 100,

150 voxels were artificially cut off from the ILM tip of each scan. Therefore, 44 SD-

OCT volumes from 11 papilledema subjects (which include the input 11 complete

papilledema SD-OCT volumes and the 50, 100, 150 pixels artificially cut-off versions)

were used in this experiment. The flow chart is shown in Fig. 4.4.

For these 11 input complete SD-OCT volumes with papilledema, the mean ab-

solute errors of the artificially truncated volume by 50, 100, 150 voxels were 0.045,

0.236, and 0.565 mm3. After recovering the missing ILM, the mean absolute errors of

the corrected volumes were 0.044, 0.035 (significantly decreased), and 0.120 (signifi-

cantly decreased) mm3, where p < 0.01 (Fig. 4.5). Fig. 4.6 is an example of how the

ILM undergoes the transition from the original segmentation, the 150 voxel artificial

truncation, and after the TPS correction. In this particular example, 3.29% of the

volume is lost after the truncation and 99.79% of the volume is recovered after TPS

interpolation.



38

Multi-Resolution 
Layer Segmentation

Multi-Resolution 
Layer Segmentation

11 Complete 

SD-OCT Scans

50 Voxels Cut off 
from ILM Tip

Multi-Resolution 
Layer Segmentation

50 Voxels Cut off 
from ILM Tip

Multi-Resolution 
Layer Segmentation

50 Voxels Cut off 
from ILM Tip

Flatten OCT
(Based on RPE)

Regenerate the
Missing Part of ILM 

Optic Disc
Volume Estimation

Complete Disc Volume

Disc Volume with 50 Voxels 

Cut off from ILM Tip

Corrected Disc Volume with 50

Voxels Cut off from ILM Tip

Disc Volume with 100 Voxels 

Cut off from ILM Tip

Corrected Disc Volume with 100

Voxels Cut off from ILM Tip

Disc Volume with 150 Voxels 

Cut off from ILM Tip

Corrected Disc Volume with 150

Voxels Cut off from ILM Tip

Optic Disc
Volume Estimation

Optic Disc
Volume Estimation

Optic Disc
Volume Estimation

Optic Disc
Volume Estimation

Optic Disc
Volume Estimation

Optic Disc
Volume Estimation

Flatten OCT
(Based on RPE)

Regenerate the
Missing Part of ILM 

Regenerate the
Missing Part of ILM 

Flatten OCT
(Based on RPE)

Flatten OCT
(Based on RPE)

Figure 4.4: A flow chart of the automated approach of repairing the truncated inner
retina, where the regeneration of the missing part of the ILM was implemented by
using the TPS interpolation, and the optic disc volume was defined between the ILM
and the bottom surface of the RPE complex (i.e., botRPE).
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Figure 4.6: A central B-scan with 3D layer segmentation results and its missing ILM
correction.
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4.4.3 Conclusions

The unadjusted volumetric quantification can be underestimated when the swollen

optic disc does not completely conform to the dimensions of the OCT imaging window,

causing them to be truncated. By reconstructing the missing inner retina using

TPS interpolation and then re-computing the corrected disc volume, the volumetric

measurement for papilledema becomes more reliable.
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CHAPTER 5
BRUCH’S MEMBRANE OPENING SEGMENTATION IN SWOLLEN
OPTIC DISCS USING COMBINED INFORMATION FROM SD-OCT

HD-5LR RASTER SCANS AND VOLUMETRIC IMAGES (AIM 2)

5.1 Introduction

In cases of optic disc swelling, directly locating the true Bruch’s membrane opening

(BMO) points in a regular SD-OCT optic-disc-nerve (ONH) volume (for example,

Carl Zeiss, ONH protocol with 200 × 200 × 1024 voxels) is a very challenging topic,

because the area around BMO is often shadowed by the swollen and deformed inner

retina. Also, when the blood vessels pass through the swollen ONH region, they often

cause vertical stripe-shape shadows to deteriorate the image quality around the true

BMO area. Fig. 5.1 is an example showing how the BMO points look different in a

normal eye compared to a papilledema eye.

Compared to the regular ONH SD-OCT images, high-definition 5-line raster scans

(HD-5LR, Carl Zeiss, 1024×5×1024 voxels) are created from another protocol where

better image quality is obtained by repeatedly scanning five parallel linear regions and

averaging these repeated scans to construct five individual HD B-scans. Due to the

HD B-scans having better image quality, the true BMO can potentially be observed

in the obscured region under the swollen inner retina if any of these HD B-scan passes

?
??

?

?

?

(a) (b)

Figure 5.1: BMO candidate points (the red dots) in the central B-scan of a SD-OCT
volume from (a) a normal eye and (b) a papilledema eye.
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(a) (b)

Figure 5.2: BMO points (the red dots) in a central B-scan of the (a) HD-5LR scan
and (b) regular SD-OCT volume.

through the optic disc center. Fig. 5.2 shows the image quality difference between the

central B-scans from an HD-5LR and regular volumetric SD-OCT image. One might

notice that the BMO points are easier to determine in the HD-5LR central B-scan.

Although the true BMO points are potentially observable in the HD-5LR scans,

the information from five HD B-scans is not enough to construct a complete true BMO

contour. To identify this contour, a possible approach is to use the BMO information

from the HD-5LR scans to place landmarks and then to transfer these landmarks into

the corresponding regular SD-OCT volume. Next, a BMO segmentation approach

in the regular SD-OCT can be performed to segment the complete BMO contour.

In other words, this approach is to combine the SD-OCT volume (3D but lower-

resolution) with the HD-5LR scans (higher-resolution but 2D) to help solve the BMO

segmentation problem in both the SD-OCT protocols. In practice, directly placing

the BMO landmarks in HD-5LR scans using a fully automated method is still not

straightforward. Even though the image resolution of each HD B-scan is better than

the resolution of the regular SD-OCT volume, the shadow from the inner retina is still

unavoidable in cases of severely swollen optic discs. In addition, the border tissue of

the RPE complex may also complicate the criteria of deciding the true BMO points.

Therefore, this chapter can be divided into two sections. In Section 5.2, a semi-
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automated method is developed to transfer the manually decided BMO points from

an HD-5LR scan into the corresponding regular SD-OCT volume to help segment

the complete BMO profile. The results from this section give us a positive answer to

the question “If we have prior knowledge of the true BMO positions in an HD-5LR

scan, is it helpful to use it for segmenting the BMO in the corresponding SD-OCT

volume?” Next, Section 5.3 is a straightforward extension of this semi-automated

method into a fully automated one.

The objective of this chapter (Aim 2) is to develop framework for combining

an SD-OCT image volume and the corresponding HD-5LR scan to segment the true

BMO under the shadow of the swollen inner retinal tissue. To achieve this goal:

First, the ILM and RPE complex layers are separately segmented in both SD-OCT

and HD-5LR images using the methods from Chapter 4. Second, the HD-5LR scan is

registered to the corresponding SD-OCT volume. Third, a 2D-version of the graph-

search algorithm [16, 66] is applied to segment the true BMO contour in the RPE

en-face image domain using the combined information from both the SD-OCT and

HD-5LR images. This novel idea is meaningful because this is the first study about

using an automated approach to find the true BMO contour for papilledema eyes by

combining the information from two types of SD-OCT images with different dimen-

sions as well as resolutions. For the publication of Aim 2, the semi-automated

method of segmenting the BMO contour in the SD-OCT RPE en-face image domain

utilizing prior-information from HD-5LR scans was published in [34]. Then, a fully

automated version was completed in [71].

5.2 Combined Use of High-Definition and
Volumetric Optical Coherence Tomography
for the Segmentation of Bruch’s Membrane

Opening in Cases of Optic Disc Swelling

SD-OCT is a relatively new imaging technique to enable cross-sectional images of

the retina and optic nerve head to be acquired. In cases of optic disc swelling, quanti-



44

tative measurements based on the retinal layer segmentation (such as the thicknesses

of the retinal nerve fiber layer and total retina [4], and global/regional volumetric es-

timations of the optic disc [7, 72]) have been developed to quantify disc edema using

volumetric OCT images alone. Recently, studies observing the shape of the peri-

papillary retinal pigment epithelium and/or Bruch’s membrane (pRPE/BM) changes

due to elevated intracranial pressure [14, 15] give strong motivation for developing

automated methodologies to identify the true Bruch’s membrane opening (BMO) for

the preparation of generating pRPE/BM shape models.

Although the volumetric OCT has the ability to provide 3D contextual informa-

tion, the true BMO points are often invisible under the shadows from the swollen reti-

nal tissue. Consequently, a common graph-based BMO segmentation approach [66],

which was originally designed for glaucoma eyes, often overestimates the true BMO

contour in cases of optic disc swelling. The goal of this task is to develop an approach

to segment the true BMO by utilizing information from both SD-OCT scans (provid-

ing 3D context) and the HD-5LR scans (providing better local visibility of the BMO).

In particular, for each SD-OCT volume and the HD-5LR scan pair, the proposed ap-

proach first automatically registers these HD B-scans into the SD-OCT image. Next,

six manually placed BMO points (two points from each of the three central HD B-

scans) are transferred into the SD-OCT RPE en-face image. Next, the input cost

image of the unwrapped RPE en-face image is updated by dramatically suppressing

the cost values around the converted landmarks. Finally, the graph-based approach

with shape priors [64] is applied to identify the true BMO contour. In this task,

using the OCT image pairs from 25 patients with optic disc swelling, the computed

BMO points from the proposed method are compared to the traditional method [66]

(which uses the volumetric OCT scans alone) and to two sets of manually marked

BMO points from an independent observer. This method has been published [34].
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Figure 5.3: Examples of the flattened retina in the central B-scan. (a) Regular
volumetric scan. (b) HD-5LR scan.

5.2.1 Retinal Layer Segmentation

The input ONH OCT volumes (image dimensions of 200× 200× 1024 voxels cov-

ering 6×6×2 mm3, Carl Zeiss Meditec, Dublin, CA) and the corresponding HD-5LR

scan (contains five non-successive HD B-scans; each HD B-scan has image dimensions

of 1024 × 1024 pixels covering 9 × 2 mm2, Carl Zeiss) are automatically segmented,

using graph-theoretical algorithms in 3D and 2D, respectively (Chapter 4). Here,

the internal limiting membrane (ILM) and the upper and lower bounding surfaces

of the retinal pigment epithelium (RPE) complex are the target surfaces. To reduce

the effect of motion artifacts within the SD-OCT images, both the 2D HD B-scans

and 3D volumetric images are flattened using the lower bounding surface of the RPE

as the reference plane. Fig. 5.3 (a) and 5.3 (b) are examples of a flattened retina

with layer segmentations in the central B-scan from a SD-OCT volume and the cor-

responding HD-5LR scan, respectively. During flattening, as the RPE surfaces (i.e.,

the yellow and green lines) are not defined inside the BMO region, a thin-plate-spline

method [70] is used to extrapolate the segmented surfaces inside a central cylindrical

region (of constant size) defined to be larger than the expected size of the BMO.
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5.2.2 Image Registration Between SD-OCT HD-5LR
and Volumetric Scans

To use the combined information from each SD-OCT HD-5LR scan and the corre-

sponding volumetric scan, image registration is performed in an automated fashion in

the flattened OCT image domain to register the five HD B-scans to the correspond-

ing B-scans within the volumetric scan. First, independent 2D-to-2D registrations

for each HD B-scan in a particular location range within the SD-OCT volume are

pre-computed. Here, the image registration is done by using rigid transformations

and the sum-of-the-squared-differences registration metric as implemented in the In-

sight Segmentation and Registration Toolkit (ITK). Specifically, with our assumption

that the HD-5LR scans and the volumetric scan are both reasonably centered on the

optic nerve head, the central (i.e., the third) HD B-scan is registered to each of the

volumetric B-scans between 80 and 120 (out of the 200 B-scans in the entire volume)

and the pairwise registration metric values and registration parameters saved. Sim-

ilarly, based on the default distance of 0.5 mm (around 17 B-scans in the SD-OCT

volume) between two neighboring HD-5LR B-scans (and allowing for a ± 0.06 mm

deviation = ± 2 B-scans in the SD-OCT volume), the volumetric B-scan location

range for pre-computing the registration metric values and registration parameters

corresponding to the first, second, fourth, and fifth high-definition raster scans were

44–88, 61–105, 95–139, and 112–156, respectively.

Next, based on these pre-computed independent 2D-to-2D registration metric val-

ues, for each candidate registered volumetric B-scan location corresponding to the

central HD B-scan (i.e., volumetric B-scan locations 80–120), a “grouped” registra-

tion is obtained by finding the best matching volumetric B-scan (i.e., B-scan with

smallest pre-computed registration metric) for each of the remaining four HD raster

B-scans such that each chosen volumetric B-scan satisfies the expected physical dis-

tance constraints. In particular, we require that the other chosen B-scan locations
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be within 0.06 mm (= 2 B-scans) of the expected physical distance. For example, to

determine the grouped registration corresponding to the central HD B-scan registered

to volumetric B-scan 80, for the first HD B-scan the B-scan with the smallest pre-

computed registration metric from 2D-to-2D registrations with volumetric B-scans

44–48 would be chosen; for the second HD B-scan, the constrained range would be

B-scans 61–65; for the fourth HD B-scan, the constrained range would be B-scans

95–99, and for the fifth HD B-scan, the constrained range would be 112–116. In

general, for the central HD B-scan at physical location x, the optimal volumetric

B-scans corresponding to the first, second, fourth, and fifth high-definition B-scan

are constrained to be at location x − 1.0 mm ± 0.06 mm, x − 0.5 mm ± 0.06 mm,

x + 0.5 mm ± 0.06 mm, and x + 1.0 mm ± 0.06 mm, respectively. The grouped

registration metric is computed by summing all of the individual B-scan registration

metric values.

After computing the grouped registration metric values for each set of specified

possible physically constrained B-scan registration locations, the set with the overall

lowest grouped registration metric becomes the final registration. Fig. 5.4 (a) provides

an example en-face image, which is generated by averaging the voxel intensities in

each A-scan in the RPE complex from an SD-OCT volume [between the yellow and

green surfaces in Fig. 5.3 (a)]; Fig. 5.4 (b) shows an example of a projective view

of the registered HD B-scans on the en-face image, for which the yellow and green

horizontal lines indicate whether the HD B-scans do or do not pass the BMO region,

respectively.

5.2.3 Manual Placement of BMO Points in HD
B-Scans

Considering often only three of the five high-definition OCT B-scans pass through

the BMO region in the SD-OCT volume [i.e., the yellow lines in Fig. 5.4 (b)], two

BMO points in each of the three central HD B-scans are manually placed resulting
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(a) (b) (c)

Figure 5.4: Registration of the HD B-scans and manual BMO landmarks into the
corresponding SD-OCT volume. (a) The SD-OCT RPE en-face image. (b) The pro-
jective view of the registered HD B-scans [note: the green and yellow lines represent
the B-scans that do not pass and pass the BMO region, respectively] in the RPE
en-face image. (c) The projected view of the mapped manual BMO points from the
three central HD B-scans.

in the total of six manual points. In particular, each of the three central input HD

B-scans is first resized from 1024 × 1024 pixels to 4608 × 1024 pixels to reflect the

true 9:2 width-to-height ratio in the physical domain. Then, two BMO landmarks are

manually placed in each input HD B-scan using GNU Image Manipulation Program

(GIMP, version 2.8.10). Next, these six manually placed landmarks are automatically

mapped into the SD-OCT image domain using the registration information computed

as described in Section 5.2.2. Fig. 5.4 (c) shows the projective view of the mapped

BMO landmarks in the SD-OCT RPE en-face image. It is worthwhile to note that

the BMO point placement in the central three HD B-scans is the only manual step

in the proposed method.

5.2.4 BMO Contour Segmentation in SD-OCT RPE
En-Face Images

Transferring a 2D circular object segmentation problem into a 2D horizontal di-

rection boundary segmentation problem is a typical step in finding the BMO contour

using a graph-search algorithm in the SD-OCT en-face image domain [66]. To make

this idea work, the SD-OCT RPE en-face image is first unwrapped based on the
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approximate BMO center (defined as the halfway point between the two BMO land-

marks from the registered central HD B-scan). In the unwrapped polar-coordinate

domain, the BMO boundary can be considered a function of θ, mapping θ values to

radial values. Taking advantage of the fact that the BMO is generally oval-like in the

RPE en-face image (which means the BMO shape prior prefers neighboring changes

of the BMO boundary, f(θ), to remain small in the unwrapped image domain), the

graph-based algorithm to include shape-prior constraints [64] is next performed. In

particular, the cost image, C(r, θ), is generated by computing the gradient in the

radial direction in the en-face image and then locally modifying it by dramatically

decreasing the costs around the manual BMO points. The graph-based approach

finds the projected BMO boundary f(θ) with the minimal total cost:

CTotal =
359∑
θ=0

C(f(θ), θ) + λ
358∑
θ=0

[f(θ + 1)− f(θ)]2 + λ[f(0)− f(359)]2 (5.1)

where the first term reflects the contribution of the boundary cost from the image-

based cost term and the other terms represent the shape cost with the consideration of

the circularly constraint. Note that there are two differences between the traditional

[66] and proposed method: (1) the use of soft-smoothness constraints [64] (as reflected

in the shape-prior terms in CTotal) rather than only hard smoothness constraints, and

(2) the added incorporation of image information from the HD B-scans in the cost

function C(r, θ).

5.2.5 Manual Tracing for Evaluation

Because of the difficulty of directly visualizing the BMO in volumetric OCT scans,

an independent observer manually traced the BMO points in the radially transformed

SD-OCT volumes twice (with the mean of the two tracings being used as the refer-

ence), where 12 equiangular points are placed covering the entire 360 degrees (in other

words, placing one manual BMO point for every 30 degrees). As an example, Fig. 5.5
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(a) shows the locations of the 12 radial scans, which are highlighted in purple. For

each radial scan, the observer places a landmark to indicate the BMO point. In the

first (second) session, these landmarks are colored in yellow (cyan). Fig. 5.5 (b, c) are

the examples of the first and second session traces in the radial scan at 0◦. Fig. 5.5

(d, e) show all the manual landmarks in the projective view on the RPE en-face

image domain from Fig. 5.5 (b, c), respectively. Finally, Fig. 5.5 (f) shows the mean

landmark locations between both manual tracing sessions (green dots).

0o

90o

180o

270o

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Manually marking BMO points in the radial SD-OCT domain. (a) Lo-
cations of 12 radial scans in the SD-OCT RPE en-face image. (b, c) Expert’s first
and second tracing sessions in the 2D radial scan at 0◦. (d, e) Projective views of
expert’s first and second tracing sessions with 12 landmarks on the SD-OCT RPE
en-face images. (f) The mean locations of 12 landmarks between (d) and (e).
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5.2.6 Experimental Methods and Results

Twenty-five SD-OCT volumes and the corresponding HD-5LR scans from 25 dif-

ferent subjects with optic disc edema from the University of Iowa were used, where

the ONH volume of each input SD-OCT image was larger than 14.42 mm3 (equiva-

lent to Frisén scale grade 2 in our previous work [7]). For comparison purposes, the

traditional graph-search method was implemented [66]. To achieve that, the SD-OCT

RPE en-face image was unwrapped [Fig. 5.6 (a)]. Then, the BMO boundary was seg-

mented using the traditional 2D graph-search method without applying shape-prior

information in the unwrapped cost image [Fig. 5.6 (b)] and then was transferred back

to the original en-face image. Here, the traditional method was often affected by

the shadow from the swollen optic disc and overestimated the size of the true BMO

[Fig. 5.6 (c)].

Next, the proposed method was also applied to the unwrapped en-face image.

Fig. 5.6 (d) illustrates the new version of the cost image by dramatically decreasing

the local cost near the locations of the converted BMO landmarks (i.e., the dark

butterfly patterns). Fig. 5.6 (e) demonstrates the segmented BMO boundary. Next,

the BMO was transferred back to the original en-face image, and Fig. 5.6 (f) shows

the final BMO segmentation. Note that the segmented contour is correctly located

on the boundary of the true BMO instead of the shadow region.

Fig. 5.7 shows examples from four different subjects (where the total retinal vol-

umes from the left to right column were 14.53, 17.13, 20.53 and 25.37 mm3, respec-

tively); in the first row are the RPE en-face images, in the second row are the BMO

segmentation results using the traditional graph-search method [66], in the third row

are the results using the proposed method, in the fourth, fifth and sixth rows are

manual tracing 1 (yellow dots), manual tracing 2 (cyan dots) and the mean manual

tracing (green dots), respectively.

Signed and root mean square (RMS) differences (mean ± standard deviation)
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Figure 5.6: Comparison examples of BMO segmentations in the SD-OCT RPE en-face
images using the traditional and proposed semi-automated methods. (a) Unwrapped
RPE en-face image. (b) Segmented BMO boundary in the unwrapped cost image
using the traditional method. (c) Segmented BMO in the en-face image using the
traditional method. (d) Locally modified cost image (i.e., the dark butterfly patterns)
using the combined information from both SD-OCT and HD-5LR B-scans in the
unwrapped en-face image domain. (e) Segmented BMO boundary in the unwrapped
en-face image using the proposed method. (f) Segmented BMO result in the en-face
image using the proposed method.

between (1) the traditional graph-based method and mean manual tracing, (2) the

proposed approach and mean manual tracing, and (3) manual tracings 1 and 2 were

computed in the unwrapped en-face image domain, and the results are shown in

Table 5.1. The proposed approach had significantly smaller (p < 0.001) RMS differ-

ences with the mean manual tracing (5.34 ± 3.34 pixels) than the traditional approach

(21.71 ± 3.87 pixels). The proposed approach also had slightly larger RMS differ-

ences with the mean manual tracing than that computed from the repeat tracings of

a single observer (4.22 ± 1.97 pixels); however, the differences were not significant
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Total Retinal Volume (mm3)

14.53 25.3717.13 20.53

RPE
En-face 
Images

Traditional
Method

Proposed
Method

Manual
Tracing 1

Manual
Tracing 2

Mean
Manual
Tracing

Figure 5.7: BMO segmentations in cases (columns) with different degrees of optic
disc swelling from mild to severe (from 14.53 to 25.37 mm3).
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Table 5.1: Summary of signed/unsigned BMO positioning differences in pixels†.

Traditional Approach Proposed Approach Manual Tracing 1
vs. vs. vs.

Mean Manual Tracing Mean Manual Tracing Manual Tracing 2

Signed Difference 18.42 ± 8.44 -2.94 ± 4.62 -0.83 ± 2.55

RMS Difference 21.71 ± 3.87 5.34 ± 3.34 4.22 ± 1.97

† Mean ± SD in pixels for 25 subjects with optic disc edema, where the pixel size
is 30× 30 µm.

(p-value = 0.16).

5.2.7 Conclusions

As was illustrated in Fig. 5.1, detecting the BMO in cases of optic disc edema

using SD-OCT volumes alone is very challenging. Using the non-modified graph-

search method often outputs an overestimated result due to the shadow from the

swollen retinal tissue. The proposed semi-automated approach, combining the extra

information from the HD-5LR and volumetric scans, is capable of segmenting the

true BMO in a swollen optic disc. The outputs of the proposed method are not

significantly different to the expert’s manual tracing. Although the proposed method

is not fully automated, the processing time of placing six manual landmarks in the

central three B-scans from the input HD-5LR scan is practically acceptable (around

one to two minutes per HD-5LR scan). However, one limitation is that the BMO

points can sometimes still be totally obscured under extremely swollen optic discs

in HD-5LR scans. Under this circumstance, the accuracy of the proposed method

might be affected by the incorrect BMO manual placement. In addition, the limited

visibility of the BMO can also affect the reference standard (e.g., the larger area of the

BMO in the most severe case of swelling in Fig. 5.7 may be due to the limited visibility

of the BMO). In such situations, comparing the resulting BMO areas at the time of
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swelling to that from a later time in which the swelling has decreased is expected to be

useful. Finally, future work will focus on completely automating this semi-automated

approach (i.e. the next task in Section 5.3) and using the detected BMO points to

build 3D shape models (which will be introduced in Section 6.3). Combining the use

of low- and high-definition images may be beneficial in other application areas as well.

5.3 Fully Automated Bruch’s Membrane
Segmentation Using Combined 2D and 3D

SD-OCT with Shape-Prior, Multiple
Texture Information and En-Face Image in

Severely Swollen Optic Discs

Since the results from Section 5.2 give a positive answer to the original question

“If we have prior knowledge of the true BMO position in an HD-5LR scan, is it helpful

to use it for segmenting the BMO in the corresponding SD-OCT volume?,” the goal

in this section is to improve the semi-automated approach (requiring six manually

placed landmarks from the input HD-5LR scan) to a fully automated version. To

achieve this goal: First, the topographic shape of the internal limiting membrane

(ILM) and the textural information near BM are utilized to roughly estimate five

candidate BMO sets, from five individual approaches, in the central three HD-5LR

scans. For each HD B-scan, the mean of three closest BMO candidates is considered

the final BMO estimation in the HD-5LR image domain. After transferring the final

BMO estimation from the HD-5LR image domain into the volumetric SD-OCT RPE

en-face image domain, a graph-search algorithm with constraints on the BMO size [73]

and shape prior [64] is further applied to segment the complete 2D BMO contour.

Finally, comparing the three segmented BMO contours from the second, third and

fourth HD B-scans, the algorithm automatically decides which HD B-scan is the best

central B-scan (i.e., the one passing through the optic disc), and its corresponding

BMO contour is considered as the final BMO segmentation results. A preliminary

outcome of this fully automated method was published in [71].
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5.3.1 Layer Segmentation and Registration in
SD-OCT Images

The input SD-OCT image pairs (i.e., the HD-5LR and volumetric scans), first,

need to be segmented and registered together. This step is exactly same as what was

discussed in Section 5.2.1 and 5.2.2.

5.3.2 BMO Estimations in Central HD-5LR B-scan

To fully automate the semi-automated approach from Section 5.2, the key step is

to automate the only manual process of placing the BMO landmarks. However, as

we discussed before, due to the poor visibility around the BMO, directly segment-

ing BMO in SD-OCT images with severely swollen optic discs is very challenging.

Therefore, a compromised idea is to first roughly estimate the BMO in the HD cen-

tral B-scans using multiple methods and then merge these individual weaker results

into a better estimation. Here, five separate methods are proposed to automatically

estimate the BMO in the central HD-5LR B-scan, where Approach 1 uses the topo-

graphic shape of the ILM and the other four approaches uses textural information

along the BM surface. Next, the determined BMO points at the nasal and temporal

sides are separately calculated by averaging the closest three candidates at each side

and are used to generate a cost image as the input of the graph-search algorithm.

5.3.2.1 Approach 1

By observing SD-OCT images in more than 100 papilledema subjects in the

dataset of Idiopathic Intracranial Hypertension Treatment Trail (IIHTT) OCT sub-

study [11,12,68], it is noticeable that the BMO points in the central HD-5LR B-scan

are often approximately found under two ILM peaks [Fig. 5.8 (a)]. Compared to the

other retinal layers, the ILM is relatively clear, and the ILM segmentation is robust

from the perspective of automated algorithms. Therefore, the original problem of

directly finding two BMO points can be recast as a problem of finding the locations
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Figure 5.8: Three steps in Approach 1 of estimating BMO points. (a) The original
central HD-5LR B-scan with segmentation, where the purple line was just a straight
line connecting the two ending points of the BM surface. (b) Flattened segmen-
tation results. (c) Smooth surfaces using thin-plate-spline interpolation. (d) BMO
estimation from the two significant local peaks.

of the two local extreme ILM peaks. Approach 1 has three steps. First, flatten the

retina using a reference line that connects the two ending points of the BM surface

in the input HD B-scan [Fig. 5.8 (a, b)] to prevent the tilted retina from affecting

the detection of the local ILM peaks. Second, use the thin-plate-spline (TPS) [70]

interpolation to smooth the segmented ILM surface [Fig. 5.8 (c)]. Third, detect the

locations of the two ILM peaks with the minimum local values [Fig. 5.8 (d)]. Also, a

roughly estimated BMO center in the x direction, cILM , is decided by computing the

middle point of the two ILM peaks.

However, this approach does not apply to cases with extremely severe optic disc

swelling. The reason is that the inner retina usually appears as a stretched “M”

shape in mild to severe cases of optic disc swelling. In addition, when the swelling is
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extremely severe, the inner retina may deform as the shape of an iceberg, which has

just one peak. So, if the algorithm only detects a single ILM peak, no BMO candidates

are generated. Also, the center of the BMO points (cILM) would be assigned to the

scan center.

5.3.2.2 Approach 2

A 1D projected array (named RPE-line) is computed by averaging A-scan intensi-

ties between the RPE complex in the input HD-5LR B-scan as shown in Fig. 5.9 (a).

The RPE-line reflects a stronger response on the true retinal tissue between the RPE

complex and a weaker response in the space between the desired two BMO points.

Then, the RPE-line (f [x]) is smoothened using TPS interpolation [Fig. 5.9 (b)]. Next,

the differenced smooth RPE-line (d[x] = f [x] − f [x − 1]) is computed [Fig. 5.9 (c)].

Next, the intensity-difference RPE-line, which is denoted as df [x], is computed in

Algorithm 1. Finally, searching the df [x] from the left to the right [Fig. 5.9 (d)],

the left BMO point is estimated by detecting the x with the minimum value of df [x]

before the pre-estimated BMO center, cILM , obtained from Approach 1. Next, the

right BMO point is estimated using the same steps, but everything starts from the

right-hand side to the left-hand side in the x-axis. Thus, the second candidate set of

the BMO points is then obtained.

5.3.2.3 Approach 3

A thresholding method is used in Approach 3 to enhance the RPE-line intensity

contrast between the retinal tissue and image background. The threshold value (µbg)

is estimated by computing the mean image background intensity in two small squares

at both sides of the top corners in the input HD-5LR B-scan. Then, the pixels with

intensity lower than c·µbg (c = 1.55 in this work) are re-assigned so that their intensity

is zero; the remaining pixels are rescaled to grey-levels from 0 to 255. After that, a

5× 3 mean-image filter is applied to reduce the noise. Fig. 5.10 (a) and (b) show the
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Figure 5.9: Steps of finding the first dropping point on the RPE-line. (a) The orig-
inal intensity response of the RPE-line. (b) Smooth RPE-line using TPS, f [x]. (c)
Differenced RPE-line, d[x] = f [x]−f [x−1]. (d) Intensity-differenced RPE-line, df [x]
(which is generated using Algorithm 1).
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Algorithm 1: Finding the first significant dropping point on RPE-line from the
left [for example, point v in Fig. 5.9 (b)], where L is the length of d[x], ε is a
parameter to control the degree of the algorithm tolerating the ripple on d[x].

Result: The found x is the estimated left BMO point at x-direction
Initiliazations: a← 0 ; b← 0
while x < L do

if d[x] > ε then
df [x] = 0,
x← x+ 1.

else
while d[x] ≤ ε do

if d[x] = ε then
df [x] = 0,
a← x,
x← x+ 1.

else
b← x,
df [x] = f [b]− f [a],
x← x+ 1.

end

end

end

end
Find x with minimum df [x] when x < cILM .
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original HD-5LR central B-scan and the thresholded image [IThd(x, y)], respectively,

where the pseudo-color code is applied for the purpose of better visualization of

the retinal texture. A different RPE-line is computed by applying Approach 2 to

IThd(x, y), and the third set of BMO points is obtained.

(a) (b)

(c) (d)

Figure 5.10: HD-5LR central B-scan with different image-enhancement methods. (a)
Original image. (b) Thresholding image [IThd(x, y)]. (c) Variance image [IV ar(x, y)].
(d) GLCM entropy image [IEpy(x, y)]. [Note: Pseudo-colors are used for better visu-
alization, where dark blue (or red) represents the gray level intensity of 0 (or 255)].

5.3.2.4 Approach 4

A typical method to extract textural information is to compute the variance of the

target image. In this task, a sliding window of dimensions (2m+ 1)× (2n+ 1) (here

m = n = 15) is applied to the entire input image to obtain the textural information.
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For each pixel p(x, y) in the sliding window, the mean (µ) can be written as

µ(x, y) =
1

(2m+ 1)× (2n+ 1)

m∑
i=−m

n∑
j=−n

p(x+ i, y + j). (5.2)

Then, the variance image, IV ar(x, y) [Fig. 5.10 (c)], can be generated by

IV ar(x, y) =
1

(2m+ 1)× (2n+ 1)
·

m∑
i=−m

n∑
j=−n

[p(x+ i, j + j)− µ(x, y)]2.
(5.3)

By using IV ar(x, y), another RPE-line is computed, and the fourth candidate set of

the BMO points is estimated.

5.3.2.5 Approach 5

Approach 5 uses the same sliding window from Approach 4 but computes the

gray-level co-occurrence matrices (GLCM) [74, 75] instead of the regional standard

deviations. The concept of GLCM is to tabulate the combinations of the intensity for

each pixel pair in the sliding window; here, the reference pixel is denoted as p(m,n)

and its neighbor pixel as p(m+dx, n+dy) with an offset d = (dx, dy). The input HD-

5LR B-scan is first rescaled to 16 gray-levels (G = 16), and then GLCMs (M
(x,y)
φ [i, j],

φ = 45◦, 90◦ and 135◦) are computed using the sliding window. Next, the GLCM

entropy property is adopted to reflect the orderly information of the current location

of the sliding window at its center pixel p(x, y). Here, for each M
(x,y)
φ [i, j], the GLCM

entropy can be described as

Entropyφ(x, y) =
G−1∑
i,j=0

M
(x,y)
φ [i, j] · (-ln M

(x,y)
φ [i, j]). (5.4)

To achieve the strongest response, the final GLCM entropy image, IEpy(x, y)
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[Fig. 5.10 (d)], is described as

IEpy(x, y) = max{Entropyφ(x, y);φ = 45◦, 90◦ and 135◦}. (5.5)

Again, a new RPE-line is computed by applying Approach 2 to IEpy(x, y), and then

the fifth set of the BMO points is obtained.

After obtaining all five sets of the BMO estimations (or four sets if Approach 1

does not output the candidate due to extreme optic disc swelling), the final estimated

left and right BMO points are decided by averaging the most clustered three of the

five BMO candidates, separately.

5.3.3 BMO Contour Segmentation in SD-OCT RPE
En-Face Image

In the previous work (Section 5.2 [34]), six landmarks from the central three HD-

5LR B-scans are manually placed and automatically mapped into the unwrapped

RPE en-face cost image to provide anchors with very low costs for the 2D graph-

based algorithm with the shape-prior constraint to segment the BMO. In this task,

Approaches 1 to 5 are applied to the input HD-5LR second, third and fourth B-

scans [i.e., yellow lines in Fig. 5.4 (b)], so three individually estimated BMO sets

are computed. For each input HD B-scan, the estimated BMO points are converted

into the RPE en-face image, and then the unwrapped center is computed. Next, the

RPE en-face image is unwrapped, and the cost image is computed using the gradient

information. Then, applying the mean and standard deviation of the mean normal

BMO size as constraints [73], the unwrapped cost image is modified by assigning

extremely high costs in regions at least three standard deviations away from the

unwrapped mean BMO contour. Using this modified unwrapped cost image, the

graph-search algorithm with shape priors is used to segment the BMO contour, and

then the results are converted back to the SD-OCT RPE en-face image. Therefore,
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three individual BMO contours are obtained from the HD-5LR second, third and

fourth B-scans, respectively.

In this setting, even when the HD-5LR scan is slightly off from the optic disc

center (i.e. the third B-scan is not centered at the optic disc), the second or fourth B-

scan may still have the chance to pass through the disc center. (Examples are shown

in Sec. 5.3.4). Next, for each set of HD-5LR central three B-scans, the standard

deviation (σ) of the pixel intensity in an annulus-like region from the segmented

BMO to one-third the radial distance away toward the BMO center was computed.

Because the incorrectly segmented BMO contours pass through the optic disc and the

image background at the same time, this scheme outputs a smaller σ value from the

correctly estimated BMO region than the other two incorrect BMO regions. Finally,

s+ σ2, σ3 and s+ σ4 as derived from the second, third and fourth HD-5LR B-scans,

were computed around the BMO contour with the lowest value was the final result.

(Note: Based on the image protocol, the third HD-5LR B-scan is supposed to pass

through the optic disc center. Parameter, s, is a constant to control the penalty when

the input HD-5LR scan is not centered well on the optic disc, which means the central

B-scan is not the third B-scan; in this work, s = 4).

5.3.4 Experimental Methods and Results

Twenty-five subjects with optic disc edema having both SD-OCT ONH-centered

volumetric and HD-5LR scans available from the University of Iowa were included in

this study, where the SD-OCT volumetric measurement for all the subjects was larger

than 14.42 mm3, which is the mean total ONH volume of Frísen grade 2 in [7]. Layer

segmentation in the volumetric and HD-5LR scans were separately performed using

3D and 2D graph-based methods. Based on the segmentation results, the SD-OCT

volumetric and HD-5LR scans were registered together [34]. Fig. 5.11 demonstrates

an example of the BMO estimation from an HD-5LR B-scan to the SD-OCT RPE

en-face image domain. After obtaining five sets of BMO points from approaches 1
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Approach 1

Approach 2

Approach 3

Approach 4

Approach 5

Mean BMO 
Estimation

(a) (b)

θ

θ

(c) (d) (e)

Figure 5.11: BMO estimation from the HD-5LR central B-scan to the SD-OCT RPE
en-face image. (a) Five BMO candidates from Approach 1 to 5. (b) Mean BMO
estimation from the closest three candidates. (c) SD-OCT en-face image with regis-
tered BMO points (pink dots) and its halfway point (green cross). (d) Top: The cost
image in the radial domain; Bottom: Segmentation result on the modified cost image
with the constraints of the BMO shape and size. (e) Segmented BMO contour in the
en-face image.

to 5 [Fig. 5.11 (a)], the mean BMO set was obtained by averaging the closest three

candidates at the nasal and temporal sides, separately [pink lines in Fig. 5.11 (b)].

Then, these two points were transferred into the SD-OCT RPE en-face domain, the

halfway point was used as the unwrapped center [in Fig. 5.11 (c), pink dots are the

BMO points and the green cross is the halfway point]. Next, an unwrapped gradient

cost image was generated [Fig. 5.11 (d), top], and the segmented BMO is shown in

the cost image with the optic disc size constrained [Fig. 5.11 (d), bottom]. Finally,

wrapping back the segmentation result from the previous step, a segmented BMO

contour was obtain in the SD-OCT RPE en-face image domain [Fig. 5.11 (e)].

To allow for the input HD-5LR scan being slightly off from the optic disc center,
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 5.12: Two examples of the estimated BMO contours from the second (a),
third (b) and fourth (c) HD-5LR B-scans. In case 1 (top row), the HD-5LR scan was
centralized well, which means the third B-scan passing through the center of the optic
disc (b1). In case 2 (bottom row), it was the fourth B-scan (c2) passing through the
optic disc center instead of the third one (b2).

this BMO-segmentation process (Fig. 5.11) was reapplied to the second, third and

fourth HD-5LR B-scans. Fig. 5.12 shows the estimated BMO contours in the three

central B-scans from two subjects; the top-row example represents an input HD-

5LR scan that was reasonably well centered on the optic disc [i.e., the third B-scan,

Fig. 5.12 (b1), passes through the center of the optic disc]. On the other hand, the

bottom row in Fig. 5.12 demonstrates a case of an off-centered HD-5LR scan, for

which the fourth B-scan passed through the optic disc center [Fig. 5.12 (c2)].

To validate the results, the segmented BMO contours in the SD-OCT RPE en-

face image domain from the traditional graph-based method [66], the semi-automated

method (using six manual landmarks [34]), the proposed fully automated method,

and the manual tracings were compared. During the manual tracing process, an
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Figure 5.13: Comparisons among the traditional method, semi-automated method,
proposed fully automated method and mean manual tracing.

independent observer separately traced the BMO points in the radially transformed

SD-OCT domain at every 30◦ (i.e., 12 manual landmarks per volumetric SD-OCT

scan) twice. By interpolating these 12 manual landmarks, the manually traced BMO

contour in the SD-OCT RPE en-face image domain was obtained [34]. Fig. 5.13 shows

examples of qualitative results for the traditional method, semi-automated method,

the proposed fully automated method and the mean manual tracing.

For quantitative validation, the signed and root-mean-square (RMS) differences in

pixels at every 30◦ in the unwrapped en-face domain between the mean manual tracing

(MMT) and 1) the traditional method (TM), 2) the semi-automated method (SAM),

and 3) the proposed fully automated method (FAM) were computed (Table 5.2). The
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Table 5.2: Summary of signed/RMS BMO positioning differences in pixels†, ‡.

TM & MMT SAM & MMT FAM & MMT MT1 & MT2

Signed 18.01 ± 8.32 -2.98 ± 4.55 -0.71 ± 5.58 -0.83 ± 2.55

RMS 21.31 ± 3.87 5.34 ± 3.27 6.64 ± 3.57 4.22 ± 1.97

† Mean ± SD in pixels for 25 centralized SD-OCT image pairs with optic disc
edema, where the pixel size is 30× 30 µm.
‡ TM: Traditional Method; SAM: Semi-Automated Method; FAM: Fully Auto-

mated Method; MMT, MT1, MT2: Mean, First and Second Manual Tracing,
respectively.

difference between the first and second manual tracing (MT1 and MT2) were also

provided as a reference. The signed differences (mean ± standard deviation) between

TM & MMT, SAM & MMT, FAM & MMT and MT1 & MT2 were 18.01 ± 8.32, -2.98

± 4.55, -0.71 ± 5.58 and -0.83 ± 2.55, respectively; The RMS differences in the same

order were 21.31 ± 3.87, 5.34 ± 3.27, 6.64 ± 3.57 and 4.22 ± 1.97, respectively. The

mean RMS difference was significantly smaller using SAM and FAM when compared

to TM (p < 0.01). Also, the mean RMS difference between SAM & MMT and FAM

& MMT were not significantly different (p = 0.19).

5.3.5 Conclusions

When optic disc swelling is more severe, the visibility around the BMO region

deteriorates in OCT images. Under this circumstance, directly and accurately seg-

menting BMO is extremely challenging. On the other hand, HD-5LR scans provide

a better image quality in separate 2D B-scans but lacks for the 3D contextual infor-

mation. In this work, a fully automated method is proposed to segment the BMO

contour in the SD-OCT RPE en-face domain using a graph-based algorithm using

optic disc shape-prior and size constraints with the combined information from the

SD-OCT volume and HD-5LR image pairs. Comparing the fully automated method

to the semi-automated method, the RMS difference between FAM & MMT does not
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significantly differ from the RMS difference between SAM & MMT. Future work will

include developing a new method with the ability to directly provide the BMO seg-

mentation in the original volumetric SD-OCT image domain instead of in the RPE

en-face image domain.
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CHAPTER 6
TWO- AND THREE-DIMENSIONAL SHAPE MODELS OF BRUCH’S

MEMBRANE FOR PAPILLEDEMA EYES (AIM 3)

6.1 Introduction

Previous studies have reported that the shape of the peripapillary retinal pigment

epithelium and/or Bruch’s membrane (pRPE/BM) layer may indirectly reflect the

change in intracranial pressure. Specifically the shape of the pRPE/BM layer in

patients with intracranial hypertension is displaced anteriorly toward the vitreous

and this shape difference is not otherwise explained by disc edema alone [14, 26].

Additional interventions that lower the intracranial pressure [e.g. spinal tap, shunting

procedure or a medical treatment for idiopathic intracranial hypertension (IIH)] will

displace the pRPE/BM layer posteriorly away from the vitreous [14, 15, 26]. In the

original method for generating the pRPE/BM shape model, equidistant landmarks

are manually measured and placed on the pRPE/BM surface using the central HD-

5LR B-scan for each available subject [14]. However, the manual processes are time-

consuming and are not suitable for large datasets.

There is a recently completed clinical trial involving large amount of subjects with

IIH. The idiopathic Intracranial Hypertension Treatment Trial (IIHTT) is a multi-

center, randomized, double-masked, placebo-controlled, clinical trial that demon-

strated the effectiveness of acetazolamide plus weight management in improving the

visual field and quality of life of 165 patients with IIH and mild vision loss [18, 19].

An OCT sub-study was further designed to explore continuous structural parameters

to quantitatively monitor the changes over time in the optic-nerve-head (ONH) and

macular regions [11, 12, 68]. Although the OCT sub-study shows that the standard

OCT measures of papilledema are reliable and responsive to the effects of acetazo-

lamide, the pRPE/BM shape measure had not been applied within this large-scale

dataset before the works in this thesis.

Therefore, the objective of this chapter (Aim 3) is to develop a methodology that
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accelerates the manual steps in the traditional method and thus makes a pRPE/BM

shape analysis applicable to larger datasets. Also, the traditional method is a 2D

analysis; in this chapter, a novel 3D pRPE/BM shape model is designed to include

not only nasal and temporal but also superior and inferior pRPE/BM shape informa-

tion. For the publication of Aim 3, the 2D pRPE/BM shape measure using the

IIHTT dataset was published in [76] for illustrating the methodology and in [77] for

displaying the pRPE/BM longitudinal shape changes between patient groups hav-

ing diet control with and without acetazolamide treatment. The 3D shape model

extension is published in [78].

6.2 Semi-Automated 2D Bruch’s Membrane
Shape Analysis in Papilledema Using

SD-OCT

Papilledema is a type of optic-nerve-head swelling due to elevated intracranial

pressure and can be difficult to differentiate from other causes of optic disc edema.

Having non-invasive tests for raised intracranial pressure (thus potentially avoiding

invasive and uncomfortable tests such as lumbar punctures) would be of tremendous

benefit. Recent work has demonstrated that an inverted-U shape (towards the vit-

reous) of the retinal pigment epithelium and/or Bruch’s membrane (pRPE/BM) as

visible from SD-OCT scans of the optic disc may suggest raised intracranial pres-

sure [13–15]. In the traditional method, Sibony et al. [14] used a statistical-shape

analysis approach to demonstrate the presence of an overall inverted-U shape of the

pRPE/BM in papilledema patients, whereas a V-shape was present in normals and

patients with anterior ischemic optic neuropathy (another cause of optic disc edema).

However, manually placing 10 equidistant landmarks from the Bruch’s membrane

opening (BMO) along the pRPE/BM surface in both the nasal and temporal di-

rections (i.e., a total of 20 equidistant landmarks per pRPE/BM shape) is tedious,

highly susceptible to intra- and inter-observer variation, requiring specific expertise,
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and very time-consuming. Therefore, the traditional method is difficult to apply

to larger datasets (for example, the IIHTT OCT sub-study dataset) due to these

limitations.

The purposes of this work are: 1) to present a semi-automated approach using

the HD-5LR B-scan with 20 pRPE/BM landmarks (only requiring two manual BMO

landmarks at the nasal and temporal sides; the remaining 18 landmarks are automat-

ically decided/placed on the pre-segmented pRPE/BM surfaces), 2) to compute a

statistical shape model using the baseline OCT data from 116 patients in the IIHTT

OCT sub-study, 3) to compare the shape parameters computed using the proposed

semi-automated approach with those from a fully manual approach, and 4) to compute

the sensitivity of the shape parameters obtained with the semi-automated approach

with respect to placement of the two manual landmarks.

6.2.1 Manual Placement of BMO Points

In the IIHTT OCT sub-study [11, 68], the SD-OCT HD-5LR and regular volu-

metric scans (Carl Zeiss Meditec, Dublin, CA) are the captured images of the ONH.

Fig. 6.1 (a, b) and (c, d) show the differences in BMO visibility from a non-swollen

and swollen optic disc in both SD-OCT protocols, respectively. Although the BMO

points are visible in both protocols in the non-swollen case [Fig. 6.1 (a, b)], it should

be noted that the HD-5LR central B-scans [Fig. 6.1 (d)] show much better BMO vis-

ibility than the central B-scans of the regular volumetric scans [Fig. 6.1 (c)] in cases

of optic disc swelling. Therefore, the 2D pRPE/BM shape model in this work is built

using the HD-5LR central B-scan.

The first step is to resize the HD-5LR central B-scan to reflect the physical aspect

ratio and then manually place two BMO points. Specifically, the central B-scan from

each subject in the IIHTT OCT substudy [11, 68] is first resized to reflect the 9:2

width-to-height ratio of the physical dimensions (from 1024× 1024 to 4608× 1024 in

this work). Then, the GNU Image Manipulation Program (GIMP, version 2.8.10) is
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pRPE/BM

(a)

pRPE/BM

(c)

(b)

(d)

Figure 6.1: Increased visibility of BMO in the HD-5LR scan when compared to the
regular volumetric scan, where (a) is the central B-scan from a volumetric SD-OCT
image in a non-swollen optic disc, (b) is the central B-scan from the corresponding
HD-5LR scan, (c) is the central B-scan from another volumetric SD-OCT image in a
swollen optic disc, and (d) is the central B-scan from the corresponding HD-5LR scan.
Note that the yellow arrows indicate the BMO points, and the physical dimensions of
the B-scans of the volumetric and HD-5LR scans are 6×2 and 9×2 mm2, respectively.

used to manually place two BMO landmarks for each available subject [i.e., the red

dots in Fig. 6.2 (a, b)]. It is worthwhile to mention that this BMO placement is the

only manual step in the proposed semi-automated method.

6.2.2 Automated Retinal Layer Segmentation and
Semi-Automated Landmark Placement

After obtaining the BMO landmarks, automated retinal layer segmentation is

performed using the previously discussed graph-search approach (Section 4.2.2 [7,72])

to obtain the internal limiting membrane (ILM) and pRPE/BM boundary. Fig. 6.2

(c) shows an example of the segmentation results, where the red boundary is the ILM,

the green boundary is the pRPE/BM, and the two red dots are the manually placed

BMO points from the previous step.

Next, on each half of the B-scan (i.e., the nasal and temporal sides), starting

with the manually placed BMO landmark (i.e., one of the red dots), nine additional

equidistant points [the yellow dots in Fig. 6.2 (d) on each side] are automatically
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(a)

(b)

ILM

Temporal Nasal

pRPE/BM

(c)

10 Equidistant Points
Covering 2.5 mm

10 Equidistant Points
Covering 2.5 mm

(d)

(e)

Figure 6.2: Example steps of the proposed semi-automated method, where (a) and (b)
displays the manual BMO points in the non-swollen and swollen cases, respectively, (c)
shows the manual BMO points with the automated layer segmentation, (d) illustrates
the remaining 18 automated equidistant landmarks, and (e) demonstrates the aligned
shapes of all 116 right eyes from the IIHTT OCT substudy at baseline.

placed along the segmented pRPE/BM (the green boundary) to provide a total of 10

landmarks covering 2.5 mm in physical space. Thus, including both sides, there are a

total of 20 landmarks (two manually placed BMO points plus 18 automatically placed

landmarks), each with an x- and y-coordinate, to describe the pRPE/BM shape:

si = (xi,1, yi,1, . . . , xi,10, yi,10, xi,11, yi,11, . . . , xi,20, yi,20)
T , (6.1)

where 1 ≤ i ≤ N , and N represents the total number of the available input HD-5LR

scans (N = 116 in this work).

6.2.3 Statistical pRPE/BM Shape Models

Procrustes analysis and principal component analysis (PCA) are the two main

steps for generating statistical shape models [79]. In general, Procrustes analysis
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includes scaling, rotation and translation to align shapes. However, in this work, in

order to preserve meaningful distances between landmarks (as these landmarks are

defined based on physical distances along the pRPE/BM from the BMO), all the input

shapes are aligned only using the steps of rotation and translation (i.e., excluding

the scaling step). Fig. 6.2 (e) illustrates the realigned 2D pRPE/BM shapes after

Procrustes analysis without scaling, where the red dots indicate the manually placed

BM points and the blue dots indicate the semi-automated landmarks. [Different colors

of dots were used in Fig. 6.2 (e) for better visualization.]

After realigning all the available input pRPE/BM shapes, PCA is used to compute

the statistical shape models; the mean pRPE/BM shape is computed by

s̄ =
1

N

N∑
i=1

si , (6.2)

where si indicates each individual shape. Then, the covariance matrix is obtained by

cov(s) =
1

N

N∑
i=1

(si − s̄)(si − s̄)T . (6.3)

Next, the eigenvectors (ei) of cov(s) are calculated by solving

cov(s)ei = λiei,where ei
Tei = 1. (6.4)

The principal eigenvectors (eL1, eL2, eL3) with the largest three eigenvalues (λL1, λL2,

λL3) enables the description of each reconstructed individual shape as

ŝi = s̄ +
3∑
j=1

csLj

√
λLjeLj , (6.5)

where csLj
is the shape coefficient corresponding to principal component eLj.
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Figure 6.3: The pRPE/BM shape models with the effects of varying coefficients for
the first three principal components (which contains 92.75%, 4.69% and 1.32% of the
total energy) using IIHTT OCT sub-study baseline data (116 right eyes).

6.2.4 Experimental Methods and Results

In the IIHTT OCT sub-study, of the 126 subjects originally included [18], 116 had

right-eye HD-5LR scans available in the baseline dataset. (In the IIHTT, the base-

line data was prospectively collected from subjects at study entry prior to initiating

treatment.) Fig. 6.3 illustrates the statistical shape models derived from right-eye

baseline central B-scans from these 116 subjects. In particular, the shapes resulting

from varying the coefficient of the first three principal components are shown. We can

observe that the first principal component (eL1) roughly models the size of the BMO

(with more positive values of the coefficient reflecting a larger BMO), the second prin-

cipal component (eL2) models the pRPE/BM anterior/posterior directionality (with

more negative values of the coefficient reflecting an inverted U-shaped pRPE/BM,

meaning that the pRPE/BM tends to bend towards the vitreous, and more positive

values reflecting a V-shaped pRPE/BM, meaning that the pRPE/BM tends to bend
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away from the vitreous), and the third principal component models the degree of tilt.

Of particular clinical interest for a given set of pRPE/BM landmarks is the coeffi-

cient (“shape measure”) associated with the second principal coefficient. Figs. 6.4

and 6.5 demonstrate how the individual shape was reconstructed by the three princi-

pal components using Eq. (6.5) and how the pRPE/BM anterior/posterior measure

(csL2
) changes with different degrees of optic-nerve-head swelling due to intracranial

hypertension. Fig. 6.6 provides more examples of the pRPE/BM shape with different

values of csL2
.

Shape measure csL2
was evaluated further in two experiments as follows: First, a

subset of 20 central HD-5LR B-scans were selected from the original 116 eyes to cover

the range of shape variations of the data. In Experiment I, all 20 landmarks were

manually placed on each of these B-scans using the methodology described in [14] and

then the resulting csL2
values using this fully manual approach were compared with

those resulting from the proposed semi-automated approach using the same manually

placed BMO points. In other words, the purpose of Experiment I was to compare

the differences of the pRPE/BM shape measure for when all 20 landmarks are fully

manually traced (i.e., a very time consuming process) versus two manually placed

BMO points along with the 18 automatically placed landmarks (only requiring one

to two minutes per B-scan).

In Experiment II, the sensitivity of the semi-automated approach in comput-

ing csL2
to the placement of the BMO landmarks was evaluated by having a second

expert mark the two BMO points on the same 20 HD-5LR B-scans and comparing

the resulting shape measures from the semi-automated method using expert 1’s BMO

points to those using expert 2’s BMO points.

Table 6.1 shows the mean signed/unsigned differences of csL2
in Experiment I

and II. In Experiment I, the mean signed difference (± standard deviation) in the

shape measure between the approach using all manual points and the proposed semi-
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Figure 6.4: An example of pRPE/BM shape associated with a swollen optic disc
reconstructed by the three principal components.
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Figure 6.5: An example of pRPE/BM shape associated with a non-swollen optic disc
reconstructed by the three principal components.
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Figure 6.6: Examples of the pRPE/BM shape changing with varying csL2
; the order

is ranked by the values of csL2
from top-left to bottom-right.
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automated approach was -0.182 (± 0.179), and the mean unsigned difference was

0.208 (± 0.147). The negative signed difference in Experiment I implies that the

fully manual method tends to provide slightly smaller values of sL2 than the semi-

automated method. In Experiment II, the mean signed difference (± standard devi-

ation) between the proposed approach using BMO points provided by expert 1 and

those provided by expert 2 was 0.039 (± 0.172), and the mean unsigned difference

was 0.128 (± 0.118). The scatter plots and correlation coefficients in Experiment I

and II are shown in Fig. 6.7 and also Table 6.1. The correlation coefficients in both

experiments were ≥ 0.99.

Table 6.1: Results of the pRPE/BM Shape Measures (csL2
) of Experiment I and II

Mean Signed Difference Mean Unsigned Difference Corr.
(± Standard Deviation) (± Standard Deviation) (p-value)

Expt I*
-0.182 0.208 0.991

(± 0.179) (± 0.147) (p < 0.001)

Expt II**
0.039 0.128 0.990

(± 0.172) (± 0.118) (p < 0.001)
* Comparison between fully manual and proposed methods (using the same manu-
ally placed BMO points).
** Comparison between two experts’ BMO landmark points using the same semi-
automated method.

6.2.5 Conclusions

The proposed semi-automated method dramatically expedites the current fully

manual method by only requiring two manual BMO landmarks rather than 20 manual

landmarks. This makes it feasible for the first time to analyze the pRPE/BM shape

in large datasets (such as the longitudinal data for patients enrolled in the IIHTT).

The low mean signed/unsigned differences as well as the high correlations (r ≥

0.99) in both experiments demonstrate that the proposed method is robust and non-
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Figure 6.7: Scatter plots with linear regression equations and correlation coefficients
(r-values) of Experiment I and II.

sensitive. In addition, applying the shape models in a large dataset (N = 116)

strongly confirms that the pRPE/BM shape measure (csL2
) indeed reflects different

degrees of papilledema. When the value of the pRPE/BM shape measure (csL2
) was

negative, the inverted-U shape of the BM/RPE shape (toward the vitreous) indi-

cated optic-nerve-head swelling due to raised intracranial pressure. This observation

is consistent with the previous results from Sibony et al. [14, 15].

Overall, this work has presented a practical method to semi-automatically gener-

ate the pRPE/BM shape models using the HD-5LR central B-scan. Only two manual

landmarks (plus the other 18 automatically decided landmarks on the pRPE/BM

surface) are needed to obtain the pRPE/BM anterior/posterior shape measure. In

future work, combining and comparing the pRPE/BM shape measure with other

quantitative measurements (such as the Frísen scale grade, cerebrospinal fluid pres-

sure, intraocular pressure, total retinal volume, retinal nerve fiber layer thickness,

total retinal thickness, and treatment outcome) and performing a longitudinal analy-

sis are expected to provide a comprehensive analysis of the pRPE/BM shape in cases
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of optic-nerve-head swelling. Use of such shape models may also prove to be useful

in other diseases affecting the ONH, such as glaucoma. In addition, the role of 3D

shape models may also prove to hold additional benefits, which is what is discussed

in the next section.

6.3 Semi-Automated 3D Bruch’s Membrane
Shape Analysis in Papilledema Using

SD-OCT

Section 6.2 demonstrated that the 2D statistical shape model of the peripapillary

retinal pigment epithelium and/or Bruchs membrane (pRPE/BM) can quantify the

degree to which the pRPE/BM is oriented towards the vitreous in papilledema eyes,

providing a potential non-invasive measure of raised intracranial pressure. However,

due to the limitations of the amount of B-scans in an HD-5LR scan, the pRPE/BM

shape measure in the previous section could only be computed in 2D. In this work, this

2D semi-automated method is extended to a 3D version, using the regular ONH vol-

umetric image and prior-knowledge of the Bruch’s membrane opening (BMO) points

from the corresponding HD-5LR central B-scan. The purpose of this work is not

only to extend the 2D pRPE/BM shape model to a complete 3D version but also to

correlate the 2D and 3D shape measures using the IIHTT right eye baseline dataset.

6.3.1 Automated Retinal Layer Segmentation and
Registration in SD-OCT

Both ONH-centered HD-5LR and volumetric scans from the IIHTT right eye

baseline dataset are separately segmented and registered using the methods in Section

5.2.1 and Section 5.2.2 [Fig. 6.8 (a, b, c)]. In order to simplify the alignment step

(which will be discussed later in Section 6.3.3), an extra flattening step is added.

In this work, the retina in each B-scan is flattened by a straight line only in the x

direction, which is connected between the two ending points of the segmented BM

surface. Fig. 6.9 is an example of the central B-scan before and after flattening, where
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Figure 6.8: The pRPE/BM shape model sampling in 3D. (a, b) Examples of the
layer segmentation in the central B-scan of an ONH-centered volumetric and HD-
5LR scans, respectively. (c) Registration results of the volumetric and HD-5LR scan
in 3D visualization, where the horizontal lines represent the HD-5LR B-scans; in
particular, the red one represents the central B-scan. (d) Manual BMO placement in
the central HD-5LR B-scan. (e) The mapping of the manual BMO landmarks, i.e., the
red dots, in the flattened SD-OCT RPE en-face image, where the green cross is the
estimated unwrapped center. (f) BMO segmentation in the flattened SD-OCT RPE
en-face image. (g) BMO samples in 3D; non-isotropic view for better visualization.

the yellow line representing the reference line.

6.3.2 BMO Contour Segmentation and Sampling

Two BMO landmarks are manually placed at the nasal and temporal sides in

each central HD-5LR B-scan using the same step as was discussed in Section 6.2.1

[Fig. 6.8 (d)]. Since the SD-OCT images are registered in the previous step, these

two manual landmarks are directly converted into the flattened SD-OCT RPE en-face
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Figure 6.9: Example of B-scan based flattening, where the yellow line is the reference
line. (a) Before. (b) After.

image [Fig. 6.8 (e)]. Then, the RPE en-face image is unwrapped using the estimated

center from the mapped BMO. Using the methods in Section 5.3.3, a cost image

that considers the mean BMO size is generated. After applying a 2D graph-search

algorithm, the BMO contour is segmented in the the flattened SD-OCT RPE en-face

image [Fig. 6.8 (f)]. Then, starting with the segmented BMO contour from 0◦ to

359◦, eight equidistant landmarks are automatically placed covering 1.5 mm in the

radial direction for every 10◦ [Fig. 6.8 (g)]. Therefore, the amount of landmarks in the

transition from 2D to 3D is increased from 20 to 288 landmarks. Each 3D pRPE/BM

shape, which has a corresponding x-, y- and z-coordinate, can be described as:

si = (xi,1, yi,1, zi,1, . . . , xi,288, yi,288, zi,288)
T , (6.6)

where 1 ≤ i ≤ N , and N represents the total number of the available input B-scans

(N = 116).

6.3.3 Statistical pRPE/BM Shape Models

As we discussed in Section 6.2.3, Procrustes analysis and principal component

analysis (PCA) are the two main steps to generate the statistical shape model. Due to

the nature of SD-OCT images, the orientation of all these images is fixed. Therefore,

in this work, the step of Procrustes analysis is achieved by only cascading all the

centers of all 116 3D pRPE/BM shapes (Fig. 6.10). Then, as in Section 6.2.3, the first
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n = 1 n = 2 n = 3
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Figure 6.10: Examples of 3D pRPE/BM shape alignment in 116 IIHTT baseline right
eyes.

three principal eigenvectors (eL1, eL2 and eL3) are extracted so that the pRPE/BM

shape models are generated along with the varying coefficients (csL1
, csL2

and csL3
).

6.3.4 Experimental Methods and Results

The HD-5LR and volumetric scans from the 116 IIHTT baseline right eyes men-

tioned in Section 6.2.4 were used to generate 3D pRPE/BM shape models. For each

available eye, the steps, including image segmentation, image registration, and image

flattening, were performed using the methods in Section 6.3.1. Next, the processes

of manually placing two BMO points and automatically deciding the remaining land-

marks (i.e., 3D sampling) were done by following the steps in Section 6.3.2. Finally,

based on the segmented BMO contour in the SD-OCT RPE en-face image, by ap-

plying the steps in Section 6.3.3, the 3D pRPE/BM shape models were built, and

the shape measures were computed. Fig. 6.11 shows the first three components of

the 3D pRPE/BM shape models (which contains 83.6%, 6.8% and 4.8% of the total

energy); in particular, the first principal component, eL1, models the pRPE/BM ante-
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rior/posterior directionality, the second principal component, eL2, roughly represents

the degree of retinal tilt, and the third principal component, eL3, shows the degree of

rotation. In this work, the first principal component is particularly interesting for the

clinical need (it is similar to the second principal component in the 2D pRPE/BM

shape model; Fig. 6.2), so it will be referred as the 3D pRPE/BM shape measure in

the following discussion. The correlation between the 2D and 3D pRPE/BM shape

measures was 0.8 (p-value < 0.01), and the scatter plot is shown in Fig. 6.12.

6.3.5 Conclusions

The pRPE/BM shape measures in 2D and 3D are new parameters to poten-

tially monitor optic disc edema severity due to raised intracranial pressure. The 3D

shape model uses significantly more landmarks than the 2D shape model (2D: 20

landmarks; 3D: 288 landmarks), so the 3D model may be more robust to noise. In

addition, the 3D shape model involves contextual information. Compared to the 2D

shape model, which only represents the nasal and temporal information, the 3D shape

model additionally represents the superior and inferior information. Although there

are promising advantages in the 3D pRPE/BM shape model, more validations will

be needed in ongoing studies. Future work includes developing a fully automated

method and observing relationships among 2D/3D pRPE/BM shape measures and

other clinical measures over time, including intracranial pressure (ICP), and visual

field sensitivity.
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Figure 6.11: pRPE/BM 3D shape models with the effects of varying coefficients for
the first three principal components (which contains 83.6%, 6.8% and 4.8% of total
energy) using IIHTT OCT sub-study baseline data (116 right eyes).
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Figure 6.12: Comparison between 2D and 3D BM shape measures.
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CHAPTER 7
QUANTITATIVE MEASUREMENTS OF PAPILLEDEMA SEVERITY

(AIM 4)

7.1 Introduction

The Frisén grading scheme [a scale from 0 (normal) to 5 (severe)] is the stan-

dard approach that ophthalmologists often use to qualitatively assess the severity of

papilledema by examining the features of the retina in a fundus image or direct fun-

duscopic observation [3]. These retinal features are usually regional and not straight-

forward to quantify, such as the blurriness and color-change at the region around the

Bruch’s membrane opening (BMO), the tortuosity of vessels, and the presence of a

C-shaped halo. Therefore, this qualitative method comes with the limitations such as

high intra/inter-observer variability, low reproducibility, need for specific expertise,

and non-continuous outputs [4–7].

Machine learning is a relatively new idea in the field of medical image processing.

These algorithms are designed to let computers “learn” the decision criteria from an

independent input dataset (i.e., the training set) and use the “learned criteria” to

mimic how human experts make the decision in future datasets (i.e., the testing set).

In the case of assessing the severity of papilledema, the machine-learning technique

may provide a new perspective to overcome the limitations of the qualitative Frisén

grading system. Instead of experts inspecting a patient’s retina and directly deciding

the degree of the optic disc edema, computers with machine-learning algorithms would

have the ability to semi-/fully automatically compute all the pre-decided features from

the input images and then output a severity score based on the pre-learned criteria.

To achieve this goal, these computers, first, need to have the ability to compute

the retinal features from the input images. Since SD-OCT has excellent potential for

accessing cross-sectional information of the retina, certain quantitative measurements

could be used as valuable input features for machine-learning algorithms, such as the

total optic-nerve-head (ONH) volume, peripapillary retinal nerve fiber layer (pRNFL)
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and total retinal layer (pTR) thicknesses, and 2D/3D peripapillary retinal pigment

epithelium/Bruch’s membrane (pRPE/BM) shape measures.

The objective of Aim 4 is to develop an automated machine-learning framework

that can read retinal features from the input SD-OCT images, analyze the best feature

combination, and output a score on a continuous scale to objectively reflect the disc-

swelling severity. The correlation between the ONH volume and Frisén grades will be

first addressed to demonstrate the relationship between the global optic disc volume

and Frisén grade. Then, this idea is extended into using the combined features from

the global and regional optic disc information to predict the Frisén grade. Finally,

a comprehensive machine learning framework is proposed to involve all the available

features to measure the papilledema severity on a continuous scale. The proposed

system is expected to be more robust than the traditional Frisén grading scheme.

For publication of Aim 4, the comparisons among the Frisén grades, ONH

volume, pRNFL and pTR thicknesses were published in [7]. Then, these OCT mea-

surements were used in an OCT sub-study of Neuro-Ophthalmology Research Disease

Investigator Consortium (NORDIC) Idiopathic Intracranial Hypertension Treatment

Trial (IIHTT) to trace the ONH swelling changes in patients having diet control

with/without the treatment of acetazolamide from baseline to six months [11,12,68].

In addition, the framework of predicting a Frisén grade using regional volumetric

information was provided in [72].

7.2 Comparisons among Frisén Grades, ONH
Volume, Peripapillary RNFL and TR

Thicknesses

Because current commercial softwares do not have the ability to reliably segment

retinal layers in cases of moderate to severe optic disc swelling, the 2D pRNFL and

pTR thicknesses were only validated in mild-papilledema [4]. However, with the

layer segmentation for severely swollen optic disc, in both SD-OCT HD-5LR and
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volumetric images, introduced in Chapter 4, we can finally make fair comparisons

among the Frisén grades, total ONH volume, pRNFL and pTR thicknesses.

7.2.1 Peripapillary RNFL and TR Thickness
Measurements

With the segmentation results from Section 4.3, the mean pRNFL and pTR thick-

nesses are measured around a peripapillary circle with a radius of 1.73 mm (to match

the same settings that Zeiss uses in the commercial Cirrus SD-OCT machines). In an

unwrapped peripapillary 2D scan, the RNFL is the top layer (between the red and

green surfaces in Fig. 7.1), and the TR thickness is defined by the space between the

ILM and botRPE boundary (between the red and yellow surfaces in Fig. 7.1).

7.2.2 Total ONH Volume

Based on the segmentation results from Section 4.3, the total ONH volume is

defined by the entire volumetric region (in mm3) between the segmented ILM and

botRPE surface in a complete SD-OCT scan (i.e., the space between the red and

yellow surfaces in Fig. 7.2).

7.2.3 Frisén Scale Grade

All of the fundus photographs in this section have been graded by three indepen-

dent neuro-ophthalmologists from the University of Iowa using the Frisén scale (from

grade 0 to grade 4, in Fig. 7.2). The majority outcome is adopted when the original

three judgments were not consistent (i.e., the “winner-takes-all” rule).

7.2.4 Experimental Methods and Results

Twenty-two patients with papilledema from the University of Iowa were enrolled

in this study with a total of 86 image scans (including right and/or left eyes for

different visit dates). Each patient had between two and four separate visit dates

(12/22 subjects had two visits, 7/22 had three visits, and 3/22 had four visits), with
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Figure 7.1: The locations of the peripapillary circle (as same as the commercial Zeiss
Cirrus SD-OCT machines) and the layer segmentations in two different SD-OCT
volumes with different levels of optic disc swelling. (a) The peripapillary circle (i.e.,
the white circle) in a non-swollen RPE en-face image. (b) The layer segmentation on
the unwrapped peripapillary scan of (a). (c) The peripapillary circle in a swollen RPE
en-face image, Frisén scale grade of 4. (d) The layer segmentation on the unwrapped
peripapillary scan of (c). (e) The central B-scan of the same SD-OCT volume of (c),
showing a sagittal cross-section through the center of the optic disc. The segmentation
of the ILM border is depicted by the red line; the deeper, outer border of the RNFL
by the green line; the photoreceptor boundary by the magenta line; and the retinal
pigmented epithelial (RPE) border by the yellow line. In the region underlying the
ONH (e), the borders are extrapolated using a thin-plate-spline (TPS) fit.
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Figure 7.2: A composite example of papilledema cases of increasing Frisén scales
(OD, from scale 0 to scale 4, shown as subscript) with their corresponding total ONH
volumes derived from the 3D SD-OCT scans, where (A) the central B-scan of the
original SD-OCT volume, (B) The layer segmentation of the ILM (the red surface)
and lower bounding of the RPE surface (the yellow surface), (C) the 3D visualization
of the entire SD-OCT volume, (D) the thickness map between the red and yellow
surfaces, and (E) the corresponding fundus image.
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the mean (± standard deviation) time interval between visits being 92 (± 80) days.

In this original dataset, 5/86 (6%) had a Frisén grade of 0, 26/86 (30%) had a grade

of 1, 33/86 (38%) had a grade of 2, 10/86 (12%) had a grade of 3, and 12/86 (14%)

had a grade of 4. In defining these majority-rule grades, all three experts provided

the same grade in 40/86 (47%) cases, one expert disagreed with the other two by one

scale grade in 36/86 (42%) cases, one expert disagreed with the other two by two

scale grades in 6/86 (7%) cases, and all three experts disagreed in 4/86 (5%) cases.

For all 86 scans, 15/86 (17%) of SD-OCT volumes were excluded because the

scans did not contain the complete retinal tissue from the top of ILM to the bottom

surface of the RPE complex due to operation errors. Summaries of the data inclusion

and exclusion results are shown in Fig. 7.3. Of the remaining 71 volumes which were

measured using the 3D graph-search algorithm (Section 4.3), 5 (7%) had a Frisén

grade of 0, 25 (35%) had a grade of 1, 28 (39%) had a grade of 2, 8 (11%) had a grade

of 3, and 5 (7%) had a grade of 4 (Table 7.1). There were no cases of Frisén scale 5,

the severest grade of papilledema, in this dataset.

The mean (± standard deviation) resulting volumes for grade of 0 to 4 were 11.36

± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively

(Fig. 7.4 and Table 7.1). The Spearman rank coefficient between the ONH volume

and Frisén grade was 0.74 (p < 0.01) (Table 7.1).

In the subsequent analysis, except for using our 3D algorithm, the mean pRNFL

was also computed using Zeiss’ algorithm, but 27/86 scans were excluded due to

failures of segmenting the RNFL. Four additional scans were excluded using the orig-

inal exclusion criteria (incomplete ILM or RPE included within the volume acquired

within z-axis window of the SD-OCT scan), thus leaving 55 volumetric SD-OCT scans

available for both our 3D and Zeiss’ algorithms in the subsequent analyses, compar-

ing the ONH volume with the pRNFL and pTR thicknesses (see Fig. 7.3 for data

distribution). Using these 55 eyes, the computed Pearson’s correlation coefficients
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Original Dataset
86 eyes, 22 subjects

Mean # Visits/Subject: 2.59
Mean Visit Interval: 92±80 days

3D SD-OCT Scan Acquisition
71 eyes, 22 subjects

Mean # Visits/Subject: 2.41
Mean Visit Interval: 99±81 days

Zeiss Cirrus OCT Scan Analysis
59 eyes, 22 subjects

Mean # Visits/Subject: 2.09
Mean Visit Interval: 114±86 days

Subsequent Analyses
55 eyes, 22 subjects

Mean # Visits/Subject: 2.09
Mean Visit Interval: 114±86 days

Figure 7.3: A Venn diagram shows the data used in section 7.2. The original dataset
included 86 SD-OCT volumes and fundus photographs from 22 subjects. The ex-
clusion of 15 volumetric scans (due to an incompletely acquired ILM or RPE in the
confines of the z axis window) resulted in 71 volumetric SD-OCT volumes and fun-
dus photographs from 22 subjects (indicated in red). This dataset was used for the
first part of the study analyses. From the original dataset, the exclusion of 27 SD-
OCT volumes due to the obvious failure of the SD-OCT scanner RNFL algorithm
resulted in 59 volumetric SD-OCT volumes and fundus photographs from 22 subjects
(indicated in green). This dataset was not directly used in the study analyses. The
intersection of these two datasets (labeled “Subsequent Analyses”) resulted in 55 SD-
OCT volumes and fundus photographs from 22 subjects. This dataset was used for
the remaining analyses. For each dataset, the mean number of visits per subject and
mean time interval (± standard deviation) between visits is also shown.
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Figure 7.4: Papilledema grading differences in 71 eyes. (a) The scatter of the ONH
volumes versus Frisén scales. (b) The mean ONH volumes with standard deviations
of each Frisén scale.
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Table 7.1: Distribution, mean volume and volume standard deviation of included
SD-OCT scans for each Frisén grade of papilledema severity in 71 Eyes.

Frisén Scale Number of Eyes Mean Volume Standard Deviation

0 5 11.36 0.56
1 25 12.53 1.21
2 28 14.42 2.11
3 8 17.48 2.63
4 5 21.81 3.16

Spearman’s rank correlation coeffieient r = 0.74
Significant level p < 0.01

95% confidence interval (0.61, 0.83)
Total valid eyes 71

(r) between the ONH volume and the mean pRNFL, pTR (based on our 3D seg-

mentation algorithm in Section 4.3), and pRNFL (using the Zeiss Cirrus algorithm)

thickness were 0.98, 0.93, and 0.95 (for all of them, p < 0.01), respectively (Fig. 7.5).

The computed Pearson’s correlation coefficients (r) between Zeiss pRNFL and our

algorithm’s mean pRNFL and pTR thickness measurements were 0.90 (p < 0.01) and

0.96 (p < 0.01), respectively (Fig. 7.5).

7.2.5 Conclusions

Intuitively, volumetric estimation is a straightforward approach for measuring

papilledema, because papilledema manifests as swelling of the peripapillary retina

and optic nerve. Since the volumetric measurement is based on a 3D approach,

more image information is available in voxel format compared to the pixel format

of a 2D thickness measurement (such as the transnational peripapillary RNFL and

TR thickness measurements). Also, the measurement of 3D ONH volume would be

expected to be more resistant to local artifacts or to isolated algorithm perturbations

affected by a low signal to noise ratio in areas of the OCT scan. In summary, the

total ONH volume rendered from 3D OCT scans appears to provide an excellent
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Figure 7.5: Measurement correlations between the total ONH volume and pRNFL
and pTR thicknesses in 55 eyes from the subsequent analysis dataset. (a) Compares
Zeiss’ pRNFL and our pRNFL and pTR thicknesses with the total ONH volumetric
measurement. (b) Compares the relationship between our algorithm’s pRNFL and
pTR thicknesses with Zeiss’ pRNFL thickness.
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continuous scale measurement of optic disc edema and changes over time. More

thorough discussions and details can be found in [7].

7.3 Automated 3D Region-Based Volumetric
Estimation of Optic Disc Swelling in

Papilledema Using SD-OCT

In the previous section, a high correlation between the ONH volume and Frisén

grade (r = 0.74) shows that the global volumetric measurement can be a potentially

good option to assess the severity of papilledema. However, the region-based vol-

umetric measurements were not addressed in the previous discussion. Because the

regional features are often helpful in the expert-determination of Frisén scale grades

from fundus photographs and considering the recent automated fundus-based anal-

yses [5], these features can be expected to contribute in an OCT-based papilledema

severity prediction system as well. Therefore, in this work, a machine-learning ap-

proach is proposed to use a fuzzy k-nearest-neighbor (k-NN) classifier to predict

the Frisén grade for each input SD-OCT volumetric scan using the retinal features

including not only the ONH volume, mean pRNFL and pTR thicknesses (as were

discussed in the previous section) but also the newly added region-based volumetric

measurements (i.e., the nasal, superior, temporal, and inferior volumes). The final

selected features are decided by sequential forward feature selection and tested using

a leave-one-subject-out cross validation method.

7.3.1 Automated Retinal Layer Segmentation and
Swollen Region Segmentation

All the input SD-OCT volumetric scans are segmented using the 3D graph-search

that was discussed in Section 4.3, where the ILM, bottom surface of the RNFL and

the RPE complex are the target surfaces. After the layer segmentation, the RPE

en-face image is generated [Fig. 7.6 (a)] by averaging voxel intensities for each A-scan

in the RPE layer. Fig. 7.6 (a, b) shows 2D and 3D visualizations, respectively. Next,
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Figure 7.6: Steps of region-based volumetric estimation. (a) A RPE en-face image.
(b) 3D visualization. (c) Segmentation of the swollen region. (d) A 3D color map
of the region-based divisions, including the nasal (red), superior (yellow), temporal
(blue), and inferior (green) areas.

a 2D graph-search algorithm [66] is used to segment the swollen region in the en-face

image [i.e., the dark region inside the red circle in Fig. 7.6 (c)].

7.3.2 Computations of 3D Global, 2D Regional, and
3D Regional Retinal Features

Using the retinal layer segmentation results (and flipping the image into a right-eye

orientation when necessary), the ONH volume is considered as a 3D global feature,

which is defined as the volume between the ILM and the lower bounding of RPE

(Section 7.2.2). For the 2D regional features, the mean peripapillary RNFL (pRNFL)

and TR (pTR) thicknesses are calculated around a circular scan with a radius of 1.73

mm, which matched the same setting as Zeiss commercial machines (Section 7.2.1).

Finally, the nasal, superior, temporal, and inferior regions within the swollen area
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[i.e., the dark region inside the red circle, Fig. 7.6 (c)] are considered as 3D regional

features. In particular, as illustrated in the red region in Fig. 7.6 (d), the nasal

volume is defined as the TR volume within the nasal quadrant (315◦ to 45◦ using the

geometric centroid of the swollen region). The volumes of the superior, temporal, and

inferior regions are the quadrants of the total swelling regions between 45◦ to 135◦,

135◦ to 225◦, and 225◦ to 315◦ [i.e. the yellow, blue, green quadrants in Fig. 7.6 (d),

respectively].

7.3.3 Classification of Frisén Scale Grade

A fuzzy k-nearest-neighbor (k-NN) algorithm was used to predict the Frisén scale

grade associated with multiple SD-OCT features (i.e., the ONH volume, the mean

pRNFL and pTR thicknesses, as well as the mean volumes of the nasal, superior, tem-

poral, and inferior regions) and tested by a cross-validation, which means repeatedly

excluding all the scans from one patient and then using the information of the other

patients to predict the Frisén scales of the previously excluded scans. Further, the

sequential forward searching algorithm is adopted to obtain the best possible combi-

nation of these features. The accuracy of prediction as well as the mean Frisén grade

difference (MGD) of different feature combinations were computed, where MGD was

defined as the absolute Frisén scale difference between the k-NN classifier’s output and

the agreement of three independent neuro-ophthalmologists. Thus, an MGD of zero

would correspond to a perfect classification result. The k-NN algorithm was imple-

mented using a C++ library for approximate nearest neighbor (ANN) searching [80].

Because only seven features were considered in this study (which means the compu-

tational time is relatively short), the error bound of the maximum approximation in

the ANN library is set to zero in our implementation.
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Table 7.2: The mean ONH volume (3D global feature), pRNFL and pTR thickness
(2D regional features), and regional volumes (3D regional features) of the input 70
SD-OCT ONH scans for each Frisén scale grade in papilledema.

Frisén Scale Grade 0 1 2 3 4

# of Eyes 5 25 28 7 5

ONH 11.18 12.32 14.30 16.53 21.45
Volume [0.26] [0.24] [0.40] [0.58] [1.36] (mm3)

pRNFL 84.08 113.00 185.19 270.49 464.54
Thickness [9.50] [5.35] [14.95] [34.47] [74.10] (µm)

pTR 309.31 341.48 418.56 525.68 805.72
Thickness [12.96] [9.21] [19.02] [39.62] [80.68] (µm)

Nasal 0.22 0.38 0.84 1.20 1.61
Volume [0.03] [0.03] [0.08] [0.13] [0.26] (mm3)

Superior 0.24 0.49 1.10 1.42 1.90
Volume [0.05] [0.05] [0.10] [0.13] [0.25] (mm3)

Temporal 0.15 0.25 0.63 0.92 1.40
Volume [0.04] [0.02] [0.06] [0.11] [0.23] (mm3)

Inferior 0.26 0.52 1.13 1.48 1.91
Volume [0.05] [0.05] [0.10] [0.14] [0.24] (mm3)

Note: [*] represents the standard error of the mean.

7.3.4 Experimental Methods and Results

Seventy ONH-centered SD-OCT volumetric scans (Carl Zeiss Meditec, Inc., Dublin

CA) from 22 papilledema patients with multiple visits were obtained from The Uni-

versity of Iowa. Each scan had dimensions of 200×200×1024 voxels that covered a

volume 6×6×2 mm3.

All of the corresponding fundus photographs were graded by three independent

neuro-ophthalmologists from The University of Iowa, and the majority outcome,

which was decided by the winner-take-all rule, was adopted when the original three

judgments were not consistent. Within these 70 ONH scans, there were 5, 25, 28, 7,

and 5 scans with Frisén grade of 0, 1, 2, 3, and 4, respectively. (Note: there were no

scans with Frisén grade 5 in this work.)
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The ONH volume was the only 3D global feature, and the mean (± standard

error) results from grades 0 to 4 were 11.18 (± 0.26), 12.32 (± 0.24), 14.30 (± 0.40),

16.53 (± 0.58), and 21.45 (± 1.36) mm3, respectively. For the 2D regional features

(i.e., the pRNFL and pTR thicknesses) and the 3D regional features (i.e., the mean

volumes of the nasal, superior, temporal, and inferior regions), organized results are

shown in Table 7.2 and Fig. 7.7.

The Spearman rank correlation coefficients between the Frisén scale grade and the

ONH volume, the mean pRNFL and pTR thicknesses, and the regional volumes of

nasal, superior, temporal and inferior areas are shown in Table 7.3. Fig. 7.8 represents

the mean thickness maps between ILM and RPE of each Frisén scale grade.

Using the k-NN classifier with k-value of 15, the best set of multi-feature selections

is the combination of the TR thickness and the mean temporal volume, where the

mean Frisén grade difference (MGD) was 0.386 and the accuracy of prediction was

64.29%. If only considering the 3-D global feature, the MGD and accuracy was just
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Table 7.3: Spearman Rank Correlations between Frisén Scale Grade and 2D/3D
Features.

3D Global 2D Regional 3D Regional
Feature ONH pRNFL pTR Nasal Superior Temporal Inferior

Spearman
0.737 0.739 0.673 0.752 0.747 0.770 0.758

Correlation
all p-values < 0.001
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Figure 7.8: Mean thickness maps between the ILM and RPE in papilledema from
Frisén scale grade 0 (a) to 4 (e), where labels ‘N’, ‘S’, ‘T’ and ‘I’ represent ‘Nasal’,
‘Superior’, ‘Temporal’ and ‘Inferior’, respectively.

0.629 and 41.43%, respectively. Fig. 7.9 is a performance-related comparison among

features, where the dark purple represents the best feature combination (i.e. the mean

pTR thickness and the temporal volume).

7.3.5 Conclusions

Although the Frisén scale grading system has been a popular and standard assess-

ment for papilledema, the high subjectivity, low reproducibility, and the requirement

of specific expertise are still unavoidable. The recent introduction of SD-OCT gives

a great alternative for ophthalmologists to analyze 3D volumetric information of pa-

pilledema. Although the preliminary results have been recently presented showing

high correlation between total retinal (TR) volume in SD-OCT and Frisén scale grades

(Section 7.2, [7]), the work in this section reflects the first time that region-based met-
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rics are examined for assessing papilledema. The changing of the “flipped C-shape”

at the optic disc in Fig. 7.8 is strong evidence demonstrating that regional features

play a very important role in differentiating the different grades of papilledema. Also,

the region-based volumetric estimation had a higher Spearman rank correlation than

the results from using the ONH volumetric estimation alone.

In addition, this is the first study for the Frisén scale grades that are predicted

using a fuzzy k-NN classifier with the combination of global as well as regional features

from the automated SD-OCT layer segmentations. Using sequential forward searching

algorithm found the best multiple-feature set, which was the combination of the mean

pTR thickness and the mean temporal volume. With the leave-one-subject-out cross

validation, the fuzzy k-NN classifier with the best multiple-feature set reduced the

mean Frisén grade difference down to 0.386 with the accuracy 64.29%. This was a

significant improvement compared to only considering the ONH volume to predict

Frisén scale grade which had an MGD of 0.629 and accuracy of 41.43%. In future

work, it will be important to perform similar experiments on a larger dataset of

subjects as this dataset is biased to contain a high proportion of Frisén scale grades

1 and 2. Thus, the selected features may be correspondingly biased to perform best

on those grades. Nevertheless, at minimum, this work demonstrates the importance

of considering region-based features in further studies.

7.4 Continuous-Scale Papilledema Severity
Score Estimation

Since only a small dataset (including 22 papilledema subjects from the Univer-

sity of Iowa) was used in the previous section, the much larger dataset from the

IIHTT OCT sub-study (including 126 papilledema subjects due to idiopathic intracr-

nial hypertension (IIH) [11, 12, 18, 19, 68]) is used in this work to test the proposed

idea of using a machine-learning technique to mimic experts’ decisions of assessing

papilledema severity. In addition to increasing the size of the input dataset, a few
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modifications have also been added to this section. First, instead of using a fuzzy

k-NN classifier, random forest classifiers are utilized to internally select the best input

feature combination to achieve better prediction results. Second, the definitions of the

region-based volumetric OCT features are slightly adjusted to better fit clinical mean-

ing. Third, the peripapillary retinal pigment epithelium and/or Bruch’s membrane

(pRPE/BM) 2D and 3D shape measures are added to the learning system. Although

it has been known that the pRPE/BM shape change may reflect the intrcacranial

pressure change [13, 14], there is still no study that has addressed the comparisons

between the pRPE/BM shape measure and Frisén grade.

7.4.1 Classification of Frisén Scale Grades

In IIHTT, Frisén grades (scale 0: normal; scale 5: severe) of papilledema are

determined 1) by neuro-ophthalmologists in the photographic reading center (PRC)

based on digital photographs evaluation, and 2) by the principal investigators at

each site during the clinical examination (CE). In this study, the CE Frisén grade is

considered as the reference standard, because we believe that the site investigators

may have more available information than the clinicians in the reading center, who

only have the assess to the fundus images.

7.4.2 Retinal Features Using Optical Coherence
Tomography

Ten OCT features are used as the inputs of the machine learning system. The first

three are the total ONH volume as well as peripapillary RNFL and TR thicknesses,

which can be computed using the methods described in Section 7.2. Next, four region-

based volumetric features are computed. The region boundary has been changed from

using the detected swollen region (Section 7.3) to directly using the peripapillary

circle (radius = 1.73 mm). As illustrated as the red region in Fig. 7.10, the nasal

volume is defined as the ONH volume within the nasal quadrant (315◦ to 45◦ using



109

(a) (b) (c)

Figure 7.10: Region-based volumetric features. (a) Original RPE en-face image.
(b) Region-based volumetric features in the swollen region, which is defined in Sec-
tion 7.3.2. (c) Region-based volumetric features in the peripapillary region, where
the radius is 1.73 mm.

the geometric centroid of the swollen region). The volumes of the superior, temporal,

inferior regions are the quadrants of the total swelling regions between 45◦ to 135◦,

135◦ to 225◦, 225◦ to 315◦ [i.e. the yellow, blue, green quadrants in Fig. 7.10 (b, c),

respectively]. The eighth feature is the volumetric summation of these four quadrants,

called the peripapillary region volume. The last two features are the pRPE/BM 2D

and 3D shape measures, which can be computed using the same methods as we

discussed in Section 6.2 and 6.3, respectively.

7.4.3 Estimation and Validation of Papilledema
Severity Score

Random forest classifiers are used to estimate the papilledema severity score (PSS)

with the OCT input features that were discussed in the previous section: the to-

tal ONH volume, the peripapillary RNFL and TRT thicknesses, the volumes of the

nasal, superior, temporal and inferior regions, the total peripapillary volume, and the

pRPE/BM 2D as well as 3D shape measures. The random forest algorithm is imple-

mented using R language with the classification and regression training (i.e., CARET)

package [81]. The cross-validation method is implemented with the CARET package

to automatically decide the best number of variables randomly sampled as candidates
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at each split in these trees considering the lowest out-of-bag (OOB) error [81]. For

the purpose of the severity score validation, the root-mean-square deviation (RMSD)

and consistency rate between the predicted papilledema severity score and both PRC

and CE Frisén grades are computed. Here, the RMSD is defined as the square root

of the mean square residuals between the regression outputs of the random forest

algorithm and the corresponding Frisén grades, and the consistency rate is defined

as the percentage of the subjects whose rounded predicted PSS is the same as the

corresponding Frisén grade.

7.4.4 Experimental Methods and Results

One-hundred and twenty-six papilledema subjects (due to idiopathic intracranial

hypertension), right eyes at baseline, from the IIHTT dataset were initially included

in this study. To compare the Frisén grades with the OCT features, eleven subjects

were excluded because their OCT features were not available due to either missing

images or bad image quality. Therefore, there were 115 right eyes included with their

photographic reading center (PRC) and clinical examination (CE) Frisén grades and

all of the ten OCT features. Next, these 115 right eyes were randomly split into a

training set (80 eyes) and a testing set (35 eyes). In the training set, the counts for

the CE (PRC) Frisén grade 0 to 5 were 1 (0), 18 (10), 23 (31), 23 (23), 11 (12), and 4

(4), respectively. The root-mean-square deviation (RMSD) between these two Frisén

grades was 0.82, and the consistency rate was 0.48. Next, a regression model was

trained by a random forest algorithm with 1000 randomly generated decision trees

using the OCT features from the training set. The implementation was achieved

using the CARET package in R language. The random forest classifiers considered

the CE Frisén grade as the reference standard and utilized ten-fold cross-validation

to decide the best amount of the variables to split on each node in these decision trees

with the lowest out-of-bag (OOB) error. Meanwhile, the importance of each feature

was computed and is shown in Fig. 7.11.
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Figure 7.11: A bar chart of the feature importance from the random forest algorithm
(scale from 0.0 to 100.0), where “TotalVolume” represents the total ONH volume,
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of the peripapillary region, “RNFL” and “TRT” separately represents the peripapil-
lary RNFL and TR thicknesses, and “pBM Shape 2D” as well as “pBM Shape 3D”
represents the pRPE/BM 2D as well as 3D shape measure, respectively.
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Table 7.4: The comparisons among the photographic reading center Frisén grades
(PRCG), clinical examination Frisén grades (CEG), and papilledema severity score
(PSS) in both training and testing sets.

PRCG vs. CEG PSS vs. CEG

Training Set RMSDa 0.82 X
(80 Eyes) Consistency Rate 0.48 X

Testing Set RMSD 0.97 0.70
(35 Eyes) Consistency Rate 0.31 0.49b

a Root-mean-square deviation
b PSS is rounded-off before the computation

On the other hand, in the testing set (35 eyes), the counts for the CE (PRC)

Frisén grades from 0 to 5 were 1 (0), 5 (5), 12 (10), 11 (10), 6 (10), and 0 (0), respec-

tively. The RMSD between these two Frisén grades was 0.97, and the consistency

rate was 0.31. Fig. 7.12 (a, b) shows the confusion matrices of the training and test-

ing dataset, respectively; note that there was no grade 5 in the testing set. After

applying the testing set to the trained random forest model, the regression results,

called papilledema severity scores (PSS), were computed. The RMSD between the

PSS and clinical examination (CE) Frisén grades in the testing set was 0.70, which is

significantly smaller than the RMSD between the PRC and CE Frisén grades in the

testing set (p < 0.05). Fig. 7.13 (a) shows the histogram of the predicted PSS with a

bin width of 0.5; Fig. 7.13 (b) shows the confusion matrix of the rounded PSS and CE

Frisén grades, where the consistency rate was 0.49. Table 7.4 shows the comparisons

among the PRC Frisén grade, CE Frisén grade and PSS in both training and testing

sets.

In addition, considering both of the training and testing sets (i.e., 80 + 35 eyes),

the Spearman rank correlations between the CE Frisén grade and the 10 OCT features

were also calculated (Fig. 7.14).
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Figure 7.12: Confusion matrix between the photographic reading center (PRC) and
clinical examination (CE) Frisén grades in (a) the training set of 80 eyes, where the
RMSD was 0.82 as well as consistency rate was 0.48, and (b) the testing set of 35
eyes, where the RMSD was 0.97 as well as consistency rate was 0.31. Note: there is
no grade 5 in the testing set.
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Figure 7.13: Predicted papilledema severity scores (PSS) in the testing set of 35 eyes.
(a) The histogram of the PSS with the bin width of 0.5. (b) The confusion matrix
between the rounded PSS and CE Frisén grade, where the consistency rate was 0.49.
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Figure 7.14: A bar chart of the Spearman rank correlation coefficients between the
CE Frisén grade and the OCT features, where “TotalVolume” represents the total
ONH volume, “Nasal”, “Superior”, “Temporal” and “Inferior” represents the four
individual 90◦ quadrant volumes of the peripapillary region, “pRegion” represent
the total volume of the peripapillary region, “RNFL” and “TRT” separately repre-
sents the peripapillary RNFL and TR thicknesses, and “pBM Shape 2D” as well as
“pBM Shape 3D” represents the pRPE/BM 2D as well as 3D shape measure, respec-
tively.
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7.4.5 Conclusions

Fig. 7.14 demonstrates that the total ONH volume, the peripapillary RNFL and

TR thicknesses, and the region-based volumetric measurements are strongly corre-

lated to the Frisén grades in the IIHTT dataset, which is consistent with the con-

clusions from previous studies [7, 68, 72]. It is also not surprising to see that the

pRPE/BM 2D and 3D shape measures have very limited correlations with the Frisén

grades, since these pRPE/BM shape measures mostly represent the papilledema sever-

ity from the perspective of the changes in intracranial pressure [13, 14, 76]. (On the

other hand, the Frisén grades are determined by the visible features of the peripap-

illary retina and the optic disc from the fundus photographs or direct funduscopic

observation.) In addition, comparing Fig. 7.11 with Fig. 7.14, we find the feature im-

portance from the random forest framework has a very similar patten to the Spearman

rank correlations between the CE Frisén grade (i.e., the reference standard) and the

OCT features. This adds to the explanation for why the pRPE/BM shape measures

do not help the machine-learning algorithm to determine the Frisén grades.

In fact, although the data here has shown that the pRPE/BM shape measures do

not directly contribute to the prediction of a Frisén-scale-based papilledema severity

score, the pRPE/BM shape measures practically support evidence to help distin-

guish the causes of optic disc edema, such as pseudo-papilledema, ischemic optic

neuropathy, and meningiomas of the optical nerve sheath [14,15]. Since papilledema

is defined by optic disc swelling due to elevated intracranial pressure, the pRPE/BM

shape measures can be extremely helpful for the proposed machine-learning system to

distinguish papilledema from the other types of optic disc swelling with an appropriate

reference standard.

Based on Fig. 7.12, it is noticeable that the CE and PRC Frisén grades are not

generally consistent (the consistency rate in training and testing sets are only 0.48

and 0.31, respectively). This is in agreement with the other studies showing that
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the Frisén grading system has the limitation of high intra-observer variability [4–

7]. Therefore, developing a more robust system to consistently evaluate papilledema

is truly beneficial for the clinical needs. With a robust OCT layer-segmentation

algorithms, the OCT features can be computed automatically and quantitatively.

Then, the proposed machine-learning framework can be directly applied to these

OCT measurements to output a severity score. Our data shows that the proposed

papilledema severity score (PSS) was significantly closer to the reference standard

than the Frisén grades that were determined by the photographic reading center.

Because the expertise of accurately determining the severity of papilledema is unique,

this machine-learning system can be potentially useful for helping clinicians who are

under training to practice their judgments. Or, for some other situations, such as

circumstances in which qualified clinicians are not immediately available (for example,

emergency departments), technicians trained in operating OCT devices may use this

proposed system to obtain a preliminary assessment without invasive exams. The

proposed PSS system can be potentially useful in multiple clinical scenarios.
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CHAPTER 8
CONCLUSIONS

Due to the low requirements of the imaging technique, the Frisén grade system

has been a standard measurement of papilledema since its introduction in 1982. Be-

cause the Frisén grades are determined by experts qualitatively examining the visual

features of the peripapillary retina and the optic disc from the fundus photographs or

direct funduscopic observation, this grading system has inherent limitations (such as

high intra- and inter-observer variability, need of specific expertise, tedious processing

steps, and the ordinal nature of the scale), resulting in low reproducibility. Spectral-

domain optical coherence tomography (SD-OCT), on the other hand, is a relatively

new imaging technique and has an entirely different perspective of assessing the reti-

nal tissue. SD-OCT has the ability to enable cross-sectional information of the retina

to be acquired without invasive procedures; this type of advantage makes the OCT

technique very popular in the fields of ophthalmology and neuro-ophthalmology.

To obtain accurate retinal measurements using the OCT images, the accuracy

of the retinal layer segmentation plays an important role. Although most of the

commercial OCT devices support automated retinal layer segmentation with regular

measurements (such as the peripapillary RNFL and TR thicknesses), there is still

no particular commercial device that has the ability to reliably perform the layer

segmentation in severely swollen optic discs. Therefore, in Chapter 4, details were

discussed about developing robust retinal layer segmentation algorithms for optic

disc swelling in an automated fashion. These proposed algorithms work for both

high-definition five-line raster (HD-5LR) and regular volumetric protocols. Based on

accurate segmentation results, OCT parameters (such as the peripapillary RNFL and

TR thicknesses, the volumes of the total ONH as well as peripapillary region, and

the volumes of the peripapillary nasal, superior, temporal, and inferior quadrants)

are also reliable. For example, in the Idiopathic Intracranial Hypertension Treatment
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Trial (IIHTT) OCT sub-study baseline dataset, including 126 subjects, the proposed

layer segmentation algorithms have been demonstrated to be less prone to failure

in segmenting retinal layers under swollen optic discs compared to the accompanied

algorithms of the commercial SD-OCT devices [11]. Chapter 4 provides a solid foun-

dation to compute the OCT measurements in this doctoral work.

In addition to the volumetric and thickness measurements, multiple studies have

also shown that the peripapillary retinal pigment epithelium and/or Bruch’s mem-

brane (pRPE/BM) deformation may reflect a change in intracranial pressure. There-

fore, quantifying the pRPE/BM shape variation becomes another currently widespread

topic in the field of investigating papilledema. To correctly evaluate the pRPE/BM

shape, the accurate location of the pRPE/BM opening needs to be segmented before-

hand. Chapter 5 thoroughly addressed this topic, from the difficulties of segment-

ing the pRPE/BM opening under severely swollen retinal tissue in SD-OCT images,

to further providing semi- and fully automated methods to perform the pRPE/BM

profile segmentation in the SD-OCT RPE en-face image domain. Then, Chapter 6

extended the obtained BMO contour and automatically placed landmarks, for the

purpose of generating 2D and 3D pRPE/BM shape models. The traditional method

(which is completely manual) of generating the pRPE/BM shape model was limited

by its tediousness so that it was applicable only in 2D and for relatively small datasets.

Chapter 5 and Chapter 6 improved the traditional method by automating it and suc-

cessfully applied the computed 2D and 3D pRPE/BM shape measures for a large-scale

dataset (i.e., IIHTT dataset). Having these two chapters is important, because this is

the first study of automating the processes of generating statistical-shape models of

the retinal layer, especially the methods working for both swollen and normal optic

discs. However, since the optic disc swelling does not immediately subside when the

intracranial pressure dramatically decreases (e.g. after shunt, lumbar puncture, or

other aggressive procedures), the pRPE/BM shape measures may temporarily show
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inconsistency with the other OCT volumetric or thickness measurements to reflect

the papilledema severity. Generally speaking, the optic disc swelling may lag over the

ensuring days to weeks [15].

Potential future work using the pRPE/BM shape models is to develop a system

to use the pRPE/BM shape measures to be an alternative to reflect the true cere-

brospinal fluid (CSF) pressure, so patients could reduce the need of receiving lumbar

punctures. Also, because the pRPE/BM shape change reflects the change in the in-

tracranial pressure, it is beneficial to use these shape measures to test if the optic disc

swelling is papilledema. Since the Bruch’s membrane opening is often obscure under

a severely swollen inner retina in the OCT images, the true location may come clearer

when the swelling subsides over time. Therefore, another potential extension of the

pRPE/BM segmentation and shape models is to use the latter results in the longitu-

dinal dataset to cross-validate the baseline results. In addition, using the results from

the previous couple visits may be helpful in predicting papilledema development or

treatment progress. Another application is to extend this methodology to model dif-

ferent retinal layers and/or the layer combinations for the purposes of classifying the

types of optic disc swelling. The shapes of optic disc swelling may show dissimilarly

at different retinal layers from various etiologic and pathogenetic mechanisms.

Due to the low reproducibility of Frisén grading system, neuro-ophthalmologists

have been researching alternative methods on a continuous scale to present the pa-

pilledema severity more objectively. SD-OCT is relatively new and capable of quan-

tifying retinal structure. Not surprisingly, researchers have started to investigate the

possibility of using SD-OCT measurements as features to develop a quantitative sys-

tem to replace the current qualitative method. Chapter 7, first, demonstrated that

the total ONH volumes are strongly correlated with Frisén grades to show the poten-

tial usage of this 3D SD-OCT feature as new option to assess papilledema. This step is

important, because the 2D thickness measurements (i.e., the peripapillary RNFL and



120

TR thicknesses) become less reliable when the optic disc swelling is severe [12]. Then,

the SD-OCT volumetric region-based features were tested in a machine-learning sys-

tem in a small dataset to indicate that using multiple SD-OCT features together may

increase the accuracy of mimicking experts’ decisions of assessing papilledema from

fundus images. By observing Fig. 7.8, the inverse “C-shape” swelling clearly shows

papilledema development by region in order of severity. Finally, a random forest al-

gorithm was utilized to consider all the available SD-OCT features to compute the

papilledema severity score (PSS) to objectively reflect the degree of the optic disc

swelling due to raised intracranial pressure. So far, this machine-learning system was

trained by utilizing Frisén grades as the reference standard. Since the Frisén grades

and SD-OCT features may reflect different pathophysiological aspects of papilledema,

the proposed machine-learning framework also keeps the flexibility of switching the

learning targets as well as adding/removing extra features. For example, it is pos-

sible to switch the current reference standard to the experts’ severity rankings. By

doing so, the scales of the original Frisén grading system can be dramatically ex-

tended. Also, a recent study showed that multiple types and patterns of folds in

papilledema, which express stress and strain, appear to be a function of two separate

but interrelated biomechanical drivers: volumetric expansion of the optic nerve head

and anterior deformation of the pRPE/BM [82]. Therefore, a possible extension of

this system is to quantify these retinal folds and then use them as new features. Also,

as we discussed in the previous section, measures of different retinal layers can be

potentially good features as well. Considering all these new and proposed features

together, the generalization of the proposed PSS system can be improved.

To summarize, this doctoral work develops a machine-learning system using 2D/3D

SD-OCT images to evaluate papilledema severity based on global and regional fea-

tures, including volumes and thicknesses, as well as shape measures. It is expected

to be a more robust system than the traditional qualitative method (i.e., the Frisén
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grading system). The current limitation of this work is that the Frisén grades are

still the reference standard for the proposed system, so the learning system may be

biased by the high variability in the ground truth. However, the advantage of this

doctoral work is that the proposed machine-learning framework is flexible, so the

input features and learning targets can be straightforwardly adjusted without much

modification to fit new applications. Future works may include increasing the gener-

alization of the proposed PSS system and switching to different reference standards

for the machine-learning system to distinguish the types of the optic disc edema.
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