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ABSTRACT

As the number of people with diabetes continues to increase, research 

efforts improving glucose testing methods and devices are under way to 

improve outcomes and quality of life for diabetic patients. This dissertation 

describes the design and testing of a Data Acquisition Unit (DAU) providing low 

noise photocurrent spectra for use in a continuous glucose monitoring system. 

The goal of this research is to improve the signal to noise ratio (SNR) of 

photocurrent measurements to increase glucose concentration measurement 

accuracy. The glucose monitoring system consists of a portable monitoring 

device and base station. The monitoring device measures near infrared (IR) 

absorption spectra from interstitial fluid obtained by microdialysis or 

ultrafiltration probe and transmits the spectra to a base station via USB or a 

ZigBee radio link. The base station utilizes chemometric calibration methods to 

calculate glucose concentration from the photocurrent spectra. Future efforts 

envision credit card-sized monitoring devices.

The glucose monitor system measures the optical absorbance spectrum of 

an interstitial fluid (ISF) sample pumped through a fluid chamber inside a 

glucose sensor. Infrared LEDs in the glucose sensor illuminate the ISF sample 

with IR light covering the 2.2 to 2.4 micron wavelength region where glucose has 

unique features in its absorption spectrum. Light that passes through the sample 

propagates through a linearly variable bandpass filter and impinges on a 

photodiode array. The center frequency of the variable filter is graded along its 
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length such that the filter and photodiode array form a spectrometer. The data 

acquisition unit (DAU) conditions and samples photocurrent from each 

photodiode channel and sends the resulting photocurrent spectra to the Main 

Controller Unit (MCU). The MCU filters photocurrent samples providing low 

noise photocurrent spectra to a base station via USB or Zigbee radio link.

The glucose monitoring system limit of detection (LOD) from a single 

glucose sensor wavelength is 5.8 mM with a system bandwidth of 0.00108 Hz. 

The partial least squares and net analyte signal methods show the system 

standard error of prediction for glucose are 1.12 mM and 1.88 mM, respectively - 

useful for detection of hyperglycemia but slightly high for indication of 

hypoglycemia.
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CHAPTER 1

INTRODUCTION

According to the World Health Organization, 346 million people 

worldwide are afflicted with diabetes as of 20111. Self monitoring of blood 

glucose (SMBG) performed a number of times per day provides a method to 

control glucose levels and limit the possibility of adverse outcomes due to 

diabetes. Despite the ever-increasing number of people with diabetes and 

consistent research efforts most commercially available SMBG systems require 

repeated, painful finger sticks, utilize electrochemical reactions with chemicals 

such as glucose oxidase, and suffer from limited accuracy2. Direct glucose 

measurement techniques exploit intrinsic features of the glucose molecule while 

indirect techniques such as electrochemical reactions and IR reflection 

spectroscopy are based on the effect glucose has on chemical, physical, or 

physiological features of the test sample3. IR reflection spectroscopy measuring 

scattering of skin tissue suffers from low selectivity to glucose as several 

constituents of interstitial fluid (ISF) modulate the refractive index of human 

skin4. IR transmission spectroscopy measures light absorption of the glucose 

molecule yielding a direct glucose monitoring method3,4.

Early glucose testing methods, before the 1940's, had to be done in 

laboratories due to their complicated nature5. In the 1940's testing could be done 

in the home with tests that measured glucose in the urine. By the 1970's test 
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strips impregnated with a chemical that changed color in proportion to the 

amount of glucose in the blood were available. This method was replaced by 

electrochemical tests performed by test strips, lancets, and portable electronic 

devices in the 1990's and is still used for SMBG today. Today research on 

developing an artificial pancreas to provide a type of cure for diabetes is 

underway but the main limitation in this effort is glucose sensing technology5,6.

Recent research in electrochemical methods for glucose sensing describe 

fluorescent quantum dots7, a fluorescent glucose detection sensor8, development 

of a capillary-based sensor for glucose measurement in tear fluid9, an 

electrochemical biosensor with a mediating chemical in a membrane10, and use of 

carbon nanotubes in glucose sensors11. Research on the use of Raman 

spectroscopy for continuous glucose monitoring12,13 exhibited continuous 

monitoring over 17 days with RMS errors of calibration and prediction of 3.6 

mg/dL and 13.7 mg/dL in Ref. 12. Ref. 14 reported on a photonic crystal glucose 

sensor which changes size depending on glucose concentration, altering the 

wavelength of light diffracted by the crystal.

Recent research in infrared transmission spectroscopy evaluated glucose 

sensing methods using tunable laser diodes15 and Fourier-transform infrared 

(FTIR) spectroscopy16,17. Heise et al18 present a glucose monitoring system 

utilizing an FTIR instrument as part of a bedside monitoring system. We study 

low-noise photocurrent measurement techniques for the development of a 

portable, low cost, continuous glucose monitor. Our system consists of IR LEDs, 
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photodiodes (PDs), and electronic circuitry custom designed and fabricated by 

our research group to enable development of a low cost, easily portable glucose 

monitoring device.

The measurement system19,20,21 provides low-noise photocurrent spectra 

from a near-IR glucose sensor and calculates glucose concentration from IR 

absorption spectra with multivariate chemometric techniques22,23. The glucose 

sensor contains a narrow bandgap GaInAsSb common-cathode IR photodiode 

array, linearly variable bandpass filter, and 32-channel photodiode array and 

operates in the 2.2 to 2.4 micron wavelength range of the near-infrared spectrum 

where glucose has unique absorption features providing glucose specific 

information for multivariate determination of glucose concentration. The 

measurement system must minimize noise and drift in order to limit residual 

errors in the multivariate calibration process and ensure accurate glucose 

concentration results. Popular photocurrent measurement techniques include 

current input ADCs24 as well as transimpedance amplifiers25,26. In our system 

TIAs translate photocurrent into voltages which are sampled by ADCs. Several 

factors inhibit attaining high SNR including recombination current in the 

GaInAsSb photodiodes, low photodiode shunt resistance, and limited amount of 

light impinging on the photodiode array. GaInAsSb photodiodes exhibit 

recombination current, a leakage current reducing the photodiode shunt 

resistance27. The low bandgap of IR photodiodes relative to typical Si 

photodiodes results in enhanced dark current28 and hence reduced photodiode 
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shunt resistance. Low shunt resistance in a TIA inhibits SNR for cases where 

thermal noise limits the SNR. Due to scattering losses in the sample and presence 

of the linearly variable filter, limited amounts of IR light impinge on the 

photodiode array producing low photocurrent (10 nA) levels and restricting 

SNR.

A series of lock-in amplifiers29,30 implemented in software filter 

photocurrent samples and determine the amount of photocurrent detected by 

each channel. LIAs mix, or multiply, an input signal with a reference signal at a 

known frequency and low pass filter the mixer output. In our case the input 

signal and reference are in phase and of equal frequency and thus the mixer 

produces components at DC and twice the reference frequency. The low pass 

filter passes only the DC component which is proportional to the amplitude of 

the component of the input signal at the reference frequency. Dorrington and 

Kunnemeyer31 presented a lock-in amplifier filtering method combining the 

mixing and low pass filtering operations into a pair of difference equations 

applied alternately to the stream of input samples. This lock-in method allows 

the use of a higher lock-in reference frequency, ameliorating the effect of 

operational amplifier input voltage noise on system SNR when op amp 1/f noise 

dominates op amp input voltage noise.

A block diagram of the glucose measurement system is shown in Fig. 1-1. 

The glucose sensor6, located on the Data Acquisition Unit (DAU), has two LEDs32 

which provide light covering the combination region of the mid IR spectrum. A 
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linearly variable filter and 32 element photodiode array form a spectrometer 

operating in the combination region of the IR spectrum. The DAU contains TIAs 

which convert photocurrents into voltages which are sampled by 24-bit Delta-

Sigma ADCs. An SPI port transfers photocurrent samples to the MCU which 

processes the ADC samples and sends spectra to the base station at 1 Hz for 

display and further processing. The MCU provides ADC control signals and two 

LED control lines to the DAU. 

Figure 1-1. Block diagram of the glucose monitoring system.
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Overall technical requirements for the DAU/MCU:

• The shunt resistance of IR photodiodes in the glucose sensor is 

approximately 10 kΩ to 30 kΩ.

• SNR > 40 dB for a 30 kΩ shunt resistance photodiode array. 

• The MCU will be held horizontally with the DAU connected to the MCU 

and held vertically placing the long axis of sensor header in the vertical 

direction. This prevents air bubbles, if present, from collecting in the fluid 

chamber within the glucose sensor and interfering with measurements.

• The glucose sensor will be installed on the DAU with a 40 pin DIP ZIF 

socket.

• LED current must be adjustable in the range of 100 to 200 mA DC.

• The IR LEDs are common cathode and use 3 pin 0.1” spacing connector.

• Four types of photocurrent measurements are required in succession: (1) 

LED1 on/LED2 off, (2) both LEDs off, (3) LED1 off/LED2 on, and (4) both 

LEDS off.

• The measurement device must originate its power from batteries.

• The MCU communicates with the base station via either USB or a ZigBee 

radio link.

Chapter 2 discusses theory of operation of the glucose sensor. Chapter 3 

presents electrical noise theory and mathematical models predicting signal to 

noise ratio for several photocurrent measurement methods. Chapter 4 details the 

DAU hardware and software design. Chapter 5 documents assessment of 
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monitoring system ability to provide low noise photocurrent spectra and 

Chapter 6 focuses on application of the DAU and MCU to continuous glucose 

sensing. Chapter 7 concludes the paper and discusses possible future extensions 

of this work.
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CHAPTER 2

GLUCOSE SENSOR THEORY OF OPERATION

2.1 Glucose Sensor

The glucose monitoring device measures the absorbance of light in the 

combination region of the near-IR spectrum. The glucose sensor, Fig. 2-1, consists 

of two IR LEDs, two glass fluid chambers with square cross-section, a linearly 

variable bandpass filter, and a photodiode array. The IR LEDs emit light 

covering the 2.2 to 2.4 µm wavelength range and use backside geometry so that 

light is emitted directly into the fluid chamber. There are three regions in the 

near infrared spectrum where vibrations from glucose molecules can be detected: 

the short wavelength region (14286-7300 cm-1), the first overtone region (6500 – 

5500 cm-1) and the combination region (5000 – 4000 cm-1)3. Features in the near-IR 

vibrational spectrum become weaker and broader as the wavelength decreases 

thus the combination region features are easier to detect. Since water absorbs 

light and tissues scatter light, there are optimum sample thicknesses for these 

three near-IR regions: combination region (1 mm), first overtone region (5 mm), 

and short wavelength region (10 mm). The glucose sensor used in this research 

operates in the combination region to take advantage of the relatively sharp 

absorption peaks of glucose for longer wavelengths. The optical path length 

through the fluid chamber is 0.8 mm, approximately the optimum path length 

for the combination region.
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Figure 2-1. The glucose sensor. Two IR LEDs emit light into the fluid chambers 
which propagates through the chambers and variable filter before reaching the 

PD array.

A sample of ISF flows through one fluid chamber and a blank sample 

flows through the other fluid chamber. One LED shines light through each fluid 

chamber – the sensor measures absorption spectra of the blank and the fluid 

sample allowing multivariate, chemometric mathematical techniques to extract 

glucose concentration from the two spectra. These math techniques require low 

noise spectra in order to calculate analyte concentration with low uncertainty. 

The sensor mates to the PC board with a 40 pin DIP integrated circuit header, 
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with pin configurations shown in Fig. 2-2.

The intensity, I, of monochromatic light as it passes through a material is

I=I 010− ,       (2.1)

where I0 is the initial light intensity and α is the absorbance. The Beer-Lambert 

law states that

= l c ,       (2.2)

where ε is the molar absorptivity, l is the optical path length, and c is the 

concentration of the absorbing medium. Equation (2.1) enables measurement of 

absorbance and hence concentration for a constant optical path length from 

measurements of light intensity before and after passing through the absorbing 

medium.

2.2 PN Diode and PIN Photodiode

A typical pn diode is shown in Fig. 2-3(a) and its energy band diagram 

with zero bias is in Fig. 2-3(b)33. The left, p type, portion of the diode is doped 

with NA acceptor atoms/m3 and the right, n type, region is doped with ND donor 

atoms/m3. At the PN junction mobile holes from the p region and mobile 

electrons from the n region diffuse across the junction leaving a depletion region 

at the center of the diode from -xp to xn. This displacement of charge creates a 

potential difference between the p and n regions called the built in potential, Vbi,

which sweeps electrons in the depletion region towards the n region and sweeps 

holes in the depletion region towards the p region.

The IR photodiodes in the glucose sensor are PIN type diodes, Fig. 2-4(a), 
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Figure 2-2. Glucose sensor pin configurations. (a) Original pin configuration. (b) 
New pin configuration with interspersed ground pins.

Figure 2-3. PN diode. (a) Drawing of diode. (b) Energy band diagram.
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with a thin p region and an intrinsic or lightly doped region (i region) of 

thickness Wi between the p and n layers. Photons which pass through the top p 

layer and enter the i region can create an electron-hole pair, see Fig. 2-4(b). The 

electron moves to the n region and the hole moves to the p region creating 

photocurrent. The p region is kept very thin to allow light to pass into the i 

region because carriers generated by a photon absorbed in the p region do not 

contribute to the photocurrent as there is no potential difference there to move 

the carriers to the diode terminals. If a photon absorbed in the i region has 

energy greater than the bandgap energy, 

Egap = hf,       (2.3)

where h is Planck's constant and f is the photon frequency, it can create an

electron-hole pair. This sets a low frequency bound and upper wavelength 

bound on the PD absorption  spectrum. The inverse of the absorption coefficient, 

1/α, is approximately the average penetration depth of light in the material. 

Choosing the intrinsic material thickness, Wi, equal to 1/α sets a lower 

wavelength limitation on the photodiode absorbance spectrum.

2.3 Glucose Sensor IR Photodiode Characteristics

The photocurrent design goal of the glucose sensor is 10 nA of photocurrent. The 

maximum photocurrent from one typical photodiode, the S1133, is 100 mA, 

10,000 times greater than the IR photodiodes when installed in the sensor34. Since 

the SNR is  

SNR=10log10 I PCRF

  ,       (2.4)
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Figure 2-4. PIN photodiode. (a) Drawing of diode. (b) Energy band diagram.

where σ is the sample standard deviation, low photocurrent directly suppresses 

system SNR. The sensor geometry allows limited amounts of light to pass 

through the sample to the variable filter and only a portion of that light will be 

transmitted through the filter to the photodiodes. In this research we calculate 

the signal to noise ratio in deciBels, Eq. 2.4, using 10 log because 1 dB is defined 

as 10 times the base 10 logarithm of a power ratio and photodiode photocurrent, 
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IPC, is proportional to the luminosity or power per unit area reaching the 

photodiode.

The I-V characteristic curve of the IR photodiodes in the glucose sensor 

differs from that of typical Si photodiodes. The IR photodiodes have a lower 

reverse breakdown voltage, larger reverse saturation current, and lower shunt 

resistance than typical Si photodiodes - see Table I for a comparison of these 

quantities for the glucose sensor IR diodes as installed in the sensor and the 

S1133, a typical Si photodiode. The I-V characteristic curve for the IR 

photodiodes is shown in Fig. 2-5 and the I-V curve near the origin is in Fig. 2-6.

The large reverse saturation current and low reverse saturation voltage alter the 

I-V characteristic such that with a very small bias dark current easily overcomes 

the photocurrent and enhances shot noise. Thus the TIA cannot apply a bias 

Table I. A comparison of the IR photodiodes as installed in the glucose sensor 
and the S1133.
Device IR Photodiode S1133

Reverse Breakdown Volt. 1 – 2 V 10 V

Reverse Saturation 
Current

100 µA 15 pA @-10V

Shunt Resistance 10 kΩ to 30 kΩ 100 GΩ
 

voltage across the photodiodes.

The shunt resistance of the IR photodiodes is approximately 10 kΩ to 30 

kΩ, much lower than the 100 GΩ shunt resistance of the S1133. IR PDs have 
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lower shunt resistance due to recombination current, a leakage current in parallel 

with RPD,27 and due to their low bandgap. The reduced bandgap results in 

enhanced dark current28 and hence reduced shunt resistance. When a photon has 

energy equal to the bandgap energy,

GAP=
c
f
= hc
EGAP

.                   (2.5)

Since IR photodiodes operate at longer wavelengths than Si PDs their bandgap 

energy is lower than Si PDs. The reverse saturation current of a diode is given by

I o=qA DN ni
2

LN N A

DP ni

2

LP N D .33          (2.6)

Under equilibrium,

EGAP=qV bi=kT ln N AN D

n i
2 .       (2.7)

Figure 2-5. IR photodiode I-V characteristic curve35.
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Figure 2-6. IR photodiode characteristic curves near the origin35.

Solving Eq. 2.7 for n i
2 we find

n i
2=N A N D e

−EGAP/ kT .       (2.8)

Substituting Eq. 2.8 into Eq. 2.6 shows

I o=qADN N D

LN

DP N A

LP e−EGAP /kT ,       (2.9)

indicating IR PDs have exponentially higher reverse saturation current than Si 

PDs. The slope of the ideal diode equation,

I=I o eqV / kT−1 ,     (2.10)

at the origin is 1/RSHUNT. Differentiating Eq. 2.10 with respect to voltage we find 

that
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dI
dV

=I 0 e
qV /kT q

kT
.     (2.11)

Evaluating Eq. 2.11 at V=0 we find the result

RShunt=
kT
I 0q

    (2.12)

showing lower shunt resistance for IR PDs due to elevated reverse leakage 

current.

2.4 IR LED Design

LEDs in the glucose sensor provide illumination covering the 2.2 to 2.4 

micron wavelength region. The selection of materials for p and n type regions 

determines the LED emission spectrum. The materials forming the LED must 

have equal lattice constants to minimize mechanical strain in the structure as the 

LEDs are built in layers upon a substrate material. The designer chooses the 

material composition for the desired bandgap matching the lattice constant of the 

substrate. Figure 2-7 shows a plot of bandgap wavelength versus lattice constant 

for several semiconductor materials including GaSb, the LED substrate material 

for the glucose sensor. Material compositions on a horizontal line through the 

GaSb point in Fig. 2-7 match the lattice constant of GaSb and result in high 

quality devices. The glucose sensor LEDs utilize material composition with 21% 

indium, 79% gallium, and arsenic concentration to lattice match with GaSb for an 

upper wavelength limit of 2.5 microns.

The frequency of the peak LED emission spectrum,  p , is given by 

h p=EG
k BT

2
,     (2.13)
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Figure 2-7. Plot of lattice constant versus wavelength for several semiconductor 
materials.36

    

where EG  is the semiconductor bandgap energy. The full width at half 

maximum of LED emission in Hz is given by

=
1.8k BT

h
    (2.14)

where h  is Planck's constant. 

2.5 Summary

The glucose sensor consists of a spectrometer formed by the linearly 

variable filter and photodiode array with illumination from two IR LEDs. The 

glucose monitor system measures the absorbance spectrum of ISF in the 

combination region of the near IR spectrum where glucose has unique light 
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absorption peaks. The SNR goal for photocurrent measurements is 40 dB for a 30 

kΩ shunt resistance PD array. We cannot reverse bias the photodiodes because 

the shot noise from the dark current would dominate the photocurrent shot noise 

and degrade SNR. The photodiodes provide relatively low photocurrent when 

installed in the sensor due to sensor geometry. IR photodiodes have reduced 

shunt resistance due to recombination current of GaInAsSb devices and the 

reduced bandgap of IR PDs. Careful choice of LED  material composition ensures 

the IR LED emission covers the 2.2 to 2.4 micron wavelength range.
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CHAPTER 3

PHOTOCURRENT MEASUREMENT METHODS

3.1 Background

Popular photocurrent measurement methods include sampling current 

with current input ADCs and translating current to a voltage with 

transimpedance amplifiers for subsequent sampling with standard voltage input 

ADCs. A current input ADC samples the current flowing into its input pins. 

Current input ADCs provided photocurrent measurements in the original 

configuration of the glucose monitoring system24. In Ref. 31 researchers designed 

a system using a lock in amplifier and current input ADC to measure currents in 

the pA range. The lock in amplifier used spectral reversal to remove undesired 

low frequency noise. 

The most popular photocurrent monitoring method utilizes the TIA, see 

Fig. 3-1, to converts an input current to a voltage. The output voltage of the TIA 

is 

EO = -IPCRF,       (3.1)

where IPC is the photocurrent and RF is the feedback resistor. Designers typically 

use the TIA for optical receivers where maximum bandwidth is desired to 

transmit data at high speed - several methods for attaining high bandwidth with 

the TIA are available26.

The remainder of the chapter documents development of photocurrent
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Figure 3-1. Transimpedance amplifier schematic with photodiode
capacitance and feedback capacitor.

measurement methods utilizing the TIA to translate photocurrent into a voltage 

for measurement with an ADC. A lock in amplifier implemented in firmware 

provides low noise measurement of photocurrent spectra. Analysis of noise 

sources in the TIA and photodiode and spectral analysis of filtering methods 

employed by the measurement system yields a noise model predicting noise 

characteristics of the system. 

3.2 Noise Theory

Two types of noise affecting electrical circuits are thermal noise and shot 

noise37. The thermal noise voltage of a resistor R appears in series with the 

resistor and is given by

ET=4kTR f ,       (3.2)

where k is Boltzmann's constant, T is temperature in Kelvin, and ∆f is the double 

sided measurement bandwidth. The thermal noise may also be transformed into 

a current source of value ET /R  in parallel with the resistor.
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Many discrete electrons comprise current flowing through a conductor. 

Each electron passing a potential barrier in a circuit causes a small burst of 

current and this causes noise called shot noise.  The shot noise for I Amps of DC 

current is

I Shot=2eI f ,       (3.3)

where e is the electronic charge and ∆f is the single sided measurement 

bandwidth.

A noise source has many different frequency components and its 

amplitude and phase vary randomly. Thus when two uncorrelated noise sources 

with different instantaneous frequency and magnitude are connected together in 

series the power from the two noise sources cannot combine constructively or 

destructively and the resulting total power is the sum of the two powers. Since 

we add the power from two sources to find total power, to add two voltage noise 

sources V1 and V2 we add them using the sum of squares fashion:

V Total
2 =V 1

1V 2
2.       (3.4)

The bandwidth of a low pass filter or amplifier, f3dB, is the frequency 

where the output power drops to half the maximum output power. Noise above 

the 3 dB bandwidth gets attenuated but still passes through the system. The 

equivalent noise bandwidth of a system accounts for the additional noise above 

the 3 dB bandwidth. The equivalent noise bandwidth of a system is the 

bandwidth of a rectangular power gain spectrum with area equal to the area 

under the systems power gain spectrum and magnitude equal to the systems 
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maximum gain, see Fig. 3-2. For a one pole low pass filter with response

Av  f =
1

1if / f 3dB
,        (3-5)

where f3dB is the 3 dB bandwidth, the single sided equivalent noise bandwidth is37

 f = 1
Avo

2 ∫
0

∞

∣Av  f ∣
2df =

2
f 3dB ,           (3-6)

where Avo is the DC voltage gain of the filter.

3.3 Digital Filtering

3.3.1 Single Pole Low Pass Filter

An RC low pass filter attenuates frequencies above its characteristic 

frequency f =1/ 2RC  . We use the following process to implement the 

transfer function of a single pole RC filter,

H  s=

1
sC

R 1
sC

= 1
1sRC

,                   (3.7)

in the digital domain. After application of the bilinear transform to Eq. 3.7 we 

find

H  z =H  2
T
z−1
z1= 1

1 2
T  z−1

z1RC
,

      (3.8)

where T is the sample period38. Eq. 3.8 can be simplified to 

H  z =A 1 z−1

1Bz−1 ,       (3.9)

where
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Figure 3-2. Definition of equivalent noise bandwidth for a single pole low pass 
filter.

A= 1

1 2
T
RC

,
    (3.10)

and

B=
1− 2

T
RC

1 2
T
RC

.     (3.11)

The transfer function in the z domain, Eq. 3.9, is in the form of

H  z = Y  z 
X  z 

=
AN  z 

1D  z      (3.12)
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with

N  z =1 z−1     (3.13)

and

D z=B z−1.     (3.14)

From Eq. 3.12,

Y  z 1D z =AX  z N  z  ,     (3.15)

and it follows that

Y  z =AX  z N  z −Y  z D  z .     (3.16)

Substituting expressions for N(z) and D(z) and Eq. 3.16 we find

Y  z =AX  z 1z−1−BY  z  z−1 .     (3.17)

A difference equation representing Eq. 3.17 is

Y n=A X nX n−1−BY n−1 .     (3.18)

Inserting equations for A and B into Eq. 3.18 gives

Y n= 1

1 2
T
RC  X nX n−1−1− 2

T
RC

1 2
T
RC Y n−1 .     (3.19)

In order to implement this filter digitally the filter coefficients must be integers, 

and forcing the coefficients to be powers of two allows implementing the filter 

using simple binary shift operations. Requiring

1 2
T
RC=2m     (3.20)

for an integer m, the filter difference equation becomes
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Y n= 1
2mX nX n−1−2−2m

2m Y n−1 ,     (3.21)

or

Y n= 1
2m X nX n−1Y n−1− 1

2m−1 Y n−1 .     (3.22)

Eq. 3.22 consists of addition, subtraction, and right shift operations which are 

easily implemented with microprocessors.

3.3.1 Decimation

Decimation reduces the sample rate of a set of equally spaced samples by 

a factor of n. Decimation includes two processes: low pass filtering and 

downsampling. Downsampling by a factor of n selects every nth sample and 

discards the remaining samples, see Fig. 3-3(a). The Nyquist theorem says that 

the highest frequency that can be represented with a sampling frequency of fSample 

is (fSample)/2. If the sampling frequency before downsampling is fSample, the sample 

frequency after downsampling is (fSample)/n and downsampled data must have 

bandwidth below (fSample)/2n to prevent aliasing requiring bandwidth reduction 

to less than or equal to (fSample)/2n before downsampling. Decimation, Fig. 3-3(b), 

includes the low pass filtering and downsampling operations.

3.3.3 Lock-in Amplifiers

A two phase lock in amplifier, see Fig. 3-4, measures the real and 

imaginary parts of a sinusoid input signal. The real component is in phase with 

the reference and the imaginary component is π/2 out of phase with the 

reference. One mixer multiplies the input signal,
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Vin = Aincos(2πfint + θin),     (3.23)

by the reference, 

Vref = Arefcos(2πfref),     (3.24)

to obtain the mixer output

Vmixer1 = AinArefcos(2πfint + θin)cos(2πfref).     (3.25)

Using the trigonometric identity

cos a cos b=1
2

cos ab1
2

cos a−b     (3.26) 

Eq. (3.25) becomes

Figure 3-3. Downsampling and decimation. (a) Downsampling. (b) Decimation.
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Figure 3-4. Two phase lock-in amplifier.

Vmixer1 = 1
2 AinArefcos(2π(fin + fref)t + θin) + 1

2 AinArefcos(2π(fin - fref)t + θin).     (3.27)

With the assumption that fin = fref, we find

Vmixer1 = 1
2 AinArefcos(4πfreft + θin) + 1

2 AinArefcosθin .        (3.28)

The low pass filter allows the DC component to pass so that the 'Real' signal in 

Fig. 3-4 is 

Real =  1
2 AinArefcosθin.     (3.29)

Thus the lock in amplifier shifts the component of the input signal at the 

reference frequency to DC as shown in Fig. 3-5. To measure the imaginary 

portion of the input signal the reference frequency shifted by π/2, 

Vref2 = Arefcos(2πfreft + π/2),     (3.30)

is mixed with the input yielding the second mixer output,

Vmixer2 = AinArefcos(2πfint + θin)cos(2πfreft + π/2).     (3.31)

Using the trigonometric identity, Eq. 3.26, the second mixer output becomes

Vmixer2 = 1
2 AinAref[cos(2π(fin+fref)t+θin+π/2)+cos(2π(fin- fref)t+θin-π/2)].     (3.32)
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Figure 3-5. Qualitative description of lock-in amplifier operation. The signal at 
the reference frequency in (a) is shifted to DC as shown in (b) and undesired 

frequency components are attenuated by a low pass filter.

Figure 3-6. Single phase lock-in amplifier.

Assuming that fin = fref, and applying the low pass filter we find the Imaginary 

output,

Imaginary = 1
2 AinArefcos(θin - π/2) =  1

2 AinArefsinθin.     (3.33)



30

The single phase lock-in amplifier, Fig. 3-6. has only one mixer and one 

low pass filter. The single phase LIA output is equivalent to Eq. 3.29. With the 

additional assumption that 

θin = 0,     (3.34)

i.e., the input is in phase with the reference, the single phase LIA output is 

LIAOutput =  1
2 AinAref.     (3.35)

3.4 Noise Model

3.4.1 Shot Noise

The noise model includes three sources of shot noise: photocurrent, 

current through RShunt due to op amp offset voltage (VIO), and op amp input offset 

current (IBI). Table II lists expressions for each of these noise sources. The shot 

noise sources are uncorrelated so the total shot noise current is 

I Shot ,Total= I Shot , PC2  I Shot , EIO
2  I Shot , IBI

2 .     (3.36)

These noise currents flow through RF creating the noise voltage

V Shot=I Shot ,Total RF.     (3.37)

at the TIA output.

Table II. Sources of shot noise considered by the noise model.
Shot Noise Source Value, Amps
Photocurrent, IPC 2eIPC f

EIO 2e E IO /RPD  f

IBI 2eIBI f
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3.4.2 ADC Noise

Sampling the TIA output with an ADC brings about ADC sampling noise 

and reference voltage noise. Successive approximation (SAR) ADCs and sigma-

delta ADCs have very different noise characteristics. Standard SAR converters 

exhibit quantization noise due to the error from representing the input signal 

with a finite number of equally spaced bits. The voltage error for one sample for 

an ideal converter varies between zero and one LSB. A rough estimate of the 

standard deviation of this error is 1/6 LSB. Table III shows the quantization noise 

SNR for a standard SAR ADC with signal voltage 0.1V and voltage reference 

4.096V using 

SNRQuant , SAR=10log 0.1V
1/6 LSB  .     (3.38)

where LSB = VRef/2N. Calculations of quantization noise for several converter 

resolutions are shown in Table III, which shows that 20 bits are required to keep 

the quantization noise well below the desired DAU SNR of 40 dB for a standard 

SAR converter.

Table III. Quantization noise in dB for a standard SAR ADC. SNR is calculated 
using 10 log SNR.
ADC Resolution (Bits) SAR ADC

12 28.2

16 40.2

20 52.3

24 64.3
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Sigma-delta converters39 exhibit reduced quantization noise compared to 

SAR converters. Sigma-delta converters increase the sampling rate, FSample, by the

oversampling ratio, N, increasing the Nyquist rate to NFSample/2. The sigma-delta 

modulator moves quantization noise from the DC to FSample/2 range into higher 

frequencies where digital filters in the converter attenuate it before 

downsampling to FSample. Figure 3-7 depicts a block diagram of a delta-sigma 

converter, including the delta-sigma modulator, low pass filter, and 

downsampling operation. Inspection of Fig. 3-7 shows the modulator output, 

ymod, is given by

ymod=
x− ymod

f
Q ,     (3.39)

where f is frequency, Q is the quantization noise, x is the converter input. Solving 

for ymod gives

ymod=
x

f 1
Q f

f1 ,     (3.40)

which demonstrates the modulator low pass filters the input signal and acts as a 

high pass filter to the quantization noise. Figure 3-8 illustrates the modulator 

operation, removing quantization noise from low frequencies and passing the 

signal of interest in the low pass filter passband. The converter subsequently low

pass filters the modulator output, removing quantization noise, and 

downsamples to the final output data rate of fsample.

An estimate of the ADC voltage noise density is 
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Figure 3-7. Block diagram of a first order sigma-delta converter.

Figure 3-8. Output spectra of a first order sigma-delta modulator and passband 
of low pass filter.

E ADC= V ADC
2

 f ADC
,      (3.41)

where VADC is the ADC RMS noise voltage and ∆fADC is the converter bandwidth. 

Table IV shows the SNR for a sigma delta converter for several oversampling 

ratios assuming a bandwidth of 0.018 Hz and calculating the ADC noise voltage 

with

VNoise = EADC(0.018 Hz)0.5.     (3.42)
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Table IV. ADC SNR for the ADS1278, a 24 bit sigma delta oversampling ADC, 
using VNoise = EADC(0.018 Hz)0.5 for several oversampling ratios.

Oversampling Ratio SNR, dB

1 69.1

4 70.9

16 73.4

64 75.4

Two reference voltage sources provide positive and negative references 

for the ADC. Assuming the noise voltages from these sources are uncorrelated 

their sum is given by

V Ref , Total=E Ref
2  fERef

2  f =E Ref 2 f ,      (3.43)

where ∆Εref is the voltage reference noise voltage density in V /Hz .

3.4.3 TIA Noise Model

Figure 3-9 shows a schematic of one photodiode channel with op amp 

noise sources, thermal noise from both resistors, and an equivalent circuit for the 

photodiode. A shunt resistance RShunt and a diode simulate the photodiode - the 

photodiode series resistance is omitted due to its relatively small magnitude. The 

op amp input noise voltage density, ENI, and op amp input current noise density, 

IBI, are included in the noise model. To find an mathematical expression for the 

noise voltage at the op amp output we incoherently sum the contribution of all 

noise sources at the TIA output to find40

ETIA=E N IGN 
2 f I BI RF

2 f 4kTRFGN f .     (3.44)

Determination of the noise bandwidth,  f , for a particular measurement 
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method enables prediction of system noise performance with Eq. 3.44.

3.5 Average and Subtract Measurement Method

3.5.1 Description of Measurement Method

The average and subtract method of photocurrent measurement, Fig. 3-10, 

with the LED on and then averaging n measurements with the LED off. The 

difference between the average value with the LED on and with the LED off 

measures the desired signal voltage

V Signal=ADCON−ADCOFF= I PCRF ,     (3.45) 

where ADCON and ADCOFF are the mean TIA voltages with the LED on and 

off. A low pass filter reduces the bandwidth of VSignal to prevent aliasing during 

downsampling and increase the SNR. Spectral analysis of each component of the 

average and subtract method provides an estimate of its measurement 

bandwidth.

  

Figure 3-9. TIA noise model schematic including op amp noise sources.
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Figure 3-10. Block diagram of the average and subtract measurement method.

3.5.2 Spectral Analysis

3.5.2.1 TIA Bandwidth

Studies with the average and subtract method utilized a TIA with 

feedback resistor of 10 MΩ and feedback capacitance of 1000 pF. The feedback 

capacitor, CF, limits the TIA bandwidth because as the frequency increases the 

capacitor impedance, 1/sC, reduces which shorts out the feedback resistor and 

limits TIA gain. Studies with the average and subtract method utilized an ADC 

sample rate of 2 kHz with each ADC sampling four photodiode channels in 

succession for a per-channel sample rate of 500 Hz. The component values 
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indicated above result in a TIA 3dB bandwidth of

f TIA=
1

2 RF C F
=16.7Hz.            (3.46)

3.5.2.2 ADC Bandwidth

The transfer function of the ADC on the DAU, the ADS1258, is given by41

∣H  f ∣=∣sin128 f
f Clk 

64sin2 f
f Clk ∣

5

∣sin128 NumAve f
f Clk 

NumAvesin 2 f
f Clk  ∣,     (3.47)

where fClk = 16 MHz and NumAve = 16 for this method. A plot of the ADC transfer 

function, Fig. 3-11, shows the ADC 3 dB bandwidth is BWADC = 4687 Hz for the 

DAU ADC configuration.

3.5.2.3 Averaging Filter and Subtraction

Figure 3-12 shows a plot of the moving average filter transfer function for 

averaging 215 LED on samples and a derivation of the moving average filter 

transfer function is included in Appendix A. Numerically integrating the area 

under the magnitude of the filter transfer function shows the equivalent noise 

bandwidth for averaging 215 samples is

ENBN=215=7.38Hz.     (3.48)

The standard deviation of the mean of n samples from a normal distribution with 

standard deviation σ and mean µ is

n=

n

.     (3.49)

The standard deviation of the mean of n LED on and LED off values are
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Figure 3-11. Texas  Instruments ADS1258 transfer function for NumAve=16.

Figure 3-12. Spectrum of averaging process for N=215 showing 3dB bandwidth 
and equivalent noise bandwidth.
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n ,On=
On

 n
,     (3.50)

and

n ,Off=
Off

n
,     (3.51)

where σOn(Off) is the standard deviation of the LED on(off) samples.

Since we subtract the mean LED on and off voltages to find the signal 

voltage the standard deviation of the difference is the sum of the LED on and off 

standard deviations,

On−Off=n ,On n , Off=
OnOff

n
.             (3.52)

With the approximation that σOn is approximately equal to σOff,

On−Off=2On

n .     (3.53)

Since 10log(2) = 3.01 dB, the final SNR is 3.01 dB less than the LED on SNR.

3.5.2.4 Low Pass Filter

A first order Butterworth low pass filter with cutoff frequency 0.3 Hz after 

the averaging process prevents aliasing during downsampling. Software in the 

base station implements a low pass filter for a final bandwidth of 0.018 Hz.

3.5.3 Noise Model

The portion of the average and subtract method with the lowest 

bandwidth determines the measurement bandwidth. Thus the measurement 

bandwidth of the average and subtract method is 0.018 Hz, the low pass filter 

bandwidth, and one must subtract 3.01 dB from the noise model due to the 
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subtraction operation. Estimating the op amp input voltage noise at DC by 

extrapolating the data sheet noise voltage plot to approximately 1 Hz results in 

45 nV/ Hz  . A plot of the noise model for the Average and Subtract method is 

shown in Fig. 3-13 where the actual measurement bandwidth is the twice the 

ENB to account for the two-sided passband for all sources except shot noise.

Figure 3-13 shows the SNR for a 30 kΩ shunt resistance photodiode, 42.5 

dB, meets the 40 dB SNR goal and the op amp input voltage noise dominates 

system noise at that resistance. The ADC noise, voltage reference noise, and op 

amp input current noise have little effect on the system SNR as their noise 

contribution is 10 to 30 dB less than the noise model near 10 kΩ to 30 kΩ.

3.6 LIA with Discretized Sinusoid Reference

3.6.1 Description of Measurement Method

Figure 3-14 shows the second proposed photocurrent measurement 

system which utilizes a single phase LIA with sinusoid reference signal to 

measure the magnitude of the photocurrent from each photodiode. Figure 3-15 

illustrates the input (ADC samples), reference, mixer output, and LIA output as 

functions of time. The reference sinusoid has magnitude ARef and frequency

f Ref=
1
tCycle

.     (3.54)

The input signal has the value of VOn for t=0 to t=tOn and the value VOff for t from 

tOn to tCycle, with 

tOn=tOff=
tCycle

2
.     (3.55)
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The mixer multiplies the input and reference signals and the low pass 

filter in the LIA passes the DC component of the mixer output. The low pass 

filter averages the mixer output over an entire lock-in cycle:

LIAOut=
1
2 MixerOnMixerOff  ,           (3.56)

where MixerOnOff   is the mean of the mixer output while the LED is on(off).

Including expressions for the mean mixer outputs we have 

LIAOut=
1
2 1

n∑i=1

n

Ref [i ] ADC [ i ]1
n ∑i=n1

2n

Ref [i ]ADC [i ] ,     (3.57)

Figure 3-13. Noise model for the average and subtract method.
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Figure 3-14. Block diagram of lock-in amplifier measurement system. 

Figure 3-15. Operation of LIA with discretized sinusoid reference signal.
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where Ref[i] is the digital representation of the reference signal and ADC[i] is the 

input signal comprised of ADC samples. Consolidating Eq. 3.57 into one sum the 

LIA output becomes

LIAOut=
1
2n∑i=1

2n

Ref [ i ]ADC [i ].     (3.58)

3.6.1.1 Discretized Sinusoid Lock-in Implementation

The MCU utilizes 32 bit fixed-point integer math to implement the LIA. The 

reference sinusoid is comprised of Q0.31 format numbers while 24 bit two's 

complement ADC samples sign extended into Q0.31 format form the input 

signal. 

Qm.n format numbers are binary numbers with 1 sign bit, m digits to the 

left of the decimal point, and n digits to the right of the decimal point. Q0.n 

numbers, also denoted Qn, are scaled so that the maximum and minimum 

numbers in this format are 1-2-n and -1. The advantage of this convention is that 

overflow cannot occur as a result of a multiplication operation. To convert a 

floating point number between -1 and 1-2n to Qm.n format, multiply by 2n And 

to convert a Qm.n number back to floating point, divide by 2n. Multiplying two 

Qm.n numbers requires adjusting the decimal point after multiplication. This is 

apparent if we convert two floating point numbers, M1,Float and M2,Float to Qm.n 

and multiply them:

M 1,Float2
nM 1,Float2

n=M 1,FloatM 2,Float 2
2n .     (3.59)

This result has 2n bits to the right of the decimal point and must be divided by 2n 

to obtain the result in Qm.n format. The multiplication operation for Qm.n is 



44

given by:

M 1,Float 2
nM 1,Float2

n

2n
=M 1,FloatM 2,Float 2

n .     (3.60)

A processor easily performs the division by 2n using a right shift of n bits. The 

mixer multiplies Q0.31 format ADC and Reference signals and the desired lock 

in output format is Q0.31, so a right shift of 62 – 31 = 31 provides Q0.31 format 

output. 

Multiplication of two n bit binary numbers results in a 2n bit binary 

number. Thus multiplication of two Q0.31 numbers, which have 32 bits, requires 

a 64 bit wide accumulator. The mean LIA output considering the shift required 

for the multiplication and multiplication by 231 to convert to floating point is

LIAOut=
1
2n

231∑
i=1

2n

[ Ref Q0.31[ i ]ADCQ0.31 [i ]≫31] ,            (3.61)

where the subscript Q0.31 indicates the quantity is in Q0.31 format.

The LIA must measure the signal voltage due to photocurrent, IPCRf. We 

must calculate the expected DC value of the LIA with our sinusoid reference 

signal and square wave input signal to properly scale the LIA output. First 

consider the first half of one cycle when the LED is on. With reference signal

Ref t =ARef sin t  ,      (3.62)

where

=2 
tCycle

,     (3.63)

and ARef is the reference signal magnitude, the mean mixer output voltage is
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MixOn=
1
tOn
∫

0

tOn

V On ARef sin  t .     (3.64)

Performing the integration we find

MixOn=
−ARef V On

 tOn
cos  tOn−cos 0 .     (3.65)

Since ω = 2π/tCycle, tOn = tCycle/2, and ωtOn = π and we find

MixOn=
−ARef V On


cos−1=

2 ARef V On


.     (3.66)

A similar process for the time when the LED is off shows that

Mixoff=
−2 ARef V Off


.     (3.67)

The LIA output is the average of Eq.s (3.66) and (3.67):

LIAOutput=
1
2 MixOnMixOff =

ARef

 V On−V Off .     (3.68)

The signal voltage is then

V On−V Off=

ARef

LIAOut .     (3.69)

The final equation for the LIA output considering Equations (3.61) is

V On−V Off=
1
2n

231 
ARef

∑
i=1

2n

[ Ref Q0.31[ i ]ADCQ0.31[ i ]≫31].     (3.70)

3.6.2 Spectral Analysis

We must determine the noise bandwidth of the discretized sinusoid LIA 

to plot the noise model. The TIA and ADC portions of the discretized sinusoid 

LIA system are the same as used in the average and subtract method so their 

bandwidth and noise contributions apply here as well. The noise bandwidth a 
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LIA is the combined bandwidth of all low pass filters after the mixer.

 A plot of the moving average filter spectrum for the average of N=430 

samples, Fig. 3-16, shows that the 3dB bandwidth for the average of one cycle of 

mixer output voltages is 0.7 Hz. Application of a low pass filter with cutoff 

frequency 0.3 Hz before decimation prevents aliasing of data sent to the base 

station. The base station low pass filter provides the final measurement 

bandwidth of 0.018 Hz for the discretized sinusoid LIA. 

3.6.3 Noise Model

Figure 3-16. Output spectrum of the moving average filter for N=430.
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A total of 430 samples in one reference signal cycle sets the reference 

frequency at

F Ref= t SampleN Samples= 1
500Hz 430=0.86Hz.     (3.71)

Extrapolating the input voltage noise plot in the op amp datasheet to 0.86 Hz 

shows input voltage noise is approximately 35 nV/ Hz  . The discretized 

sinusoid LIA contains no subtraction operation and does not require subtracting 

3.01 dB from the noise model result. The discretized sinusoid LIA noise model is 

plotted in Fig. 3-17.

The noise model for the discretized sine wave LIA appears very similar to 

that of the average and subtract method, with SNR 41.8 dB at 30 kΩ and SNR 

determined by op amp input voltage noise near 30 kΩ. The ADC noise, voltage 

reference noise, and op amp input current noise have little effect on the system 

SNR for the discretized sinusoid LIA as well as for the average and subtract 

method.

3.7 Combined Lock-in Filter - ADS1258 Configuration

3.7.1 Description of Measurement Method

The combined lock-in filter method applies the lock-in amplifier described 

by Dorrington and Kunnemeyer31. This LIA utilizes a reference frequency equal 

to the Nyquist sampling rate and replaces the mixing operation with the 

inversion of every other sample. Figure 3-18 illustrates a block diagram of this 

method. Inverting every other sample is equivalent to multiplying the input 

signal by a cosine at the reference frequency. Since f(t)cos(ωR) is a Fourier 
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transform pair with ½[F(ω+ωR) + F(ω-ωR)] multiplying the LIA input by a cosine 

at the reference frequency with fReference = fNyquist shifts the spectrum of the LIA 

input by the lock in reference frequency, which shifts at the reference frequency 

to DC, see Fig. 3-19. Then a low pass filter removes the remaining undesired 

frequency components. The procedure described by Dorrington and 

Kunnemeyer, which will be called the combined LIA filter method, implements 

both a single pole Butterworth low pass filter and the inversion process by 

alternately using the difference equations

Figure 3-17. Discretized sinusoid LIA noise model.
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yn=
1
2m  xn− xn−1 1− 1

2m−1  yn−1 ,     (3.72)

and

yn=
1
2m −xn xn−11− 1

2m−1  yn−1.     (3.73)

The ADS1258 has no latency assuming the ADC inputs are stable. When 

the ADC inputs change during an ADC sample cycle, the resulting output 

sample does not accurately represent the input signal. After the ADC inputs 

settle, the ADC must process an entire sample cycle with settled inputs

Figure 3-18. A block diagram of the combined lock-in amplifier 
measurement method.
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Figure 3-19. Combined LIA. (a) Input spectrum. (b) Output spectrum after 
shifting spectrum by fReference.

to accurately represent the input voltage.  

3.7.2 Advantages of Combined LIA Filter

The combined LIA filtering method allows a higher reference frequency 

than is possible using a discretized sine wave for the reference signal assuming 

equal sampling frequencies and utilization of all samples. If an LIA uses a sine 

wave sampled 2m  times during one cycle for a reference signal, the two part LIA 

filter in Equations 3.72 and 3.73 requires only two samples resulting in a 

reference frequency 2m−1  times higher than the reference frequency of the 

discretized sine wave. This may help increase SNR in cases where a noise source 

with 1/f noise limits the SNR as is often the case for the input voltage noise of op 

amps. If the LIA reference frequency is just high enough that the op amp input 

voltage noise is dominated by the broadband noise, as in Fig. 3-5, the input 

voltage noise contribution to system SNR is minimized. Increasing the LIA 

reference frequency above the lowest frequency where the broadband noise 
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dominates the 1/f noise has very small additional benefit since further increase 

in the reference frequency results in only a slight noise reduction.

3.7.3 Spectral Analysis

I chose a DAU ADC sample rate of 1.22 kHz for a lock-in reference 

frequency of 610 Hz. The DAU firmware decimates the sample data to produce a 

final DAU data rate of 1 Hz, requiring a low pass filter cutoff frequency below 

0.5 Hz to prevent aliasing. The combined LIA filter algorithm in the DAU 

firmware is given by

yn=
1

210  xn−xn−1 1− 1
29 yn−1 ,        (3.74)

and

yn=
1

210 −xnxn−1 1− 1
29  yn−1.        (3.75)

Application of the single pole Butterworth low pass filter

yn=
1

210  xnxn−1 1− 1
29 yn−1     (3.76) 

reduces the bandwidth below 0.5 Hz to prevent aliasing during downsampling. 

The combined LIA and low pass filter could be combined but splitting them 

reduces possibility of rounding errors due to small filter coefficients as these 

calculations are performed using fixed-point arithmetic. The base station 

software contains a first order Butterworth low pass filter with variable cutoff 

frequency to further reduce measurement bandwidth and increase SNR. The 

variable cutoff frequency allow flexibility during experiments and can alternately 
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be applied before data transmission to the base station. If the system bandwidth 

is too low the system will not respond to changes in glucose concentration. 

Glucose concentration in people changes over an approximate time period of a 

few minutes to ten or fifteen minutes so I chose an initial system bandwidth of 

0.018 Hz to prevent the possibility of removing glucose concentration changes 

from the photocurrent spectra while maximizing SNR. Further studies included 

in Chapter VI explore determination of final system bandwidth based on 

measurements with the glucose sensor. The Butterworth low pass filter

yn=
1
32  xnxn−1 

15
16

yn−1     (3.77)

in the base station sets the measurement bandwidth to 0.018 Hz as shown in a 

plot of the system noise spectrum in Fig. 3-20.

3.7.4 Noise Model

The low pass filters in the combined LIA filtering method pass signals 

within the filter bandwidth of the reference frequency so that the contribution of 

the op amp input voltage noise is the value of the op amp input voltage noise 

density at the reference frequency. The MAX4478 input voltage noise density at 

610 Hz is 5.5 V /Hz . Figure 3-21 shows a plot of the noise model for the 

combined LIA filtering method.

Figure 3-21 shows the combined LIA method SNR, 44.4 dB, meets the goal 

of 40 dB SNR for 30 kΩ photodiode arrays since the reference frequency is high 

enough that broadband noise dominates op amp input voltage noise. Thermal

noise restricts system SNR in the 10 kΩ to 1 MΩ range. ADC, voltage reference,
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Figure 3-20. Spectrum of combined LIA measurement method, including low 
pass filters in MCU and base station, for the ADS1258 configuration.

Figure 3-21. Noise model of combined LIA method.
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and op amp input current noise have no effect on system SNR for this 

measurement method as their SNRs are 10 to 30 dB higher than the noise model. 

3.8 Combined Lock-in Filter - ADS1278 Configuration

3.8.1 Description of Measurement Method

An alternate DAU configuration utilizes the ADS1278 ADC and the 

combined lock-in filtering method illustrated in Fig. 3-18. The ADS1278 input 

voltage range spans from ground to a positive supply voltage and therefore on 

the DAU the amp non-inverting inputs are connected to a reference voltage 

between the positive supply and ground. This enables the ADC to measure 

voltages falling below the reference voltage. An alternate biasing method utilizes 

2.5V and 5V supplies with the op amp non-inverting inputs connected to 2.5V. 

The ADS1278 exhibits a latency of 40 sample periods with a few percent of 

ripple voltage due to a step change in the analog inputs. The MCU software 

minimizes the effect of this effect by recording several samples for each LED 

configuration as discussed below.

3.8.2 Spectral Analysis

The transimpedance amplifier feedback capacitor of 100 pF limits the TIA 

output bandwidth to 159 Hz, well below half the ADC modulator frequency of 

50 kHz preventing aliasing in the sampling process. The MCU digital filters 

reduce the lock-in amplifier bandwidth to below 0.5 Hz so aliasing  does not 

occur during downsampling to 1 Hz. 

The ADS1278 DAU configuration software uses the combined LIA filter 
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yn=
1
28  xn−x n−1 1− 1

27  yn−1 ,        (3.78)

and

yn=
1
28 −xnxn−11− 1

27  yn−1 ,        (3.79)

in the MCU and the low pass filter

yn=
1
32  xnxn−1 

15
16

yn−1     (3.80)

in the PC software to achieve a final system bandwidth of 0.017 Hz. 

I configured the ADS1278 DAU to record ADC samples at 781 Hz. 

Sampling the analog inputs for four sets of ten samples with LED1 on, LEDs off, 

LED2 on, and LEDs off and filtering only the fifth sample of each set reduces the 

effect of ripple voltage due to the ADC latency. Also since the ADC delays the 

samples by 40 sample periods recording 40 samples for each lock-in cycle 

simplifies keeping track of which array to store the samples in. The resulting 

lock-in reference frequency is 39 Hz. Experiments with 1, 2, 4, 8, and 16 samples 

with stable ADC inputs showed the ripple voltage due to the ADC latency 

increased enough below 8 samples that the ADC samples did not represent the 

ADC input.

3.8.3 Noise Model

A few differences between the ADS1258 and ADS1278 configurations 

impact the nose model including the voltage reference circuit, reference 

frequency, and ADC noise. The ADS1278 configuration DAU requires only one 



56

voltage reference IC, the MAX6126, instead of two references required by the 

ADS1258 DAU. The MAX6126 broadband noise estimates the voltage reference 

noise contribution since the manufacturer does not include a plot of the noise 

spectrum in the datasheet and two RC filters on the DAU filter the reference 

voltage. The MAX6126 broadband noise specification is 45 nV/ Hz-0.5 at 1 kHz. 

The MAX4478 op amp input voltage noise at the reference frequency of 38 Hz is 

12 nV/Hz-0.5. and the ADS1278 noise is 8 µV RMS. The ADS1278 configuration 

noise model for a bandwidth of 0.017 Hz is shown in Fig. 3-22, and the noise 

model software is included in Appendix F.

As the noise model plot shows, the relatively low reference frequency of 

39 Hz adds more op amp input voltage noise to the model such that the thermal 

noise and op amp input voltage noise curves meet near 10 kΩ. For prototype PD 

arrays with shunt resistance 10 kΩ to 30 kΩ, the low reference frequency impacts 

the noise model by only a few tenths of a dB, and thus does not significantly 

degrade system performance. The noise model SNR of 44.8 dB at 30 kΩ shunt 

resistance meets the initial goal of 40 dB. The ADC noise, voltage reference noise, 

and op amp input current noise do not affect the noise model for this 

configuration. 

3.9 Analysis and Summary

A comparison plot of all four photocurrent measurement methods 

presented in this chapter, Fig. 3-23, shows all filtering methods meet the SNR 

requirement, but the combined LIA filters have higher SNR by approximately 2
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Figure 3-22. ADS1278 DAU noise model with system bandwidth of 0.017 Hz.

dB at 30 kΩ shunt resistance due to reduced contribution from the op amp input 

voltage noise enabled by a higher reference frequency. The ADS1258 model has a 

slightly higher SNR below 30 kΩ since the reference frequency is higher than that 

of the ADS1278 configuration. The average and subtract method exhibits a noise 

model nearly equal to that of the discretized LIA method. The remainder of 

experiments in this study employ the combined LIA filtering method. Further 

experiments in Chapter 5 select which DAU configuration provides acceptable 

performance for use in continuous glucose monitoring.
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Figure 3-23. Comparison of all four measurement method noise models.
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CHAPTER 4

DAU HARDWARE, FIRMWARE, AND SOFTWARE

This chapter documents design of DAU hardware and software enabling 

the DAU to meet system performance goals. DAU design must implement the 

combined LIA measurement method and meet several other design factors. DAU 

hardware, firmware, and software requirements are detailed before a discussion 

of the DAU design.

4.1 Requirements

4.1.1 Mechanical Requirements

• The DAU printed circuit card must interface with connectors on the end of 

the MCU card including a two pin 0.1 inch spacing connector and a 20 pin 

single row 0.1 inch spacing connector.

• The card must include a 40 pin DIP zero insertion force (ZIF) socket for 

glucose sensor installation.

• The sensor ZIF socket must be in the vertical orientation so that air 

bubbles will not collect in the glucose sensor fluid chambers.

• The MCU and DAU cards must connect together with the MCU card in 

the horizontal orientation and DAU in the vertical orientation with the 

glucose sensor installed on the side of the DAU card away from the MCU 

card. This configuration keeps tubing connected to the glucose sensor 

away from electrical components in case of a leak.
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4.1.2 Electrical Requirements

• The DAU must interface with the connector on the edge of the MCU card.

• The DAU must provide LED current of 100 to 200 mA modulated with 

two enable lines from the MCU and include provision to alter the amount 

of LED current by changing a component value.

• The DAU must provide 32 transimpedance amplifiers to translate glucose 

sensor photocurrent into voltages for subsequent sampling by ADCs on 

the DAU.

• An SPI port must be used for transmitting photocurrent samples to the 

MCU.

• The DAU must generate any required voltage supplies from batteries.

• The measurement method must provide photocurrent measurement SNR 

greater than 40 dB where the signal to noise ratio is given by 10 log SNR 

for a photodiode with shunt resistance of 30 kΩ.

• Power draw measurements for the DAU and MCU shall be recorded to 

provide a starting point for future system miniaturization efforts.

4.1.3 Software Requirements

• The MCU firmware must be written in C using the Microchip IDE42.

• The base station software must be written in Visual Basic 6.0.

• The system shall provide photocurrent measurements for all glucose 

sensor channels and for both LEDs at a rate of approximately 1 Hz.

• The software shall implement the combined LIA method.
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• Software will modulate the LEDs and record samples with LED 1 on, no 

LEDs on, LED2 on, and no LEDs on.

• The system software shall provide provision for detection of transients 

due to air bubbles passing through the glucose sensor. An air bubble 

passing through the sensor causes a large transient in photocurrent 

measurements which invalidates the glucose concentration calculations.

• The base station software shall display and record all photocurrent 

measurements.

4.2 Hardware Design

Figure 4-1 illustrates a block diagram of the ADS1258 DAU, including the 

glucose sensor, TIAs, ADCs, as well as LED drivers, voltage regulators, and 

voltage references. The MCU LED control lines modulate the IR LEDs while TIAs 

translate photocurrent into voltages. The MCU obtains photocurrent samples 

from the ADCs via an SPI port. Each ADC monitors four sensor channels 

requiring a total of eight ADCs. A series of voltage regulators provide all 

necessary voltages for the DAU.

4.2.1 Component Selection

4.2.1.1 Operational Amplifier

The op amp in the TIAs must be available in a surface mount IC package 

and contain two or four op amps in one package. Utilizing surface mount devices 

reduces the board space required for the DAU circuitry and helps ensure long 

term availability as more through hole components become obsolete over time.
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The DAU requires 32 op amps and a quad op amp will reduce the board space 

required and minimize the number of components.

I selected the op amp which contributes the least amount of noise to the 

system. Table V shows technical data such as input voltage noise, input current 

noise, offset voltage, input offset voltage stability, and gain bandwidth product 

for a number of op amps available on the market. Calculations of noise from the 

shot noise on the offset current, input current noise density, and input voltage 

noise density, Table VI, assist in op amp selection. The offset current is

I Offset= I InOffsetV InOffset /RPD ,       (4.1)

Figure 4-1. ADS1258 DAU block diagram.
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where IInOffset is the op amp input offset current, VInOffset is the op amp input offset 

voltage, and RPD is the photodiode shunt resistance. Voltage noise density due to 

noise from the offset current referred to the TIA output,

ESHOT=RF 2IOffset e ,       (4.2)

where e is the electron charge and ∆f is the noise bandwidth, is of interest 

because this current flows through the photodiode causing shot noise. The input 

current noise density referred to the op amp output is

E I BI =I BI RF ,         (4.3)

where IBI is the op amp input current noise density. The input voltage noise 

density referred to the op amp output is

E E N I=EN IGN=E N I 1RF /RT  ,       (4.4)

where ENI is the op amp input voltage noise density. The uncorrelated sum of 

these noise sources,

E N ,TOTAL=ESHOT 
2E I BI 

2E E N I 
2 ,             (4.5)

provides the estimate of op amp voltage noise density. I selected the Maxim 

MAX4478 because it introduces the lowest noise contribution as shown in Table 

VI.

4.2.1.2 Feedback Resistor

The glucose sensor photocurrent design goal is 10 nA. The signal voltage 

IPCRF must be within the input voltage rage of the ADC. The choice of 10 MΩ for 

RF results in a signal voltage of 

V Signal= I PCRF=10nA10M =0.1V ,       (4.6)
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Table V. Operational amplifier component data.
Device Package Op Amps 

Per Device
VInOffset (µV), 

Typ.
EIN(nV/ Hz ) 
@ 1kHz, Typ.

EIN (µVP-P) 0.1-
10 Hz, Typ.

AD8599 soic-8 2 10 1.07 -
ADA4004-4 soicn-14 4 40 1.8 -

AD8674 soicn-14 4 20 2.8 -
OP2177 msop-8 2 15 7.9 -
OP4177 tssop-14 4 25 7.9 -
ICL7650 so-14 1 0.7 - 2

LMP7732 msop-8 2 9 3 -
LT1125 sow-16 4 30 2.7 -
LT1127 sow-16 4 30 2.7 -
LT1114 soic-16 4 25 14 -

LTC1053 soicw-18 4 0.5 - 1.5
LT1028 Soic-8 1 20 1 -
LT1128 soic-8 1 20 1 -

LTC2052 soic-14 4 0.5 - 1.5
LT6005 tssop-16 4 190 325 -

LTC6082 tssop-16 4 - 13 -
MAX4208 umax-8 1 3 140 -
MAX4238 sot23-6 1 0.1 30 1.5
MAX4477 umax-8 2 70 4 -
MAX4478 tssop-14 4 70 4 0.26
OP27AFK lccc-20 1 10 3 -
OPA2228 so-8 2 5 3 -
OPA4228 so-14 4 10 3 -
OPA2380 msop-8 2 4 200 -
OPA277 so-8 1 10 8 -
OPA2277 so-8 2 10 8 -
OPA4277 so-14 4 20 8 -
OPA376 sot23-5 1 5 7.5 -
OPA2376 msop-8 2 5 7.5 -
OPA4376 tssop-14 4 5 7.5 0.8
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Table V continued.
Device IIn.Offset 

(nA), Typ.
INI 

(pA/ Hz ) 
@10Hz, Typ.

VIn.Offset Stab. 
(µV/mo), Typ.

VIn.Offset Drift 
(µV /Deg. C), 

Typ.

GBW 
(MHz), 

Typ.
AD8599 25 1.5 - 0.8 10

ADA4004-4 40 3.5 - 0.7 12
AD8674 6 0.3 - 0.3 10
OP2177 0.2 0.2 - 0.2 1.3
OP4177 0.2 0.2 - 0.3 1.3
ICL7650 0.0005 0.01 0.1/ Mo 0.01 -

LMP7732 11 2.3 0.35 0.2 21
LT1125 7 1.3 0.3 0.4 12.5
LT1127 7 1.3 0.3 0.4 65
LT1114 0.06 0.03 0.3 0.4 0.75

LTC1053 0.03 0.0022 0.05/ Mo 0.01 2.5
LT1028 18 1 0.3 0.2 75
LT1128 18 1 0.3 0.2 75

LTC2052 - - 0.05/ Mo 0.01 3
LT6005 0.005 0.0012 - 2 0.002

LTC6082 0.0001 - - 0.2 3.6
MAX4208 0.001 - - 0.1 0.75
MAX4238 0.002 - 0.05 0.01 1
MAX4477 0.001 0.0005 - 0.3 10
MAX4478 0.001 0.0005 - 0.3 10
OP27AFK 7 5 0.2 0.2 8
OPA2228 2.5 0.4 0.2 0.1 8
OPA4228 2.5 0.4 0.2 0.3 8
OPA2380 0.006 0.01 - 0.03 90
OPA277 0.5 0.2 0.2 0.1 1
OPA2277 0.5 0.2 0.2 0.1 1
OPA4277 0.5 0.2 0.2 0.15 1
OPA376 0.0002 0.0002 - 0.26 5.5
OPA2376 0.0002 0.0002 - 0.26 5.5
OPA4376 0.0002 0.0002 - 0.26 5.5
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Table VI. Operational amplifier selection calculations.
Device BW 

(kHz)
Ioffset 
(nA)

VShot(Ioffset) 

(µV/ Hz )
VN,I(NI) 

(µV/ Hz )
VN,V(NI) 

(µV/ Hz )
Sum 

(µV/ Hz )
AD8599 30 25.33 0.90 15 0.4 15.0
ADA4004-4 36 41.33 1.15 35 0.6 35.0
AD8674 30 6.67 0.46 3.0 0.9 3.2
OP2177 3.9 0.7 0.15 2.0 2.6 3.3
OP4177 3.9 1.03 0.18 2.0 2.6 3.3
LT1125 37.5 8.00 0.51 13 0.9 13.0
LT1127 195 8.00 0.51 13 0.9 13.0
LT1114 2.25 0.89 0.17 0.30 4.7 4.7
LT6005 0.01 6.34 0.45 0.012 108.7 108.7
LTC6082 10.8 2.33 0.27 0.005 4.3 4.4
MAX4477 30 2.33 0.27 0.005 1.3 1.4
MAX4478 30 2.33 0.27 0.005 1.3 1.4
OP27AFK 24 7.33 0.48 50 1.0 50.0
OPA2228 24 2.67 0.29 4.0 1.0 4.1
OPA4228 24 2.83 0.30 4.0 1.0 4.1
OPA2380 270 0.14 0.07 0.10 66.9 66.9
OPA2277 3 0.83 0.16 2.0 2.7 3.3
OPA4277 3 1.17 0.19 2.0 2.7 3.3
OPA2376 16.5 0.17 0.07 0.002 2.5 2.5
OPA4376 16.5 0.17 0.07 0.002 2.5 2.5

within the input voltage range of the ADC. The feedback resistor must be a metal 

film resistor because in general metal film resistors exhibit lower noise than other 

resistor types37.

4.2.1.3 Feedback Capacitor

The TIA feedback capacitor rolls off the TIA gain and also determines how 

fast the TIA responds to a step change in input current. The ADC passband 

repeats at multiples of 8 MHz requiring an anti-aliasing filter cutoff below 4 
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MHz to prevent aliasing. A standard SAR ADC would require anti-aliasing 

cutoff frequency of half the sample rate, but the oversampling sigma delta 

converter on the DAU effectively attenuates input signals between the ADC 

bandwidth and a frequency of 8 MHz minus the ADC bandwidth. The minimum 

CF to prevent aliasing is

C F=
1

2RF f Cutoff
= 1

210M4MHz
=4 fF ,       (4.7)

much lower than stray capacitance of about 0.5 to 1 pF, ensuring aliasing is 

unlikely. Increasing CF above this value improves rejection of noise outside the 

converter bandwidth, but the TIA must be able to respond to the step change in 

input current when the LED turns on or off. After a step change in input current 

the TIA output changes with a time constant RFCF - the longer the TIA settles the 

closer it approaches its final value. Allowing two time constants between 

toggling the LED and starting an ADC sample allows the TIA to reach 87% of its 

final value. Since one sample period is 0.41 ms the feedback capacitance must be 

C F=
0.5t RC
RF

=0.205ms
10M 

=20 pF       (4.8)

to allow two time constants during one ADC sample period. Experiments with 

an increased sample rate required reducing CF to the final value of 10 pF for a 

TIA voltage bandwidth of

f TIA=
1

2 RF C F
= 1

210M 10 pF 
=1590Hz.       (4.9)

4.2.1.4 Analog to Digital Converter

The ADC must meet the following constraints to be used on the DAU:
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• Surface mount device

• 4/8/16 Channel device

• Sampling rate 200 to 2000 samples per second, minimum

• Serial port interface

• 20/24 bit resolution

Surface mount devices are required as with the op amps. The ADC will need to 

be able to measure several channels to minimize the parts count and board space. 

The MCU will send a set of data to the PC at approximately 1 Hz and record 

perhaps 50 to 500 samples for all 32 channels, with each LED on and off. The 

minimum sample rate without multiplexing ADC channels is then 

approximately 4 times 50 to 500 samples per second, or 200 to 2000 Hz without 

multiplexing. If multiplexing channels is required the minimum sampling rate 

increases accordingly. For example if there are four channels per ADC and the 

ADC has one ADC block, the minimum sample rate increases by a factor of four. 

The ADC will need a serial port to send sample data to the MCU since a limited 

number of digital I/O lines are available between the DAU and MCU. The ADC 

must have a minimum of 20 bits resolution to ensure the quantization noise is 

small relative to the system noise requirement. 

Criteria for choosing the ADC are listed below.

• Maximum number of ADC blocks

• Ability to daisy-chain serial ports

• Maximum sampling speed
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• Bipolar inputs

Technical specifications for several commercially available ADCs are 

listed in Table VII. The number of ADC blocks inside a converter affects the 

amount of time required to read all input channels. If each input has a dedicated 

ADC multiplexing is not required and system throughput is maximized. An SPI 

port requires a minimum of three pins including data out, data in, and serial 

clock. The addition of a chip select line for each device allows several integrated 

circuits to share the same SPI port. Some manufacturers allow several devices to 

share an SPI port using only one chip select - this capability minimizes the 

number of I/O pins required by the DAU. A faster sampling speed allows higher 

Table VII. ADC component data.
Device Package Sample Rate Channels DS Blocks

AD7190 tssop-24 4800 SPS 4 1

ADS1211 ssop-28 1000 4 1

ADS1218 tqfp-48 390 8 1

ADS1258 qfn-48 23700 16 1

ADS1278 htqfp-64 128000 8 8

CS5528 ssop-24 617 8 1

LTC2408 ssop-28 7 8 1

LTC2418 ssop-28 7.5 16 1

LTC2444 qfn-38 8000 8 1

LTC2445 qfn-38 8000 8 1

LTC2448 qfn-38 8000 16 1

LTC2498 qfn-38 7.5 16 1

MAX11040 tssop-38 16000 4 4
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sampling rate and LIA reference frequency which limits 1/f noise. Also higher 

sampling frequency can reduce the hardware complexity because a lower 

number of faster converters can process the same number of channels.

Since the photodiode array is in the common cathode configuration, the 

PD cathodes are at ground and photocurrent travels out of the PD anode, forcing 

the TIA output to fall below ground. The TIA amplifies the op amp input offset 

voltage and therefore the TIA output voltage may be positive or negative. A 

single ended bipolar input ADC easily handles this situation. Single ended 

unipolar or differential ADCs can be used with proper attention to supply and 

reference biasing.

I chose the ADS1258 for use on the DAU. This ADC has a 23.7 kHz sample 

rate, 16 inputs, one ADC block, and bipolar inputs. On the DAU each ADC 

measures four TIA channels which requires eight ADCs. I decided to use eight 

ADCs because with sixteen ADCs the parts cost and board complexity would be 

high and with four ADCs the reference frequency would be about 300 Hz, too 

low to reduce the effect of 1/f noise from op amp input voltage noise.

4.2.1.5 Voltage Reference

The voltage reference must be a surface mount device and have the 

minimum possible voltage noise. The present DAU requires positive and 

negative reference voltages. Table VIII presents several voltage references and 

their noise voltage from 0.1 to 10 Hz – the table shows that the ADR440 has the 

lowest noise voltage.
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Table VIII. Voltage reference component data.
Device Noise, µVp-p 0.1-10 Hz

REF3125 33

REF5025 7.5

VRE3025 1.5

MAX6126-2.5 1.45

ADR440 1

4.2.2 Printed Circuit Board Design

The DAU has six copper layers and measures approximately 4.25” by 

4.25” with overall thickness 1/16”. Board layout design guidelines of minimum 

trace width 0.008”, minimum trace spacing 0.008”, and minimum via size 0.010” 

are within the capabilities of most printed circuit manufacturers. The layer 

stackup, Fig. 4-2, consists of a top layer for components and routing, layers 2 and 

4 for ground planes, and layer 3, layer 5, and the bottom layer for routing signals. 

Layers 2 and 4 are identical, consisting of split analog and digital ground planes. 

The top layer contains pads for installing devices and space for routing analog 

and digital signals. The ADCs require 16 MHz clock sources - routing these 

signals on layer 3 between digital ground planes isolates them from the rest of 

the board. Locating the remainder of the digital lines below the digital ground 

planes separates then from analog signals on the top layer. See Appendix B for 

the ADS1258 DAU schematic. The parts placement process started with placing 

the glucose sensor in the center of the board, towards the top edge in the vertical 

orientation. This prevents air bubbles in the tubing from collecting inside the 
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sensor which causes large transients in the sensor data. A ZIF socket for the 

sensor allows easy removal and installation. Mounting the sensor on the bottom 

side reduces the possibility of getting fluid on the MCU in case of a leak. 

Locating the TIAs around the around the glucose sensor minimizes length of 

analog signal traces and allows creating the analog ground plane in the center of 

the board. The digital ground plane along the left, right, and lower edge of the 

board, providing room for LED drivers and other digital components.

4.2.3 Power Dissipation

Estimation of DAU power dissipation facilitates choice of voltage 

regulators and assists development of future photocurrent monitoring devices by 

providing a basis for designing future system configurations. Future versions of 

the monitoring device will operate on batteries and require re-charging perhaps 

once per day, requiring very low power operation. A power budget estimating 

Figure 4-2. DAU printed circuit card layer definition.
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the current required by the DAU is in Table IX. Actual current draw for the 

positive and negative supplies are 350 mA and 340 mA.

Table IX. Power budget for DAU3. All data are in mA.
Device Quantity I per Device Positive Supply Negative Supply

ADS1258, Analog 8 12 96 96

ADS1258, Digital 8 0.6 4.8 0

MAX4478 9 10.0 90 90

ADR440 2 3.75 7.5 7.5

MAX16803 2 3 6 6

LED 2 50 100 100

OPA2350 8 10.4 83.2 83.2

OPA365 8 5 40 40

Total - - 427.5 422.7

4.3 MCU Firmware

The MCU must read samples from ADCs on the DAU via the SPI bus, 

filter the samples, and send the resulting data points to the base station via USB 

or wireless link for further processing. The MCU software, written in C using the 

MPLAB IDE V8.1, is included in Appendix C. The software begins by initializing 

variables, the SPI port, and all eight ADCs, see the MCU firmware block diagram 

in Fig. 4-3. The main loop consists of processing samples with LED1 on, LED1 

off, LED2 on, and LED2 off in succession and sending filtered data to the base 

station once per second.

A timing diagram for the sample acquisition process, Fig. 4-4, illustrates 
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the MCU sampling procedure. Each ADC measures TIA outputs on four of its 

analog inputs, requiring the ADC multiplexer to change channels periodically. I 

included two sampling periods after channel switching to allow a brief ADC 

settling time. Then the ADC records photocurrent samples for LEDs 1 and 2 with 

the LEDs on and off. For each of these four sample categories, the ADC acquires 

two samples. The MCU discards the first sample and this time delay allows the 

TIA to approach its final output value for two RFCF time constants. The lock-in 

amplifier filters the second sample using the combined lock-in filtering method. 

The firmware main loop cycles through all four analog inputs for eight ADCs for 

Figure 4-3. MCU firmware flowchart.
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Figure 4-4. ADS1258 configuration firmware timing diagram.

one second and then sends the filtered photocurrent spectra to the base station.

4.4 Base Station Software

A graphical user interface written in Visual Basic 2006 reads glucose 

sensor data from the MCU USB or wireless port, displays it on the computer 

screen, and archives it for further processing. The base station software is 

included in Appendix D. Most of the user interface window, see Figure 4-5, 

consists of bar graphs displaying data points for all 32 channels and both LEDs. 

At any time the user adjusts the maximum and minimum voltages displayed by 

entering new maximum/minimum values on the left edge of the window and 

clicking the “Update” button. The software allows the user to select the MCU 

port, the sensor pinout (old or new), filter bandwidth, transient detection level, 

and output filename. After the MCU starts sending data the PC software enters a 
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Figure 4-5. The base station software window.

loop filtering, displaying, and recording sample data and transient indication.

4.5 ADS1278 DAU Configuration

The ADS1278 DAU configuration contains four ADS1278 ADCs and each 

ADC measures TIA output voltages for eight glucose sensor channels, see the 

block diagram in Fig. 4-6. Power conditioning circuitry generates a +2.5 V 

voltage reference and a +1.8 V power supply for the ADC core voltage. An SPI 

port transfers sample data to the MCU for filtering. A schematic diagram of the 

ADS1278 DAU is included in Appendix E. The ADS1278 ADC measures the 

differential voltage between each positive analog input pin and negative input 

pin relative to the differential voltage between the positive and negative 

reference voltage inputs but both analog input pin voltages must be above 

ground.
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The ADS1278 ADC exhibits a latency, or delay, of 40 sample periods 

before the output samples accurately represent the input voltage. The MCU 

firmware accommodates this by recording ten samples with LED1 on, all LEDs 

off, LED2 on, and all LEDs off as shown in Fig. 4-7. The MCU firmware records 

the fifth sample of each group of ten samples with an ADC sample rate of 781.25 

Hz which results in lock-in cycle length of 25.6 ms and a reference frequency of 

39.1 Hz.

4.6 Design Notes

4.6.1 Metal Film Resistors

Metal film resistors exhibit less noise than other resistor types such as 

thick film and carbon composition resistors. Metal film resistors cost more than 

thick film resistors but where the SNR is a concern the use of metal film resistors 

is required. Thus the TIA uses metal film feedback resistors as any excess noise 

reduces the SNR.

4.6.2 Op Amp Input Voltage Range

Since all photodiodes have a common cathode the TIA output falls to 

-IPCRF when the LEDs turn on. The op amp power supplies and input voltage 

range must not limit output voltage for the expected range of photocurrent.

4.6.3 Op Amp Non-inverting Input Voltage

The op amp non-inverting input voltage must be a low noise voltage 

source such as ground potential. If the non-inverting TIA input is driven at ½ the 

analog supply voltage for an op amp operating from +AVCC to ground, the TIA 
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Figure 4-6. A block diagram of the ADS1278 DAU configuration.

Figure 4-7. ADS1278 DAU configuration timing diagram.
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amplifies noise present on the +AVCC/2 voltage. Two alternatives avoiding this 

problem are (1) using bipolar input op amps and ADCs with the non-inverting 

TIA input at ground and (2) using single ended input op amps and ADCs with 

two voltage sources supplying ground, +AVCC/2, and +AVCC with the non-

inverting op amp input at +AVCC/2 and powering the ICs from ground and 

+AVCC.

4.6.4 Build a Demonstration System

Construction of a demonstration system has several benefits. It allows the 

designer to verify technical specifications of ICs, determine whether circuit 

configurations will operate correctly, and begin software development at an 

early stage in the design process.

4.6.5 Prevent Crosstalk

PC card designs must include provisions to prevent cross talk between 

signals. For example, high frequency digital signals and clocks must be separated 

from other signals including analog signals to prevent contamination of low level 

analog signals. Ground planes between signals, routing signals on adjacent 

planes at 90 degree angles, and increasing distance between traces prevent cross 

talk. 

4.6.6 Prevent Ground Loops

Reducing the area of or elimination ground loops or current paths reduces 

the amount of noise induced into and radiated by the circuit path. Ensuring that 

the trace carrying current to a device is above the trace or plane carrying the 
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return current from the device minimizes loop area of that current path reducing 

possibility of electromagnetic interference.

4.6.7 Lock-in Reference Frequency

Proper choice of the lock-in reference frequency enables reducing the 

effect of 1/f noise on system noise performance. The combined lock-in amplifier 

allows increasing the reference frequency high enough to reduce the contribution 

of 1/f noise in the op amp input voltage noise, increasing system SNR.

4.6.8 ADS1258 ADC configuration

The ADS1258 data sheet illustrates using a buffer between the multiplexer 

and the actual ADC modulator inputs and shows an example method for driving 

the voltage reference inputs with an op amp follower. Application of these 

additional components improved consistency of SNR across all DAU channels, 

but required an additional 24 op amps impacting the DAU board area and power 

requirements.

4.7 Summary

 The DAU and MCU implement the combined LIA filtering method with 

firmware written in C and base station software written in Visual Basic 2006. 

DAU component selection minimizes electrical noise from each device - the 

device search included numerous op amp, voltage references, and ADCs. The six 

layer printed circuit card layout also minimizes noise by reducing crosstalk 

between digital and analog signals. Subsequent chapters document testing and 

evaluation of the DAU and MCU for continuous glucose monitoring.
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CHAPTER 5

EXPERIMENTS AND ANALYSIS

Experimental measurements in this chapter evaluate the capability of the 

monitoring system to provide low noise measurements acceptable for use with 

the glucose monitoring system. Initial measurements with metal film resistors in 

place of photodiodes, see Fig. 5-1, enables measurement of offsets, system SNR, 

channel isolation, and electronics stability. Deviation from zero Volts present in 

lock-in amplifier outputs without illumination could be tolerated if the offsets do 

not change, but offsets that vary with time or from experiment to experiment 

cannot occur as time varying offsets appear as changes in analyte concentration. 

The measurement system must provide at least 40 dB SNR with 30 kΩ shunt 

resistance photodiodes providing 10 nA of photocurrent. Crosstalk between 

DAU channels indicates poor channel to channel isolation - investigation of

Figure 5-1. Utilization of metal film resistors to simulate photodiodes.
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 correlation coefficients for all channel pairs ensures independent data channels. 

Recording system outputs over several hours determines whether the electronics 

induce drift over time. Subsequent experiments with IR LEDs, variable filters, 

and photodiode arrays with shunt resistance of 10 kΩ to 30 kΩ prove the system 

ability to measure photocurrent with acceptable SNR.

5.1 DC Offsets Using Metal Film Resistors

The lock-in amplifier output voltage is proportional to IPCRF, therefore 

when there is no photocurrent the LIA output must be 0 Volts, ignoring noise. 

Thus any significant DC offset voltage represents measurement error as the LIAs 

pass only the portion of the input signal modulated at the reference frequency. A 

DC shift in any sensor channel with no photocurrent sends erroneous spectra to 

the calibration routine. The ADS1258 DAU lock-in amplifier channels exhibited 

DC offsets of 50 to 500 µV which changed with each power cycle, see Fig. 5-2(a), 

rendering the configuration unacceptable for measuring absorption spectra. 

Significant effort expended to eliminate ADS1258 offsets achieved little 

success. The ADC contains a multiplexer before the actual delta-sigma ADC with 

the multiplexer outputs and ADC inputs available on ADC pins. Advice from the 

device manufacturer on obtaining specified device performance includes the 

addition of an external buffer between the multiplexer and ADC and buffering 

the voltage reference to the ADC with another external buffer. Neither the 

addition of single ended buffers nor differential buffers between the multiplexer 

and ADC inputs removed the offset error. Buffering the voltage reference as 
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indicated did not remove the measurement error provided by the ADS1258 

configuration. Schematics of the single ended and differential buffers between 

the multiplexers and ADC inputs as well as the buffers for each ADS1258 voltage 

reference input are depicted in Fig. 5.3. Other attempts to improve offset 

performance of the ADS1258 configuration include:

• Use low noise laboratory power supply to provide voltage reference.

• Utilize low noise laboratory supply to supply +/-2.5 Volt analog supplies.

• Increase RC time constant of RC filters in voltage reference, reduce 

resistance in RC filters ensuring the ADC1258 voltage reference current 

draw does not load filters.

• Investigate use of alternate component values for the 47 Ohm resistor and 

2200 pF capacitor between the voltage reference buffer and ADC voltage 

reference pins. The capacitor helps the ADC input capacitor charge up 

during the acquisition time and the resistor isolates the capacitor from the 

op amp output - these components are not designed to be an RC filter.

• Measure another set of samples after LED1 and LED2 samples and 

subtract this data from LED1 and LED2. The DC offsets can change from 

power cycle to power cycle but are relatively stable during each data 

collection period. Subtraction of the third data set did not eliminate the 

offsets.

• Monitor the internal ADS1258 voltage reference. Periodic fluctuations on 

the external voltage reference were noted - fluctuations in voltage 
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reference between LED on and LED off samples with constant voltages at 

ADC analog inputs cause the offsets in lock-in amplifier data. Neither 

modifying the reference voltage circuit nor modifying the software to alter 

the data collection periodicity significantly reduced the offsets. The ADC 

does not allow use of the internal reference for recording samples.

As shown in Fig. 5-2(b) the ADS1278 configuration offsets are within a few 

µV of ground, much lower than for the ADS1258 configuration with offset errors 

of a few hundred µV to nearly 1 mV. therefore the ADS1278 configuration was 

selected for use with the measurement system. The ADS1278 configuration has 

an ADC clock configuration of 2 MHz, much lower than the 16 MHz ADC clock 

of the ADS1258 configuration. Eight ADCs on the ADS1258 configuration require 

the ADC clock to function and although these clock lines sit between two digital 

ground planes, routing the ADC clock lines to all eight ADCs could cause excess 

16 MHz noise on the ADS1258 PC card. The ADC allows a 16 MHz signal to pass 

and alias since its passband repeats at multiples of 8 MHz, half the ADC clock 

frequency. With only four ADCs and a lower ADC clock frequency the ADS1278 

configuration has less susceptibility to ADC clock noise passing through the 

ADC.

5.2 Signal to Noise Ratio Measurement with Metal Film Resistors

Measurement of the system SNR with metal film resistors in place of the 

photodiode array verifies whether the combined LIA measurement method 

follows the noise model prediction. A PC recorded at least 1000 monitoring 
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Figure 5-2 Offsets. (a) ADS1258 configuration. (b) ADS1278 configuration.
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Figure 5-3. Circuitry included with ADS1258 DAU configuration. (a) Single 
ended and (b) differential buffers between each ADC multiplexer output and 

ADC input. (c) Buffers for voltage reference inputs.
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system samples with RTest values of 10 kΩ, 30 kΩ, 100 kΩ, 300 kΩ, 1 MΩ, and an 

open circuit (approximately 1E9 Ω) for all channels. A warm up time of at least 

30 minutes with the monitoring system fully operational before retaining data 

allows temperature stabilization of the DAU and MCU.

Figure 5-4 shows a plot of mean experimental SNR measurements for the 

ADS1278 configuration with SNR in dB calculated using

SNRdB=10 logSNR=10 log
I PCRF

 ,       (5.1)

where σ is the sample standard deviation of 1000 data points. The experimental 

SNR data with metal film resistors match the noise model well for RTest of 300 kΩ 

and below, but the SNR drops slightly for RTest = 1 MΩ and drops about 3 dB for 

an open circuit. One noise source not considered in the noise model is the 2.5V 

reference voltage applied to the non-inverting op amp input in the TIA, but this 

noise source would appear as additional op amp input voltage noise and reduce 

SNR for lower RTest values before affecting that of larger RTest and cannot account 

for the excess noise. Modifying the noise model to include a n 0.8 MΩ resistor in 

parallel with the test resistor, shown in Fig. 5-4 as the modified noise model, 

minimized the mean error relative to the metal film resistor experimental data. 

Thus a leakage resistance, RContamination, due to flux residue or other contaminants 

reduces the effective value of RTest. For RTest below 1MΩ the parallel combination 

of RTest and the contamination resistance,

RTest , Effective=
RTest RContamination

RTestRContamination
,       (5.2)
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is close to RTest but it is limited to RContamination with high RTest. Including guard rings 

around the op amp inputs will reduce susceptibility to leakage currents.

5.3 Stability Investigation Using Metal Film Resistors

Stability of DAU photocurrent measurements over time ensures glucose 

concentration measurements are free of electronics drift. Ambient air 

temperature changes can cause electronics drift in the monitoring system due to 

the temperature coefficient of the voltage reference. Heating and cooling systems 

modulate air temperature with periods of tens of minutes possibly affecting

Figure 5-4. Experimental SNR results and noise model for ADS1278 DAU.
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the ADC samples over time. Factors such as op amp offset voltage and voltage 

reference magnitude can shift over weeks or months, but techniques such as 

periodic system calibration, lock-in detection, and ratiometric measurement 

reduce or eliminate these effects. A plot of DAU sample data over two days 

evaluates whether drift is present in the DAU electronics. Fig. 5-5 shows plots of 

several representative LED1 channels using 30 kΩ metal film resistors for RTest 

and a 0.017 Hz bandwidth. The plots show a mean SNR of 43.4 dB relative to 

0.1V signal without significant drift, matching the noise model prediction of 44.0 

dB very well. Therefore the monitoring system electronics do not exhibit drift 

and do maintain SNR performance over a period of days. Also the electronics do 

not require periodic calibration while in operation - the measurement system ran 

continually over the two day period without interrupting data logging to record 

or reset any software data or any type of calibration data. 

5.4 Cross-correlation with Metal Film Resistors

In the ideal multi-channel data acquisition system samples from each 

channel are completely independent and therefore uncorrelated. The ADS1278 

DAU configuration contains four ADCs and eight op amp ICs with separately 

filtered voltage references for each op amp IC and ADC and hence some 

similarities between channels over time are possible. Fluctuations in LED output 

intensity over time affect all photodiodes simultaneously and also contributes to 

correlations between photodiode channels. Calculation of the Pearson correlation 

coefficient43 between two vectors X and Y,
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Figure 5-5. Plot of several representative DAU channels with RTest = 30 kΩ and 
bandwidth of 0.017 Hz over two days showing lack of electronics drift.
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r X ,Y=
E [X−X Y−Y ]

X Y
,       (5.3)

where µX(µY) is mean of X(Y), σX(σY) is the standard deviation of X(Y), and E[a] is 

the mean value of a, estimates similarity of the two vectors over time. The 

correlation coefficient of a vector with itself equals 1 since the standard deviation 

is

X=E X−X 
2.       (5.4)

A three dimensional plot of rAB, the correlation coefficient, versus channel A and 

channel B where A and B include all LED1 and LED2 photodiode channels, Fig. 

5-6, shows correlation coefficients from approximately -0.4 to 0.4. Two plots of 

channel pairs with the highest correlation coefficients, Fig. 5-7, shows these 

channels do exhibit periods with similar gradual changes but the channels do not 

closely follow each other for extended amounts of time. Perturbations of the 

voltage reference likely causes the correlations between channels on the card 

without illumination. Comparing correlations between LED1 and LED2 for each 

channel shows no high correlations. Thus the monitoring system channels 

provide independent samples. The personal computer software for calculation of 

the cross-correlation coefficients is included in Appendix G. 

5.5 Signal to Noise Ratio Measurement with

Variable Filter, PD Array, and IR LEDs

A 40 pin DIP IC header with 11 kΩ shunt resistance photodiode array and linear 

variable bandpass filter facilitated SNR experiments while completed glucose 

sensors were under development. The mean SNR for all channels without
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Figure 5-6. Three dimensional plot of Pearson correlation coefficient, rAB, versus 
channel A and channel B, where A and B include all possible LED1 and LED2 

glucose sensor channels. For this plot, RTest is an open circuit, system bandwidth 
equals 0.0043 Hz, and each channel includes 1000 consecutive samples.
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Figure 5-7. Pairs of DAU channels with highest correlation. (a) LED1 channels 1 
and 27 and (b) LED2 channels 9 and 14. Slight correlations over time are likely 

due to changes in the voltage reference.



94

illumination, 40.5 dB, matches the experimental SNR of 40.4 dB for 10 kΩ metal 

film resistors as shown in Fig. 5-4. The noise model SNR prediction for 10 kΩ is 

40.8 dB.

A pair of infrared LEDs providing illumination covering the 2.2 to 2.4 

micron wavelength range aligned over the variable bandpass filter and 11 kΩ 

photodiode array provide an apparatus for measuring SNR with the 

photodiodes illuminated with IR light. The distance between the LEDs and 

photodiodes determines the photocurrent magnitude - I aligned the LEDs to 

obtain a lock-in output voltage of 0.1 V, corresponding to the 10 nA glucose 

sensor photocurrent design goal. The SNR result for the 11 kΩ photodiode array 

with IR illumination is 37.9 dB as shown in Fig. 5-4, approximately 2.5 dB below 

the experimental SNR for 10 kΩ RTest.

The mean SNR for the case of the un-illuminated PD array matches the 

experimental metal film resistor results very well, but SNR falls with 

illumination. Possible sources of the excess noise include the LED driver circuitry 

and the LED itself. Measurement of the standard deviation of the LED driver 

output voltage with the LEDs replaced with a metal film resistor with resistance 

equivalent to that of the LEDs results in a SNR of 60 dB for a 0.017 Hz 

measurement bandwidth, nearly 20 dB above the experimental measurements 

with metal film resistors or photodiode arrays and therefore the LED driver is 

not likely the source of the excess noise. Studies show LEDs exhibit low 

frequency noise in their output light intensity44. Noise from this source may 
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explain the additional system noise with illuminated photodiodes.

5.6 Conclusions

Due to the offsets present with the ADS1258 configuration the ADS1278 

configuration was selected for the remainder of experiments. The signal to noise 

ratio of the photocurrent monitoring system follows the noise model calculation 

very well with metal film resistors in place of the photodiodes. The DAU 

channels provide independent measurements of the photodiode array channels 

and the measurement system maintains stable operation over a period of days 

without calibration. Experiments with IR LEDs, the linearly variable bandpass 

filter, and the 11 kΩ photodiode array show the noise model predicts the 

experimental SNR without illumination but with illumination the SNR drops by 

2 dB. Investigation of the LED driver noise indicates it is not the source of the 

extra noise but low frequency sources of noise common to LEDs may cause the 

excess noise.
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CHAPTER 6

GLUCOSE CONCENTRATION MEASUREMENT

6.1 Introduction

After a brief discussion of some spectroscopy terms evaluation of the 

measurement system applied to glucose monitoring begins with determination 

of the systems lower glucose concentration detection limit. Experiments with 

chemical solutions of varying glucose content exhibit system noise and elicit the 

system limit of detection - the minimum glucose concentration the system can 

detect. Further experiments with several analytes with near IR absorption 

features show system specificity or the ability to measure glucose concentration 

in the presence of other chemicals. Final experiments are planned utilizing a lab 

animal to demonstrate the system with live subjects. Detection of large transients 

in photocurrent spectra as occur when air passes through the sensor fluid 

chambers allows identification of these events and prevent the associated faulty 

glucose concentration predictions.

In spectroscopy the relationship between wavelength of light, λ, and the 

spectroscopic wavenumber, k, is given by

=1
k
.       (6.1)

In this paper   is measured in microns and wavenumber is in units of cm-1. The 

light intensity, I, at one wavelength transmitted by an absorbing medium is

I=I 0 10− ,       (6.2)
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where I0 is the initial light intensity and α is the absorbance. The medium 

absorbance is found to be

=−log I
I 0
,       (6.3)

where log is the base 10 logarithm and   is in absorbance units (A.U.). The Beer-

Lambert law,

= l c ,       (6.4)

where   is the molar absorptivity in 1/(M cm), l  is the optical path length 

through the medium, and c  is the molar concentration, states that absorbance is 

proportional to analyte concentration at one wavelength.

Figure 6-1 illustrates the laboratory apparatus for experiments with 

chemical solutions. Two manual syringes pull fluid through the glucose sensor 

sample and reference channels. The reference channel always contains a pH 

buffer solution.

6.2 Transient Detection

Since water attenuates IR light propagating through the fluid chamber 

more than air, large photocurrent transients occur when air bubbles pass through 

the glucose sensor. The resulting fluctuation in photocurrent spectra invalidate 

the glucose concentration calculation and therefore software to detect and flag 

large transients in photocurrent samples prevents air bubble transients from 

causing undue alarm.

Low pass filters reduce the effect of noise spikes so the software must 

check for large shifts in the input samples before any filtering. The MCU 
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Figure 6-1. Apparatus for concentration measurement experiments.

firmware checks whether the magnitude of the difference between the new LED 

on minus LED off voltage and the previous lock-in result exceeds a threshold set 

by the user. Figure 6-2 illustrates a demonstration of the transient detection 

routine with the glucose sensor when a small air bubble passed through the 

signal channel.  The transient monitor status, Fig. 6-2(b), shows the software 

correctly found the transient just after a time of 2 minutes. For this example the 

transient threshold was 0.313 Volts and the system bandwidth was 0.017 Hz.

6.3 Baseline Spectrum

The glucose monitoring system measures glucose concentration based on 

the difference between absorbance spectra from a blank solution flowing in the 

reference channel and a fluid sample flowing through the sample channel. Since 

the light intensity reaching a photodiode element is represented by
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Figure 6-2. Demonstration of transient detection with the glucose sensor. (a) Plot 
of channel 16 versus time. (b) Status of transient monitor.
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I=I 0T 10− ,                   (6.5)

where I is the light intensity reaching the photodiode, I0 is the initial light 

intensity, T is the transmission coefficient of the instrument for that photodiode, 

and α is absorbance, the instrumentation adds a baseline spectrum to the 

absorbance spectrum measurements. The baseline spectrum includes effects due 

to channel to channel differences in the electronics and glucose sensor channels. 

The baseline spectrum is determined by recording reference and sample spectra 

with blank solutions flowing through both fluid chambers and calculating the 

absorbance for photodiode n using

An=−log10

Sn
Rn
,         (6.6)

where Sn (Rn) is the nth sample lock-in output voltage. Subtracting the baseline 

spectrum from subsequent measurements with sample fluid in the sample 

channel gives the absorbance spectrum for the sample fluid. Plots of the sample 

and reference spectra with buffer solution in each fluid chamber and the 

resulting baseline spectrum are shown in Fig. 6-3.

6.4 Absorption Spectrum

To calculate the absorption spectrum of a sample fluid containing analytes 

one measures the sample spectrum using the procedure for determination of the 

baseline spectrum in the previous section and subtracts the baseline spectrum 

from the sample spectrum. The absorbance spectrum plotted in Fig. 6-4(a) shows 

experimental measurements exhibit glucose absorption bands. Comparison with 

a reference glucose absorption spectrum recorded with an FTIR spectrometer35, 
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Figure 6-3. Example of baseline spectrum calculation. (a) Reference and sample 
spectra with buffer solution in both fluid chambers. (b) Baseline spectrum 

calculated from the spectra in (a).
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Fig. 6-4(b), indicates spreading of the peaks near 4300 cm-1 and 4400 cm-1 as well 

as increased absorption below 4300 cm-1, likely due to a relatively large optical 

filter bandwidth of the glucose sensor compared to the FTIR instrument. For this 

example the average of 1000 consecutive buffer spectra formed the baseline 

spectrum and the average of 1000 50 mM glucose spectra provided the glucose 

sample spectrum.

6.5 Limit of Detection

Quantification of the change in the absorption spectrum for several 

concentrations of glucose allows estimation of the lower limit of glucose 

concentration detection. The limit of detection,

LOD=3B ,       (6.7)

where B  is the standard deviation of glucose concentration for a blank sample, 

estimates the lower bound of analyte concentration the system determines with a 

degree of certainty.

We calculated an approximate estimate of the LOD by considering the 

response from only one glucose sensor channel near the peak of a glucose 

absorption band. Figure 6-5 shows a plot of the response of channel 16 with 

wavenumber 4410 cm-1 while flowing buffer and the glucose concentrations 

indicated with a system bandwidth of 0.00108 Hz. The standard deviation of the 

blank sample absorbance is 27 µA.U. A plot of absorbance vs. glucose 

concentration, Fig. 6-6, shows there are approximately 75000 mM per A.U. and a 

rough estimate of the LOD is 6.1 mM for this data set. Performing this analysis 
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Figure 6-4. Glucose absorption spectra. (a) Absorption spectrum of 50 mM 
glucose sample measured by DAU/MCU with system bandwidth of 0.00108 Hz. 
(b) Reference glucose absorption spectrum measured with an FTIR instrument35.
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Figure 6-5. Response of glucose sensor channel 16 to several glucose 
concentrations.

Figure 6-6. Plot of glucose concentration versus absorbance for 20 and 50 mM 
solutions recorded using the DAU with bandwidth of 0.00108 Hz.
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for a range of system bandwidths, Fig. 6-7(a), shows the LOD decreases with 

decreasing system bandwidth as one would expect since reduction in bandwidth 

reduces system noise levels and thus reduces the standard deviation of spectral 

data. Fig. 6-7(b) shows a plot of the signal to noise ratio with a lock-in amplifier 

output voltage approximately 50 mV using only an IR LED and an 11 kΩ 

photodiode array without fluid chambers showing the SNR increases as expected 

for bandwidth extending down to 0.5 mHz. A system bandwidth of 0.5 mHz 

corresponds to an exponential time constant of approximately 5.3 minutes. Since 

the glucose concentration changes over a period of perhaps a few tens of minutes 

and ISF glucose concentration presents physiological delays relative to blood 

Figure 6-7. LOD with one wavelength and SNR versus bandwidth.
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glucose concentration change, low system bandwidths prevent timely system 

response to glucose concentration and suggests the need for a minimum system 

bandwidth requirement.

During glucose sensor construction one aligns the LEDs with the PD array 

assisted by a photocurrent monitoring system35 consisting of a printed circuit 

board with several transimpedance amplifiers, a commercially available ADC 

card, and LED driver demonstration boards. Data I recorded with this system in 

Fig. 6-8 shows the response of Channel 16 with wavenumber 4410 cm-1, buffer 

solution in the reference channel, and glucose solution concentration indicated in 

the sample channel. The transimpedance amplifier board contains OPA27 

operational amplifiers in the TIA configuration, Fig. 3-1, with feedback 

capacitance provided only by stray capacitance. The system recorded samples 

every 9.5 seconds, thus the system bandwidth must be below 0.053 Hz to prevent 

aliasing. Analysis of the filtering and downsampling processes utilized by the 

alignment system shows the filter bandwidth is 0.08 Hz. The standard deviation 

of absorbance with the blank sample is 148 µA.U. and a plot of solution 

concentration versus absorbance, Fig. 6-9, exhibits a slope of 76000 mM per A.U. 

Therefore a rough LOD estimate for this monitoring system with one wavelength 

is 33.7 mM.

6.6 Minimum System Bandwidth

A minimum system bandwidth which allows nearly all spectral energy of 

typical glucose concentration transients to pass through the system filter 
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Figure 6-8. Response of one glucose sensor channel measured by monitoring 
system used for sensor construction to glucose concentrations indicated.

Figure 6-9. Plot of glucose concentration versus absorbance for 20 and 50 mM 
solutions recorded using the sensor alignment system.
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maximizes system SNR while allowing the monitoring system to maintain 

accuracy as the subjects glucose concentration changes over time. Fourier 

analysis of a reproduction of a fast meal transient from a patient45, Fig. 6-10, 

shows the transient has frequency content up to 0.13 mHz. Figure 6-11(a) 

includes a plot of the fraction of spectral energy passed by an RC low pass filter 

versus filter bandwidth, found by integration of the Fourier transform of the 

transient up to the filter bandwidth. A bandwidth of 1 mHz allows nearly all the 

transient energy to pass through the filter. The group delay of a filter, given by 

−d/dt  where   is the filter phase, is the amount of time the input 

signal is delayed as a function of frequency. The group delay of an RC low pass 

filter,

−d
d

= RC
12R2C2

,        (6.8)

with bandwidth of 1 mHz, see Fig. 6-11(b), is relatively constant over the 

transient frequency range of 0.13 mHz, and therefore a bandwidth of 1 mHz 

allows nearly all transient energy to pass through the filter without distorting the 

signal and the system will accurately measure the glucose concentration 

transient.

6.7 Multivariate Calibration

In practice, multivariate calibration methods such as partial least 

squares (PLS)46 and the net analyte signal method (NAS)47,48 use all sensor 

photodiode channels to predict analyte concentration. The partial least squares 

method seeks to describe spectral variation in a set of vectors or spectra from 
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Figure 6-10. A reproduction of a fast meal response glucose concentration 
transient from patient data.45

Figure 6-11. Fraction of energy passed by low pass filter vs. bandwidth and 
group delay for bandwidth of 0.001 Hz. 
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several samples with a range of analyte concentrations while including 

concentration information by using correlations between analyte concentration 

and sample spectra. The process decomposes a spectral matrix X using

X=T PTE ,       (6.9)

where X contains sample spectra, T is a matrix of scores, and PT is the transpose 

of P, a matrix of spectral loadings. The PLS process determines the first factor 

through an iterative procedure, removes the corresponding variation in the 

system, and then finds the next factor.

For one analyte, the procedure begins by calculating a loading weight set

w1=
X T y

∥X T y∥
,     (6.10)

where X is an m by n matrix of m spectra of length n and y is an n by 1 vector of 

analyte concentrations. The corresponding score is given by

t 1=X w1 ,     (6.11)

and the spectral loading is

p1=
X t1
t1
T t1

.     (6.12)

One then uses

t 1,New=
X p1

p1
T p1

    (6.13)

to calculate a new value for the first score, compares it with the first score 

estimate, and repeats the procedure until the score stabilizes. The concentration 

loading is calculated with
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q1=
t1
T y
t1
T t1

,       (6.14)

and the system is deflated with

X=X−t1 p1     (6.15)

and

y= y−t 1q1 .     (6.16)

One finds additional factors by repeating the above process on the new system.

The prediction of sample concentration is given by

c=Xb ,      (6.17)

where the calibration vector, b, is given by

b=W PTW q ,     (6.18)

where the columns of W are the weights, the columns of P are the spectra 

loadings, and q is a vector containing the concentration loadings.

To use the NAS method for a particular analyte one first collects a set of 

background spectra in the absence of the analyte. A method such as singular 

value decomposition determines several spectral shapes or factors summarizing 

the variability of the background spectra. The first background factor describes 

the largest portion of the spectral variation of the background spectra and 

subsequent factors represent the largest component of the spectral variation not 

due to previous factors. The net analyte signal for the analyte of interest is the 

portion of the pure component spectrum orthogonal to the background factors. 

The net analyte signal for a sample spectrum x is given by
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A= I−M M t  x ,         (6.19)

where M t  is the pseudo-inverse of M , a matrix of background factors.  The 

NAS vector length depends on the concentration of analyte in the pure 

component solution and must be normalized such that the final NAS for one 

analyte is

NAS= A
∥A∥

,                 (6.20)

and the prediction of analyte concentration for a sample spectrum, x, is given by

c=NAS x.     (6.21)

Sample spectra were recorded for PLS and NAS calibration models49. The 

PLS calibration method utilized sixty solutions of glucose, urea, and lactate, in 

random concentrations varying from 4 mM to 50 mM. Forty-eight spectra were 

used for the calibration model and the remaining 12 spectra formed the 

prediction spectra. After optimizing the number of factors and the spectral range 

for the calibration, the standard deviation of errors of prediction and calibration 

were calculated for 200 different combinations of 48 calibration spectra and 12 

prediction spectra. Results of the PLS analysis, Table X, show the mean of all the 

standard errors of prediction and calibration, MSEP and MSEC, for glucose are 

1.02 mM and 1.12 mM, respectively. Also shown in Table X are the MSEP and 

MSEC results for urea and lactate. A NAS calibration analysis included 22 buffer 

spectra and 50 mM pure component spectra from glucose, urea, and lactate. The 

standard error of prediction of glucose with the NAS model is 1.88 mM, see 

Table X. Euglycemic levels are in the range of 3.9 to 5.5 mM glucose while 
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hyperglycemia occurs at 11 mM, therefore a SEP of 1 to 2 mM acceptably detects 

hyperglycemia. Low blood glucose, hypoglycemia, is the condition where 

glucose concentration falls below approximately 3 mM, only a few mM below 

normal glucose levels, thus the SEP results may not be accurate enough to 

reliably detect hypoglycemia. Perhaps the larger SEP for the NAS method arises 

from the use of only 22 background spectra and including a larger number of 

background spectra in the NAS calibration can reduce the SEP.

Table X. PLS and NAS calibration results.49

Analyte PLS MSEP(mM) NAS MSEP(mM)

Glucose 1.12 1.88

Urea 0.62 1.69

Lactate 1.7 2.57

Finally, future application of the glucose monitoring system to continuous 

glucose monitoring with a laboratory animal will exhibit use of the instrument in 

the actual application. During the experiment the animal will be anesthetized 

while modulating blood glucose levels and monitoring ISF glucose 

concentration, similar to the procedure in Ref. 50. 

6.8 Summary

The measurement system detects the absorption of glucose with a 

minimum LOD of 5.8 mM using a rough estimate of LOD with only one 

wavelength and the glucose sensor alignment apparatus LOD is 33.78 mM for 
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one wavelength. PLS and NAS calibration models exhibit glucose SEP of 1.02 

and 1.88 mM, respectively, acceptable for use in detection of hyperglycemia but 

not quite acceptable for use monitoring hypoglycemia. The system has a 

transient detection feature for flagging large fluctuations due to the presence of 

air in the sensor fluid chambers. Experiments with a live laboratory animal will 

exhibit system performance in the continuous glucose monitoring application. 
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The measurement system provides low noise near IR absorption spectra 

with single wavelength LOD estimate of 5.8 mM, using near IR absorption 

spectrosopy, a direct glucose concentration measurement. Experiments 

performed by Joo-Young Choi utilizing PLS and NAS calibration models show 

the system exhibits glucose SEP of 1.02 and 1.88 mM, showing the system is 

acceptable for use in detection of hyperglycemia but not quite acceptable for use 

monitoring hypoglycemia.  Utilization of direct glucose measurement methods 

ensures the measurement system responds to actual changes in glucose 

concentration instead of chance correlations with other characteristics such as 

refractive index.  

The glucose sensor forms a spectrometer sensitive to a range of 

wavelengths near peaks in the glucose absorption spectrum. The monitoring 

system, comprised of a data acquisition unit and main controller unit, samples 

photocurrent from the glucose sensor and constructs photocurrent spectra for the 

calibration process. The measurement system noise properties closely follow 

numerical models predicting system performance. Investigation of characteristics 

such as drift, correlation, transient detection, and LOD proved system ability to 

measure glucose concentration using near IR spectroscopy.

If desired, further improvements to DAU electronics may bring 
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improvement in LOD including use of a low noise current amplifier to amplify 

photocurrent. A current amplifier before the transimpedance amplifier will lift 

the SNR and help improve LOD. Future work also includes miniaturization of 

the MCU and DAU into a credit card sized unit utilizing ultra-low power 

components and design methods. One design suggestion for the miniaturized 

system is the use of a 20 bit ADC - this reduces required die area and power 

dissipation without impact to the noise model. Reduction in the number of 

samples recorded per unit time allows use of lower switching frequency 

microcontrollers and therefore reduction in power consumption. Analog 

switches multiplexing the photodiodes with a limited number of transimpedance 

amplifiers and ADCs also reduces system power requirements.



117

REFERENCES

1. Diabetes Fact Sheet No. 312. World Health Organization: Geneva, Switzerland, 
www.who.int (accessed 3/21/2012).

2. Cengiz, E.; Tamborlane, W. V. A Tale of Two Compartments: Interstitial 
Versus Blood Glucose Monitoring. Diabetes Tech. Ther. 11, S-11, 2009.

3. Arnold, M. A.; Small, G. W. Noninvasive Glucose Sensing. Anal. Chem. 77, pp. 
5429-5439, 2005.

4. Bai, C.; Graham, T. L.; Arnold, M. A. Assessing and Advancing Technology for 
the Noninvasive Measurement of Clinical Glucose. Anal. Chem. 41, pp. 2773-2793, 
2008.

5. Chia, C. W.; Saudek, C. D. Glucose sensors: toward closed loop insulin 
delivery. Endocrinol Metab Clin N Am 33, pp. 175-195, 2004.

6. Olesberg, J. T.; Cao, C.; Yager, J. R.; Prineas, J. P.; Coretsopoulos, C.; Arnold, M. 
A.; Olafsen, L. J.; Santilli, M. Optical Microsensor for Continuous Glucose 
Measurements in Interstitial Fluid. Proc. Of SPIE 6094, 609403, 2006.

7. Wu, P.; He, Y.; Wang, H. F.; Yan, X. P. Conjugation of Glucose Oxidase onto 
Mn-Doped ZnS Quantum Dots for Phosphorescent Sensing of Glucose in 
Biological Fluids. Anal. Chem. 82, pp. 1427-1433, 2010.

8. Billingsley, K.; Balaconis, M. K.; Dubach, J. M.; Zhang, N.; Lim, E.; Francis, K. 
P.; Clark, H. A. Flourescent Nano-Optodes for Glucose Detection. Anal. Chem. 82, 
pp. 3707-3713, 2010.

9. Yan, Q.; Peng, B.; Su, G.; Cohan, B. E.; Major, T. C.; Meyerhoff, M. E. 
Measurement of Tear Glucose Levels with Amperometric Glucose 
Biosensor/Calillary Tube Configuration. Anal. Chem. 83, pp. 8341-8346.

10. Sekretaryova, A. N.; Vokhmyanina, D. V.; Chulanova, T. O.; Karyakina, E. E.; 
Karyakin, A. A. Reagentless Biosensor Based on Glucose Oxidase Wired by the 
Mediator Freely Diffusing in Enzyme Containing Membrane. Anal. Chem. 84, pp. 
1220-1223, 2012.

11. Tsai, T. W.; Heckert, G.; Neves, L. F.; Tan, Y.; Kao, D. Y.; Harrison, R. R.; 
Resasco, D. E.; Schmidtke, D. W. Adsorption of Glucose Oxidase onto Single-
Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors. 
Anal. Chem. 81, pp. 7917-7925, 2009.



118

12. Ke Ma, K.; Yuen, J. M.; Shah, N. C.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van 
Duyne, R. P. Spatially Offset Raman Spectroscopy: Multiple Rats, Improved 
Hypoglycemic Accuracy, Low Incident Power, and Continuous Monitoring for 
Greater than 17 Days. Anal. Chem. 83, pp. 9146-9152, 2011.

13. Yuen, J. M.; Shah, N. C.; Walsh, J. T., Jr.; Glucksberg, M. R.; Van Duyne, R. P. 
Transcutaneous Glucose Sensing by Surface-Enhanced Spatially Offset Raman 
Spectroscopy in a Rat Model. Anal. Chem. 82, pp. 8382-8385, 2010.

14. Ward Muscatello, M. M.; Stunja, L. E.; Asher, S. A. Polymerized Crystalline 
Colloidal Array Sensing of High Glucose Concentrations. Anal. Chem Vol. 81, pp. 
4978-4986, 2009.

15. Olesberg, J. T.; Arnold, M. A.; Mermelstein, C.; Schmitz, J.; Wagner, J. Tunable 
Laser Diode System for Noninvasive Blood Glucose Measurements. Appl.  
Spectros. 59, pp 1480-1484, 2005.

16. Shen, Y. C.; Davies, A. G.; Linfield, E. H.; Elsey, T. S.; Taday, P. F.; Arnone, D. 
D. The use of Fourier-transform infrared spectroscopy for the quantitative 
determination of glucose concentration in whole blood. Phys. Med. Biol. 48, pp. 
2023-2032, 2003.

17. Abookasis, D.; Workman, J. J. Direct measurements of blood glucose 
concentration in the presence of saccharide interferences using slope and bias 
orthogonal signal correction and Fourier transform near-infrared spectroscopy. J.  
Biomed. Opt. 16, 027001, 2011.

18. Heise, H. M.; Damm, U.; Bodenlenz, M.; Kondepati, V. R.; Kohler, G.; 
Ellmerer, M. Bedside monitoring of subcutaneous interstitial glucose in healthy 
individuals using microdialysis and infrared spectrometry. J. Biomed. Opt. 12, 
024004, 2007.

19. Amin-Akhlaghi, Z.; Cooley, D. W.; Andersen, D. R. Study of an Infrared 
Glucose Sensor and its Noise Model. FFH2011, Vienna, Austria, 2011.

20. Cooley, D. W.; Andersen, D. R. Low Noise Measurement of Photocurrent in 
Low Impedance Photodiodes. EIT2010, Normal, Illinois, 2010.

21. Cooley, D. W.; Andersen, D. R. Low Noise Measurement of Photocurrent for 
Continuous Glucose Monitoring. BIODEVICES 2010, Valencia, Spain, 2010.

22. Olesberg, J. T.; Arnold, M. A; Hu, S. Y. B. Temperature-Insensitive Near-
Infrared Method for Determination of Protein Concentration during Protein 
Crystal Growth. Anal. Chem. 72, pp. 4985-4990, 2000.



119

23. Martens, H.; Naes, T. Multivariate Calibration; Wiley: New York, 1989.

24. Kanukurthy, K. S. Wireless controller for a near infrared multichannel optical 
glucose sensor. Ph.D. Dissertation, University of Iowa, Iowa City, IA, 2007.

25. Hobbs, P. C. C. Building Electro-Optical Systems, 2nd Ed.; Wiley: New York, 
2009.

26. Graeme, J. Photodiode Amplifiers: McGraw Hill: New York, 1996.

27. Milnes, A. G.; Polyakov, A. Y. Gallium antimonide device related properties. 
Solid State Electron. 36, pp. 803-818, 1993.

28. Sze, S. M. Physics of Semiconductor Devices; Wiley: New York, 1981.

29. Dicke, R. H. The Measurement of Thermal Radiation at Microwave 
Frequencies. Rev. Sci. Instrum. 17, pp. 268-275, 1946.

30. App. Note 3. Stanford Research Systems: Sunnyvale, California, 
www.thinksrs.com (accessed 3/21/2012).

31. Dorrington, A. A.; Kunnemeyer, R. A simple microcontroller based digital 
lock-in amplifier for the detection of low level optical signals. DELTA'02 0-7695-
1453-7/02, 2002.

32. Prineas, J. P.; Olesberg, J. T.; Yager, J. R.; Cao. C.; Coretsopoulos, C.; Reddy, 
M. H. M. Cascaded active regions in 2.4 µm GaInAsSb light-emitting diodes for 
improved current efficiency. Appl. Phys. Lett. 89, 211108, 2006.

33. Pierret, R. F. Semiconductor Device Fundamentals; Addison-Wesley: Reading, 
Massachusetts, 1996.

34. S1133 Datasheet. Hamamatsu Photonics, K. K.: Hamamatsu City, Japan, 
www.hamamatsu.com (accessed 3/21/2012).

35. Private communication with Jon Olesberg, March 2012.

36. Saleh, B. E. A.; Teich, M. C. Fundamentals of Photonics; Wiley: New York, 1991.

37. Motchenbacher, C. D.; Connelly, J. A. Low-Noise Electronic System Design; 
Wiley: New York, 1993.

38. Antoniou, A., Digital Filters: Analysis, Design, and Applications; McGraw Hill: 
New York, 1993.



120

39. App. Note AN-283. Analog Devices, Inc.: Norwood, Massachusetts, 
www.analogdevices.com (accessed 3/21/2012).

40. App. Report SBOA066A. Texas Instruments, Inc.: Dallas, Texas, www.ti.com 
(accessed 3/21/2012).

41. ADS1258 Datasheet. Texas Instruments, Inc.: Dallas, Texas, www.ti.com 
(accessed 3/21/2012).

42. MPLAB IDE V8.10; Microchip Technology, Inc.: Chandler, Arizona, 
www.microchip.com (accessed 3/21/2012).

43. Everitt, B. S.; Skrondal, A. Cambridge Dictionary of Statistics, 4th Ed.; 
Cambridge University Press: Cambridge, United Kingdom, 2006.

44. Rumyantsev, S. L.; Shur, M. S.; Bilenko, Y.; Kosterin, P. V.; Salzberg, B. M. 
Low frequency noise and long-term stability of noncoherent light sources. J.  
Appl. Phys. 96, pp. 966-969, 2004.

45. Keenan, D. B.; Mastrototaro, J. J.; Voskanyan, G.; Steil, G. M. Delays in 
Minimally Invasive Continuous Glucose Monitoring Devices: A Review of 
Current Technology. J. Diabetes Sci. Tech. 3, pp. 1207-1214, 2009.

46. Bai, C. Noninvasive Near Infrared Spectroscopy on Living Tissue with 
Multivariate Calibration Approaches. Ph.D. Dissertation, University of Iowa, 
Iowa City, IA, 2010.

47. Lorber, A.; Faber, K.; Kowalski, B. R. Net Analyte Signal Calculation in 
Multivariate Calibration. Anal. Chem. 69, pp. 1620-1626, 1997.

48. Private communication with Gary W. Small, April 2012.

49. Private communication with Joo-Young Choi, March 2012.

50. Olesberg, J. T.; Liu, L.; Van Zee, V.; Arnold, M. A. In Vivo Near-Infrared 
Spectroscopy of Rat Skin Tissue with Varying Blood Glucose Levels. Anal. Chem. 
78, pp. 215-223, 2006.



121

APPENDIX A

MOVING AVERAGE FILTER BANDWIDTH

The frequency response of linear, time invariant system is

H = ∑
m=−∞

∞

h m e− j m .      (A.1)

The N-sample moving average is represented by

h n=1/N , for n=0,1,2, ....N−1.      (A.2)

The frequency response of h n  is then

H = 1
N ∑

m=0

N−1

e− jm= 1
N 1−e− jN

1−e− j  ,           (A.3)

since

∑
m=N

M

am=aN−aM1

1−a
.      (A.4)
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APPENDIX B

NOISE MODEL CALCULATION SOFTWARE

Filename: noise.c.

#include <stdio.h>
#include <math.h>

int main()
{

/* March 4 2012 */
/* Noise model calculation for Lock-In Amplifier */
/* BW in input file is single ended BW, ENB = 2 times BW times pi/2 */
/* Eni is value of Eni from datasheet at the ref. frequency 39.1 Hz */
/* Assume ADC noise is distributed over the ADC passband */
/* ADC noise is ADC noise times ENB / (2 * ADC BW) */
/* deltav is ADC noise in microVolts RMS */
/* Uses broadband noise for Vref */
/* Assumes shot noise, 2eI, is for double sided spectrum */

  int i, j;
  double eni, eni2, ibn, ers, ibi, rf, rpd, temp, avenum, isig, gain, bw, bw2;
  double vn, snr, snrdb, deltav;
  FILE *idfPtr; /* idfPtr = input.dat file pointer */
  FILE *odfPtr; /* odfPtr = output.dat file pointer */

  ibn = 0.0; /* noninverting input current noise */
  ers = 0.0; /* noninverting source resistor voltage noise */
  ibi = 0.5e-15; /* inverting input current noise density */

  if ( ( idfPtr = fopen( "input.dat", "r" ) ) == NULL )
    printf( "No input file!\n" );
  else {
    printf( "Reading input data\n" );
    fscanf( idfPtr, "%lf%lf%lf%lf%lf%lf%lf", &rf, &temp, &avenum, &isig, &bw, 
&deltav, &eni); 
    printf( "%e %e %e %e %e %e %e\n", rf, temp, avenum, isig, bw, deltav, eni);
    fclose( idfPtr );
    printf( "Got the input data okay\n" );
  }
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  odfPtr = fopen( "shotpc.dat", "w" );
  fprintf( odfPtr, "RF=%e Temp=%.1f Samp Ave=%.1f Isig=%e BW=%.6f deltaV=
%e Eni=%e\n", \
           rf, temp, avenum, isig, bw, deltav, eni );

  bw2 = 2.0 * bw * 1.57;
  j = 2;
  while ( j <= 8 ) {
    i = 1;
    while( i <= 9 ) {
       rpd = ( double ) i * pow( 10.0, ( double ) j);
       gain = 1.0 + rf / rpd;
       vn = sqrt( 0.0 * eni * eni * gain * gain * bw2 \
            + 0.0 * ( ibi * rf ) * ( ibi * rf ) * bw2 \
            + 0.0 * 4.0 * 1.38e-23 * temp * rf * gain * bw2 \
            + 0.0 * deltav * deltav *bw2*bw2/(2*390.6*2*390.6) \

    + 0.0 * 45e-9 * 45e-9 * bw2 \
    + 0.0 * 1.0 * 1.6E-19 * 1E-12 * bw2 * rf * rf \
    + 0.0 * 1.0 * 1.6E-19 * (70.0E-6 / rpd) * bw2 * rf * rf \
    + 1.0 * 1.0 * 1.6e-19 * 10.0e-9 * bw2 * rf * rf);

       vn = vn/sqrt((double)avenum);
       snr = isig * rf / vn;
       snrdb = 10.0 * log10( snr ) - 3.01;

/* Subtract 3.01 dB since LIA output is multiplied by 2 */
/* in order to calculate peak to peak Ipc*Rf            */

       fprintf (odfPtr, "%e %e\n", rpd, snrdb );
       i += 1;
    }
    j += 1;
  }

  fclose( odfPtr );
  return 0;
}
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APPENDIX C

ADS1258 DAU SCHEMATIC DIAGRAM
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APPENDIX D

MCU C SOFTWARE FOR THE ADS1278 DAU

Filename: Dau3-equal-space.c:

#include <p33FJ128GP708.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "dau_GP.h"
#include <delay.h>
#include <uart.h>
#include <clockSwitch.h>
#include <math.h>

/* March 16, 2012                                                        */
/* This project is designed to filter data from the Rev C. DAU PC Board. */
/* The software utilizes a combined lock-in filter comprised of          */
/* shifting the spectrum of input data by half the sample rate and       */
/* simultaneously low pass filtering the samples.                        */
/* The software filters two independent sets of 32 channels.             */
/* Each set of channels measured data with its LED on and off.           */
/* The Rev. C. DAU contains four ADS1278 ADCs with eight channels each.  */
/* Due to the 40 sample period latency of the software runs through a    */
/* loop recording 10 samples each for LED1 on, both LEDs off, LED2 on,   */
/* and both LEDs off.                                                    */  

_FOSCSEL(FNOSC_FRCDIV16); // FRC
_FOSC(FCKSM_CSECME & OSCIOFNC_OFF  & POSCMD_EC);

// Clock Switching 
and Fail Safe Clock Monitor is Enabled

// OSC2 Pin 
Function: OSC2 is Clock Output

// Primary 
Oscillator Mode: EC

_FWDT(FWDTEN_OFF);              // Watchdog Timer Enabled/disabled by user 
software

// (LPRC can be 
disabled by clearing SWDTEN bit in RCON register
_FPOR(FPWRT_PWR1);   // Turn off the power-up timers.
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_FGS(GSS_OFF & GCP_OFF & GWRP_OFF);   // Turn off Code 
Protection & Write protection

/*****************Global Variables*****************/
long led1_in[32], led1_b1[32], led1_out[32];
long led2_in[32], led2_b1[32], led2_out[32];
long adc_temp[8]; // Temperature readings from adcs
unsigned long chtemp;
int raw_led[96];
unsigned int writeCtr, recordFlag, usb1Flag, dataSet;
unsigned int numsets, nrecord, nseconds;
unsigned int flagClock, ainSelect, ledFlag;
unsigned int transFlag;
long transLevel;
unsigned char regdata[8][8];
long unfilteredSamples[64];
int unfilteredCtr;
int startupFlag, startupDelay, phaseCtr;
/**************************************************/

/****************** main Function *****************/
int main (void)
{

unsigned int cycleCtr, numCycles;

numCycles = 19;
powerUp(); // Initialize I/O pins

// Configure Oscillator to operate the device at 40 MHz
// Fin = 16 MHz
// Fosc= Fin*M/(N1*N2), Fcy=Fosc/2
// Fosc= 16 MHz*40/(4*2) = 80MHz, Fcy = 40 MHz
PLLFBD = 38; // M = 40
CLKDIVbits.PLLPOST = 0; // N2=2
CLKDIVbits.PLLPRE = 2; // N1=4
clockSwitch(NOSC_PRIPLL); // Clock is switched to 

primary

delay_ms(1000); //  delay

// Initialize SPI1 in 8-bit Master mode
// SPI clock rate is Fcy/80 or 40MHz/8 = 5 MHz actually now 2 MHz
initSpi1(0);
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// Initialize SPI2 in 8-bit framed Master mode
// Use SCLK2 to provide 2 MHz ADC clock
// SPI2 clock rate is Fcy/20 or 40MHz/20 = 2 MHz
initSpi2();

// Initialize Timer2
// Timer2 no longer utilized
// initTimer2();
// Early software utilized timer2 and TESTLED2 for ADC clock

// Read transient level selection from PC
setupTransient();

// Initialize variables
flagClock = 1; // State of ADC 

clock
clearData();
dataSet = 0;
startupFlag = 1;
startupDelay = 0;
transFlag = 0;

// Enable timer2
// Timer2 no longer utilized T2CONbits.TON = 1;

//  Synchronize ADCS
SYNC_ = LOW;
delay_ms(2); // Delay
SYNC_ = HIGH;
// ADCs synchronizing

//Main loop
while(1)

    {
transFlag = 0; // Reset flag after sending 

samples to PC
recordFlag = 1;
for (cycleCtr=0; cycleCtr<numCycles; cycleCtr++)
{

// One lock-in cycle
dataSet = 0; // LED1 ON
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
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{
getData();

}

dataSet = 1; // LED1 OFF
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

dataSet = 2; // LED2 ON
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

dataSet = 3; // LED2 OFF
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

getData();
}

} // Finished with numCycles lock in cycles

// Send data to PC
usb1Flag = 1;
recordFlag = 0;
writeCtr = 0;
dataSet = 0;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<4) usbWritedata1On();
getData();

}

writeCtr = 0;
dataSet = 1;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<4) usbWritedata2On();
getData();

}

dataSet = 2;
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for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<1) usbWritetranslevel();
getData();

}

dataSet = 3;
for (phaseCtr=0; phaseCtr<10; phaseCtr++)
{

if(phaseCtr<1) usbWritetransient();
getData();

}

} // While loop

// Turn LEDs OFF
LED1 = HIGH;
LED2 = HIGH;
TESTLED1 = LOW;
TESTLED2 = LOW;

return 0;
}

Filename: dauFunctions.c:

#include <p33FJ128GP708.h>
#include <stdio.h>
#include "dau_GP.h"
#include <delay.h>
#include <uart.h>
#include <math.h>
/*----------------------------MCU Powerup routine-------------------------------*/
/*
Note: This routine initializes the MCU output lines.
*/
void powerUp(void){
//unsigned char data;
//Declare dsPICs I/O lines connected to DAU control pins as outputs
// TRISAbits.TRISA15 = 0; // RA15 is output
// The following ODCA statements do not have an effect as A15,A14 do not 
exist
// ODCAbits.ODCA15 = 0; // Open drain output disabled
// ODCAbits.ODCA14 = 0; // Open drain output disabled
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// TRISA &= 0x79FF; // RA15, RA10, RA9 are outputs; others 
are inputs

TRISA = 0x0004; // all outputs except RA2
TRISB = 0x0003; // all outputs except RB0, RB1
TRISD = 0x7000; // RD15, RD11, RD10, RD9, 

RD8,RD7~RD0 are outputs; others are inputs
TRISF = 0xFFFC; // RF0,RF1 are outputs
TRISG = 0x0FFC; // 

RG0,RG1,RG12,RG13,RG14,RG15 outputs
AD1PCFGL=0xFFFF; // all analog channel pins are 

digital
AD1PCFGH=0xFFFF; // 

// TRISFbits.TRISF0 = 0;
// TRISFbits.TRISF1 = 0;
// TRISGbits.TRISG0 = 0;
// TRISGbits.TRISG1 = 0;
// TRISGbits.TRISG12 = 0;
// TRISGbits.TRISG13 = 0;
// TRISGbits.TRISG14 = 0;
// TRISGbits.TRISG15 = 0;

delay_us(10);

//  Initial configuration of outputs
LED1 = HIGH; // LEDs disabled - LED1 

and LED2 active low
LED2 = HIGH;
TESTLED1 = LOW;
TESTLED2 = LOW;

//Enable the digital buffers connecting dsPIC I/Os to DAU
//Enable the clock driver IC and the clock oscillator

BUFFEN1_ = LOW; //Enable digital buffers 1 
& 2

BUFFEN2_ = LOW; //
EOH = HIGH; //Enable clock 

oscillator output
G1 = HIGH; //Bank 1 of clock driver 

enabled
G2 = HIGH; //Bank 2 enabled

//Set default signal levels for USB
USB_WR = LOW; // default WR line value
USB_RD_ = HIGH; // default RD line value
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//Set SYNC_ HIGH
SYNC_ = HIGH;

   
return;

}
/*------------------------------------------------------------------------------*/
/*----------------------------ADC Initialization Routine----------------------*/
void initADCs (void)
{
/*--------------------------------------------------
Initialize ADCs - for ADS1258
---------------------------------------------------*/

// Reset ADCs
// RESET_ = LOW;
// delay_ms(10);
// RESET_ = HIGH;

return;
}
/*------------------------------------------------------------------------------*/

void configADCs(void)
{
/*
// Routine to configure ADS1258 ADCs for next sample
// Added write to clear out register 6 after temp reading
// Removed write to register 6 since no temp measurements

unsigned int adcctr;
unsigned char data;

ainSelect++;
if(ainSelect>3) ainSelect = 0;

for(adcctr=0; adcctr<8; adcctr++)
{

// Select IC
if ((adcctr & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adcctr & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adcctr & 0x04) == 0x04) CS_C = HIGH;
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else CS_C = LOW;

delay_us(1);

// Write to ADC configuration registers
CS_EN = HIGH;
delay_us(1);

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x74; // Multiple register write, 

starting with register 0x04
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
data = SPI1BUF;

if(ainSelect == 0)
{

//Select first AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is 

set
SPI1BUF = 0x10; // Use 

AIN4 only
while (SPI1STATbits.SPIRBF==0); // wait if 

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set

SPI1BUF = 0x00; // 
don't Use AIN8&9

while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set
// SPI1BUF = 0x00; // 
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set
// data = SPI1BUF;

}
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else if(ainSelect == 1)
{

//Select second AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is 

set
SPI1BUF = 0x20; // Use 

AIN5 only
while (SPI1STATbits.SPIRBF==0); // wait if 

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set

SPI1BUF = 0x00; // 
don't Use AIN8&9

while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set
// SPI1BUF = 0x00; // 
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set
// data = SPI1BUF;

}
else if(ainSelect == 2)
{

//Select third AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is 

set
SPI1BUF = 0x00; // 

Don't use AIN 4&5
while (SPI1STATbits.SPIRBF==0); // wait if 

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set

SPI1BUF = 0x01; // Use 
AIN8 only

while (SPI1STATbits.SPIRBF==0); // wait if 
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SPITBF is set
data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set
// SPI1BUF = 0x00; // 
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set
// data = SPI1BUF;

}
else
{

//Select fourth AIN
while (SPI1STATbits.SPITBF); // wait if SPITBF is 

set
SPI1BUF = 0x00; // 

Don't use AIN 4&5
while (SPI1STATbits.SPIRBF==0); // wait if 

SPITBF is set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set

SPI1BUF = 0x02; // Use 
AIN9 only

while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set

data = SPI1BUF;

// while (SPI1STATbits.SPITBF); // wait if SPITBF is 
set
// SPI1BUF = 0x00; // 
don't Use temp sensor
// while (SPI1STATbits.SPIRBF==0); // wait if 
SPITBF is set
// data = SPI1BUF;

}

CS_EN = LOW;
// delay_us(1); // Delay, must be > 2 ADC clock 
cycles
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}
*/
}

/*------------------------------------------------------------------------------*/

void configTemp(void)
{
/*
// Routine to configure ADS1258 ADCs for recording temperature

unsigned int adcctr;
unsigned char data;

for(adcctr=0; adcctr<8; adcctr++)
{

// Select IC
if ((adcctr & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adcctr & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adcctr & 0x04) == 0x04) CS_C = HIGH;
else CS_C = LOW;

// Write to ADC configuration registers
CS_EN = HIGH;
delay_us(1);

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x74; // Multiple register write, 

starting with register 0x04
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
data = SPI1BUF;

// Select temperature measurement only
while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x00; // Don't use 

any AIN's
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
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SPI1BUF = 0x00; // Don't use 
any AIN's

while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 
set

data = SPI1BUF;

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x08; // Select 

temp reading
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
data = SPI1BUF;

CS_EN = LOW;
delay_us(1); // Delay, must be > 2 ADC clock 

cycles
}

*/
}

/*----------------------------SPI1 Initialization Routine----------------------*/
void initSpi1 (unsigned char bitMode)
{
/* Configure and Enable SPI1 */
// if (bitMode) SPI1CON1 = 0x073A; //SS' disabled,16-bit Master 
Mode, CKP = 0, CKE = 1, SCK = Fcy/8
// else SPI1CON1 = 0x033A; //SS' disabled,8-bit Master Mode, 
CKP = 0, CKE = 1, SCK = Fcy/8

SPI1CON1 = 0x032E; //SS' disabled,8-bit Master 
Mode, CKP = 0, CKE = 1, SCK = Fcy/20, SMP=1
    SPI1STATbits.SPIROV = 0; //clear SPIROV
    SPI1STATbits.SPIEN = 1; // Enable the spi module */

return;
}
/*----------------------------SPI1 Initialization Routine----------------------*/
void initSpi2 (void)
{
/* Configure and Enable SPI2 */
/* Use SPI2 clock to provide 2 MHz ADC clock */

SPI2CON1 = 0x082E; // DISSDO=1,8-
bit,SMP=0,CKE=0,SSEN=0,CKP=0,Master,SCK=Fcy/20

SPI2CON2 = 0xA002; // 
FRMEN=1,SPIFSD=0,FRMPOL=1,FRMDLY=1
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    SPI2STATbits.SPIROV = 0; //clear SPIROV
    SPI2STATbits.SPIEN = 1; // Enable the spi module */

return;
}
/*------------------------------------------------------------------------------*/
void getData (void)
{

// To test scale factor apply voltage divider between 3.3V and LED2
// Connect middle node of divider to negative input of adc
// Connect positive ADC input to 2.5V
// LED2 low - result should be 2*(2.5 - 1.7) = 1.6V
// LED2 high - result should be 2*(2.5 - 3.3) = -1.6V

unsigned int i;
long temp, temp_b1;
long onInput1, offInput1;
long onInput2, offInput2;
long difference, error;

// Wait until data is available
while (DREADY_ == HIGH);

// Modulate LEDs
switch (dataSet)
{

case 0: // Turn on LED1
LED1 = LOW;
LED2 = HIGH;

break;

case 1: // Turn LEDs off
LED1 = HIGH;
LED2 = HIGH;

break;

case 2: // TUrn on LED2
LED1 = HIGH;
LED2 = LOW;

break;

case 3: // Turn LEDs off
LED1 = HIGH;
LED2 = HIGH;
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break;

default:
break;

}

// Need one ADC clock cycle delay after assertion of Data Ready
//delay_us(2);

// Timing measurement
// TESTLED1 = HIGH;

// Read 32 channels of data - 3 bytes each
for(i=0;i<96;i++)
{

while (SPI1STATbits.SPITBF); // wait if SPITBF is set
SPI1BUF = 0x00; // Write to 

SPI data register to start SCK
while (SPI1STATbits.SPIRBF == 0); // Wait for reception to 

complete
raw_led[i] = SPI1BUF; // Load received 

data to data array
}

if(startupFlag == 1)
{

startupDelay++;
if(startupDelay>40) startupFlag = 0;

}

// Timing measurement
// TESTLED1 = LOW;

// If recordFlag is set, convert and filter data
if ((recordFlag == 1)&&(startupFlag==0)&&(phaseCtr==5))
{

// Timing measurement
// TESTLED1 = HIGH;

for (i=0; i<32;i++) 
{

// First convert raw data into 32 bit integer called temp
temp = raw_led[i*3];
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temp = temp << 8;
temp += raw_led[i*3 + 1];
temp = temp << 8;
temp += raw_led[i*3 + 2];
temp = temp << 8;

// Filter sample
switch (dataSet)
{

case 0:

// // Check voltage scaling
// if(unfilteredCtr<64)
// {
// if(i==24)
// {
// unfilteredSamples[unfilteredCtr] 
= temp;
// unfilteredCtr++;
// }
// }

// Implement a single pole low pass filter and 
invert every other sample

// Y(n) = Y(n-1) + (X(n) - X(n-1))/2^7 - Y(n-
1)/2^6 

// New input is temp
// Previous input is led1_in[i]
// Store value of led1_b1[i] for second filter
temp_b1 = led1_b1[i];
// Combined lock-in filter
led1_b1[i] -= (led1_b1[i]) >> 6;
led1_b1[i] += (led1_in[i] - temp) >> 7;
// Store input value
led1_in[i] = temp;
// To use only a one pole filter, place ledn_b1 

output into output array
// One pole filter: Place output in array for usb 

write subroutine
// One pole filter: led1_out[i] = led1_b1[i];

// Implement another single pole low pass 
filter
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// Y(n) = Y(n-1) + (X(n) + X(n-1))/2^7 - Y(n-
1)/2^6

// New input is led1_b1[i]
// Previous input is led1_b1[i] before it was 

updated above
led1_out[i] -= (led1_out[i]) >> 6;
led1_out[i] += (led1_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led on 
input

onInput1 = temp;

break;

case 1:

// // Check voltage scaling
// if(unfilteredCtr<64)
// {
// if(i==24)
// {
// unfilteredSamples[unfilteredCtr] 
= temp;
// unfilteredCtr++;
// }
// }

// Implement a single pole low pass filter and 
invert every other sample

// Y(n) = Y(n-1) + (X(n-1) - X(n))/128 - Y(n-
1)/64 

// New input is temp
// Previous input is led1_in[i]
// Store value of led1_b1[i] for second filter
temp_b1 = led1_b1[i];
// Combined lock-in filter
led1_b1[i] -= (led1_b1[i]) >> 6;
led1_b1[i] += (temp - led1_in[i]) >> 7;
// Store input value
led1_in[i] = temp;
// To use only a one pole filter, place ledn_b1 

output into output array
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// One pole filter: Place output in array for usb 
write subroutine

// One pole filter: led1_out[i] = led1_b1[i];

// Implement another single pole low pass 
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led1_b1[i]
// Previous input is led1_b1[i] before it was 

updated above
led1_out[i] -= (led1_out[i]) >> 6;
led1_out[i] += (led1_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led off 
input

offInput1 = temp;
// Calculate difference between on and off 

data
difference = onInput1 - offInput1;
// Find absolute value of difference
if((difference & 0x80000000) == 0x80000000)
{

difference= ~difference;
difference++;

}
// Difference has not been filtered and thus 

represents peak to peak difference
// between on and off values
// LIA output has been filtered and represents 

the amplitude of on and off sample difference
// Thus divide difference by two, calculate 

error, and compare with half the limit in volts
difference = difference >> 1;
// Calculate error: ledn_out is a positive 

number
error = difference - led1_out[i];
// Find absolute value of error
if((error & 0x80000000) == 0x80000000)
{

error= ~error;
error++;

}
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// Set flag if difference is greater than limit 
divided by two

if(error > (transLevel >> 1)) transFlag = 1;
break;

case 2:
// Implement a single pole low pass filter and 

invert every other sample
// Y(n) = Y(n-1) + (X(n) - X(n-1))/128 - Y(n-

1)/64 

// New input is temp
// Previous input is led2_in[i]
// Store value of led2_b1[i] for second filter 

and transient monitoring
temp_b1 = led2_b1[i];
// Combined lock-in filter
led2_b1[i] -= (led2_b1[i]) >> 6;
led2_b1[i] += (led2_in[i] - temp) >> 7;
// Store input value
led2_in[i] = temp;
// One pole filter: Place output in array for usb 

write subroutine
// One pole filter: led2_out[i] = led2_b1[i];

// Implement another single pole low pass 
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led2_b1[i]
// Previous input is led2_b1[i] before it was 

updated above
led2_out[i] -= (led2_out[i]) >> 6;
led2_out[i] += (led2_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led on 
input

onInput2 = temp;
// // Transient monitoring
// difference = led1_out[i] - old_out;
// if((difference & 0x80000000) == 

0x80000000) difference = (~difference)++;
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// if(difference > transientMax) 
transientFlag = 1;

break;

case 3:
// Implement a single pole low pass filter and 

invert every other sample
// Y(n) = Y(n-1) + (X(n-1) - X(n))/128 - Y(n-

1)/64 

// New input is temp
// Previous input is led2_in[i]
// Store value of led2_b1[i] for second filter 

and transient monitoringr
temp_b1 = led2_b1[i];
// Combined lock-in filter
led2_b1[i] -= (led2_b1[i]) >> 6;
led2_b1[i] += (temp - led2_in[i]) >> 7;
// Store input value
led2_in[i] = temp;
// One pole filter: Place output in array for usb 

write subroutine
// One pole filter: led2_out[i] = led2_b1[i];

// Implement another single pole low pass 
filter

// Y(n) = Y(n-1) + (X(n) + X(n-1))/128 - Y(n-
1)/64

// New input is led2_b1[i]
// Previous input is led2_b1[i] before it was 

updated above
led2_out[i] -= (led2_out[i]) >> 6;
led2_out[i] += (led2_b1[i] + temp_b1) >> 7;

// Transient monitoring - store new led off 
input

offInput2 = temp;
// Calculate difference between on and off 

data
difference = onInput2 - offInput2;
// Find absolute value of difference
if((difference & 0x80000000) == 0x80000000)
{
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difference = ~difference;
difference++;

}
// Difference has not been filtered and thus 

represents peak to peak difference
// between on and off values
// LIA output has been filtered and represents 

the amplitude of on and off sample difference
// Thus divide difference by two, calculate 

error, and compare with half the limit in volts
difference = difference >> 1;
// Calculate error: ledn_out is a positive 

number
error = difference - led2_out[i];
// Find absolute value of error
if((error & 0x80000000) == 0x80000000)
{

error= ~error;
error++;

}

// Set flag if difference is greater than limit 
divided by two

if(error > (transLevel >> 1)) transFlag = 1;

break;

default:
break;

} // Switch statement
} // For loop

// Timing measurement
// TESTLED1 = LOW;

} // If statement

return;
}

/*------------------------------------------------------------------------------*/

void getTemp (void)
{
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// Configure ADS1258 for a temperature reading
/*

unsigned int newFlag, adc;
int data, status, byte1, byte2, byte3;
long temp;
 
for(adc=0; adc<8; adc++)
{

// Select IC
if ((adc & 0x01) == 0x01) CS_A = HIGH;
else CS_A = LOW;
if ((adc & 0x02) == 0x02) CS_B = HIGH;
else CS_B = LOW;
if ((adc & 0x04) == 0x04) CS_C = HIGH;
else CS_C = LOW;

// Read status byte and temperature sample

newFlag = 0;
while(newFlag==0)
{

// Set CS_EN
CS_EN = HIGH;
delay_us(1);

// Read ADC data and test status byte bit 7 (NEW data)

// Channel data read command, multiple bytes
while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x30;
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
data = SPI1BUF;

// Read status byte
while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00;
while (SPI1STATbits.SPIRBF==0); // wait if SPITBF is 

set
status = SPI1BUF;
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// Update newFlag
if ((status & 0x80) == 0x80) newFlag = 1;

// Read three data bytes

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to 

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to 

complete
byte1 = SPI1BUF; // load received data to data array

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to 

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to 

complete
byte2 = SPI1BUF; // load received data to data array

while (SPI1STATbits.SPITBF);// wait if SPITBF is set
SPI1BUF = 0x00; // Write to SPI data register to 

start SCK
while (SPI1STATbits.SPIRBF == 0);// wait for reception to 

complete
byte3 = SPI1BUF; // load received data to data array

// Reset CS_EN
CS_EN = LOW;

}

// Convert raw data to integer
temp = byte1;
temp = temp << 8;
temp |= byte2;
temp = temp << 8;
temp |= byte3;
temp = temp << 8; // Form Q0.31 number

// store in array
adc_temp[adc] = temp;

}
*/

return;
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}

/*------------------------------------------------------------------------------*/
void usbWritedata1On (void)
// Sends data in led1_on array via usb, eight channels at a time
{

long templong;
unsigned int i;

// Timing measurement
// TESTLED1 = HIGH;

if (usb1Flag == 1)
{

// Send preamble - four bytes of 0xFF
for(i=0; i<4; i++)
{

while(USB_TXE_ == HIGH); // wait if TXE is high, 
proceed if TXE is low

USB_WR = HIGH; // Set WR low to write 
data

PORTDbits.LSB = 255;
delay_us(1);
USB_WR = LOW; // Set WR high

}
usb1Flag = 0;

// while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 
TXE is low
// USB_WR = HIGH; // Set WR low to write data
// if (transientFlag == 1) PORTDbits.LSB = 255;
// else PORTDbits.LSB = 0;
// delay_us(1);
// USB_WR = LOW; // Set WR high

}

for(i=0; i<8; i++)
{

// Use next statement for testing voltage scale factor
//templong = unfilteredSamples[writeCtr];
templong = led1_out[writeCtr];
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low
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USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

// Timing measurement
// TESTLED1 = LOW;

return;
}
/*------------------------------------------------------------------------------*/
void usbWritedata1Off (void)
// Sends data in led1_off array via usb, eight channels at a time
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{
long templong;
unsigned int i;

for(i=0; i<8; i++)
{

templong = 0;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}
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return;
}
/*------------------------------------------------------------------------------*/
void usbWritedata2On (void)
// Sends data in led2_on array via USB, eight channels at a time
{

long templong;
unsigned int i;

for(i=0; i<8; i++)
{

// Use next statement for testing voltage scale factor
//templong = unfilteredSamples[writeCtr];
templong = led2_out[writeCtr];
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low
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USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

return;
}
/*------------------------------------------------------------------------------*/
void usbWritedata2Off (void)
// Sends data in led2_off array via USB, eight channels at a time
{

long templong;
unsigned int i;

for(i=0; i<8; i++)
{

templong = 0;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
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delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

writeCtr++;
}

return;
}

/*------------------------------------------------------------------------------*/
void usbWritetransient (void)
// Sends status of transient detection to PC
{

long templong;

templong = 0x00000000;
if (transFlag) templong = 0x00000001;

while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 
low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low



161

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

return;
}

/*------------------------------------------------------------------------------*/
void usbWritetranslevel (void)
// Sends status of transient detection to PC
{

long templong;

templong = transLevel;

while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 
low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
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USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

templong = templong>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if TXE is 

low

USB_WR = HIGH; // Set WR high
PORTDbits.LSB = templong;
delay_us(1);
USB_WR = LOW; // Set WR low

return;
}

/*------------------------------------------------------------------------------*/
void usbWriteTemp (void)
// Sends data in adc_temp array via usb
{

unsigned int i;
// unsigned int ctr;

for(i=0; i<8; i++)
{

/*
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
//delay_us(1);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 
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TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

adc_temp[i] = adc_temp[i]>>8;
while(USB_TXE_ == HIGH); // wait if TXE is high, proceed if 

TXE is low
PORTDbits.LSB = adc_temp[i];
// Pulse WR pin high for 200 ns
USB_WR = HIGH; // take WR high
for(ctr=0; ctr<24; ctr++);
USB_WR = LOW; // take WR low to write data

*/
}

return;
}

/*------------------------------------------------------------------------------*/
void clearData (void)
{

unsigned int n;

// Clear the raw data
for (n = 0; n<96; n++) raw_led[n] = 0;

// Clear the channel data arrays
for(n=0;n<32;n++)
{
 led1_in[n]=0;

led1_b1[n]=0;
led1_out[n]=0;



164

 led2_in[n]=0;
led2_b1[n]=0;
led2_out[n]=0;

}
// Clear the temp variable
chtemp = 0;
return;

}

/*------------------------------------------------------------------------------*/
void setupTransient (void)
{

unsigned int i, itest;
char inChar;
char inString[10];

// Set PortD<7:0> and PortD<14:12> as inputs
TRISD = 0x70FF; //RD15, RD11, RD10, RD9, and RD8 are outputs; 

others are inputs

TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

    delay_ms(1000);
TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

    delay_ms(1000);
TESTLED1 = HIGH;
delay_ms(1000);
TESTLED1 = LOW;

    delay_ms(1000);

// Read data string from usb port
// String format: "HLIMITx" where x is integer from 0 to 9
// Integer Transient limit
//    0 2.5V
//    1 1.25V
//    2 0.625V
//    3 0.313V
//    4 0.156V
//    5 0.078V
//    6 0.039V
//    7 0.020V
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//    8 0.010V
//    9 0.005V

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if 
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high
while (inChar != 72) { // Wait for H to be read

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if 
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high

}
inString[0] = inChar; // Record character
for(i=1;i<7;i++) // Read the remainder of the 

string
{

while(USB_RXF_ == HIGH); // Wait if RXF is high, proceed if 
RXF is low

USB_RD_ = LOW; // Set RD_ low
delay_us(2);
inChar = PORTDbits.LSB;
USB_RD_ = HIGH; // Set RD_ high
inString[i] = inChar;

}

// Set PortD pin directions to original values
TRISD = 0x7000; //RD15, RD11, RD10, RD9, RD8,RD7~RD0 are 

outputs; others are inputs
delay_ms(1000);
itest = inString[6] - 48;

transLevel = 0x40000000 >> itest;
//(inString[6] - 48); 

return;

}

/*------------------------------------------------------------------------------*/
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void clockSwitchC (void)
{
// TRISBbits.TRISB14 = 0; // PORTB 0 is an output
// LATBbits.LATB14 = HIGH; // PORTB 0 is high

TRISBbits.TRISB15 = 0; // PORTB 0 is an output
LATBbits.LATB15 = HIGH; // PORTB 0 is high

// // Configure Oscillator to operate the device at 40 MHz
// // Fin = 16 MHz
// // Fosc= Fin*M/(N1*N2), Fcy=Fosc/2
// // Fosc= 16 MHz*40/(4*2) = 80MHz, Fcy = 40 MHz
// PLLFBD = 38; // M = 40
// CLKDIVbits.PLLPOST = 0; // N2=2
// CLKDIVbits.PLLPRE = 2; // N1=4

// while (!OSCCONbits.LOCK); // wait for OSCCONbits.LOCK to be 
set, i.e. PLL to lock

OSCCONbits.MSB = 0x78; // Unlock sequence to allow write to
OSCCONbits.MSB = 0x9A; // OSCCONH system control 

register
OSCCONbits.MSB = 0x02; // Primary EC is the desired clock

OSCCONbits.LSB = 0x46; // Unlock sequence to allow write to
OSCCONbits.LSB = 0x57; // OSCCONL system control register
OSCCONbits.OSWEN = 1; // Request a clock switch

delay_us(100); // Delay 
// if (!OSCCONbits.LOCK) LATBbits.LATB14 = LOW; // PORTB14 low 
indicates PLL failure

if (OSCCONbits.OSWEN) // 
clock switch failure

{
LATBbits.LATB15 = LOW; // PORTB15 low indicates clock 

switch failure
OSCCONbits.LSB = 0x46; // Unlock sequence 

to allow write to
OSCCONbits.LSB = 0x57; // OSCCONL 

system control register
OSCCONbits.OSWEN = 0; // abort clock switch

}
return;

}
/*------------------------------------------------------------------------------*/
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Filename: initTimer2.c:

#include "p33FJ128GP708.h"
#include "dau_GP.h"
#include <math.h>

/*---------------------------------------------------------------------
  Function Name: initTimer2
  Description:   Initializes Timer2 for desired sample rate
  Inputs:        None
  Returns:       None
  Ex. call: initTimer2();
  Note: 
-----------------------------------------------------------------------*/
void initTimer2(void)
{

/* ensure Timer 2 is off and in 16-bit counter mode with 1:1 prescaler and 
source = Fcy*/

T2CON = 0x0000;

/* reset Timer 2 interrupt flag */
 IFS0bits.T2IF = 0;
 
 /* set Timer2 interrupt priority level to 4 */

IPC1bits.T2IP = 4;

/* enable Timer 2 interrupt */
 IEC0bits.T2IE = 1;
   

/* set Timer 2 period register */
// PR2 = 0x5014; // 512.5 microsec period and Fref = 489 Hz
// PR2 = 0x4010; // 410 microsec period and Fref = 610 Hz
// PR2 = 0x3340; // 328 microsec period and Fref = 762 Hz

// Desired interrupt rate = 1 MHz
// Fcy = 40E6 
// Clock divisor = 40E6/1E6 = 40 = 0x0028
//PR2 = 0x0028; // Result is 0.97 Mhz interrupt and 485 kHz clock
PR2 = 0x0026; // Result is 1.024 MHz interrupt and 512 kHz clock

return;
}
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Filename: isrTimer2.c:

#include <p33FJ128GP708.h>
#include "dau_GP.h"
#include <delay.h>
//unsigned char flag;
/*---------------------------------------------------------------------
  Function Name: T2Interrupt
  Description:   Timer2 Interrupt Handler
  Inputs:        None
  Returns:       None
-----------------------------------------------------------------------*/
void __attribute__((__interrupt__, no_auto_psv)) _T2Interrupt ( void )
{ 

if (flagClock == 1)
{

flagClock = 2;
TESTLED2 = HIGH;

}
else
{

flagClock = 1;
TESTLED2 = LOW;

}

/* reset Timer 2 interrupt flag */
 IFS0bits.T2IF = 0;

}

Filename: dau_GP.h:

//dau_GP.h
/*
Note: This is the header file that contains definitions of pins

and declarations of prototypes of functions used for data
collection using the DAU daughter board.

Pins/Signals ending with '_' are active low signals.

Include this file before calling the functions and/or using
the DAU pins

*/
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#ifndef __DAU_GP_H__
#define __DAU_GP_H__ 

//Control signals definitions using LAT registers

// Delta Sigma, LED control pin definitions
//c #define RESET_ LATGbits.LATG1
//c #define START_A LATFbits.LATF1
//c #define START_B LATFbits.LATF0
//c #define CS_EN LATGbits.LATG0
//c #define CS_C LATGbits.LATG12
//c #define CS_B LATGbits.LATG13
//c #define CS_A LATGbits.LATG14

#define SYNC_ LATGbits.LATG0
#define DREADY_ PORTAbits.RA2
#define LED1 LATGbits.LATG15
#define LED2 LATAbits.LATA3
#define TESTLED1 LATFbits.LATF1
#define TESTLED2 LATFbits.LATF0

//Digital buffer enable pins
#define BUFFEN1_ LATAbits.LATA6
#define BUFFEN2_ LATAbits.LATA7

//1:10 Clock driver bank output enable pins
#define G1 LATDbits.LATD8
#define G2 LATDbits.LATD9

//Clock oscillator enable pin
#define EOH LATDbits.LATD15

//USB-FIFO control pins
#define USB_RD_ LATDbits.LATD10
#define USB_WR LATDbits.LATD11
#define USB_TXE_ LATDbits.LATD12
#define USB_RXF_ LATDbits.LATD13

//Signal level definitions
#define HIGH 1
#define LOW 0

//Global variable prototypes
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extern unsigned int flagClock, ainSelect, ledFlag, dataSet; // Flags
extern unsigned int transFlag; // Flag to 
indicate presence of transient
extern long transLevel; // 
Changes above this value are transients
extern unsigned long chtemp; // Temp 
variable used in integration
extern long led1_in[32],led1_b1[32],led1_out[32]; // Channel data
extern long led2_in[32],led2_b1[32],led2_out[32]; // Channel data
extern long adc_temp[8]; // 
Temperature readings from adcs
extern int raw_led[96]; // Raw 
channel data from the ADCs
extern unsigned long y_filter[32];
extern unsigned int sampleCtr, writeCtr, recordFlag, usb1Flag;
extern unsigned char regdata[8][8];

extern long unfilteredSamples[64];
extern int unfilteredCtr;
extern int startupFlag, startupDelay, phaseCtr;

//Function prototypes
extern void clockSwitchC (void);
extern void powerUp (void);
extern void initADCs (void);
extern void configADCs (void);
extern void configTemp (void);

extern void initTimer1 (void);
//extern void _ISR _T1Interrupt (void);

extern void initTimer2 (void);
//extern void _ISR _T2Interrupt (void);

//extern void initTimer3 (void);
//extern void _ISR _T3Interrupt (void);

extern void initSpi1 (unsigned char bitMode);
extern void initSpi2 (void);
extern void accumOff1 (void);
extern void accumOn1 (void);
extern void accumOff2 (void);
extern void accumOn2 (void);
extern void clearData (void);
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extern void getData (void);
extern void getData1 (void);
extern void getData2 (void);
extern void getData3 (void);
extern void getData4 (void);
extern void getTemp (void);
extern void usbWritedata1Off (void);
extern void usbWritedata1On (void);
extern void usbWritedata2Off (void);
extern void usbWritedata2On (void);
extern void usbWritetransient (void);
extern void usbWritetranslevel (void);
extern void usbWriteTemp (void);
extern void setupTransient (void);

#endif
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APPENDIX E

PC SOFTWARE FOR THE ADS1278 DAU

Visual Basic 2006 Form Software:

Dim ChannelCount As Integer
Dim ChannelValueLo As Long
Dim ChannelValueHi As Long
Dim ByteCount As Integer
Dim PreambleCount As Integer
Dim Startup As Integer
Dim ReadCommand As Integer
Dim dataPoints As Long
Dim minVoltage As Single
Dim maxVoltage As Single
Dim voltageDiff As Single
Dim recordFlag As Byte
Dim recordedBytes As Long
Dim fileLocation As String
Dim OutputString As String
Dim LIAOutput(66) As Double
Dim LIAOutputOld(64) As Double
Dim LIAFiltered(64) As Double
Dim NewPinout(66) As Integer
Dim OldPinout(66) As Integer
Dim FilterFactor As Double
Dim TempDouble As Double
Dim OnDataFlag As Byte
Dim PinoutFlag As Byte
Dim part1 As Integer
Dim part2 As Integer
Dim part3 As Integer
Dim part4 As Integer
Dim DataRecordNumber As Integer
Dim DataRecordCount As Integer
Dim TransientFlag As Integer

Private Sub Command1_Click()
        
    minVoltage = CSng(Text6.Text)
    maxVoltage = CSng(Text5.Text)
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    voltageDiff = maxVoltage - minVoltage
    
    If Combo2.ListIndex = 0 Then
        FilterFactor = 1024
    Else
        If Combo2.ListIndex = 1 Then
            FilterFactor = 512
        Else
            If Combo2.ListIndex = 2 Then
                FilterFactor = 256
            Else
                If Combo2.ListIndex = 3 Then
                    FilterFactor = 128
                Else
                    If Combo2.ListIndex = 4 Then
                        FilterFactor = 64
                    Else
                        If Combo2.ListIndex = 5 Then
                            FilterFactor = 32
                        Else
                            If Combo2.ListIndex = 6 Then
                                FilterFactor = 16
                            Else
                                If Combo2.ListIndex = 7 Then
                                    FilterFactor = 8
                                Else
                                    If Combo2.ListIndex = 8 Then
                                        FilterFactor = 4
                                    Else
                                        FilterFactor = 2
                                    End If
                                End If
                            End If
                        End If
                    End If
                End If
            End If
        End If
    End If
        
    PinoutFlag = Combo3.ListIndex
    DataRecordNumber = CInt(Text2.Text)
    
End Sub
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Private Sub Command2_Click()

    If recordFlag = 0 Then
        'Open Text3.Text For Output As #1
        recordFlag = 1
        recordedBytes = 0
        Command2.BackColor = &H8080FF
        Command2.Caption = "Stop Recording"
        'Print #1, "0  0x00"
    Else
        recordFlag = 0
        Command2.BackColor = &H80FF80
        Command2.Caption = "Record Data"
        'Close #1
    End If
    
End Sub

Private Sub Command3_Click()

    Dim PortSel As Integer

    On Error GoTo EH
    
    'If the port is already open, close it
    If MSComm1.PortOpen = True Then
        MSComm1.PortOpen = False
        Command3.Caption = "Connect!"
    Else
        PortSel = Combo1.ListIndex
        
        ' Fire Rx Event Every Byte
        MSComm1.RThreshold = 1

        ' When Inputting Data, Input 1 Byte at a time
        MSComm1.InputLen = 1

        ' 921600 Baud, No Parity, 8 Data Bits, 1 Stop Bit
        MSComm1.Settings = "921600,N,8,1"
        
        ' Disable DTR
        MSComm1.DTREnable = True
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        ' Open COM Port
        MSComm1.CommPort = PortSel
        MSComm1.PortOpen = True
        
        Command3.Caption = "Disconnect!"
    End If
    Exit Sub
    
EH:
    MsgBox "ERROR: " & Err.Description & ". [Error #" & Err.Number & "]", 
vbCritical
End Sub

Private Sub Command5_Click()
    Dim tString As String
    Dim String2 As String

    On Error GoTo EH2
    
    String2 = CStr(Combo4.ListIndex)
    tString = "HLIMIT" + String2
    
    For i = 1 To 7
        Do While MSComm1.OutBufferCount > 500
        Loop
        MSComm1.Output = Mid(tString, i, 1)
    Next

Exit Sub
EH2:
    MsgBox "ERROR: " & Err.Description & ". [Error #" & Err.Number & "]", 
vbCritical

End Sub

Private Sub Form_Load()

    Dim Counter, i As Integer
    Dim TestFile As String
    Dim lhigh As Long
    Dim llow As Long
    Dim lhighorig As Long
    Dim dtemp1 As Double
    Dim dtemp2 As Double
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    Dim dtemp3 As Double
    Dim llarge As Long
    Dim templong As Long
    Dim temp As Long
    Dim larged As Double
    
    For Port = 0 To 16
         Combo1.AddItem "COM" & Port, Port
    Next
    
    Combo2.AddItem "BW = 0.00054 Hz, TC= 295 s", 0
    Combo2.AddItem "BW = 0.00108 Hz, TC= 147 s", 1
    Combo2.AddItem "BW = 0.0022 Hz, TC= 72.3 s", 2
    Combo2.AddItem "BW = 0.0043 Hz, TC= 37.0 s", 3
    Combo2.AddItem "BW = 0.0087 Hz, TC= 18.3 s", 4
    Combo2.AddItem "BW = 0.0174 Hz, TC= 9.1 s", 5
    Combo2.AddItem "BW = 0.0340 Hz, TC= 4.7 s", 6
    Combo2.AddItem "BW = 0.0620 Hz, TC= 2.6 s", 7
    Combo2.AddItem "BW = 0.1015 Hz, TC= 1.7 s", 8
    Combo2.AddItem "BW = 0.1475 Hz, TC= 1.1 s", 9
        
    Combo3.AddItem "New", 0
    Combo3.AddItem "Old+Adapter", 1
                
    Combo4.AddItem "2.5 Volts", 0
    Combo4.AddItem "1.25 Volts", 1
    Combo4.AddItem "0.625 Volts", 2
    Combo4.AddItem "0.313 Volts", 3
    Combo4.AddItem "0.156 Volts", 4
    Combo4.AddItem "0.078 Volts", 5
    Combo4.AddItem "0.039 Volts", 6
    Combo4.AddItem "0.020 Volts", 7
    Combo4.AddItem "0.010 Volts", 8
    Combo4.AddItem "0.005 Volts", 9

    PreambleCount = 0
    Startup = 1
    OnDataFlag = 1
    ChannelCount = 0
    ChannelValue = 0
    Combo2.ListIndex = 0
    FilterFactor = 1024
    Combo3.ListIndex = 1
    Combo4.ListIndex = 0
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    PinoutFlag = 1
    TransientFlag = 0
    
    'LIAFlag is set to 0 for lock in amp
    LIAFlag = 0
    
    'Init Recording Info
    recordedBytes = 0
    
    'Text2.Text = recordedBytes
    'Take care of scaling
    minVoltage = 0
    maxVoltage = 0.05
    Text5.Text = maxVoltage
    Text6.Text = minVoltage
    voltageDiff = maxVoltage - minVoltage
    
    'Init recordFlag to off until button is pressed
    recordFlag = 0
    fileLocation = "C:\data.raw"
    Text3.Text = fileLocation
    
    For Counter = 1 To 64
        LIAOutput(Counter) = 0
        LIAOutputOld(Counter) = 0
        LIAFiltered(Counter) = 0
    Next
    
    DataRecordNumber = 1 ' Record one data set every DataRecordNumber sets
    Text2.Text = CStr(DataRecordNumber)
    DataRecordCount = 1
        
    ' Populate pinout arrays

    NewPinout(1) = 27
    NewPinout(2) = 28
    NewPinout(3) = 25
    NewPinout(4) = 26
    NewPinout(5) = 19
    NewPinout(6) = 20
    NewPinout(7) = 17
    NewPinout(8) = 18
    NewPinout(9) = 11
    NewPinout(10) = 12
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    NewPinout(11) = 9
    NewPinout(12) = 10
    NewPinout(13) = 3
    NewPinout(14) = 4
    NewPinout(15) = 1
    NewPinout(16) = 2
    NewPinout(17) = 22
    NewPinout(18) = 21
    NewPinout(19) = 24
    NewPinout(20) = 23
    NewPinout(21) = 30
    NewPinout(22) = 29
    NewPinout(23) = 32
    NewPinout(24) = 31
    NewPinout(25) = 6
    NewPinout(26) = 5
    NewPinout(27) = 8
    NewPinout(28) = 7
    NewPinout(29) = 14
    NewPinout(30) = 13
    NewPinout(31) = 16
    NewPinout(32) = 15

    NewPinout(33) = 27 + 32
    NewPinout(34) = 28 + 32
    NewPinout(35) = 25 + 32
    NewPinout(36) = 26 + 32
    NewPinout(37) = 19 + 32
    NewPinout(38) = 20 + 32
    NewPinout(39) = 17 + 32
    NewPinout(40) = 18 + 32
    NewPinout(41) = 11 + 32
    NewPinout(42) = 12 + 32
    NewPinout(43) = 9 + 32
    NewPinout(44) = 10 + 32
    NewPinout(45) = 3 + 32
    NewPinout(46) = 4 + 32
    NewPinout(47) = 1 + 32
    NewPinout(48) = 2 + 32
    NewPinout(49) = 22 + 32
    NewPinout(50) = 21 + 32
    NewPinout(51) = 24 + 32
    NewPinout(52) = 23 + 32
    NewPinout(53) = 30 + 32
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    NewPinout(54) = 29 + 32
    NewPinout(55) = 32 + 32
    NewPinout(56) = 31 + 32
    NewPinout(57) = 6 + 32
    NewPinout(58) = 5 + 32
    NewPinout(59) = 8 + 32
    NewPinout(60) = 7 + 32
    NewPinout(61) = 14 + 32
    NewPinout(62) = 13 + 32
    NewPinout(63) = 16 + 32
    NewPinout(64) = 15 + 32
    NewPinout(65) = 65
    NewPinout(66) = 66

    OldPinout(1) = 29
    OldPinout(2) = 31
    OldPinout(3) = 25
    OldPinout(4) = 27
    OldPinout(5) = 21
    OldPinout(6) = 23
    OldPinout(7) = 17
    OldPinout(8) = 19
    OldPinout(9) = 13
    OldPinout(10) = 15
    OldPinout(11) = 9
    OldPinout(12) = 11
    OldPinout(13) = 5
    OldPinout(14) = 7
    OldPinout(15) = 1
    OldPinout(16) = 3
    OldPinout(17) = 20
    OldPinout(18) = 18
    OldPinout(19) = 24
    OldPinout(20) = 22
    OldPinout(21) = 28
    OldPinout(22) = 26
    OldPinout(23) = 32
    OldPinout(24) = 30
    OldPinout(25) = 4
    OldPinout(26) = 2
    OldPinout(27) = 8
    OldPinout(28) = 6
    OldPinout(29) = 12
    OldPinout(30) = 10
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    OldPinout(31) = 16
    OldPinout(32) = 14
    
    OldPinout(33) = 29 + 32
    OldPinout(34) = 31 + 32
    OldPinout(35) = 25 + 32
    OldPinout(36) = 27 + 32
    OldPinout(37) = 21 + 32
    OldPinout(38) = 23 + 32
    OldPinout(39) = 17 + 32
    OldPinout(40) = 19 + 32
    OldPinout(41) = 13 + 32
    OldPinout(42) = 15 + 32
    OldPinout(43) = 9 + 32
    OldPinout(44) = 11 + 32
    OldPinout(45) = 5 + 32
    OldPinout(46) = 7 + 32
    OldPinout(47) = 1 + 32
    OldPinout(48) = 3 + 32
    OldPinout(49) = 20 + 32
    OldPinout(50) = 18 + 32
    OldPinout(51) = 24 + 32
    OldPinout(52) = 22 + 32
    OldPinout(53) = 28 + 32
    OldPinout(54) = 26 + 32
    OldPinout(55) = 32 + 32
    OldPinout(56) = 30 + 32
    OldPinout(57) = 4 + 32
    OldPinout(58) = 2 + 32
    OldPinout(59) = 8 + 32
    OldPinout(60) = 6 + 32
    OldPinout(61) = 12 + 32
    OldPinout(62) = 10 + 32
    OldPinout(63) = 16 + 32
    OldPinout(64) = 14 + 32
    OldPinout(65) = 65
    OldPinout(66) = 66

End Sub

Private Sub MSComm1_OnComm()
Dim cData As String              ' Holds our incoming data
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Dim bData As Byte                ' Holds our converted data
Dim NewOnDataFlag As Byte        ' Flag to store whether data is LED1 or 2 on or 
off
Dim NewChannelCount As Integer   ' Which channel number gets updated
Dim exponent As Integer          ' Used for the exponent
Dim temp As Double               ' Temp number for 2 ^ exponent
Dim temp2 As Long
Dim i As Integer

Dim tempChannelValue As Long
Dim hex_string As String         ' Used to print hex value to file

Dim valuedbl As Double
Dim tempdbl As Double
Dim largedbl As Double
Dim ChannelValueHiOrig As Long

    ' If comEvReceive Event then get data and display
    
    If Startup = 1 Then
        ' Read byte from USB
        If MSComm1.CommEvent = comEvReceive Then
            cData = MSComm1.Input               ' Get data
            ' If byte has value of 0xFF, increase preamble count, if not, set preamble 
count to zero
            bData = Asc(cData)
            If bData = 255 Then
                PreambleCount = PreambleCount + 1
                ' If we have 4 bytes of 255, preamble has been sent
                If PreambleCount = 4 Then
                    Startup = 0
                    PreambleCount = 0
                End If
            Else
                PreambleCount = 0
            End If
        End If
        
    Else
        If MSComm1.CommEvent = comEvReceive Then
            cData = MSComm1.Input               ' Get data
            ByteCount = ByteCount + 1           ' Increment ByteCount
            bData = Asc(cData)
            If recordFlag = 1 Then
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                recordedBytes = recordedBytes + 1   ' Increment recordedBytes
            End If
    
            ' Data bytes are read in least significant byte first
            If ByteCount = 1 Then
                exponent = 0
                part1 = bData
            End If
            If ByteCount = 2 Then
                exponent = 8
                part2 = bData
            End If
            If ByteCount = 3 Then
                exponent = 16
                part3 = bData
            End If
            If ByteCount = 4 Then
                exponent = 24
                part4 = bData
            End If
    
            If ByteCount = 4 Then
    
                ChannelValueLo = part2 * (2 ^ 8) + part1
                ChannelValueHi = part4 * (2 ^ 8) + part3
                ChannelCount = ChannelCount + 1
        
                'Make the update to the appropriate bar
                Call UpdateSize(ChannelCount, ChannelValueLo, ChannelValueHi, 
PinoutFlag, 1)

                'Reset Variables
                ByteCount = 0
                If ChannelCount = 66 Then
                    ChannelCount = 0
                    Startup = 1
                End If
            End If
        End If
    End If

End Sub

Private Sub UpdateSize(Channel As Integer, IntensityLo As Long, IntensityHi As 
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Long, Pinout As Byte, Filtered As Byte)
    Dim Index As Integer
    Dim Tempheight As Long
    Dim VoltValue As Double
    Dim tempD As Double
    Dim SaveFileName As String
    Dim qTime As Double
    Dim iTime As Long
    Dim templong As Long
    Dim msActual As Integer
    Dim msString As String
    Dim high As Integer
    Dim low As Integer
    Dim sum As Long
    Dim value As Double
    Dim tempdbl As Double
    Dim large As Double
    Dim large2 As Double
    Dim dummy As Integer
    Dim IntensityHiOrig As Long
    Dim ActualChannel As Integer
    
    large = 2147483392#
    
    If (Channel < 66) Then
        ' Translate sample into real number
        ' First determine if number is negative
        ' If number is negative calculate twos complement
        IntensityHiOrig = IntensityHi
        
        If ((IntensityHi And &H8000) = 32768) Then
            'Number is negative so calculate twos complement
            IntensityLo = IntensityLo Xor 65535
            IntensityHi = IntensityHi Xor 65535
            IntensityLo = IntensityLo + 1
            If IntensityLo > 65535 Then
                'Carry into IntensityHi
                IntensityLo = 0
                IntensityHi = IntensityHi + 1
            End If
            ' Translate to real number
            tempdbl = CDbl(IntensityHi / large)
            value = -1 * (CDbl(tempdbl * 65536#) + CDbl(IntensityLo / large))
            Else
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            'Translate to real number
            'Number is positive and high bit of IntensityHi is zero
            'so the next line will not cause overflow
            value = CDbl((IntensityHi * 65536# + IntensityLo) / large)
        End If
        ' Vref is defined as difference betwee Vref+ and Vref- or 2.5VDC
        ' Also multiply by 2 since LIA filter output is magnitude of input not peak to 
peak
        value = value * CDbl(5#)
    Else
        ' Data indicates status of transient detection
        If (IntensityLo > 0) Then
            value = 1#
        Else
            value = 0#
        End If
    End If
    
    ActualChannel = 0
    ' Place data in correct location considering pinout and order that MCU reads 
channel data
    If Pinout = 0 Then
            ActualChannel = NewPinout(Channel)
    Else
        If Pinout = 1 Then
            ActualChannel = OldPinout(Channel)
        End If
    End If
    
    LIAOutput(ActualChannel) = value
    
    ' If this is the last data for this spectrum - filter data and display values
    If Channel = 66 Then
        'Display LIA Data
        For voltCnt = 1 To 64
            ' Filter Samples - First order Butterworth
            LIAFiltered(voltCnt) = LIAFiltered(voltCnt) * (CDbl(FilterFactor) - 2#) / 
CDbl(FilterFactor)
            LIAFiltered(voltCnt) = LIAFiltered(voltCnt) + (LIAOutputOld(voltCnt) + 
LIAOutput(voltCnt)) / CDbl(FilterFactor)
            LIAOutputOld(voltCnt) = LIAOutput(voltCnt)
            VoltValue = LIAFiltered(voltCnt)
                           
            Index = voltCnt - 1
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            Tempheight = CLng(4815 - CLng(VoltValue * CDbl(4815 / voltageDiff)) + 
CLng(minVoltage * CDbl(4815 / voltageDiff)))
            If Tempheight < 0 Then
                Tempheight = 0
            End If
            If Tempheight > 4815 Then
                Tempheight = 4815
            End If
            If (voltCnt < 33) Then
                Shape3(Index).Height = Tempheight
                Shape1(Index).Height = 4815 - Tempheight
                Shape1(Index).Top = 600 + Tempheight
            Else
                Shape10(Index - 32).Height = Tempheight
                Shape7(Index - 32).Height = 4815 - Tempheight
                Shape7(Index - 32).Top = 600 + Tempheight
            End If
        Next
        
        If LIAOutput(66) > 0 Then
            Command4.BackColor = &H8080FF
            Command4.Caption = "Transient"
            TransientFlag = 1
        Else
            Command4.BackColor = &H80FF80
            Command4.Caption = "Stable"
            TransientFlag = 0
        End If
                            
        If recordFlag = 1 Then
        
            'Clear the output string
            OutputString = ""
            'Open up the file for writing
            SaveFileName = "" + Text3.Text
            Open SaveFileName For Append As #1
            'Populate the output string
            For voltCnt = 1 To 64
                OutputString = OutputString + " " + CStr(LIAFiltered(voltCnt))
            Next
            OutputString = OutputString + " " + CStr(LIAOutput(65))
            OutputString = OutputString + " " + CStr(LIAOutput(66))
            
            qTime = Timer
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            iTime = Int(qTime)
            msActual = CInt((qTime - CDbl(iTime)) * 1000)
            msString = Format(msActual, "000")
            If DataRecordCount = DataRecordNumber Then
                Print #1, "" + CStr(Year(DateTime.Date)) + " " + 
CStr(Month(DateTime.Date)) + " " + CStr(Day(DateTime.Date)) + " " + 
CStr(Hour(DateTime.Time)) + " " + CStr(Minute(DateTime.Time)) + " " + 
CStr(Second(DateTime.Time)) + "." + msString + " " + OutputString
                DataRecordCount = 0
            End If
            DataRecordCount = DataRecordCount + 1
            'Close the file
            Close #1
            

        End If

    End If

End Sub
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APPENDIX F

ADS1278 DAU SCHEMATIC DIAGRAM
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APPENDIX G

CORRELATION COEFFICIENT SOFTWARE

Filename: pcorr.c. 

#include <stdio.h>
#include <math.h>
#define MAX_DATA 1000

int main(int argc, char *argv[])
{

/* Feb. 22, 2012                                        */
/* Calculates Pearson correlation coefficient           */
/* Input file consists of 1002 rows of data.            */
/* First row is mean of each channel                    */
/* Second row is standard deviation of each channel     */
/* Remainder of rows are samples for all channels       */
/* Each row is Ch1 to Ch 32 separated by a space.       */
/* Output data file is 32 rows and columns              */
/* of Pearson correlation coefficients                  */

  int incnt, chcnt, chcnt2;
  double mean[32], stddev[32];
  double indata[32][MAX_DATA];
  double outdata[32][32];

  FILE *idfPtr; /* idfPtr = input.dat file pointer */
  FILE *odfPtr; /* odfPtr = output.dat file pointer */

/* Read samples from input data file */
  if ( ( idfPtr = fopen( "corr-in.txt", "r" ) ) == NULL )
    printf( "No input file!\n" );
  else
  {
    printf( "Reading input data\n" );
    for(incnt=0; incnt<32; incnt++)
    {
      fscanf( idfPtr, "%lf", &mean[incnt]);
    }
    for(incnt=0; incnt<32; incnt++)
    {
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      fscanf( idfPtr, "%lf", &stddev[incnt]);
    }
    for(incnt=0; incnt<MAX_DATA; incnt++)
    {
      for(chcnt=0; chcnt<32; chcnt++)
      {
        fscanf( idfPtr, "%lf", &indata[chcnt][incnt]);
      }
    }
    fclose( idfPtr );
    printf( "Got the input data okay\n" );
  }

/* Open output file */
  odfPtr = fopen( "output.dat", "w" );

/* Calculate correlations */
  for(chcnt=0; chcnt<32; chcnt++)
  {
    for(chcnt2=0; chcnt2<32; chcnt2++)
    {
      /* Compute correlation */
      outdata[chcnt][chcnt2] = 0.0;
      for(incnt=0; incnt<MAX_DATA; incnt++)
      {
        outdata[chcnt][chcnt2] += (indata[chcnt][incnt]-mean[chcnt]) * \
        (indata[chcnt2][incnt]-mean[chcnt2]);
      }
      outdata[chcnt][chcnt2] = (outdata[chcnt][chcnt2])/ \
      ((MAX_DATA-1)*stddev[chcnt]*stddev[chcnt2]);
    }
  } 

/* Print result to output file */
  for(chcnt=0; chcnt<32; chcnt++)
  {
    for(chcnt2=0; chcnt2<32; chcnt2++)
    {
      fprintf( odfPtr, "%e ", outdata[chcnt][chcnt2]);
    }
    fprintf(odfPtr, "\n");
  }

  fclose( odfPtr );
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  return 0;
}
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