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CHAPTER 1 

WHY GRAPHENE? 

Graphene can be used to create circuits that could potentially speed electronic 

components by as much as 100 times [1].  Such blazing speed might also help produce 

ever-tinier computing devices with more power than your clunky laptop [2].  Graphite is 

a polymorph of the element carbon [3].  Graphite is made up of tiny sheets of graphene.  

Graphene sheets stack to form graphite with an interplanar spacing of 0.335 nm, which 

means that a stack of 3 million sheets would be only one millimeter thick. [1]  In 2004, 

two Russian-born scientists at the University of Manchester used the scotch tape method 

to create monolayer graphene devices [2].  This nano scale 2 dimensional sheet is 

graphene.  Novoselov and Geim's discovery is now the stuff of scientific legend, with the 

two men being awarded the Nobel Prize in 2010 [4].  Graphene has exploded on the 

scene over the past couple of years.  “Six years ago, it didn't exist at all, and next year we 

know that Samsung is planning to release their first mobile-phone screens made of 

graphene.” – Dr Kostya Novoselov [4].  Graphene forms a hexagonal lattice, each vertex 

tipped with a carbon atom. At the molecular level, it looks like chicken wire [4].  There 

are two common lattice formations of graphene nanoribbons, armchair and zigzag.  These 

nanoribbons have drastically different electronic properties.  Zigzag edges can sustain 

edge surface states and resonances that are not present in the armchair case Rycerz et al., 

2007 [5].  In this work we focused on the armchair graphene nanoribbon formation 

(acGNR). 

Graphene has several notable properties that make it worthy of research.  The first 

of which is its remarkable strength.  Graphene has a record breaking strength of 200 
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times greater than steel, with a tensile strength of 130GPa [1].  Graphene has a Young’s 

modulus of 1000, compared to just that of 150 for silicon [1].  To put it into perspective, 

if you had a sheet of graphene as thick as a piece of cellophane, it would support the 

weight of a car. [2]  If paper were as stiff as graphene, you could hold a 100-yard-long 

sheet of it at one end without its breaking or bending. [2] 

Another one of graphene’s attractive properties is its electronic band gap, or 

rather, its lack thereof.  Graphene is a Zero Gap Semiconductor. So it has high electron 

mobility at room temperature.  Electron transfer is 100 times faster than Silicon [1].  With 

zero band gap, in the massless Dirac fermion structure, the graphene ribbon is 

theoretically lossless, making it a perfect semiconductor.  Even in the massive Dirac 

fermion case, the band gap is on the order of 50 meV [6]. 

This research began, as discussed in Chapter 2, with an armchair graphene 

nanoribbon unit cell of N=8.  There were 16 electron probabilities (ψ) provided per unit 

cell that spanned varying Fermi energy levels.  The carbon atoms are separated by 1.42Å.  

The unit vector is given as, a = dx, where d = 3αcc and αcc = 1.42Å is the carbon bond 

length [5].  Because of the close proximity of the carbon atoms, relative to the plasmon 

wavelength, the charge density per unit cell can be approximated by a single line 

allowing us to reduce the charge in 16 atoms down to 8.  Poisson’s equation, discussed in 

Chapter 3, was expanded into the 3 dimensional space, allowing us to calculate the 

potential (φ). 

Once φ was obtained, expanding the electric field gradient equation to support 3 

dimensions allowed us to calculate the electric field lines associated with those voltage 

potentials.  This was accomplished using computer algorithms, covered in Chapter 4.  
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The field lines and potentials were then rendered in both 2 dimensions and 3 dimensions 

for observation and those graphics are covered in Chapters 5 and 6.  Although graphene 

unit cells of N=8 and N=5 were used in this research, the algorithms and rendering 

programs created could easily be adapted to accommodate any size graphene nanoribbon. 
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CHAPTER 2 

THE PROJECT 

The end state goal of this project was to produce graphical 2 dimensional and 3 

dimensional renderings of the electric field lines and voltage potentials associated with 

plasmons in graphene nanoribbon.  Electron probabilities were provided for two different 

graphene unit cell structures: N=8 and N=5.  The particular unit cell graphene geometric 

shape, specific to this research is what is known as the arm-chair graphene nanoribbon 

(acGNR) representation.  Another common graphene structure is the zigzag structure.  

Our research was specific to the armchair structure, but the zigzag structure is worth 

mentioning. 

The unit cell of the acGNR of atomic width N (acGNRN) contains 2N atoms 

arranged in a honeycomb structure. [5]  The unit vector is given as, a = dx, where d = 

3αcc and αcc = 1.42Å is the carbon bond length.  This geometry will be revisited later in 

Chapter 3.  The pzTB Hamiltonian of this structure is a 2N × 2N matrix containing only 

nearest-neighbor couplings. [5]  The algorithms and calculations derived as the basis of 

this research, were done so, working with the N=8 armchair nanoribbon structure.  

However, it should be noted that it is quite straightforward to adjust the algorithms to 

handle any value of N desired, which was the case for the N=5 dataset. 

The goal of this research is to produce an electric field profile computer 

simulation that models the acGNR nanoribbon.  Note that electric field is defined as:  

The distribution in space of the strength and direction of forces that would be 

exerted on an electric charge at any point in that space.  Electric fields themselves 

result directly from other electric charges or from changing magnetic fields.  The 
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strength of an electric field at a given point in space near an electrically charged 

object is proportional to the amount of charge on the object, and inversely 

proportional to the distance between the point and the object. [8]  

As mentioned in the chapter opening, this research began with the probability of 

the electron, given as an approximation as to where the electron would exist with respect 

to the sixteen locations lying along the honeycomb N=8 structure.  The electron 

approximations will be denoted as psi (ψ).  Taking the sum of the sixteen charge densities 

ψ*ψ, associated with the nanoribbon, as they lie across the ribbon, results in an expected 

value of 1.  The probability of 1 is expected because only 1 electron may be present in 

each unit cell.  In order to use the electron approximations for computation, the values 

had to be converted into charge densities.  For this paper, the charge densities are denoted 

as rho (ρ).  Note that, charge density is defined as: The electric charge per unit area or per 

unit volume of a body or of a region of space. [8]  Approximately 35,000 sets of electron 

approximations were provided, along with their associated propagation (k) vector. Note 

that, k =2π / λ = (scalar) the electron wavenumber along travel direction. [11].  These 

electron probabilities were provided as complex numbers.  

Example:  -0.21425903278600417 - 0.0012253341035276457*I.   

In preparation for calculating the field and potential, the magnitudes of the charge density 

had to be obtained.  This was accomplished by multiplying the approximation ψ by its 

complex conjugate.  This will be denoted as (ψ*ψ), where ψ* represents the complex 

conjugate.  

From the above example given of the complex wave function, multiplying ψ*ψ 

yields: 0.045908435.  This can be thought of as the probability that the electron would 
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exist in this location along the nanoribbon.  The un-normalized units for charge density 

(ρ) are given by
 

  . [13]   

Once ρ was obtained, the values could be used to calculate the voltage potential.  

Note that voltage potential is denoted as phi (φ) using an expanded version of Poisson’s 

Equation.  

      
 

  
  [14] 

Note that epsilon (ε0) is the permittivity constant of free space.  Poisson’s 

Equation can easily be expanded to support all 3-dimensions, which is needed to 

accommodate the Graphene acGNR environment.  This was accomplished using the 

central difference method explained in Chapter 3.  The graphene nanoribbon is 2-

dimensional, however, the electric field profile, as a result, is 3-dimensional, therefore 

requiring Poisson’s equation to be expanded to 3-dimensions.  As the voltage potentials 

are calculated, the entire dataset had to be evaluated for convergence by comparing the 

current calculated values to the last set of calculated values.  This is necessary to confirm 

that the voltage potential calculations have finished contributing to their nearest 

neighbors, as mentioned previous.  This convergence test is nested within the voltage 

potential iterative loop.  For this research, the convergence test threshold ended up being 

set to 0.000001 or 10
-7

 resolution.  The calculation will be explained in detail in Chapter 

3. 

Once the values had stabilized to the point of passing the convergence threshold, 

the voltage potential is captured and becomes the basis for computing the electric field.  

The electric field profile is determined using the following equation:  
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       [15]. 

The un-normalized electric field is measured in units of V/m [13].  Like the 

Poisson equation referenced previous, the electric field equation must be expanded to 3-

dimensional space in order to support the voltage potential dataset.  Like Poisson’s 

equation, this is easily done using the gradient method.  The electric field is the derivative 

of the voltage potential with respect to a particular axis.  Expanding the above equation to 

account for each individual axis in 3-dimensional space; yields the following: 

 (     )    
  (     )

  
  

  (     )

  
  

  (     )

  
 [15] 

Where i, j, and k are unit vectors in the x, y, and z direction.  The above equation 

will be expanded in detail in Chapter 3. 

Once the electric field profile was computed, both the field lines and voltage 

potentials could be represented graphically.  It should be noted that Wolfram 

Mathematica 7 [16] was the computer application used to both compute and render the 

data detailed in this paper.  Chapter 3 explains the algebra and the geometry behind the 

research. 
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CHAPTER 3 

THE ALGEBRA AND THE GEOMETRY 

The Algebra 

 

The crux of the problem was to determine field and potential from the 

probabilities.  For this we use Poisson’s Equation and the central difference method [14].  

An explanation of the Central-Difference Formula follows. 

Due to the geometrical make-up of the graphene, and the physical properties of 

the charge densities, it is understood that each computation point in the nanoribbon 

couples to its nearest neighbor in terms of the voltage potential.  Likewise, that 

computation point also provides an electrical contribution to its nearest neighbor, and so 

forth and so on, until the entire set is in equilibrium. 

Here is how Poisson’s Equation was used to convert the electron densities into 

voltage potentials.  Starting with Poisson’s equation itself:  

      
 

  
 

The left hand side (lhs) of the equation was expanded to accommodate 

dimensions:  x, y, and z. 

    

   
 

    

   
 

    

   
 

Continuing with the lhs and taking the discrete derivative of 
    

   
 looks like: 
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The same step needs to be performed on the Y and Z components.  In order to use 

with Poisson’s equation, the second derivative is required, and performing that on X 

looks like: 

   

   
 

(
          

     
          

  )

  
   

Again, the same must done for the Y and Z components.  Reducing the lhs for X: 

   

   
 

             

   
 

Applying this to the entire lhs produces: 

             

   
 

             

   
 

             

   
 

The definition of ρ in Poisson’s Equation and defined in Chapter 2, is:     

The right hand side (rhs) may be re-written as: 

 
   

  
 

Setting both sides equal to each other results in: 

 

             

   
 

             

   
 

             

   
  

   

  
 

 

Solving for φ (0) in each dimension gives the final equation that forms the basis 

behind the solver algorithm. 

 ( )        
             

 
   

        

   
 

        

   
 

        

   
  

   

  
  

Epsilon (ε0) is the permittivity constant of free space: 



10 
 

 

ε                     
    

    
  

The differential form of Gauss’s law will prove useful for the electric field lines 

and is defined in 

Poisson’s Equation derived from Gauss’s Law using general vector notation.  

Note that E represents vector notation. 

     
 

  
                   ( ) 

This is Gauss’s Law in a differential form. Here we have applied a short-hand 

notation that is common for the vector derivatives by using a vector operator   called the 

del operator, which in Cartesian coordinates is 

    
 

  
  

 

  
  

 

  
  

The static electric field is a conservative field, which we have expressed as 

       

This means that the electric field could be represented as the gradient of a scalar 

electric potential V 

                       ( ) 

Recall the vector identity 

       

Combine (a) with (b) and obtain 
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That we have computed the potential from the charge densities, we use this result 

to calculate the electric field lines.  Reference the equation (b) noted above in Poisson’s 

Equation derivation: 

       

As was done with Poisson’s Equation, the electric field equation must be 

expanded to accommodate all three dimensions.  Expanding the rhs for the discrete 

derivative and replacing V with φ results in: 

        
 (         ) 

  
 

(          )

  
 

(          ) 

  
 

Now the 2 major parts of the problem, the voltage potentials and the field lines, 

have been expanded for discrete use in all 3 dimensions. 

All that’s missing now is ρ and all parts required for the calculations will have 

been obtained.  ρ was obtained by solving the Schrodinger equation for the nanoribbon.  

As mentioned in Chapter 2, these probabilities sum to 1 across the nanoribbon unit cell 

and that fact was used as an accuracy check against the computed ρ values.  The wave 

functions are denoted as ψ.  An editor was created in Mathematica to convert the wave 

functions ψ into the charge densities ρ for insertion into Poisson’s equation.  Details on 

that editor can be found in Appendix A.   

Note that ρ = ψ* ψ  where ψ* is the complex conjugate of ψ.  Starting with the 16 

electron probabilities; and multiplying them by their complex conjugate, then summing 

horizontally across the unit cell using single line approximation, results in ρ on a set of 8 

points. 
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Figure 1 - acGNR8 Representation of single line approximation used.  The honeycomb 
structure shows the electrons that were summed together to form the single 
line. 

 

The figure above illustrates the electron summing order followed for single line 

approximation.  The red dots on the left represent the pz orbital electrons.  The single line 

end result is shown on the right.  This method was acceptable due to the fact that the 

plasmon wavelength is infinitely long with respect to the graphene unit cell.  Now that all 

of the components of Poisson’s Equation are collected, the data is ready for computation.  

More on the calculations will be explained in Chapter 4 
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The Geometry 

 

As with any technical multidimensional computation, In order to ensure accurate 

calculations, one must fully understand the geometric make-up of the environment itself.  

As introduced in the opening; the 2-dimensional graphene nanoribbon exists in a 

hexagonal shape, referred to as a honeycomb structure. 

“Geometry of the Unit Cell: The unit cell of the acGNR of atomic width N 

(acGNRN) contains 2N atoms arranged in a honeycomb structure. The unit vector is 

given as, a = dx, where d = 3αcc and αcc = 1.42Å is the carbon bond length. The pzTB 

Hamiltonian of this structure is a 2N × 2N matrix containing only nearest-neighbor 

couplings.” [5]  The renderings produced from this research were done for the N=8 and 

N=5 armchair graphene nanoribbon.  Based on the way the algorithms were designed, it 

is straightforward to extend the calculations for any value of N. 

The initial problem set environment was established as a starting point, by 

representing the graphene ribbon bound inside a transparent 3-dimensional box.  The size 

of the box was adjusted accordingly to allow the field lines to fully develop.  The actual 

electric field profile itself would determine the appropriate problem set parameters.  We 

now consider an armchair nanoribbon with armchair edges along the y direction. The 

boundary conditions at the edges of the ribbon located at x=0 and x =67, φ= 0 [19].  

Using the voltage potential boundary conditions of φ = 0 at the ends of the nanoribbon, 

along with the initial threshold convergence setting of 1x10
-6

.  The geometry of the 

problem set was expanded as needed based on the fringing profile of the electric field 

lines themselves.  Ultimately we determined that a suitable geometry for the problem was 

an array of points with the nanoribbon embedded in the center.  
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The convergence test was introduced into the algorithm as a way to ensure that 

the computations were not exiting prematurely.  After one loop of the algorithm, the 

results were compared to the previous iteration.  Every element in the 67x67x67 array 

was compared to itself in the previous iteration.  If that data was different by more than 

1x10
-6

 then the algorithm was invoked again.  This meant that the nearest neighbor 

contributions were still taking place at a significant rate.  Stopping the computations early 

would negatively impact the potentials and the field lines.  The convergence test looked 

like the following:  

 Vnew is the newest set of voltage potentials calculated in the Poisson solver.   

 Vold is the previous set of voltage potentials calculated in the Poisson solver.  This 

will be explained in more detail in Chapter 4. 

 

         

    
                       

 

Again the Convergence Threshold was originally set to 1x10
-6

.  This means that 

the change in each point in the 300,763 element dataset, from one iteration to another, 

must be less than 0.000001 in order to pass the test.   

The resultant electric field rendering, would be compared visually to another 

electric field rendering made from a larger 133x133x133 array using the same set of ρ 

data approximations, to confirm that the field lines are essentially identical.  It is 

important, due to the boundary conditions to ensure that the electric field profile is not 

being artificially clipped by constraining the area of the problem set.  The geometry 

behind the problem set is not arbitrary, but it does not drive the computations.  In our 
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work, the electric profile is visually compared for various problem space geometries and 

the smallest suitable resolution was chosen.  The initial constants behind the 3-

dimensional environment were derived as follows: 

 

 

Δx = ((√3/2)/3)* αcc 0.409918691 Å  

Δy = (3/3) 1 Å  

Δz = (3/3)* αcc 1.42 Å 

Table 1 - Revised Delta Coefficients – New values for the spacing constants  
after reducing each one by 3. 

 

The orientation of the problem space is represented below.  The calculated ρ 

values are placed along the nanoribbon in the z-direction.  The ρ values were scaled using 

the multiplier     
 

 
 

 

  
 , representing one-half wavelength of a plasmon and distributed 

along the ribbon in the z direction to fill in the points.  Chapter 4 will explain this more in 

detail.  Like the ψ editor, a ρ editor was created in Mathematica to aid in creating the 

scaled list of the nanoribbon.  See Appendix B for details pertaining to the ρ editor.  

Below is representation of the non-zero charge density values within the nanoribbon.  
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Figure 2 - Graphene Ribbon with unique electron approximations.  This figure illustrates 
the points across the ribbon where the given electron approximations exist for 
their respective maximum values 
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The figure above represents the eight electron charge density points at the center 

of the problem space.  This max occurs at both Y34 and Z 34, and spans from X23 → X44 

with 2 zero value points spaced in between each non-zero point.  

If you were to sum these eight points, the result would be 1.  Applying the scaling 

factor mentioned previous and filling in the remainder of the points along the Z direction 

completes the ribbon. 
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Figure 3 - Non-Zero charge densities in graphene nanoribbon.  Shown above are the 
positions in which non-zero values exist for the graphene nanoribbon.   
The charge density is a maximum in the very middle of the ribbon, and  
decrease sinusoidally out towards the ends. 
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The figure above represents all the non-zero data points placed along the ribbon. 

Determining LX and LY was quite trivial.  LZ was fixed due to the formation of the 

acGNR.  Since the goal of the research was to allow the potentials and the field lines to 

occur naturally, the requirements for the area surrounding the nanoribbon were: 

 Do not interfere with the voltage potential and field line fringing  

 Problem space small enough so that the algorithms could be run in a realistic 

duration. 

The second requirement exists because expanding the problem space bounding 

box to 133x133x133 resulted in algorithm run times of 9 days at a 1x10
-6

 convergence 

threshold.  Running the algorithm for a 267x267x267 bounded box at a 1x10
-6

 

convergence threshold, was terminated after 24 days of runtime.  Its estimated based on 

the increase in run times from 67x67x67 to 133x133x133 that the 267x267x267 element 

algorithm would take ~90 days to run.  

As depicted in the figures above, the problem space consists of a bounded box 

with the nanoribbon lying in the middle, starting at 1/3 LX and ending at 2/3 LX.  For the 

size of 67x67x67, the acGNR was placed at Y34, and spanned from X23 → X44, and from 

Z0 →Z67. 

LX, LY, and LZ are computed by multiplying Δx, Δy, Δz by 67. 
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Δx x 67 27.4646 Å  

Δy x 67 67 Å 

Δz x 67 95.14 Å 

Table 2 - Total Length Constants – Represented here  
are the values used to define the problem set 

 

The space spanned 67 points across all three dimensions, allowing for the 

potentials and the field lines to fully fringe.  

After expanding the problem space to 133x133x133 and comparing those results 

with the 67x67x67 electric field profile, it was determined that 67x67x67 would allow us 

to successfully capture the field lines without artificially influencing the profile.  An array 

of this size (67x67x67) results in 300,763 data points.  Below are three different figures 

for perspective and comparison.  The first is the 67x67x67 problem space with the 

acGNR8 hung in the middle.  The second is the 67 array, and the third is the 133 array.  

Notice there is no difference visually between the two profiles. 
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Figure 4 - acGNR8 with the problem space boxed in around it for initial perspective. 



22 
 

 

 

Figure 5 – 3D Electric Field Lines for 67x67x67 the array  

 

These are the field lines produced from the 67x67x67 array. 
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Figure 6 – 3D Electric Field Lines for the 133x133x133 array 

 

These are the field lines produced from the 133x133x133 array.  As in the first 

comparison test, the voltage potentials from the 67 array were compared, as a ratio to the 

133 array.  The following is a graphical representation of that comparison.  Note that no 

single ratio from any of the 300,763 data points ever exceeded that of 1.1.  The slight 

difference in values of 10 percent told us that the 67x67x67 bounded space would be 

sufficient, since our goal in this work is to gain intuition through a visual representation. 
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Figure 7 - Comparison of the 133 array to the 67 array.  This picture shows a point by 
point comparison of the two arrays to see how much the data was changing 
between the two.  A very small difference existed between the two runs.   
So the 67 array problem space was used as a result. 

 

This picture represents the data from the 133x133x133 array compared to the data 

from the 67x67x67 array.  Between the visual inspection of the field line vectors and the 

ratio comparison of the voltage potentials, it was determined that an array of 67x67x67 

was large enough to satisfy the result of this simulation. In doing so, it was decided to 

increase the 67x67x67 space, convergence threshold to 1x10
-7 

and compare that 1x10
-

6.
for good measure.  The field lines were an exact match to the naked eye, as expected.  

When the dataset was compared as a ratio to the other, the results were quite close.  In 
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fact, the data was an exact match along the middle of the dataset, and when it did vary it 

only differed by 0.05%, or 0.0005 in the worst case.  

 

 

 

Figure 8 - Comparison between 1x10
-6

 and 1x10
-7

 arrays.  This figure shows the amount  
of change between the resulting potential values when run at 1x10

-6
 and   

1x10
-7

 convergence thresholds.  The values were only different by .0005 or 
.05%. 

 

This plot shows the comparison between the 67x67x67 at 1x10
-6

 dataset and the 

67x67x67 at 1x10
-7

 dataset.  Because of this, the algorithms were run against 67x67x67 

arrays set at 1x10
-7 

convergence
 
thresholds 
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CHAPTER 4 

COMPUTING THE DATA 

The algebraic and geometric make-up of the Poisson Solver, field gradient solver 

and the acGNR8 were discussed in the previous chapters.  This chapter will explain the 

computer algorithms behind the data.  Remember, the end goal was to calculate and plot 

the electric field and potential associated with the given set of electron approximations.  

In order to do so, the electron probabilities were converted into the charge densities, 

which in turn were converted into voltage potentials using the derived 3-dimensional 

Poisson solver, (reference Chapter 3 for the derivation of that equation).  Finally, taking 

the gradient of those potentials yields the electric field vectors.  Referencing the Δx, Δy, 

Δz values from Chapter 3, it was determined that an array of 67 x 67 x 67 would 

mathematically suffice for the field lines.  The table below shows the constant values 

used in the Poisson Solver. 

 

Δx 0.409918691 Å  

Δy 1 Å 

Δz 1.42 Å 

 ε0                    
    

    
  

Table 3 - Delta Coefficients – These are the spacing  
coefficients used in the computer algorithm  
to calculate the potentials 
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In what follows we describe the computer algorithms created to facilitate the 

research.  The Mathematica algorithms and editors are listed in the appendices and will 

be referenced here.  Standard notation for reference will look like X11, where X = 

appendix and 11 = line reference.  Therefore B25 references line 25 of Appendix B. 

First we describe the editor computation used to convert the given electron 

approximations into charge densities. The set of data points provided is a mathematical 

approximation of the location of the electron with respect to the arm chair lattice unit cell.  

Because the total probability equals 1, the sum of the sixteen points equals 1.  Due to the 

propagation profile of the potential being sinusoidal, the approximations were scaled 

accordingly to match that profile across the nanoribbon in the Z direction.  The scalar 

modifier applied to the charge densities was:     
 

 
 

 

  
   for a problem set equal in 

resolution to k ranging from 0 → 67.  Notice that for the middle of the nanoribbon at k = 

34, the density values are at a maximum with     
 

 
 

  

  
 .  Holding true to the boundary 

conditions that φ = 0, notice that at k=0 and k=68, that the densities are equal to zero due 

to the scaling modifier being equal to zero. Using     
 

 
 

 

  
  and     

 

 
 

  

  
  

respectively. 

In order to calculate ρ, it is necessary to calculate ψ.  A ψ editor was written in 

Mathematica to facilitate this.  The editor can be found in Appendix A.  Notice A27 

demonstrates the summation of the single line approximation.  The result after 

multiplying by its conjugate (A20) and summing with its nearest neighbor, is the charge 

density profile needed for Poisson’s equation. 
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Next, the ρ values are placed at precise locations within the nanoribbon.  The ρ 

editor can be found in Appendix B.   The front and real third of the ribbon in the X 

direction can be observed in B2 - 9.  Notice the values are defined for X23, 26, 29, 32, 

35, 38, 41, 44 and putting zeros in place for the others.  B10 – 25 demonstrate scaling the 

remainder of the approximations sinusoidally.  The editor ends with a PUT statement that 

writes the 67x67x67 Rho array to a file. 

The Poisson Solver algorithm is the primary calculation engine and is 

documented in Appendix C.  The iterative convergence looping is handled in this solver, 

along with the conversion to the electric field gradient.  C16 starts the beginning of the 3 

dimensional Poisson solver derived in Chapter 3.  C24 documents the threshold 

convergence test and the parameter set to 1x10
-7

.  C34-79 are diagnostic, and required 

since these jobs take ~12 hours to compute depending on how different the initial charge 

densities are for the nearest neighbor contributions.  Statements were added to show the 

progress of the loop and the amount of memory used.  This was important to note, to stay 

within the processor and RAM constraints on the machine when running multiple jobs.  

As a lesson learned during research, statements were added to periodically print the 

voltage potentials prior to full convergence, in the event of an unexpected disruption to 

the calculations.  This way the job could be continued where it left off instead of starting 

over from scratch.  The end result is a 67x67x67 array of voltage potentials.  C86 

demonstrates calculation that converts the voltage potentials in electric field vector 

values.  This data is then written to a file for manipulation in the rendering editors.  This 

concludes the walk through of the conjugate and rho editors, along with the Poisson 

Solver and Gradient Field Lines algorithms.   
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Note that for the 67x67x67 array, the total run time varies based on the 

convergence threshold, and the differences between the ρ values.  For N=8 each job took 

approximately 8.7 hours to run and approximately 9600 loop iterations were required to 

reach the convergence threshold.  In addition each job took approximately 34,540,016 

Bytes of memory.  For N=5 each job took approximately 27.4 hours to run and 9605 loop 

iterations to reach the convergence threshold.  In addition each job took approximately 

34,540,032 Bytes of memory.  Once the solver was finished, the data was ready to be 

rendered.  The periodicity profile of the potential behaves like Sin(
  

   
) in the direction of 

propagation, z.  Given the symmetry of the plasmon, in order to graphically render 2 full 

periods, the data was negated and shifted 67 points in the Z direction.  This process was 

repeated twice to complete two full periods.   

The given dataset of electron approximations consisted of 400 sets of 16 points 

for a total of 6400 point probabilities.  Computational were performed on the first half of 

those 400 datasets to cover the unit cell.   

The output voltage potential file created from the Poisson Solver explained in 

Chapter 4 required a little manipulation before it was ready to be rendered using 

Mathematica.  The renderings consist of both 2-dimensional and 3-dimensional graphics.  

Editors were created to modify the potentials into their desired formats.  The 3-

dimensional data lists were reduced to 2-dimensions, by holding one of the axes constant 

while varying the other two.  This proved quite useful in creating multiple renderings 

from various perspectives within the nanoribbon.  Chapters 5 and 6 will step through the 

visualizations created from the algorithms. 
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CHAPTER 5 

N=8 VISUALIZATIONS 

The previous chapter explained how the renderings were created.  This chapter 

will display the graphics themselves.  Starting first with the 3-dimensional renderings and 

continuing with the 2-dimensional slices.  

The potentials and field lines represent massless Dirac fermions with zero band 

gap.  In order to cover the Brillouin Zone, due to symmetry, it is only necessary to 

analyze the first half or the first 400 electron probabilities provided for the N=8 graphene 

unit cell.  This was accomplished by calculating the 1
st
, 41

st
 , 81

st
 , 121

st
 , 161

st
 , 201

st
 

Datasets of the approximations.  Due to the N=8 band structure and the zero band gap.  

There is zero observable difference in the renderings for the entire dataset.  Dataset 1 will 

be shown in detail.  The calculated ρ values for Dataset 1 are listed in the following table. 
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Position in acGNR {X,Y,Z} Calculated ρ Values for  

k = 6.70352  

{23,34,34}                     

{26,34,34}                     

{29,34,34}                     

{32,34,34}                    

{35,34,34}                    

{38,34,34}                     

{41,34,34}                     

{44,34,34}                      

Table 4 – acGNR positions of the ρ values and their associated calculated values for N=8 
Dataset 1 

 

Notice the symmetry between values in the table above.  The approximations are 

smallest on the outside edges of the ribbon, and increase to their maximums at the center 

of the ribbon.  This holds true for all k points investigated.  For comparison, the same 

table representing Dataset 41 will be given below.  Notice here that the value for the 

point {23, 34, 34} does not differ from point {44, 34, 34} until the 15
th

 decimal place, 

and even then it only changes by 1.  As you move towards the center of the ribbon, each 

symmetrical pair displays this same resolution of likeness. 
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Position in acGNR {X,Y,Z} Calculated ρ Values 

For k = 6.87977 

{23,34,34} 
                     

{26,34,34} 
                    

{29,34,34} 
                   

{32,34,34} 
                    

{35,34,34} 
                    

{38,34,34} 
                    

{41,34,34} 
                    

{44,34,34} 
                    

Table 5 – acGNR positions of the ρ values and their associated calculated values for N=8 
Dataset 41 

 

The exact same symmetry calculated for Dataset 1 is observed in Dataset 41.  Notice that 

the symmetrical pairs match down to the 15
th

 decimal place.  The following table will 

display the values from Dataset 1 side by side with the values from Dataset 41 for 

comparison. 
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Calculated ρ from Dataset 1 Calculated ρ from Dataset 41 

                    
                     

                    
                    

                    
                   

                   
                    

                   
                    

                    
                    

                    
                    

                     
                    

Table 6 – Side by side comparison of the ρ values for N=8 Dataset 1 and N=8 Dataset 41. 

 

Looking at the values side by side, it is quite easy to see why the visual 

representations of the potentials and field lines do not change drastically enough to be 

noticed.  The following figure is a plot of the Dataset 1 potentials by the Dataset 41 

potentials. 
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Figure 9 - Plot of the Dataset 1 potentials divided by the Dataset 2 potentials for 
comparison holding the X axis constant at 50. 

 

 

 

Figure 10 - Plot of the Dataset 1 potentials divided by the Dataset 2 potentials for 
comparison holding the Y axis constant at 20. 
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Although not very exciting, the figures above back up the claim that the values 

are not changing between datasets in the acGNR8 case.  These plots illustrate that even 

though the probabilities in the acGNR8 structure are calculated with different k wave 

numbers, there is zero change in the potentials as a result.  Thus in the acGNR8 case, 

there is no dependence on the wave number in terms of the potentials and the field lines.  

Therefore only Dataset 1 will be displayed below due to repetition.  

 

Dataset 1 

 

Using the ρ values from the Dataset 1 table above, the Poisson algorithm returned 

a set of potential values that illustrate the symmetrical properties identified in the tables 

above.  The figure below is the 3 Dimensional representation of the potential. 
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Figure 11 - 3D representation of the potential calculated for  
Dataset 1. 

 

The tick marks along the X axis are set up to show where the edges of the 

nanoribbon would lie.  The plane of the ribbon lies in the X axis and runs along the Z 

axis.  The next representation is the field lines calculated from the previous potentials. 
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Figure 12 - 3D representation of the field lines calculated  

from acGNR8 Dataset 1. 

 

Notice the direction of the field lines.  It is clear that the potentials that produced 

these field lines are positive.  The following graphic shows the potentials and the field 

lines together. 
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Figure 13 - 3D representation of the Field Lines and the Potentials  
associated acGNR8 

 

The above figure shows both the field lines and the potentials that were calculated 

for the first dataset on the acGNR8 ribbon.  It should be noted here that these graphics 

represent ½ period of the profile.  The following graphics will follow this convention but 

represent 2 full periods of propagation.  The nanoribbon will be placed in to give 

perspective. 
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Figure 14 - 3D representation of 2 full periods of the potentials calculated from Dataset 1 

 

Notice in the above picture, that a representation of the acGNR8 has been added.  

The following represents the field lines. 

 

 

Figure 15 - 3D representation of the field lines calculated from the potentials for 2 full 
periods. 
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Looking closely at the figure above, you can see the changes in direction in the 

field lines.  Not only can you notice the field lines moving from one unit cell to another, 

you can also see the change in sign of the potentials between one field line cluster to 

another.  As done with the ½ period.  The next figure represent the total picture of field 

lines and potentials, along with the nanoribbon for 2 periods of propagation. 

 

 

Figure 16 - 3D representation of the calculated field lines and potentials from the first 
dataset. 

 

Now that the data has been rendered in 3D, the next set of illustrations will focus 

on 2 dimensional slices taken from the potentials and field lines. 
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Figure 17 - 2D representation of the potential of the first dataset, holding the X axis 
constant at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the first dataset.  

This figure shows the profile of the Y and Z axes while holding X constant at 34.This 

represents a section through the problem space in the direction normal to the nanoribbon 

plane  As mentioned in the opening of this chapter, there is zero observable differences in 

any of the visualizations for N=8 between Dataset sets.  Even though the acGNR8 is 

practically 2D due to its atomically small thickness, a black line has been inserted in the 

figure above for perspective of the placement of the ribbon. 

 

 

Figure 18 - 2D representation of the field lines of the first dataset, holding the X axis 
constant at 34. 
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The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 

 

 
 

Figure 19 - 2D representation of the field lines and potentials calculated for the scGNR8  

                Dataset 1. 

 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the tables in the chapter opening.  The next set of slices will focus on the X and 

Z axes while holding the Y axis constant at 34. 
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Figure 20 - 2D representation of the potentials calculated along the X and Z axes.  This  

                figure also shows the acGNR8 nanoribbon. 

 

 

The graphic above is oriented with respect to the direction of propagation Z and 

represents a section through the problem space in the plane of the nanoribbon.    This is 

consistent with the layout of the nanoribbon. 

 

 

Figure 21 - 2D representation of the field lines for Dataset 1 holding the Y axis constant.    

               Also shown here is the location of the nanoribbon. 

 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 

the electric field lines.  Also, shown here, are changes in color in the field lines, 

representing a change in magnitude. 
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Overlaying to the two images to render the potentials and the field lines together 

results in: 

 

 

Figure 22 - 2D representation of the potentials and the field lines for Dataset 1 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in 

the following potential profile: 
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Figure 23 - 2D representation of the potentials for Dataset 1 while  

                  holding the Z axis constant. The black line running in  

                  the Y axis at position 34 is the acGNR8. 

 

 

As expected, the potential profile follows the width of the acGNR8.  The same slice with 

respect to the field lines look like: 
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Figure 24 - 2D representation of the field lines for Dataset 1 while holding 

                  the Z axis constant. 

 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 25 - 2D representation of the potentials and the field  

                              lines for Dataset 1 while holding the Z axis constant  

                              at position 34. 

 

 

Graphical representation has covered the ½ period and the 2 period case of the 3D 

representation.  The potentials and the field lines profiles have been rendered for the X, Y 

and Z axes, respectively.  This completes the rendering of the N=8 dataset.  The 

following chapter will show the acGNR5 case. 
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CHAPTER 6 

N=5 VISUALIZATIONS 

The previous chapter showed the voltage potentials and field lines specific to the 

N=8 armchair nanoribbon.  Seven sets of electron approximations were provided for N=5 

armchair nanoribbon.  In addition to slightly smaller width, the electron approximations 

provided for the N=5 graphene are for massive Dirac fermions, with a band gap of ~64 

meV.  This chapter will cover those graphics.  For consistency, the order and format will 

follow that of Chapter 5. 

Unlike the N=8 band structure, there is observable difference in the renderings for 

the N=5 dataset.  This is directly attributed to the band gap.  The acGNR5 case has a 

distinct dependence on the wave number unlike the acGNR8 case.  The Datasets will be 

shown in detail.  The calculated ρ values for Dataset 1 are listed in the following table. 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.05315402341494809 

{27,34,34} 
                   

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 7 – acGNR positions of the ρ values and their associated calculated values for N=5 
Dataset 1 



49 
 

 

 

Notice there is still symmetry between values in the table above.  Like the N=8 

case, the approximations are smallest on the outside edges of the ribbon, and increase 

slightly towards the center.  However, the one key difference for the acGNR5 case is that 

due to the band gap, the charge density for the Dirac fermion lying in the center is 

essentially zero.  This has some effect on the profile properties of the acGNR5.  For 

comparison, the same table representing Dataset 2 will be given below.  Notice here that 

the value for the point {23, 34, 34} does  differ from point {44, 34, 34} at the 3
rd

 decimal 

place. 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.226502274177099 

{27,34,34} 
                    

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 8 – acGNR positions of the ρ values and their associated calculated values for N=5 
Dataset 2 

 

The following table will display the values from Dataset 1 side by side with the values 

from Dataset 2 for comparison. 
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Calculated ρ from Dataset 1 Calculated ρ from Dataset 2 

                                       

                                      

                                              

                                        

                                        

Table 9 – Side by side comparison of the ρ values for N=5 Dataset 1 and N=5 Dataset 2. 

 

Looking at the values side by side, there is a noticeable difference between the 

two datasets.  The following figure represents a comparison of the Dataset 1 potentials by 

the Dataset 2 potentials.  As shown in the acGNR8 case.  The following figures will 

represent of the potentials between the first acGNR5 dataset and the second acGNR5 

dataset. 
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Figure 26 - Comparison of acGNR5 Dataset 1 potentials divided by Dataset 2  

                   potentials while holding the X axis constant at 50.   

 

 

 

Figure 27 - Comparison of acGNR5 Dataset 1 potentials divided by Dataset 2 
potentials while holding the Y axis constant at 40. 
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Figure 28 - Comparison of acGNR5 Dataset 1 potentials divided by Dataset 2 
while holding the Z axis constant at 50. 

 

 

The figures above are comparisons of the first acGNR5 calculated potential 

compared to the second acGNR5 calculated potential.  Unlike the acGNR8 potentials, 

differences do exist between the potentials of the acGNR5 datasets, although the rate of 

change is not drastic, change still exist.  And noticeable along all 3 axes is change for 

every point in the dataset  Therefore, all 7 Datasets of acGNR5 will be documented 

below. 

Dataset 1 

 

Using the ρ values from the Dataset 1 table above, the Poisson algorithm returned 

a set of potential values that illustrate the double hump properties identified in the tables 

above.  The figure below is the 3 Dimensional representation of the potential. 
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Figure 29 - 3D representation of the potential calculated for Dataset 1. 

 

The tick marks along the X axis are set up to show where the edges of the 

nanoribbon would lie as they did in the acGNR8 case.  The width of the ribbon lies in the 

X axis and runs along the Z axis.  The next representation is the field lines calculated 

from the previous potentials. 
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Figure 30 - 3D representation of the field lines calculated from the acGNR5 Dataset 1. 

 

Notice the direction of the field lines.  It is clear that the potentials that produced 

these field lines are positive.  The following graphic shows the potentials and the field 

lines together. 
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Figure 31 - 3D representation of the Field Lines and the Potentials associated 

with the acGNR5 Dataset 1. 

 

The above figure shows both the field lines and the potentials that were calculated 

for the first dataset on the acGNR5 ribbon.  It should be noted here that these graphics 

represent ½ period of the profile.  The following graphics will follow this convention but 

represent 2 full periods of propagation.  The nanoribbon will be placed in to give 

perspective.  
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Figure 32 - 3D representation of 2 full periods of the potentials calculated from Dataset 1 

 

Notice in the above picture, that the acGNR5 has been added and that it lines up 

nicely with the tick marks on the X axis.  This ribbon is not quite as wide as the acGNR8.  

The following will represent the field lines. 

 



57 
 

 

 

Figure 33 - 3D representation of the field lines calculated from the potentials for 2 full 
periods. 

 

Looking closely at the figure above, you can see the changes in direction in the 

field lines.  Not only can you notice the field lines moving from one unit cell to another, 

you can also see the change in sign of the potentials between field line clusters, as done 

with the ½ period.  The next figure represents the total picture of field lines and 

potentials, along with the nanoribbon for 2 periods of propagation. 
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Figure 34 - 3D representation of the calculated field lines and potentials from the first 
dataset. 

 

Now that the data has been rendered in 3D, the next set of illustrations will focus 

on 2 dimensional slices taken from the potentials and field lines. 

 

 

Figure 35 - 2D representation of the potential of the first dataset, holding the X axis 
constant at 34. 
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The above figure represents 2 full periods of the potentials calculated for the first 

dataset.  This figure shows the profile of the Y and Z axes while holding X constant at 34.  

Even though the acGNR5 is practically 2D due to its atomically small thickness, a black 

line has been inserted in the figure above for perspective of the placement of the ribbon. 

 

 

Figure 36 - 2D representation of the field lines of the first dataset, holding the X axis 
constant at 34. 

 

The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 
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Figure 37 - 2D representation of the field lines and potentials calculated for the scGNR5  

                 dataset 1. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the tables in the chapter opening.  The next set of slices will focus on the X and 

Z axes while holding the Y axis constant at 34. 

 

 

Figure 38 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

The graphic above is oriented with respect to the direction of propagation Z.  This 

is consistent with the layout of the nanoribbon. 
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Figure 39 - 2D representation of the field lines for Dataset 1 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 

the electric field lines.  Also, shown here, are changes in color in the field lines, 

representing a change in magnitude. 

Overlaying to the two images to render the potentials and the field lines together 

results in: 

 

Figure 40 - 2D representation of the potentials and the field lines for Dataset 1 holding 
the Y axis constant. 
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The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in the 

following potential profile: 

 

Figure 41 - 2D representation of the potentials for Dataset 1 while  

                   holding the Z axis constant. The black line running in the  

                  Y axis at position 34 is the acGNR5. 

 

 

As expected, the potential profile follows the width of the acGNR5.  The same slice with 

respect to the field lines look like: 
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Figure 42 - 2D representation of the field lines for Dataset 1 while  

                     holding the Z axis constant. 

 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 43 - 2D representation of the potentials and the field  

                    lines for Dataset 1 while holding the Z axis constant  

                   at position 34. 

 

 

Graphical representation has covered the ½ period and the 2 period case of the 3D 

representation of Dataset 1.  The potentials and the field lines profiles have been rendered 

for the X, Y and Z axes, respectively.  This completes the rendering of the N=5 Dataset 1 

dataset.  The following Dataset will show the acGNR5 Dataset 2 case. 

The previous chapter showed the voltage potentials and field lines specific to the 

N=8 armchair nanoribbon.  Seven sets of electron approximations were provided for N=5 

armchair nanoribbon.  In addition to slightly smaller graphene ribbon, the electron 

approximations provided for the N=5 graphene are for massive Dirac fermions, with a 
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band gap of ~64 meV.  This chapter will cover those graphics.  The order and format will 

follow that of Chapter 5. 

Dataset 2 

 

Dataset 2 will follow the same layout as Dataset 1.  The following ρ values were 

used to create the second set of N=5 renderings.  There is no observable difference in the 

3D representations.  Therefore, they will be omitted and the remaining Datasets will 

consist of the 2D representations. 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.226502274177099 

{27,34,34} 
                    

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 10 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 2 

 

As shown in Dataset 2, this Dataset will begin with the Y-Z plane, continue with the X-Z 

plan and wrap up with the X-Y plane. 
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Figure 44 - 2D representation of the potential of the 2 dataset, holding the X axis constant 
at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the 

second dataset.  This figure shows the profile of the Y and Z axes while holding X 

constant at 34.  Even though the acGNR5 is practically 2D due to its atomically small 

thickness, a black line has been inserted in the figure above for perspective of the 

placement of the ribbon. 

 

 

Figure 45 - 2D representation of the field lines of the 2 dataset, holding the X axis 
constant at 34. 
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The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 

 

 

Figure 46 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 2. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the tables in the chapter opening.  The next set of slices will focus on the X and 

Z axes while holding the Y axis constant at 34. 
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Figure 47 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

 

The graphic above is oriented with respect to the direction of propagation Z.    This is 

consistent with the layout of the nanoribbon. 

 

 

Figure 48 - 2D representation of the field lines for Dataset 2 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 
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the electric field lines.  Also, shown here, are changes in color in the field lines, 

representing a change in magnitude. 

Overlaying to the two images to render the potentials and the field lines together 

results in: 

 

 

Figure 49 - 2D representation of the potentials and the field lines for Dataset 2 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in the 

following potential profile: 
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Figure 50 - 2D representation of the potentials for Dataset 2 while holding  
the Z axis constant. The black line running in the Y axis at  
position 34 is the acGNR5. 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here 

the gap in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  

The same slice with respect to the field lines look like: 
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Figure 51 - 2D representation of the field lines for Dataset 2 while  
holding the Z axis constant. 

 

Again, it is very clear as to the direction of the field lines, indicating that the 

associated potentials are positive.  Rendering the potentials and the field lines for the Z 

axis results in the following figure: 
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Figure 52 - 2D representation of the potentials and the field lines  

                 for Dataset 2 while holding the Z axis constant at position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z 

axes, respectively.  This completes the rendering of the N=5 Dataset 2 dataset.  The 

following Dataset will show the acGNR5 Dataset 3 case. 

 

Dataset 3 
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Dataset 3 will follow the same layout as Dataset 2.  The following ρ values were 

used to create the 3rd set of N=5 renderings.  There is no observable difference in the 3D 

representations; therefore they will be omitted here.  The remaining Datasets will consist 

of the 2D representations. 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.4283939625140709 

{27,34,34} 
                  

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 11 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 3 

 

As shown in Dataset 2, this Dataset will begin with the Y-Z plane, continue with 

the X-Z plan and wrap up with the X-Y plane. 
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Figure 53 - 2D representation of the potential of the 3rd dataset, holding the X axis 
constant at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the 

second dataset.  This figure shows the profile of the Y and Z axes while holding X 

constant at 34.  Even though the acGNR5 is practically 2D due to its atomically small 

thickness, a black line has been inserted in the figure above for perspective of the 

placement of the ribbon. 

 

 

Figure 54 - 2D representation of the field lines of the 3rd dataset, holding the X axis 
constant at 34. 
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The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 

 

Figure 55 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 3. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the tables in the Dataset opening.  The next set of slices will focus on the X and 

Z axes while holding the Y axis constant at 34. 
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Figure 56 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

The graphic above is oriented with respect to the direction of propagation Z.    

This is consistent with the layout of the nanoribbon. 

 

 

Figure 57 - 2D representation of the field lines for Dataset 3 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 

the electric field lines.  Also, shown here, are changes in color in the field lines, 

representing a change in magnitude. 
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Overlaying to the two images to render the potentials and the field lines together 

results in: 

 

Figure 58 - 2D representation of the potentials and the field lines for Dataset 3 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in the 

following potential profile: 
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Figure 59 - 2D representation of the potentials for Dataset 3  

                  while holding the Z axis constant. The black line  

                  running in the Y axis at position 34 is the acGNR5. 

 

 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here 

the gap in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  

The same slice with respect to the field lines look like: 
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Figure 60 - 2D representation of the field lines for Dataset 3  

                  while holding the Z axis constant. 

 

 

 

Again, it is very clear as to the direction of the field lines, indicating that the 

associated potentials are positive.  Rendering the potentials and the field lines for the Z 

axis results in the following figure: 
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Figure 61 - 2D representation of the potentials and the field  

                 lines for Dataset 3 while holding the Z axis constant  

                 at position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z 

axes, respectively.  This completes the rendering of the N=5 Dataset 3 dataset.  The 

following Dataset will show the acGNR5 Dataset 4 case. 

  

Dataset 4 

 

The following ρ values were used to create the 4th set of N=5 renderings.  There 

is no observable difference in the 3D representations; therefore they will be omitted here.  

The remaining Datasets will consist of the 2D representations. 
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Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.12745922776435492 

{27,34,34} 
                    

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                   

Table 12 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 4 

 

As shown previous, this Dataset will begin with the Y-Z plane, continue with the 

X-Z plan and wrap up with the X-Y plane. 

 

 

Figure 62 - 2D representation of the potential of the 4th dataset, holding the X axis 
constant at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the 

second dataset.  This figure shows the profile of the Y and Z axes while holding X 
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constant at 34.  Even though the acGNR5 is practically 2D due to its atomically small 

thickness, a black line has been inserted in the figure above for perspective of the 

placement of the ribbon. 

 

 

Figure 63 - 2D representation of the field lines of the 4th dataset, holding the X axis 
constant at 34. 

 

The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 
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Figure 64 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 4. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the tables in the Dataset opening.  The next set of slices will focus on the X and 

Z axes while holding the Y axis constant at 34. 

 

 

Figure 65 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

The graphic above is oriented with respect to the direction of propagation Z.    This is 

consistent with the layout of the nanoribbon. 
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Figure 66 - 2D representation of the field lines for Dataset 4 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 

the electric field lines.  Also, shown here, are changes in color in the field lines, 

representing a change in magnitude. 

Overlaying to the two images to render the potentials and the field lines together 

results in: 
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Figure 67 - 2D representation of the potentials and the field lines for Dataset 4 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in the 

following potential profile: 
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Figure 68 - 2D representation of the potentials for Dataset 4 while  

                   holding the Z axis constant. The black line running in  

                   the Y axis at position 34 is the acGNR5. 

 

 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here 

the gap in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  

The same slice with respect to the field lines look like: 
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Figure 69 - 2D representation of the field lines for Dataset 4  

                    while holding the Z axis constant. 

 

 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 70 - 2D representation of the potentials and the field  

                  lines for Dataset 4 while holding the Z axis constant  

                  at position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z 

axes, respectively.  This completes the rendering of the N=5 Dataset 4 dataset.  The 

following Dataset will show the acGNR5 Dataset 5 case. 

Dataset 5 

 

The following ρ values were used to create the 5th set of N=5 renderings.  There 

is no observable difference in the 3D representations; therefore they will be omitted here.  

The remaining Datasets will consist of the 2D representations. 
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Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.6312158039812097 

{27,34,34} 
                   

{30,34,34} 
                  

{33,34,34} 
                       

{36,34,34} 
                   

{39,34,34} 
                    

Table 13 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 5 

 

As shown previous, this Dataset will begin with the Y-Z plane, continue with the 

X-Z plan and wrap up with the X-Y plane. 

 

 

 

Figure 71 - 2D representation of the potential of the 5th dataset, holding the X axis 
constant at 34. 
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The above figure represents 2 full periods of the potentials calculated for the 

second dataset.  This figure shows the profile of the Y and Z axes while holding X 

constant at 34.  Even though the acGNR5 is practically 2D due to its atomically small 

thickness, a black line has been inserted in the figure above for perspective of the 

placement of the ribbon. 

 

 

Figure 72 - 2D representation of the field lines of the 5th dataset, holding the X axis 
constant at 34. 

 

The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 
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Figure 73 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 5. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the table in the Dataset opening.  The next set of slices will focus on the X and Z 

axes while holding the Y axis constant at 34. 

 

 

 

Figure 74 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 
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The graphic above is oriented with respect to the direction of propagation Z.    

This is consistent with the layout of the nanoribbon. 

 

 

Figure 75 - 2D representation of the field lines for Dataset 5 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same orientation as 

the potentials above.  Notice the arrow heads are oriented with respect to the electric field 

lines.  Also, shown here, are changes in color in the field lines, representing a change in 

magnitude.  Overlaying to the two images to render the potentials and the field lines 

together results in: 
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Figure 76 - 2D representation of the potentials and the field lines for Dataset 5 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in 

the following potential profile: 
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Figure 77 - 2D representation of the potentials for Dataset 5 while  
holding the Z axis constant. The black line running in  
the Y axis at position 34 is the acGNR5. 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here 

the gap in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  

The same slice with respect to the field lines look like: 
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Figure 78 - 2D representation of the field lines for Dataset 5  
while holding the Z axis constant. 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 79 - 2D representation of the potentials and the field lines  

                  for Dataset 5 while holding the Z axis constant at  

                  position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z axes, 

respectively.  This completes the rendering of the N=5 Dataset 5 dataset.  The following 

Dataset will show the acGNR5 Dataset 6 case. 
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Dataset 6 

 

The following ρ values were used to create the 6th set of N=5 renderings.  There 

is no observable difference in the 3D representations; therefore they will be omitted here.  

The remaining Datasets will consist of the 2D representations. 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= -0.01079837154688825 

{27,34,34} 
                  

{30,34,34} 
                    

{33,34,34} 
                       

{36,34,34} 
                  

{39,34,34} 
                    

Table 14 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 6 

 

As shown previous, this Dataset will begin with the Y-Z plane, continue with the 

X-Z plan and wrap up with the X-Y plane. 
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Figure 80 - 2D representation of the potential of the 6th dataset, holding the X axis 
constant at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the second 

dataset.  This figure shows the profile of the Y and Z axes while holding X constant at 34.  

Even though the acGNR5 is practically 2D due to its atomically small thickness, a black 

line has been inserted in the figure above for perspective of the placement of the ribbon. 

 

 

 

Figure 81 - 2D representation of the field lines of the 6th dataset, holding the X axis 
constant at 34. 
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The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 

 

Figure 82 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 6. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the table in the Dataset opening.  The next set of slices will focus on the X and Z 

axes while holding the Y axis constant at 34. 
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Figure 83 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

The graphic above is oriented with respect to the direction of propagation Z.    

This is consistent with the layout of the nanoribbon. 

 

 

Figure 84 - 2D representation of the field lines for Dataset 6 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same 

orientation as the potentials above.  Notice the arrow heads are oriented with respect to 

the electric field lines.  Also, shown here, are changes in color in the field lines, 
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representing a change in magnitude.  Overlaying to the two images to render the 

potentials and the field lines together results in: 

 

 

 

Figure 85 - 2D representation of the potentials and the field lines for Dataset 6 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in 

the following potential profile: 
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Figure 86 - 2D representation of the potentials for Dataset 6  
while holding the Z axis constant. The black line  
running in the Y axis at position 34 is the acGNR5. 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here the gap 

in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  The same 

slice with respect to the field lines look like: 
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Figure 87 - 2D representation of the field lines for Dataset 6  
while holding the Z axis constant. 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 88 - 2D representation of the potentials and the field  

                  lines for Dataset 6 while holding the Z axis constant  

                 at position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z axes, 

respectively.  This completes the rendering of the N=5 Dataset 5 dataset.  The following 

Dataset will show the acGNR5 Dataset 7 case. 

 

Dataset 7 
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The following ρ values were used to create the 7th set of N=5 renderings.  There 

is no observable difference in the 3D representations; therefore they will be omitted here.  

The remaining Datasets will consist of the 2D representations. 

 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= -0.08496814621621751 

{27,34,34} 
                  

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 15 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 7 

 

As shown previous, this Dataset will begin with the Y-Z plane, continue with the 

X-Z plan and wrap up with the X-Y plane. 
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Figure 89 - 2D representation of the potential of the 7th dataset, holding the X axis 
constant at 34. 

 

The above figure represents 2 full periods of the potentials calculated for the 

second dataset.  This figure shows the profile of the Y and Z axes while holding X 

constant at 34.  Even though the acGNR5 is practically 2D due to its atomically small 

thickness, a black line has been inserted in the figure above for perspective of the 

placement of the ribbon. 

 

 

 

Figure 90 - 2D representation of the field lines of the 7th dataset, holding the X axis 
constant at 34. 



107 
 

 

 

The figure above represents the field lines calculated from the potentials 

associated with the Y and Z axes.  Again this slice was taken holding the X axis constant 

at 34.  This figure shows really clear direction lines in the field profile, along with the 

changes in magnitude.  The following figure shows the field lines and the potentials for 

the Y and Z axes combined. 

 

Figure 91 - 2D representation of the field lines and potentials calculated for the scGNR5 
Dataset 7. 

 

Looking closely at the above figure, you can see in the center of the positive 

potential cluster, the maximum value for φ that correlates to the maximum value of ρ 

listed in the table in the Dataset opening.  The next set of slices will focus on the X and Z 

axes while holding the Y axis constant at 34. 
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Figure 92 - 2D representation of the potentials calculated along the X and Z axes.  This 
figure also shows the acGNR5 nanoribbon. 

The graphic above is oriented with respect to the direction of propagation Z.    This is 

consistent with the layout of the nanoribbon. 

 

 

Figure 93 - 2D representation of the field lines for Dataset 7 holding the Y axis constant.  
Also shown here is the location of the nanoribbon 

 

Shown here are the electric field lines.  These field lines follow the same orientation as 

the potentials above.  Notice the arrow heads are oriented with respect to the electric field 

lines.  Also, shown here, are changes in color in the field lines, representing a change in 
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magnitude.  Overlaying to the two images to render the potentials and the field lines 

together results in: 

 

 

 

Figure 94 - 2D representation of the potentials and the field lines for Dataset 7 holding 
the Y axis constant. 

 

The next set will focus on the X-Y plane.  Taking a 2D slice out of Z34 results in the 

following potential profile: 
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Figure 95 - 2D representation of the potentials for Dataset 7  

                  while holding the Z axis constant. The black line  

                  running in the Y axis at position 34 is the acGNR5. 

 

 

 

As expected, the potential profile follows the width of the acGNR5.  Notice here 

the gap in the center of the ribbon at X=32.  This is consistent with the initial ρ values.  

The same slice with respect to the field lines look like: 
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Figure 96 - 2D representation of the field lines for Dataset 7  

                   while holding the Z axis constant. 

 

 

 

Again, it is very clear as to the direction of the field lines, indicating that the associated 

potentials are positive.  Rendering the potentials and the field lines for the Z axis results 

in the following figure: 
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Figure 97 - 2D representation of the potentials and the field  

                  lines for Dataset 7 while holding the Z axis constant  

                 at position 34. 

 

 

The potentials and the field lines profiles have been rendered for the X, Y and Z axes, 

respectively.  This completes the rendering of the N=5 Dataset 5 dataset.  This concludes 

the graphical representation for the acGNR5. 
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CHAPTER 7 

DIFFERENCES BETWEEN GRAPHENE RIBBONS 

There are a few key similarities and differences between the acGNR8 and 

acGNR5 structure worth noting.  The first is the most apparent.  There are eight carbon 

atoms contained in the acGNR8 unit cell.  The acGNR5 unit cell only has five.  With that 

said, each carbon atom has 4 electrons.  Three of those electrons are used to form the 

tight bonding required of graphene.  The fourth, electron is the one that contributes to the 

calculation of the potential and the field lines.  This electron is found in the pz orbital, 

and is allowed to move among the graphene.  The charge densities, ψ are calculated 

probabilities for where those free flowing electrons are expected to be located.  In terms 

of similarity, both the acGNR8 and acGNR5 structures exhibit semi-metallic properties.  

Armchair graphene nanoribbons (acGNRs) 14–18 of atomic width N of mod(N, 3) = −1, 

where N = 2, 5, 8, 11, 14, 17, ... are also semi-metallic within the continuum and the 

pzTB approximation [5].  The mod (N, 3) = -1 acGNR’s also display liner electric bands.  

These semi-metallic acGNRs display linear and symmetric dispersions for the low-lying 

conduction and valence bands within the pzTB theory [5].  This helps explain the ballistic 

electron transport properties appreciated in graphene.  Both acGNR configurations 

promote nearest neighbor coupling, but there are slight differences between the two.  The 

acGNR8 electron approximations can be solved using a 16x16 matrix pzTB Hamiltonian.  

The pzTB Hamiltonian of this structure is a 2N × 2N matrix containing only nearest-

neighbor couplings [5].  The acGNR5 structure, even though linear, requires a slightly 

more complex pzTB Hamiltonian to solve.  AcGNRs with odd atomic widths N = 5, 11, 

17, ... are not considered in the continuum theory, although they do exhibit the semi-

metallic characteristics necessary to allow plasmon propagation [5].  The acGNR5 case 

relies on nearest neighbor contributions from three carbon atoms.  Although, when using 

a theory that includes an extended basis set, the semi-metallic acGNRs also develop a 



114 
 

 

small bandgap on the order of a few meV and some nonlinearity around the band edge 

[5].  In this case the acGNR5 band gap is measured to be 64meV.  Due to the linear band 

structure and zero band gap, the 1
st
 NN acGNR8 cases have no dependence on the 

associated wave number.  By comparison, the hyperbolic band structure and presence of 

a band gap in the 3
rd

 NN acGNR5 case, results in a dependence on the associated wave 

number.  These differences contribute directly to the deltas observed in the voltage 

potential and the electric field lines.  The eigenvectors result from the pzTB Hamiltonian, 

and those are precisely what makes up the electron probabilities ψ.  It should be noted 

that acGNRs of mod (N, 3) = 0 and 1, are not conducive to electron transport.  For the 

cases where mod (N, 3) = 0, 1, intrinsic acGNRs are semiconducting with appreciable 

bandgap and do not support plasmon propagation [5]. 

N=8 

 

Now that both acGNR structures have been calculated and rendered, this chapter 

will illustrate comparisons between the two sets of nanoribbon.  The following will 

represent the comparison between the massless fermion potentials of the N=8 ribbon to 

show the lossless transport properties.  See Appendix F for the complete list of ρ values 

that were used to calculate the potentials and the field lines.  Taking the 4
th

 ρ value from 

each Dataset shows how similar the values are, which is evidence of the lossless electron 

transport properties of the N=8 nanoribbon. 
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Dataset 1 0.2155214023095454 

Dataset 41 0.21552140230954528 

Dataset 81 0.21552140230954564 

Dataset 121 0.21552140230954608 

Dataset 161 0.21552140230954592 

Dataset 201 0.21552140230954636 

Table 16 - Calculated Rho values at position 4 in each respective Dataset  
of the Brillouin Zone for N=8 

 

Notice that the values are the exact same until 15
th

 decimal place, and even then 

the values are only different by 1 increment.  Because of this, there is expected to be very 

little difference in the potentials and field lines between the datasets.  Observe below, that 

when compared to one another, there is zero noticeable difference in the voltage 

potentials throughout the Brillouin zone.  Shown again here, is a plot of the first dataset 

compared to the second dataset. 
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Figure 98 - Plot of acGNR8 Dataset 1 divided by acGNR8 Dataset 41, holding 

                 the Y axis constant at 20. 

 

 

The above plot shows that there is no difference in the acGNR8 potentials, from 

one Dataset to another.  The following plot is the acGNR8 Dataset 1 dataset, φ holding 

the X axis constant at 20. 
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Figure 99 – Plot of potentials for the entire set of N=8 Dataset 1  for Y & Z. 

 

 

This plot is consistent with the values entered into the nanoribbon.  The maximum 

occurs in the middle of the problem set, and then dampens symmetrically towards the 

outside edges.  Looking at 2D slices from acGNR8 shows no differences between the two 

Datasets. 
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Figure 100 - Voltage potentials and electric field lines associated with Dataset 1 holding          

                   the X-Axis constant. 

 

 

 

 
 

Figure 101 - Voltage potentials and electric Field Lines associated with Dataset 41    

                  holding the X-Axis constant. 

 

 

 

Comparing the potentials and the field lines from Dataset 1 and 41 holding the Y-Axis 

constant is represented in the following. 
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Figure 102 - Voltage potentials and electric Field Lines associated with Dataset 1 holding  

                  the Y-Axis constant. 

 

 

 

 
 

Figure 103 - Voltage potentials and electric field lines associated with Dataset 41 holding  

                  the Y-Axis constant. 

 

 

 

As expected, there is zero difference visually between the 2 Datasets with respect 

to the potentials and the field lines.  Next, comparing the two Datasets in 3 dimensions 

results in the same conclusion. 
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Figure 104 - Voltage Potentials and Field Lines in 3D wrt Dataset 1. 

 

 

 

Figure 105 - Voltage Potentials and Field Lines in 3D wrt Dataset 41. 

 

 

As expected, the potentials and the field lines appear as exact matches, demonstrating the 

same propagation profile.  These figures are indicative of lossless electron transfer. 
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N=5 

 

Following the N=8 Dataset previous to set-up the illustrations, a sample of the ρ 

values for N=5 will be given below.  For the complete list, refer to Appendix F.  The N=5 

ρ values for Dataset 2 are listed in the table below. 

 

 

Position in acGNR {X,Y,Z} Calculated ρ Values 

For k= 0.226502274177099 

{27,34,34} 
                    

{30,34,34} 
                   

{33,34,34} 
                       

{36,34,34} 
                    

{39,34,34} 
                    

Table 17 – acGNR positions of the ρ values and their associated calculated values for 
N=5 Dataset 2 

 

Shown again here for reference, note in the table above, that the values increase from the 

outside in, and then are practically zero in the middle. 

The following plot is the Dataset 2, φ normalized with φmax for the full Dataset 2 

dataset.  Using the 67x67x67 array resulted in comparison of 300763 points. 
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Figure 106 – Plot of potentials for the entire set of N=5 Dataset 1 for Y & Z. 

 

 

This plot is consistent with the values entered into the nanoribbon.  The maximum 

occurs in the set of values just outside of the middle of the acGNR5, and then dampens 

towards the outside edges.  Since the starting fermion approximation in the center is 

virtually 0, the Poisson algorithm shows the nearest neighbor contributions and how they 

fill in the middle accordingly.  The symmetry shown above in the potential is consistent 

with expectations. 

As done in the previous Dataset, comparing the first two data Datasets with 

respect to the X axis shows the following. 
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Figure 107 - Voltage potentials and electric Field Lines associated with Dataset 1 holding           

                   the X-Axis constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 108 - Voltage potentials and electric Field Lines associated with Dataset 2 holding                

                    the X-Axis constant. 

 

 

 

There is zero noticeable change in potentials with respect to the X axis, but there 

is an observable difference in the field lines.  The next set of figures will represent the Y 

axis held constant, with Datasets 3 and 4 respectively. 
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Figure 109 - Voltage potentials and electric Field Lines associated with Dataset 3 holding  

                      the Y-Axis constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 110 - Voltage potentials and electric Field Lines associated with Dataset 4 holding  

                    the Y-Axis constant. 

 

 

 

Very noticeable in the figures above is the difference in both the potentials and 

the field lines between Datasets 3 and 4.  These figures are indicative of slight losses in 

the transport properties of the N=5 ribbon structure.  Comparing Datasets 3 and 4 in 3 

dimensions is shown below. 
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Figure 111 - Voltage Potentials and Field Lines in 3D wrt Dataset 3. 

 

 

Figure 112 - Voltage Potentials and Field Lines in 3D wrt Dataset 4. 

 

Comparing the two figures above shows that even though the potentials and the 

field lines are different between Datasets 3 and 4, there is very little, if any, noticeable 
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change between the two Datasets in the 3 dimension representation.  This shows that the 

changes do not drastically impact the overall magnitudes of the properties. 

 

N=8 vs. N=5 

 

Now that comparisons have been made between each nanoribbon with respect to 

itself, it is important to see if any differences exist between N=8 and N=5.  Comparing 

the potentials and field lines from N=8 to N=5 is shown below. 

 

 

Figure 113 - Voltage Potentials and Field Lines in 3D wrt Dataset 1 from N=8. 
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Figure 114 - Voltage Potentials and Field Lines in 3D wrt Dataset 4 from N=5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 115 - 2D Y-Z plane slice showing the potential and field lines for acGNR8 
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Figure 116 - 2D Y-Z plane slice showing the potential and field lines for acGNR5 

 

 

 

 

 

Figure 117 - 2D X-Z plane slice showing the potential and field lines for acGNR8. 
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Figure 118 - 2D X-Z plane slice showing the potential and field lines for acGNR5. 

 

It is evident here that the potentials are larger, in terms of magnitude, with the 

acGNR8 than they are with the acGNR5.  Part of this should be contributed to the fact 

that the N=8 nanoribbon itself is slightly larger in size than the N=5 nanoribbon.  The 

second contributor to the difference in potential magnitude is attributed to the number of 

electrons per unit cell, and the fact that the electrons are allowed to move more freely in 

the acGNR8 nanoribbon.  A second graphical comparison of the voltage potentials can be 

seen below.  These figures are 2 dimensional plots of the voltage potentials associated 

from acGNR5 by acGNR8. 
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Figure 119 - 2D plot of N=5 by N=8.  This plot shows that rate of change in the  
voltage potentials between the two acGNR datasets. 

 

The figure above shows the voltage potentials plotted as a comparison to one 

another.  What this plot demonstrates is that the potentials are as expected, different 

between the two acGNR cases.  This can be attributed to the physical size differences in 

the graphene nanoribbon itself, but it should also be attributed to the differences in the 

massless versus massive Dirac fermion approximations.  The latter is directly tied to the 

64meV band gap found in the acGNR5. 
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CHAPTER 8 

SUMMARY 

Graphene has potential for use as an interconnect for electrical circuitry.  With 

practically zero bandgap, depending on atomic structure, the electron movement within 

graphene is lossless.  Graphene’s ballistic transport properties, along with its diamond 

like strength, make it a front-runner to dethrone silicon as the next revolutionary 

substrate. 

It is possible to calculate and render graphene’s 3 dimensional electrical 

properties.  When given the eigenvectors from the pzTB 2Nx2N Hamiltonian, or electron 

wave functions associated with the varying Fermi energies, the voltage potentials are 

calculated using Poisson’s equation and the electric field lines are calculated by taking 

the gradient of those potentials.  The keys are to set the boundary conditions properly 

with φ = 0 at the edges of the problem space, and expanding the problem set to allow for 

complete nearest neighbor contributions. 

Computing the derivatives discretely was straight-forward using the central 

difference method.  Writing a software program to solve Poisson’s equation and the field 

gradient iteratively in Mathematica proved extremely useful.  It was critical to set the 

convergence threshold appropriately to allow the nearest neighbor contributions to fully 

mature. 

Rendering the potentials and the field lines provided a visual representation to the 

propagation profiles throughout the Brillouin zone.  The illustrations provided insight 

into the electrical properties, and how they are influenced by adjusting the nanoribbon 

structure and ultimately, the bandgap.  There is zero observable dependence in the 



132 
 

 

potentials and field lines with the wave number in the acGNR8 case.  There is observable 

dependence between the potentials and the field lines and the wave number in acGNR5 

case.  However, due to the ballistic transport properties, there appears to be a very 

negligible effect on the overall magnitude of the potentials and the field lines.  Be it 

massless Dirac fermions or massive Dirac fermions, the voltage potentials and electric 

field lines are affected, but not enough to negate graphene’s super-conductor qualities. 
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APPENDIX A 

Ψ (PSI) EDITOR IN MATHEMATICA FORMAT 

The electron approximations were provided by way of a data list titled evecval.  

The evecval reference below will refer to that original dataset. 

Line 1 (Input) evecval[[1]][[1]]  

(Output) {6.70352, {0.114007 - 1.72631*10^-17 I, -0.21426 - 0.00108508 I,  

0.288675 - 1.34485*10^-17 I, -0.328265 - 0.00166244 I,  

0.328269 + 0. I, -0.288671 - 0.00146192 I,   0.214263 + 2.41946*10^-17 I,  

-0.114005 - 0.000577358 I,  -0.114005 - 0.000577358 I,  

0.214263 - 1.48583*10^-17 I,  -0.288671 - 0.00146192 I,   

 0.328269 + 1.49793*10^-17 I, -0.328265 - 0.00166244 I,  

  0.288675 + 1.07626*10^-16 I, -0.21426 - 0.00108508 I,  

 0.114007 + 7.03801*10^-17 I}} 

Line 10 (Input) evecval[[1]][[1]][[2]]  

(Output) {0.114007 - 1.72631*10^-17 I, -0.21426 - 0.00108508 I,  

 0.288675 - 1.34485*10^-17 I, -0.328265 - 0.00166244 I,  

 0.328269 + 0. I, -0.288671 - 0.00146192 I,  

 0.214263 + 2.41946*10^-17 I, -0.114005 - 0.000577358 I, 

 -0.114005 - 0.000577358 I,  

 0.214263 - 1.48583*10^-17 I, -0.288671 - 0.00146192 I,  

 0.328269 + 1.49793*10^-17 I, -0.328265 - 0.00166244 I,  

 0.288675 + 1.07626*10^-16 I, -0.21426 - 0.00108508 I,  

 0.114007 + 7.03801*10^-17 I} 
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Line 20 (Input)  a = evecval[[1]][[1]][[2]] Conjugate[evecval[[1]][[1]][[2]]] 

(Output) {0.0129975 + 0. I, 0.0459084 + 0. I, 0.0833333 + 0. I,  

 0.107761 + 0. I, 0.107761 + 0. I, 0.0833333 + 0. I, 0.0459084 + 0. I, 

  0.0129975 + 0. I, 0.0129975 + 0. I, 0.0459084 + 0. I,  

 0.0833333 + 0. I, 0.107761 + 0. I, 0.107761 + 0. I, 0.0833333 + 0. I, 

  0.0459084 + 0. I, 0.0129975 + 0. I} 

(Input)  aa = Table[0, {8}]; 

 Do[aa[[i]] = (a[[i]] + a[[i+8]]), {i, 1, 8}]; 

Print[Chop[aa]]; 

(Output) {0.058906, 0.191094, 0.191094, 0.058906, 0.058906, 0.191094,  

Line 30  0.191094, 0.058906} 
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APPENDIX B 

Ρ (RHO) EDITOR IN MATHEMATICA FORMAT 

Line 1 (Input) rho = Table[0, {67}, {67}, {67}]; 

rho[[23]][[34]][[34]] = 0.0589059741807697 

rho[[26]][[34]][[34]] = 0.191136209718213 

rho[[29]][[34]][[34]] = 0.191094034488106 

rho[[32]][[34]][[34]] = 0.0589059655119839 

rho[[35]][[34]][[34]] = 0.0589073878770326 

rho[[38]][[34]][[34]] = 0.191095114260127 

rho[[41]][[34]][[34]] = 0.286306491843393 

rho[[44]][[34]][[34]] = 0.0589059655118936 

The following lines use the sinusoidal modifier mentioned in the narrative to 

create the remainder of the ρ values scaled sinusoidally along the nanoribbon.   

Line 10  Do[rho[[23]][[34]][[k]] = rho[[23]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 

33}]; 

Do[rho[[23]][[34]][[k]] = rho[[23]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[26]][[34]][[k]] = rho[[26]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 33}]; 

Do[rho[[26]][[34]][[k]] = rho[[26]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[29]][[34]][[k]] = rho[[29]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 33}]; 

Do[rho[[29]][[34]][[k]] = rho[[29]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[32]][[34]][[k]] = rho[[32]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 33}]; 

Do[rho[[32]][[34]][[k]] = rho[[32]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[35]][[34]][[k]] = rho[[35]][[34]][[67]] Sin[(Pi/2) k/34], {k, 1, 33}]; 
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Do[rho[[35]][[34]][[k]] = rho[[35]][[34]][[67]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Line 20 Do[rho[[38]][[34]][[k]] = rho[[38]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 

33}]; 

Do[rho[[38]][[34]][[k]] = rho[[38]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[41]][[34]][[k]] = rho[[41]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 33}]; 

Do[rho[[41]][[34]][[k]] = rho[[41]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

Do[rho[[44]][[34]][[k]] = rho[[44]][[34]][[34]] Sin[(Pi/2) k/34], {k, 1, 33}]; 

Do[rho[[44]][[34]][[k]] = rho[[44]][[34]][[34]] Sin[(Pi/2) k/34], {k, 35, 67}]; 

The next line writes the array to a file for input into the Poisson algorithm. 

rho >> "/directory/Rho_67x67x67_1.mat"; 
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APPENDIX C 

THE POISSON SOLVER WITH NOTES ADDED 

Actual code denoted in bold text. 

 

Initialize Constants mentioned in the opening of this chapter 

Line 1  deltaX = 1.23/3; 

deltaY = 3/3; 

deltaZ = 4.26/3; 

Epsilon=8.854187812620*10^-12; 

Initialize Arrays 

Vold = ConstantArray[0, {67, 67, 67}]; 

Vnew = ConstantArray[0, {67, 67, 67}]; 

Enew = Table[0, {67}, {67}, {67}]; 

Next line is Diagnostics for loading the Rho file created from the rho editor 

Print[" Loading Rho "]; 

Next line gets the Rho file 

Line 10 << "/directory/Rho_67x67x67_1.mat" 

Diagnostic 

Print[Dimensions[Rho]]; 

Print[" Loading Rho Complete "]; 

Initialize ConvergenceLoop to 0 - This will serve as a fail-safe to kick out of the 

loop if necessary 

ConvergenceLoop = 0; 
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Initialize Convergence to zero 

Convergence = 0; 

This begins the computation loop 

While[Convergence == 0  && ConvergenceLoop < 100000, 

The following nested DO Loop will calculate φ using Poisson’s Equation 

 Do[Vnew[[i]][[j]][[k]] =  

(1/(2/deltaX^2 + 2/deltaY^2 + 2/deltaZ^2)) * 

(((Vold[[i + 1]][[j]][[k]]+ Vold[[i - 1]][[j]][[k]])/(deltaX^2)) + 

((Vold[[i]][[j + 1]][[k]] + Vold[[i]][[j - 1]][[k]])/(deltaY^2)) +  

Line 20 ((Vold[[i]][[j]][[k + 1]] + Vold[[i]][[j]][[k - 

1]])/(deltaZ^2)) + ((Rho[[i]][[j]][[k]]/ Epsilon))),  

{i, 2, 66}, {j, 2, 66}, {k, 2, 66}]; 

Next line assumes all points have converged so the next iteration is invoked when 

the test hits the first value exceeding the defined convergence threshold 

 Convergence = 1; 

This is the convergence test.  User defined Convergence threshold for 1
^-7

. 

Note that this test is performed for all data points within the array 

 Do[ 

If[ 

Vold[[i]][[j]][[k]] == 0, Null,  

    If[ 

(Vnew[[i]][[j]][[k]] - Vold[[i]][[j]][[k]])/  Vold[[i]][[j]][[k]] > (1*^-7), 

 Convergence = 0, Null 
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]    Line 30 

], 

{i, 2, 66}, {j, 2, 66}, {k, 2, 66}]; 

  

This line Ignores the first iteration until Vnew and Vold are nonzero 

If[ConvergenceLoop < 2, Convergence = 0, Null]; 

Added for visual diagnostics, the following lines capture the current status of the 

loop with respect to the iteration loop number, memory usage, and the current session 

time. Memory usage is helpful for running simultaneous jobs, so you can track RAM 

usage for your machine. 

If[ConvergenceLoop == 1, Print[ConvergenceLoop ];  

Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 2, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 3, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 4, Print[ConvergenceLoop ];  

  Line 40 Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 10, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 50, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 100, Print[ConvergenceLoop ];  
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  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 250, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 500, Print[ConvergenceLoop ];  

  Line 50 Print[MemoryInUse[]]; Print[(SessionTime[]/3600)],  

If[ConvergenceLoop == 750, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 1000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null];  

If[ConvergenceLoop == 2000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 3000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 5000, Print[ConvergenceLoop ];  

Line 60  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 10000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 15000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 15000,  Vnew >> "/directory/Vnew^-7_15000.mat", 

Null]; 

If[ConvergenceLoop == 20000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 
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If[ConvergenceLoop == 25000, Print[ConvergenceLoop ];  

Line 70  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null];  

If[ConvergenceLoop == 50000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

If[ConvergenceLoop == 75000, Print[ConvergenceLoop ];  

  Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null];  

These put statements were added in the event that the algorithm is physically 

interrupted.  The job can be run again where it left off instead of starting over from 

scratch. 

If[ConvergenceLoop == 500,  Vnew >> "/directory/Vnew^-

7_500.mat", Null]; 

If[ConvergenceLoop == 1000,   Vnew >> "/directory/Vnew^-

7_1000.mat", Null]; 

If[ConvergenceLoop == 5000,   Vnew >> "/directory/Vnew^-

7_5000.mat", Line 80 Null]; 

If[ConvergenceLoop == 10000,   Vnew >> "/directory/Vnew^-

7_10000.mat", Null]; 

If[ConvergenceLoop == 20000 Vnew >> "/directory/Vnew^-

7_20000.mat", Null]; 

If[ConvergenceLoop == 25000,  Vnew >> "/directory/Vnew^-

7_25000.mat", Null]; 

Next line Forces Vold to evolve 1 iteration behind Vnew for the convergence test. 

 Vold = Vnew; 
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Next line maximizes algorithm execution speed 

ClearSystemCache[]; 

Counter for the loop 

 ConvergenceLoop ++;] 

This statement will kick out of the loop if not converged within 100000 iterations. 

Line 80 If[ConvergenceLoop == 100000,  

  Print["Convergence Loop Limit Reached. " (SessionTime[]/3600) ],  

  Print["Convergence Loop Limit Not Reached."]]; 

When the convergence threshold is met, the loop is exited. 

If[Convergence == 1, Print[ ConvergenceLoop];  

  Print[" Converged! "]  (*; Print[Vnew]]*),  

  Print["Did Not Converge!"]]; 

Now that φ has been successfully calculated down to convergence limit of 1
^-7

, it 

is time to calculate the gradient for the electric field. 

The following calculates the electric field using φ. 

Enew = Table[ 

{{i, j, k}, 

{-((Vnew [[i + 1]][[j]][[k]] - Vnew [[i]][[j]][[k]]) / deltaX) , 

 - ((Vnew [[i]][[j + 1]][[k]] - Vnew [[i]][[j]][[k]]) / deltaY) ,  

Line 90     - ((Vnew [[i]][[j]][[k + 1]] - Vnew [[i]][[j]][[k]]) / deltaZ)}} ,  

{i, 1, 66}, {j, 1, 66}, {k, 1, 66} 

]; 

Print [Min[Enew]]; 
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Print [Max[Enew]]; 

This put statement writes Vnew,  (φ) to a file. 

Vnew >> "/directory/67x67x67_1_Vnew^-7.mat"; 

The Export writes the Rendering of the Electric Field to a file in vector format.  

Export["/directory/67x67x67_1_Efield^-7.png", ListVectorPlot3D[{Enew}]]; 

This put statement writes Enew to a file. 

Enew >> "/directory/67x67x67_1_EfieldTable^-7.mat"; 

MemoryInUse[]; 

This print statement concludes the job and prints the total runtime 

Print[" Job Complete! - " (SessionTime[]/3600)]; 
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APPENDIX D 

POISSON SOLVER AFTER EXECUTION, WITHOUT NOTES. 

 

deltaX=1.23/3; 

deltaY=3/3; 

deltaZ=4.26/3; 

Epsilon=8.854187812620*10^-12; 

 

Vold=ConstantArray[0,{67,67,67}]; 

 

Vnew=ConstantArray[0,{67,67,67}]; 

 

Enew =Table[0,{67},{67},{67}]; 

 

Print[" Loading Rho "]; 

 

<<"/home/jkdale/Thesis/1st Run/Rho_67.mat" 

 

Print[Dimensions[Rho]]; 

 

Print[" Loading Rho Complete "]; 

 

ConvergenceLoop =0; 
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Convergence=0; 

 

 

  

Do[Vnew[[i]][[j]][[k]]=(1/(2/deltaX^2+2/deltaY^2+2/deltaZ^2)) 

*(((Vold[[i+1]][[j]][[k]]+Vold[[i-1]][[j]][[k]])/(deltaX^2))+((Vold[[i]][[j+1]][[k]]+ 

Vold[[i]][[j-1]][[k]])/(deltaY^2))+((Vold[[i]][[j]][[k+1]]+ 

Vold[[i]][[j]][[k-1]])/(deltaZ^2))+((Rho[[i]][[j]][[k]]/Epsilon))), 

{i,2,66},{j,2,66},{k,2,66}]; 

  

Convergence=1; 

  

 

(Vnew[[i]][[j]][[k]]-Vold[[i]][[j]][[k]])/Vold[[i]][[j]][[k]]>(1*^-7),Convergence 

=0, Null]],{i,2,66},{j,2,66},{k,2,66}]; 

  

If[ConvergenceLoop < 2, Convergence = 0, Null]; 

 If[ConvergenceLoop == 1, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 2, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 3, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 
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 If[ConvergenceLoop == 4, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 10, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 50, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 100, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 250, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 500, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 750, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 1000, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)],Null]; 

 If[ConvergenceLoop == 2000, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 3000, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 5000, Print[ConvergenceLoop ];Print[MemoryInUse[]]; 

Print[(SessionTime[]/3600)],Null]; 
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 If[ConvergenceLoop == 10000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)],Null]; 

 If[ConvergenceLoop == 15000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)],Null]; 

 If[ConvergenceLoop == 20000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)],Null]; 

 If[ConvergenceLoop == 25000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)],Null]; 

 If[ConvergenceLoop == 50000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

 If[ConvergenceLoop == 75000, Print[ConvergenceLoop 

];Print[MemoryInUse[]]; Print[(SessionTime[]/3600)], Null]; 

  

 If[ConvergenceLoop == 500,Vnew>> "/home/jkdale/Thesis/1st 

Run/Input/67x500.mat",Null]; 

 If[ConvergenceLoop == 1000,Vnew>> "/home/jkdale/Thesis/1st 

Run/Input/67x1000.mat",Null]; 

 If[ConvergenceLoop == 1500,Vnew>> "/home/jkdale/Thesis/1st 

Run/Input/67x1500.mat",Null]; 

 If[ConvergenceLoop == 2000,Vnew>> "/home/jkdale/Thesis/1st 

Run/Input/67x2000.mat",Null]; 

 If[ConvergenceLoop == 2500,Vnew>> "/home/jkdale/Thesis/1st 

Run/Input/67x2500.mat",Null]; 
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Vold=Vnew; 

 

ClearSystemCache[]; 

 

ConvergenceLoop ++;] 

 

onvergence Loop Limit Reached. " 

(SessionTime[]/3600) ],Print["Convergence Loop Limit Not Reached."]]; 

 

Not Converge!"]]; 

 

 

 

 

Enew=Table[{{i,j,k},{-((Vnew [[i+1]][[j]][[k]]- Vnew [[i]][[j]][[k]]) / deltaX) , - 

((Vnew [[i]][[j+1]][[k]]- Vnew [[i]][[j]][[k]]) / deltaY) ,- ((Vnew [[i]][[j]][[k+1]]- Vnew 

[[i]][[j]][[k]]) / deltaZ)}} ,{i,1,66},{j,1,66},{k,1,66}]; 

 

Print [Min[Enew]]; 

Print [Max[Enew]]; 
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Vnew>> "/home/jkdale/Thesis/1st Run/Input/67_Vnew^-7.mat"; 

Export["/home/jkdale/Thesis/1st Run/Output/67_Efield^-7.png", 

ListVectorPlot3D[{Enew}]]; 

Enew>>"/home/jkdale/Thesis/1st Run/Input/67_EfieldTable^-7.mat"; 

MemoryInUse[]; 

Print[" Job Complete! - " (SessionTime[]/3600)]; 

 

 Loading Rho  

{67,67,67} 

 Loading Rho Complete  

1 

25789048 

0.1032524417 

2 

25866520 

0.1039582667 

3 

25969720 

0.1046657503 

4 

26085256 

0.1053767536 

10 
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26958856 

0.1097101397 

50 

34448232 

0.1431951431 

100 

34533512 

0.1888005531 

250 

34533512 

0.3255416950 

500 

34533512 

0.5535843883 

750 

34539720 

0.7817216892 

1000 

34539720 

1.0097472731 

2000 

34540000 

1.9225630056 
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3000 

34540000 

2.8351556022 

5000 

34540016 

4.6607327025 

Convergence Loop Limit Not Reached. 

7562 

 

 

 Converged!  

-4.84096×10
9
 

6.35838×10
9
 

6.9886794261  Job Complete! - 
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APPENDIX E 

RENDERING CODE 

 

<<"/home/jkdale/Thesis/N=5/N57/N57.mat" 

<<"/home/jkdale/Thesis/N=5/N57/N57ETable.mat" 

Dimensions[Efield67] 

Dimensions[Vpot67] 

y=ListContourPlot3D[Vpot67,Contours50,ContourStyleOpacity[0.2],Mesh

None,BoxedFalse,AxesLabel{"X","Y","Z"}] 

z=ListVectorPlot3D[Efield67, Boxed False, AxesLabel{"X","Y","Z"} ] 

x = Show[z,y] 

Export["/home/jkdale/Thesis/N=5/N57/Output/3DV2.png",y] 

Export["/home/jkdale/Thesis/N=5/N57/Output/3DE2.png",z] 

Export["/home/jkdale/Thesis/N=5/N57/Output/3DB2.png",x] 

 

a = Table[{{Efield67[[i]][[j]][[k]][[1]][[1]],Efield67[[i]][[j]][[k]][[1]][[2]], 

     

Efield67[[i]][[j]][[k]][[1]][[3]]},{Efield67[[i]][[j]][[k]][[2]][[1]],Efield67[[i]][[j]][[k]][[2]

][[2]], 

     Efield67[[i]][[j]][[k]][[2]][[3]]}},{i,1,66},{j,1,66},{k,1,66}]; 

b=Table[{{Efield67[[i]][[j]][[k]][[1]][[1]],Efield67[[i]][[j]][[k]][[1]][[2]], 

     Efield67[[i]][[j]][[k]][[1]][[3]]+67},{-Efield67[[i]][[j]][[k]][[2]][[1]],-

Efield67[[i]][[j]][[k]][[2]][[2]], 

     -Efield67[[i]][[j]][[k]][[2]][[3]]}},{i,1,66},{j,1,66},{k,1,66}]; 

c = Table[{{Efield67[[i]][[j]][[k]][[1]][[1]],Efield67[[i]][[j]][[k]][[1]][[2]], 



153 
 

 

     

Efield67[[i]][[j]][[k]][[1]][[3]]+134},{Efield67[[i]][[j]][[k]][[2]][[1]],Efield67[[i]][[j]][[k

][[2]][[2]], 

     Efield67[[i]][[j]][[k]][[2]][[3]]}},{i,1,66},{j,1,66},{k,1,66}]; 

d = Table[{{Efield67[[i]][[j]][[k]][[1]][[1]],Efield67[[i]][[j]][[k]][[1]][[2]], 

     Efield67[[i]][[j]][[k]][[1]][[3]]+201},{-Efield67[[i]][[j]][[k]][[2]][[1]],-

Efield67[[i]][[j]][[k]][[2]][[2]], 

     -Efield67[[i]][[j]][[k]][[2]][[3]]}},{i,1,66},{j,1,66},{k,1,66}]; 

 

e = Table[{i, j, k,Vpot67[[i]][[j]][[k]]},{i, 1, 66}, {j, 1, 66}, {k, 1, 66}]; 

f =Table[{i, j, k+66,- Vpot67[[i]][[j]][[k]]},{i, 1, 66}, {j, 1, 66}, {k, 1, 66}]; 

g =Table[{i, j, k+132, Vpot67[[i]][[j]][[k]]},{i, 1, 66}, {j, 1, 66}, {k, 1, 66}]; 

h =Table[{i, j, k+198,- Vpot67[[i]][[j]][[k]]},{i, 1, 66}, {j, 1, 66}, {k, 1, 66}]; 

 

Rib=Graphics3D[{LightGray,BoxRatios {.4, 1, 

1.42},Opacity[1],Polygon[{{27,34,1},{27,34,67},{39,34,67},{39,34,1}}]},  Boxed 

False]; 

Rib2=Graphics3D[{LightGray,BoxRatios {.4, 1, 

1.42},Opacity[1],Polygon[{{27,34,67},{27,34,134},{39,34,134},{39,34,67}}]},  

Boxed False]; 

Rib3=Graphics3D[{LightGray,BoxRatios {.4, 1, 

1.42},Opacity[1],Polygon[{{27,34,135},{27,34,201},{39,34,201},{39,34,135}}]},  

Boxed False]; 

Rib4=Graphics3D[{LightGray,BoxRatios {.4, 1, 

1.42},Opacity[1],Polygon[{{27,34,202},{27,34,269},{39,34,269},{39,34,202}}]},  

Boxed False]; 
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(*2D Dataset*) (*2D Dataset*) (*2D Dataset*) (*2D Dataset*) (*2D Dataset*) 

(*2D Dataset*) (*2D Dataset*) 

 

ee = Table[{j,k,Vpot67[[31]][[j]][[k]]},{j, 1, 66}, {k, 1, 66}]; 

ff =Table[{j,k+66,- Vpot67[[31]][[j]][[k]]},{j, 1, 66}, {k, 1, 66}]; 

gg =Table[{j,k+132, Vpot67[[31]][[j]][[k]]},{j, 1, 66},  {k, 1, 66}]; 

hh =Table[{j,k+198,- Vpot67[[31]][[j]][[k]]},{j, 1, 66}, {k, 1, 66}]; 

 

e1 = Table[{i,k,Vpot67[[i]][[30]][[k]]},{i, 1, 66}, {k, 1, 66}]; 

f1 =Table[{i,k+66,- Vpot67[[i]][[30]][[k]]},{i, 1, 66}, {k, 1, 66}]; 

g1 =Table[{i,k+132, Vpot67[[i]][[30]][[k]]},{i, 1, 66},  {k, 1, 66}]; 

h1 =Table[{i,k+198,- Vpot67[[i]][[30]][[k]]},{i, 1, 66}, {k, 1, 66}]; 

V2DI = Join[ee,ff,gg,hh]; 

V2DJ = Join[e1,f1,g1,h1]; 

V2Dk = Table[{i, j, Vpot67[[i]][[j]][[34]]},{i, 1, 66}, {j, 1, 66}]; 

V2DI >> "/home/jkdale/Thesis/N=5/N57/Output/67_V2D_I31.mat" 

V2DJ >> "/home/jkdale/Thesis/N=5/N57/Output/67_V2D_J30.mat" 

V2Dk >> "/home/jkdale/Thesis/N=5/N57/Output/67_V2D_K34.mat" 

<<"/home/jkdale/Thesis/N=5/N57/Output/67_V2D_I31.mat" 

<<"/home/jkdale/Thesis/N=5/N57/Output/67_V2D_J30.mat" 

<<"/home/jkdale/Thesis/N=5/N57/Output/67_V2D_K34.mat" 

C2DI =ListContourPlot[V2DI, 

ColorFunction"DeepSeaColors",ContourStyleDashed, FrameLabel {"Y", 

"Z"},ImageSize 400,AspectRatio 4] 

C2DJ =ListContourPlot[V2DJ, 

ColorFunction"DeepSeaColors",ContourStyleDashed,  FrameLabel 

{"X","Z"},ImageSize 400,AspectRatio 4] 
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C2DK 

=ListContourPlot[V2DK,ColorFunction"DeepSeaColors",ContourStyleDashed,  

FrameLabel {"X","Y"},ImageSize 400, AspectRatio 1] 

 

a4 = 

Table[{{Efield67[[36]][[j]][[k]][[1]][[2]],Efield67[[36]][[j]][[k]][[1]][[3]]},{Efield67[[36

]][[j]][[k]][[2]][[2]],Efield67[[36]][[j]][[k]][[2]][[3]]}},{j,1,66},{k,1,66}]; 

b4=Table[{{Efield67[[36]][[j]][[k]][[1]][[2]],Efield67[[36]][[j]][[k]][[1]][[3]]+67

},{-1*Efield67[[36]][[j]][[k]][[2]][[2]],-

1*Efield67[[36]][[j]][[k]][[2]][[3]]}},{j,1,66},{k,1,66}]; 

c4 

=Table[{{Efield67[[36]][[j]][[k]][[1]][[2]],Efield67[[36]][[j]][[k]][[1]][[3]]+134},{Efield

67[[36]][[j]][[k]][[2]][[2]],Efield67[[36]][[j]][[k]][[2]][[3]]}},{j,1,66},{k,1,66}]; 

d4 = 

Table[{{Efield67[[36]][[j]][[k]][[1]][[2]],Efield67[[36]][[j]][[k]][[1]][[3]]+201},{-

1*Efield67[[36]][[j]][[k]][[2]][[2]],-

1*Efield67[[36]][[j]][[k]][[2]][[3]]}},{j,1,66},{k,1,66}]; 

 

aaa = 

Table[{{Efield67[[i]][[36]][[k]][[1]][[1]],Efield67[[i]][[36]][[k]][[1]][[3]]},{Efield67[[i]]

[[36]][[k]][[2]][[1]],Efield67[[i]][[36]][[k]][[2]][[3]]}},{i,1,66},{k,1,66}]; 

bbb=Table[{{Efield67[[i]][[36]][[k]][[1]][[1]],Efield67[[i]][[36]][[k]][[1]][[3]]+6

7},{-1*Efield67[[i]][[36]][[k]][[2]][[1]],-

1*Efield67[[i]][[36]][[k]][[2]][[3]]}},{i,1,66},{k,1,66}]; 

ccc 

=Table[{{Efield67[[i]][[36]][[k]][[1]][[1]],Efield67[[i]][[36]][[k]][[1]][[3]]+134},{Efield

67[[i]][[36]][[k]][[2]][[1]],Efield67[[i]][[36]][[k]][[2]][[3]]}},{i,1,66},{k,1,66}]; 
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ddd = 

Table[{{Efield67[[i]][[36]][[k]][[1]][[1]],Efield67[[i]][[36]][[k]][[1]][[3]]+201},{-

1*Efield67[[i]][[36]][[k]][[2]][[1]],-

1*Efield67[[i]][[36]][[k]][[2]][[3]]}},{i,1,66},{k,1,66}]; 

efJ = Join[aaa,bbb,ccc,ddd]; 

efI = Join[a4,b4,c4,d4]; 

efk = 

Table[{{Efield67[[i]][[j]][[34]][[1]][[1]],Efield67[[i]][[j]][[34]][[1]][[2]]},{Efield67[[i]][

[j]][[34]][[2]][[1]],Efield67[[i]][[j]][[34]][[2]][[2]]}},{i,1,66},{j,1,66}]; 

efI2=ListStreamPlot[efI,StreamColorFunction"NeonColors",StreamStyleThic

k, FrameLabel {"Y","Z"}, AspectRatio 4, ImageSize  400] 

efJ2 

=ListStreamPlot[efJ,StreamColorFunction"NeonColors",StreamStyleThick,FrameLab

el {"X","Z"}, AspectRatio 4, ImageSize  400] 

efK2=ListStreamPlot[efk,StreamColorFunction"NeonColors",StreamStyleThi

ck, FrameLabel {"X","Y"},AspectRatio 1, ImageSize  400] 

 

Show[C2DI, efI2] 

Show[C2DJ, efJ2] 

Show[C2DK, efK2] 

Export["/home/jkdale/Thesis/N=5/N57/Output/I34.png",C2DI] 

Export["/home/jkdale/Thesis/N=5/N57/Output/J33.png",C2DJ] 

Export["/home/jkdale/Thesis/N=5/N57/Output/K34.png",C2DK] 

Export["/home/jkdale/Thesis/N=5/N57/Output/IE34.png",efI2] 

Export["/home/jkdale/Thesis/N=5/N57/Output/JE33.png",efJ2] 

Export["/home/jkdale/Thesis/N=5/N57/Output/KE34.png",efK2] 

Export["/home/jkdale/Thesis/N=5/N57/Output/BI34.png",Show[C2DI, efI2]] 
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Export["/home/jkdale/Thesis/N=5/N57/Output/BJ33.png",Show[C2DJ, efJ2]] 

Export["/home/jkdale/Thesis/N=5/N57/Output/BK342.png",Show[C2DK, efK2]] 

 

(* 3D DATASET*) (* 3D DATASET*)(* 3D DATASET*)(* 3D DATASET*)(* 

3D DATASET*)(* 3D DATASET*)(* 3D DATASET*)(* 3D DATASET*) 

 

L = Join[a,b, c, d]; 

L>>"/home/jkdale/Thesis/N=5/N57/Output/67_Efield_Join.mat" 

M = Join[e,f,g,h]; 

M >>"/home/jkdale/Thesis/N=5/N57/Output/67_Vpot_Join.mat" 

<<"/home/jkdale/Thesis/N=5/N57/Output/67_Efield_Join.mat" 

<<"/home/jkdale/Thesis/N=5/N57/Output/67_Vpot_Join.mat"  

Dimensions[Ejoin67] 

Dimensions[Vjoin67] 

 

PP=ListVectorPlot3D[Ejoin67, AxesLabel {"X","Y","Z"}, Axes {True, False, 

True}, Boxed False, BoxRatios {.4,1,4},VectorScale Small, (*VectorColorFunction 

 "DeepSeaColors",*)VectorPoints {10,10,67}, ImageSize 400] 

Q =ListContourPlot3D[Vjoin67,ContourStyle Opacity[0.03], ColorFunction 

"SunsetColors", Contours 300,Boxed False,Mesh None, Axes {True, False, True}, 

AxesLabel {"X","Y","Z"},BoxRatios {.4,1,4} , ImageSize 400] 

Show[PP,Q, Rib, Rib2, Rib3, Rib4] 

Show[Q, Rib, Rib2, Rib3, Rib4] 

Show[PP, Rib, Rib2, Rib3, Rib4] 

Export["/home/jkdale/Thesis/N=5/N57/Output/67Efield.png",Show[PP]] 

Export["/home/jkdale/Thesis/N=5/N57/Output/67VCont.png",Show[Q]] 
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Export["/home/jkdale/Thesis/N=5/N57/Output/67E&R.png",Show[PP,Rib, Rib2, 

Rib3, Rib4]] 

Export["/home/jkdale/Thesis/N=5/N57/Output/67C&R.png",Show[Q, Rib, Rib2, 

Rib3, Rib4]] 

Export["/home/jkdale/Thesis/N=5/N57/Output/67All.png",Show[PP,Q, Rib, Rib2, 

Rib3, Rib4]] 
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APPENDIX F 

CALCULATED RHO (Ρ) VALUES FROM GIVEN FERMION 

PROBABILITIES. 

 

 

acGNR8 ρ Values 

Dataset 1 0.02599506187566887, 

0.09181686914811862, 

0.16666666666666635, 

0.2155214023095454, 

0.2155214023095458, 

0.16666666666666696, 

0.09181686914811915, 

0.025995061875669113 

Dataset 41 0.025995061875669304, 

0.09181686914811957, 

0.1666666666666671, 

0.21552140230954528, 

0.21552140230954547, 

0.16666666666666596, 

0.09181686914811867, 

0.02599506187566893 
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Dataset 81 0.025995061875669256, 

0.0918168691481191, 

0.16666666666666682, 

0.21552140230954564, 

0.21552140230954525, 

0.16666666666666657, 

0.09181686914811876, 

0.025995061875669034 

Dataset 121 0.02599506187566914, 

0.09181686914811926, 

0.16666666666666755, 

0.21552140230954608, 

0.21552140230954522, 

0.16666666666666596, 

0.09181686914811818, 

0.02599506187566894 

Dataset 161 0.025995061875669842, 

0.09181686914812083, 

0.16666666666666896, 

0.21552140230954592, 

0.21552140230954447, 

0.1666666666666643, 

0.09181686914811701, 

0.025995061875668482 
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Dataset 201 0.02599506187566986, 

0.09181686914812087, 

0.16666666666666868, 

0.21552140230954636, 

0.21552140230954547, 

0.16666666666666427, 

0.09181686914811601, 

0.025995061875667996 

Table F1 - N=8 Calculated Rho Values – This table shows the unique ρ values used to 
calculate the potentials and the field lines. 

 

acGNR5 ρ Values 

Dataset 1 0.2440934700590991, 

0.2538018427644523, 

1.2396576538570847*10
-8

, 

0.25595087934816363, 

0.24615379543170846 

Dataset 2 0.24661223178846572, 

0.2533575229139936, 

1.0719882249378084*10
-7

, 

0.25324070572563334, 

0.24678943237308476 

Dataset 3 0.246805772087055, 

0.2535912571939378, 



162 
 

 

4.143083154085276*10
-7

, 

0.25287642583515113, 

0.24672613057554033 

Dataset 4 0.246185, 

0.2533317467170475, 

3.284342581334505*10
-8

, 

0.25375918559809657, 

0.2467241764592481 

Dataset 5 0.2468055480210266, 

0.253861957845413, 

9.046884173404786*10
-7

, 

0.2527136070496206, 

0.24661798239552246 

Dataset 6 0.250082229246683, 

0.25205536323516947, 

1.990616704563155*10
-8

, 

0.249909489167656, 

0.24795289844432453 

Dataset 7 0.247986734498357, 

0.2525295211809991, 

5.719688545090018*10
-8

, 

0.25210531017401683, 

0.24737837694974155 

Table F2 - N=5 Calculated Rho Values – This table shows the unique ρ values used to 
calculate the potentials and the field lines. 
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