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ABSTRACT

Glaucoma is the second leading cause of blindness worldwide. The clinical stan-

dard for monitoring the functional deficits in the retina that are caused by glaucoma

is the visual field test. In addition to monitoring the functional loss, evaluating

disease-related structural changes in the human retina also helps with diagnosis and

management of this progressive disease. The characteristic changes of retinal struc-

tures such as the optic nerve head (ONH) are monitored utilizing imaging modalities

such as color (stereo) fundus photography and, more recently, spectral-domain optical

coherence tomography (SD-OCT). With the inherent subjectivity and time required

for manually segmenting retinal structures, there has been a great interest in auto-

mated approaches. Since both fundus and SD-OCT images are often acquired for

the assessment of glaucoma, automated segmentation approaches can benefit from

combining multimodal complementary information from both sources.

The goal of the current work is to automatically segment the retinal structures

and extract the proper parameters of the optic nerve head related to the diagnosis

and management of glaucoma. The structural parameters include the cup-to-disc

ratio (CDR) which is a 2D parameter and is obtainable from both fundus and SD-

OCT modalities. Bruch’s membrane opening-minimum rim width (BMO-MRW) is

a recently introduced 3D structural parameter that is obtainable from the SD-OCT

modality only. We propose to use the complementary information from both fundus

and SD-OCT modalities in order to enhance the segmentation of structures of interest.

In order to enable combining information from different modalities, a feature-based

registration method is proposed for aligning the fundus and OCT images. In addition,

our goal is to incorporate the machine-learning techniques into the graph-theoretic

approach that is used for segmenting the structures of interest.

Thus, the major contributions of this work include: 1) use of complementary in-

formation from SD-OCT and fundus images for segmenting the optic disc and cup

boundaries in both modalities, 2) identifying the extent that accounting for the pres-
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ence of externally oblique border tissue and retinal vessels in rim-width-based param-

eters affects structure-structure correlations, 3) designing a feature-based registration

approach for registering multimodal images of the retina, and 4) developing a mul-

timodal graph-based approach to segment the optic nerve head (ONH) structures

such as internal limiting membrane (ILM) surface and Bruch’s membrane surface’s

opening.
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PUBLIC ABSTRACT

Glaucoma is one of the major leading causes of blindness worldwide. In addition

to functional deficits, monitoring and evaluating disease-related structural changes

in the human retina also helps with diagnosis and management of this progressive

disease. Color (stereo) fundus photography and, more recently, spectral-domain op-

tical coherence tomography (SD-OCT), are two types of imaging modalities that are

currently utilized for monitoring the characteristic changes of retinal structures such

as the optic nerve head (ONH).

With the inherent subjectivity and time required for manually segmenting retinal

structures, there has been a great interest in automated approaches. The goal of

the current work is to automatically segment the retinal structures and extract the

proper parameters of the optic nerve head related to the diagnosis and management

of glaucoma. The structural parameters include: 1) cup-to-disc ratio (CDR) which

is a 2D parameter and is obtainable from both fundus and SD-OCT modalities, and

2) Bruch’s membrane opening-minimum rim width (BMO-MRW) which is a recently

introduced 3D structural parameter that is obtainable from the SD-OCT modality

only. Since both fundus and SD-OCT images are often acquired for the assessment of

glaucoma, we propose to use the complementary information from both fundus and

SD-OCT modalities in order to enhance the segmentation of structures of interest

using machine-learning graph-theoretic based approaches.
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CHAPTER 1
INTRODUCTION

The two types of modalities that are used in this project include color fundus pho-

tographs (Fig. 1.1a) and spectral domain-optical coherence tomography (SD-OCT)

(Fig.1.1b). The color fundus photographs are 2D images capturing the projective

appearance of the back of the eye. In contrast, optical coherence tomography, which

is also a noninvasive modality, is capable of 3D imaging of different retinal structures

that contain high-resolution (micrometers) and cross-sectional views. OCT was first

introduced by Huang et al. [1] and it has contributed significantly in the diagnosis

and quantitative assessment of ocular diseases. There are two types of OCT: time-

domain-OCT (TD-OCT) and spectral-domain-OCT. TD-OCT is the first generation

of OCT which was commercially available since 2003. TD-OCT can acquire up to

six cross-sectional scans in a single acquisition which makes TD-OCT primarily a 2D

imaging technique. The SD-OCT modality, has been commercially available since

2007, has provided truly volumetric imaging of the retinal structures.

The manual segmentation of the retinal structures from SD-OCT images is a

very time-consuming task due to the size of 3D volumes. Furthermore, experts do

not always agree on the manual delineation of the structure of interest. Hence, fast

and reliable automated approaches with high reproducibility is the solution to these

Fovea

Optic disc

(a) (b)

Figure 1.1: (a) Retina as seen through an ophthalmoscope. (b) The regions scanned
in macula-centered (the blue cube) and ONH-centered (the green cube) OCT images.



issues. The automated segmentation, however, is not a trivial task as there are several

issues that are needed to be handled properly. There are motion related artifacts and

acquisition errors as well as speckle noise which are related to imaging procedure.

Moreover, having lower contrast due to the presence of disease or vessel shadows

causes the segmentation of structure of interest to be more challenging. As mentioned

before, the volumes have relatively large sizes; for instance, Carl Zeiss Meditec Inc.

is one of the imaging companies that produces the Cirrus SD-OCT machines which

obtain images of size 200×200×1024 voxels from a 6mm×6mm×2mm region. The

other issue that needs to be addressed is the structural variation which is the inherent

characteristics of retinal structure even in normative data. However, the variation

can be substantially larger in the presence of disease. One of the crucially important

benefits of 3D volumes is the 3D spatial contextual information available which can be

a tremendous help in segmenting the structures that are ambiguous in an individual

2D B-scan as they may be better characterized in 3D context.

Glaucoma causes the ganglion cells along with their axons to die, resulting in thin-

ning of the nerve fiber bundle layer and loss of the neuroretinal rim tissue. Physicians

used to diagnose and assess the progression of glaucoma using the visual field test

and by looking at the 2D fundus photographs. However, with the SD-OCT modality

being commercially available, the opportunity of better understanding the glaucoma

disease and studying how structures change due to the disease has been provided.

For example, the standardly used cup-to-disc ratio is proposed to be replaced by the

new 3D structural parameter called Bruch’s membrane opening-minimum rim width

(BMO-MRW) [2–6]. The reason is that the optic disc margin tended to be identified

from the fundus photographs, however, by looking at the SD-OCT scans it was found

that the clinically visible disc margin does not always overlap with the innermost edge

of Bruch’s membrane visible in SD-OCT. In this work, in addition to providing bet-

ter approaches for segmentation of traditional structures such as the projected optic
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disc and cup, we will focus on the challenges of computing the new retinal structure

automatically.

With the inherent subjectivity and time required for experts to segment the optic

disc and cup, there has been great interest in automated approaches. Most prior

optic disc and cup segmentation approaches have focused on segmenting color fundus

images alone [7–15], with few approaches having been presented for the segmenta-

tion within SD-OCT volumes alone [16–18]. More specifically, the prior fundus-only

approaches for segmenting the disc and cup include pixel-based classification meth-

ods [7,8], model-based approaches [9–12], and graph-based approaches [13–15]. Initial

SD-OCT-only approaches include the work of Lee et al. [16] and Abràmoff et al. [17]

where each A-scan (i.e., projected pixel location) was classified as cup, rim, or back-

ground from SD-OCT features within the A-scan. While the final approach was

an SD-OCT-only approach, the pixel-classification-approach was trained and tested

using expert-marked color fundus images. Nevertheless, the accuracy of this classifi-

cation method utilizing SD-OCT-only features was higher than classification methods

using fundus-only features.

More recently, Bruch’s membrane opening-minimum rim width (BMO-MRW),

defined as the minimum Euclidean distance from Bruch’s membrane opening to the

internal limiting membrane (ILM) surface, is introduced which measures the remain-

ing neuroretinal rim tissue [19] and recent studies showed that BMO-MRW is superior

to other structural parameters for diagnosing open-angle glaucoma [20]. Beside the

necessity of identifying BMO points for computing the BMO-MRW, the BM surface

ending points also define the true optic disc boundary. The 3D imaging ability of

SD-OCT machines showed that disc margin (DM) from fundus photographs does not

always coincide with the outer border of rim tissue, however, BMO, also referred to

as the neural canal opening (NCO), is the true outer border of rim tissue (optic disc

boundary) which remains unaltered during the intraocular pressure changes due to
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glaucoma [19–21]. The approaches that attempted to segment the BMO from SD-

OCT volumes, mostly focused on 2D segmentation of BMO points. For instance, the

works in [18] and [22] focused on segmenting the 2D projection of BMO points, while

Fu et al. found the BMO points from a number of individual 2D B-scans and fitted

an ellipse to the points to obtain the complete ring-shape BMO segmentation [23].

The method proposed in [24] was the first step towards obtaining a 3D segmenta-

tion, where the authors presented an automated iterative graph-theoretic approach

for segmenting multiple surfaces with a shared hole.

Besides identifying the BMO points, obtaining an accurate ILM surface segmen-

tation is required in order to be able to compute the recently introduced BMO-MRW

structural parameter. Intraretinal layers are the other important structures of retina

and many attempts have been performed in order to segment the intraretinal layer au-

tomatically. The early works reported on this area were mostly 2D approaches [25–33].

Other approaches include machine-learning based approaches [34–40], 2D graph-based

approaches [41–43], and 3D graph-based approaches [16, 44–46] that have been pro-

posed to automatically segment the intraretinal layers from normative and diseased

data. More specifically, precisely segmenting the ILM surface in optic nerve head

(ONH)-centered OCT volumes, as needed for computing parameters such as the

BMO-MRW of glaucoma patients, can be a challenging task. Since glaucoma pa-

tients typically have deeper cups, in order to be able to follow the rapid changes in

the shape of the ONH, steep slopes must be allowed in the ILM surface. Moreover,

the presence of large retinal blood vessels also makes a precise segmentation of the

ILM at the ONH challenging as the larger blood vessels are capable of altering the

topology of the ILM surface. Current segmentation approaches include blood vessels

and their surrounding gaps (if they exist) as part of the ILM surface.
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1.1 Thesis Aims

In this work, human patients showing varying stages of glaucoma disease are im-

aged using fundus and SD-OCT modalities. The goal is to automatically segment the

retinal structures and extract the proper parameters of the optic nerve head related

to the diagnosis and management of glaucoma. We propose to use the complementary

information from both fundus and SD-OCT modalities in order to enhance the seg-

mentation of structures of interest. In order to be able to combine fundus (color and

stereo photographs) and OCT information, we propose a feature-based registration

method. In addition, our goal is to incorporate the machine-learning techniques into

the graph-theoretic approach that is used for segmenting optic nerve head’s structures.

More specifically, the cost functions that will be used in graph-theoretic approach are

proposed to be designed using machine-learning based methods instead of conven-

tional hand-design methods. Furthermore, the interactions between the neural canal

opening structures (i.e. BMO, ILM, and retinal blood vessels) will be taken into con-

sideration in order to address some of the existing issues for ILM surface segmentation

and BMO identification. In summary my work has three specific aims:

• Aim 1: Use complementary information from SD-OCT volumes and

fundus photographs for segmenting the optic disc and cup boundaries

in both modalities. This aim is completed using a multimodal machine-

learning graph-based approach. The problem is formulated as an optimization

problem and using a graph-theoretic approach the optic disc and cup boundaries

are segmented simultaneously. The in-region and on-boundary cost functions

needed for the graph-theoretic approach are designed using a machine-learning

method that utilized multimodal (fundus+SD-OCT) and unimodal (OCT only)

feature sets.

• Aim 2: Identify the extent that accounting for the presence of Exter-

nally Oblique Border Tissue (EOBT) and retinal vessels in rim-width-
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based parameters affects structure-structure correlations. In this aim

the structure-structure correlation of Retinal Nerve Fiber Layer Thickness (RN-

FLT) with different rim-width-based parameters in presence of EOBT are com-

puted in order to identify the suitable rim-width-based parameter. Additionally,

utilizing the retinal vessels probability map from fundus photographs, the ILM

surface is compensated for the presence of retinal blood vessels and the rim-

width-based parameter is computed again using the corrected ILM surface with

the intention of increasing the structure-structure correlation with RNFLT.

• Aim 3: Develop a multimodal graph-based approach to segment the

optic nerve head (ONH) structures such as Internal Limiting Mem-

brane (ILM) surface, Bruch’s membrane (BM) surface and its open-

ing (BMO) by taking into account the interaction constraints be-

tween the structures and the retinal blood vessels prior. In this aim,

a feature-based registration method is proposed in order to register the fundus

photographs to the SD-OCT projection images. Furthermore, the retinal vessels

prior from fundus photographs is incorporated in a graph-theoretic approach for

segmentation of ONH structures. Since the retinal blood vessels presence af-

fects the appearance of ONH structures, incorporating the blood vessel prior in

a graph-theoretic approach is beneficial. Furthermore, taking into consideration

the interaction between the ONH structures such as BMO and ILM surface can

help set up the interaction constraints for the graph-theoretic approach.

1.2 Thesis Overview

This thesis is organized in eight remaining chapters as follows:

• Chapter 2 provides clinical background and motivation behind this work and

also information regarding the human retinal structures that are automatically

segmented in this research.
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• Chapter 3 explains an overview of the graph-theoretic approach utilized in this

work and summarizes the previous works for automated segmentation of optic

nerve head structures.

• Chapter 4 provides the methods and validation performed for multimodal seg-

mentation of the optic disc and cup from color fundus and SD-OCT modalities.

• Chapter 5 summarizes the results of investigation on computing the rim-width-

based parameters in the presence of externally oblique border tissue (EOBT).

• Chapter 6 explains the methods and validation performed for registering fun-

dus (stereo and color photographs) and SD-OCT images using a feature-based

registration approach.

• Chapter 7 provides information regarding the methods and validation performed

for segmenting the ILM surface from SD-OCT volumes utilizing gradient vector

flow field.

• Chapter 8 includes a machine-learning graph-based approach for 3D segmenta-

tion of BMO from SD-OCT volumes and the validation performed for evaluating

the proposed method.

• Chapter 9 concludes the remarks of this work and provides possible future

directions of the research.
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CHAPTER 2
CLINICAL BACKGROUND

In this chapter a brief explanation about glaucoma and the structural changes

caused due to this disease is provided. The subjects in this work come from glaucoma

studies and our methods will be applied and evaluated on the patients showing varying

stages of glaucoma.

2.1 Glaucoma

Fig. 1.1a is a view of retina from an ophthalmoscope that ophthalmologists use

to look into the eye. According to [47, 48], glaucoma is among the major causes of

blindness worldwide and 1–2% of people in the United States become affected by this

disease. In 2020, approximately 80 million people will be affected by glaucoma due to

the aging population [49]. One of the symptoms of glaucoma is the increased intraoc-

ular pressure (IOP). However, the recent studies have showed that the increased IOP

might not be present in the initial stages of glaucoma. The glaucoma damages mostly

affect the peripheral vision and because of that the patient often does not notice it

until significant damage has occurred. The treatment can prevent permanent vision

loss if the disease is diagnosed in the early stages.

While visual field tests are the clinical standard for monitoring functional deficits,

structural imaging modalities, such as color (stereo) fundus photography and, more

recently, spectral-domain optical coherence tomography (SD-OCT) [50], are also im-

portant to monitor the optic nerve cupping and other structural changes that are

characteristic of this progressive disease. For example, one structural parameter of

interest is the cup-to-disc ratio (CDR), which is defined as the cup area over the

optic disc area. A larger CDR is associated with glaucomatous damage because of

the presence of fewer remaining nerve fiber bundles in the neuroretinal rim (Fig. 2.1).

Structurally, glaucoma causes the thinning of the retinal nerve fiber layer (RNFL)

and the ganglion cell layer (GCL) thicknesses. Correspondingly, Bruch’s membrane



(a) (b) (c)

Figure 2.1: Cupping causes an increase in cup-to-disc ratio (CDR). (a) CDR = 0.15,
(b) CDR = 0.46, (c) CDR = 0.84.

opening-minimum rim width (BMO-MRW) which is measured as the minimum Eu-

clidean distance between the BMO and the ILM surface is smaller in glaucoma pa-

tients due to the loss of neuroretinal rim tissue. Quantitative measurements from

SD-OCT volumes have shown that the RNFL thickness in glaucoma patients is sig-

nificantly thinner in comparison with normative data, which can be used in diagnosing

the disease [29,51–53]. Furthermore, it has been shown that there is a significant cor-

relation between the RNFL thickness (RNFLT) measured along the tracts of fiber

bundle and the neuroretinal rim thickness and the peripapillary RNFLT [54,55].

2.2 Retinal and Optic Nerve Head Structures

The retina is a thin layered structure approximately 250 µm thick [56] and lines

the back of the eye. The circular to oval shape with white structure (as visible from

a fundus photograph) measuring about 2×1.5 mm across in the center of the retina

is the optic disc. The major retinal blood vessels radiates from the optic disc (aka

optic nerve head). The fovea, the center of macula, is a blood vessel-free reddish

spot located in approximately two and half disc diameters away from the optic disc.

The optic disc contains the incoming blood vessels that vasuclarize the neurons and

retinal layers as well as the ganglion cell axons running to the brain. Inside the

retina, the visual input is transformed to electrical signals that are transmitted to
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Figure 2.2: Bruch’s membrane opening (BMO) within an SD-OCT volume. (a) An
SD-OCT B-scan with BMO points marked with two filled circles. RPE = retinal pig-
ment epithelium. (b) 3D view of all BMO points for the entire SD-OCT volume. (c)
SD-OCT projection image. (d) Projected view of BMO points on SD-OCT projection
image.

the visual cortex in the brain via neurons passing through the optic nerve. The

retinal photoreceptors at the back of the retina absorb photons resulting in stimulating

interneurons that relay signals to the retinal ganglion cells. The ganglion cell nerve

fiber axons exit the eye on the way to the brain through the optic nerve head. The

optic nerve head is free of any photosensitive cells resulting in being insensitive to

light and is called the blind spot. Unlike a CCD chip with regularly spaced pixels,

the retinal photoreceptor mosaic is an inhomogeneous distribution of cone and rod

photoreceptors with various sizes [56]. The most central retina is responsible for sharp

vision as it is dominated with cone photoreceptors with a cone density peak at the

fovea whereas the periphery is dominated by rod photoreceptors.

2.2.1 Optic Nerve Head

The neural canal opening (NCO) also is referred in the literature as Bruch’s mem-

brane opening (BMO) (see Fig. 2.2), and is a 3D planar structure [57] that occurs

at the level of the retinal pigment epithelium (RPE) and the Bruch’s membrane

which is also the anatomic entrance to the neural canal. The Bruch’s membrane is

the anterior surface of the choroid and the BMO is the location at which the optic
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nerve passes through this membrane. There is some ambiguity about whether these

separate structures can truly be discerned in SD–OCT images obtained from human

subjects particularly when there is a externally oblique border tissue (EOBT) [19] as

will be discussed further in Chapter 5. There is no evidence for BMO change due

to glaucoma in primates and this structure has been used as a stable reference plane

from which structural measurements were made in histomorphometric reconstruc-

tions of primate eyes [58, 59]. These studies encourage the use of this structure for

the detection and tracking of glaucoma in human subjects as well as computing quan-

titative structural measurements such as BMO–minimum rim width (BMO–MRW)

and BMO–horizontal rim width (BMO–HRW).

2.2.2 Intraretinal Layers

The eye structure as well as intraretinal layers of the retina are shown in Fig. 2.3a.

Glaucoma causes changes in the intraretinal as well. Specifically, the ganglion cell

and nerve fiber bundle layers become thinner due to the death of ganglion cells and

loss of nerve fibers. The intraretinal layers are explained as below:

• Inner Limiting Membrane (ILM) surface: located at the boundary of retina and

the vitreous body.

• Retinal Nerve Fiber Layer (RNFL): contains the ganglion cells axons which

form the optic nerve.

• Ganglion Cell Layer (GCL): consists of the nuclei of ganglion cells.

• Inner Plexiform Layer (IPL): contains axons of bipolar and amacrine cells as

well as the ganglion cells dendrites.

• Inner Nuclear Layer (INL): contains the nuclei of horizontal, bipolar, amacrine

and Müller cells.

• Outer Plexiform Layer (OPL): consists of photoreceptor axons, and dendrites

of horizontal and bipolar cells.
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Figure 2.3: Eye structure and intraretinal layers [60] (a) and a segmentation example
of intraretinal layers on a central xz–slice from a macular SD-OCT volume (b) and a
ONH SD-OCT volume (c).
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• Outer Nuclear Layer (ONL): consists of the cells bodies of the both rods and

cones photoreceptor cells.

• External Limiting Membrane (ELM): separates the inner and outer segments

of the photoreceptors.

• Photoreceptor Layer: consists of the segments of rods and cones photoreceptors

and can be divided into two layers of the inner segments (IS) and the outer

segments (OS).

• Retinal Pigment Epithelium (RPE) layer: a single layer of cells located between

the retina and the choroid.
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CHAPTER 3
TECHNICAL BACKGROUND

In this section the previous contributions to the area of segmentation of the oph-

thalmic structures from SD-OCT volumes are briefly described. Since in this work, a

graph-theoretic approach is used in the research aims extensively for segmenting the

retinal structures (Chapter 4 and 8 for finding the 2D location of BMO points and

Chapter 7 for segmenting the 3D ILM surface), this approach will be explained in

more detail.

By advancing the technology in the imaging modalities and moving from the time

domain-OCT (TD-OCT) to the spectral domain-OCT (SD-OCT) also called Fourier

domain-OCT (FD-OCT) [61–63], developing reliable automated methods to quantita-

tively measure the retinal properties has attracted attentions in the field of ophthalmic

image analysis. For instance, Zeiss Cirrus OCT (Carl Zeiss Meditec, Dublin, CA) en-

ables the acquisition of an ONH volume with a resolution of 200× 200× 1024 voxels,

covering 6 × 6 × 2 mm3 of retina in the physical domain in only about two seconds.

Some of the inherent challenges in the analysis of SD-OCT volumes include [64]: 1)

presence of speckle noise which is an intrinsic characteristic of coherent images and

degrades the quality of the SD-OCT scans and also makes the intraretinal boundaries

a bit fuzzy. 2) Signal attenuation at deeper retinal structures. The intensity of each

voxel in SD-OCT volumes is created by comparing the reflected light from the tissue

and the light source. Deeper structures have weaker reflections due to the fact that

penetration of light to the deeper structure is more difficult, causing voxels with lower

intensity in SD-OCT volumes. 3) Presence of motion artifact due to the eye move-

ment. Despite the fact that the OCT modality is a relatively fast imaging modality,

however, the patient eyeball can possibly move or trembles during the scanning which

causes a shift of a few successive B-scans in the same direction. 4) Presence of retinal

blood vessels which appear as shadows in SD-OCT volumes. These shadows can ob-



scure the retinal layers and other structures, specifically around the ONH, and cause

the segmentations to fail locally.

3.1 Previous Work

In this section a summary of previous attempts for segmenting the ONH structures

(optic disc, cup, and BMO) as well as intraretinal layers is presented. Additionally,

the works that have been accomplished for registering retinal images are briefly dis-

cussed. The quantity and variety of approaches that have attempted to segment the

intraretinal layers from SD-OCT volumes and optic disc and cup from fundus pho-

tographs are more than the number of works on segmenting the optic disc, cup as well

as BMO from the SD-OCT modality. The reason is that SD-OCT is a newer modality

and BMO-based structural parameters have been recently introduced [2, 3, 3–6].

3.1.1 Segmenting the ONH Structures

ONH structures such as the optic disc and cup play important role in diagnosing

glaucoma. Many attempts have been completed in order to automatically segment

these structures of interest. More specifically, the prior fundus-only approaches in-

clude pixel-based classification methods to segment the optic disc and cup, where a

set of features, corresponding to each pixel, are extracted to be used for training a

classifier and then the trained classifier is tested on the unseen data [7, 8]. Model-

based approaches [9–12] are another well-known group where an optic disc model,

which is created from a training set, tries to fit to the testing data. Zheng et al. [15]

proposed the use of graph–cut for segmenting the optic disc and cup boundaries. Mer-

ickel et al. [13,14] utilized theoretical graph-based approaches in their method where

the images sampled in the radial direction and the segmentation was done in the

radial domain. While the classification-based method and graph-cut methods suffer

from not having well-defined boundaries due to the pixel-based labeling, model-based

methods and the graph-based method proposed by Merickel et al. do not have such
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a problem. However, there are limitations for the active contour methods where they

need to have a good estimation of the location of object so that the contour can fit

to the target otherwise they fail to segment the object. Despite all the works that

have been accomplished, segmentation of optic disc and cup boundaries from fundus

photographs is still a challenging task. In fact, the high inter-observer variability of

manual segmentation of the optic disc and cup boundaries shows the difficulty of the

task [18].

Initial SD-OCT-only approaches include that of Lee et al. [16] and Abràmoff et

al. [17] where a pixel-based classification method for segmenting the boundaries is

used. In their methods, a set of features were extracted from SD-OCT volumes

and their methods were evaluated based on a fundus-based reference standard. Hu et

al. [18] used a theoretical graph-based method to find the 2D projections of NCO (aka

BMO), however, the evaluation of their work was done using a fundus-based reference

standard. Although, the theoretical graph-based method has the ability to well-define

the boundaries, it requires having a set of suitable cost functions corresponding to

the boundaries of interest, which means the quality of the results depends on the

quality of the cost functions. More recently, Antony et al. [24] proposed an iterative

graph-based approach for segmenting surfaces sharing a common hole. They used

the proposed method to segment the BMO (as the shared hole) and the surrounding

surfaces.

3.1.2 Segmenting the Intraretinal Structures

The early attempts were mostly 2D methods [25–33]. In these approaches, the

surface between the inner and outer segments of photoreceptors was used to flatten

the volume (adjusting A–scans in the z–direction) and the reason is that there is a

large gradient at the location of this surface which makes it easier to segment. Then,

using 2D information, the edges in each A–scan was detected to find the entire surface.

Use of an iterative method to refine the result at each iteration [31], Markov model to
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correct the segmentation errors at the location of detected peaks [65], polynomial line

fitting and statistical regression [66], and Canny edge detection [67] are additional

features to this schema that tried to improve the segmentation results.

Another group of people who tried to segment the intraretinal layers used a ma-

chine learning based approach in which appropriate features are extracted from the

different layers to train a classifier and then the intraretinal layers are segmented

using the trained classifier. K–means clustering was used in Rossant et al. [35] to

segment the inner retinal layers. Before segmenting the inner retinal layers, using

peak detection in edge profiles, the ILM and IS/OS surfaces are segmented with this

assumption that each slice is centered on the macula so that they can correct the

errors that occurs at the fovea. Zawadzki et al. [34] trained an SVM classifier using

user input to find the region of interest in SD-OCT images. They tested their method

on various normal and diseased scans. Vermeer et al. [36] proposed training the SVM

classifier using a Haar-like features derived from each A–scan on the manually traced

scans. The final result was obtained by applying a post-processing step which involves

surface smoothness constraints.

Employing active contours is another approach to the problem where shape priors

as well as edge gradients and local information are incorporated in the method. Mu-

jat et al. [68] segment the RNFL by minimizing an energy function using a filtered

image and gradient information which makes their method robust to speckle noise.

Yazdanpanah et al. [38] approached the problem by relying on regional information

rather than the edge features. One limitation to their approach is use of a circle as

the shape prior and the assumption of segmenting smooth-arc like structures spe-

cially in processing of diseased scans. Kajic et al. [40] used an active appearance

model (AAM) for segmentation of retinal surfaces where a large dataset is needed

for creating the proposed model. Rathke et al. [39] proposed the use of probabilistic

principal component analysis (PPCA) to estimate an appearance model as well as the
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global shape and the variations along each column. The method, however, is designed

for 2D circular scans and the extension to 3D is far from trivial.

Dynamic programing and shortest path algorithms are among graph-based ap-

proaches that have been employed for intraretinal layer segmentation. Yang et al. [41]

proposed a 2D dynamic programming shortest path method for segmentation of the

intraretinal layers. The cost of each node comes from the gradient maps created by

Canny edge detector where each surface had a corresponding threshold values. This

approach uses neither the 3D contextual information nor the regional or shape infor-

mation. Chiu et al. [42,43] utilized Dijakstra’s shortest path algorithm to segment the

intraretinal surfaces where the starting and ending points of each surface are obtained

through an initialization step. This method is also a 2D approach that obtains the

3D surface segmentation by stitching the 2D segmentations of B–scans.

The first “true 3D” approach for segmenting the intraretinal surfaces was pro-

posed by Garvin et al. [44] where the graph-theoretic approach [69, 70] described in

section 3.2 was applied to simultaneously segment the intraretinal surfaces from mac-

ular SD–OCT volumes. The proposed method formulated the segmentation of multi–

surface problem as an optimization problem where the goal was finding a minimum–

cost closed set of nodes with respect to the provided cost functions and satisfying

the feasibility constraints. The feasibility constraints include the surface interaction

constraint and the smoothness constraints. There are two types of cost functions, the

first one is the on–surface cost function which was obtained by performing directed

gradients and the second one is the in–region cost function which is computed using

a fuzzy membership function which assigned each voxel the unlikeness of belonging

to particular regions. The solution to the graph is computed using the maximum-

flow theorem which has a polynomial running time. This method could be extended

for finding surfaces simultaneously in higher dimensions. The smoothness constraint

enables the graph structure to incorporate “true 3D” contextual information and the
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surface interaction constraint controls the “shape” of the surfaces with respect to

neighboring surfaces.

Lee et al. [16] later introduced a faster version of this method by performing the

graph-theoretic approach in multiple resolutions. This method also was employed

to segment the intraretinal surfaces in ONH–centered SD–OCT scans [16, 46] and

fundus photographs structures [71]. The cost functions used in these works were de-

signed mostly by hand and learned features were incorporated slightly. Besides in

the opthalmology area, the graph-theoretic approach was also employed to segment

structures in CT [72,73] as well as MR [74,75] images where shape priors and texture

also were incorporated in the method. Song et al. [45,76] proposed the incorporation

of learned shape and context priors which influenced the topology of surfaces signifi-

cantly. Shape prior is responsible for penalizing the local shape changes whereas the

context prior penalizes the change from the expected surface distances. Adding the

prior information’s terms to the graph-theoretic algorithm generates a more robust

approach. Antony et al [77] proposed that instead of using hand-designed cost func-

tions needed for the graph-theoretic approach, to compute the cost functions using a

machine-learning method.

3.1.3 Retinal Image Registration

Image registration is an essential step in many medical imaging applications from

different areas such as radiology, neurology, and opthalmology. The registration ap-

proaches either find a set of corresponding points between the images or benefit from

the pixel/voxel intensities and try to align the images (of the same or from different

modalities) using different transformations such as rigid, affine, polynomial or more

sophisticated transformations such as nonlinear and deformable techniques. Simi-

larly, the previous works in the retinal image registration area are applied to images

from the same or different modalities. The imaging techniques include a variety of

modalities such as color fundus, stereo fundus, fluorescein angiography, infrared, and
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OCT modalities.

Researchers have approached the problem of retinal image registration using differ-

ent directions. Point-based [78,79], intensity-based [80–83], and feature-based [84–86]

techniques have been used to register retinal images from different modalities. Each

technique has some favorable and the unfavorable factors depending on the appli-

cation and the imaging dataset for which the method is applied. For instance, the

approaches that are proposed to register retinal images from the same modality may

not be successful in registering multimodal retinal images. In Chapter 6 we discuss

the retinal image registration techniques in more detail and propose a multimodal

feature-based registration method using histogram of oriented gradients (HOG).

3.2 Graph-Theoretic Approach

Li et al. [70] proposed a graph-theoretic approach capable of segmenting multi-

ple interacting surfaces simultaneously. They transfered the segmentation problem

into an optimization problem with the goal of finding a minimum-cost closed set of

nodes in a graph. The problem of finding a minimum-cost closed set is transferred

into a maximum-flow problem where the global optimal solution is obtained using

a minimum s–t cut. Two important components of this method are the feasibility

constraints (hard and soft) which control the shape of surfaces and the cost functions

which include the unlikeliness of a voxel belonging to a specific region (in-region cost

function) and locating on a specific surface (on-surface cost function).

3.2.1 Feasibility Constraints

Consider a volumetric image described as I(x, y, z) with dimensions X × Y × Z,

and the surface Si can be defined as a function Si(x, y) mapping (x, y) pairs to their z–

values where x ∈ {0, 1, · · · , X − 1}, y ∈ {0, 1, · · · , Y − 1}, and z ∈ {0, 1, · · · , Z − 1}.

The surface Si intersects only one voxel of each column, parallel to the z–axis (e.g.

an A-Scan in a SD-OCT volume) and spans the entire x × y domain. Originally
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[69, 70], the smoothness constraint represented the maximum change in z-position

allowed in the x–direction ∆x and in y–direction ∆y. In other words, if I(x, y, z1) and

I(x+ 1, y, z2) are two adjacent voxels on a surface in the x–direction then |z1 − z2| ≤

∆x. Similarly, for two adjacent voxel on a surface in the y–direction (I(x, y, z1)

and I(x, y + 1, z2)) we have |z1 − z2| ≤ ∆y. Later, Garvin et al. [44, 87] proposed a

varying smoothness constraint for which the smoothness constraints varied as we move

along the surfaces with respect to the (x, y) of each voxel. The varying smoothness

constraints when moving from location (x1, y1) to (x2, y2) can be written as follows:

−∆u
{(x1,y1),(x2,y2)} ≤ S(x1, y1)− S(x2, y2) ≤ ∆l

{(x1,y1),(x2,y2)}, (3.1)

where, ∆u
{(x1,y1),(x2,y2)} and ∆l

{(x1,y1),(x2,y2)} are the smallest and largest permitted

change in the z–direction, respectively.

The second feasibility constraint, the surface-interaction constraint, represents the

relationship between surfaces such as the minimum distance δli,j and the maximum

distance δui,j between surface Si and surface Sj as well as the order of the surfaces

(e.g. which surface is above the other one). The original definition [70] of the surface-

interaction constraint was constant values for each pair of adjacent surfaces but similar

to smoothness constraint it can be defined as a varying constraint (i.e. a function of

location (x, y)) [44,87]. The varying surface-interaction constraint for surface Si and

surface Sj with the assumption that surface Si(x, y) is above Sj(x, y) can be written

as follows:

δli,j(x, y) ≤ Si(x, y)− Sj(x, y) ≤ δui,j(x, y), (3.2)

Song et al. [76] proposed a method to further incorporate the shape prior in the

surface smoothness constraints. Previously, there were only feasible or non-feasible

surfaces and the method did not grant the penalty of the deviation inside the allowed
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(a) (b) (c)

Figure 3.1: Feasibility constraints. (a) Varying smoothness constraints ∆u and ∆l.
(b) Varying surface-interaction constraints δu and δl. (c) Soft smoothness constraints
to incorporate shape priors.

constraints. In the Song et al. proposed method, an additional soft constraint based

on some given shape prior is included. A convex function f(h) penalizes the cost

of the surface set if the change of the surface is deviated from the expected shape

(i.e. the mean shape). If the shape prior between two adjacent columns (x1, y1) and

(x2, y2) on surface Si(x, y) is m(x1,y1),(x2,y2) the cost of the shape term can be written

as:

CSpi =
∑

{(x1,y1),(x2,y2)∈Nc}

f(Si(x1, y1)− Si(x2, y2)−m(x1,y1),(x2,y2)) (3.3)

where Nc reflects a set of neighboring columns. In order to add the additional soft

constraint to the constructed graph, additional arcs need to be added. Here for

simplicity and without loss of generality we only consider the x-direction. Assume

that the smoothness constraint in the x-direction is ∆x and the mean shape prior

m(x1, x2) for two adjacent column x1 and x2 on a feasible boundary S(x) is given.

The shape penalties are only imposed when S(x1) − S(x2) 6= m(x1,x2). Let h =

S(x1)−S(x2)−mx1,x2 therefore, the shape prior penalty is f(h). The discrete second

and first derivative of the convex function can be expressed as [f(h)]′′ = [f(h+ 1)−

f(h)]− [f(h)− f(h− 1)] and [f(h)]′ = f(h+ 1)− f(h), respectively. The feasibility
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Figure 3.2: Illustration of total cost of segmenting two non-intersecting surfaces
(where only hard constraints included) including three in-region (left) and two on-
surface (right) costs.

constraint will be −∆x < h < ∆x and for each feasible h that satisfies [f(h)]′ ≥ 0 an

arc with a weight of [f(h)]′′ is added from node(x1, z) to node(x2, z −m(x1,x2) − h).

Similarly, for the feasible h with [f(h)]′ < 0 an arc is added from node(x2, z) to

node(x1, z + m(x1,x2) + h) with a weight of [f(h)]′′. Fig. 3.1 illustrates the hard and

soft smoothness constraints.

3.2.2 Cost Function Computations

A minimum-cost closed set of nodes (i.e the minimum cost of the feasible sur-

faces) is obtained with respect to cost functions and soft constraints-related costs.

Originally [70] the cost function was derived from directed gradients of the volumes

making it an edge-based cost function. Later a cost function consisting edge-based

and region-based cost functions was proposed [44, 87]. The edge-based cost func-

tion called on-surface cost function reflects the unlikelihood of a voxel locating on

a specific surface. For surface Si(x, y), the on-surface cost function be expressed as

CSi(x,y) =
∑

{(x,y,z)|z=Si(x,y)}
IcSi (x, y, z) (Fig. 3.2).

The region-based cost function called in-region cost function represents the unlike-

liness of a voxel belonging to a specific region. Consider a regionRi, the in-region cost
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can be described as CRi =
∑

(x,y,z)∈Ri
IcRi (x, y, z). When there exists n non-intersecting

surfaces the volume will be divided into n+ 1 regions (Fig. 3.2). Therefore the total

cost CT of n surfaces can be written as

CT = C{S1(x,y),...,Sn(x,y)} + C{R0,...,Rn}

=
n∑
i=1

CSi(x,y) +
n∑
i=0

CRi

(3.4)

The penalties induced by the soft smoothness constraint can be added to the

total cost induced by the cost functions CT . Therefore, the total cost CTotal can be

computed as

CTotal = C{S1(x,y),...,Sn(x,y)} + C{R0,...,Rn} + C{SSp1 ,...,SSpn}

=
n∑
i=1

CSi(x,y) +
n∑
i=0

CRi +
n∑
i=1

CSspi .
(3.5)
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CHAPTER 4
MULTIMODAL SEGMENTATION OF OPTIC DISC AND CUP FROM

SD-OCT AND COLOR FUNDUS PHOTOGRAPHS USING A
MACHINE-LEARNING GRAPH-BASED APPROACH

The content of this chapter is presented in [22,88,89]. As mentioned in Chapter 2,

the characteristic structural changes that are caused due to glaucoma are monitored

via structural imaging modalities such as color (stereo) fundus photography and SD-

OCT. Cup-to-disc ratio (CDR) is a structural parameter that helps with diagnos-

ing glaucoma and is obtainable from both color fundus photographs and SD-OCT

volumes. Most prior optic disc and cup segmentation approaches have focused on

segmenting color fundus images alone [7–15], with few approaches having been pre-

sented for the segmentation within SD-OCT volumes alone [16–18]. More specifically,

the prior fundus-only approaches for segmenting the disc and cup include pixel-based

classification methods [7, 8], model-based approaches [9–12], and graph-based ap-

proaches [13–15]. Initial SD-OCT-only approaches include the work of Lee et al. [16]

and Abràmoff et al. [17] where each A-scan (i.e., projected pixel location) was classi-

fied as cup, rim, or background from SD-OCT features within the A-scan. While the

final approach was an SD-OCT-only approach, the pixel-classification-approach was

trained and tested using expert-marked color fundus images.

Another type of SD-OCT approach has focused on directly segmenting the ter-

mination of Bruch’s membrane at the optic nerve head within SD-OCT volumes

using a graph-based approach [18]. Anatomically, it was originally assumed that the

projected location of the BMO would coincide with that of the clinical disc margin

visible in a color fundus photograph. (In fact, the automated BMO segmentation

work [18] was evaluated via comparisons with the clinical disc margin from color fun-

dus photographs.) While it has been found that the projected location of the BMO

often does indeed closely coincide with the clinical disc margin, differences do exist,

such as in the presence of externally oblique border tissue [18–21], challenging the



original anatomical assumptions behind the fundus-based clinical disc margin. Cor-

respondingly, when available, the BMO (or, more precisely, the projected BMO for

computation of 2D parameters) is becoming recognized as an appropriate disc margin

definition.

While SD-OCT-only approaches have been shown to outperform fundus-only ap-

proaches [7, 88] (in part due to their ability to provide 3D information of anatomic

landmarks such as the BMO) for the segmentation of the disc and cup, the color in-

formation and higher resolution in the en-face (i.e., projected plane) in color fundus

photographs (6–10 microns in fundus photographs versus 30–100 microns spacing be-

tween A-scans of SD-OCT volumes) provides complementary information to help lo-

calize such structures. Given that both fundus and SD-OCT images are often acquired

for the assessment of glaucoma and with existence of fundus-OCT image-registration

algorithms [90–93], it makes sense to combine the complementary information from

both sources for the segmentation of the disc and cup. Use of multimodal information

is further justified via prior work in the multimodal segmentation of the retinal blood

vessels by Hu et al. [93], where it was shown that approaches that combined the use

of fundus and SD-OCT information outperformed SD-OCT-only approaches.

Correspondingly, the purpose of this chapter is to develop a multimodal approach

that utilizes information from both SD-OCT volumes and color fundus photographs

to segment the disc and cup. In particular, after fundus-to-OCT image registration,

our approach uses a machine-learning strategy to compute the likelihood of each pro-

jected pixel belonging to either cup or rim or background classes (from multimodal

features) and the likelihood of belonging to the projected BMO boundary locations

(from SD-OCT features). These in-region and disc-boundary likelihoods are then

used as part of the cost functions in an optimal graph-based approach to simulta-

neously find the disc and cup boundaries. A preliminary version of our multimodal

region-based-classification-only results were presented in [88], but we did not use a
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Figure 4.1: Flowchart of overall method.

graph-based strategy to find the final boundaries and did not compute the BMO

boundary likelihoods. Furthermore, to reflect our updated understanding of the best

reference to use for the disc margin, the projected location of the BMO is used as the

disc margin reference standard for training/testing in this work rather than the disc

margin marked from color fundus photographs. The expert-marked cup boundary

from fundus photographs is still used as the reference standard for the cup.

4.1 Methods

An overall flowchart for the proposed method is shown in Fig. 4.1. The four major

components are as follows: 1) a preparation step including SD-OCT intraretinal layer

segmentation, fundus-to-OCT registration, and radial transformation (Section 4.1.1),

2) in-region cost function computation (Section 4.1.2), 3) disc-boundary cost function

computation (Section 4.1.3), and 4) optic disc and cup boundaries segmentation using

a theoretical graph-based approach (Section 4.1.4). The in-region and disc boundary

cost functions contain the information regarding the likelihood of a pixel belonging

to each region (cup, rim, and background) and disc boundary, respectively. Both

the in-region and disc-boundary cost functions are created using a machine-learning

approach. Features used for in-region cost function computation come from both

modalities (a multimodal feature set) and features for the disc-boundary cost function

computation are extracted from SD-OCT volumes only. The likelihood maps that are
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computed, as described in more detail in Sections 4.1.2 and 4.1.3, are then utilized in

the theoretical graph-based approach described in Section 4.1.4 to find the globally

optimal (with respect to the cost functions) boundaries of the optic disc and cup.

4.1.1 Intraretinal Layer Segmentation, Registration,
and Radial Transformation

The first part of the proposed method includes several steps in preparation for

the extraction of features from two modalities for use in the machine-learning cost-

function design steps.

4.1.1.1 Intraretinal Layer Segmentation

The intraretinal surfaces are first segmented within the 3D SD-OCT volumes

(Fig. 4.2) using the theoretical multi-resolution graph-based approach [16, 44] ex-

plained in Chapter 3. The surfaces are segmented to: (1) enable the creation of a 2D

SD-OCT projection image to be used for fundus-to-OCT image registration, and (2)

to enable layer-based features to be extracted. Three surfaces are used for further

computations (although eleven surfaces are originally segmented). The first surface

corresponds to the Internal Limiting Membrane (ILM). Surface two is the junction

of the inner and outer segments of photoreceptors (IS/OS), and surface three is the

outer boundary of the Retinal Pigment Epithelium (RPE), also called the Bruch’s

membrane surface. Using the method described in [44] a thin-plate spline is fitted to

the the third surface in order to flatten the OCT images and to enable a consistent

optic nerve head shape across patients. Afterwards, an SD-OCT projection image

is created by averaging the voxel intensities in the z-direction between the IS/OS

junction and Bruch’s membrane surfaces.

4.1.1.2 Registration

In order to benefit from the complementary information of both modalities at

a pixel/A-scan level, registration needs to be performed. The 2D projection image
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Figure 4.2: An example of a central B-scan of an SD-OCT volume and intraretinal
layer segmentation. (a) The original OCT B-scan. (b) Segmented three layers: the
first surface is the ILM (red), the second surface (yellow) is the IS/OS junction,
and the third surface (blue) is the lower bound of RPE complex. The pink surface
indicates the thin-plate spline fitted to the third surface. (c) Flattened OCT B-scan
along with surfaces. (d) 3D view of the three surfaces.

obtained from the 3D SD-OCT volume (Section 4.1.1.1) is utilized to register the 2D

fundus photograph to the SD-OCT projection image (Fig. 4.3). The registration is

performed on the fundus and the SD-OCT projection vessel maps. A pixel classifi-

cation based vessel segmentation algorithm is used to obtain the vessel probability

maps of fundus photographs [94] and SD-OCT projection images [95]. The fundus

image vessel map is subsampled using linear interpolation so that the optic disc is

about the same size in both images. Next, a skeletonization algorithm is applied to

the binary vessel segmentations to obtain the vessel centerlines. All centerline pixels

with more than two neighbors are removed to obtain a set of vessel segments. An

Iterative Closest Point (ICP) algorithm [96] is then applied in two phases: a first

rough initial alignment and a second fine alignment. The rough initial alignment is

performed using the simulated annealing optimization algorithm [97]. The finer align-

ment is performed using the Powell optimization algorithm [98]. The cost function,

F , in (4.1) below for both these steps is the same and consists of the distance between

closest points, d (as in a traditional ICP approach), and additionally the difference

between the local vessel orientation in radians between the target and the moving
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Figure 4.3: Registration of fundus photograph to projection image of SD-OCT vol-
ume. (a) Original fundus photograph. (b) Corresponding projection image of SD-
OCT volume. (c) Alignment of fundus photograph to OCT projection image. (d)
Registered fundus photograph.

image, dθ:

F = (1 + d)× (1 + dθ) . (4.1)

The additional term, dθ, causes the cost function to have a lower value when the

centerline pixels are matched and the local orientation of vessels are similar [79].

4.1.1.3 Radial Transformation and Layer Segmentation

As a preliminary step in the creation of the disc-boundary costs (Section 4.1.3),

each original SD-OCT volume in the Cartesian domain (xyz) is resampled (with θ-

precision = 1◦) using bilinear interpolation to create a radial volume (rθz). With such

a transformation, each slice contains two BMO endpoints (whereas in the original

volume, BMO points become less obvious in slices approximately tangent to the

superior/inferior disc boundary, Fig. 4.4a, and are additionally not present in slices

that do not intersect with the disc).

Once the radial scans are created, the same approach as explained in [16] is used

to segment the ILM surface, IS/OS junction and RPE-complex lower bound. Since
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Merging BMO points

(a)

𝑟 = 0 𝑟 = 100

(b)

𝜃𝜖[0°, 360°)

]

(c)

Figure 4.4: Radial slice segmentation. (a) Example (non-central) scan from original
SD-OCT volume demonstrating the how the BMO points may appear close together.
(b) Example radial scan (with BMO points appearing as they would in a central scan
from the original volume) with segmented surfaces. Interpolation is used to define
the second and third surfaces in the neural canal region. (c) The radial projection
image.

the RPE-complex ends at the optic disc margin, the RPE layer segmentation inside

the optic disc region is not valid. Therefore, an optic disc margin (1.73 mm from the

center) which is larger than the typical optic disc size, is assigned to every volume,

and within this margin, the second and third surfaces are interpolated (Fig. 4.4b).

A radial projection image (Fig. 4.4c) is then created to reflect the (maximum)

intensities of the interpolated RPE-complex surfaces. In particular, for each A-scan,

the maximum intensity value in the z-direction 15 voxels above (29.3µm) the second

surface and 15 voxels below the third surface is selected and the projection image

is reformatted such that radial values (0, 100] appear on the vertical axis and θ

values [0◦, 360◦) appear on horizontal axis. The radial projection image is used in

Section 4.1.3.

4.1.2 In-region Cost Function Computation

The flowchart of the algorithm for creating in-region probability maps is depicted

in Fig. 4.5. The in-region likelihood maps contain the regional costs associated with

each pixel. A lower cost indicates that under feasibility constraints the pixel has
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Figure 4.5: In-region cost function design flowchart.

a higher chance to be assigned to the corresponding region. Three in-region cost

functions corresponding to three classes of cup, rim, and background are computed

by training a random forest classifier [99] using a multimodal feature set.

4.1.2.1 SD-OCT Features

There are eight features extracted for each projected x-y location from SD-OCT

volumes (similar to features in [16]). The first one is the intensity of the same pro-

jection image used for registering the fundus image to SD-OCT volume. The next

features are the average intensities of four subvolumes above the reference spline fit-

ted to the outer boundary of RPE (90-120, 60-90, 30-60, 0-30 voxels above) and the

average intensities of two subvolumes below the reference spline (0-30 and 30-60 vox-

els below). The last feature is the optic disc depth information which is extracted

by measuring the distance between the ILM surface and the reference spline. An

example set of SD-OCT feature is shown in Fig. 4.6.

4.1.2.2 Fundus Features

As in [7] three intrinsic color channels of red (R), green (G), and blue (B) as well

as three color-opponent channels of dark-bright (D-B), blue-yellow (B-Y), and red-

green (R-G) are extracted from fundus photographs. The color-opponent channels

are computed as in the equations below:

Idark−bright =
Ired + Igreen + Iblue

3
(4.2)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: OCT features. (a)-(f) Average intensity of subvolumes in z-direction. (g)
Distance of first surface to the thin-plate spline fitted to the third surface. (h) The
SD-OCT projection image.

Iblue−yellow = Ired + Igreen − 2× Iblue (4.3)

Ired−green = Ired − Igreen (4.4)

Note that the original use of the color-opponent channels as in [7] is motivated by the

theory of color vision [100] where three signals are produced in the retina by three

different cone types in response to a light stimulation. These signals are transformed

to three opponents before passing to the brain. The first opponent contains illumi-

nation information and is achromatic (the “dark-bright” opponent). The other two

opponents (the “red-green” and “blue-yellow” opponents) contains color information.

A zero-order Gaussian filter bank (σ=4, 6, 8) is applied to all color channels to

extract features in different scales as shown in Fig. 4.7.

4.1.2.3 Spatial Features

In the registered fundus-OCT images, it is more likely that the pixel in the center

of the image belongs to optic cup than to rim area or background. Therefore, in

order to incorporate the a priori expectation of the class of a pixel based on its
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(a) R σ=4 (b) R σ=6 (c) R σ=8 (d) G σ=4 (e) G σ=6 (f) G σ=8

(g) B σ=4 (h) B σ=6 (i) B σ=8 (j) D-B σ=4 (k) D-B σ=6 (l) D-B σ=8

(m) B-Yσ=4 (n) B-Y σ=6 (o) B-Y σ=8 (p) R-G σ=4 (q) R-G σ=6 (r) R-G σ=8

Figure 4.7: Fundus pixel features. From left to right are the filtered image using
Gaussian filter bank having sizes σ=4, 6, 8 respectively. (a)-(c) Red channel. (d)-(f)
Green channel. (g)-(i) Blue channel. (j)-(l) Dark-bright channel. (m)-(o) Blue-yellow
channel. (p)-(r) Red-green channel.
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(a) (b) (c) (d) (e) (f)

Figure 4.8: Spatial features. (a)-(c) Three a priori maps corresponding to cup, rim,
and optic disc regions derived from PCA. (d) Distance of the x position with respect
to the optic disc center. (e) Distance of the y position with respect to the optic disc
center. (f) Radial distance with respect to the optic disc center.

location in the image, a principal component analysis is performed on all reference

standard images in the training set and only the first principal component is kept.

The a priori expectation of the class maps of the cup and disc are similar to the

shapes of 2D Gaussians. An a priori map describing the rim area is created by

subtracting the a priori map of cup from the a priori map of optic disc. Three a

priori maps are shown in Fig. 4.8. In addition to the three a priori maps, three optic

disc center-based features are extracted. In particular, after defining the lowest point

(in the z-direction) of the first intraretinal surface as the center of the optic disc, the

distance of the x and y positions, as well as the radial distance of each pixel, are

measured with respect to this disc center.

4.1.2.4 Classification

Once the features are extracted from both modalities, a random forest classifier

[99] is used to classify each pixel into optic cup, rim, or background. A summary of

the 31 multimodal features that are used for training the random forest classifier are

listed in Table 4.1.

Random forests are categorized as ensemble classifiers. Once a feature vector is

entered to a random forest classifier, all trees (N) in the forest classify the input

feature vector based on the specific number (m) of randomly selected features from
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Table 4.1: Multimodal feature set used for producing in-region cost functions

Features Fundus SD-OCT Spatial

Features 1-18: Filtered color channels (red, green,
blue, dark-bright, yellow-green, and red-blue) using
Gaussian zero-order filter bank (σ=4,6,8).

X

Feature 19: The pixel intensity in the SD-OCT
projection image. The SD-OCT projection image is
produced by averaging the voxel intensities between
surface two (IS/OS junction) and three (the outer
boundary of the RPE) in the z-direction.

X

Features 20-25: Average intensities of six subvol-
umes in the z-direction (120 pixels above and 60
pixels below the fitted reference spline to surface
three), each of them representing the average voxel
intensity of 30 voxels within the voxel column.

X

Features 26-28: Pixel a priori expectation map
of each class based on pixel location.

X

Features 29-31: Distance of x and y positions as
well as the radial distance of each pixel with respect
to the approximate center.

X

the input feature vector at each decision split. The final classification is determined

by taking the majority vote over the entire forest. In addition to robustness, the other

advantage of this classifier is the very low number of parameters to be tuned. These

are the number of trees in the forest N and the number of features to be randomly

selected at each decision split m. Here, we used N = 500 trees (larger numbers

increased the training time without improving the accuracy) and m = 10.

The likelihood map of each class at a pixel is computed by dividing the number

of trees voted for each class by the total number of the trees in the forest. In or-

der to convert the likelihood maps to the in-region cost functions, they are inverted

(1−probability map) such that a higher probability value in the likelihood map cor-

responds to a lower cost in the in-region cost function.
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Figure 4.9: Disc-boundary cost function design flowchart.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: SWT decomposition. (a)-(d) SWT 6-level decomposition. In each image,
upper left is the approximation, upper right is the horizontal, lower left is the vertical,
and lower right is the diagonal SWT coefficient.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: On-boundary cost function feature set. (a)-(d) Horizontal coefficients of
level 1, 2, 3 and 4. (e) Vessel-free projection image. (f) Result of averaging derivative
of Gaussian in the vertical direction. (g) Spatial feature imposing the shape of the
optic disc boundary. (h) Spatial feature that has the anatomic information of BMO
points.

37



4.1.3 Disc-Boundary Cost Function Computation

The flowchart of the disc-boundary cost function design is shown in Fig. 4.9.

Similar to the in-region cost function design, a machine-learning approach is used

to create the disc-boundary cost function. The features come from processing the

radial projection image using a stationary wavelet transform (Section 4.1.3.1) and

spatial features (Section 4.1.3.2). The reference standard is the projected location of

the BMO endpoints so that, after the classification step (Section 4.1.3.3), the disc-

boundary cost function will have a low cost at expected boundary positions.

4.1.3.1 Stationary Wavelet Transform

The Haar stationary wavelet transform [101] is a translation-invariant type of

digital wavelet transform and can be used to suppress the effects of the shadows of

blood vessels that make the boundary of the BMO difficult to detect in projection

images. For example, the multi-scale attribute of SWT makes it capable of capturing

different sizes of blood vessels in different decomposition levels. Furthermore, since

the blood vessels tend to be vertically placed in the radial SD-OCT projection image

(Fig. 4.4c) the directionality of the SWT enables it to separate the optic disc boundary

(appears in horizontal coefficients) from the blood vessel (appears mostly in vertical

and diagonal coefficients).

An example of projection image decomposition using the Haar SWT is shown in

Fig. 4.10. The vessels mostly appear in vertical coefficient images whereas the optic

disc boundary is easily recognizable in the horizontal coefficient images. Therefore,

the intensity of horizontal coefficients of the 1st, 2nd, 3rd and 4th decomposition levels

are added to the feature set. The horizontal coefficients in level 5 and 6 are not

considered because at higher decomposition levels (coarser levels), the boundary of

interest becomes blurrier. Note that the output of each decomposition level in SWT

has the same number of samples (coefficients) as the input which makes the SWT an

inherently redundant procedure.
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Furthermore, a vessel-free projection image is created from the wavelet coefficients

by suppressing all the vertical and diagonal coefficients (setting them to zero) at

all levels and keeping the approximation and horizontal components at each level.

Applying the Inverse SWT (ISWT) to the modified wavelet coefficients creates a

vessel-free projection image (Fig. 4.11e). The intensity of the vessel-free projection

image along with its derivative (Fig. 4.11f), computed using an averaging derivative

of Gaussian filter, are added to the feature set as well.

4.1.3.2 Spatial Features

In addition to the above SWT-based features, there are two spatial features cre-

ated to learn the position of the optic disc boundary in the radial projection images.

The first spatial feature intuitively reflects the radial distance from a rough circular

approximation of the optic disc boundary. More specifically, as any circle centered at

the optic disc center appears as a horizontal line in the radial vessel-free projection

image, Pradial, we first locate the first “dark” horizontal line (from the top) r = rdark

in the projection image as follows:

rdark = min
{
r|Irow(r) ≤ µIrow − σIrow

}
, (4.5)

where

Irow(r) =
1

360

359∑
θ=0

Pradial(r, θ) , (4.6)

µIrow =
1

R

R∑
r=1

Irow(r) , and (4.7)

σIrow =

√√√√ 1

R− 1

R∑
r=1

(Irow − µIrow)2 . (4.8)

Once the first dark row is detected using (4.5), the signed radial distance from this

row is considered as the spatial feature. This information helps classifier to narrow
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Figure 4.12: A schematic representation of segmenting the optic disc and cup bound-
aries using a theoretical graph based approach. (a) Left is the original image and
right is the resampled image in radial domain. (b) Example cost of two boundaries
for the multiple boundary segmentation problem. The two boundaries divide the
images into three regions.

the spatial search region for detecting the optic disc boundary (Fig. 4.11g).

The second spatial feature contains information regarding the a priori knowledge

of the BM-ILM anatomical relationship that dictates that Bruch’s membrane (and

correspondingly the BMO), even in the severe cases of glaucoma where there is no

rim tissue left, may touch the ILM surface, but not cross with it. In order to include

that information in the feature set, the radial distance to the crossing location of ILM

at the level of the interpolated surface three is also considered as a spatial feature

(Fig. 4.11h).

4.1.3.3 Classification

The summary of the features used for disc-boundary classification is as follows:

1. Features 1-4: The intensity of SWT horizontal coefficients of the 1st, 2nd, 3rd

and 4th decomposition levels.

2. Features 5: The intensity of the vessel-free projection image.

3. Feature 6: The intensity of the derivative of the vessel-free projection image.

4. Feature 7-8: The spatial features carrying the information regarding the

anatomy and shape of the optic disc boundary.
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Once the feature set is completed, a random forest classifier (with N = 500 trees

and m = 3 randomly selected features at each decision split) is trained to learn the

position of BMO end points using the extracted features to classify the pixels into

two classes of boundary and non-boundary (background). The classes are highly

imbalanced as for each radial image (100 × 360), the size of the background class

(99 × 360) is much larger than the size of the boundary class (360). Therefore, the

class priors are presented to the random forest classifier as well.

A probability map with low values at the expected boundary locations needs to be

used as the disc-boundary cost function for the graph-theoretic step. Hence, similar

to in-region cost function computation, the probability map of optic disc boundary

is inverted (1− probability map).

4.1.4 Theoretical Graph Based Boundary Detection

The underlying graph-based method that is used for simultaneously segmenting

the optic disc and cup boundaries is similar to what is described in [44]. The problem

of multiple boundary segmentation can be considered an optimization problem with

the goal of finding the feasible optic disc and cup boundaries with the minimum cost.

The feasibility constraints include a boundary smoothness constraint to ensure that

each individual boundary is smooth and a boundary interaction constraint to specify

the minimum and maximum allowed distances between the boundaries. A schematic

representation of the problem of segmenting optic disc and cup boundaries is shown

in Fig. 4.12. The following equations are written in the radial domain. Consider a

2D image in the radial domain I(r, θ) of size R×Θ and assume that the cup and disc

boundaries can be defined as fcup(θ) and fdisc(θ) functions (mapping θ values to r

values), respectively. Also, assume the functions use a two-neighbor relationship so

that for each column, each boundary intersects with each column (each θ) once (at

r). The cup boundary smoothness constraint for neighboring columns {θ1, θ2} in the
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θ-direction is defined as below

−∆θ ≤ fcup(θ1)− fcup(θ2) ≤ ∆θ . (4.9)

The smoothness constraint of the optic disc boundary is similar to that of the cup

boundary. For the boundary interaction constraints, the minimum allowed distance

between the cup boundary and the disc boundary is defined as δlcup−disc and similarly

the maximum allowed distance is defined as δucup−disc.

There are three regions: the optic cup region, the rim region (the region between

optic disc and optic cup), and the background. The in-region cost functions associ-

ated with the three regions are Ccup−reg(r, θ), Crim−reg(r, θ), and Cbackground−reg(r, θ),

respectively. Cdisc−bound(r, θ) is the disc-boundary cost function. The total cost of a

set of boundaries, C{fdisc(θ),fcup(θ)}, can be written as the weighted sum of in-region

costs and the disc-boundary cost as given below:

C{fdisc(θ),fcup(θ)} =

α CBdisc
+ (1− α)

[
CRcup + CRrim

+ CRbackground

]
,

(4.10)

where

CBdisc
=

∑
{(r,θ)|r=fdisc(θ)}

Cdisc−bound(r, θ) (4.11)
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and

CRcup =
∑

(r,θ)∈Rcup

Ccup−reg(r, θ)

CRrim
=

∑
(r,θ)∈Rrim

Crim−reg(r, θ)

CRbackground
=

∑
(r,θ)∈Rbackground

Cbackground−reg(r, θ).

(4.12)

Note that CBdisc
represents the total cost corresponding to pixels on the disc boundary

and CRcup CRrim
, and CRbackground

represents the cost related to pixels belonging to

cup, rim, background regions, respectively. In (4.10) α = 1 implies using boundary

information only and α = 0 implies using region information only.

The in-region cost functions and disc-boundary cost function are computed using a

machine-learning approach as described in Sections 4.1.2.4 and 4.1.3.3 and transferred

to the radial domain (Fig. 4.13). The two globally optimal feasible boundaries are

obtained by finding a minimum closure on the vertex-weighted graph. In order to do

that, the constructed graph is transferred to a closely related edge-weighted graph and

finding a minimum s− t cut gives us the optimal solution [44]. The α value in (4.10)

changes over the range of 0 to 1 in increments of 0.1 and the value that produces the

lowest segmentation error is selected (here α = 0.9). The process is similar to what

is outlined in [44]. Moreover, the continuity condition of the boundaries is imposed

in constructing the graph by enforcing the constraint that the first and last columns

of the image are neighbors.

Once the optimal boundaries are segmented, a postprocessing step is applied to

remove any possible remaining errors at the blood vessel locations by fitting a smooth-

ing spline to the optic disc and cup boundaries. The last step is to transfer the

segmentation results back to Cartesian coordinates.
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(a) (b) (c) (d)

Figure 4.13: An example of cost functions. (a) The in-region cost function for the
background. (b) The in-region cost function for the rim. (c) The in-region cost
function for the optic cup. (d) The optic-disc-boundary cost function. Note that
there is no cup-boundary cost function.

4.2 Experimental Methods

4.2.1 Data

The dataset for this chapter includes 25 SD-OCT scans of glaucoma patients

centered at optic nerve head that were acquired using a Cirrus HD-OCT device (Carl

Zeiss Meditec, Inc., Dublin, CA) at the University of Iowa. The size of each scan was

200×200×1024 voxels (in the x-y-z direction, respectively) which corresponds to a

voxel size of 30×30×2 µm, and the voxel depth was 8 bits in grayscale. The stereo

color photograph pairs of the optic disc corresponding to each SD-OCT scan were

taken from each patient the same day using a stereo-base Nidek 3-Dx stereo retinal

camera (Nidek, Newark, NJ). The size of the stereo color photographs was 768×1019

pixels, and the pixel depth was 3 8-bit red, green and blue channels.

4.2.2 Reference Standard

The reference standard for the optic cup came from the stereo color photographs.

Computer-aided planimetry was performed by three fellowship-trained glaucoma ex-

perts on stereo color photographs of the optic disc [7] and the reference standard was

obtained based on consensus, meaning that the pixel that has the majority of votes

(two of three) for cup region was assigned the optic cup label. The boundary of the

region labeled as cup was used as the reference standard of the cup boundary in the

evaluation.
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To obtain the disc-boundary reference standard, one expert first traced the BMO

endpoints on the 3D SD-OCT volume with two additional experts providing correc-

tions resulting in final tracing that was the result of the consensus of three experts

through a discussion. The 2D projection of the BMO endpoints produced the optic

disc boundary reference standard.

4.2.3 Experiments

Three methods were compared based on the optic disc and cup segmentation per-

formance: 1) optic disc and cup segmentation using region information only for which

the in-region cost functions were produced by a classifier trained using a unimodal

feature set (SD-OCT features as in [16]); 2) optic disc and cup segmentation using

region information only for which the in-region cost functions were produced by a

classifier trained using a multimodal feature set (fundus and SD-OCT features); and

3) optic disc and cup segmentation using region and disc-boundary information for

which the in-region cost functions were produced by a classifier trained using a multi-

modal feature set. Note that all three approaches combine use of a machine-learning

approach for designing the cost functions for use in a final graph-based step to obtain

the final disc/cup boundaries simultaneously. The first two approaches only involve

in-region cost function terms (with the first approach using only the SD-OCT features

proposed in this work and the second approach using the region-based fundus features

in addition to the SD-OCT features), whereas the last approach builds upon the sec-

ond approach by also incorporating a machine-learned disc-boundary cost function

term.

To evaluate the three methods for optic disc and cup segmentation, a leave-one-

subject-out experiment (including the training of the classifiers) was carried out on

the 25 subjects and the results were compared with the reference standard. Dice

similarity coefficient (DSC), as well as unsigned and signed border positioning errors,

were used to assess the accuracy of optic disc and cup segmentation. More specifically,
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for two regions, A and B, the DSC was given by:

DSC(A,B) =
2(A ∩B)

(A+B)
. (4.13)

The signed and unsigned border positioning errors of the optic disc and cup were

calculated in the radial domain. The unsigned border positioning error was calculated

by averaging the distances between all boundary points from the segmentation result

and the ones from the reference standard. The signed border positioning error was

calculated similarly to the unsigned border positioning error, but the signs of the

distances were retained. The sign was considered positive if the algorithm’s boundary

point was farther away from the optic disc center than the boundary point of the

reference standard. Paired t-tests were performed to compare the segmentation results

(p-values < 0.05 were considered significant).

The proposed methods were also evaluated based on the CDR values. The mean

and standard deviation of absolute difference with the reference standard as well as

the Pearson correlation with the reference standard were computed.

4.3 Results

Example segmentation results for patients with different CDRs are shown in

Fig. 4.14, Fig.4.15, and Fig.4.16. The DSC values are shown in Table 4.2. Based

on DSC values for the optic disc segmentation, the multimodal approaches outper-

formed the unimodal approach (p < 0.05). Also, the multimodal approach with

inclusion of the disc-boundary information outperformed the region-only multimodal

approach for the optic disc segmentation (p < 0.05). For the optic cup boundary, the

multimodal approach outperformed the unimodal approach (p < 0.05). As expected,

since no cup-boundary cost function was used, both multimodal approaches resulted

in the same DSC values for the cup.

The unsigned border positioning errors are reported in Table 4.3. The unsigned
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(a) Fundus (b) RS (c) Method 1 (d) Method 2 (e) Method 3

(f) OCT (g) RS (h) Method 1 (i) Method 2 (j) Method 3

(k) OCT B-scan (l) RS (m) Method 1 (n) Method 2 (o) Method 3

(p) Manuals (q) RS (r) Method 1 (s) Method 2 (t) Method 3

Figure 4.14: An example segmentation result with CDR = 0.25. The first row contains
the (a) registered fundus photograph with (b) the reference standard boundaries, (c)
the boundaries of the first method (using unimodal region costs), (c) the boundaries
of the second method (using multimodal region costs), and (d) the boundaries of the
third method (using multimodal region plus disc-boundary costs). The blue boundary
corresponds to the optic disc boundary and the green boundary corresponds to the
cup boundary. The second row contains the boundaries of the methods shown on
the SD-OCT projection image. The third row contains a central B-scan of the SD-
OCT with green indicating the rim region and red indicating the cup region from
the different methods. The last row contains the region-based segmentation results
(black = background; gray = rim; white = cup). It is especially noticeable on the
inferior (I) and temporal (T) sides of optic disc boundary that the third method has
the closest boundary to the reference standard. In addition, the unimodal approach
has a relatively smaller optic cup than the multimodal approach in comparison with
the reference standard.
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(a) Fundus (b) RS (c) Method 1 (d) Method 2 (e) Method 3

(f) OCT (g) RS (h) Method 1 (i) Method 2 (j) Method 3

(k) OCT B-scan (l) RS (m) Method 1 (n) Method 2 (o) Method 3

(p) Manuals (q) RS (r) Method 1 (s) Method 2 (t) Method 3

Figure 4.15: An example segmentation result with CDR = 0.44.

Table 4.2: Dice Similarity Coefficients (Mean± SD)

Methods Cup Disc

in-region (OCT) 0.851±0.031 0.735±0.102
in-region (OCT+Fundus) 0.855±0.009 0.781±0.095
in-region + disc-boundary 0.855±0.009 0.824±0.086
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(a) Fundus (b) RS (c) Method 1 (d) Method 2 (e) Method 3

(f) OCT (g) RS (h) Method 1 (i) Method 2 (j) Method 3

(k) OCT B-scan (l) RS (m) Method 1 (n) Method 2 (o) Method 3

(p) Manuals (q) RS (r) Method 1 (s) Method 2 (t) Method 3

Figure 4.16: An example segmentation result with CDR = 0.44.
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Table 4.3: Unsigned Border Positioning Error (Mean± SD)

Methods Cup (pixel) Cup (mm) Disc (pixel) Disc (mm)

in-region (OCT) 2.520±0.723 0.075±0.021 2.053±0.731 0.061±0.021
in-region (OCT+Fundus) 2.262±0.621 0.067±0.018 1.971±0.694 0.059±0.020
in-region + disc-boundary 2.262±0.621 0.067±0.018 1.602±0.587 0.048±0.017

Table 4.4: Signed Border Positioning Error (Mean± SD)

Methods Cup (pixel) Cup (mm) Disc (pixel) Disc (mm)

in-region (OCT) 0.015±1.08 0.000±0.032 0.351±1.03 0.010±0.030
in-region (OCT+Fundus) 0.017±1.01 0.000±0.029 0.171±0.87 0.005±0.025
in-region + disc-boundary 0.017±1.01 0.000±0.029 0.019±0.61 0.001±0.017

border positioning error of the optic cup segmentation of the multimodal methods was

significantly lower than the unsigned border positioning error of the optic cup seg-

mentation of the unimodal method (p < 0.05). As with the DSC values, the unsigned

border positioning errors for the cup were the same for both multimodal approaches.

In addition, the unsigned border positioning error of the optic disc segmentation of

the multimodal methods were significantly lower than the unsigned border positioning

error of the optic disc segmentation of the unimodal method (p < 0.05). Moreover,

the multimodal method that used the disc-boundary information outperformed the

region-only multimodal method as it had a significantly lower unsigned border posi-

tioning error of the optic disc segmentation (p < 0.05).

The signed border positioning errors are reported in Table 4.4. The multimodal

approaches had a significantly smaller positive bias for the optic disc segmentation

than the unimodal approach (p < 0.05). Also, the positive bias of optic disc seg-

mentation for the multimodal approach that used the disc-boundary information was

significantly less than the region-only multimodal method (p < 0.05). However, the

positive bias of the optic cup segmentation for the multimodal method and the uni-
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Table 4.5: CDR analysis. Pearson correlation (r) with
reference standard and the absolute difference from the
reference standard (Mean± SD)

Methods Correlation Difference

in-region (OCT) 0.890 0.101±0.082
in-region (OCT+Fundus) 0.899 0.097±0.076
in-region + disc-boundary 0.928 0.082±0.048

modal method weren’t significantly different (p > 0.1).

The CDR correlations (Table 4.5) of the first and second methods with the refer-

ence standard were not significantly different (p = 0.27). However, the correlation of

the third method with the reference standard was significantly better than the corre-

lations of the other two approaches with the reference standard (p < 0.05). Similarly,

the absolute CDR differences (with the reference standard) of the first and second

methods were not significantly different (p = 0.15), whereas, the third method had

significantly smaller absolute CDR differences with the reference standard than that

of the first and second methods.

4.4 Discussion and Conclusion

In this chapter, we presented a unimodal (from SD-OCT volumes only) and

two multimodal (from SD-OCT volumes and color fundus photographs) machine-

learning graph-based approaches for automated segmentation of the optic disc and

cup. Our results showed that both multimodal approaches outperformed the uni-

modal approach and that the multimodal approach that incorporated an additional

disc-boundary cost term outperformed the multimodal approach that only incorpo-

rated region-based terms. Our multimodal approaches differ from prior work that

has focused on segmenting the optic disc/cup in color fundus images alone [7–15] or

SD-OCT images alone [16–18]. Another difference from prior work is our combined

use of a machine-learning approach with a graph-theoretic approach to simultane-
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ously find the globally optimal disc- and cup-boundary pair (with respect to the cost

function). Thus, in addition to the novelty of the two multimodal approaches for op-

tic disc/cup segmentation, the unimodal (SD-OCT only) approach was novel as well

as prior SD-OCT-only approaches were either classification-based without a graph-

based step [16,17] or focused on only finding the projected BMO using a graph-based

approach without any incorporation of machine-learned costs [18]. An additional,

more subtle, difference from prior work is that our reference standard for the disc

boundary was defined based on the projective location of the BMO from SD-OCT

volumes rather than the fundus-based disc boundary to reflect the current under-

standing of the most appropriate boundary to use for SD-OCT-based definitions of

optic-nerve-head structures.

While our results demonstrated the improved performance using a combined

machine-learning and graph-based multimodal approach over that using a combined

machine-learning and graph-based SD-OCT-only approach, our results did not explic-

itly demonstrate the extent the multimodal approach would provide an improvement

over a fundus-only approach. However, this comparison is perhaps somewhat less

interesting given our prior experience in the improved segmentation results one can

obtain using SD-OCT-only information from that of fundus-only information [7, 88].

For example, in the dataset used in this work, at the intermediate classification stage

(i.e., before use of the graph-based step), using the fundus-only and SD-OCT-only

defined features in this work, the fundus-only approach has a significantly smaller

(p < 0.05) pixel-based classification accuracy (overall: 86%; cup: 78%; rim: 72%;

background: 89%) compared to the SD-OCT-only approach (overall: 95%; cup: 85%;

rim: 83%; background: 96%). While it is possible that use of a different approach

or a different set of fundus-based features could result in higher fundus-only accu-

racies than those resulting from the fundus-only features used in this work, the fact

that the additional inclusion of the fundus features provides an improvement over the
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SD-OCT-only approach is important.

Hu et al. previously described a multimodal approach for the segmentation of reti-

nal vessels in color-fundus photographs and SD-OCT volumes and also demonstrated

that multimodal approaches outperform SD-OCT-only approaches [93]. In that work,

multimodal information was most beneficial for the segmentation of the vessels in the

optic-nerve-head region. This is not surprising as the visibility of retinal vessels in

SD-OCT projection images is often drastically reduced inside the disc region because

of the lack of RPE tissue to offer contrast with the vessel shadows. Correspondingly,

the addition of complementary color fundus information to the SD-OCT information

was particularly beneficial in the disc region. Our present work is consistent with this

prior work as we again find that the complementary color information from fundus

photographs to be particularly helpful in the segmentation of structures (rim/cup in

this case) in the disc region.

As in the multimodal work of Hu et al. for vessel segmentation [93], this work

includes a registration step to register the fundus photograph to the SD-OCT projec-

tion image so that multimodal features can be computed at each projected location.

While a modified ICP algorithm was used for registration in this work, it can be

expected that other successful fundus-OCT registration approaches could be used as

well. However, one potential limitation of the registration step is that any registration

errors (e.g., due to motion artifacts) may limit the local accuracy of the multimodal

features. While registration errors were not a problem in our dataset, it may be useful

in future work to consider developing an approach to automatically assess the quality

of the registration to help provide an estimate of the reliability of the multimodal

features. In cases where the image registration is deemed unreliable, the approach

could depend more on SD-OCT-only features.

The presence of blood vessels near the optic nerve head traditionally presents a

challenge for disc/cup segmentation approaches [18,93,102]. The vessels in this area
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are wider, and their location near the optic disc/cup boundaries could potentially

cause a disturbance of the local geometry and depth measurements (causing misclas-

sification of the A-scans on the vessels used in the cost-function terms or affecting the

layer segmentation locally). In this work, the use of smoothed fundus photographs

in which the blood vessels are less pronounced in addition to our use of a vessel-free

radial projection as a feature for computing the disc-boundary cost function, helped

to minimize the impact of the blood vessels. However, development of alternative

strategies for dealing with blood vessels may prove beneficial in future work.

Because of the ability of random forests to more naturally deal with low-quality or

redundant features during training (compared to other candidate approaches, such as

k-nearest-neighbor approaches), a feature selection stage was not incorporated for the

design of the in-region and disc-boundary cost terms in this work. However, there

of course is still potential value in using a smaller subset of features (e.g., a lower

computation time). Thus, it may useful in future work to evaluate the accuracy with

smaller subsets of features. As a start in this direction, the seven most discriminative

features for the classifier used for generating the multimodal in-region costs included

the optic disc depth information, the outputs of the Gaussian filter (σ = 6) on dark-

bright and (σ = 8) on red-green channels, the a priori probability of pixel being cup

and disc, the OCT projection image, and the average of the intensities of the first SD-

OCT sub-volume above the fitted BM spline surface. The three least discriminative

features included the average of the intensities of the second SD-OCT sub-volume

below the fitted BM spline surface and the outputs of the Gaussian filter (σ = 4) on

the red and blue channels.

While we have only applied our approach to the SD-OCT volumes from a single

manufacturer, it is expected that the general scheme of the proposed method (i.e., use

of multimodal information and combining a machine-learning with a graph-theoretic

approach) would be applicable to other SD-OCT machines as long as the B-scans in
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the y-direction are dense enough to allow the registration of the fundus photograph to

the SD-OCT projection image. Moreover, if the B-scans are too sparse, the SD-OCT

features proposed in this work may not be meaningful or be possible to extract.

In summary, we showed that we can benefit from use of complementary informa-

tion from both modalities instead of unimodal information for segmenting the optic

disc and cup boundaries. Different features were extracted from registered fundus

photographs and SD-OCT volumes to create a multimodal feature set. A random

forest classifier was trained using the multimodal feature set to produce three in-

region cost functions associated with cup, rim, and background regions. A set of

SWT-based features were extracted from SD-OCT volumes to be utilized in training

a random forest classifier for producing the disc-boundary cost function. The graph-

theoretic approach was able to well-define the boundaries of interest using the cost

functions and enabled us to impose the desired constraints to the boundaries. Use

of a similar multimodal graph-based strategy is expected to be beneficial in other

application areas as well.
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CHAPTER 5
COMPUTING RIM-WIDTH-BASED PARAMETERS IN THE

PRESENCE OF EXTERNALLY OBLIQUE BORDER TISSUE (EOBT)

The content of this chapter is presented in [103,104]. Traditionally, the character-

istic structural changes occurring at the optic nerve head in glaucoma have primarily

been assessed through direct funduscopic observation or examination of digital color

(stereo) fundus photographs, and more recently, optical coherence tomography. How-

ever, standard fundus-photograph disc-based measurements, such as the cup-to-disc

ratio, are limited by the ability to reliably delineate clinically meaningful disc and cup

margins [2,5,19,105–107]. Recent work in co-localizing fundus-photograph-based clin-

ical disc margins with underlying structures in optical coherence tomography volumes

has demonstrated that the disc margin as visualized on indirect ophthalmoscopy and

biomicroscopy does not co-localize with a consistent anatomic structure, due, in part,

to variability in presence of externally oblique border tissue (EOBT) and invisibility

of Bruch’s membrane extensions [2–4,6, 19].

In spectral domain-optical coherence tomography (SD-OCT), the three-

dimensional nature allows for the computation of alternative structural parameters

such the Bruch’s membrane opening-minimum rim width (BMO-MRW) [2, 3, 108].

BMO-MRW accounts for different trajectories of the rim tissue [108] and also corre-

lates with retinal nerve fiber layer thickness (RNFLT) and visual field mean devia-

tion significantly better than the traditional clinical disc margin [109]. Furthermore,

BMO-MRW is superior to other structural parameters such as BMO-horizontal rim

width (BMO-HRW), defined as the horizontal distance of the BMO to the ILM sur-

face computed in the reference plane of the BMO (Fig. 5.1), for diagnosing open-angle

glaucoma [3]. Since BMO-HRW is not always the shortest distance from BMO to the

ILM surface (Fig. 5.1b), it is possible that BMO-HRW overestimates the remaining

neuroretinal rim.

However, the development of automated algorithms for determining BMO-MRW



ILM

Sclera

MRW

HRW

(a)

HRW

Sclera

MRW
ILM

(b)

Figure 5.1: Comparing BMO-HRW and BMO-MRW measurements. (a) Example
where BMO-HRW reflects the same distance as BMO-MRW and (b) example where
BMO-HRW does not reflect the shortest distance to the ILM surface (BMO-MRW).

(a) (b)

Figure 5.2: EOBT B-scans where the automated approach [24] is confused between
the BMO and the extension of border tissue (right side); the manual tracing, however,
marks the BMO point.

presents challenges. For example, the anatomy of the border tissue with respect to

the anterior edge of the sclera (e.g. in presence of EOBT [19]) not only could cause

disparity between the traditional clinical disc margin and the BMO-MRW [2] but also

could cause difficulty in detecting the BMO points [24]. As EOBT attaches to the end

of BM surface and merges with BMO, automated approaches [24], and even humans,

may be confused between BMO and the extension of border tissue (Fig. 5.2).

In cases of EOBT, rather than using a point-to-surface shortest distance (BMO-

MRW) that may be subject to difficulties in precisely defining the BMO, in this work,
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Figure 5.3: (a) EOBT case where the closest point to the ILM surface falls on the
anterior surface of border tissue. (b) EOBT case where the closest point to the ILM
surface is BMO (the orange dot).

we propose to instead use the surface-to-surface shortest distance (EOBT-MRW, de-

fined as the distance between the closest point along the extension of the border

tissue to the ILM). In addition to being an easier measure to define (especially for

automated algorithms) in cases of ambiguity between the BMO and EOBT, there

are also situations where the closest point to the ILM surface does not fall on BMO;

rather it falls on the anterior surface of the border tissue (Fig. 5.3). We demon-

strate that relaxing the definition of the BMO-MRW to allow for a surface-to-surface

shortest distance (EOBT-MRW) in cases of EOBT will still allow for similar structure-

structure correlations. Furthermore, we demonstrate that RNFLT correlations with

the surface-to-surface shortest distance (EOBT-MRW) are significantly higher than

correlations with a point-to-surface distance measure from an arbitrary point (e.g.

the ending point of the border tissue) on the EOBT to the ILM (EOBTE-MRW), fur-

ther demonstrating the importance of the proposed surface-to-surface measure rather

than a point-to-surface measure.

In particular, the purpose of this chapter is to compare two structural parameters

(BMO-MRW and the new surface-to-surface measure, EOBT-MRW) in presence of

EOBT through structure-structure correlations of these measurements with RNFLT.
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Additionally, in order to examine which measurement better reflects the remaining

neuroretinal rim, the correlation of RNFLT with BMO-MRW and BMO-HRW are

compared.

5.1 Methods

5.1.1 Data

The dataset includes SD-OCT scans of 44 glaucoma patients in different stages of

glaucoma. The 44 subjects were selected so that the distribution of visual field sever-

ities matched that in the complete dataset used in [110]. Briefly, patients aged 45-80,

diagnosed with glaucoma suspect or open-angle glaucoma were recruited prospec-

tively. Patients with a history of angle closure or combined mechanism glaucoma, or

any non-glaucomatous optic neuropathy, corneal or retinal diseases that could affect

visual field, cataracts or any other disease with visual acuity < 20/40 were excluded.

Based on the mean deviation (MD) of 24-2 HVF threshold testing, the patients were

recruited in an age-matched fashion in one of three approximately equally sized sever-

ity groups including mild glaucoma (including glaucoma suspects) with MD < 6 dB

loss (17 patients), moderate glaucoma with 6 ≤ MD ≤ 12 dB loss (14 patients),

and severe glaucoma with MD > 12 dB (13 patients). Optic nerve head (ONH)-

centered SD-OCT volumes (Cirrus, Carl Zeiss Meditec, Inc.; 200×200×1024 voxels

corresponding to 6×6×2 mm3) were obtained in one eye of each patient. The original

study was approved by the Institutional Review Board of the University of Iowa and

adhered to the tenets of the Declaration of Helsinki. A written informed consent was

given to all participants.

5.1.2 Rim-Width Based Measurements

The internal limiting membrane (ILM) was automatically segmented in each SD-

OCT volume using a graph-theoretic approach [16, 44] and, along with the SD-OCT

volume, transferred to the radial domain using bilinear interpolation (Fig. 5.4). The
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Figure 5.4: Top row shows the red, blue, and green lines on the projection image and
corresponding B-scans in the original Cartesian domain. The BMO identification in
the upper and lower part of the optic disc (red and blue) is difficult. The bottom row
shows how the radial B-scans are acquired and the corresponding projection image
in the radial domain.

radial transformation resulted in 180 radial slices (in increments of 1 degree) such

that the ILM surface was defined and two BMO points were visible on each slice.

The BMO points were identified on each slice using a manual (BMOM) as well as

an automated approach (BMOA). In the manual approach, the BMOM points on 20

evenly spaced radial slices were obtained by consensus manual delineations from three

experts. The locations of BMOM points on the remaining 160 radial B-scans were

defined using piecewise cubic interpolation. For defining the automated BMOA points,

a graph-theoretic algorithm [24] was used which simultaneously segmented the BMOA

points; the surface representing the junction of the inner and outer photoreceptor

segments; and Bruch’s membrane surface (Fig. 5.5). BMOM-MRW and BMOM-HRW

were computed using the manual BMOM points and BMOA-MRW was computed

using the automated BMOA points.

In the cases of EOBT, the extension of border tissue was segmented in order to

be able to compute the EOBT-MRW. In this study, we were interested in examining
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Figure 5.5: The intraretinal layer segmentation. (a) The 3D layer segmentation of
ILM surface (red), photoreceptors inner segments/outer segments (green) and BM
surface (blue). (b) The result of surface + hole segmentation algorithm [24], consid-
ering the opening as the shared hole (yellow circles).

EOBT cases because in presence of EOBT, the closest point to the ILM may fall

on the anterior surface of the border tissue rather than on the BMO (Fig. 5.3). In

particular, in cases of EOBT, the ending point of the EOBT was manually marked

and the anterior surface of EOBT was defined by extending the BM surface to pass

through the BMO point and the EOBT end point. This was performed using a

piecewise cubic interpolation. Hence, EOBT-MRW, as opposed to BMO-MRW, is a

surface-to-surface measure and is computed as the shortest distance between the ILM

surface and the anterior surface of border tissue. If the closest point to the ILM on

EOBT was less than 30 µm away from the BMO, the point was omitted and instead

the MRW was computed from the BMOM point. In addition, EOBTE-MRW was

measured as the distance of the ending point of EOBT to the ILM surface.

To summarize, for each side of each radial scan, the following rim-width measures

were computed:

• BMOM-HRW (horizontal rim width computed based on the manual BMOM

points).

• BMOM-MRW (minimum rim width computed based on the manual BMOM
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points).

• BMOA-MRW (minimum rim width computed based on the automated BMOA

points).

• When EOBT was present, surface-to-surface measure, EOBT-MRW (mini-

mum rim width computed from the anterior surface of border tissue).

• When EOBT was present, EOBTE-MRW (minimum rim width computed

from the ending point of the anterior surface of EOBT).

5.1.3 Structure-Structure Correlations of MRW and
HRW with RNFLT

In order to evaluate the measurements, the structure-structure correlation of each

measurement with RNFLT was computed. The polar plane was divided into four

regions of temporal, nasal, superior, and inferior and all the measurements associated

with a subject were averaged for each of the four regions. The grid was also rotated

7 degrees to take into account the angle of the line connecting the macula and the

center of the optic disc [111]. In addition, all left eyes were flipped to have the

same orientation as right eyes. The RNFLT was measured on a wedge-shape portion

of each region. The wedge-shaped region was bounded by two radii (1.58 mm and

1.88 mm) around the standard peripapillary radius (1.73 mm) in the radial direction

(Fig. 5.6). The mean value of RNFLT was computed in each wedge-shaped region

and was correlated using Pearson correlation with the corresponding mean values of

rim-width measurements.

5.2 Results

Out of 44 patients in the dataset, 27 patients (61%) showed EOBT in at least

one radial B-scan. The distribution of B-scans having EOBT is shown in Fig. 5.7a

which shows that EOBT was more common on the temporal side than on the nasal

side. In 45% of the radial B-scans with EOBT, the closest point to the ILM fell on
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Figure 5.6: The shaded region shows where the mean RNFLT is calculated for the
temporal region. (b) The mask created in (a) on top of an RNFLT map.

the anterior surface of EOBT rather than on the BMO for which the distribution is

illustrated in Fig. 5.7b. In EOBT cases where the closest point fell on the EOBT,

the average distance of this point from the BMO was 100 ± 161 µm.

All structure-structure Pearson correlations of RNFLT with BMOM-MRW,

BMOA-MRW, EOBT-MRW, and EOBTE-MRW in the presence of EOBT are shown

in Table 5.1. The method proposed by Zou et al. [112] for comparing two overlapping

correlations based on two dependent groups was utilized to compare all Pearson cor-

relations reported in Table 5.1. The results showed no significant difference between

the Pearson correlation of BMOM-MRW with RNFLT and that of BMOA-MRW and

EOBT-MRW (p > 0.05). However, the Pearson correlation of EOBTE-MRW with

RNFLT was significantly lower than that of BMOM-MRW (p < 0.05).

The Pearson correlations of RNFLT with BMOM-MRW, BMOA-MRW, and

BMOM-HRW where all B-scans were included, are reported in Table 5.2. No signif-

icant difference was found [112] between structure-structure correlations of BMOM-

MRW and BMOA-MRW with RNFLT (p > 0.05). However, the Pearson correlation

of RNFLT with BMOM-MRW was significantly higher than that of BMOM-HRW with
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(a) (b)

Figure 5.7: (a) The distribution of EOBT B-scans and (b) the distribution of EOBT
cases where the closest point to the ILM surface fell on the anterior surface of the
border tissue.

Table 5.1: The Pearson correlation coefficients of RNFLT and different MRW measure-
ments in all regions where only B-scans containing EOBT were included.

Region RNFL–BMOM RNFL–BMOA RNFL–EOBT RNFL–EOBTE

Temporal 0.77 0.73 0.76 0.52
Superior 0.66 0.64 0.63 0.41

Nasal 0.40 0.43 0.40 0.35
Inferior 0.63 0.64 0.60 0.47
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RNFLT (p < 0.05).

5.3 Discussion and Conclusions

While recent work has demonstrated benefits in using Bruch’s membrane opening-

minimum rim width (BMO-MRW) for the assessment of glaucoma, the frequent am-

biguity in automatically detecting Bruch’s membrane opening in the presence of ex-

ternally oblique border tissue (EOBT) motivated us to define an alternative rim-

width-based parameter in the presence of EOBT – externally oblique border tissue-

minimum rim width (EOBT-MRW) – and to compare it with existing rim-width

parameters. More specifically, in this chapter, we examined the structure-structure

correlations of two recently proposed rim-width-based measures (Bruch’s membrane

opening-minimum rim width, BMO-MRW, and Bruch’s membrane opening-horizontal

rim width, BMO-HRW) and our newly proposed rim-width-based measure (EOBT-

MRW) with retinal-nerve-fiber-layer thickness (RNFLT). Our experiments showed

that in presence of EOBT, there was no significant difference between structure-

structure correlations of BMO-MRW and EOBT-MRW with RNFLT. Furthermore,

the correlation of BMO-MRW with RNFLT was higher than that of BMO-HRW,

which indicates BMO-MRW better demonstrates the remaining neuroretinal rim tis-

sue than BMO-HRW. This was expected as BMO-HRW, by definition, is not always

the shortest distance to the ILM surface, which makes this measurement prone to

overestimating the neuroretinal rim tissue. Our results are also consistent with the

results of previous works [3, 109] that showed MRW is superior to for diagnosis of

open-angle glaucoma [3].

Being able to use EOBT-MRW (a surface-to-surface measure) rather than BMO-

MRW (a point-to-surface measure) is especially important when considering the op-

tions for providing automated MRW measurements (and for the evaluation of associ-

ated automated algorithms). In particular, if an algorithm is able to find the entire

BM surface (including the EOBT extension), our data suggests that this should be
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Table 5.2: The Pearson correlation coefficients of RNFLT with HRW
and two MRW measurements in all regions where all B-scans were
included.

MRW HRW

Region RNFL–BMOM RNFL–BMOA RNFL–BMOM

Temporal 0.64 0.65 0.43
Superior 0.61 0.66 0.55

Nasal 0.71 0.66 0.52
Inferior 0.62 0.62 0.44

sufficient for computing the MRW (as long as the MRW is computed by finding a

surface-to-surface distance) rather than needing to precisely locate the BMO point.

Because it is our experience that finding the entire surface (to include the EOBT

extension) can sometimes be easier (for computers and humans) than finding the

BMO endpoint, this is encouraging to allow for alternative means for automating

the computation of the MRW. This also has implications for carefully considering

how one should evaluate automated algorithms to segment the BMO when the final

desired measurement is the MRW. For example, our automated approach detects the

BM surface along with the opening (BMOA) using a graph-theoretic approach [24].

This approach occasionally, when EOBT exists, segments the extension of border

tissue as part of the BM surface and identifies the BMOA along the anterior surface

of border tissue (because of merging the BM surface endpoint with the extension of

border tissue). In order to examine the MRW measure of the automated approach,

we compared the MRW measures computed using manually identified (BMOM) and

automatically identified (BMOA) BMO points. While all B-scans were included no

significant difference was found between the structure-structure correlations of RN-

FLT with BMOM-MRW and BMOA-MRW.

It is important to note that our results are not suggesting that one can arbitrarily

compute the MRW from any point along the EOBT and expect to have a measure
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that is similar to that of the BMO-MRW; rather it should be measured at the point

where the EOBT and ILM surfaces have the shortest distance from each other. To

further demonstrate this, we measured the distance of the ending point of the border

tissue (as an arbitrary point on the anterior surface of EOBT) to the ILM surface and

compared the correlation with RNFLT of this measurement with that of BMOM-MRW

with RNFLT. The BMOM-MRW had a significantly higher correlation than EOBTE-

MRW with RNFLT which indicates that the new MRW cannot be measured from

an arbitrary point along the anterior surface of EOBT; rather, it must be computed

from the shortest distance between two surfaces.

After all, as RNFLT is an imperfect indicator of true retinal ganglion cell axon

tissue, utilizing RNFLT might not be the best way to compare the performance of

different MRW measurements. Therefore, the current study does not suggest that

EOBT-MRW has an equivalent glaucoma diagnostic performance to that of BMO-

MRW. In addition, having a larger dataset containing greater number of scans with

EOBT might enable us to find a significant difference between two MRW measure-

ments.

In conclusion, although identifying the exact location of BMO for computing the

point-to-surface shortest distance parameter (BMO-MRW) in presence of EOBT is

difficult, the surface-to-surface shortest distance (EOBT-MRW), could be considered

as a relaxed substitute for BMO-MRW as both parameters share the same intent of

measuring the remaining neuroretinal rim tissue. This is expected to lead to more

consistent and reliable automated approaches for computing minimum-rim-width in

a clinical setting.
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CHAPTER 6
MULTIMODAL REGISTRATION OF SD-OCT VOLUMES AND

FUNDUS PHOTOGRAPHS USING HISTOGRAM OF ORIENTED
GRADIENTS

Fundus imaging and spectral domain-optical coherence tomography (SD-OCT)

are two common types of imaging modalities that provide different information about

the human retina. Fundus imaging is referred to as the process of acquiring a 2D

representation of the 3D retina by means of reflected light. With this definition,

the broad category of fundus imaging includes modalities/techniques such as red-free

fundus photography, color fundus photography, stereo fundus photography, scanning

laser ophthalmoscopy (SLO), and fluorescein angiography [50]. On the other hand,

spectral-domain OCT, despite its recent appearance (the first SD-OCT device became

commercially available less than 10 years ago [113]), has been the clinical standard

of care for several eye diseases [50]. Both fundus and OCT imaging techniques are

vastly utilized in diagnosis and management of eye diseases such as diabetic retinopa-

thy, glaucoma, and age-related macular degeneration (AMD). Moreover, studies have

shown that combining complementary information from both sources is beneficial for

automated segmentation of retinal structures such as blood vessels [93] and optic disc

and cup boundaries as discussed in Chapter 4. However, the performance of these

multimodal segmentation approaches is dependent on the quality of the registration.

For instance, in [93], a few scans were excluded from the test set due to relatively

large registration errors.

As mentioned above, there are various techniques for retinal imaging each of which

produces different types of images (i.e. with different size, resolution, and intensity

profile) from the retina. There has been a great deal of effort through a variety of

techniques on registering retinal images generated by different modalities [78–84, 86,

114–119]. Some of the previous works focused on stitching (mosaicing) images of

the same modality with the aim of obtaining a broader field of view [85, 86, 115].



In contrast, there are works that attempted to register multimodal retinal images

including fluorescence angiogram and red-free fundus pairs [78, 116, 120], SLO and

color fundus photographs [90, 121], SD-OCT and color fundus photographs [22, 90–

92, 122]. The focus of current work is on multimodal registration of fundus and SD-

OCT modalities.

Generally, the pixel intensities between multimodal retinal image pairs might be

different; however, compared to other types of multimodal retinal imaging, the in-

tensity profiles of color fundus photographs and SD-OCT images are substantially

different. Hence, in order to benefit from the most dominant structural information

that both modalities share (i.e. retinal blood vessels), the current color fundus and

OCT registration methods [22,91, 92, 122] include a vessel segmentation step as part

of their algorithms. The retinal vasculatures are the best candidates for identifying

the corresponding points (e.g. blood vessel bifurcations and crossing points or blood

vessel ridges) between two modalities.

However, the vessel segmentation errors, in either modality, could potentially

introduce some errors to the registration process as the corresponding points between

image pairs are identified from the blood vessel maps. For instance, the method

proposed in [95] for blood vessel segmentation from SD-OCT modality could produce

false positives due to the presence of the optic nerve head region [93]. Additionally,

segmenting the blood vessels from both modalities is a time-consuming task which

necessitates additional considerations (e.g. parameter tunning) when the dataset

contains different fundus photographs (stereo and non-stereo fundus photographs)

with different scales and sizes such as the one used in this work. The purpose of this

work is to propose a feature-based registration method that is capable of aligning

fundus and SD-OCT modalities without requiring blood vessel segmentation.

Feature-based registration methods have been used for aligning retinal images

and demonstrated successful results [58, 85, 86, 119]. Control points detection is a
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very important step in feature-based registration algorithms as the final landmarks

that are used for computing the registration transformation, are selected from the

CPs. We propose to identify the CPs by detecting the corners (i.e. points for which

there are two different dominant edge directions in a local neighborhood of the point)

in the images using features from accelerated segment test (FAST) corner detection

approach [123, 124] which, as its name suggests, is very fast and computationally

efficient.

In particular, the proposed method starts with a few preprocessing steps including:

1) creating a 2D projection image from the 3D SD-OCT volume, 2) enhancing the

contrast of the images, and 3) rescaling the fundus photographs. Next, the control

points, which are identified by FAST corner detection, are represented by a descriptor.

More specifically, in order to avoid the use of intensity information and benefit from

the structural features (i.e. retinal vasculature) without attempting to segment the

blood vessels, histogram of oriented gradients (HOG) [125] is employed as the CP’s

descriptors. The approximate nearest neighbor method [126] is utilized in a forward-

backward fashion to identify the matching descriptors. Finally, after removing the

incorrect matches, the registration transformation is calculated using random sample

consensus (RANSAC) method [127].

6.1 Methods

The overall flowchart of the proposed method is depicted in Fig. 6.1 and can

be summarized in five major steps as follows: 1) a preprocessing step including

SD-OCT projection image computation, contrast enhancement, and fundus images

rescaling (Section 6.1.1), 2) identifying the control points (Section 6.1.2), 3) comput-

ing gradient-based features (Section 6.1.3), 4) feature matching (Section 6.1.4), and

5) calculating the transformation (Section 6.1.5).
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Figure 6.1: Flowchart of overall method.

6.1.1 Preprocessing

In order to be able to register the 2D fundus photographs to the 3D SD-OCT

volumes, a 2D projection image of the volume is required. The OCT projection

image is obtained using the method proposed in [16] where a multi-resolution graph-

theoretic approach is employed to segment the intraretinal surfaces within the 3D

SD-OCT volumes [16,44] as discussed in Chapter 3. In order to obtain the projection

image, two intraretinal surfaces are segmented: the junction of the inner and outer

segments of photoreceptors (IS/OS) and the outer boundary of the Retinal Pigment

Epithelium (RPE), also called the Bruch’s membrane (BM) surface. A thin-plate

spline is fitted to the BM surface from which the OCT volume is flattened to obtain

a consistent optic nerve head shape across patients [44]. The SD-OCT projection

image is computed by averaging the voxel intensities in the z-direction between the

IS/OS junction and BM surfaces (Fig. 6.2).

Two types of color fundus photographs exist in the dataset used in this work: 1)

stereo fundus images (Fig. 6.3a covering almost 20 degrees field of view), where the

optic nerve head region of the retina is imaged from two different angles and placed

side by side, and 2) ONH-centered non-stereo fundus photographs (Fig. 6.3b), which

cover a broader field of the retina (35 degrees). For the stereo fundus photograph

pairs, the image that has higher quality and less imaging artifact is selected to be
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(a) (b) (c) (d)

Figure 6.2: An example of intraretinal surface segmentation. (a) The central OCT
B-scan and the segmented surfaces: blue is the IS/OS junction, yellow is the BM
surface, and pink is the thin-plate spline fitted to the BM surface. (b) The 3D view
of the segmented surfaces. (c) The flattened OCT B-scan. (d) The corresponding
OCT projection image.

considered for the registration. In addition, there is extra information included on the

fundus photographs (e.g. dates, text, and color bars) which produce strong corners

which could distract the registration process and so were automatically removed from

the images. Here, a binary mask indicating the region of interest of each image was

produced by thresholding the images following by a morphological opening operator

(Fig. 6.3).

Furthermore, the blood vessels have the highest contrast in the green channel of

the fundus photographs; hence only the information of the green channel was used

in our method. The control points in the images were detected by looking for the

corners, which are sensitive to the pixel intensities; therefore, in order to increase the

chance of finding the best matching points, the number of CPs needs to be maximized.

Consequently, the contrast of both fundus photographs (green channel) and the OCT

projection images were enhanced and normalized using the contrast limited adaptive

histogram equalization (CLAHE) method [128].

Since the images are from different modalities, they differ in size and resolution.
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Figure 6.3: Example preprocessing steps on two types of fundus photographs in the
dataset. The interfering details included on the images are shown with green arrows.
Dates are covered for privacy. (a) Stereo fundus photographs containing large imaging
artifact due to which the left-side photo was selected for further processing in (c).
(b) A low-contrast regular fundus photograph. (c) The binary masks that remove the
interfering details, the selected fundus image, the green channel, and the enhanced-
contrast images corresponding to the examples shown in (a) and (b).
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Moreover, the size and resolution of two types of fundus photographs in the dataset

are completely different from each other. In order to bring all the images to a similar

scale and resolution, the fundus photographs are scaled such that their optic disc has

a similar size as the optic disc in their corresponding OCT projection image. Since

the optic disc has roughly a circular shape, the location and size of optic disc in

both modalities is approximated using a circular Hough transform. First, a grayscale

morphological closing operator with a ball-shaped structuring element is applied to

both enhanced images in order to remove the blood vessels (attenuate the dark fea-

tures in the images). Subsequently, the gradient of the closed image is computed

and the circular Hough transform is applied to the gradient magnitude image. The

center and radius of the most dominant circle in the fundus (cf , rf ) and OCT (co, ro)

images estimates the optic disc location and size in both modalities, respectively

(Fig. 6.4). Since the resolution of the OCT projection images are consistent in the

entire dataset, both stereo and non-stereo fundus photographs are scaled (according

to their corresponding OCT projection images) such that rf = ro.

6.1.2 Control Point Detection

A control point (aka interest point) is a pixel which has a well-defined position

and can be robustly detected. Two properties of interest points are having high

local information content and repeatability between different images. Identifying

sufficient number of CPs in images is a key in feature-based registration methods

as lack of a sufficient number of CPs increases the risk of unsuccessful registration

or decreases the robustness of the method significantly. Bifurcations are reasonable

candidates to be utilized as CPs due to the fact that the blood vessels structure remain

unchanged between modalities. However, obtaining bifurcations requires segmenting

the blood vessels from both modalities which could be challenging in poor quality

images. Hence, instead of looking for bifurcations, we proposed to utilize corners in

images as the CPs. Features from accelerated segment test (FAST) [123, 124] was
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(a)

(b)

Figure 6.4: An example of optic disc localization using circular Hough transform. (a)
From left to right are the enhanced OCT projection image, the blue circle representing
the optic disc overlaid on top of the closed image, and the Hough map from which
the dominant circle is identified, respectively. (b) The same sequence of images as in
(a) showing identifying the optic disc from the fundus photograph.
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employed to detect corners in the image as this method has a high accuracy and

robustness and is able to find the corners very fast. Consequently, there is no need

for vessel segmentation and by detecting corners, most of the bifurcations are also

detected as they resemble corners in the images.

The FAST corner detection algorithm determines whether a pixel is a corner

utilizing its neighboring pixel intensities. More specifically, consider an image I and

a query pixel p, which is to be identified as a corner or not, with the intensity of Ip

and also consider a Bresenham circle of radius 3 containing 16 pixels surrounding the

pixel p [124]. The pixel p is identified as a corner if the intensities of N contiguous

pixels out of the 16 are either above (I{N} > Ip + T ) or below (I{N} < Ip + T ) the

intensity of the query pixel, Ip. T is a predefined threshold value and I{N} is the

intensity of N contiguous pixels where N ∈ {9, 10, 11, 12}. The algorithm quickly

rejects the pixels that are not a corner by comparing the intensity of pixels 1, 5, 9

and 13 of the circle with Ip (Fig. 6.5). If the intensities of at least three of these four

locations are not above Ip + T or below Ip− T , then p is not a corner, otherwise, the

algorithm checks all 16 points. This procedure repeats for all pixels in the image. In

order to avoid the distraction caused by the magnified background noise (produced

in the contrast enhancement step) and obtaining so many corners on the background

(especially for OCT projection image), a smoothing Gaussian filter is applied to the

images before corner detection (Fig. 6.6).

6.1.3 Gradient-Based Feature Computation

The method proposed in this work for extracting features has similarities with

SIFT descriptors and is inspired by the descriptor proposed in [125] for human de-

tection. The basic idea behind the feature computation method is characterizing the

local appearance of each CP’s neighborhood by distribution of local intensity gra-

dients or edge directions. More specifically, the neighborhood of size MN × MN

around each control point is defined using small spatial block which is divided into
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Figure 6.5: Illustration of Bresenham circle containing 16 pixels (the red boxes)
around the query point p. An example of N contiguous pixels (for N = 9) is shown
with the cyan dashed line [123].

(a) (b)

Figure 6.6: An example of control point (corner) detection from (a) OCT projection
and (b) fundus images using FAST corner detection method.
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Figure 6.7: An example of HOG descriptor computation from (a) OCT projection
and (b) fundus images for a block size of 4 × 4 and a cell size of 4 × 4. The four
strongest control points and their corresponding HOG blocks are shown on the left
and for better visualization a zoomed-in illustration of one of the blocks with its
corresponding CP (in blue) is shown on the right.

N×N smaller cells of size M×M . The gradient direction and magnitude of all pixels

inside each block are computed and for each cell in the block, a histogram of gradi-

ent directions (i.e. edge orientation) are computed such that the gradient directions

are weighted by their corresponding gradient magnitudes. The gradient directions

are limited to [0◦, 180◦) and binned into 8 bins of [0◦, 22.5◦, . . . , 157.5◦] (Fig. 6.7).

Constraining the directions to 180◦ instead of 360◦ causes the histogram to be less

distinctive, but at the same time, more robust to the intensity change which is quite

possible between multimodal images. The histograms from all cells in the block are

concatenated to form a 1-D vector of size 8 × N × N . In order to further the in-

variance to affine changes in illumination and contrast, all histograms in a block are

normalized such that the concatenated feature vector has a unit size. Therefore, the

normalized concatenated vector, which includes the components of all normalized cell

histograms in a block, is called the histogram of oriented gradient (HOG) descriptor

and represents the local shape characteristics (e.g. gradient structure) of each CP’s

neighborhood.

78



6.1.4 Feature Matching

In order to find the best matching CPs between a pair of multimodal images,

the method in [126] for identifying the approximate nearest neighbors in high di-

mensions was employed. The method eliminates ambiguous matches in addition to

using the match threshold. A match is considered ambiguous when it is not re-

markably better than the second best match. Assume Hf =
{
hf,1, hf,2, . . . , hf,N

}
and Ho =

{
ho,1, ho,2, . . . , ho,M

}
represent the sets of HOG feature vectors from fun-

dus and OCT images, respectively. Here is how the best matching feature from Ho

corresponding to hf,1 is identified:

• First, the sum of squared differences between hf,1 and all vectors in Ho is com-

puted as in Eq. 6.1. The feature vectors having a distance larger than a match

threshold (here 0.2) are eliminated from further investigation.

DFO(1, i) =
128∑
j=1

[
hf,1(j)− ho,i(j)

]2
, i = 1, 2, · · · ,M. (6.1)

• The ambiguous match ratio is calculated by dividing the distance of second

nearest neighbor feature vector by the distance of first nearest neighbor feature

vector.

• If the match ratio between the two distances is smaller than a predefined ratio

threshold, the match is considered ambiguous and eliminated.

The method iterates over Hf until all feature vectors are examined. Even though

this approximate nearest neighbor method produces more reliable matches, if the

images contain repeating patterns (which is not the case for retinal images), the

corresponding matches are likely to be eliminated as ambiguous. In order to be more

conservative, the ratio threshold was set to 0.8 in this study.

Identifying the match pairs utilizing the method described above had the potential

to result in assigning a feature vectors from Ho to multiple feature vector from Hf
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Figure 6.8: Illustration of feature vector matching using approximate nearest neighbor
method in forward (blue) and backward (red) modes. The final matching feature
vectors set (green) only includes the common pairs between forward and backward
modes.

due to the fact that the iterations are performed independently from each other. In

order to solve this issue and identify unique matches, a forward-backward search is

performed. Hence, in the backward mode, the same procedure applies to Ho and

the best matching feature vectors from Hf are identified. The set of final matching

pairs, S, includes only the unique matches which are common between forward and

backward modes (Fig. 6.8).

6.1.5 Transformation Computation

The set of matching CP pairs detected in Sec. 6.1.4 are utilized to compute the

transformation matrix. However, the algorithm does not guarantee 100% accuracy

in matching CPs which results in possible incorrect matches. Therefore, the incor-

rect matching pairs are identified using the geometrical distribution of all matching

pairs. Assume S1×L =
{(
pf (x1, y1), po(x1, y1)

)
, . . . ,

(
pf (xL, yL), po(xL, yL)

)}
. Then,

the Euclidean distance between all CP pairs, dist1×L, in the image domain as well as

the mean, distm, and standard deviation, distsd, of the distance vector are computed.

Consider a pair, (pf (xi, yi), po(xi, yi)), and its corresponding distance, dist(i). If the

points are too close to each other (dist(i) < distm− distsd) or too far from each other

(distm + distsd < dist(i)), the pair is marked as an incorrect matching pair (Fig. 6.9).

Here, in order to be more conservative and keep the high quality matches, the points
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(a) (b)

Figure 6.9: An example of incorrect pair removal. (a) Shows the yellow lines connect-
ing the corresponding matching pairs between images identified using the approximate
nearest neighbor described in Sec. 6.1.4. The incorrect pairs are eliminated in (b).

with the distance of only one standard deviation from the average distance, distm,

were marked as outliers. Identifying the incorrect matching pairs using this procedure

is achievable under the assumption that the number of correct pairs are more than

incorrect pairs and the images are in similar scales, there is no reflection involved,

and the rotation needed to align the multimodal retinal images is minimal.

In addition to removing the incorrect matches, a refinement step is applied to

the CP pairs which allows for small adjustments of CP locations within a small

neighborhood of each CP (5×5 window). The refinement step exists for two reasons:

1) to account for possible errors in corner (CP) detection due to presence of noise,

imaging artifacts and low contrast and 2) since the images come from two different

modalities with significantly different intensity profiles, it is possible that pixels in

the neighborhood of the CP are actually better matching candidates than the CP

itself. Thus, the HOG feature vector is computed for all 25 pixels inside each CP’s

neighborhood (in both modalities) and the two feature vectors with minimum distance

in the feature space are identified and their corresponding pixels are considered as

the new CPs. Note that, both, one, or none of the CPs could be updated through

the refinement step.
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Table 6.1: Quantitative evaluation of the registration using RMS error. All cases
are included.

Methods mean±SD (mm) mean±SD (p) max (mm) max (p)

ICP registration [22] 0.110±0.063 3.67±2.13 0.406 13.54
Manual 0.030±0.025 1.02±0.85 0.157 5.23

Proposed method 0.055±0.039 1.85±1.29 0.264 8.81

In order to estimate the affine transformation, random sample consensus

(RANSAC) method is utilized [127]. Despite removing the incorrect matches from the

matching set, the chance of presence of incorrect matching CPs is not zero. Therefore,

the objective is to robustly calculate the transformation from S which may contain

outliers (i.e., low-quality or incorrect matches). The algorithm performs as follows:

1. Randomly select a subset of three pairs s from S and instantiate the affine

transformation from this subset. Here, the sampling is with replacement.

2. Apply the transformation to the rest of pairs in the set and determine the set of

pairs Si which distance of the transformed control point in fundus image, ĉpf ,

from its corresponding control point in OCT image, cpo, is less than a predefined

threshold. The set Si is the consensus set of the sample and defines the inlier

pairs of S.

3. Repeat the previous two steps a large number of times and select the largest

consensus set Si. The affine transformation is re-estimated utilizing all the CP

pairs in the subset Si [127].

6.2 Experimental Methods

6.2.1 Data

The performance of the proposed method was evaluated on a multimodal dataset

including color fundus photographs and the SD-OCT volumes of of 44 open-angle

glaucoma or glaucoma suspect patients. The optic nerve head (ONH)-centered SD-
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OCT volumes were acquired using a Cirrus HD-OCT device (Carl Zeiss Meditec, Inc.,

Dublin, CA) in one eye (per patient) at the University of Iowa. Each scan has a size

of 200×200×1024 voxels (in the x-y-z direction, respectively) which corresponds to a

volume of size 6×6×2 mm3 in the physical domain, and the voxel depth was 8 bits in

grayscale. Additionally, the optic disc region of each patient’s retina was also imaged

using a fundus camera. Almost half of the patients (twenty-four) were imaged using

a stereo-base Nidek 3-Dx stereo retinal camera (3072×2048 pixels). The remaining

twenty patients had regular color fundus photograph acquired using a Topcon 50-DX

camera (2392×2048 pixels). The pixel depth was 3 8-bit red, green and blue channels.

Some of those pairs were taken at the same day, while others were taken months or

even more than a year apart.

6.2.2 Experiments

Since we are registering multimodal images with completely different intensity

profiles, in order to quantitatively evaluate the proposed method, the intensity-based

metrics are avoided and the evaluation is performed using point-based metrics. The

reference standard needed for the point-based evaluation is obtained by identifying

a set of landmark pairs from the original images manually. In order to assure the

collection of appropriate landmarks capable of a fair evaluation, we marked five pair

of points that were not too close to each other and as much as possible were fairly

distributed. The manual landmarks are mostly selected from the vasculature re-

gions that create unique and recognizable points in both images such as corners and

bifurcations. The manual registration was performed by computing the affine trans-

formation using three randomly selected pairs from the set of landmarks identified

for the evaluation purpose.

In order to present comparative results, in addition to the manual registration,

the performance of the proposed method was also compared to our previous iterative

closest point (ICP) registration approach reported in [22] and used in Chapter 4.
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The ICP-based method does not use the intensity information; however, as part of

the algorithm, blood vessels need to be extracted and the registration transformation

is actually computed using the vessel maps. The registration accuracy was evaluated

using root mean square (RMS) error which measures the amount of misalignments

between the manual landmarks of OCT images and their corresponding transferred

landmarks of fundus photographs:

RMS =

√√√√1

5

5∑
i=1

∥∥po,i − p̂f,i∥∥2 , (6.2)

where po,i and p̂f,i are the i-th manual point in OCT image and its corresponding

transferred manual point in the fundus photograph, respectively. The mean, standard

deviation, and the maximum of RMS errors of the manual and automated approaches

were compared. Furthermore, the running time and the success rate of the registration

methods were compared to each other. The registration was considered successful if

the RMS error was less than or equal to 10 pixels (0.3 mm). The running time of

the manual registration includes the required time for manual landmark identification

and transformation computation. All experiments were performed using a PC with

Windows 7 64-bit OS, 64 GB RAM, and Intel(R) Xeon(R) CPU 3.70 GHz.

6.3 Results

Fig. 6.10 shows the comparative results of registering two pairs of fundus (stereo

and non-stereo) and OCT images using ICP, manual, and the proposed methods.

The checkerboard images are provided for qualitative comparison of the registration

results. Quantitatively, the mean, standard deviation, and the maximum RMS error

calculated using the entire dataset is reported in Table 6.1. Based on the RMS

values, the manual registration and the proposed method had significantly smaller

errors than the ICP registration method (p < 0.05). However, the RMS errors of

the manual registration were not significantly different from the proposed method
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Original Pairs ICP Manual Proposed

A

B

1.67 0.97 1.06

1.52 0.95 1.01

Figure 6.10: Examples of successful registration results using ICP [22], the manual,
and the proposed methods. The green frame in (A) indicates the left image was
selected for the registration. The checkerboard of the registered pairs are also provided
for qualitative comparison of the registration results. The corresponding RMS errors
of the methods are also shown in the green boxes.

(p < 0.05).

The success rate and the running time of the registration methods are reported in

Table 6.2. Similar to the manual registration, the proposed method achieved a 100%

success rate; however, the ICP registration method failed to successfully register five

cases. The running time of the proposed method was significantly lower than the

manual and the ICP registration methods (p < 0.5). Similarly, the running time of

the ICP registration method was significantly smaller than the manual registration
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Original Pairs ICP Manual Proposed

A

B

C

Imaging 
Artifact

Imaging 
Artifact

11.14 0.98 1.46

12.86 1.02 1.93

10.92 1.11 2.05

Figure 6.11: Examples of failed registration (RMS error > 10) using ICP method
where the manual and proposed methods did not fail. Low imaging quality in (A)
and the motion artifacts (located inside the red ovals) in (B) and (C) also caused a
larger registration errors for the proposed methods. The corresponding RMS errors
of the methods are also shown in the green boxes.
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Table 6.2: The success rate and running time (s) computa-
tion.

Methods success rate (%) running time (s)

ICP registration [22] 88.64 28.45
Manual 100 75.71

Proposed method 100 2.34

(p < 0.05). Additionally, Fig. 6.11 shows ICP registration failures (i.e. the RMS error

was greater than 10 pixels) due to having low imaging quality and presence of motion

artifact in OCT projection image. The manual and the proposed methods did not

fail; however, they produced slightly larger registration errors.

6.4 Discussion and Conclusion

In this chapter, we proposed a feature-based registration method for aligning

optic nerve head-centered SD-OCT volumes and fundus photographs. Since the in-

tensity of the images are substantially different, the registration needs to rely only

on the structural features that the image pairs have in common. Whereas previously

proposed fundus and SD-OCT registration approaches often include a vessel segmen-

tation step as part of their algorithms where the errors in vessel segmentation could

potentially propagate into the registration process as well, in this work, we employed

the histogram of oriented gradient features to capture the structural information in

the images so as not to require the segmentation of blood vessels. Eliminating the

vessel segmentation step is beneficial as it prevents propagating the possible segmen-

tation errors (e.g. false positives in the vessel maps near the optic disc [93]) to the

registration process. Additionally, removing the vessel segmentation step reduces the

required time for registering the fundus and OCT image pairs.

In addition to significant intensity change between image pairs, which is one item

that differentiates fundus/SD-OCT registration from other types of retinal image
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registration, existing very low-contrast fundus photographs and presence of extra text

information on the stereo fundus photographs when the second pair is not available

(Fig. 6.10.A) and the presence of imaging artifacts in SD-OCT projection images

cause the registration to be more challenging. Since acquiring SD-OCT volumes

takes a few seconds, the OCT projection images could suffer from motion artifact

(Fig 6.11.B and 6.11.C). Volume truncation is another type of SD-OCT imaging

artifact which appears as a black region in the projection image (Fig 6.11.B) and

causes the registration to be difficult. However, since the transformation matrix is

computed using RANSAC algorithm with enough number of matching CPs between

two modalities, our proposed method was able to successfully manage the imaging

artifacts.

Additionally, our proposed method needs on average less than 3 seconds to perform

the registration which is considerably fast. The most time consuming part of typical

feature-based registration algorithms is identifying the control points for which all

pixels in both images need to be examined. However, utilizing FAST corner detection

for identifying the control points in our proposed method has the advantage of quickly

rejecting the pixels that are not corners using a computationally efficient test on the

neighboring pixels of the query pixel.

Furthermore, the proposed method is capable of registering the macular-centered

OCT volumes and fundus photographs which do not contain the optic nerve head

region. Since the optic disc appears differently in OCT projection images and fundus

photographs, absence of optic disc makes registering the macular-centered retinal

images less challenging. Moreover, the applications of the proposed method could

potentially be extend to retinal mosaicing and registering other multimodal retinal

images such as fluorescein angiography, SLO, and red-free fundus photographs. Our

proposed method could also be extended for the registration of other image pairs,

such as corneal nerve images.
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Even though the histogram of orientated gradient features are not rotationally

invariant, they were suitable for registering the multimodal retinal images in our

dataset, due to the fact that both modalities are acquired in the optic nerve head-

centered mode and therefore, significant rotations are not required for aligning image

pairs. However, employing the proposed method in other applications, where rota-

tion is necessary to register two images, requires replacing HOG with relative HOG

(RHOG) features which are rotationally invariant as they are computed with respect

to the main orientation of the control points. The main direction of each CP is

obtained by computing the resultant of gradient directions of all pixels inside the

neighborhood of each CP using a 2D Gaussian kernel.

In summary, our proposed feature-based registration method was capable of regis-

tering stereo and color fundus photographs to their corresponding SD-OCT projection

images. In particular, after creating the 2D projection image from the SD-OCT vol-

ume, the contrast of the both modalities were enhanced and the fundus photographs

were scaled such that the size of optic discs, which was approximated using a circu-

lar Hough transform, in both images became similar. Next, FAST corner detection

was utilized to identify the control points in both images. The histogram of oriented

gradients was capable of capturing the structural profile of each CP’s neighborhood

without segmenting the blood vessels. In order to identify the best matching CPs,

an approximate nearest neighbor method was utilized in the forward-backward mode

which determines the best matching CPs by calculating the distances descriptors in

the feature space. After removing the incorrect matches and refining the CP loca-

tions, the best affine transform that registered the image pairs was calculated using

RANSAC algorithm. Our feature-based registration method is very fast and outper-

formed our previous ICP registration method described in Chapter 4.
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CHAPTER 7
INCORPORATION OF GRADIENT VECTOR FLOW FIELD IN A

MULTIMODAL GRAPH-THEORETIC APPROACH FOR
SEGMENTING THE INTERNAL LIMITING MEMBRANE FROM
GLAUCOMATOUS OPTIC NERVE HEAD-CENTERED SD-OCT

VOLUMES

The content of this chapter is presented in [129]. The top surface of the retina

and optic nerve head is called the internal limiting membrane (ILM) and is uti-

lized for measuring several structural parameters such as Bruch’s membrane opening-

minimum rim width (BMO-MRW), total retinal thickness, and cup volume. Besides

computing structural parameters from SD-OCT volumes, having a precise ILM sur-

face segmentation is also necessary for extracting different features from SD-OCT

volumes in approaches that utilize machine learning-techniques for segmenting differ-

ent retinal structures such as retinal blood vessels, BMO points, optic disc, and optic

cup [16,22,88,102].

There has been a great deal of research in segmenting the intraretinal surfaces in-

cluding machine-learning based approaches [34–36], model based approaches [38,40],

and graph-based approaches [16, 24, 41, 44, 130]. However, precisely segmenting the

ILM surface in optic nerve head (ONH)-centered OCT, as needed for computing pa-

rameters such as the BMO-MRW of glaucoma patients, is more challenging than

segmenting the ILM from a macular-centered OCT volume. The reason is that, due

to the presence of deeper cups in glaucoma patients, the morphology of the ILM

surface in the ONH region is very different from that of the macular region. Hence,

many graph-based segmentation approaches [16,44] initially designed to segment the

intraretinal layers of the macula or the peripapillary region surrounding the ONH

cannot catch the deep, steeply sloped cups which are characteristics of a glaucoma-

tous ONH. This is due to the fact that the corresponding graph of the OCT volume is

constructed such that each A-scan corresponds to a column in the graph and the ILM

surface must intersect with each column only once. However, precise segmentation of



the ILM surface inside the large and deep cups, present in glaucomatous OCT vol-

umes, requires to intersect with each A-scan multiple times or to allow for sharp and

large transitions (Fig. 7.1a). Shah et al. proposed a graph-theoretic segmentation

method using the range expansion algorithm such that the sharp transitions were not

penalized heavily [130]. More specifically, a truncated convex function was utilized for

controlling the surface smoothness which allowed to preserve the discontinuity of the

ILM surface while encouraged the smoothness. Even though this method improved

the performance of its previous generations (i.e. [16,44]) in segmenting the ILM sur-

face within deeper cups, however, there is a trade-off between preserving discontinuity

and obtaining a smooth ILM segmentation. Furthermore, the approach did not allow

for multiple intersections with A-scans. Consequently, in the presence of steep slopes,

many current ILM segmentation approaches would lead to underestimation of mea-

surements such as cup volume (the volume between the ILM surface and the BMO

reference plane) as shown in Fig. 7.1b and overestimation of measurements such as

minimum-rim width.

In addition to the presence of steep slopes, the presence of large retinal blood

vessels, which is characteristic of the ONH region, causes the accurate segmentation

of the ILM surface to be difficult. The large blood vessels located closer to the top

surface of the retina are able to change the topology of the ILM surface. Since the

current segmentation approaches include the retinal blood vessels as part of the ILM

surface, as a result, the gaps surrounding the blood vessels may include as part of the

ILM surface as well which leads to overestimating the BMO-MRW or underestimating

the cup volume (Fig. 7.2b).

In order to address the segmentation errors mentioned above, we incorporated

the gradient vector flow (GVF) field [131] in a multimodal graph-theoretic approach

to enable dealing with deep cupping as well as retinal blood vessels. In another

application domain, Oguz et al. benefited from GVF field by proposing a graph-
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BMO Reference  Plane
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Cup Volume

Underestimated 
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150 𝜇𝜇𝑚𝑚
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Figure 7.1: (a) ILM segmentation error due to the steep slopes as well as low signal strength.
The red lines indicate segmentation results using the approach of Lee et al. [16] and the
yellow dashed lines indicate the desired segmentation. (b) The resulting underestimated
cup volume. The solid green region is the measure cup volume using automated ILM
segmentation and the underestimated regions are shown with shaded patterns.

Blood Vessel

(a)

Current BMO-MRW

True BMO-MRW
BMO

Blood Vessel

(b)

Figure 7.2: (a) ILM segmentation error due to the presence of blood vessels. The red lines
indicate segmentation results using the approach of Lee et al. [16] and the yellow dashed
lines indicate the desired segmentation. (b) The resulting inaccuracy in computing the
BMO-MRW structural parameter. Underestimating the cup volume because of including
the blood vessel in the ILM segmentation is also observed.
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theoretic method for segmenting multiple objects and surfaces of the brain where in

order to be able to segment the complex-topology surfaces of the brain, the columns in

graph construction were obtained by computing the GVF field. Similarly, in order to

allow for steep and deep cupping, we benefited from the direction of the GVF field to

construct a new set of equally spaced columns along the normals of the ILM surface.

Since the columns in the graph construction must be non-overlapping (otherwise it

may lead to a self-intersecting surface segmentation) and GVF-based columns satisfy

this condition, the OCT volume was resampled using the new GVF-based columns

which also served as the columns in the graph construction.

In order to compute the GVF field, an initial ILM segmentation is required which

was computed using a multiresolution method. Since the GVF-based columns are

perpendicular at the initial ILM segmentation, the ILM surface in the resampled

volume does not contain any steep slope or deep cupping, hence, we segment the ILM

surface using a graph-theoretic approach by incorporating prior shape information

[76]. The blood vessels are dealt with by correcting the initial segmentation as well

as modifying the cost function that was used in the graph-based segmentation at the

blood vessel locations. Since the blood vessels are more visible in fundus photographs

(especially inside the ONH), they are segmented from registered fundus photographs.

Based on the survey conducted by Kafieh et al. [132], the graph-theoretic approach

proposed by Lee et al. is one of the best existing intraretinal approaches and will be

used in this work for comparison purposes.

7.1 Methods

The flowchart of the proposed method is shown in Fig. 7.3. There are four major

steps in the proposed method including: 1) preprocessing, 2) computing initialization

and blood vessel correction, 3) computing GVF-based columns, and 4) identifying

the ILM surface using a graph-theoretic method.
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Figure 7.3: Flowchart of proposed algorithm.

7.1.1 Preprocessing

Due to better visibility of the retinal blood vessel inside ONH in fundus pho-

tographs than in SD-OCT projection images, the blood vessels are segmented from

fundus photographs [94]. In order to be able to map the blood vessel mask to SD-OCT

volumes, the fundus photographs need to be registered to their corresponding SD-

OCT volumes. A 2D projection image is created from SD-OCT volume by segmenting

the intraretinal layers and averaging the intensities within the retinal pigment epithe-

lium (RPE)-complex subvolumes in the z-direction [16]. The fundus photographs are

registered to the 2D projection images using the method described in Chapter 6.

Additionally, in order to obtain a more consistent shape of the ILM within ONH

region across all slices, the SD-OCT volume is transferred from the Cartesian domain

(x × y × z) to the radial domain (r × θ × z) with angular resolution of one degree,

which results in 180 radial B-scans. The computed retinal blood vessel mask is also

transferred to the radial domain.

7.1.2 Initialization

In order to compute the initial ILM segmentation required for calculating the

GVF field, a simple and fast, but reasonably accurate, multiresolution gradient-based
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peak detection method was utilized. The GVF-based columns are computed based

on the location of the initialization, but they extend on both sides of the initial

segmentation such that a sufficiently large band around the initial segmentation is

covered, hence, a rough segmentation of the ILM surface is sufficient. Since a simple

peak detection method is utilized to identify the initialization, the speckle noise of the

images must be suppressed otherwise, the initialization may include discontinuities

along the surface. Therefore, the peak detection is performed in multiple resolutions

where downsampling the volume (by a factor of 2) to three lower resolutions reduces

the speckle noise of the image significantly. The boundary of retina and vitreous body

appears as a strong edge in OCT volumes and in order to capture this dark-to-bright

transition, where the ILM surface generates a large response, the OCT volume at

each level, I(i), was convolved with an asymmetric 3D Gaussian derivative filter as

follows:

E (i)(r, θ, z) =
∂

∂z

 1

2πσirσ
i
θσ

i
z

e

−

( r√
2σir

)2+(
θ√
2σiθ

)2+(
z√
2σiz

)2


 ∗ I(i) , i ∈ {0, 1, 2, 3} ,

(7.1)

where σir, σ
i
θ, and σiz are the standard deviation of the Gaussian filter in the i-

th level in r, θ, and z, respectively. As it is depicted in Eq. 7.1, the derivative

is performed only in z-direction, however, in order to incorporate the contextual

information from surrounding regions and neighboring slices, the filter was designed

in 3D. Since the first dominant high response from the top of each A-scan belongs

to the ILM surface, the peak detector identifies the location of first peak at each A-

scan within the lowest resolution, E (3)(r, θ, z). While the entire A-scan was included

for detecting the peaks in the lowest resolution, in the next resolution instead of

the entire A-scan, the searching interval includes only a small portion of the A-
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scan relative to the location of the peak in the previous lower resolution. Besides

the noise cancellation, the other advantage of obtaining the initialization through

a multiresolution process is that constraining the possible surface locations in the

subsequent resolutions helps avoid finding edges produced by other surfaces.

Since the presence of blood vessels may affect their surrounding regions as well, the

radial blood vessel mask computed in section 7.1.1 was dilated by 2 pixels and mapped

on the initialization such that the surface segmentation at the A-scans containing

blood vessel was ignored and a cubic interpolation was used to compute the new

values at these locations. The vessel-corrected initial segmentation, Sinitial(r, θ), is

used in section 7.1.3 for computing GVF field. Furthermore, the response of the

3D Gaussian filter in the original resolution, E (0)(r, θ, z), is used as part of the cost

function computation of the graph-theoretic approach in section 7.1.4.

7.1.3 Gradient Vector Flow Computation

In the cases of deep cupping, in order to be able to follow the steep slopes, we

resample the volume using a set of equally spaced non-overlapping columns which

are perpendicular to the initialization surface. Since the new columns are also used

as the columns in the graph construction, these columns are computed by following

the direction of the gradient vectors to assure non-overlapping columns. If an SD-

OCT volume in the radial domain is represented by I(r, θ, z), GVF is the vector

field ~V (r, θ, z) =
[
u(r, θ, z), v(r, θ, z), w(r, θ, z)

]
that minimizes the energy function

E [131]:

E =

∫ ∫ ∫
µ|∇~V |2 + |∇I|2|~V −∇I|2drdθdz , (7.2)

where µ is the regularization parameter. Due to the smooth shape of ONH, µ was

not a sensitive parameter for computing GVF field and was set empirically to 0.02.
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The vector field in Eq. 7.2 can be found by solving the following Euler equations:

µ∇2u− (u− Ir)|∇I|2 = 0 ,

µ∇2v − (v − Iθ)|∇I|2 = 0 ,

µ∇2w − (w − Iz)|∇I|2 = 0 ,

(7.3)

where ∇I = (Ir, Iθ, Iz) and Ir, Iθ, and Iz are the derivatives in r, θ, and z directions,

respectively. Therefore, an initial vector field, ∇I, with high gradient at the initial

segmentation is required in order to be able to compute the appropriate GVF field.

The initial vector field, ∇I, is derived from the following 3D binary function I(r, θ, z):

I(r, θ, z) =

{
0, Sinitial > z
1, Sinitial < z . (7.4)

Constructing the GVF-based columns starts from a point on the initial surface

Sinitial(r, θ), and continues by following the directions of the gradient flow on both sides

of the initial surface. In order to find the next point on the column, the direction and

the step size need to be determined. The direction of all normalized gradient vectors

in the neighborhood of the current point (i.e.
{
~Vi/|~Vi| | i ∈ Nc

}
where Nc represents

the neighborhood) are interpolated to find the resultant direction, ~VR. In order to

avoid sampling artifacts, the step size, s, must be smaller than half of the distance

between two voxels in the volume. Therefore, moving in the direction of ~VR with step

size s indicates the next point on the column and assures obtaining non-overlapping

columns. There is no limit on the length of the GVF-based column and the next

points are obtained by continuously moving in the direction of the gradient flow at

both sides of the initial surface. The length of the columns set to 100 in this study

(Fig. 7.4).
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(a) (b)

Figure 7.4: (a) A zoomed-in illustration of gradient vectors, for better illustration of the
gradient vectors, a schematic image is provided where the larger and reddish vectors repre-
sents stronger gradient vectors. (b) The columns constructed by following the flow of the
gradient vectors. The blue line shows the corrected initial segmentation.

7.1.4 Graph Construction and Cost Function
Computation

The radial OCT volume is resampled using the GVF-based columns computed

in section 7.1.3. When the OCT volume is transferred from the radial domain to

the new space, the neighborhood relationships are retained (i.e., the 8-neighboring

columns of a specific column in the radial volume and the resampled volume stay

the same). Due to the fact that the GVF-based columns are along the normals at

the initialization surface, and the columns are extended to the same length in both

sides of the initial segmentation, it is expected that the ILM surface in the resampled

volume appears as a smooth surface with minimal variation in the middle of the cube.

We incorporate this prior shape information in the graph construction which helps

with managing the presence of blood vessels.

Our graph-theoretic approach follows the methods proposed in [44,76]. Consider a

volumetric image in the resampled volume described as I(i, j, k) with dimensions I×

J×K, and the ILM surface S can be defined as a function S(i, j) that maps each (i, j)

pair to its corresponding k value. The surface S has to intersect with one and only one

voxel on each GVF-based column in the resampled domain, parallel to the k–axis and
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spans the entire i × j domain. In order to assure obtaining a smooth segmentation,

the surface smoothness constraints in both i and j directions are enforced. The hard

surface smoothness constraint represents the maximum allowed variation of S between

two adjacent columns in i–direction, ∆i, and in j–direction, ∆j. In other words, if

I(i, j, k1) and I(i+1, j, k2) are two adjacent voxels on the surface S in the i–direction

(k1 = S(i, j) and k2 = S(i, j + 1)), then
∣∣S(i, j)− S(i+ 1, j)

∣∣ ≤ ∆i. Similarly, for

two adjacent voxel on the surface S in the j–direction (I(i, j, k1) and I(i, j + 1, k2))

we have
∣∣S(i, j)− S(i, j + 1)

∣∣ ≤ ∆j.

In order to incorporate the shape prior information, in addition to hard smooth-

ness constraints, soft smoothness constraints, responsible for penalizing the deviation

from the expected shape inside the allowed variations (hard smoothness constraints)

is also enforced [76]. Therefore, the deviation of the surface S from its expected

shape is penalized via a convex function f(h). Specifically, for any pair of neigh-

boring columns p = (i1, j1) and q = (i2, j2) on surface S(i, j), if the expected shape

change of surface S between (p, q) is m(i1,j1),(i2,j2) the cost of the shape term can be

written as:

Cshape =
∑

{(i1,j1),(i2,j2)∈Nc}

f(S(i1, j1)− S(i2, j2)−m(i1,j1),(i2,j2)). (7.5)

Here, Nc indicates the neighboring relationships. Due to the resampling of the volume

along the normals of the initial segmentation, it is expected that the ILM surface

appears as a smooth surface with minimal variation in the resampled volume, hence,

m(i1,j1),(i2,j2) = 0. Since the weights of those graph arcs that are responsible for

enforcing the soft smoothness constraints are related to the second derivatives of the

penalizing function f [76], and the arc weights need to be greater than or equal to

zero, the penalizing function is required to be convex for which a quadratic function

is employed in Eq. 7.5.
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As part of the total cost function of the ILM surface, Ctotal, an edge-based cost

function called the on-surface cost function is employed [44]. The on-surface cost

function reflects the unlikelihood of a voxel being located on the ILM surface (i.e., it

has lower values for the voxels located on the ILM surface). The strategy to deal with

the blood vessels is relying more on the contextual information from adjacent slices,

the shape prior knowledge, and the feasibility constraints than on the on-surface cost

function values. Hence, the on-surface cost function at the blood vessel locations

is modified to enable the graph-theoretic approach to cut through the blood vessels

that change the shape of the ILM surface substantially. The blood vessel location is

obtained by transferring the binary vessel map computed from the registered fundus

photographs to the radial domain. The on-surface cost function can be expressed as:

Con−surface =
∑

{(i,j,k)|k=S(i,j)}

w(i, j)É(i, j, k) , w(i, j) =

{
1/3 , Mvessel(i, j) = 1
1 , Mvessel(i, j) = 0

(7.6)

where w(i, j) controls the modification of the cost function at the blood vessel loca-

tions and Mvessel is the binary vessel map in the radial domain. The edge information,

É(i, j, k), is computed by resampling the inverted response of the 3D Gaussian deriva-

tive filter (E(r, θ, z) computed in section 7.1.2) using the GVF-based columns. The

intensities of E(r, θ, z) were normalized and inverted before resampling, to reflect the

unlikelihood of a voxel being located on the ILM surface. Therefore, the total cost of

finding the ILM surface in the resampled volume can be written as follows:

Ctotal = Con−surface + αCshape . (7.7)

Here, the coefficient α was set to 0.85. As in [76], the optimal ILM surface can be

found by computing the max–flow/min–cut in the arc-weighted graph. Once the ILM
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surface is obtained in the resampled volume, the segmentation is transferred back to

the radial domain.

7.2 Experimental Methods

7.2.1 Data and Reference Standard

The dataset in this work includes optic nerve head (ONH)-centered SD-OCT

volumes in one eye (per patient) of 44 open-angle glaucoma or glaucoma suspect

patients acquired using a Cirrus HD-OCT device (Carl Zeiss Meditec, Inc., Dublin,

CA) at the University of Iowa. The size of each scan was 200×200×1024 voxels (in the

x-y-z direction, respectively) which corresponds to a voxel size of 30×30×2 µm, and

the voxel depth was 8 bits in grayscale. Additionally, the color fundus photograph of

the optic disc corresponding to each SD-OCT scan was taken as well. Twenty-four

patients had stereo color fundus photographs taken using a stereo-base Nidek 3-Dx

stereo retinal camera (3072×2048 pixels). The rest of the patients had color fundus

photographs taken using a Topcon 50-DX camera (2392×2048 pixels). The pixel

depth was 3 8-bit red, green and blue channels.

The reference standard was obtained by randomly selecting two radial slices from

each SD-OCT volume and performing the manual delineation of the ILM surface by

an expert.

7.2.2 Experiments

The performances of the following three methods were compared: 1) the initial-

ization computed using a multiresolution process in section 7.1.2, 2) the ILM seg-

mentation proposed by Lee et al. [16], and 3) the proposed graph-theoretic approach

in this paper. The metrics used to evaluate the accuracy of the segmentation results

consisted of the signed and unsigned border positioning errors calculated in the radial

domain. The unsigned border positioning error was calculated by averaging the dis-

tances between all surface points (on two randomly selected slices) from the reference

101



standard and the corresponding closest points from the segmentation result. The

signed border positioning error was similarly calculated but the signs of the distances

were retained. If the algorithm’s surface point was above the surface point of the

reference standard, the sign was considered positive.

Additionally, in order to further asses the effectiveness of the proposed method in

dealing with the presence of the retinal blood vessels and the steep slopes, the signed

and unsigned border positioning errors were measured locally as well. Hence, for mea-

suring the localized error at the blood vessel locations, only the A-scans intersecting

with blood vessels were considered for measuring the border positioning errors. Sim-

ilarly, the localized error of steep slope is computed at the A-scans containing steep

slopes which were identified by computing the gradient of the ground truth. A paired

t-test was utilized to compare the performances of three methods where p < 0.05 was

considered significant.

Furthermore, the accuracy of the three segmentation approaches were evaluated

using the cup volume. In order to compute the cup volume, the reference plane at each

B-scan is defined as a straight line 150 µm (standard cup offset) above the straight

line that connects the two BMO points [133] and the volume bounded between the

ILM surface and the BMO reference plane was considered as the cup volume. The

average of the cup volumes on the two B-scans with the manual segmentation was

calculated for each subject.

The second structural parameter that is influenced by the ILM segmentation is

BMO-MRW. Hence, we investigate the extent that accounting for the presence of

blood vessels and steep slope in segmenting ILM surface affects the rim-width-based

parameter. To this end, the structure-structure Pearson correlation of RNFLL and

BMO-MRWL computed using the ILM segmentation in [16] and the Pearson corre-

lation RNFLP and BMO-MRWP computed using the ILM segmentation proposed in

this chapter were compared with each other using the method mentioned in Chap-
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(a) (b)

Figure 7.5: Example results on the ONH portion of two slices from two volumes (only
the ONH portion shown for better visibility). Red is the reference standard, green is the
proposed algorithm and dashed cyan is Lee et al. [16] results. (a) Shows the effect of the
presence of blood vessels and (b) shows an example of deep cupping.

ter 5 [112]. BMO-MRW measures were computed on the 20 evenly spaced randomly

selected radial scans where the BMO points were identified by consensus manual

delineations from three experts (the same manual delineations that were used in

Chapter 5).

7.3 Results

Two examples ILM surface segmentation are shown on a single radial B-scan in

Fig. 7.5. The quantitative evaluations of border positioning errors for the entire ILM

surface are provided in Table 7.1. The proposed method had significantly smaller

signed and unsigned border positioning errors than the initialization and Lee et al.

segmentations (p-value < 0.05). In addition, the proposed method improved the

average unsigned border positioning error of Lee et al. method and the initialization

by 47.95% and 68.09%, respectively.

Furthermore, the localized border positioning errors at the blood vessel locations

and steep slopes are reported in Table 7.2. The signed and unsigned border position-

ing errors (at the blood vessel locations) of the proposed method were significantly
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Table 7.1: Average signed and unsigned border positioning
error (Mean ± SD in µm).

Methods Unsigned Signed

Initialization 20.12 ± 10.36 7.23 ± 4.38
Lee et al. [16] 13.68 ± 7.12 5.21 ± 3.45
Proposed 7.05± 3.43 -2.07±1.62

Table 7.2: Localized unsigned and signed border positioning error at blood vessel
and steep slope locations (Mean ± SD in µm).

Blood Vessel Steep Slope

Error Unsigned Signed Unsigned Signed

Initialization 18.23±12.41 12.98±15.91 26.49±17.22 25.89±22.58
Lee et al. [16] 11.58± 9.06 10.28±12.58 16.65±10.37 16.13±13.72
Proposed 4.03± 2.28 1.88± 3.14 5.18± 3.65 4.88± 4.67

lower than the initialization and and Lee et al. segmentations (p-value < 0.05). The

proposed method improved the average unsigned border positioning error (at the

blood vessel locations) of Lee et al. method and the initialization by 65.20% and

77.89%, respectively.

Similarly, the proposed method had significantly lower signed and unsigned border

positioning errors (at the steep slopes) than the initialization and Lee et al. segmenta-

tions (p-value < 0.05). The proposed method improved the average unsigned border

positioning error (at the steep slopes) of Lee et al. method and the initialization by

68.89% and 80.45%, respectively.

The cup volume measurements are reported in Table 7.3. Furthermore, the Bland-

Altman graphs in the Fig. 7.6 clearly shows that initialization and the method in [16]

underestimate the cup volume which resulted in the negative biases, whereas, the

proposed method decreased the existing bias in the other approaches substantially.

Additionally, the cup volume calculated using the manual segmentation and the auto-
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Table 7.3: Cup volume measurements.

Mean± SD in mm2 Pearson Correlation

Initialization 1.756±0.441 98.66
Lee et al. [16] 1.836±0.457 99.02
Proposed 1.900±0.475 99.94

Reference standard 1.905±0.477 –
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Figure 7.6: The Bland-Altman graphs of the cup volume measurement corresponding to
(a) initialization, (b) Lee et al. [16], and (c) the proposed method in comparison with the
manual tracing.

mated approaches were compared using paired t-tests and the results showed that the

cup volume computed using the initialization and the method in [16] are significantly

different from that of the manual segmentation (p < 0.05). However, the cup volume

computed using the proposed method was not significantly different from that of the

manual segmentation (0.05 < p).

The Pearson correlation of the BMO-MRWL and BMO-MRWP was 98.84 and the

Table 7.4: BMO-MRW computation and correlation with RN-
FLT.

Mean± SD in µm Correlation with RNFLT

BMO-MRWL 181.11±84.25 71.16
BMO-MRWP 179.57±80.45 72.42
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paired t-test did not show any significant difference between two measures (0.05 <

p). Additionally, the test for comparing two overlapping correlations based on two

dependent groups did not show significant difference between the Pearson correlations

of the BMO-MRW computations with their corresponding RNFLT measures.

7.4 Discussion and Conclusion

In this chapter, we proposed a multimodal graph-theoretic approach for segment-

ing the internal limiting membrane surface from optic-nerve-head-centered SD-OCT

volumes and the proposed method was tested on 44 glaucoma patients. The existing

ILM segmentation approaches (e.g. the method in [16]) generate erroneous results

inside the optic nerve head region due to the presence of retinal blood vessels and

existing deep cupping and steep slopes in the ILM surface which are very typical in

glaucomatous SD-OCT scans. These issues cause inaccurate measurements of ONH

structural parameters such as Bruch’s membrane opening-minimum rim width and

cup volume. The proposed method deals with the issue of large blood vessels by mod-

ifying the cost function associated with the graph-theoretic approach and eliminates

the steep slopes by resampling the OCT volumes using the gradient vector flow-based

columns.

The large retinal blood vessels locating near the ILM surface, which are character-

istics of ONH region, are able to change the morphology of the ILM surface. Current

segmentation approaches include the blood vessels as part of the ILM surface which

increase the possibility of inaccurate measurement of the structural parameters such

as BMO-MRW. The correct way of dealing with retinal blood vessels is controver-

sial [6], however, we currently argue that doing a better job of only including the

non-vascular tissue can provide the most precise measurements of glaucoma param-

eters of interest such as BMO-MRW, where going around the vessels would lead to

overestimating the MRW. Note that as BMO-MRW is measured as the shortest Eu-

clidean distance from the BMO to the ILM surface, depending on the location of
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blood vessels, and the closest point on the ILM surface to BMO, the BMO-MRW

parameter may or may not be affected by the presence of blood vessel. Hence, it is

possible that BMO-MRW computed using the proposed ILM segmentation stays the

same as that of computed using the existing ILM segmentation approaches.

The proposed method also addresses the issue of segmenting ILM surface inside

deep cups with steep slopes. In order to be able to accurately segment the ILM sur-

face, the segmentation must be able to intersect with A-scans containing steep slopes

more than once, therefore, those segmentation approaches [16, 44] that were initially

designed to segment the intraretinal layers of the macula or the peripapillary region

surrounding the ONH cannot catch the steep slopes inside the deeper cups. This

issue results in inaccurate cup volume measurements [133], and the Bland-Altman

graphs in Fig. 7.6 shows the negative bias of the method in [16] which is associated

with the underestimating cup volumes. Resampling the volume using GVF-based

columns which are along the normals of initial segmentation helps eliminate the steep

slopes and transfers the ILM surface into a smooth surface with minimal variation.

Therefore, the graph-theoretic approach incorporates this shape prior knowledge while

segmenting the ILM surface in the resampled volume. The Bland-Altman graphs in

Fig. 7.6 demonstrate that the proposed method successfully removed the negative

bias existed in the initialization and Lee et al.’s method.

The results of BMO-MRW computations with and without ILM segmentation

correction showed that the effects of proposed method for segmenting the ILM surface

on computing the BMO-MRW was not significant. The reason is that first of all, the

presence of blood vessels or steep slopes do not always intervene the computation of

BMO-MRW, hence in those slices the BMO-MRW with and without ILM correction

are the same. Secondly, the location of closet point on the ILM surface to the BMO

point (from where the BMO-MRW is computed) does not always modified by the

correction. Lastly, even if the ILM correction modifies the location of closet point on
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the ILM surface to the BMO point, the distance between the BMO-MRW parameter

as a distance measure could still remain the same or change slightly. Even though our

results did not show significant difference between BMO-MRWL and BMO-MRWP,

computing the BMO-MRW from a more accurate ILM segmentation results in a more

precise estimation of remaining neuroretinal rim tissue.

While Lang et al. [134] demonstrated that reformatting the OCT volume is ben-

eficial for intraretinal layer segmentation in macular scans and GVF-based columns

have been previously used in the graph-construction for segmenting complex-topology

surfaces of the brain [135], we present a new framework for precise segmentation of

the ILM surface by reformatting the OCT volumes using non-overlapping GVF-based

columns. Additionally, use of multimodal information for the graph-construction and

cost function design for use in the 3D graph-based approach that incorporates shape

priors [76] is generally novel as well. In addition to allowing for a more precise ILM

segmentation for ophthalmic applications, as in this work, it is expected that other

application domains would also benefit from a multimodal graph-construction and

cost-function design framework.

In summary, we proposed a method for accurate segmentation of the ILM surface

within ONH region of OCT volumes where first, the blood vessels are segmented from

the registered fundus photographs due to the higher visibility of ONH region in fun-

dus photographs than OCT projection images. The vessel mask is transferred to the

radial domain along with the OCT volumes and is utilized for two purposes 1) cor-

recting the initial segmentation which is computed using a multiscale peak detection

method and 2) modifying the cost function used in the graph-theoretic approach at

the vessel locations. The radial volumes are resampled using non-overlapping GVF-

based columns which are calculated by following the directions of gradient vector flow

field of the initial segmentation. The optimal solution with respect to the edge-based

and shape-based cost functions is obtained using a graph-theoretic approach in the
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resampled domain and finally the segmentation is transferred back to the original

domain.
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CHAPTER 8
A MACHINE-LEARNING GRAPH-BASED APPROACH FOR 3D
SEGMENTATION OF BRUCH’S MEMBRANE OPENING FROM

GLAUCOMATOUS SD-OCT VOLUMES

The content of this chapter is presented in [136]. As mentioned in Chapter 5,

Bruch’s membrane opening-minimum rim width (BMO-MRW) measures the remain-

ing neuroretinal rim tissue and recent studies showed that BMO-MRW is superior to

other structural parameters for diagnosing open-angle glaucoma [19, 20]. Beside the

necessity of identifying BMO points for computing the BMO-MRW, the BM surface

ending points also define the true optic disc boundary. The 3D imaging ability of

SD-OCT machines showed that the disc margin (DM) from fundus photographs does

not always coincide with the outer border of rim tissue, however, BMO, also referred

to as the neural canal opening (NCO), is the true outer border of rim tissue (optic

disc boundary) which remains unaltered during intraocular pressure changes due to

glaucoma [19–21]. Hence, considering the inherent subjectivity and required time

for manual delineations, in order to be able to identify the true optic disc boundary

and compute the structural parameter BMO-MRW automatically, having a reliable

automated approach for segmentation of BMO points is of great desire.

Various approaches have been employed for segmenting the optic disc from SD-

OCT volumes including pixel-based classification methods [16, 17, 88], model-based

approaches [23], and graph-based approaches [18, 22], among which some techniques

are also utilized for segmenting the optic disc from fundus photographs [7–15]. The

approaches that attempted to segment the BMO from SD-OCT volumes mostly fo-

cused on 2D segmentation of BMO points. For instance, the works in [18] and our

method in Chapter 4 focused on segmenting the 2D projection of BMO points, while

Fu et al. found the BMO points from a number of individual 2D B-scans and fitted

an ellipse to the points to obtain the complete ring-shape BMO segmentation [23].

Our proposed method in [24] was the first step towards directly obtaining a 3D



segmentation, where we presented an automated iterative graph-theoretic approach

for segmenting multiple surfaces with a shared hole. The method was applied to seg-

ment the junction of the inner and outer segments (IS/OS) of the photoreceptors and

the Bruch’s membrane (BM) surfaces and their shared hole (i.e. BM opening). This

method needs an initial 2D segmentation of BMO points, which is obtained from a 2D

projection image, using a method similar to the existing 2D approaches [18,22]. The

corresponding z-values are identified by projecting the 2D segmentations onto the BM

surface. Since the layer segmentation around the ONH region is not precise, the com-

puted z-values are not always accurate. In order to allow for correcting the z-values,

an iteration phase was added to the method within which the z-values along with new

layer segmentations are identified as part of the proposed surface+hole method. The

updated layers produces a new 2D projection image from which an updated 2D BMO

segmentation is obtained and the iterations continue. This surface + hole approach

was shown to be more accurate than existing 2D approaches; however, the presence

of externally oblique border tissue [19], which attaches to the end of BM surface and

appears very similar to the ending point of BM surface sometimes confuses the al-

gorithm and causes continuing of its iterative search on the border tissue such that

instead of the end of the BM surface, the BMO is identified on the border tissue.

Correspondingly, the purpose of this chapter is to address the limitation of our

previous approach by eliminating the iteration phase and presenting an automated

machine-learning graph-theoretic approach that segments the BMO points as a 3D

ring in radially resampled SD-OCT volumes. More specifically, similar to our previous

approach, a 2D initial segmentation is obtained using a graph-theoretic approach.

The volume in the z-direction is downsampled to achieve an isotopic grid and an

estimated 3D location of BMO points is computed by projecting the (r, θ) pairs

onto the BM surface. Instead of defining a mathematical model for BMO points,

which is not feasible as they appear differently even in slices corresponding to a
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single subject, we learn the intensity-based attributes of BMO points a priori. In

particular, based on a random-forest classifier trained using BMO intensity models,

a likelihood map corresponding to the BMOness of voxels located in a small vicinity

of each estimated 3D locations is generated. The inverted likelihood map will serve

as the cost function for finding the 3D BMO path using a shortest-path approach.

The final BMO segmentation in the original image resolution is obtained by refining

the z-coordinates using a similar approach as used to find the BMO path within the

downsampled volume.

8.1 Methods

The overall flowchart of the proposed method is shown in Fig. 8.1. The four

major components of the proposed method are: 1) a preprocessing step including

transferring the SD-OCT volumes to the radial domain and segmenting intraretinal

surfaces (Section 8.1.1), 2) identifying the 2D projected locations of the BMO points

using a graph-theoretic approach (Section 8.1.2), 3) computing a cost function for

identifying the BMO 3D path using a machine-learning approach (Section 8.1.3), and

4) identifying the 3D location of BMO points (as a 3D path within the SD-OCT

volumes) using a shortest path method (Section 8.1.4) and refining the path in the

z-direction (Section 8.1.5).

8.1.1 Preprocessing

In the preprocessing step, the SD-OCT volume is transfered to the radial domain

and the intraretinal surfaces that are needed for identifying the BMO points are

segmented as in Chapter 4. If the original SD-OCT volume in the Cartesian domain

is represented by I(x, y, z), the radial volume IR(r, θ, z) is obtained using bilinear

interpolation of the original volume with angular precision of 1◦ degree. The radial

transformation is performed because the BMO points are more obvious in the radial

volume than in the original SD-OCT volume where BMO points are less obvious in
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Figure 8.1: Flowchart of overall method.

the slices close to the upper/lower part of disc boundary and are not present in the

slices that do not intersect with optic disc (Fig. 5.4). With such a transformation,

there are two BMO points in each radial slice and unlike the original domain, Bruch’s

membrane opening has a stiffer shape especially in the r-direction (i.e. displacement

of the BMO points in-between slices in the r-direction is minimal). This property

will be used later as a constraint for the graph-theoretic approach in Sections 8.1.2.3

and 8.1.4.

Once the radial volume is created, intraretinal surfaces are segmented from the ra-

dial volume using a theoretical multi-resolution graph-based approach [16,44]. Specif-

ically, the intraretinal surface segmentation problem is transformed to an optimization

problem with a number of specific constraints and the goal is finding a set of feasible

surfaces with the minimum cost, simultaneously [44]. Lee et al. [16] proposed a multi-

resolution approach for executing the algorithm which speeds up the segmentation.

We employed this method for segmenting three intraretinal surfaces from the radial

volumes: the first surface is called the internal limiting membrane (ILM), surface two
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(a)

𝑟𝑟𝑟𝑟[1,200]

]

(b)

𝜃𝜃𝜃𝜃[0°, 359°]

]

(c)

Figure 8.2: Radial surface segmentation and projection image creation. (a) Example
radial scan with segmented surfaces where red, green, and yellow are the ILM, IS/OS,
and BM surfaces, respectively. Note that the IS/OS and BM surfaces are interpolated
inside the ONH. (b) The projection image obtained as described in Section 6.1.1. (c)
The reformatted radial projection image in which the 2D BMO projection locations
appear as a horizontal path.

is located at the junction of the inner and outer segments of photoreceptors (IS/OS),

and surface three, called Bruch’s membrane (BM) surface, is the outer boundary of

the retinal pigment epithelium (RPE). These surfaces are segmented because (1) the

ILM surface will be used as a constraint for finding the 2D and the 3D BMO path as

well as computing BMO-MRW, (2) IS/OS and BM surfaces will be used for creating

the radial projection image, and (3) the BM surface also will be used for identifying

the estimated 3D location of the BMO points. Since the RPE-complex, bounded by

IS/OS and BM surfaces, does not exist inside the ONH, the surface segmentations

corresponding to the second and third surfaces are not meaningful inside the opening.

Hence, the second and the third surfaces are interpolated inside the ONH opening

which is approximated by a circle larger than the typical size of the ONH opening

(1.73 mm radius) and centered at the center of the ONH [22]. The lowest point of

the ILM surface is considered as the approximated center of the ONH (Fig. 8.2a).
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(a)

(b)

(c)

Figure 8.3: An example of edge-based cost function computation. (a) The 2nd scale of
SWT decomposition. Note that BMO boundary appears in the horizontal coefficients
while the blood vessels mostly appear in vertical and diagonal coefficients. (b) The
vessel-free radial projection image. (c) The edge-based cost function computed by
applying the Gaussian derivative filter, Fσr,σθ(r, θ), to the vessel-free radial projection
image.

8.1.2 Identifying 2D Projected Location of BMO
Endpoints

The projected locations of BMO points are identified from the radial projection

image in the form of a 2D path utilizing a graph-theoretic approach and an edge-based

cost function computed from the radial projection image. The approach is similar to

our method in Chapter 4, except that here, the total cost function does not include

the in-region cost term and shape prior information is also enforced.

8.1.2.1 Computing the Radial Projection Image

The radial projection image is created by averaging the intensities of the RPE-

complex (the sub-volume between the blue and yellow surfaces in Fig. 8.2a) in the

z-direction (Fig. 8.2b). In particular, the intensities of the sub-volume bounded by

15 voxels (29.3 µm) above the second surface and 15 voxels below the third surface

are averaged in the z-direction and the resulting projection image is reformatted such

that radial and θ values appear on vertical and horizontal axes, respectively and the

BMO projection path appears as an approximately horizontal boundary (Fig. 8.2c).
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8.1.2.2 Computing the Edge-Based Cost Function

An edge-based cost function is designed to have information regarding the loca-

tion of the boundary of interest in the image (here, the 2D BMO trajectory). More

specifically, the edge-based cost function is a probability map that contains the un-

likelihood of pixels locating on the boundary. Therefore, we would like to have a cost

function with low values on the expected location of the boundary and high values

everywhere else.

The BMO boundary and the retinal blood vessels are the two major structures

of the reformatted radial projection images. With the help of the Haar stationary

wavelet transform (SWT) [101], we eliminate the effect of retinal blood vessel in

computing the edge-based cost function. Similar to Chapter 4, we compute the vessel-

free radial projection image (Fig. 8.3b). In order to compute the edge-based cost

function, an asymmetric 2D Gaussian derivative filter Fσr,σθ(r, θ) is applied to the

vessel-free projection image Ivf (r, θ) with the aim of capturing the dark-to-bright

transitions. The filter has larger scale in the θ-direction (σ = 4) than the r-direction

(σ = 2) and computes the derivatives only in the r-direction (vertical axis). If a

general 2D Gaussian filter in the radial domain can be written as:

Gσr,σθ(r, θ) =
1

2πσrσθ
e

−

( r√
2σr

)2+(
θ√
2σθ

)2


, (8.1)

the asymmetric Gaussian derivative filter applied to the vessel-free image can be

expressed as Fσr,σθ(r, θ) = ∂Gσr,σθ/∂r, where σr and σθ are the standard deviations

in the r and θ directions, respectively. The edge-based cost function is shown in

Fig. 8.3c. Therefore, the total edge-cost representing the cost of pixels on a 2D BMO

path, B(θ), can be expressed as
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Cedge =
∑

{(r,θ)|r=B(θ)}

Fσr,σθ(r, θ) ∗ Ivf (r, θ) (8.2)

and the goal is to select B(θ) that minimize the cost function Cedge.

8.1.2.3 Segmenting BMO 2D Path

In order to identify the minimum-cost 2D BMO path, a graph-theoretic approach

proposed by Song et al. [76] is utilized. This approach, is an extension to the method

proposed by Garvin et al. [44] that enables us to constrain the geometry of the

boundary of interest based on prior shape information of the boundary. For instance,

as mentioned in Section 6.1.1, it is known that in the radial projection image, the

BMO boundary is very smooth across slices with minimal changes in the r-direction.

This shape-prior knowledge was enforced as a soft smoothness constraint along with

the hard smoothness constraints [76].

More specifically, consider a 2D image I(r, θ) of size R×Θ in the radial domain

and the 2D BMO boundary B(θ) as a function of θ that maps each θ-value to its

corresponding r-value. In addition, assume that the function intersects with each

column (each θ) once (at r) and the function uses a two-neighbor relationship. Two

types of constraints are applied to the neighboring columns, the hard smoothness

constraint and the shape-prior (soft smoothness) constraints. The hard smoothness

constraint for a pair of neighboring columns (θ1, θ2) in the θ-direction can be written

as below

−∆r ≤ B(θ1)− B(θ2) ≤ ∆r , (8.3)

where ∆r is the maximum allowed change of r between two neighboring columns.

In order to incorporate the shape prior information, in addition to hard smoothness

constraints, the deviation from the expected shape inside the allowed constraint is

penalized as well [76]. A convex function f(h) penalizes the cost of the boundary if
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the change of the boundary is deviated from its expected shape. Specifically, for any

pair of neighboring columns (identified by Nc) such as (θ1, θ2) on boundary B, if the

expected shape change of boundary B between (θ1, θ2) is m(θ1,θ2) the cost of the shape

term can be written as:

Cshape =
∑

{(θ1,θ2)∈Nc}

f(B(θ1)− B(θ2)−m(θ1,θ2)). (8.4)

Here, m(θ1,θ2) = 0 as we expect to have very smooth BMO boundary with minimal

change between neighboring columns. The penalizing function f needs to be a convex

function for which a quadratic function is chosen. The total cost of finding the initial

2D BMO boundary B consists of both edge-based and shape prior cost functions

which can be expressed as follows:

CB = Cedge + αCshape . (8.5)

The coefficient α determines the impact of shape prior cost function with respect

to the edge-based cost function. Using a training set, the parameter α was set to 0.7

in this study. The optimal boundary can be found by computing the maxflow/min-

cut in the arc-weighted graph as in [76]. At this step, the 2D BMO locations were

identified using which the location of 3D BMO points were estimated by projecting

the 2D locations onto the BM surface.

8.1.3 Computing Machine-Learning-Based 3D Cost
Function

In order to compute the 3D cost function for more precisely identifying the 3D

BMO locations, a machine-learning based approach is utilized. First, to obtain an

isotropic grid, the radial OCT volume is downsampled in the z-direction to reflect

its physical resolution such that the size of each pixel in the r-z plane changes from

30µm× 2µm to 30µm× 30µm. For each subject in the training set, a set of intensity-
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based features are extracted from each BMO location. An intensity model of BMO

(called BMOL to represent the low-resolution BMO model) is created from the ex-

tracted features using PCA technique. In order to train a random forest [99] classifier,

the same set of intensity-based features are extracted from BMO points (positive) as

well as non-BMO points (negative) and projected to the BMOL model. The classifier

computes the “BMOness” of each point in the vicinity of estimated 3D BMO loca-

tions (explained in section 8.1.3.2) for subjects in the test set. The inverted BMOness

probability map will serve as the 3D cost function of the shortest path method for

identifying the 3D BMO locations (Section 8.1.4).

8.1.3.1 Computing 3D PCA-Intensity BMO Model

In order to compute the 3D intensity model of BMO, three types of intensity

features are computed at each BMO point: 1) neighborhood intensity profile (NIP),

2) steerable Gaussian derivatives (SGD), and 3) Gabor features. Since the radial

OCT volumes are created by sampling the original OCT volume in a circular pattern

(Fig. 5.4), the first and last slices are considered as neighbors during feature extrac-

tion. The BMOL intensity model consists of a number of PCA-based models created

from each feature category. Before feature extraction, the intensities of the radial

OCT volume are linearly normalized to the [0, 255] interval such that the intensity

scale throughout the dataset is consistent.

The NIP feature provides information regarding the 3D intensity profile of the

query point’s neighborhood. NIP features are computed using a mask of size 9×9×3

within which 48 neighbors around the query point in each of current, previous, and

next slices are marked (a total of 144 features). The 48 neighbors are inspired by the

positions of offsets used in the FAST-ER corner detector [137]. The difference of the

query point’s intensity and the intensities of its 144 neighbors are computed to learn

the 3D intensity profile around a BMO point.

A set of 3D steerable Gaussian derivative filters with σ = {0.5 : 0.5 : 3} and
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φ = {0◦ : 30◦ : 359◦} are used to reflect the intensity change around a BMO point (a

total of 72 features). Assume Gφσ (r, z, θ) is a symmetric 3D Gaussian filter and (· · · )φ

represents the rotation operator in the r-z plane such that Fφ
◦
0

σ (r, z, θ) is the rotated

version of Fσ(r, z, θ) at angle φ◦0 in the r-z plane. Thus, the 3D steerable Gaussian

derivative filter, Fφσ (r, z, θ), can be expressed as follows:

F0◦

σ (r, z, θ) =
∂

∂r
Gσ(r, z, θ) ,

F90◦

σ (r, z, θ) =
∂

∂z
Gσ(r, z, θ) ,

Fφσ (r, z, θ) = cos (φ)F0◦

σ (r, z, θ) + sin (φ)F90◦

σ (r, z, θ) .

(8.6)

As depicted in Eq. 8.6, the derivative is taken only in the r-z plane, however, in order

to incorporate the 3D contextual information, the SGD filters are designed in 3D to

integrate information from neighboring slices as well.

A set of Gabor filters [138] extract localized frequency information (i.e. textural

information) from the region of interest. The Gabor filters are represented as:

GBσ,γ,λ,φ,ψ(r, z) = e−
r′2+γ2z′2

2σ2 e
i
(
2π r
′
λ
+ψ
)
,

r′ = r cosφ+ z sinφ , z′ = −r sinφ+ z cosφ .

(8.7)

where σ, γ, λ, φ, and ψ are the scale, spatial aspect ratio, wavelength, orientation, and

the phase offset, respectively. Since the Gabor filters are symmetric, the filter bank

includes 6 scales and 6 orientations of σ = {0.5 : 0.5 : 3} and φ = {0◦, 30◦ : 179◦}.

The wavelength (λ) was set to σ/0.56 as this corresponds to a half-response spatial

frequency bandwidth of one octave. The spatial aspect ratio and the phase offset

were set to γ = 1 and ψ = 0◦, respectively.

Once the intensity features are extracted from the BMO points, in order to reduce

the dimensionality of the feature set (144 NIP, 72 SGD, and 36 Gabor features), PCA

was utilized to create 13 PCA-based intensity models by retaining more than 90% of
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the variation in each category. The PCA-based intensity models consisted of 1 NIP

model, 6 SGD models corresponding to the 6 different scales used for creating SGD

filters, and 6 Gabor models corresponding to 6 scales of Gabor filters.

8.1.3.2 Classification

For training, the search region is limited to a small vicinity of each BMO point

which is the region inside a donut defined by two ellipses centered at each BMO

location. It is known that BMO always locates below the ILM surface; hence, if

any parts of the search region fall above the ILM surface, they are excluded for

feature extraction (e.g. the shaded region in Fig. 8.4a). The area inside the smaller

ellipse represents the inherent subjectivity of manual delineation for identifying a

BMO point and the positive class members are selected from this region. Since the

training set is highly skewed (i.e. only one BMO point exists in each search region)

and to reflect the inter-observer variability, we consider each BMO point along with

its 4-neighborhood pixels as positive class (a total of 5) and randomly sampled 20

points from the search region (the area between the outer and inner ellipses) to

represent the negative class (Fig. 8.4a). The appropriate size of the search region was

computed in the training set such that in addition to the manual delineation (true

BMO locations), an estimated 3D location for each BMO in the training set was

computed by projecting the 2D location (i.e. (r, θ)-values) of each BMO point (that

obtained in Section 8.1.2.3) to the BM surface. The estimated and true locations of

BMO points were compared to obtain the range of estimation error. The radii of outer

ellipse were computed such that more than 99% of the estimated BMO locations were

included in the search region (rbig = 300µm, rsmall = 120µm). The radii of the inner

ellipse were set to rbig = 90µm, rsmall = 45µm. The same set of intensity features that

were used for creating the BMOL model were extracted for both classes. The features

were projected to the BMOL model using their corresponding eigenvectors that were

computed for creating PCA models. The number of trees was set to 500 and the
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number of variables available for splitting at each tree node was set to square root of

total number of predictors (28 NIP, 12 SGD, and 21 Gabor→
⌈√

#predictors
⌉

= 8).

For testing, in order to locate the search region, which is an ellipse with the same

size as the outer ellipse of the donut used for training, we need an estimation of BMO

location. Similar to obtaining the estimated location of BMO points in the training

set, the 2D location (i.e. (r, θ)-values) of each BMO point computed in Section 8.1.2

were projected to the BM surface (the yellow surface in Fig. 8.4b) to estimate the

corresponding z-values. All voxels inside the search region in the testing set are

potential candidates for being a BMO point (Fig. 8.4b). Hence, the intensity features

are extracted for all points inside the search region and projected to the BMOL model

using their corresponding eigenvectors.

The RF classifier computed the BMOness of all voxels inside the search region

and generated the 3D likelihood map of voxels being a BMO point. The inverse of

likelihood map (Fig. 8.4c) was utilized in the total cost function of finding the 3D

BMO path.

8.1.4 Identifying the 3D BMO Path Using Dynamic
Programming

The problem of finding the BMO 3D path is formulated as a shortest-path prob-

lem. Here, the goal is to find a path with minimum cost that satisfies a set of con-

straints. Assume that a directed acyclic graph (DAG) G(V,E) is constructed from

the radial volume R of size R×Z×Θ with non-negative edge and node costs and we

want to find the BMO locations as a minimum-cost 3D path P = {VP , EP} within G.

Each voxel in the volume is represented by a node in the graph; hence, the number

of nodes in the graph, |V |, is equal to the number of voxels in the volume. Each

node is connected only to its neighbors (i.e., the feasible nodes in the subsequent

slice). As there is only one BMO endpoint in each slice, the nodes in the same slice

are not connected to each other. The neighboring constraint in the r-direction and
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Donut of Search 
Region

BM Surface

(a)

Search Regions
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Figure 8.4: (a) Illustration of the donut of search region for training set. The negative
class (cyan dots) are randomly sampled from the area between ellipses and the positive
class (yellow crosses) are taken from the area inside the small purple ellipse. (b)
Illustration of search region for testing set which is an ellipse with the same size as the
outer ellipse (dark blue) of the donut around the estimated 3D BMO location (yellow
cross). The green shaded areas in (a) and (b) are excluded from the search region due
to the fact that BMO never locates above the ILM surface. (c) A slice (corresponding
to the B-scan shown in (b)) of the 3D cost function utilized for identifying the BMO
3D path which is obtained by inverting the output of the RF classifier.

z-direction are ∆r = 2 and ∆z = 1, respectively which means the neighborhood of

each node is a 3× 5 rectangle in the next slice such that there is an edge between the

node and its neighbors (Fig 8.5). The neighbors of each node in the subsequent slice

is specified according to the maximum variations of BMO paths in-between slices in

the training set. Additionally, since the BMO path is a closed circular path in the

Cartesian domain, we need to assure that the computed shortest path is a closed loop

(i.e., the first and last radial slices are considered as adjacent slices)

There are two types of costs in the graph: edge costs and node costs. The edge

costs are responsible for smoothness of the path and they penalize the deviations

from the BMO location in the previous slice. The penalizing function in r-direction

is fr = (rθ1 − rθ2)
2 and in the z-direction it is fz = |zθ1 − zθ2| which generate the

following edge weights for all neighborhoods:

Wr =

[
4 2 0 2 4
4 2 0 2 4
4 2 0 2 4

]
, Wz =

[
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

]
(8.8)
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Figure 8.5: Graph construction. The are weighted edges between each node (green)
and its neighboring nodes (red). The neighboring constraint in r-direction (∆r) and
in z-direction (∆z) determine the amount of allowed variation from slice to slice.

The cost of the edge (u, v), Cuv, connecting nodes u = (zu, ru, θu) and v = (zv, rv, θv)

is obtained by adding the weights (assuming Wr and Wz elements are expanded at

−2 : 2 and −1 : 1 in r and z directions, respectively) as follows:

Cuv = Wr(zu − zv, ru − rv) +Wz(zu − zv, ru − rv). (8.9)

Hence, the total cost of a feasible BMO path is as follows:

CP =
∑
V ∈VP

CV (rV , zV , θV ) + β
∑
E∈EP

CE (8.10)

where CV is the 3D node cost computed by the random forest classifier in Sec-

tion 8.1.3.2 and 0 < β < 1 determines the importance of edge cost with respect

to the node cost. In order to reflect the anatomical information that the BMO can

touch the ILM surface but never pass it, the nodes in the search region that fall above

the ILM surface are not considered as neighbors of any node in the graph (there is

no edge connecting them to any other nodes).
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In order to compute the minimum-cost shortest path through the constructed

graph, dynamic programming (DP) approach is utilized. In order to solve the problem

using DP we need to define the subproblem and the recursive formulation to solve the

problem as well as the base case. Suppose we add a dummy node, s, and we connect

all nodes in the first slice to s using identical zero-cost edges. Now the problem

becomes to find the minimum-cost path from s to any node located in the last slice

(the enforcement of circularity constraint will be explained later). We know that if

s  u  v is a shortest path from s to v, this implies that s  u is a shortest

path from s to u, as well; otherwise if there was a shorter path between s and u

we would obtain a better path between s and v by replacing the s  u with the

shorter path. But we assumed that s  u  v is a shortest path between s and v,

so we have a contradiction. Based on this idea, we define the subproblem. Let us

assume OPT (v, k) is the minimum-cost path from s to node v in slice k, the recursive

formulation for OPT (v, k) can be written as the following:

OPT (v, k) = min
u∈V

(u,v)∈E

{
OPT (u, k − 1) + Cuv + CV (rv, zv, θv)

}
. (8.11)

and the base case is OPT (v, 1) = CV (rv, zv, θv). The optimal solution can be effi-

ciently computed using dynamic programming by computing the values in order of

increasing k.

Here, the circularity constraint means that, assuming the first and last slices are

adjacent slices, the path ends at one of the allowed neighbors of the starting node.

In order to ensure that this condition is satisfied, we found all possible shortest paths

that satisfied the circularity condition and picked the path with the minimum cost.

To find all the shortest path satisfying the circularity constraint, we forced the path

to start at a specific node in the first slice and end at one of its neighbors in the

last slice. The enforcement was performed by deliberately increasing the cost of all
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nodes in the search region of the first slice except for the starting node and repeating

the same action for all nodes in the search region of the last slice except for the

neighboring nodes.

8.1.5 Refinement of BMO Path in the z-Direction

The BMO path computed in Section 8.1.4 needs further refinement as the path

was found in the downsampled (in the z-direction with 30 × 30µm voxel size in r-z

plane) volume. Processing the data initially in the isotropic grid was beneficial for

easily setting up the smoothness/neighborhood constraints for graph construction,

saving time and space for extracting the features, training the RF classifier, and find-

ing the shortest path (especially for computing all possible shortest paths satisfying

the circularity constraint). In order to obtain the BMO path in the original image

resolution (30 × 2µm voxel size in r-z plane), a similar method as used to find the

BMO path in the downsampled volume was utilized. However, the search region for

refinement was restricted such that it only consisted of those 15 voxels in the original

resolution that corresponded to the BMO point found in the lower resolution. There-

fore, as r-values were fixed during this step, the refined z-values were computed as a

shortest path with the circularity constraint within a small 2D image of size 15× 360

in Z ×Θ.

The node cost computation procedure is similar to that of Section 8.1.3. From

the volumes in the training set, a new intensity model reflecting the intensity profile

around the BMO in the original resolution was created (called BMOZ representing

the BMO model with original resolution in the z-direction). The model was obtained

using the same set of features as in Section 8.1.3.1 and applying PCA such that 90% of

the variation in the feature set was retained. For training the RF classifier a 15-voxel

length array around each BMO point in the z-direction was involved. The positive

class (BMO) included the BMO point itself and the voxels right above and below it

(in order to resemble the inter-observer variability) and the negative class (non-BMO)
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Figure 8.6: Refinement Graph, GZ , construction. The red box indicates one voxel
on the BMO path in the downsampled volume which corresponds to 15 voxels in the
original resolution. The edges are color coded with warmer colors corresponding to
higher weights. For a particular node (green) in slice θ1, all nodes in the subsequent
slice, θ1 + 1, with a distance less than ∆d are considered as neighbors. The yellow
nodes indicate those nodes with a distance larger than ∆d.

included the rest of the array (a total of 12). The intensity-based features of all points

in positive and negative classes were computed and projected to the BMOz model and

the RFz classifier was trained utilizing the projected intensity features. The number

of trees and variables to be randomly extracted at each decision split were set to 500

and the square root of number of features, respectively.

As mentioned above, each BMO point (found in the lower resolution) contributes

15 voxels from the original resolution to the test set. The intensity-based features

were computed for all points in the test set and projected to the BMOz model. The

trained RFz classifier produced the likelihood map of each node being BMO. The

inverted likelihood map served as the node cost in the graph construction. The graph

GZ = (VZ , EZ) consisted of 15 × 360 nodes and edges existed only between each

node and its neighbors in the subsequent slice. The furthest neighbor of each node

127



has at most ∆d distance in the z-direction for which the ∆d is computed from the

training set. The edge weight increases (Fig 8.6) as the distance of neighbors becomes

larger via the penalizing function fd = |zd1θ1 − zd2θ2| . The final 3D BMO path was

obtained by finding the shortest path with circularity constraint using the dynamic

programming approach similar to that in Section 8.1.4.

8.2 Experimental Methods

8.2.1 Data

The training dataset includes 25 glaucomatous SD-OCT scans centered at the op-

tic nerve head that were acquired using a Cirrus HD-OCT device (Carl Zeiss Meditec,

Inc., Dublin, CA) at the University of Iowa. The size of each scan was 200×200×1024

voxels with a voxel size of 30×30×2 µm in the x-y-z direction. Similarly, the testing

set includes 44 patients diagnosed with glaucoma suspect or open-angle glaucoma and

an optic nerve head (ONH)-centered SD-OCT volumes (Cirrus, Carl Zeiss Meditec,

Inc.; 200×200×1024 voxels corresponding to 6×6×2 mm3) obtained in one eye of

each patient.

8.2.2 Reference Standard

For training set, the BMO points were marked on all radial B-scans such that one

expert first traced the BMO points on the 3D SD-OCT volume with two additional

experts providing corrections resulting in final tracing that was the result of the

consensus of three experts through a discussion. For the testing set, however, the

BMO points were identified on 20 evenly-spaced randomly-picked radial slices by

consensus of manual delineations from three experts (a total of 40 BMO points for

each subject).
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8.2.3 Experiments

As two separate datasets were available for training and testing purposes, the

proposed method used the entire training set for creating the BMO models and

training the classifiers and it was tested on the entire test set. The performance

of the proposed BMO identification method (BMOP) as well as our previous iterative

method [24] (BMOI) were evaluated on the 20 slices of each subject with manual

delineation (BMOM). The signed and unsigned distances of automated BMO points

with manual BMO points in r-direction and z-direction, were measured separately. If

the automated methods identify the BMO closer to the optic disk center, the sign of

distance in r-direction is positive. Similarly, if the automated BMO (BMOP/BMOI)

located below the manual BMO (BMOM), the sign of distance in z-direction is pos-

itive. In addition, the distance of automated and manual BMO points in r-z plane

was measured.

Furthermore, as enabling to automatically compute the BMO-MRW measure is

one of the major applications of our proposed method, this structural parameter was

computed using manual (BMOM-MRW), proposed method (BMOP-MRW) and the it-

erative approach (BMOI-MRW). The signed and unsigned differences of BMOP-MRW

and BMOI-MRW with BMOM-MRW (called the BMO-MRW error) were calculated.

The Pearson correlation as well as root mean square error (RMSE) of automated

BMO-MRW measures with respect to the manual BMO-MRW were also computed.

Zou’s method for comparing two overlapping correlations based on two dependent

groups [112] was utilized to compare the Pearson correlations of BMOM-MRW with

BMOP-MRW and BMOI-MRW (p-values < 0.05 was considered significant).

8.3 Results

Fig. 8.7 shows example results of BMO identification and BMO-MRW computa-

tion using the automated methods and the reference standard. For better visualiza-

tion, only the central part of each B-scan is shown. The first row in Fig. 8.7 shows an
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example that both automated methods successfully identified the BMO points. The

second and third examples demonstrate how presence of the externally oblique border

tissue causes erroneous BMO identification for the automated approaches; however,

the proposed method is less affected than the iterative approach. The externally

oblique border tissue attaches to the end of BM surface and resembles the BMO

points which influences the automated methods. The last example demonstrates a

case that the results of both iterative approach and the proposed method are affected

by the presence of an ambiguous border tissue. In such cases, without using the 3D

contextual information, it is very difficult (even for humans) to mark the exact loca-

tion of BMO. Note that when there is no border tissue present, the iterative and our

proposed methods have comparable performances (Fig. 8.7).

The unsigned and signed BMO identification errors in r-direction, z-direction,

and r-z plane are reported in Table 8.1. Based on BMO identification errors, the

proposed method outperformed our previous iterative approach [24] in z-direction,

r-direction, and r-z plane (p < 0.05). Similarly, the signed BMO identification error,

showed that the proposed method has significantly lower errors in r and z directions

than the iterative approach (p < 0.05). The maximum unsigned BMO identification

error in r and z directions and in the r-z plane for the proposed (iterative) method

were 76.5 (148.5), 42.8 (92.4), and 85.1 (166.17) µm, respectively.

Table 8.2 shows the measurements associated with the structural parameter BMO-

MRW including unsigned and signed BMO-MRW error and RMSE. Based on the

unsigned BMO-MRW error, the proposed method had a significantly lower BMO-

MRW error than the iterative approach (p < 0.05). Similarly, the signed BMO-

MRW error showed that BMOP-MRW has significantly smaller bias than BMOI

(p < 0.05). The mean±standard deviation of manual and automated BMO-MRW

measures were 182.41±86.07 µm (BMOM-MRW), 184.46±81.61 µm (BMOP-MRW),

and 187.33±88.51 µm (BMOI-MRW), respectively. The maximum unsigned BMO-
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Figure 8.7: Example results, left column is the original B-scan along with the ILM
surface and the right column demonstrates the segmentation results. The blue, yellow,
and green circles indicate the BMOP, BMOI, and BMOM, respectively. The lines
connecting the BMO points to the ILM surface, indicate the corresponding BMO-
MRW measures.
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Table 8.1: Unsigned and signed BMO identification error in r-direction, z-
direction, and r-z plane in µm (Mean± SD).

Unsigned Signed

Error Antony et al. [24] Proposed Antony et al. [24] Proposed

r-direction 49.53±30.41 37.98±14.91 26.49±40.22 -9.49±24.58
z-direction 31.58±21.06 22.28± 8.58 25.45±14.37 8.33±17.72
r-z plane 63.03±36.28 49.28±16.78 – –

Table 8.2: BMO-MRW error measurements in µm
(Mean± SD).

Error Antony et al. [24] Proposed

Unsigned error 26.65±13.27 22.22± 5.99
Signed error 6.61±18.59 - 0.30±12.44

RMSE 17.99± 8.15 11.62± 4.63

MRW error of the proposed (iterative) method was 38.08 (75.10) µm. Furthermore,

the proposed method had a smaller RMSE than the iterative approach for computing

the BMO-MRW (p < 0.05).

The comparison of Pearson correlations of BMOM-MRW with BMOP-MRW

(0.992) and BMOI-MRW (0.980) using the method in [112] showed that the proposed

method had significantly higher correlation with the reference standard than the it-

erative approach (p < 0.05). Additionally, Fig. 8.8 depicts the Bland-Altman plots

of BMOP-MRW and BMOI-MRW with respect to BMOM-MRW where the tighter fit

and smaller error of the proposed method in computing the BMO-MRW are observ-

able.

8.4 Discussion and Conclusion

In this chapter, we presented a machine-learning graph-based approach for au-

tomated segmentation of Bruch’s membrane opening from SD-OCT volumes. Our

results showed that the proposed method successfully identifies the opening points
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Figure 8.8: The Bland-Altman plots of (a) BMOI-MRW and (b) BMOP-MRW in
comparison with BMOM-MRW. The proposed method has a tighter fit and lower
error than the iterative approach.
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of the BM surface such that it enables computing the structural parameter Bruch’s

membrane opening-minimum rim width (BMO-MRW) automatically. The proposed

method identifies the estimated location of BMO points by finding the BMO projec-

tion locations using a similar graph-theoretic approach reported in [22] with incor-

poration of shape prior and mapping them onto the BM surface. The estimated 3D

locations were utilized to find the 3D BMO loop by formulating the problem as com-

puting the minimum-cost path within the 3D volume using dynamic programming.

Since defining a mathematical model for BMO points is not feasible, as they appear

differently even in slices corresponding to a single subject, we learned the intensity-

based attributes of BMO points (in the form of PCA models) using a random forest

classifier which computed the cost function needed for identifying the minimum-cost

path.

To the best of our knowledge, our previous work [24] was the only non-

commercialized approach reported for identifying the 3D BMO points automatically.

We previously proposed an iterative graph-theoretic approach to segment the BM

surface along with its opening. A graph-theoretic approach was utilized for iden-

tifying the initial 2D segmentation of BMO points, and while the (r, θ) pairs kept

unchanged, we looked for the corresponding z-values. Upon finding the 3D BMO

locations as part of the surface + hole method, a new radial projection image was

created from which the updated 2D locations were identified. This iteration was re-

peated until convergence. In this chapter, we aimed to improve our previous method

by removing the iterations and eliminating the two-step identification of the (r, θ)

pairs and z values and instead, finding the (r, θ, z) coordinates as part of a 3D loop

in a single run.

The other limitation of the iterative approach was that in the presence of exter-

nally oblique border tissue [19], the iteration would continue to search for the BMO

point along the anterior surface of the border tissue. As discussed in Chapter 5, the
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presence of externally oblique border tissue confuses the algorithm and causes the

algorithm to find the BMO point on the border tissue instead of end of BM surface.

The presence of externally oblique border tissue was definitely one of the main reasons

for the large positive signed border positioning errors of the iterative method reported

in Table 8.1. The issue of presence of border tissue was addressed in the proposed

method to a certain extent by setting some edge weights to penalize the deviation

from the expected shape of path while performing shortest path identification.

The penalizing weights not only helped with avoiding the border tissues, but they

were also effective in dealing with the vessels shadows. Unlike a typical BMO point

locating at the end of a bright band, co-localizing a BMO point with a blood vessel

causes the BMO point to be located inside a dark region. Presenting the penalizing

weights helped the BMO path to keep the natural trend of the BMO trajectories in

the volume and not deviate from the expected shape of the BMO path. However, it

must be noted that setting up high penalizing weights is not the solution for the issues

of presence of border tissue and blood vessel shadows. The reason is that even though

higher penalizing weights leads to a stiffer BMO path with minimal variation in the

r- and z-directions; however, there are cases that the BMO path must be capable of

following the “true” natural translation of the BMO points throughout the volume.

Hence, there is a trade off between being capable of dealing with the presence of

border tissue and blood vessel shadows and following the true displacements of the

BMO path throughout the volume.

Additionally, the issue of presence of border tissue and the blood vessels were also

dealt with in identifying the 2D location of the BMO points. This was performed

by enforcing the prior shape constraint in the r-direction during applying the graph-

theoretic approach. Identifying an accurate 2D location of BMO points is important

as it leads to a better estimated 3D location which requires smaller search region to

find the actual BMO point. The size of the search region was computed based on the
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accuracy of estimated 3D BMO points in the training set. Shrinking the searching

area decreases the BMO point candidates and the reduces the size of the graph to be

solved.

In summary, we proposed a machine-learning graph-based approach for segmen-

tation of BMO point from SD-OCT volumes. After transferring the volumes to the

radial domain, radial projection images were computed by segmenting the intrareti-

nal surfaces. The projection images were processed using SWT in order to create

the vessel-free images in which the blood vessels were significantly suppressed. An

edge-based cost function was obtained from the gradient of vessel-free images to in-

corporate in a graph-theoretic approach for finding the 2D location of BMO points

(r, θ). The volumes were downsampled in the z-direction to achieve an isotropic grid

(with the same size as the physical resolution) and an estimated 3D location of BMO

points, (r, z, θ), were obtained by projecting the 2D coordinations onto the BM sur-

face. An elliptical search region around each estimated location was considered to

form a 3D tube from which the 3D BMO points were identified by looking for the

minimum-cost path within the searching tube using dynamic programming. The cost

function for finding the minimum-cost path was computed by inversing the likelihood

map generated by a RF classifier based on the resemblance of each point inside the

searching tube to the BMO intensity models. Once the BMO points were identified,

a similar approach as used to find the BMO path within the downsampled volume

was utilized to refine the z-values such that the 3D coordinates of BMO points in

image resolution were obtained.
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CHAPTER 9
CONCLUSION

The overall underlying theme of this thesis was to benefit from complementary

information available from multimodal imaging of the retina in order to automatically

segment the optic nerve head structures by incorporation of the machine-learning

techniques into theoretical graph-based approaches. Here, the structural parameter

of interest was Bruch’s membrane opening-minimum rim width (BMO-MRW) which

estimates the remaining neuroretinal rim tissue and could be employed for diagnosis

and monitoring glaucoma. Since it has been shown that BMO-MRW is superior to

other conventional structural parameters such as CDR in diagnosis of glaucoma [20],

it is important to be able to compute this parameter automatically. Hence, the focus

of the current work was on enabling automated computation of BMO-MRW which

required precise segmentation of ILM surface and BMO points.

Additionally, since during the screening of glaucoma patients, both fundus and

SD-OCT modalities are acquired to monitor structural changes, we also proposed

to benefit from complementary information of both sources in designing automated

approaches for segmenting optic disc structures. For instance, since the visibility

of retinal blood vessels inside the optic disc region is higher in fundus photographs,

we computed the vessel maps from fundus photographs and overlaid the results on

SD-OCT volumes.

Chapter 4 further demonstrated the benefit of combining complementary informa-

tion from SD-OCT modality and fundus photography for 2D segmentation of optic

disc (BMO points) and cup boundaries. Our results showed the superiority of the

multimodal approach over the unimodal methods which was consistent with results

of the previous work for multimodal segmentation of the retinal blood vessels [93].

The optic disc and cup boundaries were segmented using a graph-theoretic approach

for which the cost functions were computed automatically by random forest classifiers



that were trained using a multimodal feature set. For creating the multimodal feature

set, different information was extracted from intrinsic red, green, and blue channels

as well as three color-opponent channels of red-green, blue-yellow, and dark-bright

where the original use of the color-opponent channels as in [7] is motivated by the

theory of color vision.

Correspondingly, in order to be able to use complementary information form

fundus and SD-OCT modalities, we needed to register the images such that mul-

timodal information was extracted from the same locations in the images. We used

an ICP-based registration method in Chapter 4 for registering fundus photographs

and SD-OCT volumes where retinal blood vessel maps were utilized for identifying

the corresponding points (e.g. bifurcations and vessel-crossings) between images. The

vessel segmentation algorithms, however, could introduce errors to the registration

process by producing false positives. Additionally, results of vessel segmentation al-

gorithms [94] are scale-dependent and parameter-tuning based on the scale of the

input image must be performed in order to obtain satisfactory results. As our second

glaucoma dataset included color and stereo fundus photographs which have different

sizes and resolutions, in some cases, the ICP registration method utilized in Chap-

ter 4 needed additional manual corrections and failed to register the multimodal pairs

precisely.

Therefore, with the aim of removing the scale-dependency and increasing the

speed of the registration process, we proposed a feature-based registration algorithm

in Chapter 6 to align the fundus photographs (including color and stereo fundus) with

SD-OCT volumes using histogram of oriented gradients. The proposed registration

method extracts the common structural information (mostly from the retinal blood

vessels) within the surrounding region of each control point, which was detected

using FAST corner detection, without need of segmenting the blood vessels. The

histogram of oriented gradients attributes were employed to find the matching control
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points between image pairs. Finally, the fundus photographs were registered to their

corresponding SD-OCT volumes using the matched CPs.

The use of complementary information from multimodal images was extended

further in Chapter 7, where the blood vessels were segmented from the fundus pho-

tographs and the cost function for segmenting the ILM surface was modified at the

blood vessel location. Due to the technical limitation that exists in the original Iowa

reference algorithm method [16] (i.e. surfaces must intersect with each column only

once), there are errors in segmenting steep slopes presenting in deeper cups of glau-

comatous SD-OCT volumes. Moreover, there are situations that we need to have the

ability to cut through the blood vessels in order to enable a more precise computation

of BMO-MRW (Fig. 7.2). Oguz et al. [135] showed the benefit of utilizing GVF in

brain segmentation. Similarly, in this work, in order to obtain a precise segmentation

of the ILM surface and manage the issue of presence of retinal blood vessels and steep

slopes, we benefited from the gradient vector flow (GVF) field. The SD-OCT volumes

were resampled using a set of non-overlapping columns, which were computed from

the GVF field of the initial segmentation of the ILM surface. Since the new columns

are normal at the ILM surface, the resampling transforms the ILM surface into a

very smooth structure. The non-overlapping GVF-based columns also served as the

columns in the graph construction where the prior information regarding the shape

of ILM surface in the resampled volume was incorporated in constructing the graph

from which the resampled ILM surface was segmented.

Chapter 8 summarized an automated approach for 3D segmentation of BMO

points form SD-OCT volumes. A similar approach to the graph-theoretic method that

was utilized in Chapter 4 with incorporation of shape prior information was employed

to identify the 2D locations of BMO points. The estimated 3D BMO points were

obtained by projecting the 2D coordinates onto the BM surface. We formulated the

3D BMO segmentation as finding the minimum-cost path (i.e. closed loop) within the
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radial volume. Following the overall theme of the thesis, we benefited from machine-

learning techniques for computing the required cost-functions and a random forest

classifier was used to compute the 3D cost function needed for finding the shortest

path. The random forest classifier was trained using a set of intensity-based features

including Gaussian derivative, Gabor, and intensity profile of the estimated BMO

point’s neighboring region where the dimensionality of the feature space was reduced

using the PCA technique. Formulating the problem as finding the shortest path within

the radial volume allowed us to enforce desired shape constraints and also assure that

the path is a closed loop. The circularity constraint was applied by running the

dynamic programming multiple times (i.e. the number of possible starting points)

and constraining the beginning and ending points of the path in each run. The path

with the lowest cost was considered as the 3D BMO segmentation result. In order

to be able to create the BMO intensity models in an isotropic r-z grid, the volume

was downsampled in the z-direction. Hence, a similar approach as used to find the

BMO path within the downsampled volume was utilized to refine the z-values such

that the 3D coordinates of BMO points in image resolution were obtained.

The genuine 3D segmentation method proposed in Chapter 8 enabled more ac-

curate identification of BMO points which results in more precise computation of

BMO-MRW measure and consequently, more accurate diagnosis of glaucoma.

Besides developing automated algorithms for computing the BMO-MRW param-

eters, we also investigated the effect of presence of externally oblique border tissue

(EOBT) in measuring BMO-MRW in Chapter 5. As externally oblique border tissue

attaches to the end of the Bruch’s membrane surface, the presence of EOBT causes

identification of the ending point of the Bruch’s membrane surface to be challenging.

Hence, we proposed EOBT-MRW as an alternative measure for computing BMO-

MRW when EOBT exists due to the fact that computing EOBT-MRW does not re-

quire identification of the exact location of BMO points. In contrast to BMO-MRW
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which is a point-to-surface shortest distance, EOBT-MRW is a surface-to-surface

shortest distance and measures the minimum Euclidean distance between the ILM

surface and the anterior surface of border tissue. Our results showed that there was

not a significant difference between structure-structure correlations of RNFLT with

BMO-MRW and EOBT-MRW. This implies that, in addition to the point-to-surface

measure, BMO-MRW, the remaining neuroretinal rim tissue can be also estimated us-

ing the surface-to-surface measure, EOBT-MRW without requiring precise definition

of BMO point.

In addition to proposing a new structural parameter, we also compared two rim-

width-based parameters, BMO-MRW and BMO-HRW. Since the BMO-HRW does

not always measure the minimum Euclidean distance between the BMO point and

ILM surface, the possibility of overestimating the remaining neuroretinal rim tissue

using BMO-HRW exists. Hence we compared the structure-structure correlations

of these two parameters with RNFLT and the result showed that BMO-MRW out-

performed BMO-HRW. Significantly higher correlation of BMO-MRW with RNFLT

indicates that BMO-MRW better estimates the remaining rim tissue than BMO-

HRW.

In conclusion, we demonstrated examples of how automated algorithms for medi-

cal image analysis could benefit from combining information available from different

resources and modalities. Similarly, automated analysis of medical images in other

areas could profit from combining available complementary information in variety of

applications such as segmentation purposes and diagnosis and severity-related classifi-

cation. Furthermore, we demonstrated the flexibility and power of the graph-theoretic

approaches in different tasks and how we satisfied the task-objectives by incorporating

the required constraints and/or prior information in the graph construction. Lastly,

we showed that machine-learning techniques can be employed for computing cost

functions of the graph-theoretic approaches. Utilizing the machine-learning approach
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for designing the cost functions instead of hand-designed cost functions are beneficial

when we would like the cost functions to include information from different resources

or modalities. In addition, machine-learning approaches are expected to perform

better on producing the cost-function for unseen datasets than hand-designed tech-

niques. The algorithms proposed in this work were applied to ONH-centered fundus

photographs and SD-OCT volumes of glaucoma patients; however, they can be an

inspiration for other medical/non-medical image analysis applications where an ap-

propriate training set for training the classifiers exist.
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[46] B. J. Antony, M. D. Abràmoff, K. Lee, P. Sonkova, P. Gupta, Y. H. Kwon,
M. Niemeijer, Z. Hu, and M. K. Garvin, “Automated 3D segmentation of in-
traretinal layers from optic nerve head optical coherence tomography images,”
in Proc. SPIE, Med. Img. 2010: Biomed. App. Molec., Struct., and Funct. Img,
vol. 7626, 2010, p. 76260U (12 pages).

147



[47] B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone,
and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,”
Ophthalmology, vol. 99, no. 10, p. 1499, 1992.

[48] D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor,
S. West, M. C. Leske, P. Mitchell, N. Congdon, and J. Kempen, “Prevalence
of open-angle glaucoma among adults in the United States,” Arch Ophthalmol,
vol. 22, no. 4, p. 532, 2004.

[49] H. A. Quigley and A. T. Broman, “The number of people with glaucoma world-
wide in 2010 and 2020,” B J Ophthalmol, vol. 90, no. 3, pp. 262–267, 2006.
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[110] H. Bogunović, Y. H. Kwon, A. Rashid, K. Lee, D. B. Critser, M. K. Garvin,
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