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ABSTRACT

Optimal surface finding (OSF), a graph-based optimization approach to image

segmentation, represents a powerful framework for medical image segmentation and

analysis. In many applications, a pre-segmentation is required to enable OSF graph

construction. Also, the cost function design is critical for the success of OSF. In this

thesis, two issues in the context of OSF segmentation are addressed. First, a ro-

bust model-based segmentation method suitable for OSF initialization is introduced.

Second, an OSF-based segmentation refinement approach is presented.

For segmenting complex anatomical structures (e.g., lungs), a rough initial

segmentation is required to apply an OSF-based approach. For this purpose, a novel

robust active shape model (RASM) is presented. The RASM matching in combi-

nation with OSF is investigated in the context of segmenting lungs with large lung

cancer masses in 3D CT scans. The robustness and effectiveness of this approach

is demonstrated on 30 lung scans containing 20 normal lungs and 40 diseased lungs

where conventional segmentation methods frequently fail to deliver usable results.

The developed RASM approach is generally applicable and suitable for large or-

gans/structures.

While providing high levels of performance in most cases, OSF-based ap-

proaches may fail in a local region in the presence of pathology or other local chal-

lenges. A new (generic) interactive refinement approach for correcting local segmen-

tation errors based on the OSF segmentation framework is proposed. Following the
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automated segmentation, the user can inspect the result and correct local or regional

segmentation inaccuracies by (iteratively) providing clues regarding the location of

the correct surface. This expert information is utilized to modify the previously cal-

culated cost function, locally re-optimizing the underlying modified graph without

a need to start the new optimization from scratch. For refinement, a hybrid desk-

top/virtual reality user interface based on stereoscopic visualization technology and

advanced interaction techniques is utilized for efficient interaction with the segmen-

tations (surfaces). The proposed generic interactive refinement method is adapted to

three applications. First, two refinement tools for 3D lung segmentation are proposed,

and the performance is assessed on 30 test cases from 18 CT lung scans. Second, in

a feasibility study, the approach is expanded to 4D OSF-based lung segmentation

refinement and an assessment of performance is provided. Finally, a dual-surface

OSF-based intravascular ultrasound (IVUS) image segmentation framework is intro-

duced, application specific segmentation refinement methods are developed, and an

evaluation on 41 test cases is presented. As demonstrated by experiments, OSF-based

segmentation refinement is a promising approach to address challenges in medical im-

age segmentation.
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automated segmentation, the user can inspect the result and correct local or regional

segmentation inaccuracies by (iteratively) providing clues regarding the location of

the correct surface. This expert information is utilized to modify the previously cal-

culated cost function, locally re-optimizing the underlying modified graph without

a need to start the new optimization from scratch. For refinement, a hybrid desk-

top/virtual reality user interface based on stereoscopic visualization technology and

advanced interaction techniques is utilized for efficient interaction with the segmen-

tations (surfaces). The proposed generic interactive refinement method is adapted to
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and the performance is assessed on 30 test cases from 18 CT lung scans. Second, in

a feasibility study, the approach is expanded to 4D OSF-based lung segmentation

refinement and an assessment of performance is provided. Finally, a dual-surface

OSF-based intravascular ultrasound (IVUS) image segmentation framework is intro-

duced, application specific segmentation refinement methods are developed, and an

evaluation on 41 test cases is presented. As demonstrated by experiments, OSF-based

segmentation refinement is a promising approach to address challenges in medical im-
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Medical imaging modalities, such as magnetic resonance imaging (MRI), com-

puted tomography (CT) and ultrasound (US), are used to noninvasively create images

of organs inside the human body for the purpose of diagnosis, screening, treatment

planning or study of anatomy and pathology. Since its introduction, medical imaging

technology has become increasingly important in medicine. Quantitative and highly

automated analysis of medical images is essential for efficient utilization of medical

image data. In a routine clinical task, physicians look at images to screen for diseases

like cancers. However looking at images is often not sufficient for diagnosis and treat-

ment, especially for tasks like planning of surgical resection or radiation treatment

planning. Thus, segmentation and subsequent quantitative analysis of anatomical

and pathological structures is needed. In addition, state-of-the-art imaging technol-

ogy enables physicians to create high-resolution volumetric images showing anatomy

and pathology in great detail, but the increased amount of image data to be (quanti-

tatively) analyzed represents a burden for physicians. Manual analysis of such image

data is impracticable. To address this problem, highly automated quantitative image

analysis tools are required.

Medical image segmentation is often the first step in quantitative image anal-

ysis. The aim of segmentation is to identify the target anatomy or pathology and
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delineate the boundary of these structures of interest. Image segmentation plays a

vital role in numerous medical applications [87, 106].

As the development of medical imaging technology is progressing, increased

amount of image data need to be processed. For example, the segmentation of 3D

and 4D (3D + time) image data is quite challenging and an active research topic.

Recently, an optimal surface finding (OSF) [124, 75] and layered optimal graph image

segmentation of multiple objects and surfaces (LOGISMOS) [128, 75] approaches have

been reported with applications to medical image segmentation tasks. The approach

guarantees global optimality of the resulting segmentation according to a given cost

function. It is based on a node-weighted graph in d-D space (d ≥ 2) and enables

the detection of a surface under geometric constraints in a low-order polynomial

time [124, 75]. In the OSF-based segmentation, the surface (or multiple surfaces)

segmentation task is transformed into finding a minimum-cost closed-set which is

solved by means of a maximum-flow algorithm [17].

Many OSF-based approaches have been published and demonstrate the per-

formance of globally optimal segmentation. For example, Zhao et al. [134] proposed

an automated segmentation method for the aorta in 4D cardiovascular magnetic reso-

nance (MR) image data based on an OSF-based approach [75]. The pre-segmentation

was generated from 4D level-sets and the tubular structure was transformed into

terrain-like structure on which a multisurface graph was constructed. This seg-

mentation method utilized the edge information of the transformed image [134].

Haeker et al. [48] combined region information with boundary information to define
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a cost function for OSF-based intraretinal layer segmentation of optical coherence

tomography (OCT) images. Wang and Beichel [122] presented a lymph node seg-

mentation framework using a mesh-based OSF approach. The graph was built based

on a sphere around a lymph node, and graph column profiles were constructed along

the direction of surface points to the sphere center. They took gray value homogene-

ity and image edge information into account in their cost function design. Song et al.

[105] developed a framework based on the OSF approach for simultaneous bladder

and prostate segmentation. Their work incorporated a smoothness penalty function

using weighted arcs between neighboring columns. In this way, a soft smoothness

shape compliance is introduced to incorporate prior shape information. As men-

tioned in [127], the mesh surface based OSF approach may suffer from the problem of

mesh folding when normal directions are employed in the column profile construction

especially in the case of sharp shape changes and concave regions. To address this

issue, Yin et al. proposed an electric force based method to construct the column

profiles. However the algorithm [127] has O(n2) computation complexity, because

the computation of the force vector at a certain point in space requires considering

all vertex points of the initial surface. To avoid mesh folding, Bauer et al. [7] pro-

posed a gradient vector flow (GVF) [125] based approach to build column profiles.

First, gradient vectors are calculated with the method presented in [125] from the

initial surface. Second, starting from a surface point of the initial surface, vectors are

followed in either direction to construct non-overlapped column profiles [7].

Graph-cuts [16, 17, 18] and a more recent strategy of detecting a maximum
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weight region decomposable into two star-shaped regions [47] represent alternative

options for generating globally optimal segmentation. Although these optimization

problems are ultimately transformed to solving maximum-flow problem, OSF-based

methods [124, 75] are fundamentally different from graph-cuts [16, 17, 18] and the

“star-shape” region approach presented in [47]. One advantage of OSF-based ap-

proach is that it can be easily extended to a simultaneous multi-surface detection

incorporating smoothness constraint.

In contrast to OSF, graph-cuts [16, 17, 18] and the “star-shape” region ap-

proach [47] are grid graph based and do not require a pre-segmentation. However,

seeds may be required for graph-cuts, and star shape region “center” is needed in

case of the work presented in [47]. For OSF-based segmentation, if the target sur-

faces have relatively “simple geometry” such as terrain-like, spherical, cylindrical and

tubular structure, a pre-segmentation may not be needed for constructing the graph.

For example, the intraretinal layer segmentation of OCT images [48, 44] does not

require a pre-segmentation since the intraretinal layers are intrinsically a terrain-like

structure and the graph is constructed as a grid weighted graph where nodes on the

graph columns correspond to the voxels in the 3D OCT image data. The lymph

node segmentation presented in [122] directly utilized a sphere structure to build

the graph. Although the aorta segmentation in [134] utilized a level-set based pre-

segmentation, the graph was not directly built from the pre-segmentation. Instead

a tubular structure constructed from the centerline of the pre-segmentation was uti-

lized. However, medical objects are not always “simple geometric” structures, and
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often an approximate pre-segmentation is required to be able to utilize OSF-based

segmentation approaches. For example, in the case of bladder and prostate segmenta-

tion in [105], cartilage segmentation of the knee joint in [127] and liver segmentation

in [52, 133], initial segmentations were first performed to generate a shape prior close

to the target object. The more accurate the initialization is, the larger the likeli-

hood that the subsequent OSF-based segmentation succeeds. Hence, developing a

robust and automated initial segmentation approach is essential for many OSF-based

segmentation applications.

Figure 1.1: Example of a local segmentation error (arrow) due to lung pathology

(cancer). The defined cost function is not well suited for this specific location of the

lung boundary.

It is a nontrivial problem to find a suitable cost for a specific segmentation

problem. For example, a cost function may work for the majority of cases, but some
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anatomical and pathological variation might cause the automated OSF segmentation

to fail to accurately delineate the correct boundary in some local region. For example,

in the case of 3D lung segmentation in CT image data, the high density pathology

(cancer masses) can occur near to the boundary. Under such circumstances, edge

and region based cost may not be sufficient to produce a correct segmentation in this

region (Fig. 1.1). To correct the local failure of the automated OSF-based segmenta-

tion, effective and efficient interactive refinement methods are required to produce a

segmentation suitable for quantitative analysis.

1.2 Specific Aims

This work deals with developing a novel robust active shape model (ASM) for

initialization of OSF-based segmentation approaches and the interactive refinement

of OSF based segmentation results. Specifically, the aims of this work are as follows:

Aim 1: Develop an automated robust ASM based segmentation method for the

initialization of OSF segmentation approaches.

Aim 2: Apply and validate the robust ASM segmentation in the context of OSF to

automatically segment lungs with large masses in 3D CT images.

Aim 3: Develop a generic interactive OSF-based refinement approach utilizing a

virtual reality environment for display and user interaction.

Aim 4: Adapt the generic segmentation refinement approach to several medical image

segmentation problems. Specifically, the following applications are investigated:

(a) lung segmentation in 3D CT images (3D single surface graph-based segmentation
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approach),

(b) lung segmentation in 4D CT images (4D single surface graph-based segmentation

approach), and

(c) segmentation of 3D intravascular ultrasound (IVUS) images (3D multiple surface

graph-based segmentation approach).

1.3 Thesis Overview

The thesis is organized in eight chapters. In Chapter 2, a robust ASM al-

gorithm is presented that is suitable to serve as initial segmentation required for

OSF-based segmentation. In Chapter 3, the robust ASM is utilized and validated in

combination with OSF segmentation to automatically segment lungs with large cancer

masses in 3D CT images. In Chapter 4, a generic interactive OSF-based segmenta-

tion refinement framework using a hybrid VR/desktop user interface is introduced.

The generic refinement approach is adapted to 3D OSF-based single surface lung

segmentation refinement and validated in Chapter 5. In a feasibility study presented

in Chapter 6, this approach is extended to 4D lung segmentation and refinement.

In addition, a performance assessment is presented. Segmentation refinement in the

context of 3D IVUS segmentation is described and validated in Chapter 7. Finally,

conclusions of this work are discussed in Chapter 8.
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CHAPTER 2
ROBUST ACTIVE SHAPE MODEL BASED SEGMENTATION FOR

INITIALIZATION OF OPTIMAL SURFACE FINDING

2.1 Introduction

In many medical image segmentation problems, it is advantageous to utilize a

priori shape information, which is likely to increase the robustness of the segmenta-

tion approach. OSF-based segmentation intrinsically incorporates shape information

via the graph construction process and allows to restrict the solution by means of

smoothness constraints [124, 75]. Thus, for OSF segmentation applications that re-

quire a pre-segmentation, the quality of this initial segmentation is critical to fully

utilize the potential of OSF. However, generating a good pre-segmentation is often

a nontrivial problem. There is no dictated universal applicable algorithm to get the

pre-segmentation. The requirement for the pre-segmentation is to produce an approx-

imate solution close to the target boundary. In addition, in order to be applicable in

routine quantitative analysis, the algorithm should be reasonably fast. Even though

only a coarse result is required, it is challenging to balance robustness and computing

time for 3D object segmentation because of the potentially large size of the target

structure (e.g., lungs) and the amount of image data to be processed. The developed

approach addresses this issue. The robust ASM matching algorithm is specifically

designed to take advantage of general-purpose computation on graphics processing

units (GPGPU), which reduces the execution time considerably. In this chapter we

described our robust ASM segmentation approach in details.
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2.2 Related Work

Parametric (e.g., snake models [62]) and geometric (e.g., level-set [22]) de-

formable models are widely used in medical image segmentation. However, it is chal-

lenging for these algorithms that do not use a prior (shape) information to handle

cases with weak edge information, similar shapes next to each other (e.g., prostate

and bladder), or pathology (e.g., cancers adjacent to the object boarder). Incorpo-

rating object shape or appearance information can help to improve the robustness of

the segmentation.

A parametric deformable template model presented in [61] is one example

to overcome these limitations by starting the segmentation from a shape template

learned from a set of training data. The deformable model minimizes the objective

function by iteratively update the transformation parameters in order to match the

shape of the template to the target. A segmentation application based on a Bézier

deformable template model for coarse lung segmentation can be found in [63]. The

construction of the template is a nontrivial procedure especially for large objects in

volumetric medical image data.

Atlas or registration-based segmentation method share a similar idea with a

deformable template model. The atlas is constructed from the learning data. During

the segmentation, the atlas is deformed to match the target object by means of regis-

tration, utilizing image features to change the transformation parameters. Zhang et al.

[131] utilized an atlas registration framework to initialize a pulmonary fissure segmen-

tation approach, which is followed by a two-step graph search procedure to refine the
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fissure segmentation. However, atlas-based segmentation is typically computationally

expensive.

The active shape model (ASM) is a model based segmentation method which

was introduced by Cootes et al. in [30, 29, 26, 32]. ASMs allow to model the mean

shape as well as shape variations. The shape model is learned from a set of shapes,

which are aligned in a common coordinate system. Information about the learned

shape variability is utilized for segmentation by iteratively fitting the model to the

target object.

ASMs have been used for several medical image segmentation tasks. In [26],

an ASM has been utilized to detect the heart chamber in 2D echocardiogram images.

Duta and Sonka [85] performed neuroanatomic structure segmentation in 2D MR

brain images by an improved ASM algorithm. Ginneken et al. [115] proposed an

extended ASM, by utilizing “optimal features” and used a kNN classifier to locate

update points instead of the frequently utilized Mahalanobis distance. The authors

utilized their algorithm for lung segmentation in 2D chest radiographs as well as

cerebellum and corpus callosum segmentation in 2D slices of MRI brain image data

[115]. 3D ASM model were also developed by the medical image analysis community.

Heimann et al. [54, 53] described a ASM based liver segmentation in 3D CT images.

Heimann et al. [52] utilized a ASM in combined with OSF for the 3D segmentation of

the liver in CT data. Zhang et al. [129] proposed a hybrid segmentation framework

of ASM and OSF for 3D echocardiography images of the left ventricle. The authors

replaced the standard ASM landmark position searching method by a OSF method.
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Thus, a globally optimal shape points are used to update the ASM.

Active appearance models (AAMs) utilize shape and appearance information

learned from samples for segmentation [27, 41, 32, 28]. For the matching, AAMs

try to minimize the intensity difference between the texture patch warped from the

sampled original image and the appearance model patch reconstructed by the model.

To match an AAM, shape, intensity and model parameters need to be optimized.

Note that AAMs represent appearance and shape for the whole target object while

ASMs model shape and appearance along profiles utilized to update the ASM.

Medical image segmentation applications based on AAMs can be found in

several publications. Cootes et al. [25] reported an approach to segment ventricles, the

caudate nucleus and the lentiform nucleus in 2D MR brain cross-sections utilizing the

AAM framework. Mitchell et al. [83] proposed a left and right ventricle segmentation

method based on AAMs for 2D MR cardiac images. Mitchell et al. [82] improved

the left ventricle segmentation by extending the conventional AAM framework to an

Active Appearance Motion Model, for 2D + time cardiac MR images. A left and right

ventricle segmentation method using 3D AAMs was proposed by the same group in

[80]. Beichel et al. [12] developed an automated AAM method to segment diaphragm

surface in 3D CT images. Zhang et al. [130] extended a hybrid ASM/AAM algorithm

[81] to allow for left and right ventricle segmentation in 4D MR cardiac images. A

comprehensive review about ASMs and AAMs can be found in [51].

Statistics shape models (SSMs) like ASMs and AAMs provide a generic seg-

mentation framework for volumetric medical image data. For OSF-based segmenta-
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tion targeting a complex surface, these two SSMs are potential candidates for gener-

ating an initial segmentation. We have chosen the ASM for the following reasons.

(1) In volumetric medical segmentation, the potentially large volume of organs

such as lungs leads to long computation time for AAM based approaches because the

iterative matching process needs to deal with image volumes. In addition, the steadily

increased resolution of medical images amplifies this issue.

(2) The appearance of target organs can change significantly due to artifacts

or pathology e.g., tumors. Such disturbances are frequent. A standard AAMs will

fail to overcome this issue, because the learned model may not cover all variability

in appearance. The robust extensions of AAMs like the algorithm proposed by Be-

ichel et al. [10] provide options to solve this issue, but will require significantly more

computation time.

Because of the disadvantages of AAMs when utilized to segment potentially

large structure, this work will use a ASM-based initial segmentation for OSF.

2.3 Methods

In the following sections, a robust ASM (RASM) segmentation approach will

be presented. It is utilized to produce a pre-segmentation of (large) structures as re-

quired for subsequent OSF-based segmentation. In Section 2.3.1, an approach for gen-

erating a shape model is described. Section 2.3.2 outlines the standard ASM matching

approach. In Section 2.3.3, a novel RASM is introduced, and in Section 2.3.4, we out-

line how this algorithm can be implemented in parallel on graphics processing units
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to speedup computing time.

2.3.1 Model Generation

The ASM-based segmentation approach requires learning shapes to build the

shape model. In this context it is desirable to have a learning set (n shapes) which

is representative for the targeted population. To build the shape model, a set of

corresponding points (landmarks) {s1, s2, . . . , sm}, where m is the number of the

landmarks, need be identified on all the learning set. The identification can be done

manually for a 2D data set, but it becomes impossible task for 3D. Therefore, an auto-

mated identification method is required to identify corresponding landmarks. There

are several methods available to generate landmarks automatically. For example,

Frangi et al. [42] presented an atlas-based registration framework. First, the learning

shapes are aligned and registrated to an atlas template. Second, the landmarks are

identified on the template, and landmarks in template space are then propagated

to each of the original learning shapes. For genus-0 closed-surface shapes (e.g., in

medical context, lungs, liver, kidneys, spleen, prostate etc.), minimum description

length (MDL) [54] and spherical harmonics descriptors method (SPHARM) [46] can

be utilized to find point correspondence in 3D. To find landmark correspondence for

open-surface shapes, Dalal et al. [35] proposed an iterative landmark-sliding method.

Once all m landmarks are defined for all n shapes, n landmark sets are

aligned in a common coordinate frame by using Procrustes analysis [40], re-

sulting in a mean shape vector x̄. For each learning shape, a shape vector
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xi with i = 1, 2, . . . , n is generated by concatenating the coordinates: xi =

[xi,1, yi,1, zi,1, xi,2, yi,2, zi,2, . . . , xi,m, yi,m, zi,m]
T . A principal component analysis (PCA)

was applied to the covariance matrix S = 1

n−1

∑n

i=1
(xi − x̄)(xi − x̄)T to generate a

point distribution model (PDM) [26]. An instance of a object shape can be generated

from the corresponding PDM by the linear model

x = x̄+Pb , (2.1)

where P denotes the shape eigenvector matrix derived from S, and b represents the

shape coefficients. The statistic model (Eq. (2.1)) describes object shapes in terms

of a mean shape and variation about the mean.

2.3.2 Standard ASM Matching

The PDM (Section 2.3.1) can be used for image segmentation by matching

the model to the target structure. This can be achieved by utilizing a standard ASM

matching framework [26]. This matching procedure consists of four steps:

i) An instance of the shape model (e.g., mean shape) is generated and placed in

proximity to the target structure.

ii) To match the model to the target, shape points are updated by searching from

the current landmark location along a profile normal to the model surface with

length lASM . To find update points y, several approaches can be used. For



15

example, one could search for the strongest edge. Alternatively, a local appear-

ance profile can be modeled for each landmark point from learning images [31].

Update points are then detected based on the similarity to the learned appear-

ance profile.

iii) Once all shape points are updated, pose parameters are adjusted to map the

updated shape points in the target image coordinate frame to the mean shape

in the model coordinate frame. For this purpose, a Procrustes alignment step

is used to estimate transformation matrix T, which consists of scaling, rota-

tion, and translation parameters, by minimizing (T[y]− x̄)T (T[y]− x̄). Model

parameters b are updated using

b = PT (T[y]− x̄) (2.2)

and a new instance of the model is calculated utilizing Eq. (2.1) and transformed

to the image space by T−1.

iv) Steps i) to iii) are repeated until the model converges.

2.3.3 Robust ASM Matching

We are interested in the segmentation of medical image data. The tissue sur-

rounding the target structure may show the similar appearance pattern. Also, the

appearance of the object to be segmented can be altered by disease e.g., tumors.

Thus, it is very likely that some update points are found during the model matching
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procedure that do not belong to the target surface (outliers). Consequently, the stan-

dard matching approach will fail, because it is a least squares optimization procedure

that is not suitable to handle outliers. Therefore, a robust shape model matching

approach is required.

The basic idea behind robust ASM matching is to only use inlier compo-

nents of y to update model parameters. In this context, Rogers et al. investigated

M-estimators and random sampling-based robust parameter estimation techniques

for 2D ASM matching [94]. It is well known that the effectiveness of M-estimators

strongly depends on the selection of the weighting function and its parameters. Usu-

ally, this selection is not trivial, and the optimal selection might change from case

to case. Random sampling techniques try to find a subset of inliers by evaluating a

number of randomly sampled subsets of update points. Such approaches work well,

if the required subset of inliers is quite small. In the case of large ASM models, this

strategy can lead to suboptimal results, because a small set of inliers might not be

representative enough to describe a complex shape (many landmark points), and thus

can negatively impact the matching result. For our application, it is desirable to use

as many inliers as possible for the model update. Lekadir et al. proposed a robust

3D ASM matching method based on local shape dissimilarity defined by point triplet

ratios [73]. In the case of large ASMs, a large number of possible triplets exist and

selecting an optimal subset is not trivial.

Our approach utilizes a robust PCA coefficient estimation scheme that builds

on the work of Storer et al. [110]. Storer’s method was designed for robust image
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reconstruction and targets a pre-defined number of inliers. Here, we propose a novel

voting scheme that does not require to specify a targeted number of inliers. Our

method consists of two processing steps. First, normal shape patterns of landmark

subsets are learned. Second, these patterns are then utilized during ASM matching

to identify and reject outliers.

n 
2 

n 
2 

n 
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n 
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n 
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Figure 2.1: Robust shape pattern learning. A random sampling process is repeated

l-times (rows). In each random sampling process, k shape subsets are derived from

all n training shapes and utilized to generated point subset distribution models.

The overview of the robust shape pattern learning process is shown in Fig.

2.1 using left lung shape model as an example. Corresponding landmark points of
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all learning shapes are partitioned randomly into k shape subsets of approximately

equal size. This process is repeated l-times, resulting in a set of subsets: Ω = {ωi,j|i ∈

1, 2, . . . , l; j ∈ 1, 2, . . . , k}. Note that corresponding landmark points of all n learning

data sets are always assigned to the same subset. Consequently, each subset ωi,j

consists of n subset samples. For each subset ωi,j , a mean shape x̄ωi,j
is calculated by

using Procrustes analysis, and all shapes of the subset are aligned. The subset shapes

are then converted to shape vectors by concatenating their x-, y-, and z-components.

By means of PCA, the corresponding eigenvector matricesPωi,j
and eigenvalue vectors

λωi,j
are calculated. x̄ωi,j

, Pωi,j
and λωi,j

are stored and utilized for robust ASM

matching.

In order to match the model to the target image, outlier components of the

update position y in each iteration need to be identified. This is accomplished by

analyzing the subset combinations of y and utilizing a voting scheme. Let yωi,j

represent the components of y that are corresponding to the landmark points that

constitute subset ωi,j. Let mωi,j
represent the number of update points in each subset.

A subset reconstruction error eωi,j
is defined:

eωi,j
=

∥

∥

∥
Tωi,j

[yωi,j
]−

[

x̄ωi,j
+Pωi,j

b̃ωi,j

]∥

∥

∥
(2.3)

where Tωi,j
is a transformation matrix that aligns yωi,j

to the corresponding mean

x̄ωi,j
. The vector b̃ωi,j

is derived from:

bωi,j
= PT

ωi,j

[

Tωi,j
[yωi,j

]− x̄ωi,j

]

(2.4)

by constraining bωi,j
(v) in [−ξ

√

λωi,j
(v), ξ

√

λωi,j
(v)], v ∈ {1, 2, . . . ,mωi,j

}. A large
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reconstruction error eωi,j
is an indication that subset ωi,j is very likely contaminated

by one or more outliers. The l-times repeated subdivision increases the possibility

of outlier free point combinations. To identify the outliers, the reconstruction error

eωi,j
is interpreted as a vote, which is casted for all update points that are included in

the subset yωi,j
. This voting process is carried out for all subsets ωi,j ∈ Ω. Outliers

frequently get large vote values. The casted votes are collected in a matrix Verr

of size m × l, in which rows correspond to shape points in y. After all votes are

casted, Verr is analyzed to detect outliers. First, to increase robustness, a rank order

statistics filter is applied to each row; the values are sorted, and the g-lowest value

is selected to represent the filter result. This filtering step reduces Verr to a vector

verr = [v1, v2, . . . , vm]
T and helps to reject accidentally occurring point constellations

that contain outliers, which are similar to constellations of inlier points. A typical

histogram of vector component values is shown in Fig. 2.2. Second, a threshold δ is

derived from verr by analyzing the distribution of vector components vi: δ = µ+ βσ

with µ = mediani∈1,2,...,m{vi} and σ =
√

1/m
∑m

i=1
(vi − µ)2, where β represents a

constant. Third, the threshold is applied to verr to yield a selection vector: psel =

[p1, p2, . . . , pm]
T with

pi =

{

1 : vi < δ
0 : vi ≥ δ

(2.5)

to discriminate between inliers (pi = 1) and outliers (pi = 0). Once the inliers are

identified, the transformation matrix T is obtained by aligning selected update points

y{pi=1} to the selected mean shape points x̄{pi=1} and then shape parameters b are
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calculated using

b = PT
{pi=1}(T[y{pi=1}]− x̄{pi=1}) . (2.6)

Figure 2.2: Histogram of component values of verr and automatically derived thresh-

old utilized to detect outlier components.

The outlier rejection scheme is illustrated in Fig. 2.3.

To achieve a robust behavior of the ASM during matching, all outliers present

must be rejected. In addition, we would like to utilize as many inliers as possible to

achieve a good match between image and model. This has several implications for

the selection of parameters for the RASM matching algorithm. For example, when

selecting the number of shape subsets k, a trade-off must be made. On the one hand,

the value for k must be small enough such that the shape points within each shape

set can form distinctive point patterns. On the other hand, a larger number of shape
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Figure 2.3: Outlier rejection scheme.

subsets is preferable, because it becomes more likely that outlier-free shape subsets

can be found, which reduces the number of required subset evaluation iterations

(parameter l). The parameter β should be selected conservatively, to make sure that

all outliers are rejected, even if this implies that a small number of inliers is not

utilized for matching the ASM.

2.3.4 Algorithm Speed-up

An advantage of our outlier detection algorithm presented in the Section 2.3.3

is that it is well suited for parallel processing, because the analysis of the k shape

subsets which is repeated l-times is independent from each other, and thus, can be

done in parallel. We utilize a GPGPU-based implementation to speed up the outlier

detection algorithm. x̄ωi,j
, Pωi,j

and λωi,j
were stored in the GPU memory. After point
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positions y updated, they are subdivided into yωi,j
by a k×l allocated CUDA1 threads

and aligned to corresponding subset means shape x̄ωi,j
based on Tωi,j

[yωi,j
]. Each

thread then calculates corresponding reconstruction error eωi,j
in parallel according

to the Formula 2.3. The subset reconstruction errors are finally synchronized to the

CPU side for subsequent outlier rejection.

1http://www.nvidia.com/object/cuda home new.html
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CHAPTER 3
VALIDATION OF ROBUST ACTIVE SHAPE MODEL BASED

SEGMENTATION: AUTOMATED 3D SEGMENTATION OF LUNGS
WITH LUNG CANCER IN CT DATA

3.1 Introduction

Application and validation of the RASM described in the Chapter 2 in the con-

text of fully automated 3D segmentation of lungs with large lung cancer is described

in this chapter. Note that after the publication of RASM in [112], Bauer et al. [8]

has utilized proposed novel RASM method for segmentation of cerebella in volumet-

ric PET images (Fig. 3.1) to deal with partially imaged cerebella. For a detailed

validation of the RASM in this context, the reader is referred to [8].

3.2 Background

Lung cancer represents a major health problem. Worldwide, lung cancer is

responsible for 1.3 million deaths annually, according to the WHO1. Tomographic

imaging modalities like multidetector X-ray computed tomography (CT) play an im-

portant role in diagnosis, treatment, and research of lung cancer. State-of-the-art

CT imaging technology enables physicians to create high-resolution volumetric scans

describing lung anatomy and pathology, but manual or semiautomated lung segmen-

tation is becoming impossible for the increased amount of image data to be processed.

To address this problem, automated lung image analysis methods are required.

1http://www.who.int/mediacentre/factsheets/fs297/en/; accessed January 2011
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(a) (b) (c)

Figure 3.1: An example of cerebellum segmentation in a Fluorodeoxyglucose PET

scan utilizing RASM approach. (a) Axial image slice. (b) Coronal image slice.

(c) Sagittal image slice. All PET images are shown with inverted gray-scales.

3.3 Related Work

Many approaches to automated quantification of lung disease require the seg-

mentation of lung parenchyma in an initial processing step. In the case of normal

lungs imaged with CT, a large density difference between air-filled lung parenchyma

and surrounding tissues can be observed. A number of algorithms can be found in the

literature (e.g., [56, 103, 57, 4, 72]) that rely on this observation for the segmentation

of lungs. We will denote such methods as conventional lung segmentation approaches.

Many conventional lung segmentation approaches are based on some form

of gray-level thresholding. Typically, such approaches start with thresholding and

followed by a sequence of morphological operations, airway exclusion, and left and

right lung separation. For example, Hu et al. in [57] utilized an optimal threshold

method to separate the body from background followed by 3D connected component

labeling to identify lung voxels. Interior cavities were eliminated by morphological
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operations. The trachea and main bronchi were detected slice by slice. The left and

right lung regions were separated by identifying the anterior and posterior junctions.

Methods with similar major processing steps can be found in [103], [72], [4] and Lo’s

PhD thesis [76]. Shojaii et al. [102] presented a lung segmentation method based on a

form of watershed transform avoiding the processes of finding optimal threshold and

separating left/right lung. Ali et al. in [2, 3] proposed a lung segmentation framework

combining Markov Gibbs random field and a graph-cuts method. The initial labeling

was generated by thresholding.

The above mentioned conventional lung segmentation methods rely gray-value

thresholding. However, in the case of lungs with lung cancer (Fig. 3.2(a)) or other

high density pathologies (e.g., pneumonia), lung segmentation becomes a non-trivial

task, and frequently, conventional algorithms fail to deliver suitable segmentation

results (Fig. 3.2(b)). Thus, to enable computer-aided cancer treatment planning

(e.g., surgery or radiation treatment) and to facilitate the quantitative assessment of

lung cancer masses (e.g., treatment response assessment), robust lung segmentation

methods are needed.

Apart from thresholding based methods, Li et al. in [74] presented a statistical

approach. First, a coarse lung segmentation was performed using a standard ASM

based approach. The appearance along profiles learned from training samples was

utilized to update the ASM. Second, an Active Contour Model based approach was

used to refine the pre-segmentation. The prior shape information was incorporated in

this approach, which can be more robust against pathology than thresholding based



26

methods, but it was not tested on pathological cases. Potentially, outliers introduced

by large lung cancer masses can reduce the robustness of the standard ASM based

segmentation.

(a) (b)

Figure 3.2: Segmentation of a lung with cancer using a conventional approach. (a) Ax-

ial CT image showing normal right and cancerous left lung tissue. (b) Corresponding

segmentation result generated with a conventional lung segmentation method. Seg-

mentation errors are indicated by arrows.

Only a few papers have been published that deal with segmentation of dis-

eased lungs. None of the existing methods directly targets the segmentation of lungs

with large cancer regions at arbitrary locations. For example, a Bézier surface-based

method was proposed in [63] to deal with lesions adjacent to the chest wall and me-

diastinum. First a shape model of lung side walls is fitted to the target image by
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using an affine transformation. Second, an active contour model was utilized to refine

the initial segmentation. Since the lung apex and base part are not included in the

model, the resulting segmentation was combined with a conventional segmentation.

Thus, lesions adjacent to the lung apex or diaphragm can result in segmentation

errors. Pu et al. [91] proposed an automated lung segmentation approach based on

a 2D adaptive border marching algorithm to deal with juxtapleural lung nodules.

Larger areas of under-segmentation were reported in hilar and pulmonary consolida-

tion regions. In recent work, Pu et al. describe a Shape “Break-and-Repair” strategy

which was utilized to segment lungs with juxtapleural lung nodules [90]. A method

for the robust segmentation of lung parenchyma based on the curvature of ribs was

presented in [89]. The method is based on an adaptive thresholding scheme and uti-

lizes a comparison of the curvature of the lung boundary to the curvature of the ribs

to select thresholds. Because lung pathologies like cancer can have density values

similar to other tissues surrounding the lung, the method will likely show errors in

such cases. Recently Wang et al. proposed a method for the segmentation of lungs

with interstitial disease [121]. First, an initial segmentation was generated by utilizing

a threshold-based conventional lung segmentation method. Second, interstitial lung

tissue regions were identified based on texture features. The resulting segmentations

were then combined to form the final segmentation result. Sluimer et al. proposed

a segmentation by registration approach for the segmentation of pathological lungs

[104]. While delivering promising results, not all pathological cases could be handled

successfully [104]. In addition, the authors also identified the need to reduce pro-
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cessing time from three hours to a clinically more acceptable processing time [104].

To solve this problem, a hybrid lung segmentation method was presented in a recent

publication [116] of the same group. The basic idea is to first use a conventional lung

segmentation method, assess the correctness of the segmentation based on volume

and shape features, and utilize the segmentation by registration approach similar to

[104] only if the conventional method failed. Korfiatis et al. proposed a segmentation

by classification approach based on texture analysis for the segmentation of inter-

stitial pneumonia in high-resolution CT [69]. The approach utilized k-means cluster

method following morphological closing operation to obtain an initial segmentation.

The lung region segmentation was refined by an iterative support vector machine

based neighborhood labeling of border pixels utilizing gray-level and wavelet coef-

ficient features. In addition, the authors also investigated gray level averaging and

gradient features as alternatives. Hua proposed two methods to segment pathological

lungs [58]. The first is a Geodesic Active Contour approach and the second is based

on a constraint graph search method. The constraint graph search based lung seg-

mentation method was also reported in [59]. Both methods from a presegmentation

generated by Hu’s lung segmentation method described in [57]. In order to create

an initial shape, morphological dilation was applied to this presegmentation. For the

case of healthy lungs or lungs with minor lung disease (e.g., small lung nodule or

small areas of interstitial disease), the initial shape was in proximity to the target.

However, in the case of severe lung disease (e.g., large lung cancer mass or large areas

of interstitial disease) the initial shape may be far away from the lung boundary. In
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addition, the presegmentation can leak to air-filled region in the CT image and both

subsequently applied methods may fail to deliver expected result.

In this chapter, we present a novel approach for the fully automated segmen-

tation of lungs with lung cancer regions which addresses many of the limitations of

existing methods like robustness or processing speed. Our approach is based on a

RASM method presented in Chapter 2. To automatically initialize the RASM, we

propose a model initialization method which is based on a novel rib detection ap-

proach that is suitable for normal and contrast enhanced CT scans. The performance

of our fully automated lung segmentation system is assessed on 30 lung CT scans

with 40 abnormal (lung cancer) and 20 normal (no signs of lung disease) left/right

lungs. In addition, we provide a performance comparison with two commercially

available methods on the same image data. Both methods are utilized in the context

of lung radiation treatment planning. The first method is based on a region growing

algorithm and the second method utilizes a deformable template-based segmentation

approach. In terms of computing time, the model-based 3D segmentation of lungs is

particularly challenging, because of the size of lungs and the amount of image data

to be processed. As outlined in Chapter 2, parallel GPGPU computing will be used

to address this issue which reduces the execution time considerably.

3.4 Methods

An overview of our segmentation approach is shown in Fig. 3.3. First, ribs are

detected and utilized to initialize (place) the ASM [26] in the lung CT scan. Second,
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Figure 3.3: Overview of our model-based segmentation approach.
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the robust ASM (RASM) matching algorithm, which was introduced in Chapter 2, is

applied to generate a coarse segmentation of the (diseased) lungs. Third, the segmen-

tation result is adapted by means of a constraint optimal surface finding approach.

In the following sections, we describe our approach in detail.

3.4.1 Lung Model Generation

Our lung segmentation approach requires learning shapes to build a lung

model. In this context it is desirable to have a learning set which is representa-

tive for the targeted population. For our experiments, a set of n = 41 different total

lung capacity (TLC) lung CT scans without contrast enhancement, which showed no

signs of lung disease or other pathology, were available. Clearly, the utilized learn-

ing set size is limited. However, additional learning samples can be easily added, if

needed. The details of the model generation process are described in the following

paragraph.

Learning data sets were segmented using the commercial lung image analysis

software Pulmonary Workstation 2.0 (PW2) from VIDA Diagnostics, Inc., Coralville

IA. The selected segmentation algorithm generates smooth surfaces which cut across

main bronchi and pulmonary arteries/veins in the area near the mediastinum. In

addition, all segmentation results were manually inspected and corrected, if needed.

To produce left and right lung models, the below outlined process was applied to

segmented left and right lungs, respectively. From the segmentations, triangle meshes

were generated by utilizing a marching cube algorithm [78]. A set of corresponding
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points (landmarks) {s1, s2, . . . , sm} with m = 2562 were automatically identified on

all meshes by means of a minimum description length (MDL) approach [54] based

on shape index and curvedness [67]. The result of this processing step is a set of

n meshes with m corresponding vertices. In this context, the selected number of

landmarks represents a good trade-off between computing time and surface point

density.

An example of the shape variation of the left lung associated with two largest

PCA modes is shown in Fig. 3.4.

Figure 3.4: Shape variations associated with the two largest PCA modes: The first

row shows x̄ − 3
√
λ1, x̄ − 1.5

√
λ1, x̄, x̄ + 1.5

√
λ1 and x̄ + 3

√
λ1. The second row

shows x̄−3
√
λ2, x̄−1.5

√
λ2, x̄, x̄+1.5

√
λ2 and x̄+3

√
λ2. λi ∈ {1, 2} are two largest

eigenvalues of covariance matrix S.
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(a) (b)

(c) (d) (e)

Figure 3.5: Outline of main rib detection processing steps. (a) Volume rendering of

the input thorax CT data truncated to a gray-value range between 0 and 500 HU.

(b) Volume rendering of Frangi’s “vesselness measure” [43] computed at a scale of

σ = 5 mm and (c) corresponding centerlines of rib candidates. Note that many

responses from vessels (e.g., aorta) can be found in (b) and (c), because the CT

image is contrast enhanced. Centerlines from vessels and other non-rib structures

are removed in subsequent rib detection steps. Output of first (d) and second (e) rib

clustering/detection stage.
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3.4.2 Automated Model Initialization

It is well-known that active shape models (ASMs) have typically a limited

capture range. Consequently, they need to be initialized in proximity to the target

structure. Therefore, initial shape (b) and pose (size, rotation, and location) parame-

ters of the ASM need to be determined. For initialization, we set the lung model to its

mean shape (b = 0) and utilize an automated method which detects rib centerlines in

the CT volume to determine isotropic scale and location (pose) parameters for a given

CT data set (Fig. 3.5). Note that instead of segmenting ribs, we utilize a shape-based

rib centerline detection approach, which is more robust against rib density variations

due to age, etc. A detailed description is given in the next paragraphs.

In a first step, tubular structures that are comparable in size, density, and

scale to rib structures are detected and a centerline-based representation is generated

as follows:

i) The density values of the volume data set are truncated to a gray-value range of

interest between 0 and 500 HU (Fig. 3.5(a)). Subsequently, Frangi’s “vesselness

measure” [43] at a scale of σ = 5 mm is computed to identify tubular structures

of appropriate size (Fig. 3.5(b)). Note that at this scale, the cross-section of

ribs appears as a bright “blob”, thus the darker (less dense) bone marrow is

no longer visible. For the other parameters of Frangi’s approach, values of

α = 0.5, β = 0.5, and c = 5 are used. Note that the cross-section of ribs varies

significantly, but the choice of parameters allows us to overcome this problem.

To speed up the computation of Frangi’s vesselness measure, the data set is
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first downsampled by a factor of 4 in each dimension. In addition, a volume of

interest is generated by means of region growing to exclude the volume (e.g.,

air) outside of the human body from calculation of the vesselness measure. For

this purpose, the border of the CT image is set as seed region and a threshold

of -500 HU is utilized.

ii) From the vesselness response image (Fig. 3.5(b)), a centerline description is

extracted for each tubular structure by utilizing a height ridge traversal with

hysteresis thresholding, similarly as described in [6] (Fig. 3.5(c)). In a post-

processing step, centerlines with less than ten voxels are discarded, because they

typically are caused by image noise or imaging artifacts. In addition, centerlines

are cut at furcations of multiple centerlines to avoid problems in areas where

other structures like bones (e.g., shoulder blade) or contrast enhanced vessels are

in close proximity to ribs, and thus, appear connected at the scale of σ = 5 mm.

The centerlines found (Fig. 3.5(c)) are then utilized in the subsequent analysis

step to detect centerlines representing ribs.

Our approach is based on the observation that ribs show similar centerline pat-

terns among each other, compared to other structures like (contrast enhanced) vessels,

for example. Thus, we utilize a clustering-based approach outlined in Fig. 3.5 to find

rib centerlines. The algorithm consists of two stages. First, potential candidates

are selected (Fig. 3.5(d)). Second, a more fine-grain pattern analysis is performed

(Fig. 3.5(e)). This two step approach has been chosen to save computing time, be-

cause the second step is computationally more expensive. The two steps are described
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in detail below.

In both stages, a mean shift [24] clustering approach is utilized to detect re-

peating patterns of ribs. For analysis of feature vectors q = {q1, q2, . . . , qd}, an expo-

nential kernel with profile k(a) = exp(−a
2
) and kernel size hj is used. hj corresponds

to the feature dimension j and is utilized to set the scale of the mode detection. Using

the above defined kernel, the mean shift algorithm is utilized to find the mode points

for all centerlines. After this analysis, a quantification step is performed to group

close-by mode points. If two mode points are closer than the smallest kernel size,

they are combined to a new mode point represented by the average of both modes.

This process is repeated until convergence.

The features used for clustering are based on geometric properties of the cen-

terlines. For this purpose, a PCA analysis is applied to all points of each centerline,

and the resulting eigenvalues |e1| ≤ |e2| ≤ |e3| and corresponding eigenvectors w1,

w2 and w3 are further analyzed.

As outlined above, the actual rib detection is performed in two stages:

i) The goal of this stage is to reject centerline objects that do not show a typical

spatial extent of ribs (long curved structures). For all detected centerlines, a

feature vector q = (e1, e2, e3)
T is generated. For analysis, the mean-shift kernel

sizes are set as follows: h1 = 5.0e-1, h2 = 5.0e-4, and h3 = 3.0e-5. The above

described mean shift clustering typically results in one large and a number

of smaller clusters. The feature points of the large cluster represent irregular

and small-size centerlines corresponding to structures like vessels, vertebrae,
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(a) (b) (c)

Figure 3.6: Visualization of eigenvector patterns utilized for rib detection. Eigenvec-

tors are shown for ribs (a, b) and the aortic arch (c).

etc. After removing this cluster, the remaining feature points relate to ribs and

large-size structures like spine, aorta, or parts of the shoulder blade (Fig. 3.6(b),

which are further analyzed in the next stage.

ii) For rib centerlines, the eigenvectors w2 and w3 span a slanted plane in which

the rib centerline is located (Fig. 3.6(a) and (b)). In addition, the eigenvector

w1 is approximately oriented along the z-axis. Because the eigenvectors of

similar rib centerlines can point in opposite directions (Fig. 3.6(a) and (b)), we

utilize a tensor-based representation (T1, T2, and T3) of eigenvectors with Ti =

[tik,l ]k=1,2,3; l=1,2,3, where Ti corresponds to wi. Note that each tensor matrix

Ti is symmetric. Consequently, only the upper triangular part of the matrix is

utilized for further analysis: ti = {ti1,1 , ti1,2 , ti1,3 , ti2,2 , ti2,3 , ti3,3}. To describe the

orientation of centerlines, the term τ = |w1 · (0, 0, 1)T | is calculated. A feature

vector is generated for each centerline by concatenation: q = {t1, t2, t3, τ}.
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For cluster analysis, the kernel sizes are set as follows: ht1 = 0.85, ht2 = 0.9,

ht3 = 1.0, and hτ = 0.07. After applying mean shift clustering, the majority of

ribs are located in the largest cluster, because of the similarity of their feature

vectors, and all other clusters are discarded.

The kernel sizes for both stages were determined on the learning data set. We

observed that occasionally false positives (e.g., included clavicles or costal cartilage)

and false negatives cases (missing ribs) occur, but we found that such minor errors

still allow deriving model pose parameter which are suitable for a rough initialization

of the shape model. As demonstrated in Fig. 3.5, our approach is also suitable to

deal with contrast enhanced lung CT scans.

Based on the detected rib centerlines, isotropic scale and center location for

the ASM are derived. For this purpose, a bounding box for the ribcage is calculated.

First, the smallest and largest x- and y-coordinate as well as the median z-coordinate

for each centerline in the detection result are calculated. Second, the bounding box

B = (xmin, xmax, ymin, ymax, zmin, zmax) is determined. To robustly estimate xmin,

xmax, ymin, and ymax, the third largest (max) or third smallest (min) value of all cen-

terline extremes in x- and y-direction is selected, respectively. This allows us to deal

with occasionally occurring false positive centerline parts (see discussion in previous

paragraph). zmin and zmax are directly calculated from the median z-coordinates of

all centerlines. Finally, the scale and position are estimated for the left and right

lung separately. For this purpose the rib bounding box is split in the middle, per-

pendicular to the x-axis. The initial position for the left and right lung model is
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found by calculating the center of the left and right bounding box, respectively. An

isotropic scale factor is calculated for each lung by averaging the two x- and y-size

ratios between left/right mean shape and corresponding bounding box. If needed, the

algorithm can be extended to estimate rotation parameters, but based on the utilized

CT scan protocols this was not necessary.

3.4.3 RASM Matching

For ASM-based segmentation, we utilize the novel RASM matching approach

described in Section 2.3.3.

To find update points y, we use the following cost function:

ci =

{

ignore point if ni · gdiri < 0
gmagi

otherwise
. (3.1)

ci represents the cost of the i-th column element, and the associated sampled gradient

magnitude, gradient direction, and surface normal vector are denoted as gmagi
, gdiri ,

and ni, respectively. The gradient calculation is based on Gaussian derivatives with a

standard deviation of σASM , and the calculation of gdir and gmag is done for each voxel

of the volume before the model matching is started. These pre-calculated gradient

values are then used to interpolate gradient vectors during model matching. If a

gradient value outside the volume is required during model matching, the position

closest to the boundary is utilized. In the case that no new update point can be

found, the old position is used.

For our application, we used the following parameters: lASM = ±40 mm,

k = 200, l = 60, ξ = 2, g = 10, and β = 1.3. To update the robust ASM, a gradient
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image was calculated based on Gaussian derivatives with a standard deviation of

σASM = 4. The maximum gradient position along the search profile was used to

calculate updates for shape points. The model matching was iterated until the average

of the shape point movement was below 0.04 mm or at most 100 iterations.

3.4.4 OSF-based Segmentation

Depending on the training data utilized for model building, the model might

not be able do describe smaller local shape variations. To capture this information,

we generate the final lung segmentation by applying OSF-based segmentation. The

graph construction of a single surface OSF-based segmentation is described as below.

The main idea of the OSF-based segmentation algorithm is to transform the

segmentation problem into a graph optimization problem. To utilize OSF-based seg-

mentation framework proposed by Li et al. [75], a weighted graph G(N,A) is built

from an initial mesh surface M(V, F ) (shape and topology prior) close to the target

surface, where N represents a graph node set, A a graph arc set, V a triangle vertex

set, and F a triangle face set respectively. For each vertex v ∈ V , a graph column

with lp is generated along the search profile. The direction of the search profile goes

from inside to the outside of the segmented object. The node density on the profile

is dn, which is adjusted to the given image resolution. Intra-column arcs are built to

connect nodes n(v, k) to n(v, k− 1) on a column col(v) with infinity weights, where k

is the column node index. Column col(vi) and col(vj) are adjacent columns, if vertices

vi and vj are on the same triangle edge. For adjacent columns, inter-column arcs are
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built to connect the node n(vi, k) to the node n(vj, k−∆) with infinity weights. Here

∆ is the hard smoothness constraint, which is the largest allowed difference in nodes

between two adjacent vertices. An example of such graph representation is shown

in Fig. 3.7. The graph node weights C (cost function) are derived from volumetric

image data to describe local image characteristics.

The segmentation task is transformed to find a minimum-cost closed set by

means of a maximum-flow algorithm [17]. To define a minimum-cost closed set prob-

lem, node costs are transformed into s-t arc capacities. A node weighted graph

eventually becomes an arc weighted graph. This process is depicted in Fig. 3.8. To

achieve arc weighted graph, the weight of each graph node is assigned based on the

cost of the corresponding node minus the cost of the node below it (Eq. 3.2).

w(p, i) =

{

c(p, i) if i = 0
c(p, i)− c(p, i− 1) otherwise

, (3.2)

where c(p, i) represents the cost function for the node i on the column p. In addition,

to avoid an empty closed set solution, the cost of one of the bottommost nodes of

the graph is modified so that the summation of all the bottommost nodes is negative

[75]. Left and middle sub-figures in Fig. 3.8 describes cost transformation. Then, arc

weighted graph (right sub-figure in Fig. 3.8) is defined as follows. Two additional

terminal nodes are added in G(N,A), source node s and sink node t. Two new arcs

(terminal arc) are added for each column node. Source arcs connect from node s to

each node i of each column p. Sink arcs connect from each node i of each column p to

the node t. A capacity caps(p, i) is assigned for the arc connecting node s to node i

on the column p and a capacity capt(p, i) is assigned for the arc connecting node i on
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Figure 3.7: Graph construction of a single-surface segmentation problem in the OSF

framework. (a) Search profiles are constructed starting from the shape prior. (b)

Relation between search profiles and triangle face of the shape prior. (c) Example of

the shape prior (pre-segmentation) used for OSF-based lung segmentation. (d) OSF

graph structure with arcs enforcing the surface smoothness constraints.
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the column p to the node t. If w(p, i) < 0, the caps(p, i) = −w(p, i) and capt(p, i) = 0

and if w(p, i) ≥ 0, the caps(p, i) = 0 and capt(p, i) = w(p, i). Eventually, node

weights are not used in the arc weighted graph any more. Note that zero capacity

arcs do not appear in the arc weighted graph in original work [75], however we used

them in our work to avoid computing maximum-flow from scratch during refinement

(Section 4.3.2). After calculating maximum-flow, the feasible surface is found as the

envelope of the minimum-cost closed set.
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Figure 3.8: Simple example of 2D s-t arc weighted graph (right) transformed from

node weighted graph with original costs (left) and intermediate cost-transformed node

weighted graph (middle).
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3.4.5 Multi-scale OSF-based Lung Segmentation

For lung segmentation we use the following cost function:

ci =

{

gmax if ni · gdiri < 0
gmax − gmagi

otherwise
, (3.3)

where ci represents the cost of the i-th column element and gmax the maximum gra-

dient magnitude of the volume, similar to the cost function utilized in Section 3.4.3.

The gradient calculation is based on Gaussian derivatives with a standard deviation

of σg. The OSF is utilized in an iterative coarse to fine fashion using following se-

quence of values of σg and ∆: {6.0, 3.0, 1.0, 0.5} and {10, 8, 5, 2}, respectively. For

the search profile lp = ±10 voxel is used.

3.5 Validation Methodology

For validation, 30 multidetector computed tomography (MDCT) thorax scans

of cancer patients with lung tumors were available. The images where acquired with

several different scanners and imaging protocols. In 26 MDCT scans, the vasculature

was contrast enhanced. In each data set, either the left and/or right lung contained

one or more lung cancer regions with significant higher density, compared to normal

lung tissue. To roughly quantify the size of high density lung pathology, the longest

diameter in the axial image plane was measured, similar to the Response Evaluation

Criteria In Solid Tumors (RECIST) [113]. In this context, note that necrotic lung

masses were measured in the same way as solid tumors. The average diameter was

46.28 mm, and the average diameter for right and left lungs was 53.0 mm and 38.8 mm,

respectively. The image size varied from 512 × 512 × 424 to 512 × 512 × 642 voxel.
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The in-plane resolution of the images ranged from 0.58× 0.58 to 0.82× 0.82 mm and

the slice thickness from 0.6 to 0.7 mm.

With our approach, 60 segmentations of 21 diseased right, 9 normal right, 19

diseased left, and 11 normal left lungs were performed, respectively. All computations

were performed on a workstation equipped with a Nvidia Tesla C1060 Computing

Processor which offers 240 thread processors and 4 GB of memory.

In addition to the proposed combination of robust ASM and optimal surface

finding (RASM+OSF), segmentations were performed with a standard ASM and ro-

bust ASM (RASM) without the subsequent surface finding step. The same automat-

ically generated initialization (Section 3.4.2) was utilized for all three segmentation

variants. Further, we applied two different methods for lung segmentation provided by

a commercial radiation treatment planning system (Pinnacle3, Philips, The Nether-

lands). The first approach which will be denoted as “P1” and utilizes region growing

and morphological post-processing steps, similar to many commercially available and

clinically used lung segmentation methods. The second will be denoted as “P2” and

is based on a deformable template approach. In order to utilize method P2, the user

is required to manually place a lung shape template in the volume data and to adapt

its scale, before iterative matching is performed. All test data sets were processed

with both methods. In the case of method P2, the process was repeated three times

to allow assessing the impact of model initialization on segmentation performance.

Performance measures reported for method P2 represent the average over all three

repetitions. For both methods, clinically utilized standard parameter settings were
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used. Method P2 allows the user to manually refine a lung segmentation result. For

a fair comparison between methods, the operator was not allowed to use this feature.

3.5.1 Independent Reference Standard

For quantitative evaluation of our segmentation method, an independent ref-

erence standard was generated by utilizing a commercial lung image analysis software

package PW2 from VIDA Diagnostics, Inc., Coralville IA. First, an automated (con-

ventional) lung segmentation was performed. Second, since the software was not de-

signed to deal with lungs containing large lung cancer regions, two experts inspected

all the segmentations slice-by-slice and corrected all segmentation errors manually. In

the case of diseased lungs, this process took several hours per lung. Because of this,

each case was processed only by one expert.

3.5.2 Quantitative Indices

The following quantitative error indices are utilized: Dice coefficient D [107],

Hausdorff distance H [107], mean signed border positioning errors (ds) [107], and

mean absolute surface distance (da) [45]. In the case of ds, a negative value indicates

that the segmentation boundary is inside and a positive value indicates that the

border is outside the reference.

The Dice coefficient is defined:

D =
2|S ∩R|
|S|+ |R| (3.4)

where S represents the segmentation and R the reference. The D = 0 represents no

overlap and D = 1 represents a complete overlap.
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The Hausdorff distance is defined:

H = max {h(S,R), h(R, S)} (3.5)

where h(X, Y ) = max {d(x, Y ) | x ∈ X} and d(x, Y ) represents the unsigned Eu-

clidean distance from the point x on the surface X to the surface Y .

The mean signed border positioning error is defined:

ds = mean(d̂s(S,R)) (3.6)

where d̂s(S,R) represents all the signed Euclidean distances of the points on the

surface S to the surface R.

The mean absolute surface distance is defined:

da =
mean(d(S,R)) +mean(d(R, S))

2.0
(3.7)

where d(X, Y ) represents all the unsigned Euclidean distances of the points on the

surface X to the surface Y .

3.6 Results

Segmentation performance measures averaged over all left lungs and right lungs

are summarized in Table 3.1 for the proposed method as well as the ASM and RASM

approaches. Table 3.2 summarizes the results achieved on the same data with meth-

ods P1 and P2 in combination with the results of a statistical comparison with the

proposed approach. Corresponding boxplots of the Dice coefficient are depicted in

Fig. 3.9.
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Table 3.1: Comparison of overall performance between standard ASM, robust ASM

(RASM), and proposed (RASM+OSF) lung segmentation approaches averaged over

all left and right lungs processed.†

ASM RASM RASM+OSF
D (-) mean 0.848 0.936 0.975

std 0.046 0.015 0.006
H (mm) mean 35.06 22.77 20.13

std 7.87 5.75 6.17
da (mm) mean 5.47 2.24 0.84

std 1.37 0.50 0.23
ds (mm) mean -3.02 0.51 0.59

std 1.14 0.41 0.39

† The mean and standard deviation (std) is given for each index.

Table 3.2: Overall performance measures for methods P1 and P2 averaged over all

left and right test lungs.†

P1 P2
D mean (-) 0.844 0.949

std (-) 0.106 0.012
P-value (-) 2.47e-14 5.92e-20

H mean (mm) 98.49 33.07
std (mm) 50.88 7.69
P-value (-) 1.11e-19 2.05e-15

da mean (mm) 8.56 1.89
std (mm) 6.14 0.45
P-value (-) 6.64e-17 4.21e-20

ds mean (mm) 15.21 1.25
std (mm) 12.76 0.72
P-value (-) 2.31e-05 1.77e-09

† The mean, standard deviation (std) is given for each index. In addition, the P-value

of a paired Wilcoxon rank sum test of the hypothesis that method P1 or P2 and our

approach come from distributions with equal medians.



49

P1 P2 RASM+OSF
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
ic

e
 C

o
e

ffi
ci

e
n

t

Le! & Right Lung Combined

Figure 3.9: Boxplots of the Dice coefficient for P1, P2, and our approach.

Based on the Dice coefficient, the boxplots in Fig. 3.10 show a comparison

among those three methods for left (Fig. 3.10(a)) and right (Fig. 3.10(b)) normal

and diseased lungs, respectively. The mean and standard deviation of performance

measures of our method for left and right lungs with and without disease is presented

in Table 3.3.

Fig. 3.11(b) depicts a segmentation result which was generated by our method.

For comparison, the reference segmentation is shown in Fig. 3.11(a). A segmenta-

tion of the same data set with a conventional approach was previously shown in

Fig. 3.2(b). Additional segmentation examples are depicted in Fig. 3.12, which also

shows corresponding results generated with methods P1 and P2.
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(a) Left Lung

(b) Right Lung

Figure 3.10: Comparison of the Dice coefficient of standard ASM, robust ASM

(RASM), and proposed (RASM+OSF) lung segmentation approaches for (a) left and

(b) right lungs. Note that boxplots for normal (N) and diseased (D) lungs are shown

separately.
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Table 3.3: Segmentation results of the proposed method on normal left (NL), diseased

left (DL), normal right (NR), and diseased right (DR) lungs.†

Lung
NL DL NR DR

D (-) mean 0.975 0.974 0.976 0.976
std 0.004 0.007 0.006 0.005

H (mm) mean 18.63 19.32 21.64 21.00
std 5.51 5.82 9.02 5.52

da (mm) mean 0.75 0.84 0.94 0.85
std 0.10 0.2 0.43 0.18

ds (mm) mean 0.44 0.50 0.92 0.60
std 0.09 0.24 0.87 0.19

† The mean and standard deviation (std) is given for each index.

(a) (b)

Figure 3.11: Segmentation result for the example shown in Fig. 3.2(a). (a) Reference

segmentation and (b) proposed segmentation approach.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.12: Examples of segmentation results on three different data sets (rows). (a,f,k) results for method P1. (b-d, g-i,

l-n) Results generated with method P2 based on three different template initializations. (e,j,o) Results of the proposed

automated approach (RASM+OSF).
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On average, 2 minutes were required for calculating left and right model ini-

tialization parameters and another 2 minutes for segmenting a right or left lung,

which resulted in an overall average processing time of 6 minutes per data set. In this

context, the mean time required for the intrinsic robust ASM matching was only 24

seconds due to code optimization and utilization of GPGPU techniques.

3.7 Discussion

The robust ASM is an important component of the presented fully automated

lung segmentation method. Results presented in Table 3.1 and Figs. 3.10 and 3.13

demonstrate that our robust ASM matching approach outperforms the standard ASM

approach. Even on normal lungs, our robust ASM delivers superior performance.

These results are not surprising, because standard ASM matching is a least squares

optimization, which is sensitive to outliers. Since the model is only roughly initialized

in proximity to the lung, all obstacles between model and target structure like aorta

and vessels can cause problems. Our robust matching method can even handle missing

data, as shown in Fig. 3.14.

Since our shape model was built from 41 data sets, smaller local shape vari-

ations cannot be explained by the model. The optimal surface finding step allows

us to overcome this problem. A good initial match between model and image data

is required for this processing step, and the performance of a standard ASM would

not be sufficient for this task (Fig. 3.13). The boxplots in Fig. 3.10 show that the

Dice coefficient is increased significantly by the optimal surface finding step for all
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constellations of left/right and normal/diseased lungs. This is also clearly reflected

in the averaged results for the Dice coefficient D, Hausdorff distance H, and mean

absolute surface distance error da (Table 3.1). In case of the mean signed border

positioning error (ds) shown in Table 3.1, the value increases slightly after optimal

surface finding, but is within the average dimension of a voxel. Table 3.3 shows per-

formance measures for normal left/right and diseased left/right lungs, respectively.

The results for the Dice coefficient are in a close range for all possible constellations.

Distance-based error metrics for normal left lungs are somewhat lower compared to

diseased left lungs. In the case of the right lungs, distance error metrics are higher for

normal lungs compared to diseased lungs. The reason for this is that the size of one

out of the nine normal right lung is extremely small compared to the corresponding

left lung (Fig. 3.15(a)). Thus, the shape is significantly deviating from learned shapes.

Consequently, the model does not initialize the optimal surface finding in close prox-

imity to the target surface in this region, which results in a larger local distance

error. If this case is excluded from the calculation, the following performance mea-

sures are obtained for normal right lungs: D = 0.978± 0.004, H = 18.93± 4.19 mm,

da = 0.80 ± 0.15 mm, ds = 0.63 ± 0.17 mm. These results show a similar pattern to

the results for the left lung. The described problem can be addressed by expanding

the learning shape set utilized for model generation (Section 3.4.1) such that similar

variations are included. Another option would be to allow anisotropic scaling of the

model during matching which would give it more flexibility.

In our segmentation results, we observed frequently major deviations from the
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reference in hilar regions where airways and pulmonary vessels enter/leave the lung.

Even for experts, it is hard to segment this area consistently.

Currently, our method requires on average 6 minutes for the processing of

normal or diseased lungs, consisting of initialization and sequential segmentation of

the left and right lung. The core component of our approach is a novel robust 3D

ASM matching algorithm which is suitable for large models and can run in parallel.

For example, our GPGPU-based implementation required approximately 24 seconds

for matching the RASM to a left or right lung. This demonstrates the feasibility

of fast and robust model-based segmentation of large structures. In the current im-

plementation, many processing steps are not optimized nor do they utilize GPGPU

computing. For example, the segmentation of left and right lungs can be done in

parallel and parts of the model initialization method can be optimized. Thus, the

processing time can be significantly reduced, which is an important issue for routine

utilization.

Segmentation of lungs with large lung cancer regions in chest CT scans is a

nontrivial problem. Many of the currently utilized methods are prone to produce

incorrect results, as shown in Fig. 3.2(b). Such methods typically rely on simple

strategies (e.g., region growing), that do not incorporate knowledge about the shape

of the target object. Problems with standard methods can even occur in case of

normal lungs, as depicted in Fig. 3.16. This is also clearly demonstrated by our as-

sessment of method P1 (Table 3.2) and corresponding examples depicted in Fig. 3.12.

As a consequence, extensive manual post-processing of segmentations is necessary.
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(a) (b)

Figure 3.13: Performance comparison between (a) standard ASM and (b) RASM

matching (without optimal surface finding step). The RASM delivers a better match

for normal and diseased lungs.

(a) (b)

Figure 3.14: Segmentation of an incomplete lung CT data set; the top portion was

not scanned. (a) Standard ASM. (b) Robust ASM. Note that the standard and robust

ASM are not aware of the spatial extent of the data set, because of the clamping of

gradient values to the boundary (Section 2.3.2). Surfaces outside of the data set were

clipped after the segmentation process was completed.
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(a) (b)

Figure 3.15: Examples of RASM segmentation results (without optimal surface find-

ing step). (a) Case with small right lung and (b) pleural effusion in left lung. See

text for details.

The deformable template approach (method P2) represents an improvement com-

pared to method P1 (Table 3.2 and Fig. 3.9), but still shows local segmentation

errors (Fig. 3.12). The result of method P2 can vary significantly with the initial-

ization (Figs. 3.12(l-n)), which limits reproducibility. In some cases, method P2

provided correct segmentations of lungs with masses (Figs. 3.12(b-d)), while in other

cases it consistently produced segmentation errors (Figs. 3.12(g-i)). Both methods

are outperformed by the prosed approach (RASM+OSF) which shows statistically

significant better results for all performance metrics (Table 3.2) and does not require

manual initialization. In this context, it also interesting to note that method P2 and

our RASM (without OSF) show similar values for the average Dice coefficient (Tables

3.2 and 3.1). However, when the Hausdorff distance and the mean signed boarder
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(a) (b)

Figure 3.16: Comparison between conventional and proposed lung segmentation

methods. (a) The conventional method leaks into the gas filled colon. (b) Our

method provides a correct segmentation.

positioning error are considered, which are more relevant for refining a segmentation

in a subsequent processing step (e.g., OSF), our RASM is the better choice, since it

is on average closer to the true lung boundary.

We applied our method to the LOLA11 test set, consisting of 55 chest CT

scans of normal lungs and lungs with a variety of different lung diseases and imaged

with different scan protocols. For performance assessment, all lung meshes generated

with the proposed approach were voxelized and sent to the LOLA11 organizers, which

in return provided the volumetric segmentation overlap measures with respect to a

ground truth2. In Table 3.4, the results for left and right lungs are shown which consist

2Details regarding the validation procedure can be found at http://www.lola11.com
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Table 3.4: Results of lung segmentation for the 55 scans on LOLA11.

mean SD min Q1 median Q3 max
left lung 0.939 0.173 0.0392 0.979 0.990 0.994 0.997
right lung 0.959 0.122 0.167 0.985 0.990 0.994 0.998
score 0.949

(a) (b)

Figure 3.17: Examples of lung segmentations in CT images with (a) and without (b)

contrast agent.

of the mean, standard deviation, minimum, first quartile, median, third quartile, and

maximum overlap of the 55 test cases, as well as an overall score. In this context, the

overlap between two binary segmentation volumes is defined as the volume of their

intersection divided by the volume of their union.

Left and right lung segmentations show the same median overlap value of

0.990 (Table 3.4), which is an indication that in the majority of results generated

with the proposed approach closely match the gold standard produced by the or-

ganizers of LOLA11. The examples depicted in Figs. 3.17, 3.18, and 3.19 confirm
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(a) (b)

(c) (d)

Figure 3.18: Examples of lung segmentations. The axial images depict lungs with

different types of high density pathology.
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(a) (b)

(c) (d)

Figure 3.19: Examples of lung segmentations showing coronal views of lungs with

high density pathology.
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(a) (b)

(c)

Figure 3.20: Examples of lung shape variation in the LOLA11 test set. For each CT

scan, the corresponding segmentation results is depicted.
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Table 3.5: Scores for all submissions

to the LOLA11 challenge.

Method Score
Method A [71] 0.973
Method B [123] 0.970
Method C [77] 0.963
Method D [117] 0.962
Method E [84] 0.952
Proposed method ([111]) 0.949
Method F [70] 0.949
Method G [88] 0.948

this—segmentations of normal lungs and lungs with high-density pathology (e.g.,

lung cancer) show only small errors.

As can be seen from Table 3.4, the mean overlap value for segmented left

and right lungs is below the median and first quartile (Q1). This indicates that our

approach failed in a few cases. This is also reflected by the minimum overlap values

shown in Table 3.4. Fig. 3.20 depicts some examples of segmentation errors. In cases

where the lung shape widely deviates from the learned lung shapes (Fig. 3.20)—e.g.

collapsed or partly removed lungs—model-based segmentation is challenging.

A comparison of the proposed approach, which was developed for lungs con-

taining large lung masses, with other methods is shown in Fig. 3.21. The majority

of the competing methods is based on a form of region growing with different pre-

and/or post-processing steps. The final score (average of left and right mean results)

of all eight methods is given in Table 3.5. In this context, note that region growing
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based methods have a clear advantage in cases like the ones depicted in Figs. 3.20(a)

and 3.20(c).

While the robust model matching method successfully deals with outliers and

other disturbances (e.g., missing data) (Figs. 3.13 and 3.14), it requires learning data

which is representative for the target population. If a lung shape is encountered that

cannot be explained by the model, the shape needs to be added to the learning set.

Such an approach allows to build a more complete model over time and will reduce

the likelihood that similar problems are encountered in the future. Also, note that

the optimal surface finding step after robust ASM segmentation reduces the need to

add new lung shapes to the learning set.

In general, cases of pneumothorax or pleural effusion are difficult to segment

automatically, and our model-based approach might require some additional process-

ing steps. For example, Fig. 3.15(b) depicts a robust ASM matching result of a thorax

CT scan with a pleural effusion. The left lung model approximates the “normal” lung

location and matches with the diaphragm at the bottom. To segment the left lung,

some additional steps are needed and might also allow to quantify the pleural effusion

volume, which is of interest to physicians.

For our experiments, we have utilized a simple cost function based on gradient

magnitude and direction. Thus, performance can be further improved by utilizing

more complex cost functions for model matching and optimal surface finding, which

could be based on the relative location of shape points as well as density/gray-value

properties and shape features. For example, currently the detected ribs are only
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Figure 3.21: Comparison among all methods (Table 3.5) submitted to the LoLA11

challenge with first quartile (Q1), median, third quartile (Q3), and maximum (Max)

overlap values. (a) Left lung. (b) Right lung.
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utilized for model initialization, but can provide valuable information for cost function

design. Also, the proposed work targets larger cancer masses and is not optimized

for handling juxtapleural nodules. Again, this problem can be addressed by adapting

the cost function as well as the formulation of the smoothness constraint utilized for

optimal surface finding.

In the current version of our algorithm, left and right lungs are segmented

separately, which can lead to inconsistencies (e.g., overlap). This problem can be

solved by utilizing a multiple surface graph search approach as described in [75].

In some cases the optimal surface segmentation has problems in segmenting

areas with sharp angles like the area where the diaphragm meet the ribs (costophrenic

angles). To solve this problem, locally more dense mesh vertices in combination with

an adaption of search profiles will be required.

(a) (b) (c)

Figure 3.22: Example segmentation results of lung with idiopathic pulmonary fibrosis.

(a) A manual reference segmentation. (b) Result of a conventional segmentation

method. (c) Preliminary segmentation result of our approach (RASM+OSF).
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Preliminary work investigating the applicability of the lung segmentation method

to lungs with other kinds of diseases like idiopathic pulmonary fibrosis is promising,

but needs to be addressed in a separate research effort (Fig. 3.22).
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CHAPTER 4
GENERIC INTERACTIVE OPTIMAL SURFACE FINDING BASED

SEGMENTATION REFINEMENT

4.1 Introduction

For OSF-based segmentation, the cost function plays a critical role in achiev-

ing good segmentation results. Designing a cost function that delivers correct results

for all possible anatomical and pathological variations is difficult. When automated

OSF-based segmentation approaches fail to deliver a correct result, user interven-

tion is required to overcome this problem. The main idea is to manipulate the cost

of the graph nodes in the failure region by means of user interaction to guide the

segmentation to the correct object border.

In the case of conventional (2D) segmentation refinement, contours are manip-

ulated in a slice-by-slice manner, which is tedious, time consuming and error prone.

Fig. 4.1(a) shows one example when an expert used mouse and keyboard to cor-

rect the segmentation errors. Alternatively, a tablet and stylus setup as shown in

Fig. 4.1(b) which may improve efficiency. In this chapter, an OSF-based approach

for the interactive manipulation of surfaces is presented to speed up the refinement

process. In addition, to facilitate interaction with surface, an interactive VR system

will be utilized.
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(a) (b)

Figure 4.1: Conventional 2D viewer based segmentation refinement. (a) 2D monitor

set up with 2D input device (mouse and keyboard). (b) Tablet setup with a stylus.

4.2 Related Work

4.2.1 Interactive Segmentation and Segmentation Refinement

Interactive segmentation refinement techniques are required when automated

segmentation algorithms are not successful. Segmentation refinement is used to cor-

rect the errors of the automatically generated result. In this section we review related

interactive segmentation and segmentation refinement techniques.

The simplest form segmentation is pure manual segmentation. In 2D, the user

directly draws a contour of the object. In 3D, the user performs the contour drawing

slice by slice to define an object’s surface. Pure manual segmentation is often used

to generate a ground truth for validation. This is a very time consuming process.

Computer-aided (semi-automated) methods require manual interaction for

subsequent automated processing steps. The interaction often includes placing con-
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trol points indicating the target border or seed points for indicating the location of

“object” or “background” etc. One of the semi-automated approaches is contour or

surface interpolation from control points. For interpolation, BSpline or thin plate

spline (TPS) interpolation algorithm can be used. For example, Ross et al. [96] pro-

posed an interactive lung lobe segmentation approach by constructing pulmonary

fissure surface from user placed seeds by means of TPS interpolation.

Another example of an interactive segmentation approach based on control

points is the live wire approach [5]. The user interactively places control points

at the object border, which are automatically connected by a graph search based

method. The contour is the minimal cost path according to utilize image features.

Live wire based approaches were also extended to 3D (volumetric) data sets [98].

For example, Schenk et al. [98] applied a conventional live wire algorithm to some

slices and then utilized shape interpolation techniques to generate contours for the

remaining slices of volumetric data set from segmented contours. To reduce user

interaction, Salah et al. [97] developed a method for propagating the control points

of the key slices to the successive unprocessed slices. Because organ contours on the

successive slices are usually not deviating too much from each other, the adaptive

propagation is performed by searching for local optimal position in terms of gradient

magnitude. The propagated control points are then used as input for a conventional

live wire algorithm.

Interactive graph cuts [16] requires the user to mark object and background

before calculating a globally optimal segmentation based on image features.
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Schwarz et al. [100] proposed an interactive surface editing framework to refine

the result of ASM segmentation. This tool allows user to move one surface point to

expected boundary in the case of local error. New locations of surface points near

to this surface point were determined automatically by the algorithm. Finally, the

shape model is updated by taking all new locations into account.

To facilitate interactive segmentation, desktop based graphics user interfaces

(GUIs) were developed. For example, 3D Slicer is the general purpose medical

imaging computing and visualization framework of the National Alliance for Med-

ical Image Computing (NAMIC). The framework provides an interactive editor for

interactive segmentation algorithms like interactive “grow cut” segmentation [118].

Maleike et al. [34] proposed the Medical Imaging Interaction Toolkit (MITK). The

toolkit [34] includes semiautomatic segmentation methods, segmentation result edit-

ing, shape based interpolation for unsegmented slices, multi-level modifications to

binary images etc.

A sparse number of interactive segmentation tools involving true 3D interac-

tion and virtual reality techniques have been proposed. Senger [101] presented an

immersive virtual reality environment for medical image visualization and segmen-

tation based on region growing. The stereoscopic visualization was supported by an

immersive workbench which projected images onto the underside of a translucent

table surface and the seed points were selected by a magnetic tracked probe [101].

Harders et al. [49] presented a virtual reality based system for interactive seg-

mentation of tubular structures. The stereoscopic visualization assisted the user in
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navigating through the volumetric data set. The 3D user interaction was enabled

by utilizing a haptic feedback (force feedback) device. The force map was first pre-

computed before the actual interaction. The calculated force was used to guide user

in drawing the centerline of the tube structure in order to generate an initial shape

description of the tubular model. When image features are not clear, the user can uti-

lize his/her knowledge to draw the centerline by exerting force on the haptic device.

The final segmentation was realized by fitting a deformable model. The effective-

ness of the proposed haptic feedback based interactive segmentation tool was later

demonstrated in an application of the intestinal tract segmentation [50].

Bornik et al. [15] proposed different mesh editing tools as part of a virtual

liver surgery planning system [14], using both 2D and 3D interaction techniques in

a VR environment. In this framework [15], a presegmentation result was converted

into a simplex mesh [36], a deformable model utilizing Newtonian law of motion in-

volving internal and external forces. The direct and indirect segmentation refinement

operations were applied on the simplex meshes by controlling internal and external

forces and minimizing the energy functional. In the case of small segmentation error,

the dragging operation allowed the user to directly move the surface vertices to the

expected position. This direct operation did not involve any form of energy mini-

mization. In the case of larger segmentation errors, the force framework was utilized.

Three external force based tools were developed: sphere, plane, and TPS template

tools. When utilizing the sphere deformation tool, the user can move the sphere in

the 3D space by a 3D cursor and can utilize this form element to manipulate the sim-
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plex mesh surface. The plane deformation tool is much like the sphere deformation

tool, except that a different form element is utilized. The TPS template deforma-

tion tool was proposed to fix major segmentation errors. The user could draw some

contours in the 3D space. Through the contours, the TPS plane interpolation was

used to calculate a surface, and the object surface automatically deformed towards

the calculated surface.

As demonstrated in a recent study on liver segmentation in [9] and [11], seg-

mentation refinement performed with VR-based tools was found less time consuming

compared to standard 2D refinement. In [15], [9] and [11], refinement is solely driven

by the user without utilizing image segmentation algorithms during refinement. Thus,

the user needs to manually “drive” the surface to match object boundaries visible in

the image data.

In this work, we presented a novel interactive 3D segmentation refinement

method based on the OSF segmentation framework. The basic idea behind this

method is that the user interacts directly with the segmentation algorithm to effec-

tively correct errors in occurring automatically generated OSF segmentation results.

Our approach utilizes a hybrid desktop/VR user interface. Before describing our

hybrid desktop/VR user interface, VR technology will be discussed in the next sub-

section.
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4.2.2 Virtual Reality

Virtual reality (VR) utilizes computer graphics to create a virtual 3 dimen-

sional world, where the user can interact with virtual objects. In our application,

we will use VR to interactively manipulate segmentation results. The utilized VR

system consists of two major components: (1) a stereoscopic display system, and (2)

an optical tracking system for head and interaction tool tracking.

In this section, we are going to review VR components. A more compre-

hensive review about the VR technology can be found in the book “Virtual Reality

Technology” of Burdea and Coiffet [19].

Stereoscopic visualization is a fundamental component of virtual reality and

allows to create depth illusion. In reality, we see an object from a slightly different

perspective (binocular disparity) with each eye, because our eyes are separated hor-

izontally by a distance. The binocular images are then processed by the brain to

extract the depth information. In the virtual world, we need to render a stereo image

pair — one image for each eye — with a binocular disparity in such a way that they

will enable realistic perception of 3D objects.

Stereoscopic display devices are required to visualize stereo pairs. The follow-

ing type of devices are frequently utilized: head-mounted displays, auto-stereoscopic

displays and spatial displays. The displays include: cathode ray tube (CRT), liquid

crystal display (LCD), digital light processing (DLP) displays. LCD and DLP active

stereo displays offer good display quality at a low cost. These displays are able to

generate at least 50-60 stereo frames per second, which is required to create a realistic



75

user experience. Such displays require the user to wear shutter glasses to selectively

filter images for each eye.

For stereo displays, several 3D stereo mode formats are available: quad buffer

mode, packed frame, side by side, top-bottom and checkerboard etc (see Fig. 4.2

for some examples). The quad buffer mode requires a professional graphics card

like the Nvidia Quadro Fx series1 with compatible displays. The quad buffer mode

(Fig. 4.2(b)) uses four rendering buffers - left back, right back, left front and right

front buffers (images are swapped from back buffers to front buffers for display). The

stereo pairs are sent to left/right buffers respectively. It is a full resolution mode, and

this allows to produce high quality 3D visualization. The packed frame mode (full

resolution top-bottom for example is supported in HDMI 1.42), shown in Fig. 4.2(a),

packs two full resolution 1920 × 1080 frames into a single 1920 × 2205 frame (there

is an 45 pixel divider between top and bottom). Although it is full resolution, it

has to sacrifice refresh rate (more than half refresh rate of the quad buffer mode

for each image). Side by side, shown in Fig. 4.2(d), and top-bottom mode, shown

in Fig. 4.2(e), are similar. In these two modes, the full resolution stereo pairs are

first shrunk to half resolution frames respectively and then organized into one full

resolution frame where each occupies one half frame (left/right or top/bottom). The

checkerboard mode, shown in Fig. 4.2(c), alternates between pixels from a stereo-pair

and then forms a checkerboard pattern in one frame. In this mode, half of the vertical

1http://www.nvidia.com/object/quadro pro graphics boards; accessed September 2011

2http://www.hdmi.org/manufacturer/hdmi 1 4; accessed September 2011
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and horizontal resolution are lost. The stereo pairs are transmitted to a stereoscopic

display device. It displays the original size frames (image interpolation is needed for

the none full resolution modes) in a time sequential way. The active shutter glasses

are synchronized by a signal sent from the graphics cards in quad buffer mode or

stereoscopic display devices in the other mentioned modes.

To track the user or input devices of a VR system, tracking devices are re-

quired. The devices communicate with VR system about the position and the orien-

tation of real objects in physical space, which enable spatial consistency between real

and virtual objects. Typical VR tracking system can track objects in six degrees of

freedom (6-DOF), which are the object’s position within the (x-, y- and z-) coordinate

system and the object’s orientation about three perpendicular axes (pitch, yaw and

roll).

There are different kinds of tracking systems used in VR systems. For ex-

ample, sensor-based, vision-based and hybrid tracking techniques are quite common.

The sensor-based tracking system utilizes magnetic, acoustic, inertial, optical and

mechanical sensors based techniques [135]. A detailed survey about sensor based

tracking system can be found in [95]. Vision-based tracking techniques utilized image

processing techniques to calculate the camera pose relative to real objects [135]. In

hybrid tracking system of vision- and sensor-based tracking techniques are combined

[135]. In this work, an optical sensor based tracking system is utilized.
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Figure 4.2: Illustration of stereo rendering mode formats. Red represents left eye

image and green represents right eye image. The left side of the arrow indicates

storage mode (graphics render mode) of the stereo pair, which are transmitted to

stereo devices, and the right side of the arrow indicates sequential frame output of

the stereo devices. By wearing shutter glasses, the user can only see the left frame

with the left eye and the right frame with the right eye. (a) Full resolution top-

bottom mode. (b) Quad buffer mode. (c) Checkerboard mode. (d) Side by side

mode. (e) Top-bottom mode.
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4.3 Generic OSF-based Segmentation Refinement Approach

For segmentation refinement, we assume that an initial segmentation was gen-

erated with an OSF segmentation approach that contains local segmentation errors,

and thus, requires refinement. The proposed refinement approach builds on the ini-

tially utilized OSF framework (Section 3.4.4), but allows the user to locally guide

the segmentation result. This section is organized as follows. First, we describe the

hybrid desktop/VR user interface utilized for refinement. Second, we present the

generic framework for interactive OSF-based segmentation refinement approach.

4.3.1 Hybrid Desktop/VR User Interface

We utilize a combination of desktop (2D) and VR (3D) user interfaces similar

to the work reported in [15]. Refinement can be accomplished by using a stereoscopic

display with a tracked (6 DOF) input device or a standard 2D interface (e.g., monitor

and mouse) for more accurate control. The hybrid user interface reported in [15]

utilized a distributed architecture with two computers. Thus, all operations, data,

and displays needed to be synchronized over the network between 2D and 3D user

interface computers. The drawback of such an approach is that large data sets might

slow down communication and lead to low frame rates, besides potential network

latency issues. Since a responsive system with high frame rates is essential for an

interactive VR system, we have developed a hybrid user interface where 2D and 3D

interfaces are implemented on the same machine.

The hardware setup consists of several components and includes an active
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stereo display, an optical tracking system, a Wacom interactive pen display (Wacom

Co., Ltd., Japan), and a graphics workstation (Fig. 4.3 and 4.4).

A Mitsubishi 3D DLP HDTV with 73 inch diagonal, 1920 × 1080 pixels, and

refresh rate of 120 Hz was utilized as active stereo display (Fig. 4.3). It was operated

in the side by side stereo mode in combination with Nvidia 3D Vision (Nvidia Corp.,

Santa Clara, CA) stereo shutter glasses (Fig. 4.5(c)). The TV generates an infrared

synchronization signal for the shutter glasses. The infrared emitter is shown in Fig. 4.3

and circled in blue. In addition, because the tracking cameras use IR flash lights too,

to avoid interference they are also synchronized with the shutter glasses. To avoid

tedious calibration process, the 3D TV is tracked by the tracking system. Thus, the

display needs to be calibrated only once the system is installed. The stereo display

and Wacom display are driven by a Linux workstation with four 6-core 2.93 GHz

Xeon CPUs and a Nvidia Quadro Fx 5800 graphics card (Nvidia Corp., Santa Clara,

CA).

We use the optical tracking system “OptiTrack” (NaturalPoint Inc., Corallis,

OR), which delivers 6-DOF tracking data. Five OptiTrack V100:R2 optical tracking

cameras are mounted on a triangle shaped frame (2.22 × 2.22 × 3.6 m) which is

mounted to the ceiling. The tracking cameras and our designed camera framework

are shown in Fig. 4.3. The location of the cameras and the frame were optimized by

means of simulation (Fig. 4.6). Each camera has a horizontal field of view (FOV)

57.5◦ and capture distance from 0.5 m to 7 m. In our VR setup, we track the

user’s head, the display and the input device. Only one user (active user) is tracked,
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therefore the scene is rendered for this user. In Fig. 4.3, the active user wears the

tracked shutter glasses. Other (passive) users can view the scene via shutter glasses

but without any interaction. The input device for the hybrid environment is named

“Hawkeye” (Fig. 4.5(b)). The Hawkeye consists of a Bluetooth mouse, a Wacom panel

stylus and the tracking target. It offers three interaction modes: 2D interaction with

Wacom panel via the stylus, 3D interaction via tracking target and mouse button

events via Bluethooth mouse. The Bluetooth mouse button events are handled by

OpenTracker [93] tracking library, supporting system mouse events. An example for

the 3D interaction mode is shown in Fig. 4.3 and 2D interaction mode is shown in

Fig. 4.4.

The independent tracking server and the rendering server are connected via

TCP/IP LAN. Alternatively, if the tracking server and rendering server are runing

on the same machine, the loopback interface can be used to set up the communi-

cation between the two servers. The tracking software is running on the tracking

server, and the rest of the software is running on the rendering server. The Virtual

Reality Peripheral Network (VRPN) protocol [60] is utilized over TCP/IP and car-

ries the tracking data from the tracking machine (VRPN server) to the rendering

machine (VRPN client). The tracking data is received by the rendering machine via

OpenTracker [93] tracking library supporting VRPN client protocol.

In the following paragraphs, we will introduce our software framework and

modules used for VR setup. The software involving the interactive refinement will be

explained in the subsequent sections.
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Infrared emi!er

Tracking camera frame

3D TV
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Figure 4.3: Overview of the hybrid VR system–a user explores the object in a true

3D environment. Note that the tracking and rendering server (a workstation) is not

shown in this figure.
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Figure 4.4: Hybrid VR system utilizing 2D interactive mode–the user utilizes the 2D

user interface consisting of Wacom panel and Hawkeye. The tracked targets (TV,

Hawkeye and 3D glasses) are circled in red.
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(a)

(b) (c)

Figure 4.5: Tracking targets for interactive segmentation in VR environment. (a) The

tracking target is mounted on the top of the 3D TV. (b) The tracked Hawkeye con-

sists of the tracking target, Bluetooth mouse and Wacom panel compatible stylus.

(c) Tracked 3D glasses for the active user.
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Figure 4.6: Simulation of the by the tracking system covered volume. Five cameras

(cubes) are mounted on a triangle. Users are simulated by a sphere and cylinder.

Displays and tables are simulated by cubes. The yellow frustums show the tracking

volumes. Ceiling, walls and ground are shown as rectangles. The implementation of

this simulation is shown in Fig. 4.3
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Figure 4.7: Software structure of hybrid VR-based interactive segmentation.

The main software structure of our hybrid VR-based interactive segmentation

environment is shown in Fig. 4.7. The main external libraries for the hybrid system

are Studierstube [99] and OpenTracker [93]. The Studierstube is a group of C++

classes developed for Augmented Reality (AR) and VR applications. The classes are

based on Coin using the Open Inventor scene graph concept. In our application,

the visualization algorithms are developed in Coin based on scene graph nodes. We

extended the original Studierstube library concerning stereo rendering as described

below. Studierstube provides an interface to Opentracker for receiving the tracking

data and allows forwarding it to our applications. Our application consists of four

main blocks: the kernel and data module, 2D desktop application module, 3D VR-

based application module and OSF-based interactive segmentation module.
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In order to acquire accurate tracking data, we need to calibrate the tracking

system. The first step is to set up a physical (world) coordinate system W . The 6-

DOF tracking data refer to W . In addition, to achieve a correct stereo view volume,

the z-axis of the physical coordinate system needs be perpendicular to the stereoscopic

display (in the word of computer graphics, the display is a projection plane). The

position relation between W and the display should be constant. However once the

relation changes, we have to recalibrate the VR coordinate system. This is a time

consuming task. To avoid the repeated re-calibration, we transform W to the display

by utilizing tracking data, thus the relation stays constant. The reference matrix

Mref is calculated with Eq. 4.1.

Mref = Ccal
−1Mdis, (4.1)

whereMdis is a tracking data matrix consisting of the display location and orientation.

Ccal is a constant matrix consisting of the calibrated display location and orientation.

The transformation of tracking inputs is shown in Fig. 4.8.

The off-axis perspective projection [55] and head tracking are combined to

create a stereo pair for display. To make the stereo rendering portable to various

display devices and stereo modes, a two pass rendering algorithm is utilized as shown

in Fig. 4.9. In the first pass, the stereo pair is rendered to two independent frame

buffer objects (FBOs) at full screen resolution. In the second pass, each image from

the respective FBO is used as a texture source. The texture images are attached

to corresponding viewer (quad buffer mode) or viewers (side by side etc). For the

checkerboard mode, the stencile buffer may be used to combine two textures into
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Figure 4.8: Graph outlining the transformation of Hawkeye and head tracking data

relative to the display location/orientation. The red blocks show a dynamic transfor-

mation utilizing Mref (·), where Mref is indicated by “Base” in the graph. Hawkeye

and head tracking data are transformed by static offsets based on calibration before

they are feed to reference transformation block.
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one texture. In the first rendering pass, FBOs are also used for other purposes, for

example real-time clipping contour rendering, thus a multi-level FBO technique is

used. The advantage of the two pass algorithm is that the rendering routine (first

path) is not aware of the existence of the stereo rendering pass. Thus, the second

rendering pass can easily be adapted to any stereo/none-stereo mode. Fig. 4.10 shows

two examples of stereo pair transmitted to the 3D TV using our FBO-based rendering

method.

Input device: In the hybrid user interface, the Hawkeye supports all the

interactive operations. We render a virtual pen and use it for interactive segmentation

refinement in the VR environment. The position and orientation of the virtual pen

is derived from the tracking data of the Hawkeye. In addition, mouse button events

are used to trigger interactive segmentation events.

The Hawkeye is also used as navigation tool which allows to translate, and ro-

tate objects and to zoom in/out. Zoom operations are realized by scrolling the mouse

wheel. The 6-DOF user interactions are realized by utilizing tracking information

and with mouse button events. When the user press the left mouse button, the new

position and orientation of the scene objects are calculated:

Tnew = T ′
new(T

′
old)

−1Told

Rnew = R′
new(R

′
old)

−1Rold

, (4.2)

where T and R represent position and orientation of the scene objects, T ′ and R′ repre-

sent position and orientation of the input device, Xold represents position/orientation

at start moment of pressing input device button, Xnew represents position/orientation

after the button pressed.
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Core render engine

FBO buffer FBO buffer

Stereoscopic render engine

OpenGL render buffer

Le" camera Right camera

2D texture2D texture

Off-line render buffer 

rendering pass

On-line render buffer

 rendering pass

Figure 4.9: Overview of 2-pass stereoscopic rendering algorithm. The first pass (top)

is a fixed pipeline and the second pass (bottom) can be adapted to the utilized stereo

modes.
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(a) (b)

Figure 4.10: Example of binocular images transmitted to the 3D TV. (a) Side by side

mode. (b) Top bottom mode.

Context data visualization: For VR-based medical image visualization,

iso-surface and volume rendering are frequently utilized. However, for the VR-based

segmentation refinement system, accurate display of context information is need to

allow the user to find out if a segmentation is correct or not. For instance, 2D multi-

planar reconstruction (MPR) technique which allows the extraction of a slice in any

position and orientation of a 3D volume. In addition, the segmentation represented by

the iso-surfaces should not block the observation of the MPR when the segmentation

refinement is done. One way is to remove the portion of the iso-surface in front of

the MPR and showing the 2D segmentation contour on the MPR. Since this is done

in an interactive environment, real-time rendering (high frame rate) is required. Our

system supports visualization of 3D and 4D medical image data. 4D data visualization

is realized by displaying 3D context for a selected time phase. The user can change
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time phases manually.

The 2D textured plane gives detailed context information, and physician are

used to 2D viewers. Thus, we also provide a 2D viewer in our 2D display. 2D views in

three directions (axial, sagittal and coronal) are implemented by means of OpenGL

2D texture and Qt.

The loaded data is converted to a 8-bit format scaled by maximum and min-

imum gray values. The 3D 8-bit data is then copied to the 3D texture memory of

the GPU. Our GPU memory is sufficient to hold most of the 3D medical image data.

The MPR is realized by a textured polygon. An “infinite plane” is virtually (not

visible) set up in 3D space and the user can translate and rotate it by manipulating

its normal vector and the distance to the origin of the 3D space. The volumetric

data is represented by a bounding “box”. In the navigation mode, the user oper-

ates the Hawkeye to move the bounding “box”, which represents movement of the

volume. The vertex positions of the polygon are calculated by intersecting the six

faces of the “box” against the “infinite plane”. The vertex positions are normalized

to the 3D texture coordinates which are utilized in 3D texture interpolation. The

standard OpenGL rendering pipeline for the textured plane rendering is replaced by

OpenGL Shading Language (GLSL) shader for the following reasons. First, it is easy

to combine the segmentation contour visualization on the MPR. Second, it is a real

time implementation and allows to change MPR properties such as transparency and

gray-value transfer function. Examples of the MPR are shown in Fig. 4.15.

The segmentation result is visualized by rendering the triangle mesh. The
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mesh can be generated in two ways. For navigation, the mesh is generated from the

binary segmentation volumes by employing marching cube algorithm [78] in an off-

line pre-processing step. In this step, the mesh data structure is described in Open

Inventor file format. If the interactive segmentation refinement is involved, the mesh

vertex positions are derived from the OSF segmentation result. The face sets of the

triangle mesh is kept the same during the segmentation refinement. The OSF graph

structure and the mesh data structure are shown in Fig. 4.11. Note that multiple

surfaces are supported by this data structure. For a given pre-segmentation, the OSF

graph data structure is stored on the hard disk. If loaded into our VR software, a

copy of the data structure is maintained in the CPU memory. Each time refinement

is performed, the costs and mesh vertex positions are updated. There are two copies

of the mesh structure (vertex position, normal, color and triangle face sets) for each

surface. One is on the CPU side and the other is on the GPU side. The copy on the

CPU side is corresponding to the OSF segmentation and input/output operation. The

copy on the GPU side is used for rendering. After OSF iteration, the mesh vertices

are updated and the normal vectors are recalculated. The corresponding contexts

on the GPU side are also updated. CUDA programing is used to modify the vertex

properties, for example change the transparency and color, in parallel. The copy on

the GPU side is also used for our novel contour rendering algorithm described in

the following sub-section. The wireframe rendering mode can be enabled, if the user

prefers to see detailed triangle information. In addition, the OpenGL clipping plane

is used for the contour rendering on the MPR. All these features can be switched on
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or off on the fly by the user at any time.

Real-time clipping contour rendering: The contour rendering is essen-

tial for verifying the segmentation result. However, the mesh surface can consist of

many triangles, and MPR location/orientation and the surface are subject to fre-

quent changes. Thus, a fast contour rendering method is required. For this problem,

Bornik et al. [15] proposed a two-pass image based contour rendering algorithm. First,

the algorithm renders the clipped surface in two-sided light mode to the OpenGL

Frame Buffer Object (FBO) buffer, which is used to generate an image with a white

cross section of the clipped surface on a black background. Second, edge detection

is used to extract the boundary. This approach has some disadvantages. If there

are holes in the surface (e.g., open surface) or the orientation of some polygons is

flipped (e.g., due to mesh folding), artifacts in form of false silhouettes can appear

(Fig. 4.12(a) and 4.12(d)). Also, this algorithm is not able to highlight a portion of

the contour with a different color, which is required by our refinement method.

To address these problems, a Nvidia CUDA based contour visualization algo-

rithm was developed. In this approach, we assume that each mesh vertex has a label

corresponding to a color. In the first pass, the intersection points of the mesh sur-

face and MPR are calculated in parallel. In the CUDA implementation, a thread is

generated for a triangle, which delivers zero or two intersection points of the triangle

with the MPR plane. The number of threads is equal to the number (N) of trian-

gles. Note that without loss of generality, the case with only one intersection point

can be represented with two intersection points. Each intersection point is labeled
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<OSFGRAPH>

 

  <surface id="0">

    <vertex id="0" ini!alPosi!onId="1" currentPosi!onId="2">

      <posi!on id="0" pos="0.00 0.00 0.00" cost="0.8"> 

      <posi!on id="1" pos="0.01 0.01 0.01" cost="0.1">

      <posi!on id="2" pos="0.02 0.02 0.02" cost="0.7">

    </vertex>

    <vertex id="1" ini!alPosi!onId="1" currentPosi!onId="2">

      <posi!on id="0" pos="0.00 0.00 0.00">

      <posi!on id="1" pos="0.01 0.01 0.01">

      <posi!on id="2" pos="0.02 0.02 0.02">

    </vertex>

    <vertex id="2" ini!alPosi!onId="1" currentPosi!onId="2">

      <posi!on id="0" pos="0.00 0.00 0.00">

      <posi!on id="1" pos="0.01 0.01 0.01">

      <posi!on id="2" pos="0.02 0.02 0.02">

    </vertex>

    <face id="0" index="1 2 0"/> 

    <face id="1" index="1 0 2"/>

    <face id="2" index="2 1 0"/>

  <surface/>

 

  <surface id="1">

    ...

  </surface>

 

  <graph nodeNum="3" edgeNum="3"> 

    <node id="0" surfaceId="0" vertexId="1" posi!onId="1" cap_source="1" cap_sink="0"/> 

    <node id="1" surfaceId="0" vertexId="1" posi!onId="1" cap_source="0.01" cap_sink="0"/> 

    <node id="2" surfaceId="0" vertexId="1" posi!onId="1" cap_source="0" cap_sink="0.02"/>

    <edge id="0" node_id="0 1" cap="inf" rev_cap="0"/> 

    <edge id="1" node_id="1 2" cap="inf" rev_cap="0"/>

    <edge id="2" node_id="0 2" cap="inf" rev_cap="0"/>

  </graph>

 

</OSFGRAPH>

Figure 4.11: OSF graph structure in XML format used for VR-based segmentation

refinement. The graph structure supports multiple surface OSF [75].
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Comparison of the visualization approach presented in [15] (a), (d) and

our proposed method (b), (e) . (a), (d) False contours are clearly visible on the cutting

plane. (b), (e) Our algorithm produces a correct contour. (c) The contour shown in

(b) is combined with the clipped mesh. (f) The contour shown in (e) is combined

with the clipped mesh. Arrows in (c) show locations of mesh folding. Arrows in (a)

and (d) show locations of false silhouette. Arrows in (f) show locations where the

open surface is.
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according to the set label of the nearest triangle vertex. Thus, each intersection point

is assigned a color according to its set label. The parallel intersection algorithm is

described in Algorithm 4.1, where inter pts holds intersection points and inter flag

holds the binary values for N polygons indicating whether the polygon intersected

(1) or not (0).

Algorithm 4.1 A parallel algorithm of calculating intersection points of cutting

plane and the model surface.

1. input: plane function, surface vertex points, polygon indices

2. output: inter pts and inter flag

3. for each thread i (each polygon):

4. inter count := 0 // inter count is used to record the number of plane and
polygon intersection points, in computer graphics it is 0 or 2

5. v0 := first vertex in the polygon // vertex coordinate (x,y,z)

6. for (v1 := from the second vertex to the last vertex then to the first vertex in ith

polygon) then

7. d0 := distance from v0 to the plane

8. d1 := distance from v1 to the plane

9. if (d0 6= d1 and d0 ∗ d1 ≤ 0.0) then

10. dir = normalize(v1 − v0)

11. dotp = dir · nplane // nplane is the normal vector of the plane

12. inter pts[i ∗ 2 + inter count] := v0 − dir ∗ (d0/dotp)
13. inter count := inter count+ 1

14. end if

15. v0 := v1

16. end for

17. inter flag[i] := (inter count == 0 ? 0 : 1)

Since most of polygons have no intersection and the total number of inter-

sected polygons is not known either, the resulting data structure inter pts on the
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GPU cannot be used as rendering buffer. To avoid copying the whole data structure

back to CPU, a parallel cuda algorithm is utilized to move intersection points into

a continuous buffer new inter pts and determine the total number M of intersected

polygons. First, a parallel inclusive prefix summation algorithm [86] is applied to the

binary array inter flag, and the resulting array inter scan holds N prefix summation

results. The inclusive prefix summation is presented in Eq. 4.3.

inter scan[i] =

{

inter flag[i] if i = 0
inter scan[i− 1] + inter flag[i] otherwise

, (4.3)

An example of inclusive prefix summation is shown in Fig. 4.13. The last

element of inter scan is equal to M . None-zero values in inter scan in combination

with none-zero elements in inter flag are used to indicate the destination locations of

intersection points in new inter pts. This data moving process is implemented with

Algorithm 4.2, which runs in parallel. Finally, pairs of intersection points are drawn

as lines using new inter pts as a render buffer and rendered into the FBO buffer as

2D texture. The continuous color buffer for rendering contour color is achieved in a

similar process as described in Algorithm 4.2.

0 0 0 1 2 2 22 3 4 5 6 75 5 6 6 7 M...

0 0 0 1 1 0 00 1 1 1 1 00 0 0 0 1 0...

Figure 4.13: An example of inclusive prefix summation from inter flag array (the

first row in red) to inter scan array (the second row in green).
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Algorithm 4.2 A parallel algorithm for moving the intersection points to a contin-

uous array.

1. input: inter scan, inter flag and inter pts arrays

2. output: new inter pts array

3. in each thread i:

4. if (inter scan[i] 6= 0 and inter flag[i] 6= 0) then

5. index := inter scan[i]− 1

6. for (j = 0; j < 2; j ++) then

7. new inter pts[2 ∗ index+ j] := inter pts[2 ∗ i+ j]

8. end for

9. end if

In the second pass, the 2D texture is superimposed onto the textured plane

representing the image context utilizing an OpenGL Shading Language (GLSL) frag-

ment shader program. Thus, the contour is always shown on the textured plane

without any occlusion. Note that if the two intersection points were assigned dif-

ferent colors, the color of the line in between will be interpolated accordingly. The

overview of context data visualization is depicted in Fig. 4.14.

A comparison of our approach and method in [15] is shown in Fig. 4.12. More

visualization examples using our approach are shown in 4.15.

4.3.2 Interactive Generic OSF Refinement

Our segmentation refinement method utilizes the same OSF-based graph struc-

ture G(N,A) as utilized for initial segmentation (Section 3.4.4). Note that our re-

finement method does not change the topology of the underlying graph structure.
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Infinite plane

Contour rendering pass 1

CUDA contour detec!onTextured plane extrac!on Mesh clipping

Mesh rendering pass Plane rendering pass

Contour rendering pass 2

3D texture 2D texture

FBO buffer

GLSL fragment shader

Switch

Transforma!on

Volume data

Main rendering pass

Context

 data

Final cu#ng plane

Figure 4.14: Summary of the context data visualization pipeline. Tracking data comes

from the Hawkeye. The user selects the transformation for either the cutting plane or

the context data. The plane rendering pass extracts an arbitrary texture plane from

the volume data based on the “plane” position and orientation. The Mesh rendering

pass removes the triangles in front of the plane. The clipped meshes behind the

cutting plane can be seen by enabling the plane transparency (Fig. 4.15) or changing

the viewpoint. Contours are detected utilizing a CUDA program and rendered to

the FBO buffer. The GLSL shader then combines the arbitrary texture plane (3D

texture) and the contour from FBO (2D texture).
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(a) (b)

(c) (d)

Figure 4.15: Examples of the contour rendering using the cutting plane algorithm.

Alpha blending is enabled for cutting plane rendering. (a) Lung lobes and airway

rendering. (b) Lung vessels rendering. (c) Liver and vessels rendering. The transfer

function window is adapt to a liver window. (d) Left ventricle in an ultrasound image.

In this case, the surface is open.
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Simple Example: To reach an intuitive understanding of the underlying

interactive OSF refinement framework, a very simple generic refinement tool (named

point refinement) is presented (Fig. 4.16). User identifies the segmentation error

(Fig. 4.16(a)) and location of the correct boundary (Fig. 4.16(b)) using the hybrid

user interface. The nearest graph column Col(p) and node i are identified by the

algorithm. The node cost c(p, i) is set to 0 and the rest of cost c on the column Col(p)

is set to a large constant value. Thus, it is likely that the updated segmentation

result goes through the node i. The maximum-flow algorithm is recalculated to

generate an updated segmentation result (Fig. 4.16(c)). Using such an approach can

fix segmentation errors but this approach requires lots of user efforts to fix large

segmentation errors. More efficient application specific interactive refinement tool

will be presented in Chapters 5, 6 and 7.

The generic individual processing steps of the OSF-based refinement algorithm

are summarized in detail below.

1. The user inspects the segmentation result and locates a segmentation inaccuracy

using our hybrid user interface (Fig. 4.16(a)).

2. The user provides rough clues for the desired locations of incorrectly positioned

boundaries/surfaces using refinement tools. This task is supported by our hy-

brid user interface (Fig. 4.16(b)).

3. Utilizing the information provided by the user, the algorithm locally updates

costs in the graph structure G.

4. The maximum-flow is recalculated for the updated graph G. To speed up the
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(a) (b) (c)

Figure 4.16: Simple example of interactive OSF segmentation refinement using the

hybrid user interface. (a) The user inspects segmentation result using the visual-

ization tool. (b) The user specifies a point indicating the true boundary location.

(c) Segmentation result after recalculating maximum-flow.

computation, recomputing the maximum-flow from scratch is avoided by uti-

lizing the previously calculated residual graph in a similar way as described in

[16].

5. The display of the new boundaries/surfaces is updated (Fig. 4.16(c)).

The above described refinement method can be utilized iteratively, if required.

The program’s GUI allows the user to “undo” a refinement operation, if needed. In

Chapter 5 (single surface based 3D lung segmentation), 6 (4D lung segmentation)

and 7 (dual-surface based IVUS segmentation), details describing step 2, 3 of the

refinement algorithm in specific applications will be provided.

Step 4 is explained as below. Suppose the cost of nodes on the column p

is changed due to user interaction. The updated node weight wnew(p, i) for node i
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Table 4.1: Negative new weight assignment for terminal edges of node i on column p.

terminal edge initial capacity add new capacity
{s, (p, i)} caps capt − wnew caps + capt − wnew

{(p, i), t} capt caps caps + capt

Table 4.2: None-negative new weight assignment for terminal edges of node i on

column p.

terminal edge initial capacity add new capacity
{s, (p, i)} caps capt caps + capt
{(p, i), t} capt caps + wnew caps + capt + wnew

is calculated according to the Eq. 3.2. If wnew(p, i) < 0, the new caps(p, i) should

have been −wnew(p, i) and new capt(p, i) should have been 0. To utilize a similar

approach described in [16], the updated capacity assignment is performed according

to Table 4.1. Similarly, if wnew(p, i) ≥ 0 (the new caps(p, i) should have been 0 and

new capt(p, i) should have been wnew(p, i)), the corresponding capacity assignment is

done according to Table 4.2. Thus, the new terminal arc capacity assignments are

equivalent to the original capacity assignment because the extra constant caps+capt at

both terminal arcs of a column node does not change the minimum s/t cut (minimum-

closed set) [16].
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CHAPTER 5
INTERACTIVE SEGMENTATION REFINEMENT FOR 3D

OSF-BASED LUNG SEGMENTATION

5.1 Introduction

In this chapter, the proposed interactive refinement approach is adapted to

3D lung segmentation and validated. For this purpose, an improved version of au-

tomated lung segmentation approach described in Chapter 3 is utilized to produce

pre-segmentation, and two specific refinement tools are presented. One is a more

generic refinement tool and the other is a specific tool to correct leakage to trachea

and main bronchus.

5.2 Methods

5.2.1 Initial Lung Segmentation

For automated lung segmentation, the approach presented in Chapter 3 was

adapted. The lung segmentation uses a robust ASM based segmentation followed by

an OSF-based segmentation approach. Chapter 3 utilized a multi-scale OSF approach

with a hard smoothness constraint [75] and straight line search profiles normal to the

mesh surface. For the method used in lung segmentation refinement, we utilized an

improved version of this algorithm, which included a linear soft smoothness constraint

(a constant weight α was used to penalize the shift on two adjacent vertices) proposed

in [105] and a gradient vector flow based approach to build column profiles [7]. Also,

in contrast to Chapter 3, we used a single-scale approach. The graph structure
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utilized in this chapter was described in Section 3.4.4. The number of mesh vertices

used for the OSF-based segmentation was 10, 242. For the soft and hard smoothness

constraints, α = 0.001 and ∆ = 12 were used, respectively. The search profile length

was lp = 117 nodes. Points on the search profile were obtained at discrete sampling

positions with a distance of 0.35 mm between them. A Gaussian gradient filter kernel

with variance σ = 2.0 mm was utilized to calculate the cost function.

5.2.2 Generic OSF-based Segmentation Refinement

Basically, the task of 3D lung segmentation refinement can be split into two

sub-tasks: (a) identify (label) the local error on the surface and (b) change the cost

of columns associated with errors such that the error is corrected or at least reduced

when the new optimal surface is calculated for the updated graph. Based on the

generic OSF-based interactive refinement framework described in Section 4.3.2, the

individual processing steps of the developed segmentation refinement algorithm are

as follows.

1. The user inspects the segmentation result and detects an error on the surface

by comparing CT data visualized on the cutting plane to the boundary of the

segmentation result (Fig. 5.1(a)).

2. The incorrect part of the surface is labeled. For this purpose, the user identifies

a point on the true surface location near the error region (Fig. 5.1(b)). During

this process, the algorithm displays the estimated incorrect (labeled) portion of

the surface interactively, which allows the user to pick a good location for the
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(a) (b)

(c) (d)

Figure 5.1: Visualization of generic interactive OSF-based segmentation refinement

for a lung with a lung mass adjacent to the lung boundary. (a) The user inspects the

lung segmentation and locates a segmentation error. (b) In a cross-section, the user

select a point on the correct boundary location with a virtual pen. Note that the

incorrect portion of the contour is highlighted in light blue, which was automatically

generated based on the selected point. (c) and (d) Refinement result after calculating

maximum-flow. (d) The corrected surface region is highlighted in green.
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input point.

3. Costs in G(N,A) are locally updated for affected columns.

4. The maximum-flow is recalculated for the graph G(N,A).

5. The new solution (surface) is displayed (Fig. 5.1(c) and 5.1(d)).

In the following, we describe step 2 and step 3 of our refinement algorithm in

detail.

Previously calculated

 boundary

True boundary

n(v,i)

col(v) col(v’)

BFS

n(v,k)

n(v’,i’)

n
v

n
v’

Border node

Nearest node

1

2

2

Similar columns

1
1

n(v’,k)

Figure 5.2: Search for similar neighboring columns in the OSF graph structure.

Error region labeling (step 2) — The user specifies a point on the true

boundary in an erroneous segmentation region using the hybrid user interface (Fig. 5.1(b)).

The algorithm searches for the nearest node on all graph columns based on the spec-

ified point. The nearest node n(v, k) is found. Corresponding column v is labeled as

the center column, and the center column node n(v, i) on the previously calculated
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surface is found (Fig. 5.2). A breadth-first-search (BFS) algorithm [33] is applied

to find similar neighboring columns. The neighborhood relation is defined based on

mesh topology. The BFS starts from the center column v and examines neighboring

columns by utilizing predefined similarity criteria, which are based on three compo-

nents that are combined by means of a logical AND operation:

1. Surface normal vector — We assume the angle between the surface normal

vector of the center column v and a neighboring column v′ to be less than 90◦.

Thus, we require nv · nv′ > 0, where n denotes the surface normal (Fig. 5.2).

2. Incorrect surface appearance — This criterion is based on the observation that

the incorrect surface passing through the center and the neighboring columns

should have similar local image characteristics. The gray-value profile around a

node n(v, i) will be denoted as set P (v, i) = {g(n(v, i+j))|j ∈ {−7,−6, . . . , 7}},

where g(n) represents the gray-value of a node n. Let v′ represent a column in

the proximity to the center column with node n(v′, i′) on the previously calcu-

lated surface (Fig. 5.2). Then D(P (v, i), P (v′, i′)) = maxj∈{−7,−6,...,7}{|g(n(v, i−

lr + j)) − g(n(v′, i′ + j))|} denotes a gray-value profile similarity function.

Columns v and v′ are similar if the following criterion is fulfilled:

min
m∈{−5,−4,...,5}

{D(P (v, i), P (v′, i′ +m))} < t1, (5.1)

where t1 is a threshold. In our lung CT segmentation task, we use t1 = 180 HU

(Hounsfield Units).
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3. True boundary appearance — The basic idea behind this criterion is that the

correct surface point(s) on the center column and neighboring columns have

similar gray-value appearance. The correct surface point n(v, k) on the center

column was selected by the user (Fig. 5.2). However, we need to search for the

correct surface points on neighboring columns. For the neighboring column v′,

we start the search from n(v′, k) (Fig. 5.2) with a variable search length

lt = round(5 + 7(1.0− e
−d2

v,v′

2σ2 )) (5.2)

to express increasing uncertainty regarding location of true boundary points

with increasing distance from column v. Here, dv,v′ denotes the Euclidean dis-

tance between previously calculated surface nodes on column v and v′; σ was

set to 5 mm. Columns v and v′ are similar if

min
m∈{−lt,−lt+1,...,lt}

{D(P (v, k), P (v′, k +m))} < t2. (5.3)

Threshold t2 was set to 90 HU. The node with the most similar gray-value

profile on column v′ is stored in a set Vsim.

After the BFS algorithm stops, holes are filled in the labeled surface. Nodes corre-

sponding to the surface patch are stored in the set Verr. Fig. 5.1(b) shows an example

of a labeled erroneous surface patch visualized on the cutting plane. Parameters for

the similarity criteria were selected conservatively to avoid leakage. Thus, the BFS

step might in some cases not completely label the incorrect surface patch. To address

this issue, the patch can be dilated by the user.
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Updating OSF costs (step 3) — Cost function of the center column is

updated by

c(v, i) =

{

10 if i 6= k
0 i = k

. (5.4)

Because all costs are initially normalized between 0 and 1, the final segmentation is

very likely to pass through the user determined location k on column v. All remaining

columns related to the set Verr are updated

c(v′, i) =

{

ct(v
′, i) if v′ 6∈ Ω

c(v′, i) otherwise
, (5.5)

where Ω is a set containing all center columns selected by the user during the re-

finement process. Thus, the refinement never changes the cost function of columns

already updated using Eq. 5.4 in the previous refinement steps. The term

ct(v
′, i) =

(

1.0− 0.5e
−(|i−k′|)2

2σ(v,v′)2

)

c(v′, i) (5.6)

is used to locally adapt the previously utilized costs, where node k′ represents an

estimate for the true boundary location on column v′. The estimation of k′ will be

described in the next paragraph. σ(v, v′) is calculated with σ(v, v′) = 5 + e
d
vv′
10 . The

idea behind Eq. 5.6 is that the costs on column v′ near to the node n(v′, k′) have to be

low while the impact of the weighting function becomes weaker for nodes on columns

that are further away from n(v′, k′).

The estimate for the true boundary node n(v′, k′) is calculated as follows. Let

Vborder denote a set of outer border nodes of Verr (Fig. 5.2). A Thin Plate Spline

(TPS) surface [13] is fit through user selected node n(v, k), nodes in Vborder, and

nodes in Ωsim. To speed-up computation, Ωsim is a randomly selected subset of Vsim
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with 20 % of the size of Vsim. We utilize a TPS interpolation because we assume that

the corrected surface has low shape complexity. For TPS interpolation, the kernel

function U(r) = r2 log r is utilized. The interpolation works in 2.5D while the surface

patch consists of 3D points. Thus, an appropriate 2D plane has to be found to apply

TPS interpolation. By means of singular value decomposition, a plane is fitted in a

least square fashion to nodes in Vborder. The intersection of the interpolated surface

and columns related to set Verr\{n(v, i)} form estimates for the true boundary.

Note that n(v, k) and nodes in Vborder are believed to be on the true surface,

but nodes corresponding to Ωsim were estimated. Therefore, we enforce the fitted

surface to pass through nodes n(v, k) and Vborder with a regularization parameter

value of 0, but do not enforce it through nodes related to Ωsim with a regularization

parameter value of 1.0 [38].

Note that parameters used in the described method were determined exper-

imentally on five cases, which were not included in test data sets. An example of

generic OSF-based interactive segmentation refinement is given in Fig. 5.1.

5.2.3 A Specific OSF-based Refinement Method

The tool described in Section 5.2.2 is well suitable to correct lung segmentation

errors. However, we observed that when the OSF based lung segmentation leaks to

the trachea and main bronchus (Fig. 5.3(a)), the method is not efficient, requiring the

user to specify too many refining contour points. To address this issue, we designed

a specific tool for this segmentation problem. This specific method also consists of
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5 steps as described in Section 5.2.2, but step 2 (error region labeling) and step 3

(updating OSF costs) are different from the generic approach. In the next sections,

these steps are explained in detail.

Error region labeling (step 2) — The basic idea is to utilize the gray-

value and gradient characteristics of CT image data to identify/label surface points

corresponding to the leak to trachea and the main bronchus. The center column node

n(v, k) (nearest node in Fig. 5.4) is found based on the manually selected point on the

true lung boundary in the area of the leak. The BFS algorithm is utilized to identify

the incorrect nodes and is based on two properties:

1. Gray-value properties — A large density difference between air-filled airway

lumen and surrounding tissue can be observed. Fig. 5.3(c) shows a typical

gray-value profile passing through the airway lumen and surrounding tissue

corresponding to the profile shown in Fig. 5.3(b). Columns involved in the

leakage to trachea and main bronchus pass through the airway lumen as il-

lustrated in Fig. 5.4. Thus, for the neighboring column v′, nodes starting

from n(v′, i) to n(v′, 0) are searched (Fig. 5.4) and their average gray-values

ga(v, i) = 1/7
∑3

j=−3
g(n(v, (i+ j)) are examined. The averaging is used to re-

duce the influence of noise. At first, the search looks for a node n(v′, j) with

ga(v
′, j) < −900 HU (air). Once such a node is found, the search continues on

the column until the first node n(v′, k) with ga(v
′, k) > −600 HU is found. The

node n(v′, k) will be close to the inner airway boundary (Fig. 5.4). The search

is refined by identifying the maximal gradient magnitude location about node



113

1

2

(a) (b)

1 5 10 15 20 25 30 35
−1000

−800

−600

−400

−200

0

200

G
ra

y 
va

lu
e 

(H
U

)

Pixel index

(c) (d)

Figure 5.3: Example of incorrect (leakage to trachea and main bronchus) lung seg-

mentation and corresponding image features utilized for error identification. (a) Lung

segmentation leaking to trachea (arrow 1) and main bronchus (arrow 2). (b) Profile

location and (c) corresponding gray-value profile passing through airway lumen and

surrounding tissues. (d) Corresponding z · gdir volume.
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n(v′, k) in a search range of ±3 nodes, resulting in node n(v′,m). Gradient mag-

nitude gmag and direction gdir are pre-calculated for each voxel in the volume.

Prior to gradient calculation, the gray-value range is truncated to −1000 and

−700 HU, to reduce the effect of unrelated structures on the gradient. The gra-

dient is calculated by utilizing Gaussian derivatives with a standard deviation

σg = 0.5 mm. In addition, to reduce the influence of noise, gradient magnitudes

less than 10 are ignored. The same search is performed for the center column,

but it takes place between nodes n(v, i) and n(v, k).

2. Gradient properties — Trachea and main bronchus are elongated tubular struc-

tures along the z-axis of the volume. Thus, the z-axis is approximately per-

pendicular to the (normalized) gradient direction of each voxel on the airway

boundary. This constellation can be described by the dot product z ·gdir, where

z = (0, 0, 1)T represents the z-axis direction and gdir = (gx, gy, gz)
T is the nor-

malized gradient direction of each voxel. Fig. 5.3(d) shows a typical example of

a z · gdir volume.

The criterion is fulfilled if a node n(v′,m) can be found for a neighboring column with

z · gdir(n(v
′,m)) < t3 with the angle threshold t3 = 0.4. After the BFS algorithm

stops, nodes corresponding to the surface patch are stored in the set Verr, and holes

in the patch are closed. In addition, nodes on the airway wall (n(v′,m)) are stored

in the set Vsim. For columns related to holes in the surface patch, the location of the

node n(v′,m) is estimated by interpolation, and the result is added to Vsim.
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Figure 5.4: Labeling surface points corresponding to the leakage to trachea and main

bronchus based on BFS.

Updating OSF costs (step 3) — The cost function of the center column is

updated according to Eq. 5.4. All other columns corresponding to nodes in Verr are

updated by Eq. (5.5) as

ct(v
′, i) =

{

1 if i > m
c0(v

′, i) otherwise
, (5.7)

with n(v′,m) ∈ Vsim. c0(v
′, i) is the initial cost function utilized before refinement.

Thus, nodes inside the airway lumen receive a cost of one.

5.3 Evaluation Methodology

5.3.1 Image Data

For this study, 18 multidetector computed tomography (MDCT) thorax scans

of patients with lung tumors were selected from a larger pool of data sets such that at

least the left or right lung required segmentation refinement after automated segmen-
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tation. In the 18 MDCT scans, 21 left/right lungs were found to require segmentation

refinement. MDCT images where acquired with different scanners and imaging pro-

tocols. The image sizes varied from 512× 512× 415 to 512× 512× 642 voxels. The

slice thickness of images ranged from 0.6 to 0.7 mm and the in-plane resolution from

0.60 × 0.60 to 0.79 × 0.79 mm. None of the test data sets has been used for the

development of algorithms.

5.3.2 Independent Reference Standard

For all tested data sets, an independent reference standard was generated by

utilizing a commercial lung image analysis software package PW2 (VIDA Diagnostics

Inc., Coralville, IA). First, an automated lung segmentation was performed. Second,

since the software was not designed to deal with lungs containing large lung cancer

regions, an expert inspected all the segmentations slice-by-slice and corrected all

segmentation errors manually. In the case of diseased lungs, this process took several

hours per lung.

5.3.3 Identification of ROIs for Performance Analysis

To assess segmentation refinement performance, 30 volumetric region of inter-

ests (ROI) were identified in the image data that contain major local segmentation

errors. These ROIs were also utilized to indicate which region should be refined by the

user. Fig. 5.5 shows an example of such an ROI. Table 5.1 summarizes segmentation

error types included in the defined ROIs. Note that there can be one or more types of

segmentation errors in a single ROI. An expert was asked to refine the segmentation
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(a) (b)

Figure 5.5: A comparison of segmentation before (a) and after (b) refinement. The

segmentation is highlighted in red and the ROI region is shown in yellow. (a) Initial

automated OSF segmentation. (b) Corresponding 3D segmentation refinement result.

errors inside the ROIs.

5.3.4 Quantitative Indices

The utilized ROIs were defined such that the segmentation errors can be cor-

rected by manipulating the surface portion inside the ROIs. However, the user might

unintentionally affect a portion of the surface in close proximity to the ROI bound-

ary or the global optimal OSF calculation might cause changes outside of the ROI.

Therefore, we evaluate refinement performance inside and outside the ROIs.

1. Validation inside ROIs — The following quantitative error indices were utilized:

mean absolute surface distance (da) [45] and mean signed border positioning er-

rors (ds) [107]. A negative value for ds indicates that the segmentation boundary
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Table 5.1: Summary of segmentation error types included in the predefined ROIs.†

Error location Frequency

cancer region 12
leak to high contrast region (e.g., contrast agent) 12
leak to airway branch & hilar region 5
leak to trachea and main bronchi 2

† Note that only major segmentation problems in ROIs were taken into account.

is inside the reference object and a positive value indicates that the boundary

is outside the reference object.

2. Validation outside ROIs — The Euclidean distance (de) of two corresponding

surface vertices before and after refinement are utilized to measure vertex dis-

placement. In addition, for each refinement-modified vertex outside the ROI,

a shortest geodesic distance (dg) to the ROI boundary is utilized to measure

proximity to the ROI. To calculate dg, a weighted undirected graph Gdg is con-

structed from the triangle mesh. The arc weight is based on the Euclidean

distance between two triangle vertices. dg is calculated based on Dijkstra short-

est path algorithm [33].

5.4 Results

The mean and standard deviation of user interaction times needed for seg-

mentation refinement per ROI was 1.9 ± 1.2 min with a median of 1.6 min. User

interaction times ranged between 0.4 and 4.5 min. On average 5 ± 3.4 (median:

4) manually defined surface-correcting points were required, and the minimum and
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(a) (b)

Figure 5.6: A comparison of automated segmentation and segmentation refinement

in mesh representation for the case shown in Fig. 5.5. (a) Initial automated OSF

segmentation. The region marked green indicates segmentation error due to a large

lung cancer region. (b) Corresponding 3D segmentation refinement result.

maximum were 1 and 13 points, respectively.

A plot of required interaction in dependence of surface area inside the ROI

is depicted in Fig. 5.7. The actual computing time required by the algorithm was

150± 152 ms (median: 101 ms) with minimum and maximum computing time of 73

and 1220 ms, respectively.

5.4.1 Results inside ROIs

The mean absolute surface distance and mean signed border positioning errors

before and after refinement measured inside ROIs for all thirty test cases are shown

in Figs. 5.8 and 5.9, respectively. A Student’s t-test at a significance level of 0.05

was performed to determine whether the average error indices after refinement were
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Figure 5.7: User interaction times required for each refinement task in dependence

of surface size inside the ROI. Note that conventional approach to correcting severe

segmentation failures using slice-by-slice contour editing tools typically require tens

of minutes and up to several hours per image dataset.

significantly different than prior to the refinement. Both indices, the mean absolute

surface distance (p << 0.001) and mean signed border positioning error (p = 0.02),

were significantly improved. The mean absolute surface distance errors prior to the

refinement were 2.54 ± 0.75 mm (median: 2.44 mm) and the same errors decreased

to 1.11± 0.43 mm (median: 1.04 mm) after the refinement. Fig. 5.8b shows boxplots

graphically demonstrating improvements in the surface distance errors after refine-

ment.
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Figure 5.8: Mean absolute surface distance error before and after segmentation re-

finement measured inside the ROIs. (a) A case by case comparison. (b) A boxplot

comparison summarizing performance in all tested cases.
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Figure 5.9: Mean signed border positioning errors before and after segmentation

refinement measured inside the ROIs.

Examples of segmentations before and after refinement are depicted in Figs. 5.5,

5.6, and 5.10. In the case of Fig. 5.10, the independent reference standard is also

shown for comparison.

5.4.2 Results outside ROIs

The impact of segmentation refinement on the segmentation outside the ROIs

is summarized in Fig. 5.11, which shows a plot of the number of altered vertices as a

function of the mean number of triangle edges on the ROI boundary. For each test

case, boxplots for the displacement of nodes outside the ROIs after refinement are

shown in Fig. 5.12. Combined over all 30 cases, the average node displacement was

0.56± 0.38 mm (median: 0.57 mm) with a range of 0 to 1.34 mm.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.10: Examples of segmentation results on five different data sets (columns). (a)-(e) Independent reference standard.

Note that a zigzag pattern of the reference boundary can be observed on both the sagittal or coronal views, because the

manual expert segmentation was performed in a slice-by-slice fashion, which typically leads to slice-by-slice inconsistencies.

(f)-(j) Initial automated OSF segmentation results. (k)-(o) Segmentation after 3D refinement.
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Figure 5.11: Dependence between number of altered vertices before and after refine-

ment outside the ROI and average triangle edge count on the geodesic shortest path

from altered vertices to the ROI boundary. Note that six test cases are located at

the origin of the coordinate system, as indicated by the arrow.
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Figure 5.12: Boxplot of the displacement distance of vertices outside the ROI that

were altered during refinement. Note that for the six cases without displacement a

red line at zero is shown.
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5.5 Discussion

The validation showed that the developed method allowed the user to suc-

cessfully reduce/correct segmentation inaccuracies in all cases of our testing data set,

which consisted of 18 datasets for which the automated segmentation approach locally

failed (in 30 ROIs) and interactive surface refinement was necessary (Fig.5.8 and 5.9).

Quantitative assessment of the achieved segmentation improvements demonstrated

that the improvements are statistically significant.

Our 3D refinement results (Fig. 5.10) show that the refined surfaces exhibit

smooth boundaries, an additional benefit of our approach compared to slice-by-slice

manual editing of 2-D contours. For example, Fig. 5.10 shows zig-zag line/surface

inconsistencies across slices. Additionally, it is difficult to consistently define the lung

boundary in the area near the hilum where vessels and airways enter/leave the lungs

and no generally accepted standard for segmentation exist. In this context, it is

interesting to note that in four out of the five test cases, for which the mean absolute

surface distance after refinement exceeded 1.5 mm, required refinement in the hilum

region, further stressing the difficulty of expert-determination of proper surfaces in

this location of pulmonary anatomy.

Because the OSF approach delivers a globally optimal solution, a local ma-

nipulation of a cost function could potentially lead to an alteration of the solution

(surface) outside of the local area within which the cost function was purposely modi-

fied (i.e., surface detection changes may theoretically appear outside of the refinement

ROI). The performed assessment of such change outside the predefined ROIs indi-
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cates that in our 18 datasets, only minor changes occurred in close proximity to the

ROI region and no changes were detected in the remaining parts of the lung surface.

This result suggests that the influence of the modifications remains local in prac-

tice and the global modifications possibility does not form a problem in the image

segmentation refinement application.

The required user interaction time was in the low single-minute range. The

plot shown in Fig. 5.7 suggests that the refinement times of more than 2.5 mins. were

only required for inaccuracies affecting relatively large portions of the lung surface.

Manual editing of the segmentation error in a slice-by-slice fashion would take much

longer, because manipulating a surface is more efficient than editing 2D contours in

a cross-sectional images.

The average computing time of 150 ms per refinement iteration demonstrates

that our algorithm is well suited for real-time interactive use. The maximum comput-

ing time of 1, 220 ms or just little over one second was recorded for a case involving

a large surface region and was mainly required for surface interpolation. To further

increase the responsiveness of the interactive refinement environment, the interpola-

tion steps could be implemented using CUDA, which would provide the user with a

truly real-time interactive feeling when using the surface refinement environment.

In our CT lung surface segmentation refinement application, the two refine-

ment tools—one generic and one specifically designed for leaks to trachea/main

bronchus—were sufficient to handle the full range of frequently occurring lung seg-

mentation inaccuracies. However, depending on the application (e.g., type of the lung
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disease, the utilized imaging protocol, etc.), adaptation of the existing tools and/or

development of new tools may provide further benefits.
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CHAPTER 6
4D OSF-BASED LUNG SEGMENTATION WITH INTERACTIVE

SEGMENTATION REFINEMENT

6.1 Introduction

In this chapter, the proposed interactive refinement framework using the hy-

brid user interface is investigated in the context of 4D lung segmentation. First, a

novel 4D lung segmentation framework is utilized to produce a simultaneous OSF-

based segmentation of lungs imaged at inspiration and expiration. Second, the two

refinement tools described in Chapter 5 are integrated in a 4D segmentation refine-

ment framework. Finally, assessment of performance is provided. Note that the main

goal of the work described in this Chapter is to assess the feasibility of 4D segmenta-

tion refinement.

6.2 Method

In this work, we assume that the 4D lung CT data consists of volumetric

scans at inspiration and expiration. If needed, the presented approach can be easily

adapted to other combinations of respiratory states. The approach consists of two

main stages: a) initial automated segmentation and b) interactive 4D refinement, if

needed. Fig. 6.1 provides an overview of the approach to 4D lung segmentation. Core

components of the automated method are: RASM-based segmentation (Chapters 2

and 3), image registration, and 4D OSF-based segmentation. For inspection and OSF-

based refinement, an adapted version of the VR environment introduced in Chapter 4
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will be utilized, which allows the user to visualize either the expiration or inspiration

CT scan.

Inspiration

 CT Scan

Fixed im
age

Moving image

Rib-based model 

initialization (Chapter 3)
RASM Matching

(Chapters 2 and 3)

Multi-resolution 

registration

M1

M2

Transformation       

4D OSF Segmented 

4D lungs

T       

Expiration

 CT Scan

Figure 6.1: Overview of 4D lung segmentation approach. Methods that are shown in

orange were discussed in previous chapters.

6.2.1 Automated Segmentation

In this work, a 4D OSF-based approach is utilized to produce left and right

lung segmentations, respectively. The RASM approach with a rib cage detection

approach is used to initially segment left and right lung in the inspiration CT scan as

described in Chapter 3. The resulting mesh is denoted as “M1”. To construct a 4D

graph for OSF-based segmentation, an initial segmentation of the expiration scan of

the 4D data set is needed. As depicted in Fig. 6.1, the expiration scan is registered to

the inspiration scan using a multi-resolution registration approach which produces a

deformation (transformation) field T (from fixed image to moving image) as a result.
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Afterwards, M1 is deformed to M2 = T (M1), where M2 serves as an initial lung

segmentation result of the expiration scan. Finally, 4D OSF graph is constructed

to segment the 4D target structure (left or right lung) simultaneously using mesh

“M1” and “M2” as initial shapes. The approach to registration and 4D OSF-based

segmentation is described below in detail.

(a) (b)

Figure 6.2: Examples of inspiration (M1) and expiration (M2) meshes. The inspira-

tion mesh is shown in red and the expiration mesh in green. (a) Anterior-posterior

view. (b) Posterior-anterior view.

Image Registration: In our work, 3D image registration was implemented

using the registration package elastix developed by Klein et al. [64]. Specifically, the

lung registration approach proposed by Staring et al. [109] was utilized for registering

the two lung scans within elastix framework. More details about the lung registration
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algorithm can be found in [109] and on the elastix webpage1. Note that the lung mask

was not used as proposed in [109]. Fig. 6.2 shows one example for inspiration mesh

M1 and transformed mesh M2.

4D Graph-based Segmentation: For 4D OSF-based segmentation, a weighted

graph G containing multiple sub-graphs G = {Gi = (Vi, Ai) : i = 1, 2, ...Np} is con-

structed, where Vi represents a graph node set, Ai a graph arc set, i time index related

to individual volumetric data set of the 4D image data set. In this case Np equals

two, and Si represents a surface corresponding to sub-graph Gi.

Sub-graph Gi(V,A) is built from an initial mesh surface Mi (shape and topol-

ogy prior), which is assumed to be close to the target surface. A graph column with

lp is generated along the search profile for each surface. Each node corresponds to a

point in the volume with intensity Ii(x, y, z) in the volumetric image Ii. The node

density dn on the profile is adjusted to the given image resolution. An example of

sub-graphs is shown in Fig. 6.3(a). Intra-column arcs are built to connect nodes

n(v, k) to n(v, k− 1) on a column col(v) with infinity weights, where k is the column

node index. Column col(vi) and col(vj) are adjacent columns, if vertices vi and vj

are on the same triangle edge. For adjacent columns, inter-column arcs are built to

connect the node n(vi, k) to the node n(vj, k−∆) with infinity weights (Fig. 6.3(b)).

To achieve a 4D graph-based segmentation, sub-graphs G1 and G2 are interconnected

by inter-phase arcs which connect nodes n(vi, k) of G2 and n(vi, k − δu) of G1 with

infinity weights, and nodes n(vi, k) of G1 and n(vi, k− δl) of G2 with infinity weights

1http://elastix.bigr.nl/wiki/index.php/Par0011
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Figure 6.3: Graph construction for 4D OSF. (a) Search profiles are constructed start-

ing from shape priors (meshes M1 and M2). (b) OSF graph structures (arcs) enforc-

ing the surface smoothness constraints. (c) OSF graph structure (arcs) enforcing the

inter-phase constraints.
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(Fig. 6.3(c)). δl and δu are inter-phase motion constraints representing the allowed

maximum distances between surfaces S1 and S2.

Graph node weight sets Ci with i ∈ {1, 2} (objective functions) are derived

from corresponding volumetric image data Ii to reflect local image characteristics. C1

and C2 are calculated using Eq. 3.3. In addition, linear soft smoothness constraints

are utilized, as proposed by Song et al. in [105]. For this purpose, constant weight

α arcs are introduced to penalize shifts between adjacent vertices on surface Si. A

gradient vector flow based approach to build column profiles [7] was utilized.

The number of mesh vertices (for M1 and M2) used for the OSF-based seg-

mentation was 10, 242. For the soft and hard smoothness constraints, α = 0.001 and

∆ = 12 were used, respectively. For the inter-phase constraints, the following parame-

ters were utilized: δl = δu = 10. The search profile length was lp = 117 nodes. Points

on the search profile were obtained at discrete sampling positions with a distance of

0.35 mm between them. A Gaussian gradient filter kernel with variance σ = 2.0 mm

was utilized to calculate the cost function.

6.2.2 User-Guided Segmentation Refinement

The OSF-based interactive refinement methods utilized in the 4D lung seg-

mentation are similar to the 3D version described in Chapter 5, but work on the

4D graph structure. The individual processing steps of the developed segmentation

refinement algorithm are summarized below.

1. The user selects a volume of the 4D scan (Fig. 6.4(a) and 6.4(b)). The user in-
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Example of interactive 4D OSF-based segmentation refinement. The

segmentation leaks to the trachea in inspiration and expiration volumes. (a) The

user inspects the lung segmentation and locates a segmentation error (inspiration

scan). (b) Corresponding expiration scan. (c) In a cross-section, the user selects a

point on the correct boundary location of the inspiration scan. Note that the incorrect

portion of the contour is highlighted in light blue, which was automatically generated

based on the selected point. (d), (e) and (f) Refinement results after calculating

maximum-flow. (d) and (e) Corrected inspiration scan. (f) Corrected expiration

scan.
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spects the segmentation result and detects an error on the surface by comparing

CT data visualized on the cutting plane to the boundary of the segmentation

result (Fig. 6.4(a)).

2. The incorrect part of the surface is labeled. For this purpose, the user identifies

a point on the true surface location near the error region (Fig. 6.4(c)). During

this process, the algorithm displays the estimated incorrect (labeled) portion of

the surface interactively, which allows the user to pick a good location for the

input point.

3. Two tools (generic tool and specific tool correcting leakage to trachea and main

bronchus) described in Chapter 5 can be utilized for step 2 and 3. During

refinement, cost function of selected scan is manipulated but due to the inter-

phase motion constraints of graph structure, both surfaces might be changed

(Fig. 6.4).

4. The maximum-flow is recalculated for the graph G(N,A).

5. The new solutions (surfaces) are displayed (Fig. 6.4(d), 6.4(e) and 6.4(f)).

6.3 Evaluation Methodology

6.3.1 Image Data and Experimental Setup

For this pilot study, four 4D data sets are utilized for performance assessment,

which show similar segmentation errors at inspiration and expiration. The image sizes

ranged from 512× 512× 141× 2 to 512× 512× 264× 2 voxels. The slice thickness of

images was 2.0 mm and the in-plane resolution 0.98× 0.98 mm. For all data sets, an
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initial 4D segmentation was produced with the method described in Section 6.2.1. The

user was asked to inspect corresponding inspiration and expiration lung segmentation

and to utilize the 4D segmentation refinement framework to correct errors, if needed.

6.3.2 Independent Reference Standard and Quantitative Error Index

For segmentation error assessment, 5 axial, 5 coronal and 5 sagittal planes

were randomly selected per left and right lung that needed refinement. Thus, for 210

planes (15 planes in seven left/right lungs at two respiratory states) and independent

reference standard were generated. The randomly selected planes were produced

using the following procedure. First, the areas of automated (A1) and refined (A2)

segmentation are calculated for each axial, coronal or sagittal plane, and difference

Ae = A1 − A2 was calculated. Second, if either A1 > 900 mm2 or A2 > 900 mm2,

the place is considered as a candidate for next steps, and the largest value Amax of

Ae per lung slice orientation is found. Third, all candidate planes of given orientation

are sorted into 3 sets. Set 1 contains all planes with Ae ≤ 50 mm2, set 2 contains all

planes with 50 mm2 < Ae ≤ 0.5×(50+Amax) mm2, and set 3 contains all planes with

Ae > 0.5× (50 +Amax) mm2. Fourth, 1, 2 and 2 planes are randomly selected out of

set 1, 2, and 3, respectively. For each 3D lung of utilized 4D data sets, a independent

reference standard was generated for selected planes by utilizing a commercial lung

image analysis software package Apollo (VIDA Diagnostics Inc., Coralville, IA). An

expert inspected and manually corrected Apollo lung segmentation results, if need,
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for all 210 slices using the editing tool of 3D Slicer2. This process took 2.58 h. The

Dice coefficient D [107] is utilized as quantitative error index.

6.4 Results

A comparison of performance between proposed 4D OSF-based automated

and refined approach is shown in Table 6.1, and corresponding boxplots of the Dice

coefficient are depicted in Fig. 6.5. For the 7 test cases, the proposed refinement

process took 3.3 min of user interaction on average. The actual computing time per

refinement iteration required by the algorithm was 337 ± 875 ms (median: 154 ms)

with a minimum and maximum computing time of 105 and 6696 ms, respectively.

Table 6.1: Comparison of segmentation performance between automated and refined

results for inspiration, expiration and 4D data.†

Inspiration Expiration 4D
Pre-refinement 0.967± 0.016 0.964± 0.018 0.966± 0.017
Post-refinement 0.978± 0.008 0.976± 0.008 0.977± 0.008

† The mean ± standard deviation is given for the Dice coefficient.

6.5 Discussion

In this chapter, a feasibility study of 4D OSF-based lung segmentation with

refinement was performed on four 4D CT scans. Quantitative assessment of seg-

2http://www.slicer.org
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Figure 6.5: Boxplots of Dice coefficient for automated segmentation and segmentation

refinement results. (a) Lungs at inspiration. (b) Lungs at expiration. (c) Combined

inspiration and expiration results.
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mentation refinement demonstrated that segmentation accuracy was increased with

refinement and 4D OSF-based refinement is feasible. The average actual computing

time per refinement iteration of 337 ms suggests that the proposed approach is suited

for real-time interactive use. In comparison to the 3D refinement approach described

in Chapter 5, the average computing time increased by 125%, mainly due to 4D

OSF. However, more research is needed to fully unleash the potential of such an ap-

proach. For example, the maximum computing time of 7 s is quite long for interactive

method. Potentially this could be addressed by utilizing a parallel maximum-flow al-

gorithm. Also, only two respiratory states were used in this pilot study. Adding more

time points will also increase computing time. The time needed for lung registration

was approximately 24 min which is quite long comparing to matching a 3D RASM.

Thus, it would be interesting to investigate a 4D RASM approach to speed up lung

segmentation.
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CHAPTER 7
INTERACTIVE SEGMENTATION REFINEMENT FOR 3D

DUAL-SURFACE BASED IVUS SEGMENTATION

7.1 Introduction

In this chapter, the proposed interactive refinement framework is utilized and

validated in the context of IVUS image segmentation. For this purpose, a dual-surface

OSF-based IVUS segmentation framework is presented and application specific seg-

mentation refinement methods are introduced. Note that due to the nature of this

task (segmentation of two nested surfaces) only the 2D user interface component of

the hybrid user interface is utilized, which is sufficient for this specific task.

7.2 Background and Motivation

Intravascular ultrasound (IVUS) provides two-dimensional cross-sectional im-

ages of vessel wall architecture and plaque morphology. When augmented with mo-

torized pullback, three-dimensional images are formed. IVUS imaging is common

in coronary catheterization laboratories, augmenting traditional X-ray angiography

imaging and providing information about the coronary wall morphology. While tra-

ditional coronary angiography provides information about the coronary lumen, IVUS

adds information about the coronary wall, its remodeling in response to the atheroscle-

rotic processes, and – when virtual histology is included – about atherosclerotic plaque

composition. IVUS imaging is routinely performed during percutaneous coronary in-

terventions like balloon angioplasty with or without stent placement to determine ves-
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sel geometry, plaque status, presence of ulcerations, to correctly size the angioplasty

balloons, determine proper diameter and length of coronary stents, assess resulting

stent apposition, etc.

To obtain IVUS images, an imaging catheter is extended distally to the desired

location of the coronary artery under fluoroscopic guidance. Three-dimensional IVUS

imaging is performed by mechanical pullback of the imaging catheter from its initial

distal (downstream) position. Typically, the acquired image frames are cardiac cycle

(usually R-wave) gated to provide phase-specific 3-D IVUS image sequences. Such

R-wave gated sequences can be visualized and quantitatively analyzed as a straight

pipe or in its correct geometry when fused with two-plane angiographic image data

providing 3-D vessel geometry [120].

Atherosclerotic plaque is located between two borders (in 2-D) or surfaces

(in 3-D) that can be identified in IVUS images – luminal surface (interface between

blood and intima) and the surface formed by the external elastic lamina (EEL, media–

adventitia interface). IVUS segmentation of the lumen and EEL borders/surfaces is

of substantial clinical interest and contributes to clinical decision making. Yet, no

truly reliable and consistently accurate IVUS segmentation methods exist that would

guarantee segmentation success in clinical setting. This is especially true considering

that close-to-real-time performance is required.

IVUS segmentation methods have been reported for almost 20 years. De-

spite a considerable effort devoted to this task and a number of partial successes,

no perfect solution emerged that would allow reliable automated analysis of IVUS



143

Figure 7.1: Example of regional segmentation errors caused by plaque calcification

and image artifacts (locations marked with ellipses). Note that the image was axially

reformatted from a sequence of R-wave gated IVUS pullback images.

data. There is a number of reasons making IVUS segmentation very difficult due

to the presence of a variety of artifacts including blood speckle, near-field artifacts,

strut or guidewire artifacts, reverberations, non-uniform rotational or axial distor-

tion, missing information due to calcified plaque shadowing, etc. The early methods

were based on 2-D dynamic programming detecting the lumen and EEL borders inde-

pendently [108, 132, 37]. Three-dimensional approaches followed and included active

surfaces [66, 65], level sets [20, 21], shape models [114], inverse scattering algorithms

[79], or combination of transversal and longitudinal model- and knowledge-guided

contour detection techniques [68], to name a few. Recently, LOGISMOS-based ap-

proach [75, 128] was applied to 3-D IVUS segmentation [39]. Despite the variety of

approaches developed for IVUS segmentation, one observation remains omnipresent

in all these methods – while each of the cited automated methods successfully seg-

ments IVUS image data in many IVUS image frames, they all fail in a considerable

number of frames making automated IVUS segmentation virtually impossible to use

in a clinical setting. In all these locations – many of which are of utmost clinical
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relevance – the interventional cardiologist must resort to tedious and time-consuming

manual tracing of a large number of IVUS frames to obtain acceptable boundaries

and desirable quantitative indices of morphology or plaque virtual histology. The

fact that obtaining virtual histology information about the plaque tissue is directly

dependent on correct segmentation of the luminal and EEL surfaces further increases

importance of this task.

Motivated by the pressing clinical need of achieving successful segmentation of

all IVUS frames of interest and realizing that the most important coronary locations

are the most diseased ones, which may suffer from the most severe imaging artifacts

like calcium shadowing (Fig. 7.1), a two-stage approach consisting of automated and

semi-automated steps based on optimal dual-surface graph based segmentation (LO-

GISMOS) is introduced in this chapter. Note that the work described in [39] also uses

LOGISMOS for segmentation, but investigation showed that this approach is not suit-

able for segmentation refinement due to the utilized cost function design and issues

with hard smoothness constraint. In the first stage of the proposed algorithm, the

graph is built and initial optimal segmentation of the lumen and EEL are determined

automatically. The second stage is optional and can be seen as a “dialog” between

the user and the previously utilized algorithm, where the user provides rough clues for

the desired locations of at-this-stage incorrectly positioned boundaries by augmenting

the graph’s objective function. Utilizing such locally targeted expert interactions that

act directly on the optimized graph, sub-second interaction responses yield updated

pairs of segmentation surfaces in an interactive user-driven semi-automated fashion.
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A small number of interactions is typically sufficient to achieve fully satisfactory 3-D

segmentations of IVUS image sequences consiting of hundreds of R-wave gated frames.

As a result, an accurate, automated, and performance-efficient method has been de-

veloped facilitating routine segmentation of complete IVUS pullback sequences almost

immediately after completing the IVUS image acquisition.

7.3 Method

The proposed approach to IVUS segmentation consists of two main stages:

a) initial automated segmentation and b) interactive graph-optimization driven seg-

mentation refinement, if needed. In stage a), lumen (inner) surface and EEL (outer)

surface are segmented simultaneously in 3-D. For this purpose, the lumen is first

roughly pre-segmented and luminal centerline determined, facilitating construction

of graph for LOGISMOS-based dual surface segmentation [75, 128]. Both the pre-

segmentation and the simultaneous dual-surface segmentation are fully automated

and yield optimal surfaces with respect to the employed objective function. Any

local or regional segmentation errors can be identified by the expert operator and

efficiently corrected in the second stage of our approach. The basic idea behind our

refinement stage is that the user is allowed to interact directly with the LOGISMOS-

based segmentation algorithm by providing rough clues regarding the desired bound-

ary location.



146

7.3.1 Graph Construction for IVUS Segmentation

Both the lumen pre-segmentation and dual-surface segmentation in stage a)

of our approach utilize the LOGISMOS-based approach.

For dual-surface LOGISMOS, a weighted graph G containing two sub-graphs

G = {Gi = (Vi, Ai) : i = 1, 2} is constructed, where Vi represents a graph node

set, Ai a graph arc set, G1 inner surface (S1) sub-graph and G2 outer surface (S2)

sub-graph. v ∈ Vi is a graph node on a column, the length of which is lp. Each node

v corresponds to a point of intensity I(x, y, z) in the volumetric image stack I.

Gi consists of sub-graphs Gik ∈ Gi with k = 1, 2, ..., Z where Z represents the

number of image frames in the stack. For each sub-graph Gik, np graph columns are

generated from a center point µk in radial directions at θp = 2π/np angle increments

(Fig. 7.2(a)). The distance between nodes along the column is dn, which is usually

set to match image resolution.

Intra-column arcs are built to connect nodes n(v,m) to n(v,m−1) on a column

colk(v) with infinity weights, where m is the column node index. Inter-column arcs

are built to connect the node n(vi,m) to the node n(vj,m−∆a) with infinity weights

(Fig. 7.2(b)), where ∆a is intra-frame hard smoothness constraint. To obtain a 3-D

graph Gi, sub-graphs {Gik : k = 1, 2, ..., Z} are connected by inter-column arcs, which

pairwise connect nodes n(vi,m) to nodes n(vi,m − ∆b) on the column colk(vi) and

colk±1(vi) with infinity weights (Fig. 7.2(c)), where ∆b is inter-frame hard smoothness

constraint.

Graphs G1 and G2 are interconnected by inter-surface arcs which connect
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Figure 7.2: Graph construction for dual-surface LOGISMOS. (a) Search profiles of

a single surface are constructed starting from vessel centerline point µk determined

for every IVUS frame. (b) LOGISMOS graph structure of a single surface with

arcs enforcing the surface smoothness constraints between adjacent columns on the

same frame. (c) LOGISMOS graph structure of a single surface with arcs enforcing

the surface smoothness constraints between the corresponding columns on adjacent

image frames. (d) LOGISMOS graph structure with arcs enforcing the inter-surface

constraints. See [75, 128] for additional details.
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nodes n(vi,m) of G2 and n(vi,m− δu) of G1 with infinity weights, and nodes n(vi,m)

of G1 and n(vi,m+ δl) of G2 with infinity weights (Fig. 7.2(d)), where δl and δu are

lower-limit and upper-limit interaction constraints representing the minimum and

maximum allowed distances between surfaces S1 and S2.

Graph node weight sets Ci with i ∈ {1, 2} (objective functions) are derived

from volumetric image data to reflect local image characteristics. In addition, linear

soft smoothness constraints are utilized, as proposed by Song et al. in [105]. For this

purpose, constant weight αia (intra-frame) and αib (inter-frame) arcs are introduced

to penalize shifts between adjacent vertices on surfaces Si.

The same LOGISMOS-based segmentation approach is utilized for lumen pre-

segmentation and dual-surface lumen–EEL segmentation. Both approaches use the

same graph construction, with the exceptions of hard smoothness constraints, cost

function design and utilized center point locations {µk : k = 1, 2, ..., Z}. In this

application, the graph-construction parameters common for the pre-segmentation and

dual-surface segmentation were: np = 36, lp = 96 nodes, dn = 2 pixels, δl = 4 nodes,

δu = lp, α1a = 0.01, α1b = 0.01, α2a = 0.005, and α2b = 0.005. Segmentation-step

specific parameters are provided in the relevant paragraphs below.

7.3.2 Automated Segmentation

a) Lumen Pre-segmentation: The goal of this step is to roughly pre-

segment the lumen (surface S1) of the IVUS volume to estimate the lumen centerline,

which will be used for the subsequent dual-surface segmentation (Section 7.3.2 b)).
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For the lumen pre-segmentation, dual-surface LOGISMOS framework is uti-

lized and G2 presence is solely used to constrain the search for G1; there is no goal of

determining an accurate location of the S2 surface at this step. Note that only rough

boundary locations are required for this step. First, a total variation (TV) regularized

L1 model-based decomposition [126] with regularization parameter λ = 0.01 is used

to remove high-frequency details like speckle noise (Figs. 7.3(a) and 7.3(b)).

(a) (b) (c)

Figure 7.3: Lumen pre-segmentation. (a) Original IVUS image. (b) Image after TV

decomposition. (c) Lumen pre-segmentation result shown in yellow.

The LOGISMOS-based lumen pre-segmentation uses the center of the imaging

catheter (image center) as µk for k = 1, 2, . . . , Z. The cost functions (C1 and C2) for

surfaces Si assign the following costs to column nodes n(v, j):

ci(v, j) =

{

gmax if nv · gdir(v, j) < 0
gmax − gmag(v, j) otherwise

. (7.1)

Normalized gradient magnitude (range of [0, 1]), gradient direction, and surface nor-
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mal vectors (pointing away from µk) are denoted gmag(v, j), gdir(v, j), and nv, re-

spectively. The gradient calculation is based on Gaussian derivatives with standard

deviation of σ. Linear interpolation is utilized to obtain costs ci(v, j). The follow-

ing parameters were used for pre-segmentation: σ = 0.1 mm, ∆1a = 15, ∆1b = 15,

∆2a = 6, and ∆2b = 9. Fig. 7.3(c) shows an example of lumen pre-segmentation.

b) Dual-Surface Segmentation: The dual-surface segmentation is based

on the same LOGISMOS framework (Section 7.3.1). The center position µk for each

image frame is however derived from the lumen pre-segmentation (Section 7.3.2 a))

and original unfiltered image data are utilized in the cost functions.

0 20 40 60
−0.05
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p(
x)

, f
(x

)

Figure 7.4: Relation between estimated Rayleigh probability density function (blue

curve) and utilized gray-value weighting function f(x) (red curve). a = 12.3 is uti-

lized.

Outer boundary (EEL) costs c2(v, j) are calculated as given in Eq. 7.1. De-

signing a suitable cost function for the inner boundary is more challenging, because



151

this border is less well depicted in the images. In addition, calcifications, vessel bi-

furcations, etc. need to be considered. To address these issues, a combination of

edge-based and in-region-based costs are utilized

c1(v, j) = ce(v, j) + 0.4 ∗ cr(v, j) , (7.2)

where ce(v, j) is the edge based cost function equivalent to Eq. 7.1 and

cr(v, j) =

j
∑

m=1

f(x(v,m)) , (7.3)

represents an in-region cost term with a gray-value weighting function

f(x) =

{

− e−0.5

a
if x < a

e−0.5

a
− 2 x

a2
e−

x2

2a2 else
. (7.4)

In this context, the gray-value at node n(v,m) is denoted by x(v,m). The design of

the weighting function is inspired by the Rayleigh probability density function (PDF),

which is given by

p(x) =
x

a2
e−

x2

2a2 , (7.5)

where x is the gray-value of a pixel and a > 0. Specifically, we model gray-values

of the lumen region by means of a Rayleigh PDF, which is well suited to describe

the typical speckle noise pattern found in ultrasound images [119]. A plot showing

the relationship between Eqs. 7.4 and 7.5 is given in Fig. 7.4. Function f(x) returns

low costs if IVUS gray-values are likely belonging to the lumen. Note that f(x) was

designed such that the catheter, which is blackened out with a gray-value of zero

also receives low costs. Parameter a of the Rayleigh PDF is estimated from the
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Figure 7.5: Cost function calculation for dual-surface automated segmentation.

(a) Original IVUS image with expert-defined segmentation (independent standard).

The horizontal white line indicates the location of a graph column (starting at the

pre-segmentation determined lumen center µk) that is utilized for illustration of cost

calculation. (b) Column-corresponding gray-value profile. Zero on the horizontal axis

represents center µk. (c) Edge cost function ce and (d) in-region cost function cr de-

rived from (b). (e) Final cost function c1 for the inner surface. Vertical lines shown in

red indicate the locations of the inner and outer contours of the independent standard

(a) on this column.
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pre-segmented lumen (Section 7.3.2 a)) with

a =

√

√

√

√

1

2N

N
∑

i=1

x2
i , (7.6)

where xi is a gray-value sampling point and N is the number of sampling points in

the ROI defined as a sub-region of the volume between the catheter surface and the

segmented lumen (inner) surface.

Graph parameters used for automated dual-surface IVUS segmentation were

as follows: σ = 0.1 mm, ∆1a = 5, ∆1b = 6, ∆2a = 4, and ∆2b = 6. Note that

parameters used in the described method were determined experimentally on five

cases, which were not included in the test data set. Fig. 7.5 depicts an example of

cost function calculation for dual-surface automated segmentation.

7.3.3 User-Guided Segmentation Refinement

Our segmentation refinement method is directly based on the graph structure

G built in step 2 of our automated segmentation approach (Section 7.3.2 b)). The

user-driven refinement method is based on the framework described in Section 4.3.2.

The IVUS specific individual processing steps of the algorithm are depicted in Fig.

7.6 and are described in detail below.

1. The user inspects the segmentation result and locates a segmentation inaccuracy

(Fig. 7.6(a)).

2. The user selects either the inner or outer surface for refinement and draws a

polygon line and/or specifies a point roughly at the location of the desired

surface boundary (Fig. 7.6(b)). This task is supported by a graphical user
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Figure 7.6: Illustration of interactive LOGISMOS-based refinement of an automat-

ically generated IVUS segmentation. This case was previously depicted in Fig. 7.1.

(a) The user inspects the IVUS segmentation produced by our automated approach

and discovers a local segmentation inaccuracy of the inner (arrow 1) and outer (ar-

row 2) surfaces. The outer boundary segmentation got “distracted” by a high density

(calcified) region inside of the vessel wall and the associated shadow. (b) The user

roughly indicates the correct location of the outer wall by drawing a polygon line (ar-

row 3, purple line) in proximity to the desired surface location. This single polygon

line is used to locally modify the cost function for the outer boundary. (c) Refine-

ment result after recalculating the maximum-flow for the dual-surface graph. Note

that outer (arrow 4) and inner boundary (arrow 5) are simultaneously corrected due

to the mutually interacting dual-surface graph structure. (d) Corresponding indepen-

dent standard.
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interface (Fig. 7.7).

3. Utilizing the information provided by the user, the algorithm locally updates

costs in the graph structure G.

4. The maximum-flow is recalculated for the updated graph G.

5. The display of the inner and outer surfaces is updated (Fig. 7.6(c)).

In the following, we provide more details describing step 3 of our algorithm.

Figure 7.7: 2D graphic user interface used for IVUS segmentation refinement.



156

As outlined above, the user can guide the segmentation result by drawing

polygonal lines in cross-sectional images along the vessel or placing single points in

arbitrarily (desired) locations of the IVUS volume. Based on this interactively defined

information, node costs in local neighborhoods of the entered points or polygonal

lines are modified to affect the outcome of the optimal graph-search segmentation.

Single points specified by the user are converted by the algorithm to a polygonal line

consisting of one start and end point that are the same.

Automatically calculated 

boundary

True boundary
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Lumen center
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Intersection 
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s e
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Figure 7.8: Influence region definition for segmentation refinement based on a user-

specified polygon line. Affected and unaffected nodes are shown in yellow and red,

respectively. See text for details.
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Given a polygon line represented by the point set L = {l1, l2, ..., lj} that

roughly approximates the correct boundary location (Fig. 7.8), intersection points

pk with k = s, s+ 1, . . . , e are calculated for each image frame, and wedge sector

shaped influence regions Ωk are defined (gray region in Fig. 7.8). For the influence

regions, r = 7 pixel and angle θ = 20◦ were utilized. Affected columns are defined

as those which intersect the volume Ω defined by combining all influence regions

Ω = {Ωs,Ωs+1, . . . ,Ωe}. Let cti(v, j) and ct+1
i (v, j) denote node costs before and after

a refinement iteration, respectively. Nodes on the affected columns for surface Si are

updated as follows

ct+1
i (v, j) =

{

UR (cti(v, j), v, j) if n(v, j) ∈ Ωk

UB (cti(v, j), v, j) else
, (7.7)

and the costs of all other (unaffected) columns are left unchanged (ct+1
i (v, j) =

cti(v, j)). Nodes on the affected columns inside of the region Ω are updated utilizing

UR (c, v, j) =

(

1.0− 0.5e
−d(pk,n(v,j))2

2σr2

)

c , (7.8)

where d() denotes the Euclidean distance function. Parameter σr = 5 pixels adjusts

the locality of the cost modification. Nodes on affected columns outside of Ω are

updated using

UB (c, v, i) = min

(

10, c+ 10(1− e
−d(pk,n(v,j)2

2σr2 )

)

, (7.9)

to penalize nodes (locations) that are very unlikely a part of correct surfaces.

Any single graph column may be impacted by multiple refinement iterations.

Thus, the current (t+ 1) and the previous (t) iteration must be considered. Let pt+1
k



158

pt+1

Ωt+1
k

k

Ωtk

pt
k

(a)

pt+1

Ωt+1
k

k

Ωtk

pt
k

(b)

Figure 7.9: Example of a graph column affected by a previous and current refinement

operation. (a) A column is affected by two none-overlapping impact regions. (b) A

column is affected by two overlapping impact regions.

and ptk be intersection points in frame k that correspond to impact regions Ωt+1
k and

Ωt
k, respectively. For each frame, the following rules are used in conjunction with

Eqs. (7.7), (7.8), and (7.9) for updating the costs of a column v that is affected by

Ωt+1
k and/or Ωt

k:

1. If there is no overlap between Ωt+1
k and Ωt

k (Fig. 7.9(a)) then the impact region

Ωt+1
k and the corresponding intersection point pt+1

k are used in Eqs. (7.8) and

(7.9).

2. If Ωt+1
k and Ωt

k are overlapping (Fig. 7.9(b)) then both Ωt+1
k and Ωt

k are employed

based on the rules given in Table 7.1.
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Table 7.1: Rules for updating the cost function during segmentation refinement in

dependence of location of node n(v, j).

n(v, j) ∈ Ωt+1
k n(v, j) 6∈ Ωt+1

k

n(v, j) ∈ Ωt
k Eq. 7.8: d(pk, n(v, j))

is replaced with

min{d(pt+1
k , n(v, j)), d(ptk, n(v, j))}

Eq. 7.8: pk is replaced with ptk

n(v, j) 6∈ Ωt
k Eq. 7.8: pk is replaced with pt+1

k Eq. 7.9: d(pk, n(v, j))

is replaced with

min(d(pt+1
k , n(v, j)), d(ptk, n(v, j))

7.4 Experimental Methods

7.4.1 Image Data and Experiment Setup

For our study, 41 data sets were available originating from a Volcano IVG3

imaging system with 20MHz solid-state catheters. Combined with a mechanical

pullback device, the Volcano system provides EKG R-wave gated image sequences.

Considering the usual heart rate of 60-90 beats per minute, the catheter pullback

speed of 0.5 mm/sec with EKG gating provides an IVUS image frame every 0.3–

0.5 mm axially. Each image frame is 384×384 pixels in size, with in-frame resolution

of 0.026× 0.026 mm. Temporal pullback sequences of 70 to 259 frames were included

in our data set with frame-to-frame distances ranging from 0.25 to 0.69 mm.

Automated simultaneous segmentation of the inner and outer surfaces was

performed on all 41 test data sets, for a total of 6467 frames. All computations were

performed on a Linux workstation with a 2.93 GHz Xeon CPU with program’s mem-
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ory requirements never exceeding 2 GB on the tested IVUS data set. An expert was

asked to inspect the segmentation results generated by the fully automated approach

and refine the segmentation using the second stage of our approach.

For performance comparison, an earlier-reported automated IVUS segmenta-

tion method [39] was used. Results using approach published in [39] are labeled as

“PA” (previous automated), the results of proposed new automated approach are

labeled as “NA”, and the results of proposed new refinement approach applied to NA

are labeled “NR”.

7.4.2 Independent Standard

Manual tracing of the luminal and EEL borders was performed by an expert

interventional cardiologist. The independent standard resulted from frame-by-frame

editing or retracing borders resulting from [39]. The manual tracing environment

allowed to trace surfaces either in individual frames or in one of 6 axially reformatted

planes (30 degree increments). The expert observer was allowed to select the individ-

ual planes or frames in any sequence and modify the borders until full satisfaction.

In the process, all frames of each image sequence were reviewed, and most if not all

manually traced and repeatedly edited. This way of defining an independent standard

was very tedious and time consuming, typically requiring 2-3 hours of manual tracing

and editing per image sequence. A high-quality independent standard resulted that

was used for performance assessment by the methods under comparison.
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7.4.3 Quantitative Indices

The following quantitative error indices are utilized: mean signed border po-

sitioning error (ds), mean unsigned border positioning error (du), root-mean-square

(RMS) border positioning error (drms), mean signed area error (As), mean unsigned

area error (Au) and RMS area error (Arms). All these quantitative indices were

utilized in [39]. In the case of ds and As, a negative value indicates that the segmen-

tation border is inside and a positive value indicates that the border is outside of the

expert-defined boundary/surface. To compute quantitative indices, borders on each

frame are considered as points in polar coordinates at 360 one-degree angles. Border

positioning errors are calculated for each boundary point as a distance between the

independent standard point and the point on the segmented boundary. Indices ds,

du, drms are calculated per sequence as averaged distances over all boundary points

of the 3-D pullback sequence. Similarly, the area errors are calculated for each frame

and As, Au and Arms are the averaged results over the entire pullback sequence.

7.5 Results

The mean and standard deviation of quantitative indices for lumen and EEL

surfaces for PA, NA and NR approaches are summarized in Table 7.2. A comparison

between boxplots of all quantitative indices and methods are shown in Fig. 7.10

and 7.11. In addition, paired Student’s t-tests at a significance level of 0.05 were

performed to determine whether the average error indices were significantly different

when comparing segmentation approaches (Table 7.3).
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The mean and standard deviation of the computing time needed for automated

segmentation (approach NA) per data set was 42.6±13.8 s, and the median was 40.0 s.

The computing time ranged between 9.0 and 70.5 s. The portion of time required for

obtaining the solution of the maximum-flow calculation in luminal pre-segmentation

and dual-surface segmentations steps combined was 5.1± 3.3 s (median: 4.2 s).

The mean and standard deviation of user interaction time needed by the expert

for segmentation refinement (approach NR) per case was 5.7± 1.8 min. The median

user interaction time was 5.8 min, and the required times ranged between 0.9 and

9.3 min for the set of all 41 tested IVUS pullbacks. The measured user interaction time

includes locating local segmentation inaccuracies, identifying and marking correct

border locations with polygon lines or points, and (iteratively) applying the surface

refinement algorithm. The processing time required for computing the refinement

results was 86 ± 57 ms (median: 79 ms) per iteration. Overall, the time needed for

both stages of our method consisting of the automated segmentation and user-guided

refinement was 6.5± 1.8 min with a median of 6.6 min. The maximum and minimum

were 10.0 and 1.9 min, respectively.

Examples of segmentation results generated with the proposed automated ap-

proach (NA) (without refinement) are shown in Fig. 7.12. Comparisons with the

independent standard as well as with surfaces generated using the PA, NA, and NR

approaches are depicted in Figs. 7.13 and 7.14.
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Table 7.2: Quantitative segmentation performance indices of methods PA, NA, and NR for the luminal and EEL surfaces on

41 IVUS data sets.†

PA-lumen NA-lumen NR-lumen PA-EEL NA-EEL NR-EEL
ds (mm) −0.182± 0.119 −0.007± 0.044 −0.013± 0.026 −0.252± 0.240 −0.049± 0.107 0.024± 0.034
du (mm) 0.238± 0.104 0.109± 0.033 0.092± 0.020 0.384± 0.158 0.148± 0.089 0.088± 0.025
drms (mm) 0.378± 0.175 0.168± 0.055 0.138± 0.038 0.563± 0.190 0.264± 0.169 0.136± 0.043
As (mm2) −2.452± 1.995 −0.005± 0.624 −0.108± 0.340 −3.489± 3.067 −0.578± 1.495 0.367± 0.601
Au (mm2) 2.573± 1.960 0.749± 0.406 0.551± 0.221 4.618± 2.134 1.559± 1.118 0.793± 0.435
Arms (mm2) 3.624± 2.532 1.124± 0.668 0.817± 0.437 5.919± 2.478 2.348± 1.611 1.173± 0.650

† The mean ± standard deviation are given for each index.
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Figure 7.10: Comparison between boxplots of quantitative indices (border positioning

error) for IVUS segmentation of luminal and EEL surfaces with methods PA, NA,

and RA. (a) Signed border positioning error. (b) Unsigned border positioning error.

(c) RMS of border positioning error.
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Figure 7.11: Comparison between boxplots of quantitative indices (area error) for

IVUS segmentation of luminal and EEL surfaces with methods PA, NA, and RA.

(a) Signed area error. (b) Unsigned area error. (c) RMS of area error.
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Table 7.3: Student’s t-test statistics comparing the tested segmentation approaches - p-values provided.

Luminal surface EEL surface
PA vs. NA NA vs. NR PA vs. NR PA vs. NA NA vs. NR PA vs. NR

ds (mm) ≪ 0.001 0.25 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
du (mm) ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
drms (mm) ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
As (mm2) ≪ 0.001 0.17 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
Au (mm2) ≪ 0.001 < 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
Arms (mm2) ≪ 0.001 < 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001 ≪ 0.001
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Case A Case B Case C Case D Case E

P
A

N
A

IS

Figure 7.12: Comparison of automatically generated segmentation results on five different data sets (cases A-E). The luminal

and EEL surfaces are shown in yellow and red, respectively. (PA) Method reported in [39]. (NA) Our automated segmentation

approach. (IS) Independent standard.
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N
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IS

Figure 7.13: Comparison of segmentation results in mesh-based 3-D representa-

tion of the EEL surface. Note that this data set was also shown in Figs. 7.1 and

7.6. (PA) Method reported in [39]. (NA) Our automated segmentation approach.

(NR) Segmentation refinement result. (IS) Independent standard.
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Case F Case G Case H Case I Case J

P
A

N
A

N
R

IS

Figure 7.14: Examples of segmentation results on five different data sets (cases F-J). The luminal and EEL surfaces are shown

in yellow and red, respectively. (PA) Method reported in [39]. (NA) Our automated segmentation approach. (NR) Segmen-

tation refinement result. (IS) Independent standard.



170

7.6 Discussion

Proposed new automated IVUS segmentation method (the NA method) out-

performed the previous published approach (the PA method) as documented by the

results shown in Table 7.2, Figs. 7.10 and 7.11. The obtained improvements are prac-

tically relevant and statistically significant across all quantitative indices of border

positioning and area errors (Table 7.2).

As can be seen from comparing the performance indices for all tested methods,

the segmentation errors of the EEL surface (outer wall) were consistently larger than

those of the luminal surface (inner wall) for all investigated segmentation methods

(Table 7.2, Figs. 7.10 and 7.11). This should not be surprising, because segmenting the

EEL surface is considerably more difficult than segmenting the lumen. Among others,

the blood speckle dynamics, which helps resolve most ambiguities of the luminal

segmentation is not relevant for resolving the EEL ambiguities, of which there are

many. Out of these, calcified plaque shadows frequently cause most of the EEL

segmentation inaccuracies due to a partial or complete lack of the ultrasound signal

from the EEL interface. In such situations, the human experts use 3-D context as well

as his/her anatomical knowledge and coronary remodeling experience to estimate the

course of the EEL surface. Clearly, the automated approach such as the NA has only

a limited chance to succeed in the cases of an almost complete lack of usable IVUS

data depicting the EEL interface, and any human-based approach inevitably suffers

from inter- and even intra-observer variability. Notably, this variability also affects

the definition of the independent standard. As such, larger errors should be expected
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for the EEL surface as they have been observed.

Compared to the previous dual-surface approach [39], notable improvements

of the performance is attributed to the combination of the improvements to a) the

underlying graph structure (both lumen-centering of the constructed graph resulting

from the novel pre-segmentation step and incorporation of arc-based soft constraints

allowing to model shape priors [105]) and b) the novel terms of the employed cost

function dependent on edge as well as regional information from the IVUS images.

Our second-stage computer-aided approach to segmentation refinement en-

ables the user to further improve the quality of IVUS segmentations and do it in a

very time efficient manner even in difficult cases. In terms of segmentation perfor-

mance, the two-stage NR approach, in which the refinement follows the automated

NA stage, the segmentation improvements were again found statistically significant

when compared to the tested automated approaches, both the previous automated

PA approach and the new automated NA approach (Table 7.2) – with the signed

error indices ds and As computed from the luminal surfaces being an exception and

not showing statistically significant improvement of the NR approach compared to

the NA method alone. In other words, the NA approach is already providing highly

accurate luminal surface as far as signed border positioning and area errors are con-

cerned. Still, as can be seen from the boxplots in Figs. 7.10(a) and 7.11(a), the ranges

of deviation around the median are smaller for NR compared to NA.

The average user interaction time required for utilizing our NR approach is

more than 25-fold lower compared to fully manual editing and tracing that started
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with the result of the PA method. One reason for this improvement is that the

user interactions in the NR approach fully utilize the advantages of the simultaneous

dual-surface segmentation approach. Thus, when correcting, e.g., the inner luminal

surface, the outer EEL surface is adjusted automatically without a need to indicate

the desired locations of the outer surface and vice versa (Fig. 7.6). Equally important,

the proposed refinement approach is inherently three-dimensional. Thus, the resulting

surfaces are smoother and less likely to show discontinuities that may be unavoidable

when performing slice-by-slice manual segmentation editing. These improvements are

practically important since they will contribute to making real-clinical-time IVUS

segmentation a reality in the near future.

One potential disadvantage of the proposed refinement scheme might be that

the shapes of any allowed refinement solutions (resulting surfaces) are limited by the

hard shape constraints of the graph structure (e.g., hard smoothness constraints).

These constraints cannot be changed easily on the fly without modifying the graph

representation and recomputing the graph possibly from scratch. A solution of this

limitation may be to perform an additional step of highly localized purely manual

editing after completing the NR if/as needed. Also, in the current implementation,

we assume that the vessel is formed by a single tube. Clearly, bifurcations violate this

assumption. While the issue of bifurcations is not critical for catheter-based pullback

images like IVUS, addressing this limitation can be a future research work.

Despite the demonstrated performance improvements in the 41 tested 3-D data

sets, the study design is not free of several limitations, one of which was the way how
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the independent standard was originally defined. As stated earlier, the PA method

served for initial IVUS pullback segmentation and the resulting surfaces were used as a

start for a manual editing process that yielded the independent standard as described

in Section 7.4.B. As such, the independent standard is not fully independent from the

PA method even if the manual tracing and editing required substantial changes of

the surface definitions (compare panels PA and IS in Figs. 7.12, 7.13, and 7.14) and

about 100 hours of expert editing. Arguing that the resulting independent standard

is quite distant from the original PA segmentation would be well justified. More

important and ultimately relevant to the presented study, there is no such real or

perceived dependence between the NA or NR surfaces and the independent standard

since the NA approach is based on a different graph construction, different interaction

priors, and different cost functions. Consequently, even if there are some remaining

dependencies between the independent standard and the PA segmentations, these

would solely favor performance assessment of the PA method, which – however –

fared worst among the three compared approaches. Clearly, any benefit that the

definition of the independent standard may have provided to the PA method did not

affect the ultimate assessment of the PA method as being significantly worse than the

two other compared approaches. Therefore, this limitation of the study design can

be regarded as insignificant with respect to the overall outcome of this work.
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CHAPTER 8
CONCLUSIONS

In this thesis, two major problems in the context of OSF-based segmentation

are addressed: a) generating an initial segmentation required for OSF-based segmen-

tation and b) efficiently refining local errors in OSF segmentation results. Solutions

for both issues that are provided by this thesis are discussed/summarized below.

Generating an intial segmentation can be challenging, especially for organs

with atypical appearance due to disease (e.g., cancer). To address this issue, a novel

robust ASM was presented in Chapter 2 (Aim 1). The robust ASM matching al-

gorithm is specifically designed to take advantage of general purpose computation

on graphics processing units (GPGPU), which reduces the execution time consid-

erably. Our method is generally applicable to segmentation problems beyond lung

segmentation. For example, the approach was utilized by Bauer et al. [8] for cerebella

segmentation in 3D PET data.

Segmentation of lungs with large lung cancer regions is a non-trivial problem.

In Chapter 3 (Aim 2), we present a new fully automated approach for segmentation

of lungs with such high-density pathologies. Our method consists of two main pro-

cessing steps. First, the proposed robust ASM matching method is utilized to roughly

segment the outline of the lungs. The initial position of the robust ASM is found by

means of a rib cage detection method. For detecting rib cage, centerlines of tubu-

lar structures in the chest image was extracted followed by rib centerline extraction

using a two stage mean shift clustering algorithm. Second, an optimal surface find-
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ing approach is utilized to further adapt the initial segmentation result to the lung.

Left and right lungs are segmented individually. The robustness and effectiveness of

our approach was demonstrated on 30 lung scans containing 20 normal lungs and

40 diseased lungs where conventional segmentation methods frequently fail to deliver

usable results. Low segmentation errors were achieved in cases with and without high-

density pathology compared to two clinically utilized methods, which demonstrates

the robustness of our approach. Preliminary work investigating the applicability of

our lung segmentation method to lungs with other kinds of diseases like idiopathic

pulmonary fibrosis is promising. Also, an adapted version of our method was val-

idated on 55 test scans provided by the LOLA11 challenge. On this diverse set of

lung images, the proposed method showed comparable performance for the majority

of data sets. Results on LOLA11 data also indicated that in cases where the lung

shape widely deviates from the learned lung model segmentation can be challenging.

The optimal surface finding framework is a powerful approach and has demon-

strated its utility in a number of medical image segmentation problems [75, 105, 133,

112, 128, 1, 92, 23]. However, when dealing with segmentation of structures/organs

that are altered due to disease or other causes, designing a suitable cost function,

which would work correctly for all possible situations is challenging and may be im-

possible since pathology augments image characteristics. As a consequence, segmen-

tations can exhibit local errors. Such local inaccuracies or errors must be corrected

prior to the subsequent quantitative analysis. For achieving full yield of medical imag-

ing under all disease conditions, an efficient and inherently 3-dimensional approach
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must be available in the workflow to facilitate efficient modification or refinement of

the resulting segmentations. Clearly, the current state-of-the-art approach of slice-

by-slice editing offers neither efficiency nor 3-D performance. In Chapter 4 (Aim 3),

a segmentation refinement framework based on OSF and hybrid Desktop/VR user

interface was presented. The basic idea behind this approach is that the user in-

teracts directly with a segmentation algorithm to effectively correct potential errors

in automatically generated OSF segmentation results. The hybrid user interface is

based on stereoscopic visualization technology and advanced interaction techniques.

The user interface allows natural and interactive manipulation of 3D surfaces. The

user interface also supports interaction with 4D (3D + time) surfaces. The proposed

visualization techniques facilitate the interactive segmentation refinement process.

Our segmentation refinement method uses the same OSF-based graph structure that

was utilized in preceding automated segmentation. Our method does not change the

topology of the underlying graph structure. In Chapter 4, a simple point based tool

was presented as an example.

In Chapter 5 (Aim 4.a), the proposed interactive refinement framework was

adapted, utilized and validated in the context of lung segmentation in volumetric CT

scans. Two refinement tools were presented. One is a generic lung refinement tool

and the other is a specific tool to correct segmentation errors with leakage to trachea

and main bronchus. The effectiveness of the approach was demonstrated on 18 lung

scans with 30 volumetric ROIs which contain segmentation errors that are frequently

appearing in automated OSF-based lung segmentation results. Tool response time
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is one of the most important aspects leading to the acceptance or rejection of the

approach by users expecting real-time interaction experience. Our approach demon-

strated fast interaction responses (average 150 ms) and the average total interaction

time required for reaching complete operator satisfaction was about 2 min. This

time was mostly spent on human-controlled manipulation of the object to identify

whether additional refinement was necessary and to approve the final segmentation

result. This demonstrates the achievable benefits resulting from incorporating virtual

reality in medical image analysis

In Chapter 6 (Aim 4.b), the proposed interactive OSF-based refinement ap-

proach was expanded to 4D lung segmentation refinement. The main goal of this

chapter was to assess the feasibility of 4D segmentation refinement. The utilized 4D

lung CT data consists of two volumetric scans imaged at inspiration and expiration.

The approach includes two stages: 4D OSF-based automated segmentation, and seg-

mentation refinement, if needed. In the automated segmentation stage, proposed

RASM approach (Chapter 2) with automated model initialization (Chapter 3) was

utilized to segment inspiration scans. Registration was applied to find a transforma-

tion from inspiration scan to expiration scan, which results in a pre-segmentation of

the expiration scan based on the initially segmented inspiration scan. Both inspiration

and expiration segmentations were then utilized to initialize 4D OSF-based segmen-

tation. In the refinement stage, the hybrid user interface and two tools proposed

in Chapter 5 were adapted to the 4D framework and utilized. The proof-of-concept

study performed on four 4D lung scans demonstrated that 4D OSF-based refinement
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is feasible and promising as a future research direction.

Segmentation of lumen and EEL surfaces in IVUS volumes is a difficult task. In

Chapter 7 (Aim 4.c), a combination of automated segmentation and computer-aided

segmentation refinement to facilitate this process was presented. The proposed new

automated segmentation method (NA) delivered significantly better results compared

to the work reported in [39]. The presented approach to segmentation refinement

(NR) was found to be efficient, effective, and allowed the user to produce high quality

segmentation results in cases of clinical quality images with a barrage of typical imag-

ing artifacts. Overall, the average time required for producing IVUS segmentations

suitable for further quantitative analysis was reduced from several hours to 6.5 min

on average while demonstrating excellent segmentation accuracy. As such, the ap-

proach enables close-to-real-time IVUS segmentation, which is an important factor

for enabling quantitative analysis of IVUS image data in routine clinical setting.

In general, a potential limitation of an OSF-based segmentation refinement

approach is that the correct solution must be representable by the utilized graph

structure, because only weights (costs) of the graph are modified during refinement.

Consequently, no topology modification is possible. This issue can be addressed

in two ways. One could develop segmentation refinement methods that allow the

user to locally modify the graph structure. This would be demanding in terms of

the required computational effort and may not be achievable in real-time. Another

approach would be to revert to refinement tools described in [15, 11], which are based

on an interactively user-modified deformable contour. While such an approach would
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offer a larger degree of flexibility, it would likely require more user interaction steps

and thus increase the overall refinement times.

Currently, the virtual reality hardware that was utilized in some of the ex-

periments is not widely available in clinical practice. However, resulting from the

advances driven by computer gaming and home entertainment, the accessibility of

the VR environment components is rapidly increasing with a rapid decrease in the

associated cost. Therefore, it is likely that such VR equipment will become common-

place in health care and will be utilized for a range of medical applications, similar

to the VR method presented in this thesis.
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3D segmentation of fluid-associated abnormalities in retinal OCT: Probability
constrained graph-search-graph-cut. IEEE Transactions on Medical Imaging,
31(8):1521–1531, August 2012.

[24] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Anal. Machine Intell., 24(5):603–619, 2002.

[25] T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor. A unified framework
for atlas matching using active appearance models. In Proc. of International
Conference on Information Processing in Medical Imaging (IPMI), pages 322–
333, 1999.

[26] T. F. Cootes, D. Cooper, C. J. Taylor, and J. Graham. Active shape models
- their training and application. Computer Vision and Image Understanding,
61(1):38–59, 1995.

[27] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
In H. Burkhardt and B. Neumann, editors, Proc. of European Conference on
Computer Vision, volume 2, pages 484–498, 1998.

[28] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–
685, 2001.

[29] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam. The use of active shape
models for locating structures in medical images. Image and Vision Computing,
12(6):355–366, 1994.

[30] T. F. Cootes and C. J. Taylor. Active shape models - smart snakes. In Proc.
of the British Machine Vision Conference, pages 266–275, 1992.

[31] T. F. Cootes and C. J. Taylor. Statistical models of appearance for medical
image analysis and computer vision. In Proc. SPIE, volume 4322, pages 236–
248, 2001.

[32] T. F. Cootes and C. J. Taylor. Statistical models of appearance for computer vi-
sion. Technical report, University of Manchester, Imaging Science and Biomed-
ical Engineering, 2004.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. MIT Press, 2009.



183

[34] D. Maleike D, M. Nolden, H. P. Meinzer, and I. Wolf. Interactive segmentation
framework of the medical imaging interaction toolkit. Computer Methods and
Programs in Biomedicine, 96(1):72–83, October 2009.

[35] P. Dalal, B. C. Munsell, S. Wang, J. Tang, K. Oliver, H. Ninomiya, X. Zhou,
and H. Fujita. A fast 3D correspondence method for statistical shape modeling.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07),
pages 1–8, 2007.

[36] H. Delingette. General object reconstruction based on simplex meshes. Inter-
national Journal of Computer Vision, 32(2):111–142, 1999.

[37] J. Dijkstra, G. Koning, and J.H.C. Reiber. Quantitative measurements in ivus
images. Int J of Cardiac Imaging, 15:513–522, 1999.

[38] G. Donato and S. Belongie. Approximate thin plate spline mappings. In Proc. of
the 7th European Conference on Computer Vision (ECCV2002), volume 2352,
pages 21–31. LNCS, 2002.
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