
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2012

Data acquisition unit for low-noise, continuous
glucose monitoring
Daniel Warren Cooley
University of Iowa

Copyright 2012 Daniel Cooley

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/2844

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Cooley, Daniel Warren. "Data acquisition unit for low-noise, continuous glucose monitoring." PhD (Doctor of Philosophy) thesis,
University of Iowa, 2012.
http://ir.uiowa.edu/etd/2844.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA ACQUISITION UNIT FOR LOW-NOISE,

CONTINUOUS GLUCOSE MONITORING

by

Daniel Warren Cooley

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

May 2012

Thesis Supervisor: Professor David R. Andersen

1

ABSTRACT

As the number of people with diabetes continues to increase, research

efforts improving glucose testing methods and devices are under way to

improve outcomes and quality of life for diabetic patients. This dissertation

describes the design and testing of a Data Acquisition Unit (DAU) providing low

noise photocurrent spectra for use in a continuous glucose monitoring system.

The goal of this research is to improve the signal to noise ratio (SNR) of

photocurrent measurements to increase glucose concentration measurement

accuracy. The glucose monitoring system consists of a portable monitoring

device and base station. The monitoring device measures near infrared (IR)

absorption spectra from interstitial fluid obtained by microdialysis or

ultrafiltration probe and transmits the spectra to a base station via USB or a

ZigBee radio link. The base station utilizes chemometric calibration methods to

calculate glucose concentration from the photocurrent spectra. Future efforts

envision credit card-sized monitoring devices.

The glucose monitor system measures the optical absorbance spectrum of

an interstitial fluid (ISF) sample pumped through a fluid chamber inside a

glucose sensor. Infrared LEDs in the glucose sensor illuminate the ISF sample

with IR light covering the 2.2 to 2.4 micron wavelength region where glucose has

unique features in its absorption spectrum. Light that passes through the sample

propagates through a linearly variable bandpass filter and impinges on a

photodiode array. The center frequency of the variable filter is graded along its

2

length such that the filter and photodiode array form a spectrometer. The data

acquisition unit (DAU) conditions and samples photocurrent from each

photodiode channel and sends the resulting photocurrent spectra to the Main

Controller Unit (MCU). The MCU filters photocurrent samples providing low

noise photocurrent spectra to a base station via USB or Zigbee radio link.

The glucose monitoring system limit of detection (LOD) from a single

glucose sensor wavelength is 5.8 mM with a system bandwidth of 0.00108 Hz.

The partial least squares and net analyte signal methods show the system

standard error of prediction for glucose are 1.12 mM and 1.88 mM, respectively -

useful for detection of hyperglycemia but slightly high for indication of

hypoglycemia.

Abstract Approved:
Thesis Supervisor

Title and Department

Date

DATA ACQUISITION UNIT FOR LOW-NOISE,

CONTINUOUS GLUCOSE MONITORING

by

Daniel Warren Cooley

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

May 2012

Thesis Supervisor: Professor David R. Andersen

Copyright by

DANIEL WARREN COOLEY

2012

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

--

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Daniel Warren Cooley

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the
May 2012 graduation.

Thesis Committee: _____________________________________
David R. Andersen, Thesis Supervisor

Mark Arnold

Thomas Boggess

Anton Kruger

Hassan Raza

ACKNOWLEDGMENTS

I thank my family for consistent, positive support and advice as I worked

on the PhD in order to update design skills and return to a research and

development environment. Their consistent, positive moral support and

encouragement helped me to continue while running photonic crystal

simulations and bandgap calculations on a 24 hour per day, 7 day a week basis

for over a year and during efforts to improve noise performance of the

photocurrent measurement system.

I am indebted to Joo-Young Choi for her persistence and ability to record

photocurrent spectra in the chemistry lab for extended periods of time. Joo-

Young recorded spectra overnight without assistance even when it was offered

and also applied the calibration method to the experimental data from the

chemistry lab. Jue Qian also recorded spectra with the monitoring system in the

chemistry lab.

I thank my advisor, David Andersen, for his broad range of research

interests. Dave advises students on projects in physics, non-linear optics,

theoretical electromagnetic calculations, embedded systems, and software

engineering which helped during my research. Dave also shares some of my

other interests including growing Hostas.

I thank the members of the examining committee for agreeing to serve on

my committee and providing feedback on the comprehensive exam and

dissertation.

ii

I acknowledge several valuable discussions with Jon Olesberg regarding

the glucose sensor and optical sensing techniques. Jon provided a glucose

absorption spectrum recorded with an FTIR instrument. Jon also allowed me to

utilize optical apparatus to align the IR LEDs with respect to the photodiode

arrays and electronics equipment including low noise laboratory power supplies

and thermo-electric controllers for long term periods which enabled me to record

data in support of this thesis. Jon has a wide range of optical sensing and

fabrication experience.

iii

ABSTRACT

As the number of people with diabetes continues to increase, research

efforts improving glucose testing methods and devices are under way to

improve outcomes and quality of life for diabetic patients. This dissertation

describes the design and testing of a Data Acquisition Unit (DAU) providing low

noise photocurrent spectra for use in a continuous glucose monitoring system.

The goal of this research is to improve the signal to noise ratio (SNR) of

photocurrent measurements to increase glucose concentration measurement

accuracy. The glucose monitoring system consists of a portable monitoring

device and base station. The monitoring device measures near infrared (IR)

absorption spectra from interstitial fluid obtained by microdialysis or

ultrafiltration probe and transmits the spectra to a base station via USB or a

ZigBee radio link. The base station utilizes chemometric calibration methods to

calculate glucose concentration from the photocurrent spectra. Future efforts

envision credit card-sized monitoring devices.

The glucose monitor system measures the optical absorbance spectrum of

an interstitial fluid (ISF) sample pumped through a fluid chamber inside a

glucose sensor. Infrared LEDs in the glucose sensor illuminate the ISF sample

with IR light covering the 2.2 to 2.4 micron wavelength region where glucose has

unique features in its absorption spectrum. Light that passes through the sample

propagates through a linearly variable bandpass filter and impinges on a

photodiode array. The center frequency of the variable filter is graded along its

iv

length such that the filter and photodiode array form a spectrometer. The data

acquisition unit (DAU) conditions and samples photocurrent from each

photodiode channel and sends the resulting photocurrent spectra to the Main

Controller Unit (MCU). The MCU filters photocurrent samples providing low

noise photocurrent spectra to a base station via USB or Zigbee radio link.

The glucose monitoring system limit of detection (LOD) from a single

glucose sensor wavelength is 5.8 mM with a system bandwidth of 0.00108 Hz.

The partial least squares and net analyte signal methods show the system

standard error of prediction for glucose are 1.12 mM and 1.88 mM, respectively -

useful for detection of hyperglycemia but slightly high for indication of

hypoglycemia.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. GLUCOSE SENSOR THEORY OF OPERATION 8

2.1 Glucose Sensor 8
2.2 PN Diode and PIN Photodiode 10
2.3 Glucose Sensor IR Photodiode Characteristics 12
2.4 IR LED Design 17
2.5 Summary 18

CHAPTER 3. PHOTOCURRENT MEASUREMENT METHODS 20

3.1 Background 20
3.2 Noise Theory 21
3.3 Digital Filtering 23
3.4 Noise Model 30
3.5 Average and Subtract Measurement Method 35
3.6 LIA With Discretized Sinusoid Reference 40
3.7 Combined Lock-in Filter - ADS1258 Configuration 47
3.8 Combined Lock-in Filter - ADS1278 Configuration 54
3.9 Analysis and Summary 56

CHAPTER 4. DAU HARDWARE, FIRMWARE, AND SOFTWARE 59

4.1 Requirements 59
4.2 Hardware Design 61
4.3 MCU Firmware 73
4.4 Base Station Software 75
4.5 ADS1278 DAU Configuration 76
4.6 Design Notes 77
4.7 Summary 80

CHAPTER 5. EXPERIMENTS AND ANALYSIS 81
5.1 DC Offsets Using Metal Film Resistors 82
5.2 Signal to Noise Ratio Measurement with Metal Film Resistors 84
5.3 Stability Investigation Using Metal Film Resistors 88
5.4 Cross-correlation with Metal Film Resistors 89

vi

5.5 Signal to Noise Ratio Measurement with Variable Filter, PD Array,
and IR LEDs 91
5.6 Conclusions 95

CHAPTER 6. GLUCOSE CONCENTRATION MEASUREMENT 96

6.1 Introduction 96
6.2 Transient Detection 97
6.3 Baseline Spectrum 98
6.4 Absorption Spectrum 100
6.5 Limit of Detection 102
6.6 Minimum System Bandwidth 106
6.7 Multivariate Calibration 108
6.8 Summary 113

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 115

REFERENCES 117

APPENDIX A. MOVING AVERAGE FILTER BANDWIDTH 121

APPENDIX B. NOISE MODEL CALCULATION SOFTWARE 122

APPENDIX C. ADS1258 DAU SCHEMATIC DIAGRAM 124

APPENDIX D. MCU C SOFTWARE FOR THE ADS1278 DAU 133

APPENDIX E. PC SOFTWARE FOR THE ADS1278 DAU 172

APPENDIX F. ADS1278 DAU SCHEMATIC DIAGRAM 187

APPENDIX G. CORRELATION COEFFICIENT SOFTWARE 194

vii

LIST OF TABLES

Table
I. A comparison of the IR photodiodes as installed in the glucose

sensor and the S1133. 14

II. Sources of shot noise considered by the noise model. 30

III. Quantization noise in dB for a standard SAR ADC. SNR is calculated
using 10 log SNR. 31

IV. ADC SNR for the ADS1278, a 24 bit sigma delta oversampling ADC,
using VNoise = EADC(0.018 Hz)0.5 for several oversampling ratios. 34

V. Operational amplifier component data. 64

VI. Operational amplifier selection calculations. 66

VII. ADC component data. 69

VIII. Voltage reference component data. 71

IX. Power budget for DAU3. All data are in mA. 73

X. PLS and NAS calibration results. 113

viii

LIST OF FIGURES

Figure
1-1. Block diagram of the glucose monitoring system. 5

2-1. The glucose sensor. Two IR LEDs emit light into the fluid chambers
which propagates through the chambers and variable filter before
reaching the PD array. 9

2-2. Glucose sensor pin configurations. (a) Original pin configuration.
(b) New pin configuration with interspersed ground pins. 11

2-3. PN diode. (a) Drawing of diode. (b) Energy band diagram. 11

2-4. PIN photodiode. (a) Drawing of diode. (b) Energy band diagram. 13

2-5. IR photodiode I-V characteristic curve. 15

2-6. IR photodiode characteristic curves near the origin. 16

2-7. Plot of lattice constant versus wavelength for several semiconductor
materials. 18

3-1. Transimpedance amplifier schematic with photodiode capacitance
and feedback capacitor. 21

3-2. Definition of equivalent noise bandwidth for a single pole low pass
filter. 24

3-3. Downsampling and decimation. (a) Downsampling. (b) Decimation. 27

3-4. Two phase lock-in amplifier. 28

3-5. Qualitative description of lock-in amplifier operation. The signal at
the reference frequency in (a) is shifted to DC as shown in (b) and
undesired frequency components are attenuated by a low pass filter. 29

3-6. Single phase lock-in amplifier. 29

3-7. Block diagram of a first order sigma-delta converter. 33

3-8. Output spectra of a first order sigma-delta modulator and passband
of low pass filter. 33

ix

3-9. TIA noise model schematic including op amp noise sources. 35

3-10. Block diagram of the average and subtract measurement method. 36

3-11. Texas Instruments ADS1258 ADC transfer function for NumAve = 16. 38

3-12. Spectrum of averaging process for N=215 showing 3dB bandwidth
and equivalent noise bandwidth. 38

3-13. Noise model for the average and subtract method. 41

3-14. Block diagram of lock-in amplifier measurement system. 42

3-15. Operation of LIA with discretized sinusoid reference signal. 42

3-16. Output spectrum of the moving average filter for N=430. 46

3-17. Discretized sinusoid LIA noise model. 48

3-18. A block diagram of the combined lock-in amplifier measurement
method. 49

3-19. Combined LIA. (a) Input spectrum. (b) Output spectrum after shifting
spectrum by fReference. 50

3-20. Spectrum of combined LIA measurement method, including low pass
filters in MCU and base station, for the ADS1258 configuration. 53

3-21. Noise model of combined LIA method. 53

3-22. ADS1278 DAU noise model with system bandwidth of 0.017 Hz. 57

3-23. Comparison of all four measurement method noise models. 58

4-1. ADS1258 DAU block diagram. 62

4-2. DAU printed circuit card layer definition. 72

4-3. MCU firmware flowchart. 74

4-4. ADS1258 configuration firmware timing diagram. 75

4-5. The base station software window. 76

x

4-6. A block diagram of the ADS1278 DAU configuration. 78

4-7. ADS1278 DAU configuration timing diagram. 78

5-1. Utilization of metal film resistors to simulate photodiodes. 81

5-2. Offsets. (a) ADS1258 configuration. (b) ADS1278 configuration. 85

5-3. Circuitry included with ADS1258 DAU configuration. (a) Single
ended and (b) differential buffers between each ADC multiplexer
output and ADC input. (c) Buffers for voltage reference inputs. 86

5-4. Experimental SNR results and noise model for ADS1278 DAU.
Voltage reference instability between LED on and off measurements
likely caused the offsets in (a). 88

5-5. Plot of several representative DAU channels with RTest = 30 kΩ and
bandwidth of 0.017 Hz over two days showing lack of electronics drift. 90

5-6. Three dimensional plot of Pearson correlation coefficient, rAB, versus
channel A and channel B, where A and B include all possible LED1
and LED2 glucose sensor channels. For this plot, RTest is an open
circuit, system bandwidth equals 0.0043 Hz, and each channel
includes 1000 consecutive samples. 92

5-7. Pairs of DAU channels with highest correlation. (a) LED1 channels
1 and 27 and (b) LED2 channels 9 and 14. Slight correlations over time
are likely due to changes in the voltage reference. 93

6-1. Apparatus for concentration measurement experiments. 98

6-2. Demonstration of transient detection with the glucose sensor. (a) Plot
of channel 16 versus time. (b) Status of transient monitor. 99

6-3. Example of baseline spectrum calculation. (a) Reference and sample
spectra with buffer solution in both fluid chambers. (b) Baseline
spectrum calculated from the spectra in (a). 101

6-4. Glucose absorption spectra. (a) Absorption spectrum of 50 mM
glucose sample measured by DAU/MCU with system bandwidth of
0.00108 Hz. (b) Reference glucose absorption spectrum measured with
an FTIR instrument. 103

xi

6-5. Response of glucose sensor channel 16 to several glucose
concentrations. 104

6-6. Plot of glucose concentration versus absorbance for 20 and 50 mM
solutions recorded using the DAU with bandwidth of 0.00108 Hz. 104

6-7. LOD with one wavelength and SNR versus bandwidth. 105

6-8. Response of one glucose sensor channel measured by monitoring
system used for sensor construction to glucose concentrations
indicated. 107

6-9. Plot of glucose concentration versus absorbance for 20 and 50 mM
solutions recorded using the sensor alignment system. 107

6-10. A reproduction of a fast meal response glucose concentration
transient from patient data 109

6-11. Fraction of energy passed by low pass filter vs. bandwidth and
group delay for bandwidth of 0.001 Hz. 109

xii

1

CHAPTER 1

INTRODUCTION

According to the World Health Organization, 346 million people

worldwide are afflicted with diabetes as of 20111. Self monitoring of blood

glucose (SMBG) performed a number of times per day provides a method to

control glucose levels and limit the possibility of adverse outcomes due to

diabetes. Despite the ever-increasing number of people with diabetes and

consistent research efforts most commercially available SMBG systems require

repeated, painful finger sticks, utilize electrochemical reactions with chemicals

such as glucose oxidase, and suffer from limited accuracy2. Direct glucose

measurement techniques exploit intrinsic features of the glucose molecule while

indirect techniques such as electrochemical reactions and IR reflection

spectroscopy are based on the effect glucose has on chemical, physical, or

physiological features of the test sample3. IR reflection spectroscopy measuring

scattering of skin tissue suffers from low selectivity to glucose as several

constituents of interstitial fluid (ISF) modulate the refractive index of human

skin4. IR transmission spectroscopy measures light absorption of the glucose

molecule yielding a direct glucose monitoring method3,4.

Early glucose testing methods, before the 1940's, had to be done in

laboratories due to their complicated nature5. In the 1940's testing could be done

in the home with tests that measured glucose in the urine. By the 1970's test

2

strips impregnated with a chemical that changed color in proportion to the

amount of glucose in the blood were available. This method was replaced by

electrochemical tests performed by test strips, lancets, and portable electronic

devices in the 1990's and is still used for SMBG today. Today research on

developing an artificial pancreas to provide a type of cure for diabetes is

underway but the main limitation in this effort is glucose sensing technology5,6.

Recent research in electrochemical methods for glucose sensing describe

fluorescent quantum dots7, a fluorescent glucose detection sensor8, development

of a capillary-based sensor for glucose measurement in tear fluid9, an

electrochemical biosensor with a mediating chemical in a membrane10, and use of

carbon nanotubes in glucose sensors11. Research on the use of Raman

spectroscopy for continuous glucose monitoring12,13 exhibited continuous

monitoring over 17 days with RMS errors of calibration and prediction of 3.6

mg/dL and 13.7 mg/dL in Ref. 12. Ref. 14 reported on a photonic crystal glucose

sensor which changes size depending on glucose concentration, altering the

wavelength of light diffracted by the crystal.

Recent research in infrared transmission spectroscopy evaluated glucose

sensing methods using tunable laser diodes15 and Fourier-transform infrared

(FTIR) spectroscopy16,17. Heise et al18 present a glucose monitoring system

utilizing an FTIR instrument as part of a bedside monitoring system. We study

low-noise photocurrent measurement techniques for the development of a

portable, low cost, continuous glucose monitor. Our system consists of IR LEDs,

3

photodiodes (PDs), and electronic circuitry custom designed and fabricated by

our research group to enable development of a low cost, easily portable glucose

monitoring device.

The measurement system19,20,21 provides low-noise photocurrent spectra

from a near-IR glucose sensor and calculates glucose concentration from IR

absorption spectra with multivariate chemometric techniques22,23. The glucose

sensor contains a narrow bandgap GaInAsSb common-cathode IR photodiode

array, linearly variable bandpass filter, and 32-channel photodiode array and

operates in the 2.2 to 2.4 micron wavelength range of the near-infrared spectrum

where glucose has unique absorption features providing glucose specific

information for multivariate determination of glucose concentration. The

measurement system must minimize noise and drift in order to limit residual

errors in the multivariate calibration process and ensure accurate glucose

concentration results. Popular photocurrent measurement techniques include

current input ADCs24 as well as transimpedance amplifiers25,26. In our system

TIAs translate photocurrent into voltages which are sampled by ADCs. Several

factors inhibit attaining high SNR including recombination current in the

GaInAsSb photodiodes, low photodiode shunt resistance, and limited amount of

light impinging on the photodiode array. GaInAsSb photodiodes exhibit

recombination current, a leakage current reducing the photodiode shunt

resistance27. The low bandgap of IR photodiodes relative to typical Si

photodiodes results in enhanced dark current28 and hence reduced photodiode

4

shunt resistance. Low shunt resistance in a TIA inhibits SNR for cases where

thermal noise limits the SNR. Due to scattering losses in the sample and presence

of the linearly variable filter, limited amounts of IR light impinge on the

photodiode array producing low photocurrent (10 nA) levels and restricting

SNR.

A series of lock-in amplifiers29,30 implemented in software filter

photocurrent samples and determine the amount of photocurrent detected by

each channel. LIAs mix, or multiply, an input signal with a reference signal at a

known frequency and low pass filter the mixer output. In our case the input

signal and reference are in phase and of equal frequency and thus the mixer

produces components at DC and twice the reference frequency. The low pass

filter passes only the DC component which is proportional to the amplitude of

the component of the input signal at the reference frequency. Dorrington and

Kunnemeyer31 presented a lock-in amplifier filtering method combining the

mixing and low pass filtering operations into a pair of difference equations

applied alternately to the stream of input samples. This lock-in method allows

the use of a higher lock-in reference frequency, ameliorating the effect of

operational amplifier input voltage noise on system SNR when op amp 1/f noise

dominates op amp input voltage noise.

A block diagram of the glucose measurement system is shown in Fig. 1-1.

The glucose sensor6, located on the Data Acquisition Unit (DAU), has two LEDs32

which provide light covering the combination region of the mid IR spectrum. A

5

linearly variable filter and 32 element photodiode array form a spectrometer

operating in the combination region of the IR spectrum. The DAU contains TIAs

which convert photocurrents into voltages which are sampled by 24-bit Delta-

Sigma ADCs. An SPI port transfers photocurrent samples to the MCU which

processes the ADC samples and sends spectra to the base station at 1 Hz for

display and further processing. The MCU provides ADC control signals and two

LED control lines to the DAU.

Figure 1-1. Block diagram of the glucose monitoring system.

6

Overall technical requirements for the DAU/MCU:

• The shunt resistance of IR photodiodes in the glucose sensor is

approximately 10 kΩ to 30 kΩ.

• SNR > 40 dB for a 30 kΩ shunt resistance photodiode array.

• The MCU will be held horizontally with the DAU connected to the MCU

and held vertically placing the long axis of sensor header in the vertical

direction. This prevents air bubbles, if present, from collecting in the fluid

chamber within the glucose sensor and interfering with measurements.

• The glucose sensor will be installed on the DAU with a 40 pin DIP ZIF

socket.

• LED current must be adjustable in the range of 100 to 200 mA DC.

• The IR LEDs are common cathode and use 3 pin 0.1” spacing connector.

• Four types of photocurrent measurements are required in succession: (1)

LED1 on/LED2 off, (2) both LEDs off, (3) LED1 off/LED2 on, and (4) both

LEDS off.

• The measurement device must originate its power from batteries.

• The MCU communicates with the base station via either USB or a ZigBee

radio link.

Chapter 2 discusses theory of operation of the glucose sensor. Chapter 3

presents electrical noise theory and mathematical models predicting signal to

noise ratio for several photocurrent measurement methods. Chapter 4 details the

DAU hardware and software design. Chapter 5 documents assessment of

7

monitoring system ability to provide low noise photocurrent spectra and

Chapter 6 focuses on application of the DAU and MCU to continuous glucose

sensing. Chapter 7 concludes the paper and discusses possible future extensions

of this work.

8

CHAPTER 2

GLUCOSE SENSOR THEORY OF OPERATION

2.1 Glucose Sensor

The glucose monitoring device measures the absorbance of light in the

combination region of the near-IR spectrum. The glucose sensor, Fig. 2-1, consists

of two IR LEDs, two glass fluid chambers with square cross-section, a linearly

variable bandpass filter, and a photodiode array. The IR LEDs emit light

covering the 2.2 to 2.4 µm wavelength range and use backside geometry so that

light is emitted directly into the fluid chamber. There are three regions in the

near infrared spectrum where vibrations from glucose molecules can be detected:

the short wavelength region (14286-7300 cm-1), the first overtone region (6500 –

5500 cm-1) and the combination region (5000 – 4000 cm-1)3. Features in the near-IR

vibrational spectrum become weaker and broader as the wavelength decreases

thus the combination region features are easier to detect. Since water absorbs

light and tissues scatter light, there are optimum sample thicknesses for these

three near-IR regions: combination region (1 mm), first overtone region (5 mm),

and short wavelength region (10 mm). The glucose sensor used in this research

operates in the combination region to take advantage of the relatively sharp

absorption peaks of glucose for longer wavelengths. The optical path length

through the fluid chamber is 0.8 mm, approximately the optimum path length

for the combination region.

9

Figure 2-1. The glucose sensor. Two IR LEDs emit light into the fluid chambers
which propagates through the chambers and variable filter before reaching the

PD array.

A sample of ISF flows through one fluid chamber and a blank sample

flows through the other fluid chamber. One LED shines light through each fluid

chamber – the sensor measures absorption spectra of the blank and the fluid

sample allowing multivariate, chemometric mathematical techniques to extract

glucose concentration from the two spectra. These math techniques require low

noise spectra in order to calculate analyte concentration with low uncertainty.

The sensor mates to the PC board with a 40 pin DIP integrated circuit header,

10

with pin configurations shown in Fig. 2-2.

The intensity, I, of monochromatic light as it passes through a material is

I=I 010− , (2.1)

where I0 is the initial light intensity and α is the absorbance. The Beer-Lambert

law states that

= l c , (2.2)

where ε is the molar absorptivity, l is the optical path length, and c is the

concentration of the absorbing medium. Equation (2.1) enables measurement of

absorbance and hence concentration for a constant optical path length from

measurements of light intensity before and after passing through the absorbing

medium.

2.2 PN Diode and PIN Photodiode

A typical pn diode is shown in Fig. 2-3(a) and its energy band diagram

with zero bias is in Fig. 2-3(b)33. The left, p type, portion of the diode is doped

with NA acceptor atoms/m3 and the right, n type, region is doped with ND donor

atoms/m3. At the PN junction mobile holes from the p region and mobile

electrons from the n region diffuse across the junction leaving a depletion region

at the center of the diode from -xp to xn. This displacement of charge creates a

potential difference between the p and n regions called the built in potential, Vbi,

which sweeps electrons in the depletion region towards the n region and sweeps

holes in the depletion region towards the p region.

The IR photodiodes in the glucose sensor are PIN type diodes, Fig. 2-4(a),

11

Figure 2-2. Glucose sensor pin configurations. (a) Original pin configuration. (b)
New pin configuration with interspersed ground pins.

Figure 2-3. PN diode. (a) Drawing of diode. (b) Energy band diagram.

12

with a thin p region and an intrinsic or lightly doped region (i region) of

thickness Wi between the p and n layers. Photons which pass through the top p

layer and enter the i region can create an electron-hole pair, see Fig. 2-4(b). The

electron moves to the n region and the hole moves to the p region creating

photocurrent. The p region is kept very thin to allow light to pass into the i

region because carriers generated by a photon absorbed in the p region do not

contribute to the photocurrent as there is no potential difference there to move

the carriers to the diode terminals. If a photon absorbed in the i region has

energy greater than the bandgap energy,

Egap = hf, (2.3)

where h is Planck's constant and f is the photon frequency, it can create an

electron-hole pair. This sets a low frequency bound and upper wavelength

bound on the PD absorption spectrum. The inverse of the absorption coefficient,

1/α, is approximately the average penetration depth of light in the material.

Choosing the intrinsic material thickness, Wi, equal to 1/α sets a lower

wavelength limitation on the photodiode absorbance spectrum.

2.3 Glucose Sensor IR Photodiode Characteristics

The photocurrent design goal of the glucose sensor is 10 nA of photocurrent. The

maximum photocurrent from one typical photodiode, the S1133, is 100 mA,

10,000 times greater than the IR photodiodes when installed in the sensor34. Since

the SNR is

SNR=10log10 I PCRF

  , (2.4)

13

Figure 2-4. PIN photodiode. (a) Drawing of diode. (b) Energy band diagram.

where σ is the sample standard deviation, low photocurrent directly suppresses

system SNR. The sensor geometry allows limited amounts of light to pass

through the sample to the variable filter and only a portion of that light will be

transmitted through the filter to the photodiodes. In this research we calculate

the signal to noise ratio in deciBels, Eq. 2.4, using 10 log because 1 dB is defined

as 10 times the base 10 logarithm of a power ratio and photodiode photocurrent,

14

IPC, is proportional to the luminosity or power per unit area reaching the

photodiode.

The I-V characteristic curve of the IR photodiodes in the glucose sensor

differs from that of typical Si photodiodes. The IR photodiodes have a lower

reverse breakdown voltage, larger reverse saturation current, and lower shunt

resistance than typical Si photodiodes - see Table I for a comparison of these

quantities for the glucose sensor IR diodes as installed in the sensor and the

S1133, a typical Si photodiode. The I-V characteristic curve for the IR

photodiodes is shown in Fig. 2-5 and the I-V curve near the origin is in Fig. 2-6.

The large reverse saturation current and low reverse saturation voltage alter the

I-V characteristic such that with a very small bias dark current easily overcomes

the photocurrent and enhances shot noise. Thus the TIA cannot apply a bias

Table I. A comparison of the IR photodiodes as installed in the glucose sensor
and the S1133.
Device IR Photodiode S1133

Reverse Breakdown Volt. 1 – 2 V 10 V

Reverse Saturation
Current

100 µA 15 pA @-10V

Shunt Resistance 10 kΩ to 30 kΩ 100 GΩ

voltage across the photodiodes.

The shunt resistance of the IR photodiodes is approximately 10 kΩ to 30

kΩ, much lower than the 100 GΩ shunt resistance of the S1133. IR PDs have

15

lower shunt resistance due to recombination current, a leakage current in parallel

with RPD,27 and due to their low bandgap. The reduced bandgap results in

enhanced dark current28 and hence reduced shunt resistance. When a photon has

energy equal to the bandgap energy,

GAP=
c
f
= hc
EGAP

. (2.5)

Since IR photodiodes operate at longer wavelengths than Si PDs their bandgap

energy is lower than Si PDs. The reverse saturation current of a diode is given by

I o=qA DN ni
2

LN N A

DP ni

2

LP N D .33 (2.6)

Under equilibrium,

EGAP=qV bi=kT ln N AN D

n i
2 . (2.7)

Figure 2-5. IR photodiode I-V characteristic curve35.

16

Figure 2-6. IR photodiode characteristic curves near the origin35.

Solving Eq. 2.7 for n i
2 we find

n i
2=N A N D e

−EGAP/ kT . (2.8)

Substituting Eq. 2.8 into Eq. 2.6 shows

I o=qADN N D

LN

DP N A

LP e−EGAP /kT , (2.9)

indicating IR PDs have exponentially higher reverse saturation current than Si

PDs. The slope of the ideal diode equation,

I=I o eqV / kT−1 , (2.10)

at the origin is 1/RSHUNT. Differentiating Eq. 2.10 with respect to voltage we find

that

17

dI
dV

=I 0 e
qV /kT q

kT
. (2.11)

Evaluating Eq. 2.11 at V=0 we find the result

RShunt=
kT
I 0q

 (2.12)

showing lower shunt resistance for IR PDs due to elevated reverse leakage

current.

2.4 IR LED Design

LEDs in the glucose sensor provide illumination covering the 2.2 to 2.4

micron wavelength region. The selection of materials for p and n type regions

determines the LED emission spectrum. The materials forming the LED must

have equal lattice constants to minimize mechanical strain in the structure as the

LEDs are built in layers upon a substrate material. The designer chooses the

material composition for the desired bandgap matching the lattice constant of the

substrate. Figure 2-7 shows a plot of bandgap wavelength versus lattice constant

for several semiconductor materials including GaSb, the LED substrate material

for the glucose sensor. Material compositions on a horizontal line through the

GaSb point in Fig. 2-7 match the lattice constant of GaSb and result in high

quality devices. The glucose sensor LEDs utilize material composition with 21%

indium, 79% gallium, and arsenic concentration to lattice match with GaSb for an

upper wavelength limit of 2.5 microns.

The frequency of the peak LED emission spectrum,  p , is given by

h p=EG
k BT

2
, (2.13)

18

Figure 2-7. Plot of lattice constant versus wavelength for several semiconductor
materials.36

where EG is the semiconductor bandgap energy. The full width at half

maximum of LED emission in Hz is given by

=
1.8k BT

h
 (2.14)

where h is Planck's constant.

2.5 Summary

The glucose sensor consists of a spectrometer formed by the linearly

variable filter and photodiode array with illumination from two IR LEDs. The

glucose monitor system measures the absorbance spectrum of ISF in the

combination region of the near IR spectrum where glucose has unique light

19

absorption peaks. The SNR goal for photocurrent measurements is 40 dB for a 30

kΩ shunt resistance PD array. We cannot reverse bias the photodiodes because

the shot noise from the dark current would dominate the photocurrent shot noise

and degrade SNR. The photodiodes provide relatively low photocurrent when

installed in the sensor due to sensor geometry. IR photodiodes have reduced

shunt resistance due to recombination current of GaInAsSb devices and the

reduced bandgap of IR PDs. Careful choice of LED material composition ensures

the IR LED emission covers the 2.2 to 2.4 micron wavelength range.

20

CHAPTER 3

PHOTOCURRENT MEASUREMENT METHODS

3.1 Background

Popular photocurrent measurement methods include sampling current

with current input ADCs and translating current to a voltage with

transimpedance amplifiers for subsequent sampling with standard voltage input

ADCs. A current input ADC samples the current flowing into its input pins.

Current input ADCs provided photocurrent measurements in the original

configuration of the glucose monitoring system24. In Ref. 31 researchers designed

a system using a lock in amplifier and current input ADC to measure currents in

the pA range. The lock in amplifier used spectral reversal to remove undesired

low frequency noise.

The most popular photocurrent monitoring method utilizes the TIA, see

Fig. 3-1, to converts an input current to a voltage. The output voltage of the TIA

is

EO = -IPCRF, (3.1)

where IPC is the photocurrent and RF is the feedback resistor. Designers typically

use the TIA for optical receivers where maximum bandwidth is desired to

transmit data at high speed - several methods for attaining high bandwidth with

the TIA are available26.

The remainder of the chapter documents development of photocurrent

21

Figure 3-1. Transimpedance amplifier schematic with photodiode
capacitance and feedback capacitor.

measurement methods utilizing the TIA to translate photocurrent into a voltage

for measurement with an ADC. A lock in amplifier implemented in firmware

provides low noise measurement of photocurrent spectra. Analysis of noise

sources in the TIA and photodiode and spectral analysis of filtering methods

employed by the measurement system yields a noise model predicting noise

characteristics of the system.

3.2 Noise Theory

Two types of noise affecting electrical circuits are thermal noise and shot

noise37. The thermal noise voltage of a resistor R appears in series with the

resistor and is given by

ET=4kTR f , (3.2)

where k is Boltzmann's constant, T is temperature in Kelvin, and ∆f is the double

sided measurement bandwidth. The thermal noise may also be transformed into

a current source of value ET /R in parallel with the resistor.

22

Many discrete electrons comprise current flowing through a conductor.

Each electron passing a potential barrier in a circuit causes a small burst of

current and this causes noise called shot noise. The shot noise for I Amps of DC

current is

I Shot=2eI f , (3.3)

where e is the electronic charge and ∆f is the single sided measurement

bandwidth.

A noise source has many different frequency components and its

amplitude and phase vary randomly. Thus when two uncorrelated noise sources

with different instantaneous frequency and magnitude are connected together in

series the power from the two noise sources cannot combine constructively or

destructively and the resulting total power is the sum of the two powers. Since

we add the power from two sources to find total power, to add two voltage noise

sources V1 and V2 we add them using the sum of squares fashion:

V Total
2 =V 1

1V 2
2. (3.4)

The bandwidth of a low pass filter or amplifier, f3dB, is the frequency

where the output power drops to half the maximum output power. Noise above

the 3 dB bandwidth gets attenuated but still passes through the system. The

equivalent noise bandwidth of a system accounts for the additional noise above

the 3 dB bandwidth. The equivalent noise bandwidth of a system is the

bandwidth of a rectangular power gain spectrum with area equal to the area

under the systems power gain spectrum and magnitude equal to the systems

23

maximum gain, see Fig. 3-2. For a one pole low pass filter with response

Av  f =
1

1if / f 3dB
, (3-5)

where f3dB is the 3 dB bandwidth, the single sided equivalent noise bandwidth is37

 f = 1
Avo

2 ∫
0

∞

∣Av  f ∣
2df =

2
f 3dB , (3-6)

where Avo is the DC voltage gain of the filter.

3.3 Digital Filtering

3.3.1 Single Pole Low Pass Filter

An RC low pass filter attenuates frequencies above its characteristic

frequency f =1/ 2RC  . We use the following process to implement the

transfer function of a single pole RC filter,

H  s=

1
sC

R 1
sC

= 1
1sRC

, (3.7)

in the digital domain. After application of the bilinear transform to Eq. 3.7 we

find

H  z =H  2
T
z−1
z1= 1

1 2
T  z−1

z1RC
,

 (3.8)

where T is the sample period38. Eq. 3.8 can be simplified to

H  z =A 1 z−1

1Bz−1 , (3.9)

where

24

Figure 3-2. Definition of equivalent noise bandwidth for a single pole low pass
filter.

A= 1

1 2
T
RC

,
 (3.10)

and

B=
1− 2

T
RC

1 2
T
RC

. (3.11)

The transfer function in the z domain, Eq. 3.9, is in the form of

H  z = Y  z 
X  z 

=
AN  z 

1D  z  (3.12)

25

with

N  z =1 z−1 (3.13)

and

D z=B z−1. (3.14)

From Eq. 3.12,

Y  z 1D z =AX  z N  z  , (3.15)

and it follows that

Y  z =AX  z N  z −Y  z D  z . (3.16)

Substituting expressions for N(z) and D(z) and Eq. 3.16 we find

Y  z =AX  z 1z−1−BY  z  z−1 . (3.17)

A difference equation representing Eq. 3.17 is

Y n=A X nX n−1−BY n−1 . (3.18)

Inserting equations for A and B into Eq. 3.18 gives

Y n= 1

1 2
T
RC  X nX n−1−1− 2

T
RC

1 2
T
RC Y n−1 . (3.19)

In order to implement this filter digitally the filter coefficients must be integers,

and forcing the coefficients to be powers of two allows implementing the filter

using simple binary shift operations. Requiring

1 2
T
RC=2m (3.20)

for an integer m, the filter difference equation becomes

26

Y n= 1
2mX nX n−1−2−2m

2m Y n−1 , (3.21)

or

Y n= 1
2m X nX n−1Y n−1− 1

2m−1 Y n−1 . (3.22)

Eq. 3.22 consists of addition, subtraction, and right shift operations which are

easily implemented with microprocessors.

3.3.1 Decimation

Decimation reduces the sample rate of a set of equally spaced samples by

a factor of n. Decimation includes two processes: low pass filtering and

downsampling. Downsampling by a factor of n selects every nth sample and

discards the remaining samples, see Fig. 3-3(a). The Nyquist theorem says that

the highest frequency that can be represented with a sampling frequency of fSample

is (fSample)/2. If the sampling frequency before downsampling is fSample, the sample

frequency after downsampling is (fSample)/n and downsampled data must have

bandwidth below (fSample)/2n to prevent aliasing requiring bandwidth reduction

to less than or equal to (fSample)/2n before downsampling. Decimation, Fig. 3-3(b),

includes the low pass filtering and downsampling operations.

3.3.3 Lock-in Amplifiers

A two phase lock in amplifier, see Fig. 3-4, measures the real and

imaginary parts of a sinusoid input signal. The real component is in phase with

the reference and the imaginary component is π/2 out of phase with the

reference. One mixer multiplies the input signal,

27

Vin = Aincos(2πfint + θin), (3.23)

by the reference,

Vref = Arefcos(2πfref), (3.24)

to obtain the mixer output

Vmixer1 = AinArefcos(2πfint + θin)cos(2πfref). (3.25)

Using the trigonometric identity

cos a cos b=1
2

cos ab1
2

cos a−b (3.26)

Eq. (3.25) becomes

Figure 3-3. Downsampling and decimation. (a) Downsampling. (b) Decimation.

28

Figure 3-4. Two phase lock-in amplifier.

Vmixer1 = 1
2 AinArefcos(2π(fin + fref)t + θin) + 1

2 AinArefcos(2π(fin - fref)t + θin). (3.27)

With the assumption that fin = fref, we find

Vmixer1 = 1
2 AinArefcos(4πfreft + θin) + 1

2 AinArefcosθin . (3.28)

The low pass filter allows the DC component to pass so that the 'Real' signal in

Fig. 3-4 is

Real = 1
2 AinArefcosθin. (3.29)

Thus the lock in amplifier shifts the component of the input signal at the

reference frequency to DC as shown in Fig. 3-5. To measure the imaginary

portion of the input signal the reference frequency shifted by π/2,

Vref2 = Arefcos(2πfreft + π/2), (3.30)

is mixed with the input yielding the second mixer output,

Vmixer2 = AinArefcos(2πfint + θin)cos(2πfreft + π/2). (3.31)

Using the trigonometric identity, Eq. 3.26, the second mixer output becomes

Vmixer2 = 1
2 AinAref[cos(2π(fin+fref)t+θin+π/2)+cos(2π(fin- fref)t+θin-π/2)]. (3.32)

29

Figure 3-5. Qualitative description of lock-in amplifier operation. The signal at
the reference frequency in (a) is shifted to DC as shown in (b) and undesired

frequency components are attenuated by a low pass filter.

Figure 3-6. Single phase lock-in amplifier.

Assuming that fin = fref, and applying the low pass filter we find the Imaginary

output,

Imaginary = 1
2 AinArefcos(θin - π/2) = 1

2 AinArefsinθin. (3.33)

30

The single phase lock-in amplifier, Fig. 3-6. has only one mixer and one

low pass filter. The single phase LIA output is equivalent to Eq. 3.29. With the

additional assumption that

θin = 0, (3.34)

i.e., the input is in phase with the reference, the single phase LIA output is

LIAOutput = 1
2 AinAref. (3.35)

3.4 Noise Model

3.4.1 Shot Noise

The noise model includes three sources of shot noise: photocurrent,

current through RShunt due to op amp offset voltage (VIO), and op amp input offset

current (IBI). Table II lists expressions for each of these noise sources. The shot

noise sources are uncorrelated so the total shot noise current is

I Shot ,Total= I Shot , PC2  I Shot , EIO
2  I Shot , IBI

2 . (3.36)

These noise currents flow through RF creating the noise voltage

V Shot=I Shot ,Total RF. (3.37)

at the TIA output.

Table II. Sources of shot noise considered by the noise model.
Shot Noise Source Value, Amps
Photocurrent, IPC 2eIPC f

EIO 2e E IO /RPD  f

IBI 2eIBI f

31

3.4.2 ADC Noise

Sampling the TIA output with an ADC brings about ADC sampling noise

and reference voltage noise. Successive approximation (SAR) ADCs and sigma-

delta ADCs have very different noise characteristics. Standard SAR converters

exhibit quantization noise due to the error from representing the input signal

with a finite number of equally spaced bits. The voltage error for one sample for

an ideal converter varies between zero and one LSB. A rough estimate of the

standard deviation of this error is 1/6 LSB. Table III shows the quantization noise

SNR for a standard SAR ADC with signal voltage 0.1V and voltage reference

4.096V using

SNRQuant , SAR=10log 0.1V
1/6 LSB  . (3.38)

where LSB = VRef/2N. Calculations of quantization noise for several converter

resolutions are shown in Table III, which shows that 20 bits are required to keep

the quantization noise well below the desired DAU SNR of 40 dB for a standard

SAR converter.

Table III. Quantization noise in dB for a standard SAR ADC. SNR is calculated
using 10 log SNR.
ADC Resolution (Bits) SAR ADC

12 28.2

16 40.2

20 52.3

24 64.3

32

Sigma-delta converters39 exhibit reduced quantization noise compared to

SAR converters. Sigma-delta converters increase the sampling rate, FSample, by the

oversampling ratio, N, increasing the Nyquist rate to NFSample/2. The sigma-delta

modulator moves quantization noise from the DC to FSample/2 range into higher

frequencies where digital filters in the converter attenuate it before

downsampling to FSample. Figure 3-7 depicts a block diagram of a delta-sigma

converter, including the delta-sigma modulator, low pass filter, and

downsampling operation. Inspection of Fig. 3-7 shows the modulator output,

ymod, is given by

ymod=
x− ymod

f
Q , (3.39)

where f is frequency, Q is the quantization noise, x is the converter input. Solving

for ymod gives

ymod=
x

f 1
Q f

f1 , (3.40)

which demonstrates the modulator low pass filters the input signal and acts as a

high pass filter to the quantization noise. Figure 3-8 illustrates the modulator

operation, removing quantization noise from low frequencies and passing the

signal of interest in the low pass filter passband. The converter subsequently low

pass filters the modulator output, removing quantization noise, and

downsamples to the final output data rate of fsample.

An estimate of the ADC voltage noise density is

33

Figure 3-7. Block diagram of a first order sigma-delta converter.

Figure 3-8. Output spectra of a first order sigma-delta modulator and passband
of low pass filter.

E ADC= V ADC
2

 f ADC
, (3.41)

where VADC is the ADC RMS noise voltage and ∆fADC is the converter bandwidth.

Table IV shows the SNR for a sigma delta converter for several oversampling

ratios assuming a bandwidth of 0.018 Hz and calculating the ADC noise voltage

with

VNoise = EADC(0.018 Hz)0.5. (3.42)

34

Table IV. ADC SNR for the ADS1278, a 24 bit sigma delta oversampling ADC,
using VNoise = EADC(0.018 Hz)0.5 for several oversampling ratios.

Oversampling Ratio SNR, dB

1 69.1

4 70.9

16 73.4

64 75.4

Two reference voltage sources provide positive and negative references

for the ADC. Assuming the noise voltages from these sources are uncorrelated

their sum is given by

V Ref , Total=E Ref
2  fERef

2  f =E Ref 2 f , (3.43)

where ∆Εref is the voltage reference noise voltage density in V /Hz .

3.4.3 TIA Noise Model

Figure 3-9 shows a schematic of one photodiode channel with op amp

noise sources, thermal noise from both resistors, and an equivalent circuit for the

photodiode. A shunt resistance RShunt and a diode simulate the photodiode - the

photodiode series resistance is omitted due to its relatively small magnitude. The

op amp input noise voltage density, ENI, and op amp input current noise density,

IBI, are included in the noise model. To find an mathematical expression for the

noise voltage at the op amp output we incoherently sum the contribution of all

noise sources at the TIA output to find40

ETIA=E N IGN 
2 f I BI RF

2 f 4kTRFGN f . (3.44)

Determination of the noise bandwidth,  f , for a particular measurement

35

method enables prediction of system noise performance with Eq. 3.44.

3.5 Average and Subtract Measurement Method

3.5.1 Description of Measurement Method

The average and subtract method of photocurrent measurement, Fig. 3-10,

with the LED on and then averaging n measurements with the LED off. The

difference between the average value with the LED on and with the LED off

measures the desired signal voltage

V Signal=ADCON−ADCOFF= I PCRF , (3.45)

where ADCON and ADCOFF are the mean TIA voltages with the LED on and

off. A low pass filter reduces the bandwidth of VSignal to prevent aliasing during

downsampling and increase the SNR. Spectral analysis of each component of the

average and subtract method provides an estimate of its measurement

bandwidth.

Figure 3-9. TIA noise model schematic including op amp noise sources.

36

Figure 3-10. Block diagram of the average and subtract measurement method.

3.5.2 Spectral Analysis

3.5.2.1 TIA Bandwidth

Studies with the average and subtract method utilized a TIA with

feedback resistor of 10 MΩ and feedback capacitance of 1000 pF. The feedback

capacitor, CF, limits the TIA bandwidth because as the frequency increases the

capacitor impedance, 1/sC, reduces which shorts out the feedback resistor and

limits TIA gain. Studies with the average and subtract method utilized an ADC

sample rate of 2 kHz with each ADC sampling four photodiode channels in

succession for a per-channel sample rate of 500 Hz. The component values

37

indicated above result in a TIA 3dB bandwidth of

f TIA=
1

2 RF C F
=16.7Hz. (3.46)

3.5.2.2 ADC Bandwidth

The transfer function of the ADC on the DAU, the ADS1258, is given by41

∣H  f ∣=∣sin128 f
f Clk 

64sin2 f
f Clk ∣

5

∣sin128 NumAve f
f Clk 

NumAvesin 2 f
f Clk  ∣, (3.47)

where fClk = 16 MHz and NumAve = 16 for this method. A plot of the ADC transfer

function, Fig. 3-11, shows the ADC 3 dB bandwidth is BWADC = 4687 Hz for the

DAU ADC configuration.

3.5.2.3 Averaging Filter and Subtraction

Figure 3-12 shows a plot of the moving average filter transfer function for

averaging 215 LED on samples and a derivation of the moving average filter

transfer function is included in Appendix A. Numerically integrating the area

under the magnitude of the filter transfer function shows the equivalent noise

bandwidth for averaging 215 samples is

ENBN=215=7.38Hz. (3.48)

The standard deviation of the mean of n samples from a normal distribution with

standard deviation σ and mean µ is

n=

n

. (3.49)

The standard deviation of the mean of n LED on and LED off values are

38

Figure 3-11. Texas Instruments ADS1258 transfer function for NumAve=16.

Figure 3-12. Spectrum of averaging process for N=215 showing 3dB bandwidth
and equivalent noise bandwidth.

39

n ,On=
On

 n
, (3.50)

and

n ,Off=
Off

n
, (3.51)

where σOn(Off) is the standard deviation of the LED on(off) samples.

Since we subtract the mean LED on and off voltages to find the signal

voltage the standard deviation of the difference is the sum of the LED on and off

standard deviations,

On−Off=n ,On n , Off=
OnOff

n
. (3.52)

With the approximation that σOn is approximately equal to σOff,

On−Off=2On

n . (3.53)

Since 10log(2) = 3.01 dB, the final SNR is 3.01 dB less than the LED on SNR.

3.5.2.4 Low Pass Filter

A first order Butterworth low pass filter with cutoff frequency 0.3 Hz after

the averaging process prevents aliasing during downsampling. Software in the

base station implements a low pass filter for a final bandwidth of 0.018 Hz.

3.5.3 Noise Model

The portion of the average and subtract method with the lowest

bandwidth determines the measurement bandwidth. Thus the measurement

bandwidth of the average and subtract method is 0.018 Hz, the low pass filter

bandwidth, and one must subtract 3.01 dB from the noise model due to the

40

subtraction operation. Estimating the op amp input voltage noise at DC by

extrapolating the data sheet noise voltage plot to approximately 1 Hz results in

45 nV/ Hz  . A plot of the noise model for the Average and Subtract method is

shown in Fig. 3-13 where the actual measurement bandwidth is the twice the

ENB to account for the two-sided passband for all sources except shot noise.

Figure 3-13 shows the SNR for a 30 kΩ shunt resistance photodiode, 42.5

dB, meets the 40 dB SNR goal and the op amp input voltage noise dominates

system noise at that resistance. The ADC noise, voltage reference noise, and op

amp input current noise have little effect on the system SNR as their noise

contribution is 10 to 30 dB less than the noise model near 10 kΩ to 30 kΩ.

3.6 LIA with Discretized Sinusoid Reference

3.6.1 Description of Measurement Method

Figure 3-14 shows the second proposed photocurrent measurement

system which utilizes a single phase LIA with sinusoid reference signal to

measure the magnitude of the photocurrent from each photodiode. Figure 3-15

illustrates the input (ADC samples), reference, mixer output, and LIA output as

functions of time. The reference sinusoid has magnitude ARef and frequency

f Ref=
1
tCycle

. (3.54)

The input signal has the value of VOn for t=0 to t=tOn and the value VOff for t from

tOn to tCycle, with

tOn=tOff=
tCycle

2
. (3.55)

41

The mixer multiplies the input and reference signals and the low pass

filter in the LIA passes the DC component of the mixer output. The low pass

filter averages the mixer output over an entire lock-in cycle:

LIAOut=
1
2 MixerOnMixerOff  , (3.56)

where MixerOnOff  is the mean of the mixer output while the LED is on(off).

Including expressions for the mean mixer outputs we have

LIAOut=
1
2 1

n∑i=1

n

Ref [i] ADC [i]1
n ∑i=n1

2n

Ref [i]ADC [i] , (3.57)

Figure 3-13. Noise model for the average and subtract method.

42

Figure 3-14. Block diagram of lock-in amplifier measurement system.

Figure 3-15. Operation of LIA with discretized sinusoid reference signal.

43

where Ref[i] is the digital representation of the reference signal and ADC[i] is the

input signal comprised of ADC samples. Consolidating Eq. 3.57 into one sum the

LIA output becomes

LIAOut=
1
2n∑i=1

2n

Ref [i]ADC [i]. (3.58)

3.6.1.1 Discretized Sinusoid Lock-in Implementation

The MCU utilizes 32 bit fixed-point integer math to implement the LIA. The

reference sinusoid is comprised of Q0.31 format numbers while 24 bit two's

complement ADC samples sign extended into Q0.31 format form the input

signal.

Qm.n format numbers are binary numbers with 1 sign bit, m digits to the

left of the decimal point, and n digits to the right of the decimal point. Q0.n

numbers, also denoted Qn, are scaled so that the maximum and minimum

numbers in this format are 1-2-n and -1. The advantage of this convention is that

overflow cannot occur as a result of a multiplication operation. To convert a

floating point number between -1 and 1-2n to Qm.n format, multiply by 2n And

to convert a Qm.n number back to floating point, divide by 2n. Multiplying two

Qm.n numbers requires adjusting the decimal point after multiplication. This is

apparent if we convert two floating point numbers, M1,Float and M2,Float to Qm.n

and multiply them:

M 1,Float2
nM 1,Float2

n=M 1,FloatM 2,Float 2
2n . (3.59)

This result has 2n bits to the right of the decimal point and must be divided by 2n

to obtain the result in Qm.n format. The multiplication operation for Qm.n is

44

given by:

M 1,Float 2
nM 1,Float2

n

2n
=M 1,FloatM 2,Float 2

n . (3.60)

A processor easily performs the division by 2n using a right shift of n bits. The

mixer multiplies Q0.31 format ADC and Reference signals and the desired lock

in output format is Q0.31, so a right shift of 62 – 31 = 31 provides Q0.31 format

output.

Multiplication of two n bit binary numbers results in a 2n bit binary

number. Thus multiplication of two Q0.31 numbers, which have 32 bits, requires

a 64 bit wide accumulator. The mean LIA output considering the shift required

for the multiplication and multiplication by 231 to convert to floating point is

LIAOut=
1
2n

231∑
i=1

2n

[Ref Q0.31[i]ADCQ0.31 [i]≫31] , (3.61)

where the subscript Q0.31 indicates the quantity is in Q0.31 format.

The LIA must measure the signal voltage due to photocurrent, IPCRf. We

must calculate the expected DC value of the LIA with our sinusoid reference

signal and square wave input signal to properly scale the LIA output. First

consider the first half of one cycle when the LED is on. With reference signal

Ref t =ARef sin t  , (3.62)

where

=2 
tCycle

, (3.63)

and ARef is the reference signal magnitude, the mean mixer output voltage is

45

MixOn=
1
tOn
∫

0

tOn

V On ARef sin  t . (3.64)

Performing the integration we find

MixOn=
−ARef V On

 tOn
cos  tOn−cos 0 . (3.65)

Since ω = 2π/tCycle, tOn = tCycle/2, and ωtOn = π and we find

MixOn=
−ARef V On


cos−1=

2 ARef V On


. (3.66)

A similar process for the time when the LED is off shows that

Mixoff=
−2 ARef V Off


. (3.67)

The LIA output is the average of Eq.s (3.66) and (3.67):

LIAOutput=
1
2 MixOnMixOff =

ARef

 V On−V Off . (3.68)

The signal voltage is then

V On−V Off=

ARef

LIAOut . (3.69)

The final equation for the LIA output considering Equations (3.61) is

V On−V Off=
1
2n

231 
ARef

∑
i=1

2n

[Ref Q0.31[i]ADCQ0.31[i]≫31]. (3.70)

3.6.2 Spectral Analysis

We must determine the noise bandwidth of the discretized sinusoid LIA

to plot the noise model. The TIA and ADC portions of the discretized sinusoid

LIA system are the same as used in the average and subtract method so their

bandwidth and noise contributions apply here as well. The noise bandwidth a

46

LIA is the combined bandwidth of all low pass filters after the mixer.

 A plot of the moving average filter spectrum for the average of N=430

samples, Fig. 3-16, shows that the 3dB bandwidth for the average of one cycle of

mixer output voltages is 0.7 Hz. Application of a low pass filter with cutoff

frequency 0.3 Hz before decimation prevents aliasing of data sent to the base

station. The base station low pass filter provides the final measurement

bandwidth of 0.018 Hz for the discretized sinusoid LIA.

3.6.3 Noise Model

Figure 3-16. Output spectrum of the moving average filter for N=430.

47

A total of 430 samples in one reference signal cycle sets the reference

frequency at

F Ref= t SampleN Samples= 1
500Hz 430=0.86Hz. (3.71)

Extrapolating the input voltage noise plot in the op amp datasheet to 0.86 Hz

shows input voltage noise is approximately 35 nV/ Hz  . The discretized

sinusoid LIA contains no subtraction operation and does not require subtracting

3.01 dB from the noise model result. The discretized sinusoid LIA noise model is

plotted in Fig. 3-17.

The noise model for the discretized sine wave LIA appears very similar to

that of the average and subtract method, with SNR 41.8 dB at 30 kΩ and SNR

determined by op amp input voltage noise near 30 kΩ. The ADC noise, voltage

reference noise, and op amp input current noise have little effect on the system

SNR for the discretized sinusoid LIA as well as for the average and subtract

method.

3.7 Combined Lock-in Filter - ADS1258 Configuration

3.7.1 Description of Measurement Method

The combined lock-in filter method applies the lock-in amplifier described

by Dorrington and Kunnemeyer31. This LIA utilizes a reference frequency equal

to the Nyquist sampling rate and replaces the mixing operation with the

inversion of every other sample. Figure 3-18 illustrates a block diagram of this

method. Inverting every other sample is equivalent to multiplying the input

signal by a cosine at the reference frequency. Since f(t)cos(ωR) is a Fourier

48

transform pair with ½[F(ω+ωR) + F(ω-ωR)] multiplying the LIA input by a cosine

at the reference frequency with fReference = fNyquist shifts the spectrum of the LIA

input by the lock in reference frequency, which shifts at the reference frequency

to DC, see Fig. 3-19. Then a low pass filter removes the remaining undesired

frequency components. The procedure described by Dorrington and

Kunnemeyer, which will be called the combined LIA filter method, implements

both a single pole Butterworth low pass filter and the inversion process by

alternately using the difference equations

Figure 3-17. Discretized sinusoid LIA noise model.

49

yn=
1
2m  xn− xn−1 1− 1

2m−1  yn−1 , (3.72)

and

yn=
1
2m −xn xn−11− 1

2m−1  yn−1. (3.73)

The ADS1258 has no latency assuming the ADC inputs are stable. When

the ADC inputs change during an ADC sample cycle, the resulting output

sample does not accurately represent the input signal. After the ADC inputs

settle, the ADC must process an entire sample cycle with settled inputs

Figure 3-18. A block diagram of the combined lock-in amplifier
measurement method.

50

Figure 3-19. Combined LIA. (a) Input spectrum. (b) Output spectrum after
shifting spectrum by fReference.

to accurately represent the input voltage.

3.7.2 Advantages of Combined LIA Filter

The combined LIA filtering method allows a higher reference frequency

than is possible using a discretized sine wave for the reference signal assuming

equal sampling frequencies and utilization of all samples. If an LIA uses a sine

wave sampled 2m times during one cycle for a reference signal, the two part LIA

filter in Equations 3.72 and 3.73 requires only two samples resulting in a

reference frequency 2m−1 times higher than the reference frequency of the

discretized sine wave. This may help increase SNR in cases where a noise source

with 1/f noise limits the SNR as is often the case for the input voltage noise of op

amps. If the LIA reference frequency is just high enough that the op amp input

voltage noise is dominated by the broadband noise, as in Fig. 3-5, the input

voltage noise contribution to system SNR is minimized. Increasing the LIA

reference frequency above the lowest frequency where the broadband noise

51

dominates the 1/f noise has very small additional benefit since further increase

in the reference frequency results in only a slight noise reduction.

3.7.3 Spectral Analysis

I chose a DAU ADC sample rate of 1.22 kHz for a lock-in reference

frequency of 610 Hz. The DAU firmware decimates the sample data to produce a

final DAU data rate of 1 Hz, requiring a low pass filter cutoff frequency below

0.5 Hz to prevent aliasing. The combined LIA filter algorithm in the DAU

firmware is given by

yn=
1

210  xn−xn−1 1− 1
29 yn−1 , (3.74)

and

yn=
1

210 −xnxn−1 1− 1
29  yn−1. (3.75)

Application of the single pole Butterworth low pass filter

yn=
1

210  xnxn−1 1− 1
29 yn−1 (3.76)

reduces the bandwidth below 0.5 Hz to prevent aliasing during downsampling.

The combined LIA and low pass filter could be combined but splitting them

reduces possibility of rounding errors due to small filter coefficients as these

calculations are performed using fixed-point arithmetic. The base station

software contains a first order Butterworth low pass filter with variable cutoff

frequency to further reduce measurement bandwidth and increase SNR. The

variable cutoff frequency allow flexibility during experiments and can alternately

52

be applied before data transmission to the base station. If the system bandwidth

is too low the system will not respond to changes in glucose concentration.

Glucose concentration in people changes over an approximate time period of a

few minutes to ten or fifteen minutes so I chose an initial system bandwidth of

0.018 Hz to prevent the possibility of removing glucose concentration changes

from the photocurrent spectra while maximizing SNR. Further studies included

in Chapter VI explore determination of final system bandwidth based on

measurements with the glucose sensor. The Butterworth low pass filter

yn=
1
32  xnxn−1 

15
16

yn−1 (3.77)

in the base station sets the measurement bandwidth to 0.018 Hz as shown in a

plot of the system noise spectrum in Fig. 3-20.

3.7.4 Noise Model

The low pass filters in the combined LIA filtering method pass signals

within the filter bandwidth of the reference frequency so that the contribution of

the op amp input voltage noise is the value of the op amp input voltage noise

density at the reference frequency. The MAX4478 input voltage noise density at

610 Hz is 5.5 V /Hz . Figure 3-21 shows a plot of the noise model for the

combined LIA filtering method.

Figure 3-21 shows the combined LIA method SNR, 44.4 dB, meets the goal

of 40 dB SNR for 30 kΩ photodiode arrays since the reference frequency is high

enough that broadband noise dominates op amp input voltage noise. Thermal

noise restricts system SNR in the 10 kΩ to 1 MΩ range. ADC, voltage reference,

53

Figure 3-20. Spectrum of combined LIA measurement method, including low
pass filters in MCU and base station, for the ADS1258 configuration.

Figure 3-21. Noise model of combined LIA method.

54

and op amp input current noise have no effect on system SNR for this

measurement method as their SNRs are 10 to 30 dB higher than the noise model.

3.8 Combined Lock-in Filter - ADS1278 Configuration

3.8.1 Description of Measurement Method

An alternate DAU configuration utilizes the ADS1278 ADC and the

combined lock-in filtering method illustrated in Fig. 3-18. The ADS1278 input

voltage range spans from ground to a positive supply voltage and therefore on

the DAU the amp non-inverting inputs are connected to a reference voltage

between the positive supply and ground. This enables the ADC to measure

voltages falling below the reference voltage. An alternate biasing method utilizes

2.5V and 5V supplies with the op amp non-inverting inputs connected to 2.5V.

The ADS1278 exhibits a latency of 40 sample periods with a few percent of

ripple voltage due to a step change in the analog inputs. The MCU software

minimizes the effect of this effect by recording several samples for each LED

configuration as discussed below.

3.8.2 Spectral Analysis

The transimpedance amplifier feedback capacitor of 100 pF limits the TIA

output bandwidth to 159 Hz, well below half the ADC modulator frequency of

50 kHz preventing aliasing in the sampling process. The MCU digital filters

reduce the lock-in amplifier bandwidth to below 0.5 Hz so aliasing does not

occur during downsampling to 1 Hz.

The ADS1278 DAU configuration software uses the combined LIA filter

55

yn=
1
28  xn−x n−1 1− 1

27  yn−1 , (3.78)

and

yn=
1
28 −xnxn−11− 1

27  yn−1 , (3.79)

in the MCU and the low pass filter

yn=
1
32  xnxn−1 

15
16

yn−1 (3.80)

in the PC software to achieve a final system bandwidth of 0.017 Hz.

I configured the ADS1278 DAU to record ADC samples at 781 Hz.

Sampling the analog inputs for four sets of ten samples with LED1 on, LEDs off,

LED2 on, and LEDs off and filtering only the fifth sample of each set reduces the

effect of ripple voltage due to the ADC latency. Also since the ADC delays the

samples by 40 sample periods recording 40 samples for each lock-in cycle

simplifies keeping track of which array to store the samples in. The resulting

lock-in reference frequency is 39 Hz. Experiments with 1, 2, 4, 8, and 16 samples

with stable ADC inputs showed the ripple voltage due to the ADC latency

increased enough below 8 samples that the ADC samples did not represent the

ADC input.

3.8.3 Noise Model

A few differences between the ADS1258 and ADS1278 configurations

impact the nose model including the voltage reference circuit, reference

frequency, and ADC noise. The ADS1278 configuration DAU requires only one

56

voltage reference IC, the MAX6126, instead of two references required by the

ADS1258 DAU. The MAX6126 broadband noise estimates the voltage reference

noise contribution since the manufacturer does not include a plot of the noise

spectrum in the datasheet and two RC filters on the DAU filter the reference

voltage. The MAX6126 broadband noise specification is 45 nV/ Hz-0.5 at 1 kHz.

The MAX4478 op amp input voltage noise at the reference frequency of 38 Hz is

12 nV/Hz-0.5. and the ADS1278 noise is 8 µV RMS. The ADS1278 configuration

noise model for a bandwidth of 0.017 Hz is shown in Fig. 3-22, and the noise

model software is included in Appendix F.

As the noise model plot shows, the relatively low reference frequency of

39 Hz adds more op amp input voltage noise to the model such that the thermal

noise and op amp input voltage noise curves meet near 10 kΩ. For prototype PD

arrays with shunt resistance 10 kΩ to 30 kΩ, the low reference frequency impacts

the noise model by only a few tenths of a dB, and thus does not significantly

degrade system performance. The noise model SNR of 44.8 dB at 30 kΩ shunt

resistance meets the initial goal of 40 dB. The ADC noise, voltage reference noise,

and op amp input current noise do not affect the noise model for this

configuration.

3.9 Analysis and Summary

A comparison plot of all four photocurrent measurement methods

presented in this chapter, Fig. 3-23, shows all filtering methods meet the SNR

requirement, but the combined LIA filters have higher SNR by approximately 2

57

Figure 3-22. ADS1278 DAU noise model with system bandwidth of 0.017 Hz.

dB at 30 kΩ shunt resistance due to reduced contribution from the op amp input

voltage noise enabled by a higher reference frequency. The ADS1258 model has a

slightly higher SNR below 30 kΩ since the reference frequency is higher than that

of the ADS1278 configuration. The average and subtract method exhibits a noise

model nearly equal to that of the discretized LIA method. The remainder of

experiments in this study employ the combined LIA filtering method. Further

experiments in Chapter 5 select which DAU configuration provides acceptable

performance for use in continuous glucose monitoring.

58

Figure 3-23. Comparison of all four measurement method noise models.

59

CHAPTER 4

DAU HARDWARE, FIRMWARE, AND SOFTWARE

This chapter documents design of DAU hardware and software enabling

the DAU to meet system performance goals. DAU design must implement the

combined LIA measurement method and meet several other design factors. DAU

hardware, firmware, and software requirements are detailed before a discussion

of the DAU design.

4.1 Requirements

4.1.1 Mechanical Requirements

• The DAU printed circuit card must interface with connectors on the end of

the MCU card including a two pin 0.1 inch spacing connector and a 20 pin

single row 0.1 inch spacing connector.

• The card must include a 40 pin DIP zero insertion force (ZIF) socket for

glucose sensor installation.

• The sensor ZIF socket must be in the vertical orientation so that air

bubbles will not collect in the glucose sensor fluid chambers.

• The MCU and DAU cards must connect together with the MCU card in

the horizontal orientation and DAU in the vertical orientation with the

glucose sensor installed on the side of the DAU card away from the MCU

card. This configuration keeps tubing connected to the glucose sensor

away from electrical components in case of a leak.

60

4.1.2 Electrical Requirements

• The DAU must interface with the connector on the edge of the MCU card.

• The DAU must provide LED current of 100 to 200 mA modulated with

two enable lines from the MCU and include provision to alter the amount

of LED current by changing a component value.

• The DAU must provide 32 transimpedance amplifiers to translate glucose

sensor photocurrent into voltages for subsequent sampling by ADCs on

the DAU.

• An SPI port must be used for transmitting photocurrent samples to the

MCU.

• The DAU must generate any required voltage supplies from batteries.

• The measurement method must provide photocurrent measurement SNR

greater than 40 dB where the signal to noise ratio is given by 10 log SNR

for a photodiode with shunt resistance of 30 kΩ.

• Power draw measurements for the DAU and MCU shall be recorded to

provide a starting point for future system miniaturization efforts.

4.1.3 Software Requirements

• The MCU firmware must be written in C using the Microchip IDE42.

• The base station software must be written in Visual Basic 6.0.

• The system shall provide photocurrent measurements for all glucose

sensor channels and for both LEDs at a rate of approximately 1 Hz.

• The software shall implement the combined LIA method.

61

• Software will modulate the LEDs and record samples with LED 1 on, no

LEDs on, LED2 on, and no LEDs on.

• The system software shall provide provision for detection of transients

due to air bubbles passing through the glucose sensor. An air bubble

passing through the sensor causes a large transient in photocurrent

measurements which invalidates the glucose concentration calculations.

• The base station software shall display and record all photocurrent

measurements.

4.2 Hardware Design

Figure 4-1 illustrates a block diagram of the ADS1258 DAU, including the

glucose sensor, TIAs, ADCs, as well as LED drivers, voltage regulators, and

voltage references. The MCU LED control lines modulate the IR LEDs while TIAs

translate photocurrent into voltages. The MCU obtains photocurrent samples

from the ADCs via an SPI port. Each ADC monitors four sensor channels

requiring a total of eight ADCs. A series of voltage regulators provide all

necessary voltages for the DAU.

4.2.1 Component Selection

4.2.1.1 Operational Amplifier

The op amp in the TIAs must be available in a surface mount IC package

and contain two or four op amps in one package. Utilizing surface mount devices

reduces the board space required for the DAU circuitry and helps ensure long

term availability as more through hole components become obsolete over time.

62

The DAU requires 32 op amps and a quad op amp will reduce the board space

required and minimize the number of components.

I selected the op amp which contributes the least amount of noise to the

system. Table V shows technical data such as input voltage noise, input current

noise, offset voltage, input offset voltage stability, and gain bandwidth product

for a number of op amps available on the market. Calculations of noise from the

shot noise on the offset current, input current noise density, and input voltage

noise density, Table VI, assist in op amp selection. The offset current is

I Offset= I InOffsetV InOffset /RPD , (4.1)

Figure 4-1. ADS1258 DAU block diagram.

63

where IInOffset is the op amp input offset current, VInOffset is the op amp input offset

voltage, and RPD is the photodiode shunt resistance. Voltage noise density due to

noise from the offset current referred to the TIA output,

ESHOT=RF 2IOffset e , (4.2)

where e is the electron charge and ∆f is the noise bandwidth, is of interest

because this current flows through the photodiode causing shot noise. The input

current noise density referred to the op amp output is

E I BI =I BI RF , (4.3)

where IBI is the op amp input current noise density. The input voltage noise

density referred to the op amp output is

E E N I=EN IGN=E N I 1RF /RT  , (4.4)

where ENI is the op amp input voltage noise density. The uncorrelated sum of

these noise sources,

E N ,TOTAL=ESHOT 
2E I BI 

2E E N I 
2 , (4.5)

provides the estimate of op amp voltage noise density. I selected the Maxim

MAX4478 because it introduces the lowest noise contribution as shown in Table

VI.

4.2.1.2 Feedback Resistor

The glucose sensor photocurrent design goal is 10 nA. The signal voltage

IPCRF must be within the input voltage rage of the ADC. The choice of 10 MΩ for

RF results in a signal voltage of

V Signal= I PCRF=10nA10M =0.1V , (4.6)

64

Table V. Operational amplifier component data.
Device Package Op Amps

Per Device
VInOffset (µV),

Typ.
EIN(nV/ Hz)
@ 1kHz, Typ.

EIN (µVP-P) 0.1-
10 Hz, Typ.

AD8599 soic-8 2 10 1.07 -
ADA4004-4 soicn-14 4 40 1.8 -

AD8674 soicn-14 4 20 2.8 -
OP2177 msop-8 2 15 7.9 -
OP4177 tssop-14 4 25 7.9 -
ICL7650 so-14 1 0.7 - 2

LMP7732 msop-8 2 9 3 -
LT1125 sow-16 4 30 2.7 -
LT1127 sow-16 4 30 2.7 -
LT1114 soic-16 4 25 14 -

LTC1053 soicw-18 4 0.5 - 1.5
LT1028 Soic-8 1 20 1 -
LT1128 soic-8 1 20 1 -

LTC2052 soic-14 4 0.5 - 1.5
LT6005 tssop-16 4 190 325 -

LTC6082 tssop-16 4 - 13 -
MAX4208 umax-8 1 3 140 -
MAX4238 sot23-6 1 0.1 30 1.5
MAX4477 umax-8 2 70 4 -
MAX4478 tssop-14 4 70 4 0.26
OP27AFK lccc-20 1 10 3 -
OPA2228 so-8 2 5 3 -
OPA4228 so-14 4 10 3 -
OPA2380 msop-8 2 4 200 -
OPA277 so-8 1 10 8 -
OPA2277 so-8 2 10 8 -
OPA4277 so-14 4 20 8 -
OPA376 sot23-5 1 5 7.5 -
OPA2376 msop-8 2 5 7.5 -
OPA4376 tssop-14 4 5 7.5 0.8

65

Table V continued.
Device IIn.Offset

(nA), Typ.
INI

(pA/ Hz)
@10Hz, Typ.

VIn.Offset Stab.
(µV/mo), Typ.

VIn.Offset Drift
(µV /Deg. C),

Typ.

GBW
(MHz),

Typ.
AD8599 25 1.5 - 0.8 10

ADA4004-4 40 3.5 - 0.7 12
AD8674 6 0.3 - 0.3 10
OP2177 0.2 0.2 - 0.2 1.3
OP4177 0.2 0.2 - 0.3 1.3
ICL7650 0.0005 0.01 0.1/ Mo 0.01 -

LMP7732 11 2.3 0.35 0.2 21
LT1125 7 1.3 0.3 0.4 12.5
LT1127 7 1.3 0.3 0.4 65
LT1114 0.06 0.03 0.3 0.4 0.75

LTC1053 0.03 0.0022 0.05/ Mo 0.01 2.5
LT1028 18 1 0.3 0.2 75
LT1128 18 1 0.3 0.2 75

LTC2052 - - 0.05/ Mo 0.01 3
LT6005 0.005 0.0012 - 2 0.002

LTC6082 0.0001 - - 0.2 3.6
MAX4208 0.001 - - 0.1 0.75
MAX4238 0.002 - 0.05 0.01 1
MAX4477 0.001 0.0005 - 0.3 10
MAX4478 0.001 0.0005 - 0.3 10
OP27AFK 7 5 0.2 0.2 8
OPA2228 2.5 0.4 0.2 0.1 8
OPA4228 2.5 0.4 0.2 0.3 8
OPA2380 0.006 0.01 - 0.03 90
OPA277 0.5 0.2 0.2 0.1 1
OPA2277 0.5 0.2 0.2 0.1 1
OPA4277 0.5 0.2 0.2 0.15 1
OPA376 0.0002 0.0002 - 0.26 5.5
OPA2376 0.0002 0.0002 - 0.26 5.5
OPA4376 0.0002 0.0002 - 0.26 5.5

66

Table VI. Operational amplifier selection calculations.
Device BW

(kHz)
Ioffset
(nA)

VShot(Ioffset)

(µV/ Hz)
VN,I(NI)

(µV/ Hz)
VN,V(NI)

(µV/ Hz)
Sum

(µV/ Hz)
AD8599 30 25.33 0.90 15 0.4 15.0
ADA4004-4 36 41.33 1.15 35 0.6 35.0
AD8674 30 6.67 0.46 3.0 0.9 3.2
OP2177 3.9 0.7 0.15 2.0 2.6 3.3
OP4177 3.9 1.03 0.18 2.0 2.6 3.3
LT1125 37.5 8.00 0.51 13 0.9 13.0
LT1127 195 8.00 0.51 13 0.9 13.0
LT1114 2.25 0.89 0.17 0.30 4.7 4.7
LT6005 0.01 6.34 0.45 0.012 108.7 108.7
LTC6082 10.8 2.33 0.27 0.005 4.3 4.4
MAX4477 30 2.33 0.27 0.005 1.3 1.4
MAX4478 30 2.33 0.27 0.005 1.3 1.4
OP27AFK 24 7.33 0.48 50 1.0 50.0
OPA2228 24 2.67 0.29 4.0 1.0 4.1
OPA4228 24 2.83 0.30 4.0 1.0 4.1
OPA2380 270 0.14 0.07 0.10 66.9 66.9
OPA2277 3 0.83 0.16 2.0 2.7 3.3
OPA4277 3 1.17 0.19 2.0 2.7 3.3
OPA2376 16.5 0.17 0.07 0.002 2.5 2.5
OPA4376 16.5 0.17 0.07 0.002 2.5 2.5

within the input voltage range of the ADC. The feedback resistor must be a metal

film resistor because in general metal film resistors exhibit lower noise than other

resistor types37.

4.2.1.3 Feedback Capacitor

The TIA feedback capacitor rolls off the TIA gain and also determines how

fast the TIA responds to a step change in input current. The ADC passband

repeats at multiples of 8 MHz requiring an anti-aliasing filter cutoff below 4

67

MHz to prevent aliasing. A standard SAR ADC would require anti-aliasing

cutoff frequency of half the sample rate, but the oversampling sigma delta

converter on the DAU effectively attenuates input signals between the ADC

bandwidth and a frequency of 8 MHz minus the ADC bandwidth. The minimum

CF to prevent aliasing is

C F=
1

2RF f Cutoff
= 1

210M4MHz
=4 fF , (4.7)

much lower than stray capacitance of about 0.5 to 1 pF, ensuring aliasing is

unlikely. Increasing CF above this value improves rejection of noise outside the

converter bandwidth, but the TIA must be able to respond to the step change in

input current when the LED turns on or off. After a step change in input current

the TIA output changes with a time constant RFCF - the longer the TIA settles the

closer it approaches its final value. Allowing two time constants between

toggling the LED and starting an ADC sample allows the TIA to reach 87% of its

final value. Since one sample period is 0.41 ms the feedback capacitance must be

C F=
0.5t RC
RF

=0.205ms
10M 

=20 pF (4.8)

to allow two time constants during one ADC sample period. Experiments with

an increased sample rate required reducing CF to the final value of 10 pF for a

TIA voltage bandwidth of

f TIA=
1

2 RF C F
= 1

210M 10 pF 
=1590Hz. (4.9)

4.2.1.4 Analog to Digital Converter

The ADC must meet the following constraints to be used on the DAU:

68

• Surface mount device

• 4/8/16 Channel device

• Sampling rate 200 to 2000 samples per second, minimum

• Serial port interface

• 20/24 bit resolution

Surface mount devices are required as with the op amps. The ADC will need to

be able to measure several channels to minimize the parts count and board space.

The MCU will send a set of data to the PC at approximately 1 Hz and record

perhaps 50 to 500 samples for all 32 channels, with each LED on and off. The

minimum sample rate without multiplexing ADC channels is then

approximately 4 times 50 to 500 samples per second, or 200 to 2000 Hz without

multiplexing. If multiplexing channels is required the minimum sampling rate

increases accordingly. For example if there are four channels per ADC and the

ADC has one ADC block, the minimum sample rate increases by a factor of four.

The ADC will need a serial port to send sample data to the MCU since a limited

number of digital I/O lines are available between the DAU and MCU. The ADC

must have a minimum of 20 bits resolution to ensure the quantization noise is

small relative to the system noise requirement.

Criteria for choosing the ADC are listed below.

• Maximum number of ADC blocks

• Ability to daisy-chain serial ports

• Maximum sampling speed

69

• Bipolar inputs

Technical specifications for several commercially available ADCs are

listed in Table VII. The number of ADC blocks inside a converter affects the

amount of time required to read all input channels. If each input has a dedicated

ADC multiplexing is not required and system throughput is maximized. An SPI

port requires a minimum of three pins including data out, data in, and serial

clock. The addition of a chip select line for each device allows several integrated

circuits to share the same SPI port. Some manufacturers allow several devices to

share an SPI port using only one chip select - this capability minimizes the

number of I/O pins required by the DAU. A faster sampling speed allows higher

Table VII. ADC component data.
Device Package Sample Rate Channels DS Blocks

AD7190 tssop-24 4800 SPS 4 1

ADS1211 ssop-28 1000 4 1

ADS1218 tqfp-48 390 8 1

ADS1258 qfn-48 23700 16 1

ADS1278 htqfp-64 128000 8 8

CS5528 ssop-24 617 8 1

LTC2408 ssop-28 7 8 1

LTC2418 ssop-28 7.5 16 1

LTC2444 qfn-38 8000 8 1

LTC2445 qfn-38 8000 8 1

LTC2448 qfn-38 8000 16 1

LTC2498 qfn-38 7.5 16 1

MAX11040 tssop-38 16000 4 4

70

sampling rate and LIA reference frequency which limits 1/f noise. Also higher

sampling frequency can reduce the hardware complexity because a lower

number of faster converters can process the same number of channels.

Since the photodiode array is in the common cathode configuration, the

PD cathodes are at ground and photocurrent travels out of the PD anode, forcing

the TIA output to fall below ground. The TIA amplifies the op amp input offset

voltage and therefore the TIA output voltage may be positive or negative. A

single ended bipolar input ADC easily handles this situation. Single ended

unipolar or differential ADCs can be used with proper attention to supply and

reference biasing.

I chose the ADS1258 for use on the DAU. This ADC has a 23.7 kHz sample

rate, 16 inputs, one ADC block, and bipolar inputs. On the DAU each ADC

measures four TIA channels which requires eight ADCs. I decided to use eight

ADCs because with sixteen ADCs the parts cost and board complexity would be

high and with four ADCs the reference frequency would be about 300 Hz, too

low to reduce the effect of 1/f noise from op amp input voltage noise.

4.2.1.5 Voltage Reference

The voltage reference must be a surface mount device and have the

minimum possible voltage noise. The present DAU requires positive and

negative reference voltages. Table VIII presents several voltage references and

their noise voltage from 0.1 to 10 Hz – the table shows that the ADR440 has the

lowest noise voltage.

71

Table VIII. Voltage reference component data.
Device Noise, µVp-p 0.1-10 Hz

REF3125 33

REF5025 7.5

VRE3025 1.5

MAX6126-2.5 1.45

ADR440 1

4.2.2 Printed Circuit Board Design

The DAU has six copper layers and measures approximately 4.25” by

4.25” with overall thickness 1/16”. Board layout design guidelines of minimum

trace width 0.008”, minimum trace spacing 0.008”, and minimum via size 0.010”

are within the capabilities of most printed circuit manufacturers. The layer

stackup, Fig. 4-2, consists of a top layer for components and routing, layers 2 and

4 for ground planes, and layer 3, layer 5, and the bottom layer for routing signals.

Layers 2 and 4 are identical, consisting of split analog and digital ground planes.

The top layer contains pads for installing devices and space for routing analog

and digital signals. The ADCs require 16 MHz clock sources - routing these

signals on layer 3 between digital ground planes isolates them from the rest of

the board. Locating the remainder of the digital lines below the digital ground

planes separates then from analog signals on the top layer. See Appendix B for

the ADS1258 DAU schematic. The parts placement process started with placing

the glucose sensor in the center of the board, towards the top edge in the vertical

orientation. This prevents air bubbles in the tubing from collecting inside the

72

sensor which causes large transients in the sensor data. A ZIF socket for the

sensor allows easy removal and installation. Mounting the sensor on the bottom

side reduces the possibility of getting fluid on the MCU in case of a leak.

Locating the TIAs around the around the glucose sensor minimizes length of

analog signal traces and allows creating the analog ground plane in the center of

the board. The digital ground plane along the left, right, and lower edge of the

board, providing room for LED drivers and other digital components.

4.2.3 Power Dissipation

Estimation of DAU power dissipation facilitates choice of voltage

regulators and assists development of future photocurrent monitoring devices by

providing a basis for designing future system configurations. Future versions of

the monitoring device will operate on batteries and require re-charging perhaps

once per day, requiring very low power operation. A power budget estimating

Figure 4-2. DAU printed circuit card layer definition.

73

the current required by the DAU is in Table IX. Actual current draw for the

positive and negative supplies are 350 mA and 340 mA.

Table IX. Power budget for DAU3. All data are in mA.
Device Quantity I per Device Positive Supply Negative Supply

ADS1258, Analog 8 12 96 96

ADS1258, Digital 8 0.6 4.8 0

MAX4478 9 10.0 90 90

ADR440 2 3.75 7.5 7.5

MAX16803 2 3 6 6

LED 2 50 100 100

OPA2350 8 10.4 83.2 83.2

OPA365 8 5 40 40

Total - - 427.5 422.7

4.3 MCU Firmware

The MCU must read samples from ADCs on the DAU via the SPI bus,

filter the samples, and send the resulting data points to the base station via USB

or wireless link for further processing. The MCU software, written in C using the

MPLAB IDE V8.1, is included in Appendix C. The software begins by initializing

variables, the SPI port, and all eight ADCs, see the MCU firmware block diagram

in Fig. 4-3. The main loop consists of processing samples with LED1 on, LED1

off, LED2 on, and LED2 off in succession and sending filtered data to the base

station once per second.

A timing diagram for the sample acquisition process, Fig. 4-4, illustrates

74

the MCU sampling procedure. Each ADC measures TIA outputs on four of its

analog inputs, requiring the ADC multiplexer to change channels periodically. I

included two sampling periods after channel switching to allow a brief ADC

settling time. Then the ADC records photocurrent samples for LEDs 1 and 2 with

the LEDs on and off. For each of these four sample categories, the ADC acquires

two samples. The MCU discards the first sample and this time delay allows the

TIA to approach its final output value for two RFCF time constants. The lock-in

amplifier filters the second sample using the combined lock-in filtering method.

The firmware main loop cycles through all four analog inputs for eight ADCs for

Figure 4-3. MCU firmware flowchart.

75

Figure 4-4. ADS1258 configuration firmware timing diagram.

one second and then sends the filtered photocurrent spectra to the base station.

4.4 Base Station Software

A graphical user interface written in Visual Basic 2006 reads glucose

sensor data from the MCU USB or wireless port, displays it on the computer

screen, and archives it for further processing. The base station software is

included in Appendix D. Most of the user interface window, see Figure 4-5,

consists of bar graphs displaying data points for all 32 channels and both LEDs.

At any time the user adjusts the maximum and minimum voltages displayed by

entering new maximum/minimum values on the left edge of the window and

clicking the “Update” button. The software allows the user to select the MCU

port, the sensor pinout (old or new), filter bandwidth, transient detection level,

and output filename. After the MCU starts sending data the PC software enters a

76

Figure 4-5. The base station software window.

loop filtering, displaying, and recording sample data and transient indication.

4.5 ADS1278 DAU Configuration

The ADS1278 DAU configuration contains four ADS1278 ADCs and each

ADC measures TIA output voltages for eight glucose sensor channels, see the

block diagram in Fig. 4-6. Power conditioning circuitry generates a +2.5 V

voltage reference and a +1.8 V power supply for the ADC core voltage. An SPI

port transfers sample data to the MCU for filtering. A schematic diagram of the

ADS1278 DAU is included in Appendix E. The ADS1278 ADC measures the

differential voltage between each positive analog input pin and negative input

pin relative to the differential voltage between the positive and negative

reference voltage inputs but both analog input pin voltages must be above

ground.

77

The ADS1278 ADC exhibits a latency, or delay, of 40 sample periods

before the output samples accurately represent the input voltage. The MCU

firmware accommodates this by recording ten samples with LED1 on, all LEDs

off, LED2 on, and all LEDs off as shown in Fig. 4-7. The MCU firmware records

the fifth sample of each group of ten samples with an ADC sample rate of 781.25

Hz which results in lock-in cycle length of 25.6 ms and a reference frequency of

39.1 Hz.

4.6 Design Notes

4.6.1 Metal Film Resistors

Metal film resistors exhibit less noise than other resistor types such as

thick film and carbon composition resistors. Metal film resistors cost more than

thick film resistors but where the SNR is a concern the use of metal film resistors

is required. Thus the TIA uses metal film feedback resistors as any excess noise

reduces the SNR.

4.6.2 Op Amp Input Voltage Range

Since all photodiodes have a common cathode the TIA output falls to

-IPCRF when the LEDs turn on. The op amp power supplies and input voltage

range must not limit output voltage for the expected range of photocurrent.

4.6.3 Op Amp Non-inverting Input Voltage

The op amp non-inverting input voltage must be a low noise voltage

source such as ground potential. If the non-inverting TIA input is driven at ½ the

analog supply voltage for an op amp operating from +AVCC to ground, the TIA

78

Figure 4-6. A block diagram of the ADS1278 DAU configuration.

Figure 4-7. ADS1278 DAU configuration timing diagram.

79

amplifies noise present on the +AVCC/2 voltage. Two alternatives avoiding this

problem are (1) using bipolar input op amps and ADCs with the non-inverting

TIA input at ground and (2) using single ended input op amps and ADCs with

two voltage sources supplying ground, +AVCC/2, and +AVCC with the non-

inverting op amp input at +AVCC/2 and powering the ICs from ground and

+AVCC.

4.6.4 Build a Demonstration System

Construction of a demonstration system has several benefits. It allows the

designer to verify technical specifications of ICs, determine whether circuit

configurations will operate correctly, and begin software development at an

early stage in the design process.

4.6.5 Prevent Crosstalk

PC card designs must include provisions to prevent cross talk between

signals. For example, high frequency digital signals and clocks must be separated

from other signals including analog signals to prevent contamination of low level

analog signals. Ground planes between signals, routing signals on adjacent

planes at 90 degree angles, and increasing distance between traces prevent cross

talk.

4.6.6 Prevent Ground Loops

Reducing the area of or elimination ground loops or current paths reduces

the amount of noise induced into and radiated by the circuit path. Ensuring that

the trace carrying current to a device is above the trace or plane carrying the

80

return current from the device minimizes loop area of that current path reducing

possibility of electromagnetic interference.

4.6.7 Lock-in Reference Frequency

Proper choice of the lock-in reference frequency enables reducing the

effect of 1/f noise on system noise performance. The combined lock-in amplifier

allows increasing the reference frequency high enough to reduce the contribution

of 1/f noise in the op amp input voltage noise, increasing system SNR.

4.6.8 ADS1258 ADC configuration

The ADS1258 data sheet illustrates using a buffer between the multiplexer

and the actual ADC modulator inputs and shows an example method for driving

the voltage reference inputs with an op amp follower. Application of these

additional components improved consistency of SNR across all DAU channels,

but required an additional 24 op amps impacting the DAU board area and power

requirements.

4.7 Summary

 The DAU and MCU implement the combined LIA filtering method with

firmware written in C and base station software written in Visual Basic 2006.

DAU component selection minimizes electrical noise from each device - the

device search included numerous op amp, voltage references, and ADCs. The six

layer printed circuit card layout also minimizes noise by reducing crosstalk

between digital and analog signals. Subsequent chapters document testing and

evaluation of the DAU and MCU for continuous glucose monitoring.

81

CHAPTER 5

EXPERIMENTS AND ANALYSIS

Experimental measurements in this chapter evaluate the capability of the

monitoring system to provide low noise measurements acceptable for use with

the glucose monitoring system. Initial measurements with metal film resistors in

place of photodiodes, see Fig. 5-1, enables measurement of offsets, system SNR,

channel isolation, and electronics stability. Deviation from zero Volts present in

lock-in amplifier outputs without illumination could be tolerated if the offsets do

not change, but offsets that vary with time or from experiment to experiment

cannot occur as time varying offsets appear as changes in analyte concentration.

The measurement system must provide at least 40 dB SNR with 30 kΩ shunt

resistance photodiodes providing 10 nA of photocurrent. Crosstalk between

DAU channels indicates poor channel to channel isolation - investigation of

Figure 5-1. Utilization of metal film resistors to simulate photodiodes.

82

 correlation coefficients for all channel pairs ensures independent data channels.

Recording system outputs over several hours determines whether the electronics

induce drift over time. Subsequent experiments with IR LEDs, variable filters,

and photodiode arrays with shunt resistance of 10 kΩ to 30 kΩ prove the system

ability to measure photocurrent with acceptable SNR.

5.1 DC Offsets Using Metal Film Resistors

The lock-in amplifier output voltage is proportional to IPCRF, therefore

when there is no photocurrent the LIA output must be 0 Volts, ignoring noise.

Thus any significant DC offset voltage represents measurement error as the LIAs

pass only the portion of the input signal modulated at the reference frequency. A

DC shift in any sensor channel with no photocurrent sends erroneous spectra to

the calibration routine. The ADS1258 DAU lock-in amplifier channels exhibited

DC offsets of 50 to 500 µV which changed with each power cycle, see Fig. 5-2(a),

rendering the configuration unacceptable for measuring absorption spectra.

Significant effort expended to eliminate ADS1258 offsets achieved little

success. The ADC contains a multiplexer before the actual delta-sigma ADC with

the multiplexer outputs and ADC inputs available on ADC pins. Advice from the

device manufacturer on obtaining specified device performance includes the

addition of an external buffer between the multiplexer and ADC and buffering

the voltage reference to the ADC with another external buffer. Neither the

addition of single ended buffers nor differential buffers between the multiplexer

and ADC inputs removed the offset error. Buffering the voltage reference as

83

indicated did not remove the measurement error provided by the ADS1258

configuration. Schematics of the single ended and differential buffers between

the multiplexers and ADC inputs as well as the buffers for each ADS1258 voltage

reference input are depicted in Fig. 5.3. Other attempts to improve offset

performance of the ADS1258 configuration include:

• Use low noise laboratory power supply to provide voltage reference.

• Utilize low noise laboratory supply to supply +/-2.5 Volt analog supplies.

• Increase RC time constant of RC filters in voltage reference, reduce

resistance in RC filters ensuring the ADC1258 voltage reference current

draw does not load filters.

• Investigate use of alternate component values for the 47 Ohm resistor and

2200 pF capacitor between the voltage reference buffer and ADC voltage

reference pins. The capacitor helps the ADC input capacitor charge up

during the acquisition time and the resistor isolates the capacitor from the

op amp output - these components are not designed to be an RC filter.

• Measure another set of samples after LED1 and LED2 samples and

subtract this data from LED1 and LED2. The DC offsets can change from

power cycle to power cycle but are relatively stable during each data

collection period. Subtraction of the third data set did not eliminate the

offsets.

• Monitor the internal ADS1258 voltage reference. Periodic fluctuations on

the external voltage reference were noted - fluctuations in voltage

84

reference between LED on and LED off samples with constant voltages at

ADC analog inputs cause the offsets in lock-in amplifier data. Neither

modifying the reference voltage circuit nor modifying the software to alter

the data collection periodicity significantly reduced the offsets. The ADC

does not allow use of the internal reference for recording samples.

As shown in Fig. 5-2(b) the ADS1278 configuration offsets are within a few

µV of ground, much lower than for the ADS1258 configuration with offset errors

of a few hundred µV to nearly 1 mV. therefore the ADS1278 configuration was

selected for use with the measurement system. The ADS1278 configuration has

an ADC clock configuration of 2 MHz, much lower than the 16 MHz ADC clock

of the ADS1258 configuration. Eight ADCs on the ADS1258 configuration require

the ADC clock to function and although these clock lines sit between two digital

ground planes, routing the ADC clock lines to all eight ADCs could cause excess

16 MHz noise on the ADS1258 PC card. The ADC allows a 16 MHz signal to pass

and alias since its passband repeats at multiples of 8 MHz, half the ADC clock

frequency. With only four ADCs and a lower ADC clock frequency the ADS1278

configuration has less susceptibility to ADC clock noise passing through the

ADC.

5.2 Signal to Noise Ratio Measurement with Metal Film Resistors

Measurement of the system SNR with metal film resistors in place of the

photodiode array verifies whether the combined LIA measurement method

follows the noise model prediction. A PC recorded at least 1000 monitoring

85

Figure 5-2 Offsets. (a) ADS1258 configuration. (b) ADS1278 configuration.

86

Figure 5-3. Circuitry included with ADS1258 DAU configuration. (a) Single
ended and (b) differential buffers between each ADC multiplexer output and

ADC input. (c) Buffers for voltage reference inputs.

87

system samples with RTest values of 10 kΩ, 30 kΩ, 100 kΩ, 300 kΩ, 1 MΩ, and an

open circuit (approximately 1E9 Ω) for all channels. A warm up time of at least

30 minutes with the monitoring system fully operational before retaining data

allows temperature stabilization of the DAU and MCU.

Figure 5-4 shows a plot of mean experimental SNR measurements for the

ADS1278 configuration with SNR in dB calculated using

SNRdB=10 logSNR=10 log
I PCRF

 , (5.1)

where σ is the sample standard deviation of 1000 data points. The experimental

SNR data with metal film resistors match the noise model well for RTest of 300 kΩ

and below, but the SNR drops slightly for RTest = 1 MΩ and drops about 3 dB for

an open circuit. One noise source not considered in the noise model is the 2.5V

reference voltage applied to the non-inverting op amp input in the TIA, but this

noise source would appear as additional op amp input voltage noise and reduce

SNR for lower RTest values before affecting that of larger RTest and cannot account

for the excess noise. Modifying the noise model to include a n 0.8 MΩ resistor in

parallel with the test resistor, shown in Fig. 5-4 as the modified noise model,

minimized the mean error relative to the metal film resistor experimental data.

Thus a leakage resistance, RContamination, due to flux residue or other contaminants

reduces the effective value of RTest. For RTest below 1MΩ the parallel combination

of RTest and the contamination resistance,

RTest , Effective=
RTest RContamination

RTestRContamination
, (5.2)

88

is close to RTest but it is limited to RContamination with high RTest. Including guard rings

around the op amp inputs will reduce susceptibility to leakage currents.

5.3 Stability Investigation Using Metal Film Resistors

Stability of DAU photocurrent measurements over time ensures glucose

concentration measurements are free of electronics drift. Ambient air

temperature changes can cause electronics drift in the monitoring system due to

the temperature coefficient of the voltage reference. Heating and cooling systems

modulate air temperature with periods of tens of minutes possibly affecting

Figure 5-4. Experimental SNR results and noise model for ADS1278 DAU.

89

the ADC samples over time. Factors such as op amp offset voltage and voltage

reference magnitude can shift over weeks or months, but techniques such as

periodic system calibration, lock-in detection, and ratiometric measurement

reduce or eliminate these effects. A plot of DAU sample data over two days

evaluates whether drift is present in the DAU electronics. Fig. 5-5 shows plots of

several representative LED1 channels using 30 kΩ metal film resistors for RTest

and a 0.017 Hz bandwidth. The plots show a mean SNR of 43.4 dB relative to

0.1V signal without significant drift, matching the noise model prediction of 44.0

dB very well. Therefore the monitoring system electronics do not exhibit drift

and do maintain SNR performance over a period of days. Also the electronics do

not require periodic calibration while in operation - the measurement system ran

continually over the two day period without interrupting data logging to record

or reset any software data or any type of calibration data.

5.4 Cross-correlation with Metal Film Resistors

In the ideal multi-channel data acquisition system samples from each

channel are completely independent and therefore uncorrelated. The ADS1278

DAU configuration contains four ADCs and eight op amp ICs with separately

filtered voltage references for each op amp IC and ADC and hence some

similarities between channels over time are possible. Fluctuations in LED output

intensity over time affect all photodiodes simultaneously and also contributes to

correlations between photodiode channels. Calculation of the Pearson correlation

coefficient43 between two vectors X and Y,

90

Figure 5-5. Plot of several representative DAU channels with RTest = 30 kΩ and
bandwidth of 0.017 Hz over two days showing lack of electronics drift.

91

r X ,Y=
E [X−X Y−Y ]

X Y
, (5.3)

where µX(µY) is mean of X(Y), σX(σY) is the standard deviation of X(Y), and E[a] is

the mean value of a, estimates similarity of the two vectors over time. The

correlation coefficient of a vector with itself equals 1 since the standard deviation

is

X=E X−X 
2. (5.4)

A three dimensional plot of rAB, the correlation coefficient, versus channel A and

channel B where A and B include all LED1 and LED2 photodiode channels, Fig.

5-6, shows correlation coefficients from approximately -0.4 to 0.4. Two plots of

channel pairs with the highest correlation coefficients, Fig. 5-7, shows these

channels do exhibit periods with similar gradual changes but the channels do not

closely follow each other for extended amounts of time. Perturbations of the

voltage reference likely causes the correlations between channels on the card

without illumination. Comparing correlations between LED1 and LED2 for each

channel shows no high correlations. Thus the monitoring system channels

provide independent samples. The personal computer software for calculation of

the cross-correlation coefficients is included in Appendix G.

5.5 Signal to Noise Ratio Measurement with

Variable Filter, PD Array, and IR LEDs

A 40 pin DIP IC header with 11 kΩ shunt resistance photodiode array and linear

variable bandpass filter facilitated SNR experiments while completed glucose

sensors were under development. The mean SNR for all channels without

92

Figure 5-6. Three dimensional plot of Pearson correlation coefficient, rAB, versus
channel A and channel B, where A and B include all possible LED1 and LED2

glucose sensor channels. For this plot, RTest is an open circuit, system bandwidth
equals 0.0043 Hz, and each channel includes 1000 consecutive samples.

93

Figure 5-7. Pairs of DAU channels with highest correlation. (a) LED1 channels 1
and 27 and (b) LED2 channels 9 and 14. Slight correlations over time are likely

due to changes in the voltage reference.

94

illumination, 40.5 dB, matches the experimental SNR of 40.4 dB for 10 kΩ metal

film resistors as shown in Fig. 5-4. The noise model SNR prediction for 10 kΩ is

40.8 dB.

A pair of infrared LEDs providing illumination covering the 2.2 to 2.4

micron wavelength range aligned over the variable bandpass filter and 11 kΩ

photodiode array provide an apparatus for measuring SNR with the

photodiodes illuminated with IR light. The distance between the LEDs and

photodiodes determines the photocurrent magnitude - I aligned the LEDs to

obtain a lock-in output voltage of 0.1 V, corresponding to the 10 nA glucose

sensor photocurrent design goal. The SNR result for the 11 kΩ photodiode array

with IR illumination is 37.9 dB as shown in Fig. 5-4, approximately 2.5 dB below

the experimental SNR for 10 kΩ RTest.

The mean SNR for the case of the un-illuminated PD array matches the

experimental metal film resistor results very well, but SNR falls with

illumination. Possible sources of the excess noise include the LED driver circuitry

and the LED itself. Measurement of the standard deviation of the LED driver

output voltage with the LEDs replaced with a metal film resistor with resistance

equivalent to that of the LEDs results in a SNR of 60 dB for a 0.017 Hz

measurement bandwidth, nearly 20 dB above the experimental measurements

with metal film resistors or photodiode arrays and therefore the LED driver is

not likely the source of the excess noise. Studies show LEDs exhibit low

frequency noise in their output light intensity44. Noise from this source may

95

explain the additional system noise with illuminated photodiodes.

5.6 Conclusions

Due to the offsets present with the ADS1258 configuration the ADS1278

configuration was selected for the remainder of experiments. The signal to noise

ratio of the photocurrent monitoring system follows the noise model calculation

very well with metal film resistors in place of the photodiodes. The DAU

channels provide independent measurements of the photodiode array channels

and the measurement system maintains stable operation over a period of days

without calibration. Experiments with IR LEDs, the linearly variable bandpass

filter, and the 11 kΩ photodiode array show the noise model predicts the

experimental SNR without illumination but with illumination the SNR drops by

2 dB. Investigation of the LED driver noise indicates it is not the source of the

extra noise but low frequency sources of noise common to LEDs may cause the

excess noise.

96

CHAPTER 6

GLUCOSE CONCENTRATION MEASUREMENT

6.1 Introduction

After a brief discussion of some spectroscopy terms evaluation of the

measurement system applied to glucose monitoring begins with determination

of the systems lower glucose concentration detection limit. Experiments with

chemical solutions of varying glucose content exhibit system noise and elicit the

system limit of detection - the minimum glucose concentration the system can

detect. Further experiments with several analytes with near IR absorption

features show system specificity or the ability to measure glucose concentration

in the presence of other chemicals. Final experiments are planned utilizing a lab

animal to demonstrate the system with live subjects. Detection of large transients

in photocurrent spectra as occur when air passes through the sensor fluid

chambers allows identification of these events and prevent the associated faulty

glucose concentration predictions.

In spectroscopy the relationship between wavelength of light, λ, and the

spectroscopic wavenumber, k, is given by

=1
k
. (6.1)

In this paper  is measured in microns and wavenumber is in units of cm-1. The

light intensity, I, at one wavelength transmitted by an absorbing medium is

I=I 0 10− , (6.2)

97

where I0 is the initial light intensity and α is the absorbance. The medium

absorbance is found to be

=−log I
I 0
, (6.3)

where log is the base 10 logarithm and  is in absorbance units (A.U.). The Beer-

Lambert law,

= l c , (6.4)

where  is the molar absorptivity in 1/(M cm), l is the optical path length

through the medium, and c is the molar concentration, states that absorbance is

proportional to analyte concentration at one wavelength.

Figure 6-1 illustrates the laboratory apparatus for experiments with

chemical solutions. Two manual syringes pull fluid through the glucose sensor

sample and reference channels. The reference channel always contains a pH

buffer solution.

6.2 Transient Detection

Since water attenuates IR light propagating through the fluid chamber

more than air, large photocurrent transients occur when air bubbles pass through

the glucose sensor. The resulting fluctuation in photocurrent spectra invalidate

the glucose concentration calculation and therefore software to detect and flag

large transients in photocurrent samples prevents air bubble transients from

causing undue alarm.

Low pass filters reduce the effect of noise spikes so the software must

check for large shifts in the input samples before any filtering. The MCU

98

Figure 6-1. Apparatus for concentration measurement experiments.

firmware checks whether the magnitude of the difference between the new LED

on minus LED off voltage and the previous lock-in result exceeds a threshold set

by the user. Figure 6-2 illustrates a demonstration of the transient detection

routine with the glucose sensor when a small air bubble passed through the

signal channel. The transient monitor status, Fig. 6-2(b), shows the software

correctly found the transient just after a time of 2 minutes. For this example the

transient threshold was 0.313 Volts and the system bandwidth was 0.017 Hz.

6.3 Baseline Spectrum

The glucose monitoring system measures glucose concentration based on

the difference between absorbance spectra from a blank solution flowing in the

reference channel and a fluid sample flowing through the sample channel. Since

the light intensity reaching a photodiode element is represented by

99

Figure 6-2. Demonstration of transient detection with the glucose sensor. (a) Plot
of channel 16 versus time. (b) Status of transient monitor.

100

I=I 0T 10− , (6.5)

where I is the light intensity reaching the photodiode, I0 is the initial light

intensity, T is the transmission coefficient of the instrument for that photodiode,

and α is absorbance, the instrumentation adds a baseline spectrum to the

absorbance spectrum measurements. The baseline spectrum includes effects due

to channel to channel differences in the electronics and glucose sensor channels.

The baseline spectrum is determined by recording reference and sample spectra

with blank solutions flowing through both fluid chambers and calculating the

absorbance for photodiode n using

An=−log10

Sn
Rn
, (6.6)

where Sn (Rn) is the nth sample lock-in output voltage. Subtracting the baseline

spectrum from subsequent measurements with sample fluid in the sample

channel gives the absorbance spectrum for the sample fluid. Plots of the sample

and reference spectra with buffer solution in each fluid chamber and the

resulting baseline spectrum are shown in Fig. 6-3.

6.4 Absorption Spectrum

To calculate the absorption spectrum of a sample fluid containing analytes

one measures the sample spectrum using the procedure for determination of the

baseline spectrum in the previous section and subtracts the baseline spectrum

from the sample spectrum. The absorbance spectrum plotted in Fig. 6-4(a) shows

experimental measurements exhibit glucose absorption bands. Comparison with

a reference glucose absorption spectrum recorded with an FTIR spectrometer35,

101

Figure 6-3. Example of baseline spectrum calculation. (a) Reference and sample
spectra with buffer solution in both fluid chambers. (b) Baseline spectrum

calculated from the spectra in (a).

102

Fig. 6-4(b), indicates spreading of the peaks near 4300 cm-1 and 4400 cm-1 as well

as increased absorption below 4300 cm-1, likely due to a relatively large optical

filter bandwidth of the glucose sensor compared to the FTIR instrument. For this

example the average of 1000 consecutive buffer spectra formed the baseline

spectrum and the average of 1000 50 mM glucose spectra provided the glucose

sample spectrum.

6.5 Limit of Detection

Quantification of the change in the absorption spectrum for several

concentrations of glucose allows estimation of the lower limit of glucose

concentration detection. The limit of detection,

LOD=3B , (6.7)

where B is the standard deviation of glucose concentration for a blank sample,

estimates the lower bound of analyte concentration the system determines with a

degree of certainty.

We calculated an approximate estimate of the LOD by considering the

response from only one glucose sensor channel near the peak of a glucose

absorption band. Figure 6-5 shows a plot of the response of channel 16 with

wavenumber 4410 cm-1 while flowing buffer and the glucose concentrations

indicated with a system bandwidth of 0.00108 Hz. The standard deviation of the

blank sample absorbance is 27 µA.U. A plot of absorbance vs. glucose

concentration, Fig. 6-6, shows there are approximately 75000 mM per A.U. and a

rough estimate of the LOD is 6.1 mM for this data set. Performing this analysis

103

Figure 6-4. Glucose absorption spectra. (a) Absorption spectrum of 50 mM
glucose sample measured by DAU/MCU with system bandwidth of 0.00108 Hz.
(b) Reference glucose absorption spectrum measured with an FTIR instrument35.

104

Figure 6-5. Response of glucose sensor channel 16 to several glucose
concentrations.

Figure 6-6. Plot of glucose concentration versus absorbance for 20 and 50 mM
solutions recorded using the DAU with bandwidth of 0.00108 Hz.

105

for a range of system bandwidths, Fig. 6-7(a), shows the LOD decreases with

decreasing system bandwidth as one would expect since reduction in bandwidth

reduces system noise levels and thus reduces the standard deviation of spectral

data. Fig. 6-7(b) shows a plot of the signal to noise ratio with a lock-in amplifier

output voltage approximately 50 mV using only an IR LED and an 11 kΩ

photodiode array without fluid chambers showing the SNR increases as expected

for bandwidth extending down to 0.5 mHz. A system bandwidth of 0.5 mHz

corresponds to an exponential time constant of approximately 5.3 minutes. Since

the glucose concentration changes over a period of perhaps a few tens of minutes

and ISF glucose concentration presents physiological delays relative to blood

Figure 6-7. LOD with one wavelength and SNR versus bandwidth.

106

glucose concentration change, low system bandwidths prevent timely system

response to glucose concentration and suggests the need for a minimum system

bandwidth requirement.

During glucose sensor construction one aligns the LEDs with the PD array

assisted by a photocurrent monitoring system35 consisting of a printed circuit

board with several transimpedance amplifiers, a commercially available ADC

card, and LED driver demonstration boards. Data I recorded with this system in

Fig. 6-8 shows the response of Channel 16 with wavenumber 4410 cm-1, buffer

solution in the reference channel, and glucose solution concentration indicated in

the sample channel. The transimpedance amplifier board contains OPA27

operational amplifiers in the TIA configuration, Fig. 3-1, with feedback

capacitance provided only by stray capacitance. The system recorded samples

every 9.5 seconds, thus the system bandwidth must be below 0.053 Hz to prevent

aliasing. Analysis of the filtering and downsampling processes utilized by the

alignment system shows the filter bandwidth is 0.08 Hz. The standard deviation

of absorbance with the blank sample is 148 µA.U. and a plot of solution

concentration versus absorbance, Fig. 6-9, exhibits a slope of 76000 mM per A.U.

Therefore a rough LOD estimate for this monitoring system with one wavelength

is 33.7 mM.

6.6 Minimum System Bandwidth

A minimum system bandwidth which allows nearly all spectral energy of

typical glucose concentration transients to pass through the system filter

107

Figure 6-8. Response of one glucose sensor channel measured by monitoring
system used for sensor construction to glucose concentrations indicated.

Figure 6-9. Plot of glucose concentration versus absorbance for 20 and 50 mM
solutions recorded using the sensor alignment system.

108

maximizes system SNR while allowing the monitoring system to maintain

accuracy as the subjects glucose concentration changes over time. Fourier

analysis of a reproduction of a fast meal transient from a patient45, Fig. 6-10,

shows the transient has frequency content up to 0.13 mHz. Figure 6-11(a)

includes a plot of the fraction of spectral energy passed by an RC low pass filter

versus filter bandwidth, found by integration of the Fourier transform of the

transient up to the filter bandwidth. A bandwidth of 1 mHz allows nearly all the

transient energy to pass through the filter. The group delay of a filter, given by

−d/dt where  is the filter phase, is the amount of time the input

signal is delayed as a function of frequency. The group delay of an RC low pass

filter,

−d
d

= RC
12R2C2

, (6.8)

with bandwidth of 1 mHz, see Fig. 6-11(b), is relatively constant over the

transient frequency range of 0.13 mHz, and therefore a bandwidth of 1 mHz

allows nearly all transient energy to pass through the filter without distorting the

signal and the system will accurately measure the glucose concentration

transient.

6.7 Multivariate Calibration

In practice, multivariate calibration methods such as partial least

squares (PLS)46 and the net analyte signal method (NAS)47,48 use all sensor

photodiode channels to predict analyte concentration. The partial least squares

method seeks to describe spectral variation in a set of vectors or spectra from

109

Figure 6-10. A reproduction of a fast meal response glucose concentration
transient from patient data.45

Figure 6-11. Fraction of energy passed by low pass filter vs. bandwidth and
group delay for bandwidth of 0.001 Hz.

110

several samples with a range of analyte concentrations while including

concentration information by using correlations between analyte concentration

and sample spectra. The process decomposes a spectral matrix X using

X=T PTE , (6.9)

where X contains sample spectra, T is a matrix of scores, and PT is the transpose

of P, a matrix of spectral loadings. The PLS process determines the first factor

through an iterative procedure, removes the corresponding variation in the

system, and then finds the next factor.

For one analyte, the procedure begins by calculating a loading weight set

w1=
X T y

∥X T y∥
, (6.10)

where X is an m by n matrix of m spectra of length n and y is an n by 1 vector of

analyte concentrations. The corresponding score is given by

t 1=X w1 , (6.11)

and the spectral loading is

p1=
X t1
t1
T t1

. (6.12)

One then uses

t 1,New=
X p1

p1
T p1

 (6.13)

to calculate a new value for the first score, compares it with the first score

estimate, and repeats the procedure until the score stabilizes. The concentration

loading is calculated with

111

q1=
t1
T y
t1
T t1

, (6.14)

and the system is deflated with

X=X−t1 p1 (6.15)

and

y= y−t 1q1 . (6.16)

One finds additional factors by repeating the above process on the new system.

The prediction of sample concentration is given by

c=Xb , (6.17)

where the calibration vector, b, is given by

b=W PTW q , (6.18)

where the columns of W are the weights, the columns of P are the spectra

loadings, and q is a vector containing the concentration loadings.

To use the NAS method for a particular analyte one first collects a set of

background spectra in the absence of the analyte. A method such as singular

value decomposition determines several spectral shapes or factors summarizing

the variability of the background spectra. The first background factor describes

the largest portion of the spectral variation of the background spectra and

subsequent factors represent the largest component of the spectral variation not

due to previous factors. The net analyte signal for the analyte of interest is the

portion of the pure component spectrum orthogonal to the background factors.

The net analyte signal for a sample spectrum x is given by

112

A= I−M M t  x , (6.19)

where M t is the pseudo-inverse of M , a matrix of background factors. The

NAS vector length depends on the concentration of analyte in the pure

component solution and must be normalized such that the final NAS for one

analyte is

NAS= A
∥A∥

, (6.20)

and the prediction of analyte concentration for a sample spectrum, x, is given by

c=NAS x. (6.21)

Sample spectra were recorded for PLS and NAS calibration models49. The

PLS calibration method utilized sixty solutions of glucose, urea, and lactate, in

random concentrations varying from 4 mM to 50 mM. Forty-eight spectra were

used for the calibration model and the remaining 12 spectra formed the

prediction spectra. After optimizing the number of factors and the spectral range

for the calibration, the standard deviation of errors of prediction and calibration

were calculated for 200 different combinations of 48 calibration spectra and 12

prediction spectra. Results of the PLS analysis, Table X, show the mean of all the

standard errors of prediction and calibration, MSEP and MSEC, for glucose are

1.02 mM and 1.12 mM, respectively. Also shown in Table X are the MSEP and

MSEC results for urea and lactate. A NAS calibration analysis included 22 buffer

spectra and 50 mM pure component spectra from glucose, urea, and lactate. The

standard error of prediction of glucose with the NAS model is 1.88 mM, see

Table X. Euglycemic levels are in the range of 3.9 to 5.5 mM glucose while

113

hyperglycemia occurs at 11 mM, therefore a SEP of 1 to 2 mM acceptably detects

hyperglycemia. Low blood glucose, hypoglycemia, is the condition where

glucose concentration falls below approximately 3 mM, only a few mM below

normal glucose levels, thus the SEP results may not be accurate enough to

reliably detect hypoglycemia. Perhaps the larger SEP for the NAS method arises

from the use of only 22 background spectra and including a larger number of

background spectra in the NAS calibration can reduce the SEP.

Table X. PLS and NAS calibration results.49

Analyte PLS MSEP(mM) NAS MSEP(mM)

Glucose 1.12 1.88

Urea 0.62 1.69

Lactate 1.7 2.57

Finally, future application of the glucose monitoring system to continuous

glucose monitoring with a laboratory animal will exhibit use of the instrument in

the actual application. During the experiment the animal will be anesthetized

while modulating blood glucose levels and monitoring ISF glucose

concentration, similar to the procedure in Ref. 50.

6.8 Summary

The measurement system detects the absorption of glucose with a

minimum LOD of 5.8 mM using a rough estimate of LOD with only one

wavelength and the glucose sensor alignment apparatus LOD is 33.78 mM for

114

one wavelength. PLS and NAS calibration models exhibit glucose SEP of 1.02

and 1.88 mM, respectively, acceptable for use in detection of hyperglycemia but

not quite acceptable for use monitoring hypoglycemia. The system has a

transient detection feature for flagging large fluctuations due to the presence of

air in the sensor fluid chambers. Experiments with a live laboratory animal will

exhibit system performance in the continuous glucose monitoring application.

115

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The measurement system provides low noise near IR absorption spectra

with single wavelength LOD estimate of 5.8 mM, using near IR absorption

spectrosopy, a direct glucose concentration measurement. Experiments

performed by Joo-Young Choi utilizing PLS and NAS calibration models show

the system exhibits glucose SEP of 1.02 and 1.88 mM, showing the system is

acceptable for use in detection of hyperglycemia but not quite acceptable for use

monitoring hypoglycemia. Utilization of direct glucose measurement methods

ensures the measurement system responds to actual changes in glucose

concentration instead of chance correlations with other characteristics such as

refractive index.

The glucose sensor forms a spectrometer sensitive to a range of

wavelengths near peaks in the glucose absorption spectrum. The monitoring

system, comprised of a data acquisition unit and main controller unit, samples

photocurrent from the glucose sensor and constructs photocurrent spectra for the

calibration process. The measurement system noise properties closely follow

numerical models predicting system performance. Investigation of characteristics

such as drift, correlation, transient detection, and LOD proved system ability to

measure glucose concentration using near IR spectroscopy.

If desired, further improvements to DAU electronics may bring

116

improvement in LOD including use of a low noise current amplifier to amplify

photocurrent. A current amplifier before the transimpedance amplifier will lift

the SNR and help improve LOD. Future work also includes miniaturization of

the MCU and DAU into a credit card sized unit utilizing ultra-low power

components and design methods. One design suggestion for the miniaturized

system is the use of a 20 bit ADC - this reduces required die area and power

dissipation without impact to the noise model. Reduction in the number of

samples recorded per unit time allows use of lower switching frequency

microcontrollers and therefore reduction in power consumption. Analog

switches multiplexing the photodiodes with a limited number of transimpedance

amplifiers and ADCs also reduces system power requirements.

117

REFERENCES

1. Diabetes Fact Sheet No. 312. World Health Organization: Geneva, Switzerland,
www.who.int (accessed 3/21/2012).

2. Cengiz, E.; Tamborlane, W. V. A Tale of Two Compartments: Interstitial
Versus Blood Glucose Monitoring. Diabetes Tech. Ther. 11, S-11, 2009.

3. Arnold, M. A.; Small, G. W. Noninvasive Glucose Sensing. Anal. Chem. 77, pp.
5429-5439, 2005.

4. Bai, C.; Graham, T. L.; Arnold, M. A. Assessing and Advancing Technology for
the Noninvasive Measurement of Clinical Glucose. Anal. Chem. 41, pp. 2773-2793,
2008.

5. Chia, C. W.; Saudek, C. D. Glucose sensors: toward closed loop insulin
delivery. Endocrinol Metab Clin N Am 33, pp. 175-195, 2004.

6. Olesberg, J. T.; Cao, C.; Yager, J. R.; Prineas, J. P.; Coretsopoulos, C.; Arnold, M.
A.; Olafsen, L. J.; Santilli, M. Optical Microsensor for Continuous Glucose
Measurements in Interstitial Fluid. Proc. Of SPIE 6094, 609403, 2006.

7. Wu, P.; He, Y.; Wang, H. F.; Yan, X. P. Conjugation of Glucose Oxidase onto
Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in
Biological Fluids. Anal. Chem. 82, pp. 1427-1433, 2010.

8. Billingsley, K.; Balaconis, M. K.; Dubach, J. M.; Zhang, N.; Lim, E.; Francis, K.
P.; Clark, H. A. Flourescent Nano-Optodes for Glucose Detection. Anal. Chem. 82,
pp. 3707-3713, 2010.

9. Yan, Q.; Peng, B.; Su, G.; Cohan, B. E.; Major, T. C.; Meyerhoff, M. E.
Measurement of Tear Glucose Levels with Amperometric Glucose
Biosensor/Calillary Tube Configuration. Anal. Chem. 83, pp. 8341-8346.

10. Sekretaryova, A. N.; Vokhmyanina, D. V.; Chulanova, T. O.; Karyakina, E. E.;
Karyakin, A. A. Reagentless Biosensor Based on Glucose Oxidase Wired by the
Mediator Freely Diffusing in Enzyme Containing Membrane. Anal. Chem. 84, pp.
1220-1223, 2012.

11. Tsai, T. W.; Heckert, G.; Neves, L. F.; Tan, Y.; Kao, D. Y.; Harrison, R. R.;
Resasco, D. E.; Schmidtke, D. W. Adsorption of Glucose Oxidase onto Single-
Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors.
Anal. Chem. 81, pp. 7917-7925, 2009.

118

12. Ke Ma, K.; Yuen, J. M.; Shah, N. C.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van
Duyne, R. P. Spatially Offset Raman Spectroscopy: Multiple Rats, Improved
Hypoglycemic Accuracy, Low Incident Power, and Continuous Monitoring for
Greater than 17 Days. Anal. Chem. 83, pp. 9146-9152, 2011.

13. Yuen, J. M.; Shah, N. C.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van Duyne, R. P.
Transcutaneous Glucose Sensing by Surface-Enhanced Spatially Offset Raman
Spectroscopy in a Rat Model. Anal. Chem. 82, pp. 8382-8385, 2010.

14. Ward Muscatello, M. M.; Stunja, L. E.; Asher, S. A. Polymerized Crystalline
Colloidal Array Sensing of High Glucose Concentrations. Anal. Chem Vol. 81, pp.
4978-4986, 2009.

15. Olesberg, J. T.; Arnold, M. A.; Mermelstein, C.; Schmitz, J.; Wagner, J. Tunable
Laser Diode System for Noninvasive Blood Glucose Measurements. Appl.
Spectros. 59, pp 1480-1484, 2005.

16. Shen, Y. C.; Davies, A. G.; Linfield, E. H.; Elsey, T. S.; Taday, P. F.; Arnone, D.
D. The use of Fourier-transform infrared spectroscopy for the quantitative
determination of glucose concentration in whole blood. Phys. Med. Biol. 48, pp.
2023-2032, 2003.

17. Abookasis, D.; Workman, J. J. Direct measurements of blood glucose
concentration in the presence of saccharide interferences using slope and bias
orthogonal signal correction and Fourier transform near-infrared spectroscopy. J.
Biomed. Opt. 16, 027001, 2011.

18. Heise, H. M.; Damm, U.; Bodenlenz, M.; Kondepati, V. R.; Kohler, G.;
Ellmerer, M. Bedside monitoring of subcutaneous interstitial glucose in healthy
individuals using microdialysis and infrared spectrometry. J. Biomed. Opt. 12,
024004, 2007.

19. Amin-Akhlaghi, Z.; Cooley, D. W.; Andersen, D. R. Study of an Infrared
Glucose Sensor and its Noise Model. FFH2011, Vienna, Austria, 2011.

20. Cooley, D. W.; Andersen, D. R. Low Noise Measurement of Photocurrent in
Low Impedance Photodiodes. EIT2010, Normal, Illinois, 2010.

21. Cooley, D. W.; Andersen, D. R. Low Noise Measurement of Photocurrent for
Continuous Glucose Monitoring. BIODEVICES 2010, Valencia, Spain, 2010.

22. Olesberg, J. T.; Arnold, M. A; Hu, S. Y. B. Temperature-Insensitive Near-
Infrared Method for Determination of Protein Concentration during Protein
Crystal Growth. Anal. Chem. 72, pp. 4985-4990, 2000.

119

23. Martens, H.; Naes, T. Multivariate Calibration; Wiley: New York, 1989.

24. Kanukurthy, K. S. Wireless controller for a near infrared multichannel optical
glucose sensor. Ph.D. Dissertation, University of Iowa, Iowa City, IA, 2007.

25. Hobbs, P. C. C. Building Electro-Optical Systems, 2nd Ed.; Wiley: New York,
2009.

26. Graeme, J. Photodiode Amplifiers: McGraw Hill: New York, 1996.

27. Milnes, A. G.; Polyakov, A. Y. Gallium antimonide device related properties.
Solid State Electron. 36, pp. 803-818, 1993.

28. Sze, S. M. Physics of Semiconductor Devices; Wiley: New York, 1981.

29. Dicke, R. H. The Measurement of Thermal Radiation at Microwave
Frequencies. Rev. Sci. Instrum. 17, pp. 268-275, 1946.

30. App. Note 3. Stanford Research Systems: Sunnyvale, California,
www.thinksrs.com (accessed 3/21/2012).

31. Dorrington, A. A.; Kunnemeyer, R. A simple microcontroller based digital
lock-in amplifier for the detection of low level optical signals. DELTA'02 0-7695-
1453-7/02, 2002.

32. Prineas, J. P.; Olesberg, J. T.; Yager, J. R.; Cao. C.; Coretsopoulos, C.; Reddy,
M. H. M. Cascaded active regions in 2.4 µm GaInAsSb light-emitting diodes for
improved current efficiency. Appl. Phys. Lett. 89, 211108, 2006.

33. Pierret, R. F. Semiconductor Device Fundamentals; Addison-Wesley: Reading,
Massachusetts, 1996.

34. S1133 Datasheet. Hamamatsu Photonics, K. K.: Hamamatsu City, Japan,
www.hamamatsu.com (accessed 3/21/2012).

35. Private communication with Jon Olesberg, March 2012.

36. Saleh, B. E. A.; Teich, M. C. Fundamentals of Photonics; Wiley: New York, 1991.

37. Motchenbacher, C. D.; Connelly, J. A. Low-Noise Electronic System Design;
Wiley: New York, 1993.

38. Antoniou, A., Digital Filters: Analysis, Design, and Applications; McGraw Hill:
New York, 1993.

120

39. App. Note AN-283. Analog Devices, Inc.: Norwood, Massachusetts,
www.analogdevices.com (accessed 3/21/2012).

40. App. Report SBOA066A. Texas Instruments, Inc.: Dallas, Texas, www.ti.com
(accessed 3/21/2012).

41. ADS1258 Datasheet. Texas Instruments, Inc.: Dallas, Texas, www.ti.com
(accessed 3/21/2012).

42. MPLAB IDE V8.10; Microchip Technology, Inc.: Chandler, Arizona,
www.microchip.com (accessed 3/21/2012).

43. Everitt, B. S.; Skrondal, A. Cambridge Dictionary of Statistics, 4th Ed.;
Cambridge University Press: Cambridge, United Kingdom, 2006.

44. Rumyantsev, S. L.; Shur, M. S.; Bilenko, Y.; Kosterin, P. V.; Salzberg, B. M.
Low frequency noise and long-term stability of noncoherent light sources. J.
Appl. Phys. 96, pp. 966-969, 2004.

45. Keenan, D. B.; Mastrototaro, J. J.; Voskanyan, G.; Steil, G. M. Delays in
Minimally Invasive Continuous Glucose Monitoring Devices: A Review of
Current Technology. J. Diabetes Sci. Tech. 3, pp. 1207-1214, 2009.

46. Bai, C. Noninvasive Near Infrared Spectroscopy on Living Tissue with
Multivariate Calibration Approaches. Ph.D. Dissertation, University of Iowa,
Iowa City, IA, 2010.

47. Lorber, A.; Faber, K.; Kowalski, B. R. Net Analyte Signal Calculation in
Multivariate Calibration. Anal. Chem. 69, pp. 1620-1626, 1997.

48. Private communication with Gary W. Small, April 2012.

49. Private communication with Joo-Young Choi, March 2012.

50. Olesberg, J. T.; Liu, L.; Van Zee, V.; Arnold, M. A. In Vivo Near-Infrared
Spectroscopy of Rat Skin Tissue with Varying Blood Glucose Levels. Anal. Chem.
78, pp. 215-223, 2006.

121

APPENDIX A

MOVING AVERAGE FILTER BANDWIDTH

The frequency response of linear, time invariant system is

H = ∑
m=−∞

∞

h m e− j m . (A.1)

The N-sample moving average is represented by

h n=1/N , for n=0,1,2,N−1. (A.2)

The frequency response of h n is then

H = 1
N ∑

m=0

N−1

e− jm= 1
N 1−e− jN

1−e− j  , (A.3)

since

∑
m=N

M

am=aN−aM1

1−a
. (A.4)

122

APPENDIX B

NOISE MODEL CALCULATION SOFTWARE

Filename: noise.c.

#include <stdio.h>
#include <math.h>

int main()
{

/* March 4 2012 */
/* Noise model calculation for Lock-In Amplifier */
/* BW in input file is single ended BW, ENB = 2 times BW times pi/2 */
/* Eni is value of Eni from datasheet at the ref. frequency 39.1 Hz */
/* Assume ADC noise is distributed over the ADC passband */
/* ADC noise is ADC noise times ENB / (2 * ADC BW) */
/* deltav is ADC noise in microVolts RMS */
/* Uses broadband noise for Vref */
/* Assumes shot noise, 2eI, is for double sided spectrum */

 int i, j;
 double eni, eni2, ibn, ers, ibi, rf, rpd, temp, avenum, isig, gain, bw, bw2;
 double vn, snr, snrdb, deltav;
 FILE *idfPtr; /* idfPtr = input.dat file pointer */
 FILE *odfPtr; /* odfPtr = output.dat file pointer */

 ibn = 0.0; /* noninverting input current noise */
 ers = 0.0; /* noninverting source resistor voltage noise */
 ibi = 0.5e-15; /* inverting input current noise density */

 if ((idfPtr = fopen("input.dat", "r")) == NULL)
 printf("No input file!\n");
 else {
 printf("Reading input data\n");
 fscanf(idfPtr, "%lf%lf%lf%lf%lf%lf%lf", &rf, &temp, &avenum, &isig, &bw,
&deltav, &eni);
 printf("%e %e %e %e %e %e %e\n", rf, temp, avenum, isig, bw, deltav, eni);
 fclose(idfPtr);
 printf("Got the input data okay\n");
 }

123

 odfPtr = fopen("shotpc.dat", "w");
 fprintf(odfPtr, "RF=%e Temp=%.1f Samp Ave=%.1f Isig=%e BW=%.6f deltaV=
%e Eni=%e\n", \
 rf, temp, avenum, isig, bw, deltav, eni);

 bw2 = 2.0 * bw * 1.57;
 j = 2;
 while (j <= 8) {
 i = 1;
 while(i <= 9) {
 rpd = (double) i * pow(10.0, (double) j);
 gain = 1.0 + rf / rpd;
 vn = sqrt(0.0 * eni * eni * gain * gain * bw2 \
 + 0.0 * (ibi * rf) * (ibi * rf) * bw2 \
 + 0.0 * 4.0 * 1.38e-23 * temp * rf * gain * bw2 \
 + 0.0 * deltav * deltav *bw2*bw2/(2*390.6*2*390.6) \

 + 0.0 * 45e-9 * 45e-9 * bw2 \
 + 0.0 * 1.0 * 1.6E-19 * 1E-12 * bw2 * rf * rf \
 + 0.0 * 1.0 * 1.6E-19 * (70.0E-6 / rpd) * bw2 * rf * rf \
 + 1.0 * 1.0 * 1.6e-19 * 10.0e-9 * bw2 * rf * rf);

 vn = vn/sqrt((double)avenum);
 snr = isig * rf / vn;
 snrdb = 10.0 * log10(snr) - 3.01;

/* Subtract 3.01 dB since LIA output is multiplied by 2 */
/* in order to calculate peak to peak Ipc*Rf */

 fprintf (odfPtr, "%e %e\n", rpd, snrdb);
 i += 1;
 }
 j += 1;
 }

 fclose(odfPtr);
 return 0;
}

124

APPENDIX C

ADS1258 DAU SCHEMATIC DIAGRAM

125

126

127

128

129

130

131

132

133

APPENDIX D

MCU C SOFTWARE FOR THE ADS1278 DAU

Filename: Dau3-equal-space.c:

#include <p33FJ128GP708.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dau_GP.h"
#include <delay.h>
#include <uart.h>
#include <clockSwitch.h>
#include <math.h>

/* March 16, 2012 */
/* This project is designed to filter data from the Rev C. DAU PC Board. */
/* The software utilizes a combined lock-in filter comprised of */
/* shifting the spectrum of input data by half the sample rate and */
/* simultaneously low pass filtering the samples. */
/* The software filters two independent sets of 32 channels. */
/* Each set of channels measured data with its LED on and off. */
/* The Rev. C. DAU contains four ADS1278 ADCs with eight channels each. */
/* Due to the 40 sample period latency of the software runs through a */
/* loop recording 10 samples each for LED1 on, both LEDs off, LED2 on, */
/* and both LEDs off. */

_FOSCSEL(FNOSC_FRCDIV16); // FRC
_FOSC(FCKSM_CSECME & OSCIOFNC_OFF & POSCMD_EC);

// Clock Switching
and Fail Safe Clock Monitor is Enabled

// OSC2 Pin
Function: OSC2 is Clock Output

// Primary
Oscillator Mode: EC

_FWDT(FWDTEN_OFF); // Watchdog Timer Enabled/disabled by user
software

// (LPRC can be
disabled by clearing SWDTEN bit in RCON register
_FPOR(FPWRT_PWR1); // Turn off the power-up timers.

134

_FGS(GSS_OFF & GCP_OFF & GWRP_OFF); // Turn off Code
Protection & Write protection

/*****************Global Variables*****************/
long led1_in[32], led1_b1[32], led1_out[32];
long led2_in[32], led2_b1[32], led2_out[32];
long adc_temp[8]; // Temperature readings from adcs
unsigned long chtemp;
int raw_led[96];
unsigned int writeCtr, recordFlag, usb1Flag, dataSet;
unsigned int numsets, nrecord, nseconds;
unsigned int flagClock, ainSelect, ledFlag;
unsigned int transFlag;
long transLevel;
unsigned char regdata[8][8];
long unfilteredSamples[64];
int unfilteredCtr;
int startupFlag, startupDelay, phaseCtr;
/**/

/****************** main Function *****************/
int main (void)
{

unsigned int cycleCtr, numCycles;

numCycles = 19;
powerUp(); // Initialize I/O pins

// Configure Oscillator to operate the device at 40 MHz
// Fin = 16 MHz
// Fosc= Fin*M/(N1*N2), Fcy=Fosc/2
// Fosc= 16 MHz*40/(4*2) = 80MHz, Fcy = 40 MHz
PLLFBD = 38; // M = 40
CLKDIVbits.PLLPOST = 0; // N2=2
CLKDIVbits.PLLPRE = 2; // N1=4
clockSwitch(NOSC_PRIPLL); // Clock is switched to

primary

delay_ms(1000); // delay

// Initialize SPI1 in 8-bit Master mode
// SPI clock rate is Fcy/80 or 40MHz/8 = 5 MHz actually now 2 MHz
initSpi1(0);

135

// Initialize SPI2 in 8-bit framed Master mode
// Use SCLK2 to provide 2 MHz ADC clock
// SPI2 clock rate is Fcy/20 or 40MHz/20 = 2 MHz
initSpi2();

// Initialize Timer2
// Timer2 no longer utilized
// initTimer2();
// Early software utilized timer2 and TESTLED2 for ADC clock

// Read transient level selection from PC
setupTransient();

// Initialize variables
flagClock = 1; // State of ADC

clock
clearData();
dataSet = 0;
startupFlag = 1;
startupDelay = 0;
transFlag = 0;

// Enable timer2
// Timer2 no longer utilized T2CONbits.TON = 1;

// Synchronize ADCS
SYNC_ = LOW;
delay_ms(2); // Delay
SYNC_ = HIGH;
// ADCs synchronizing

//Main loop
while(1)

 {
transFlag = 0; // Reset flag after sending

samples to PC
recordFlag = 1;
for (cycleCtr=0; cycleCtr<numCycles; cycleCtr++)
{

// One lock-in cycle
dataSet = 0; // LED1 ON
for (phaseCtr=0; phaseCtr<10; phaseCtr++)

136

{
getData();

}

dataSet = 1; // LED1 OFF
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

dataSet = 2; // LED2 ON
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

dataSet = 3; // LED2 OFF
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

} // Finished with numCycles lock in cycles

// Send data to PC
usb1Flag = 1;
recordFlag = 0;
writeCtr = 0;
dataSet = 0;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<4) usbWritedata1On();
getData();

}

writeCtr = 0;
dataSet = 1;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<4) usbWritedata2On();
getData();

}

dataSet = 2;

137

for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<1) usbWritetranslevel();
getData();

}

dataSet = 3;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<1) usbWritetransient();
getData();

}

} // While loop

// Turn LEDs OFF
LED1 = HIGH;
LED2 = HIGH;
TESTLED1 = LOW;
TESTLED2 = LOW;

return 0;
}

Filename: dauFunctions.c:

#include <p33FJ128GP708.h>
#include <stdio.h>
#include "dau_GP.h"
#include <delay.h>
#include <uart.h>
#include <math.h>
/*----------------------------MCU Powerup routine-------------------------------*/
/*
Note: This routine initializes the MCU output lines.
*/
void powerUp(void){
//unsigned char data;
//Declare dsPICs I/O lines connected to DAU control pins as outputs
// TRISAbits.TRISA15 = 0; // RA15 is output
// The following ODCA statements do not have an effect as A15,A14 do not
exist
// ODCAbits.ODCA15 = 0; // Open drain output disabled
// ODCAbits.ODCA14 = 0; // Open drain output disabled

138

// TRISA &= 0x79FF; // RA15, RA10, RA9 are outputs; others
are inputs

TRISA = 0x0004; // all outputs except RA2
TRISB = 0x0003; // all outputs except RB0, RB1
TRISD = 0x7000; // RD15, RD11, RD10, RD9,

RD8,RD7~RD0 are outputs; others are inputs
TRISF = 0xFFFC; // RF0,RF1 are outputs
TRISG = 0x0FFC; //

RG0,RG1,RG12,RG13,RG14,RG15 outputs
AD1PCFGL=0xFFFF; // all analog channel pins are

digital
AD1PCFGH=0xFFFF; //

// TRISFbits.TRISF0 = 0;
// TRISFbits.TRISF1 = 0;
// TRISGbits.TRISG0 = 0;
// TRISGbits.TRISG1 = 0;
// TRISGbits.TRISG12 = 0;
// TRISGbits.TRISG13 = 0;
// TRISGbits.TRISG14 = 0;
// TRISGbits.TRISG15 = 0;

delay_us(10);

// Initial configuration of outputs
LED1 = HIGH; // LEDs disabled - LED1

and LED2 active low
LED2 = HIGH;
TESTLED1 = LOW;
TESTLED2 = LOW;

//Enable the digital buffers connecting dsPIC I/Os to DAU
//Enable the clock driver IC and the clock oscillator

BUFFEN1_ = LOW; //Enable digital buffers 1
& 2

BUFFEN2_ = LOW; //
EOH = HIGH; //Enable clock

oscillator output
G1 = HIGH; //Bank 1 of clock driver

enabled
G2 = HIGH; //Bank 2 enabled

//Set default signal levels for USB
USB_WR = LOW; // default WR line value
USB_RD_ = HIGH; // default RD line value

139

//Set SYNC_ HIGH
SYNC_ = HIGH;

return;

}
/*--*/
/*----------------------------ADC Initialization Routine----------------------*/
void initADCs (void)
{
/*--
Initialize ADCs - for ADS1258
---*/

// Reset ADCs
// RESET_ = LOW;
// delay_ms(10);
// RESET_ = HIGH;

return;
}
/*--*/

void configADCs(void)
{
/*
// Routine to configure ADS1258 ADCs for next sample
// Added write to clear out register 6 after temp reading
// Removed write to register 6 since no temp measurements

unsigned int adcctr;
unsigned char data;

ainSelect++;
if(ainSelect>3) ainSelect = 0;

for(adcctr=0; adcctr<8; adcctr++)
{

// Select IC
if ((adcctr & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adcctr & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adcctr & 0x04) == 0x04) CS_C = HIGH;

140

else CS_C = LOW;

delay_us(1);

// Write to ADC configuration registers
CS_EN = HIGH;
delay_us(1);

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x74; // Multiple register write,

starting with register 0x04
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
data = SPI1BUF;

if(ainSelect == 0)
{

//Select first AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is

set
SPI1BUF = 0x10; // Use

AIN4 only
while (SPI1STATbits.SPIRBF==0); // wait if

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is
set

SPI1BUF = 0x00; //
don't Use AIN8&9

while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is
set
// SPI1BUF = 0x00; //
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set
// data = SPI1BUF;

}

141

else if(ainSelect == 1)
{

//Select second AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is

set
SPI1BUF = 0x20; // Use

AIN5 only
while (SPI1STATbits.SPIRBF==0); // wait if

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is
set

SPI1BUF = 0x00; //
don't Use AIN8&9

while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is
set
// SPI1BUF = 0x00; //
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set
// data = SPI1BUF;

}
else if(ainSelect == 2)
{

//Select third AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is

set
SPI1BUF = 0x00; //

Don't use AIN 4&5
while (SPI1STATbits.SPIRBF==0); // wait if

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is
set

SPI1BUF = 0x01; // Use
AIN8 only

while (SPI1STATbits.SPIRBF==0); // wait if

142

SPITBF is set
data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is
set
// SPI1BUF = 0x00; //
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set
// data = SPI1BUF;

}
else
{

//Select fourth AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is

set
SPI1BUF = 0x00; //

Don't use AIN 4&5
while (SPI1STATbits.SPIRBF==0); // wait if

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is
set

SPI1BUF = 0x02; // Use
AIN9 only

while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is
set
// SPI1BUF = 0x00; //
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if
SPITBF is set
// data = SPI1BUF;

}

CS_EN = LOW;
// delay_us(1); // Delay, must be > 2 ADC clock
cycles

143

}
*/
}

/*--*/

void configTemp(void)
{
/*
// Routine to configure ADS1258 ADCs for recording temperature

unsigned int adcctr;
unsigned char data;

for(adcctr=0; adcctr<8; adcctr++)
{

// Select IC
if ((adcctr & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adcctr & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adcctr & 0x04) == 0x04) CS_C = HIGH;
else CS_C = LOW;

// Write to ADC configuration registers
CS_EN = HIGH;
delay_us(1);

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x74; // Multiple register write,

starting with register 0x04
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
data = SPI1BUF;

// Select temperature measurement only
while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x00; // Don't use

any AIN's
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is set

144

SPI1BUF = 0x00; // Don't use
any AIN's

while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is
set

data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x08; // Select

temp reading
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
data = SPI1BUF;

CS_EN = LOW;
delay_us(1); // Delay, must be > 2 ADC clock

cycles
}

*/
}

/*----------------------------SPI1 Initialization Routine----------------------*/
void initSpi1 (unsigned char bitMode)
{
/* Configure and Enable SPI1 */
// if (bitMode) SPI1CON1 = 0x073A; //SS' disabled,16-bit Master
Mode, CKP = 0, CKE = 1, SCK = Fcy/8
// else SPI1CON1 = 0x033A; //SS' disabled,8-bit Master Mode,
CKP = 0, CKE = 1, SCK = Fcy/8

SPI1CON1 = 0x032E; //SS' disabled,8-bit Master
Mode, CKP = 0, CKE = 1, SCK = Fcy/20, SMP=1
 SPI1STATbits.SPIROV = 0; //clear SPIROV
 SPI1STATbits.SPIEN = 1; // Enable the spi module */

return;
}
/*----------------------------SPI1 Initialization Routine----------------------*/
void initSpi2 (void)
{
/* Configure and Enable SPI2 */
/* Use SPI2 clock to provide 2 MHz ADC clock */

SPI2CON1 = 0x082E; // DISSDO=1,8-
bit,SMP=0,CKE=0,SSEN=0,CKP=0,Master,SCK=Fcy/20

SPI2CON2 = 0xA002; //
FRMEN=1,SPIFSD=0,FRMPOL=1,FRMDLY=1

145

 SPI2STATbits.SPIROV = 0; //clear SPIROV
 SPI2STATbits.SPIEN = 1; // Enable the spi module */

return;
}
/*--*/
void getData (void)
{

// To test scale factor apply voltage divider between 3.3V and LED2
// Connect middle node of divider to negative input of adc
// Connect positive ADC input to 2.5V
// LED2 low - result should be 2*(2.5 - 1.7) = 1.6V
// LED2 high - result should be 2*(2.5 - 3.3) = -1.6V

unsigned int i;
long temp, temp_b1;
long onInput1, offInput1;
long onInput2, offInput2;
long difference, error;

// Wait until data is available
while (DREADY_ == HIGH);

// Modulate LEDs
switch (dataSet)
{

case 0: // Turn on LED1
LED1 = LOW;
LED2 = HIGH;

break;

case 1: // Turn LEDs off
LED1 = HIGH;
LED2 = HIGH;

break;

case 2: // TUrn on LED2
LED1 = HIGH;
LED2 = LOW;

break;

case 3: // Turn LEDs off
LED1 = HIGH;
LED2 = HIGH;

146

break;

default:
break;

}

// Need one ADC clock cycle delay after assertion of Data Ready
//delay_us(2);

// Timing measurement
// TESTLED1 = HIGH;

// Read 32 channels of data - 3 bytes each
for(i=0;i<96;i++)
{

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x00; // Write to

SPI data register to start SCK
while (SPI1STATbits.SPIRBF == 0); // Wait for reception to

complete
raw_led[i] = SPI1BUF; // Load received

data to data array
}

if(startupFlag == 1)
{

startupDelay++;
if(startupDelay>40) startupFlag = 0;

}

// Timing measurement
// TESTLED1 = LOW;

// If recordFlag is set, convert and filter data
if ((recordFlag == 1)&&(startupFlag==0)&&(phaseCtr==5))
{

// Timing measurement
// TESTLED1 = HIGH;

for (i=0; i<32;i++)
{

// First convert raw data into 32 bit integer called temp
temp = raw_led[i*3];

147

temp = temp << 8;
temp += raw_led[i*3 + 1];
temp = temp << 8;
temp += raw_led[i*3 + 2];
temp = temp << 8;

// Filter sample
switch (dataSet)
{

case 0:

// // Check voltage scaling
// if(unfilteredCtr<64)
// {
// if(i==24)
// {
// unfilteredSamples[unfilteredCtr]
= temp;
// unfilteredCtr++;
// }
// }

// Implement a single pole low pass filter and
invert every other sample

// Y(n) = Y(n-1) + (X(n) - X(n-1))/2^7 - Y(n-
1)/2^6

// New input is temp
// Previous input is led1_in[i]
// Store value of led1_b1[i] for second filter
temp_b1 = led1_b1[i];
// Combined lock-in filter
led1_b1[i] -= (led1_b1[i]) >> 6;
led1_b1[i] += (led1_in[i] - temp) >> 7;
// Store input value
led1_in[i] = temp;
// To use only a one pole filter, place ledn_b1

output into output array
// One pole filter: Place output in array for usb

write subroutine
// One pole filter: led1_out[i] = led1_b1[i];

// Implement another single pole low pass
filter

148

// Y(n) = Y(n-1) + (X(n) + X(n-1))/2^7 - Y(n-
1)/2^6

// New input is led1_b1[i]
// Previous input is led1_b1[i] before it was

updated above
led1_out[i] -= (led1_out[i]) >> 6;
led1_out[i] += (led1_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led on
input

onInput1 = temp;

break;

case 1:

// // Check voltage scaling
// if(unfilteredCtr<64)
// {
// if(i==24)
// {
// unfilteredSamples[unfilteredCtr]
= temp;
// unfilteredCtr++;
// }
// }

// Implement a single pole low pass filter and
invert every other sample

// Y(n) = Y(n-1) + (X(n-1) - X(n))/128 - Y(n-
1)/64

// New input is temp
// Previous input is led1_in[i]
// Store value of led1_b1[i] for second filter
temp_b1 = led1_b1[i];
// Combined lock-in filter
led1_b1[i] -= (led1_b1[i]) >> 6;
led1_b1[i] += (temp - led1_in[i]) >> 7;
// Store input value
led1_in[i] = temp;
// To use only a one pole filter, place ledn_b1

output into output array

149

// One pole filter: Place output in array for usb
write subroutine

// One pole filter: led1_out[i] = led1_b1[i];

// Implement another single pole low pass
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led1_b1[i]
// Previous input is led1_b1[i] before it was

updated above
led1_out[i] -= (led1_out[i]) >> 6;
led1_out[i] += (led1_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led off
input

offInput1 = temp;
// Calculate difference between on and off

data
difference = onInput1 - offInput1;
// Find absolute value of difference
if((difference & 0x80000000) == 0x80000000)
{

difference= ~difference;
difference++;

}
// Difference has not been filtered and thus

represents peak to peak difference
// between on and off values
// LIA output has been filtered and represents

the amplitude of on and off sample difference
// Thus divide difference by two, calculate

error, and compare with half the limit in volts
difference = difference >> 1;
// Calculate error: ledn_out is a positive

number
error = difference - led1_out[i];
// Find absolute value of error
if((error & 0x80000000) == 0x80000000)
{

error= ~error;
error++;

}

150

// Set flag if difference is greater than limit
divided by two

if(error > (transLevel >> 1)) transFlag = 1;
break;

case 2:
// Implement a single pole low pass filter and

invert every other sample
// Y(n) = Y(n-1) + (X(n) - X(n-1))/128 - Y(n-

1)/64

// New input is temp
// Previous input is led2_in[i]
// Store value of led2_b1[i] for second filter

and transient monitoring
temp_b1 = led2_b1[i];
// Combined lock-in filter
led2_b1[i] -= (led2_b1[i]) >> 6;
led2_b1[i] += (led2_in[i] - temp) >> 7;
// Store input value
led2_in[i] = temp;
// One pole filter: Place output in array for usb

write subroutine
// One pole filter: led2_out[i] = led2_b1[i];

// Implement another single pole low pass
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led2_b1[i]
// Previous input is led2_b1[i] before it was

updated above
led2_out[i] -= (led2_out[i]) >> 6;
led2_out[i] += (led2_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led on
input

onInput2 = temp;
// // Transient monitoring
// difference = led1_out[i] - old_out;
// if((difference & 0x80000000) ==

0x80000000) difference = (~difference)++;

151

// if(difference > transientMax)
transientFlag = 1;

break;

case 3:
// Implement a single pole low pass filter and

invert every other sample
// Y(n) = Y(n-1) + (X(n-1) - X(n))/128 - Y(n-

1)/64

// New input is temp
// Previous input is led2_in[i]
// Store value of led2_b1[i] for second filter

and transient monitoringr
temp_b1 = led2_b1[i];
// Combined lock-in filter
led2_b1[i] -= (led2_b1[i]) >> 6;
led2_b1[i] += (temp - led2_in[i]) >> 7;
// Store input value
led2_in[i] = temp;
// One pole filter: Place output in array for usb

write subroutine
// One pole filter: led2_out[i] = led2_b1[i];

// Implement another single pole low pass
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led2_b1[i]
// Previous input is led2_b1[i] before it was

updated above
led2_out[i] -= (led2_out[i]) >> 6;
led2_out[i] += (led2_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led off
input

offInput2 = temp;
// Calculate difference between on and off

data
difference = onInput2 - offInput2;
// Find absolute value of difference
if((difference & 0x80000000) == 0x80000000)
{

152

difference = ~difference;
difference++;

}
// Difference has not been filtered and thus

represents peak to peak difference
// between on and off values
// LIA output has been filtered and represents

the amplitude of on and off sample difference
// Thus divide difference by two, calculate

error, and compare with half the limit in volts
difference = difference >> 1;
// Calculate error: ledn_out is a positive

number
error = difference - led2_out[i];
// Find absolute value of error
if((error & 0x80000000) == 0x80000000)
{

error= ~error;
error++;

}

// Set flag if difference is greater than limit
divided by two

if(error > (transLevel >> 1)) transFlag = 1;

break;

default:
break;

} // Switch statement
} // For loop

// Timing measurement
// TESTLED1 = LOW;

} // If statement

return;
}

/*--*/

void getTemp (void)
{

153

// Configure ADS1258 for a temperature reading
/*

unsigned int newFlag, adc;
int data, status, byte1, byte2, byte3;
long temp;

for(adc=0; adc<8; adc++)
{

// Select IC
if ((adc & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adc & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adc & 0x04) == 0x04) CS_C = HIGH;
else CS_C = LOW;

// Read status byte and temperature sample

newFlag = 0;
while(newFlag==0)
{

// Set CS_EN
CS_EN = HIGH;
delay_us(1);

// Read ADC data and test status byte bit 7 (NEW data)

// Channel data read command, multiple bytes
while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x30;
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
data = SPI1BUF;

// Read status byte
while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00;
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is

set
status = SPI1BUF;

154

// Update newFlag
if ((status & 0x80) == 0x80) newFlag = 1;

// Read three data bytes

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to

complete
byte1 = SPI1BUF; // load received data to data array

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to

complete
byte2 = SPI1BUF; // load received data to data array

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to

complete
byte3 = SPI1BUF; // load received data to data array

// Reset CS_EN
CS_EN = LOW;

}

// Convert raw data to integer
temp = byte1;
temp = temp << 8;
temp |= byte2;
temp = temp << 8;
temp |= byte3;
temp = temp << 8; // Form Q0.31 number

// store in array
adc_temp[adc] = temp;

}
*/

return;

155

}

/*--*/
void usbWritedata1On (void)
// Sends data in led1_on array via usb, eight channels at a time
{

long templong;
unsigned int i;

// Timing measurement
// TESTLED1 = HIGH;

if (usb1Flag == 1)
{

// Send preamble - four bytes of 0xFF
for(i=0; i<4; i++)
{

while(USB_TXE_ == HIGH); // wait if TXE is high,
proceed if TXE is low

USB_WR = HIGH; // Set WR low to write
data

PORTDbits.LSB = 255;
delay_us(1);
USB_WR = LOW; // Set WR high

}
usb1Flag = 0;

// while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if
TXE is low
// USB_WR = HIGH; // Set WR low to write data
// if (transientFlag == 1) PORTDbits.LSB = 255;
// else PORTDbits.LSB = 0;
// delay_us(1);
// USB_WR = LOW; // Set WR high

}

for(i=0; i<8; i++)
{

// Use next statement for testing voltage scale factor
//templong = unfilteredSamples[writeCtr];
templong = led1_out[writeCtr];
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

156

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

// Timing measurement
// TESTLED1 = LOW;

return;
}
/*--*/
void usbWritedata1Off (void)
// Sends data in led1_off array via usb, eight channels at a time

157

{
long templong;
unsigned int i;

for(i=0; i<8; i++)
{

templong = 0;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

158

return;
}
/*--*/
void usbWritedata2On (void)
// Sends data in led2_on array via USB, eight channels at a time
{

long templong;
unsigned int i;

for(i=0; i<8; i++)
{

// Use next statement for testing voltage scale factor
//templong = unfilteredSamples[writeCtr];
templong = led2_out[writeCtr];
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

159

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

return;
}
/*--*/
void usbWritedata2Off (void)
// Sends data in led2_off array via USB, eight channels at a time
{

long templong;
unsigned int i;

for(i=0; i<8; i++)
{

templong = 0;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;

160

delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

return;
}

/*--*/
void usbWritetransient (void)
// Sends status of transient detection to PC
{

long templong;

templong = 0x00000000;
if (transFlag) templong = 0x00000001;

while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is
low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

161

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

return;
}

/*--*/
void usbWritetranslevel (void)
// Sends status of transient detection to PC
{

long templong;

templong = transLevel;

while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is
low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);

162

USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

return;
}

/*--*/
void usbWriteTemp (void)
// Sends data in adc_temp array via usb
{

unsigned int i;
// unsigned int ctr;

for(i=0; i<8; i++)
{

/*
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
//delay_us(1);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

163

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

*/
}

return;
}

/*--*/
void clearData (void)
{

unsigned int n;

// Clear the raw data
for (n = 0; n<96; n++) raw_led[n] = 0;

// Clear the channel data arrays
for(n=0;n<32;n++)
{
 led1_in[n]=0;

led1_b1[n]=0;
led1_out[n]=0;

164

 led2_in[n]=0;
led2_b1[n]=0;
led2_out[n]=0;

}
// Clear the temp variable
chtemp = 0;
return;

}

/*--*/
void setupTransient (void)
{

unsigned int i, itest;
char inChar;
char inString[10];

// Set PortD<7:0> and PortD<14:12> as inputs
TRISD = 0x70FF; //RD15, RD11, RD10, RD9, and RD8 are outputs;

others are inputs

TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

 delay_ms(1000);
TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

 delay_ms(1000);
TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

 delay_ms(1000);

// Read data string from usb port
// String format: "HLIMITx" where x is integer from 0 to 9
// Integer Transient limit
// 0 2.5V
// 1 1.25V
// 2 0.625V
// 3 0.313V
// 4 0.156V
// 5 0.078V
// 6 0.039V
// 7 0.020V

165

// 8 0.010V
// 9 0.005V

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high
while (inChar != 72) { // Wait for H to be read

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high

}
inString[0] = inChar; // Record character
for(i=1;i<7;i++) // Read the remainder of the

string
{

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high
inString[i] = inChar;

}

// Set PortD pin directions to original values
TRISD = 0x7000; //RD15, RD11, RD10, RD9, RD8,RD7~RD0 are

outputs; others are inputs
delay_ms(1000);
itest = inString[6] - 48;

transLevel = 0x40000000 >> itest;
//(inString[6] - 48);

return;

}

/*--*/

166

void clockSwitchC (void)
{
// TRISBbits.TRISB14 = 0; // PORTB 0 is an output
// LATBbits.LATB14 = HIGH; // PORTB 0 is high

TRISBbits.TRISB15 = 0; // PORTB 0 is an output
LATBbits.LATB15 = HIGH; // PORTB 0 is high

// // Configure Oscillator to operate the device at 40 MHz
// // Fin = 16 MHz
// // Fosc= Fin*M/(N1*N2), Fcy=Fosc/2
// // Fosc= 16 MHz*40/(4*2) = 80MHz, Fcy = 40 MHz
// PLLFBD = 38; // M = 40
// CLKDIVbits.PLLPOST = 0; // N2=2
// CLKDIVbits.PLLPRE = 2; // N1=4

// while (!OSCCONbits.LOCK); // wait for OSCCONbits.LOCK to be
set, i.e. PLL to lock

OSCCONbits.MSB = 0x78; // Unlock sequence to allow write to
OSCCONbits.MSB = 0x9A; // OSCCONH system control

register
OSCCONbits.MSB = 0x02; // Primary EC is the desired clock

OSCCONbits.LSB = 0x46; // Unlock sequence to allow write to
OSCCONbits.LSB = 0x57; // OSCCONL system control register
OSCCONbits.OSWEN = 1; // Request a clock switch

delay_us(100); // Delay
// if (!OSCCONbits.LOCK) LATBbits.LATB14 = LOW; // PORTB14 low
indicates PLL failure

if (OSCCONbits.OSWEN) //
clock switch failure

{
LATBbits.LATB15 = LOW; // PORTB15 low indicates clock

switch failure
OSCCONbits.LSB = 0x46; // Unlock sequence

to allow write to
OSCCONbits.LSB = 0x57; // OSCCONL

system control register
OSCCONbits.OSWEN = 0; // abort clock switch

}
return;

}
/*--*/

167

Filename: initTimer2.c:

#include "p33FJ128GP708.h"
#include "dau_GP.h"
#include <math.h>

/*---
 Function Name: initTimer2
 Description: Initializes Timer2 for desired sample rate
 Inputs: None
 Returns: None
 Ex. call: initTimer2();
 Note:
---*/
void initTimer2(void)
{

/* ensure Timer 2 is off and in 16-bit counter mode with 1:1 prescaler and
source = Fcy*/

T2CON = 0x0000;

/* reset Timer 2 interrupt flag */
 IFS0bits.T2IF = 0;

 /* set Timer2 interrupt priority level to 4 */

IPC1bits.T2IP = 4;

/* enable Timer 2 interrupt */
 IEC0bits.T2IE = 1;

/* set Timer 2 period register */
// PR2 = 0x5014; // 512.5 microsec period and Fref = 489 Hz
// PR2 = 0x4010; // 410 microsec period and Fref = 610 Hz
// PR2 = 0x3340; // 328 microsec period and Fref = 762 Hz

// Desired interrupt rate = 1 MHz
// Fcy = 40E6
// Clock divisor = 40E6/1E6 = 40 = 0x0028
//PR2 = 0x0028; // Result is 0.97 Mhz interrupt and 485 kHz clock
PR2 = 0x0026; // Result is 1.024 MHz interrupt and 512 kHz clock

return;
}

168

Filename: isrTimer2.c:

#include <p33FJ128GP708.h>
#include "dau_GP.h"
#include <delay.h>
//unsigned char flag;
/*---
 Function Name: T2Interrupt
 Description: Timer2 Interrupt Handler
 Inputs: None
 Returns: None
---*/
void __attribute__((__interrupt__, no_auto_psv)) _T2Interrupt (void)
{

if (flagClock == 1)
{

flagClock = 2;
TESTLED2 = HIGH;

}
else
{

flagClock = 1;
TESTLED2 = LOW;

}

/* reset Timer 2 interrupt flag */
 IFS0bits.T2IF = 0;

}

Filename: dau_GP.h:

//dau_GP.h
/*
Note: This is the header file that contains definitions of pins

and declarations of prototypes of functions used for data
collection using the DAU daughter board.

Pins/Signals ending with '_' are active low signals.

Include this file before calling the functions and/or using
the DAU pins

*/

169

#ifndef __DAU_GP_H__
#define __DAU_GP_H__

//Control signals definitions using LAT registers

// Delta Sigma, LED control pin definitions
//c #define RESET_ LATGbits.LATG1
//c #define START_A LATFbits.LATF1
//c #define START_B LATFbits.LATF0
//c #define CS_EN LATGbits.LATG0
//c #define CS_C LATGbits.LATG12
//c #define CS_B LATGbits.LATG13
//c #define CS_A LATGbits.LATG14

#define SYNC_ LATGbits.LATG0
#define DREADY_ PORTAbits.RA2
#define LED1 LATGbits.LATG15
#define LED2 LATAbits.LATA3
#define TESTLED1 LATFbits.LATF1
#define TESTLED2 LATFbits.LATF0

//Digital buffer enable pins
#define BUFFEN1_ LATAbits.LATA6
#define BUFFEN2_ LATAbits.LATA7

//1:10 Clock driver bank output enable pins
#define G1 LATDbits.LATD8
#define G2 LATDbits.LATD9

//Clock oscillator enable pin
#define EOH LATDbits.LATD15

//USB-FIFO control pins
#define USB_RD_ LATDbits.LATD10
#define USB_WR LATDbits.LATD11
#define USB_TXE_ LATDbits.LATD12
#define USB_RXF_ LATDbits.LATD13

//Signal level definitions
#define HIGH 1
#define LOW 0

//Global variable prototypes

170

extern unsigned int flagClock, ainSelect, ledFlag, dataSet; // Flags
extern unsigned int transFlag; // Flag to
indicate presence of transient
extern long transLevel; //
Changes above this value are transients
extern unsigned long chtemp; // Temp
variable used in integration
extern long led1_in[32],led1_b1[32],led1_out[32]; // Channel data
extern long led2_in[32],led2_b1[32],led2_out[32]; // Channel data
extern long adc_temp[8]; //
Temperature readings from adcs
extern int raw_led[96]; // Raw
channel data from the ADCs
extern unsigned long y_filter[32];
extern unsigned int sampleCtr, writeCtr, recordFlag, usb1Flag;
extern unsigned char regdata[8][8];

extern long unfilteredSamples[64];
extern int unfilteredCtr;
extern int startupFlag, startupDelay, phaseCtr;

//Function prototypes
extern void clockSwitchC (void);
extern void powerUp (void);
extern void initADCs (void);
extern void configADCs (void);
extern void configTemp (void);

extern void initTimer1 (void);
//extern void _ISR _T1Interrupt (void);

extern void initTimer2 (void);
//extern void _ISR _T2Interrupt (void);

//extern void initTimer3 (void);
//extern void _ISR _T3Interrupt (void);

extern void initSpi1 (unsigned char bitMode);
extern void initSpi2 (void);
extern void accumOff1 (void);
extern void accumOn1 (void);
extern void accumOff2 (void);
extern void accumOn2 (void);
extern void clearData (void);

171

extern void getData (void);
extern void getData1 (void);
extern void getData2 (void);
extern void getData3 (void);
extern void getData4 (void);
extern void getTemp (void);
extern void usbWritedata1Off (void);
extern void usbWritedata1On (void);
extern void usbWritedata2Off (void);
extern void usbWritedata2On (void);
extern void usbWritetransient (void);
extern void usbWritetranslevel (void);
extern void usbWriteTemp (void);
extern void setupTransient (void);

#endif

172

APPENDIX E

PC SOFTWARE FOR THE ADS1278 DAU

Visual Basic 2006 Form Software:

Dim ChannelCount As Integer
Dim ChannelValueLo As Long
Dim ChannelValueHi As Long
Dim ByteCount As Integer
Dim PreambleCount As Integer
Dim Startup As Integer
Dim ReadCommand As Integer
Dim dataPoints As Long
Dim minVoltage As Single
Dim maxVoltage As Single
Dim voltageDiff As Single
Dim recordFlag As Byte
Dim recordedBytes As Long
Dim fileLocation As String
Dim OutputString As String
Dim LIAOutput(66) As Double
Dim LIAOutputOld(64) As Double
Dim LIAFiltered(64) As Double
Dim NewPinout(66) As Integer
Dim OldPinout(66) As Integer
Dim FilterFactor As Double
Dim TempDouble As Double
Dim OnDataFlag As Byte
Dim PinoutFlag As Byte
Dim part1 As Integer
Dim part2 As Integer
Dim part3 As Integer
Dim part4 As Integer
Dim DataRecordNumber As Integer
Dim DataRecordCount As Integer
Dim TransientFlag As Integer

Private Sub Command1_Click()

 minVoltage = CSng(Text6.Text)
 maxVoltage = CSng(Text5.Text)

173

 voltageDiff = maxVoltage - minVoltage

 If Combo2.ListIndex = 0 Then
 FilterFactor = 1024
 Else
 If Combo2.ListIndex = 1 Then
 FilterFactor = 512
 Else
 If Combo2.ListIndex = 2 Then
 FilterFactor = 256
 Else
 If Combo2.ListIndex = 3 Then
 FilterFactor = 128
 Else
 If Combo2.ListIndex = 4 Then
 FilterFactor = 64
 Else
 If Combo2.ListIndex = 5 Then
 FilterFactor = 32
 Else
 If Combo2.ListIndex = 6 Then
 FilterFactor = 16
 Else
 If Combo2.ListIndex = 7 Then
 FilterFactor = 8
 Else
 If Combo2.ListIndex = 8 Then
 FilterFactor = 4
 Else
 FilterFactor = 2
 End If
 End If
 End If
 End If
 End If
 End If
 End If
 End If
 End If

 PinoutFlag = Combo3.ListIndex
 DataRecordNumber = CInt(Text2.Text)

End Sub

174

Private Sub Command2_Click()

 If recordFlag = 0 Then
 'Open Text3.Text For Output As #1
 recordFlag = 1
 recordedBytes = 0
 Command2.BackColor = &H8080FF
 Command2.Caption = "Stop Recording"
 'Print #1, "0 0x00"
 Else
 recordFlag = 0
 Command2.BackColor = &H80FF80
 Command2.Caption = "Record Data"
 'Close #1
 End If

End Sub

Private Sub Command3_Click()

 Dim PortSel As Integer

 On Error GoTo EH

 'If the port is already open, close it
 If MSComm1.PortOpen = True Then
 MSComm1.PortOpen = False
 Command3.Caption = "Connect!"
 Else
 PortSel = Combo1.ListIndex

 ' Fire Rx Event Every Byte
 MSComm1.RThreshold = 1

 ' When Inputting Data, Input 1 Byte at a time
 MSComm1.InputLen = 1

 ' 921600 Baud, No Parity, 8 Data Bits, 1 Stop Bit
 MSComm1.Settings = "921600,N,8,1"

 ' Disable DTR
 MSComm1.DTREnable = True

175

 ' Open COM Port
 MSComm1.CommPort = PortSel
 MSComm1.PortOpen = True

 Command3.Caption = "Disconnect!"
 End If
 Exit Sub

EH:
 MsgBox "ERROR: " & Err.Description & ". [Error #" & Err.Number & "]",
vbCritical
End Sub

Private Sub Command5_Click()
 Dim tString As String
 Dim String2 As String

 On Error GoTo EH2

 String2 = CStr(Combo4.ListIndex)
 tString = "HLIMIT" + String2

 For i = 1 To 7
 Do While MSComm1.OutBufferCount > 500
 Loop
 MSComm1.Output = Mid(tString, i, 1)
 Next

Exit Sub
EH2:
 MsgBox "ERROR: " & Err.Description & ". [Error #" & Err.Number & "]",
vbCritical

End Sub

Private Sub Form_Load()

 Dim Counter, i As Integer
 Dim TestFile As String
 Dim lhigh As Long
 Dim llow As Long
 Dim lhighorig As Long
 Dim dtemp1 As Double
 Dim dtemp2 As Double

176

 Dim dtemp3 As Double
 Dim llarge As Long
 Dim templong As Long
 Dim temp As Long
 Dim larged As Double

 For Port = 0 To 16
 Combo1.AddItem "COM" & Port, Port
 Next

 Combo2.AddItem "BW = 0.00054 Hz, TC= 295 s", 0
 Combo2.AddItem "BW = 0.00108 Hz, TC= 147 s", 1
 Combo2.AddItem "BW = 0.0022 Hz, TC= 72.3 s", 2
 Combo2.AddItem "BW = 0.0043 Hz, TC= 37.0 s", 3
 Combo2.AddItem "BW = 0.0087 Hz, TC= 18.3 s", 4
 Combo2.AddItem "BW = 0.0174 Hz, TC= 9.1 s", 5
 Combo2.AddItem "BW = 0.0340 Hz, TC= 4.7 s", 6
 Combo2.AddItem "BW = 0.0620 Hz, TC= 2.6 s", 7
 Combo2.AddItem "BW = 0.1015 Hz, TC= 1.7 s", 8
 Combo2.AddItem "BW = 0.1475 Hz, TC= 1.1 s", 9

 Combo3.AddItem "New", 0
 Combo3.AddItem "Old+Adapter", 1

 Combo4.AddItem "2.5 Volts", 0
 Combo4.AddItem "1.25 Volts", 1
 Combo4.AddItem "0.625 Volts", 2
 Combo4.AddItem "0.313 Volts", 3
 Combo4.AddItem "0.156 Volts", 4
 Combo4.AddItem "0.078 Volts", 5
 Combo4.AddItem "0.039 Volts", 6
 Combo4.AddItem "0.020 Volts", 7
 Combo4.AddItem "0.010 Volts", 8
 Combo4.AddItem "0.005 Volts", 9

 PreambleCount = 0
 Startup = 1
 OnDataFlag = 1
 ChannelCount = 0
 ChannelValue = 0
 Combo2.ListIndex = 0
 FilterFactor = 1024
 Combo3.ListIndex = 1
 Combo4.ListIndex = 0

177

 PinoutFlag = 1
 TransientFlag = 0

 'LIAFlag is set to 0 for lock in amp
 LIAFlag = 0

 'Init Recording Info
 recordedBytes = 0

 'Text2.Text = recordedBytes
 'Take care of scaling
 minVoltage = 0
 maxVoltage = 0.05
 Text5.Text = maxVoltage
 Text6.Text = minVoltage
 voltageDiff = maxVoltage - minVoltage

 'Init recordFlag to off until button is pressed
 recordFlag = 0
 fileLocation = "C:\data.raw"
 Text3.Text = fileLocation

 For Counter = 1 To 64
 LIAOutput(Counter) = 0
 LIAOutputOld(Counter) = 0
 LIAFiltered(Counter) = 0
 Next

 DataRecordNumber = 1 ' Record one data set every DataRecordNumber sets
 Text2.Text = CStr(DataRecordNumber)
 DataRecordCount = 1

 ' Populate pinout arrays

 NewPinout(1) = 27
 NewPinout(2) = 28
 NewPinout(3) = 25
 NewPinout(4) = 26
 NewPinout(5) = 19
 NewPinout(6) = 20
 NewPinout(7) = 17
 NewPinout(8) = 18
 NewPinout(9) = 11
 NewPinout(10) = 12

178

 NewPinout(11) = 9
 NewPinout(12) = 10
 NewPinout(13) = 3
 NewPinout(14) = 4
 NewPinout(15) = 1
 NewPinout(16) = 2
 NewPinout(17) = 22
 NewPinout(18) = 21
 NewPinout(19) = 24
 NewPinout(20) = 23
 NewPinout(21) = 30
 NewPinout(22) = 29
 NewPinout(23) = 32
 NewPinout(24) = 31
 NewPinout(25) = 6
 NewPinout(26) = 5
 NewPinout(27) = 8
 NewPinout(28) = 7
 NewPinout(29) = 14
 NewPinout(30) = 13
 NewPinout(31) = 16
 NewPinout(32) = 15

 NewPinout(33) = 27 + 32
 NewPinout(34) = 28 + 32
 NewPinout(35) = 25 + 32
 NewPinout(36) = 26 + 32
 NewPinout(37) = 19 + 32
 NewPinout(38) = 20 + 32
 NewPinout(39) = 17 + 32
 NewPinout(40) = 18 + 32
 NewPinout(41) = 11 + 32
 NewPinout(42) = 12 + 32
 NewPinout(43) = 9 + 32
 NewPinout(44) = 10 + 32
 NewPinout(45) = 3 + 32
 NewPinout(46) = 4 + 32
 NewPinout(47) = 1 + 32
 NewPinout(48) = 2 + 32
 NewPinout(49) = 22 + 32
 NewPinout(50) = 21 + 32
 NewPinout(51) = 24 + 32
 NewPinout(52) = 23 + 32
 NewPinout(53) = 30 + 32

179

 NewPinout(54) = 29 + 32
 NewPinout(55) = 32 + 32
 NewPinout(56) = 31 + 32
 NewPinout(57) = 6 + 32
 NewPinout(58) = 5 + 32
 NewPinout(59) = 8 + 32
 NewPinout(60) = 7 + 32
 NewPinout(61) = 14 + 32
 NewPinout(62) = 13 + 32
 NewPinout(63) = 16 + 32
 NewPinout(64) = 15 + 32
 NewPinout(65) = 65
 NewPinout(66) = 66

 OldPinout(1) = 29
 OldPinout(2) = 31
 OldPinout(3) = 25
 OldPinout(4) = 27
 OldPinout(5) = 21
 OldPinout(6) = 23
 OldPinout(7) = 17
 OldPinout(8) = 19
 OldPinout(9) = 13
 OldPinout(10) = 15
 OldPinout(11) = 9
 OldPinout(12) = 11
 OldPinout(13) = 5
 OldPinout(14) = 7
 OldPinout(15) = 1
 OldPinout(16) = 3
 OldPinout(17) = 20
 OldPinout(18) = 18
 OldPinout(19) = 24
 OldPinout(20) = 22
 OldPinout(21) = 28
 OldPinout(22) = 26
 OldPinout(23) = 32
 OldPinout(24) = 30
 OldPinout(25) = 4
 OldPinout(26) = 2
 OldPinout(27) = 8
 OldPinout(28) = 6
 OldPinout(29) = 12
 OldPinout(30) = 10

180

 OldPinout(31) = 16
 OldPinout(32) = 14

 OldPinout(33) = 29 + 32
 OldPinout(34) = 31 + 32
 OldPinout(35) = 25 + 32
 OldPinout(36) = 27 + 32
 OldPinout(37) = 21 + 32
 OldPinout(38) = 23 + 32
 OldPinout(39) = 17 + 32
 OldPinout(40) = 19 + 32
 OldPinout(41) = 13 + 32
 OldPinout(42) = 15 + 32
 OldPinout(43) = 9 + 32
 OldPinout(44) = 11 + 32
 OldPinout(45) = 5 + 32
 OldPinout(46) = 7 + 32
 OldPinout(47) = 1 + 32
 OldPinout(48) = 3 + 32
 OldPinout(49) = 20 + 32
 OldPinout(50) = 18 + 32
 OldPinout(51) = 24 + 32
 OldPinout(52) = 22 + 32
 OldPinout(53) = 28 + 32
 OldPinout(54) = 26 + 32
 OldPinout(55) = 32 + 32
 OldPinout(56) = 30 + 32
 OldPinout(57) = 4 + 32
 OldPinout(58) = 2 + 32
 OldPinout(59) = 8 + 32
 OldPinout(60) = 6 + 32
 OldPinout(61) = 12 + 32
 OldPinout(62) = 10 + 32
 OldPinout(63) = 16 + 32
 OldPinout(64) = 14 + 32
 OldPinout(65) = 65
 OldPinout(66) = 66

End Sub

Private Sub MSComm1_OnComm()
Dim cData As String ' Holds our incoming data

181

Dim bData As Byte ' Holds our converted data
Dim NewOnDataFlag As Byte ' Flag to store whether data is LED1 or 2 on or
off
Dim NewChannelCount As Integer ' Which channel number gets updated
Dim exponent As Integer ' Used for the exponent
Dim temp As Double ' Temp number for 2 ^ exponent
Dim temp2 As Long
Dim i As Integer

Dim tempChannelValue As Long
Dim hex_string As String ' Used to print hex value to file

Dim valuedbl As Double
Dim tempdbl As Double
Dim largedbl As Double
Dim ChannelValueHiOrig As Long

 ' If comEvReceive Event then get data and display

 If Startup = 1 Then
 ' Read byte from USB
 If MSComm1.CommEvent = comEvReceive Then
 cData = MSComm1.Input ' Get data
 ' If byte has value of 0xFF, increase preamble count, if not, set preamble
count to zero
 bData = Asc(cData)
 If bData = 255 Then
 PreambleCount = PreambleCount + 1
 ' If we have 4 bytes of 255, preamble has been sent
 If PreambleCount = 4 Then
 Startup = 0
 PreambleCount = 0
 End If
 Else
 PreambleCount = 0
 End If
 End If

 Else
 If MSComm1.CommEvent = comEvReceive Then
 cData = MSComm1.Input ' Get data
 ByteCount = ByteCount + 1 ' Increment ByteCount
 bData = Asc(cData)
 If recordFlag = 1 Then

182

 recordedBytes = recordedBytes + 1 ' Increment recordedBytes
 End If

 ' Data bytes are read in least significant byte first
 If ByteCount = 1 Then
 exponent = 0
 part1 = bData
 End If
 If ByteCount = 2 Then
 exponent = 8
 part2 = bData
 End If
 If ByteCount = 3 Then
 exponent = 16
 part3 = bData
 End If
 If ByteCount = 4 Then
 exponent = 24
 part4 = bData
 End If

 If ByteCount = 4 Then

 ChannelValueLo = part2 * (2 ^ 8) + part1
 ChannelValueHi = part4 * (2 ^ 8) + part3
 ChannelCount = ChannelCount + 1

 'Make the update to the appropriate bar
 Call UpdateSize(ChannelCount, ChannelValueLo, ChannelValueHi,
PinoutFlag, 1)

 'Reset Variables
 ByteCount = 0
 If ChannelCount = 66 Then
 ChannelCount = 0
 Startup = 1
 End If
 End If
 End If
 End If

End Sub

Private Sub UpdateSize(Channel As Integer, IntensityLo As Long, IntensityHi As

183

Long, Pinout As Byte, Filtered As Byte)
 Dim Index As Integer
 Dim Tempheight As Long
 Dim VoltValue As Double
 Dim tempD As Double
 Dim SaveFileName As String
 Dim qTime As Double
 Dim iTime As Long
 Dim templong As Long
 Dim msActual As Integer
 Dim msString As String
 Dim high As Integer
 Dim low As Integer
 Dim sum As Long
 Dim value As Double
 Dim tempdbl As Double
 Dim large As Double
 Dim large2 As Double
 Dim dummy As Integer
 Dim IntensityHiOrig As Long
 Dim ActualChannel As Integer

 large = 2147483392#

 If (Channel < 66) Then
 ' Translate sample into real number
 ' First determine if number is negative
 ' If number is negative calculate twos complement
 IntensityHiOrig = IntensityHi

 If ((IntensityHi And &H8000) = 32768) Then
 'Number is negative so calculate twos complement
 IntensityLo = IntensityLo Xor 65535
 IntensityHi = IntensityHi Xor 65535
 IntensityLo = IntensityLo + 1
 If IntensityLo > 65535 Then
 'Carry into IntensityHi
 IntensityLo = 0
 IntensityHi = IntensityHi + 1
 End If
 ' Translate to real number
 tempdbl = CDbl(IntensityHi / large)
 value = -1 * (CDbl(tempdbl * 65536#) + CDbl(IntensityLo / large))
 Else

184

 'Translate to real number
 'Number is positive and high bit of IntensityHi is zero
 'so the next line will not cause overflow
 value = CDbl((IntensityHi * 65536# + IntensityLo) / large)
 End If
 ' Vref is defined as difference betwee Vref+ and Vref- or 2.5VDC
 ' Also multiply by 2 since LIA filter output is magnitude of input not peak to
peak
 value = value * CDbl(5#)
 Else
 ' Data indicates status of transient detection
 If (IntensityLo > 0) Then
 value = 1#
 Else
 value = 0#
 End If
 End If

 ActualChannel = 0
 ' Place data in correct location considering pinout and order that MCU reads
channel data
 If Pinout = 0 Then
 ActualChannel = NewPinout(Channel)
 Else
 If Pinout = 1 Then
 ActualChannel = OldPinout(Channel)
 End If
 End If

 LIAOutput(ActualChannel) = value

 ' If this is the last data for this spectrum - filter data and display values
 If Channel = 66 Then
 'Display LIA Data
 For voltCnt = 1 To 64
 ' Filter Samples - First order Butterworth
 LIAFiltered(voltCnt) = LIAFiltered(voltCnt) * (CDbl(FilterFactor) - 2#) /
CDbl(FilterFactor)
 LIAFiltered(voltCnt) = LIAFiltered(voltCnt) + (LIAOutputOld(voltCnt) +
LIAOutput(voltCnt)) / CDbl(FilterFactor)
 LIAOutputOld(voltCnt) = LIAOutput(voltCnt)
 VoltValue = LIAFiltered(voltCnt)

 Index = voltCnt - 1

185

 Tempheight = CLng(4815 - CLng(VoltValue * CDbl(4815 / voltageDiff)) +
CLng(minVoltage * CDbl(4815 / voltageDiff)))
 If Tempheight < 0 Then
 Tempheight = 0
 End If
 If Tempheight > 4815 Then
 Tempheight = 4815
 End If
 If (voltCnt < 33) Then
 Shape3(Index).Height = Tempheight
 Shape1(Index).Height = 4815 - Tempheight
 Shape1(Index).Top = 600 + Tempheight
 Else
 Shape10(Index - 32).Height = Tempheight
 Shape7(Index - 32).Height = 4815 - Tempheight
 Shape7(Index - 32).Top = 600 + Tempheight
 End If
 Next

 If LIAOutput(66) > 0 Then
 Command4.BackColor = &H8080FF
 Command4.Caption = "Transient"
 TransientFlag = 1
 Else
 Command4.BackColor = &H80FF80
 Command4.Caption = "Stable"
 TransientFlag = 0
 End If

 If recordFlag = 1 Then

 'Clear the output string
 OutputString = ""
 'Open up the file for writing
 SaveFileName = "" + Text3.Text
 Open SaveFileName For Append As #1
 'Populate the output string
 For voltCnt = 1 To 64
 OutputString = OutputString + " " + CStr(LIAFiltered(voltCnt))
 Next
 OutputString = OutputString + " " + CStr(LIAOutput(65))
 OutputString = OutputString + " " + CStr(LIAOutput(66))

 qTime = Timer

186

 iTime = Int(qTime)
 msActual = CInt((qTime - CDbl(iTime)) * 1000)
 msString = Format(msActual, "000")
 If DataRecordCount = DataRecordNumber Then
 Print #1, "" + CStr(Year(DateTime.Date)) + " " +
CStr(Month(DateTime.Date)) + " " + CStr(Day(DateTime.Date)) + " " +
CStr(Hour(DateTime.Time)) + " " + CStr(Minute(DateTime.Time)) + " " +
CStr(Second(DateTime.Time)) + "." + msString + " " + OutputString
 DataRecordCount = 0
 End If
 DataRecordCount = DataRecordCount + 1
 'Close the file
 Close #1

 End If

 End If

End Sub

187

APPENDIX F

ADS1278 DAU SCHEMATIC DIAGRAM

188

189

190

191

192

193

194

APPENDIX G

CORRELATION COEFFICIENT SOFTWARE

Filename: pcorr.c.

#include <stdio.h>
#include <math.h>
#define MAX_DATA 1000

int main(int argc, char *argv[])
{

/* Feb. 22, 2012 */
/* Calculates Pearson correlation coefficient */
/* Input file consists of 1002 rows of data. */
/* First row is mean of each channel */
/* Second row is standard deviation of each channel */
/* Remainder of rows are samples for all channels */
/* Each row is Ch1 to Ch 32 separated by a space. */
/* Output data file is 32 rows and columns */
/* of Pearson correlation coefficients */

 int incnt, chcnt, chcnt2;
 double mean[32], stddev[32];
 double indata[32][MAX_DATA];
 double outdata[32][32];

 FILE *idfPtr; /* idfPtr = input.dat file pointer */
 FILE *odfPtr; /* odfPtr = output.dat file pointer */

/* Read samples from input data file */
 if ((idfPtr = fopen("corr-in.txt", "r")) == NULL)
 printf("No input file!\n");
 else
 {
 printf("Reading input data\n");
 for(incnt=0; incnt<32; incnt++)
 {
 fscanf(idfPtr, "%lf", &mean[incnt]);
 }
 for(incnt=0; incnt<32; incnt++)
 {

195

 fscanf(idfPtr, "%lf", &stddev[incnt]);
 }
 for(incnt=0; incnt<MAX_DATA; incnt++)
 {
 for(chcnt=0; chcnt<32; chcnt++)
 {
 fscanf(idfPtr, "%lf", &indata[chcnt][incnt]);
 }
 }
 fclose(idfPtr);
 printf("Got the input data okay\n");
 }

/* Open output file */
 odfPtr = fopen("output.dat", "w");

/* Calculate correlations */
 for(chcnt=0; chcnt<32; chcnt++)
 {
 for(chcnt2=0; chcnt2<32; chcnt2++)
 {
 /* Compute correlation */
 outdata[chcnt][chcnt2] = 0.0;
 for(incnt=0; incnt<MAX_DATA; incnt++)
 {
 outdata[chcnt][chcnt2] += (indata[chcnt][incnt]-mean[chcnt]) * \
 (indata[chcnt2][incnt]-mean[chcnt2]);
 }
 outdata[chcnt][chcnt2] = (outdata[chcnt][chcnt2])/ \
 ((MAX_DATA-1)*stddev[chcnt]*stddev[chcnt2]);
 }
 }

/* Print result to output file */
 for(chcnt=0; chcnt<32; chcnt++)
 {
 for(chcnt2=0; chcnt2<32; chcnt2++)
 {
 fprintf(odfPtr, "%e ", outdata[chcnt][chcnt2]);
 }
 fprintf(odfPtr, "\n");
 }

 fclose(odfPtr);

196

 return 0;
}

	University of Iowa
	Iowa Research Online
	Spring 2012

	Data acquisition unit for low-noise, continuous glucose monitoring
	Daniel Warren Cooley
	Recommended Citation

	tmp.1345059374.pdf.TIinM

