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Abstract

Characterization of Active Sonar Targets

by Daniel Schupp-Omid

We present a method of characterization of active sonar target response that makes

use of a combination of physics-driven Gabor dictionaries and ellipsoidal feature mani-

folds. The key innovation is the combination of the useful characteristics of the Gabor

wavelet with an empirical approach to dictionary selection for underwater acoustics. The

feature manifolds are represented as a set of ellipsoids, each of which geometrically en-

compasses a unique physical characteristic of the target’s response. We demonstrate over

experimental field data that this combination of approaches yields significant clustering

behavior and high accuracy on real-world datasets.
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Public Abstract

Characterization of Active Sonar Targets

by Daniel Schupp-Omid

The problem of characterization of active sonar target response has important appli-

cations in many fields, including the currently cost-prohibitive recovery of unexploded

ordinance on the ocean floor. We present a method for recognizing these objects using

a multidisciplinary approach that fuses machine learning, signal processing, and feature

engineering. In short, by taking inspiration from other fields, we solve the problem of

object recognition in shallow water in an inexpensive way. These techniques add to the

body of explored knowledge in the field of active sonar processing and address real-world

problems in the process.
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Chapter 1

Introduction

1.1 Problem Statement

The detection and classification of active sonar targets remains an ongoing area of re-

search. This problem has applications in many facets of society, including military,

environmental, economic, and emergency response. Specific statements of the problem

include autonomous identification of UXO (unexploded ordinance) for retrieval, under-

water SLAM (simultaneous localization and mapping), and wildlife survey.

This topic is particularly interesting to me, because of the real-world applications,

and the variety of learning techniques that need to be leveraged to build a robust solution

to the problem. Target detection and classification has been an active field of study for

decades and continues to generate wide-range interest for a variety of open challenges.

These are discussed below.

1.1.1 Challenges

Characterization of targets is confounded by several factors:

• Weak ground truths for targets and nonexistent ground truths for unknown targets

makes conventional learning techniques untenable [1–5]

• Intra-target interference (in the case of multi-target scenarios) can cause overlap-

ping resonance components that challenges conventional learning techniques [4–7]
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• Artifacts due to boundary and channel effects increase target response complexity,

making the problem more difficult in general

1.1.1.1 Weak Ground Truths

Conventional learning techniques such as GMM rely on a wealth of data for training.

Many learning techniques also suffer from a tendency to overtrain, or are otherwise ill

suited to characterization of noisy data. Conventional wisdom would indicate that the

data can be massaged and cleaned up prior to applying traditional learning techniques,

but the nature of cluttered environments underwater make that desire untenable.

1.1.1.2 Intra-Target Interference

High-activity ocean environments such as a fishing port or busy harbor are full of clutter,

and techniques intended for deployment in real-world settings will need to be robust

enough to handle the distortions caused by the complex multipath arrivals confounded

by non-target objects and clutter. Successful modeling techniques will need to be able to

identify meaningful feature groups in spite of the possibility of additional feature groups

from additional targets.

1.1.1.3 Boundary Conditions

The boundary conditions imposed on the sonar problem are particularly insidious. Aside

of the already sizeable concerns due to the complex surface presented by the sea floor and

surface, the boundaries are constantly shifting. This makes characterization not only

difficult, but impossible over any time period long enough to be useful for prediction.

This additional clutter makes target characterization significantly more difficult, as a

2



successful method would have to be able to extract meaningful features from stochastic

clutter.

1.1.2 Existing Approaches

Current state-of-the-art in buried target detection (using active or passive sonar), signal

recovery and source classification techniques combine rich advances in four complemen-

tary directions:

• (i) Underwater acoustic propagation studies [8–10], including noise models [11]

and acoustic backscatter studies that may be harnessed to achieve buried source

localization and signal recovery on physics-based principles;

• (ii) Information bounds and tradeoffs [3, 12–15] that provide mathematical limits

on when a buried signal may be recoverable against background noise and clutter;

• (iii) Adaptive signal processing [1–5, 16], learning algorithms [17–20] and object

classification techniques (ref. e.g. [4–7] and references therein) that perform data-

driven signal recovery. This includes array-based methods) and other techniques

that acquire side information [4, 5, 7] to recover buried signals.

• (iv) Bio-inspired sonar signal processing techniques (e.g. [21] among others).

1.1.2.1 Acoustic Propagation Studies

A variety of methods have been put to use in the ongoing attempt to characterize the

physical phenomena at play in the acoustic backscattering system. Many attempts at

characterization have attempted to characterize the impulse response of a spherical shell.

Sessarego et al attempted to characterize the surface waves by analyzing a spherical shell
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using the Wigner-Ville distribution [22]. Our work presented in [23] analyzes a similar

experimental setup, but develops distributions based on resonance topology groupings,

with encouraging preliminary results.

Badiey et al attempted characterization based on a model of multipath arrivals [8].

Baggenstoss developed a model of specular decomposition to yield range and Doppler

information by fusing data from multiple transmitted waveforms, specifically, LFM (lin-

ear frequency-modulated) and CW(continuous wave) [10]. Early investigations on our

part indicated good results for this approach [23], which will proceed in a complemen-

tary direction to the provided investigations. In the cited investigation, the model was

built on a combination of Rayleigh and WG (whispering gallery) waves generated by the

resonance of the target itself rather than using different kinds of transmitted waveforms.

Carter and Dobeck [24] developed a parametric model by modeling the target as an

superposition of point scatters. The model simply sums the simplified delta functions,

then applies a wavelet transform for feature extraction. This method was targeted

for distinguishing a mine from a rock [24]. This paper discussed empirical derivation

of wavelet parameters from training data, which influenced the approach taken in the

wavelet investigation of chapter 5, though the approaches differed significantly. Carter

and Dobeck acknowledge that the model is not perfect, but present compelling evidence

that it sufficiently captures enough meaningful features for useful classification.

1.1.2.2 Information Bounds

Significant work has gone into the study of the information limits of the target detection

system. Culver and Bradley published a work developing the relationship between signal

bandwidth and frequency correlation [12]. This work had important consequences for

4



frequency-based feature extraction by putting a lower limit on the necessary bandwidth

for reliable characterization.

Meng and Buck characterized rate distortion on passive sonar [13, 14]. This work

highlights the extreme challenges that passive sonar present for the general problem of

object recognition. These challenges are not addressed by the proposed methods herein,

as we’ve opted to make use of active sonar.

Sharma, Buck, and Simmons described the issue of the tradeof between detection

versus classification as signal power increases [3]. In short, increasing power has the

advantage of making object detection easier while also reducing resolution needed for

object classification. The paper builds a model of a VRDR (variable resolution and

detection receiver) that is useful for addressing these issues in practice. The specifics of

this issue are not addressed by the proposed work, as we’ve adopted the dataset built

by the Applied Physics Laboratory at the University of Washington.

1.1.2.3 Data Driven Techniques

The proposed works fit most within the realm of data-driven signal processing tech-

niques, and are therefor most appropriately compared to other techniques within this

category. In Hollinger et al [6], a method of SLAM using surface mapping via Gaussian

approximation of surface points is proposed. This approach has some similarities to the

investigations that follow, in that they model geometric clusters and use a modeling

function to approximate them and develop models of uncertainty and confidence. The

primary differentiation of this work against existing art is combining geometric features

representative of underlying acoustic physics with sophisticated machine learning and

signal processing techniques. The works differ very greatly in execution, however. The
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proposed works build a geometric model of the feature vectors generated by seeking

extrema in the frequency domain, rather than the space domain. The proposed works

further use a Gabor wavelet as a basis function rather than a Gaussian, leveraging the

periodicity for improved modeling. The two works also differ in the problem solved, as

[6] is targeted towards building models of macro surfaces from the perspective of a small

observer, the proposed works here focus on the classification of discrete objects.

Maussang et al [5] tackles the same problem as the proposed work (detection/clas-

sification of underwater mines), and uses another data-driven approach. This work

highlights the relative difficulty of the problem due to low signal-to-noise. The approach

proposed therein builds a model based entirely on the statistical properties of the sonar

images, attempting to tackle the problem at the pixel level. The approach proposed

here uses the frequency content instead, and aims to deal with the problem of glancing

incident angles on the target more directly by building models that take the complete

range of sensor angles into account. This problem is not addressed by [5], though their

approach to feature grouping provided some inspiration for some of the proposed meth-

ods. The density groupings proposed therein are somewhat similar to the ellipsoidal

features proposed here, though their work does not evaluate groupings in the geometric

approach presented in Chapter 4.

Battiti [20] discusses the process of feature selection for supervised neural net learn-

ing. The article discusses the process of feature selection via mutual information. The

work defines mutual information based on the uncertainty between feature groupings.

The derivation stems from Shannon’s information theory to quantify uncertainty in

terms of entropy. The proposed work uses the Mahalanobis distance to convert the sta-

tistical problem into a geometric one, and defines uncertainty in terms of this geometric

rendition of the statistical space. In both cases, features that overlap too much (either

6



in terms of uncertainty or geometric overlap) are not selected for training of the neural

network.

Weiss and Kapouleas [18] provide an empirical evaluation of a number of different

learning techniques. The conclusion indicates that a properly trained neural network can

outperform other learning techniques, but takes significantly longer to train. In many

cases, simpler techniques can be just as successful, but the neural network approach had

more success with features that were especially difficult to optimize for.

1.1.2.4 Bio-Inspired Techniques

Hague et al [21] describe a compressive sensing approach to modeling sonar based on

bat sonar. This general approach constitutes the fourth major pillar in the field of sonar

target identification. The general approach is to take advantage of the sparse represen-

tation of bat biosonar to apply compressive sensing techniques to reconstruct the signal

from sub-Nyquist sampling rates. While we do not take a compressive sensing approach

directly, the applications for signal acquisition are clear. For the work presented here,

the data was gathered by the University of Washington’s Applied Physics Laboratory.

1.2 Applicability

This problem has far-reaching consequences. Potential applications include

• Autonomous recovery of UXO

• Navigation in cluttered underwater environs

• Surveying, including for salvage or resources

7



1.2.1 Autonomous recovery of UXO

A report of the Defense Science Board Task Force examined the issue of UXO clearance,

including the technologies and costs involved [25]. It is indicated from this report that

land-based UXO recover is still implemented by manually searching with metal detectors

and engaging in careful excavation. These techniques have been deployed for underwater

environs as well, with limited success. Recovery is typically carried out by divers with

hand-held magnetometers, assisted by electromagnetic systems mounted on sleds and

side scanning sonar and chemical sensors on AUV.

In a test of autonomous technologies, the Navy invited five firms to test their abilities

at Mare Island Naval Shipyard in a test referred to as the Validation of Detection

Systems Test Program. Just one company was able to meet the goal detection rate of

85% [25]. They managed a detection rate of 99%, but also had a false alarm rate of

18%. Classification proved more difficult, with a peak classification rate of 68%. These

approaches were not autonomous, and involved substantial human intervention. The

Navy issued a Statement of Need following these tests indicating interest in expansions

that address

• access limitations of the sensing equipment

• improved signal processing to aid detection and discrimination

• characterization of UXO migration and burial

• removal and disposal techniques

8



Our proposed work is applicable primarily to the first two objectives. By enabling AUVs

to make more accurate predictions and classifications, discrimination will be enabled in

more complex environs.

These applications will increase in importance as research in autonomous underwater

vehicles accelerates. AUVs have already been used in the search for downed planes [26],

environmental research in harsh/unfriendly environs [27, 28], and augmentation of sur-

veying capabilities [29].

1.3 Relevant Technologies and Inquiries

The research presented here focused on the intersection between signal processing and

pattern recognition. To that end, some of the key technologies under investigation were:

• KNN clustering

• support vector machines

• neural networks

• Gabor filters

A variety of techniques were employed as part of research in a supporting role, including:

• L1L2 optimization

• Periodogram analysis

Discussion of these techniques will follow in subsequent chapters.
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1.3.1 Contributions

The proposed techniques laid out in both chapter 4 and chapter 5 adapt some common

pattern recognition techniques to the underwater object recognition problem. The el-

lipsoidal manifolds proposed in chapter 4 are similar conceptually to the bag of words

technique common in image processing [30]. The author contributed the visualization of

the clusters as geometric objects for simplification of conversion from feature to keypoint

in the bag of words technique. This technique is used extensively in image processing [31]

as well as for the general problem of recognition and classification [32].

Chapter 5 adapts the Gabor wavelet to the characterization of underwater objects.

Gabor wavelets are used with success for the characterization of images for analysis and

compression [33]. Between the biologically inspired arguments made in [33] and the

similarity to the models proposed in [34] for characterization of active sonar acoustic

color features, the author pursued the Gabor wavelet as a feature filter.

The proposed techniques stem from an interdisciplinary approach to problem solving,

and add to the body of knowledge explored in the field of underwater object recognition

using active sonar.
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Chapter 2

Background Information and Theory

2.1 K-Nearest Neighbor Clustering

KNN is a relatively simple machine learning algorithm that provides tools for both

recognition and regression [35]. At its heart, it is essentially a voting algorithm whereby

a given sample is given a label based on the labels of the k nearest samples. Near-

est samples are typically weighted by a distance metric to prevent domination by the

classification with the plurality in the data set [36]. Common distance metrics include

the Euclidean and Mahalanobis distance. A common unsupervised approach to data

segmentation involves picking seed centroids and performing the KNN labeling, then

iterating to reduce in-class variance [37].

In our investigations, we will take advantage of the KNN algorithm cluster extrema,

and use the Mahalanobis distance to characterize the result. We believe this is an appro-

priate approach because the KNN clustering algorithm uses similar metrics internally

to form the clusters in the first place.
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2.1.1 The Mahalanobis Distance

We will be referring to the Mahalanobis distance in several places, so a brief aside for

definition and discussion is warranted. The Mahalanobis distance is defined as:

DM =

√
(~x− ~µ)T ~S−1(~x− ~µ) (2.1)

where ~x is a point, ~µ is the mean of the distribution to compute the distance to, and ~S is

the covariance matrix of the distribution. In the case of unit variance, the Mahalanobis

distance collapses to the Euclidean distance [38].

2.2 Support Vector Machines

SVMs are powerful tools for classification and discrimination. Simply put, they find

separating hyperplanes for a given feature set [37]. The hyperplanes are defined to

satisfy the equation [39]:

~w · ~x− b = 0 (2.2)

This approach, which generated linear separating planes, was expanded by adding

kernels to enable nonlinear discrimination [39, 40]. This approach transforms the data

using nonlinear kernels rather than the simple dot product originally proposed. This has

the effect of transforming the data to a higher dimensional space before performing the

optimization. When transformed back into the original space, the separating hyperplane

is no longer linear, but maintains the positive properties of the hyperplanes optimized

with the original method.
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2.3 Neural Networks

ANNs are somewhat controversial tools for classification and discrimination. The al-

gorithm acts as a learning algorithm that can be tailored to a variety of tasks. The

networks typically consist of a set of inputs (called input neurons or the input layer),

one or more intermediary layers (called hidden layers), and a set of outputs (the output

layer). The defining characteristics of an ANN are typically [41, 42]:

• The nodes have a tunable gain, which is trained by a learning algorithm

• The sum of the node operations can approximate complex (even nonlinear) func-

tions

The nodes can be connected in a variety of ways, but a common method (and the

one we employ) is complete connectivity. Under this schema, all nodes in any layer

are connected to all nodes in any adjacent layer. The connections are only “severed”

by dropping the gain on the corresponding input in the next layer to zero. Each node

contains an activation function that transforms the input to an output. A common choice

is the hyperbolic tangent, which provides a transition region over which the behavior

can be considered roughly linear and approximately steady state regions over which the

behavior is approximately binary [37].

The network only describes the relations between the nodes (i.e. the mapping from

input to output). The training paradigm for the node weights (and even the decision

functions) can vary wildly. A common method is the back propagation method [37, 42],

which is a deterministic method that maps output error backwards through the system to

determine which direction the nodes should be adjusted to reduce the error. Stochastic
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techniques can also be employed, which do not necessarily suffer from the trap of local

minima, but the convergence time is poor and optimality is still not guaranteed [43]

2.3.1 Limitations and Potential Improvements

ANNs are frequently criticized for some serious shortcomings. Arguably the most im-

portant limitation of an ANN is the tendency towards overtraining (i.e. excellent per-

formance on the training set, with poor performance on real world data due to overfit-

ting) [44]. This limitation can be alleviated by increasing the amount of training data

(and guaranteeing that the training set is representative of real world data) and by guar-

anteeing the training and verification sets are disjoint (to prevent reporting unrealistic

accuracies) [44]. We employ both methods in our work.

2.3.2 Our Implementation

The ANN used in this work is composed of three layers, meaning one hidden layer along

with the input layer and output layer. The network is initialized to be fully connected

by initializing the arrays to unity value. At each layer, the activation function (tanh) is

applied to the value at each node after multiplying the input by the weight.

If we ignored the activation function, we could model a pxq ANN with matrix opera-

tions quite easily: input∗Linput∗Lhidden∗Loutput = outputlabels, where the input is 1xp,

Linput is pxp, Lhidden is pxp, and Loutput is pxq. Adding in the activation function modi-

fies this equation to: tanh(tanh(tanh(input∗Linput)∗Lhidden)∗Loutput) = outputlabels.

This notation is a bit unwieldy, which is why the network notation is typically used to

describe the ANN.
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The values at each output node are a sort of “confidence” in that label being cor-

rect. Training is conducted via backpropagation of errors. The error at the output

is propagated backwards. Gradient descent is used to improve the modeling of the

target function. The gradient is taken of the tanh function which leads to a step of

α ∗ (1− tanh2(error)). This process is repeated back to the input layer.

2.4 Gabor Filters

The Gabor wavelet is a useful function for modeling a variety of physical processes for

several key reasons [45]. Among other things, the wavelet provides high time/frequency

localization, which allows for high quality feature compression. This localization means

the Gabor wavelet (when acting as a basis function) doesn’t fall victim to the issues of

the impulse or cosine functions which have difficulty representing periodic and aperiodic

signals (respectively) using a finite number of coefficients. Gabor filters are commonly

used in image processing for edge finding [46]. In this application, the 2-D version of

the Kernel is used, which is defined as:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) exp(i ∗ 2π

x′

λ
+ ψ) (2.3)

where:

x′ = x cos θ + y sin θ; y′ = −x sin θ + y cos θ (2.4)

It is clear from the above that the 2-D Gabor kernel is simply the combination of a

2-D Gaussian and a plane wave. The Gabor transform was originally considered a sort

of windowed Fourier transform, which makes sense intuitively given the definition of the

wavelet.
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Gabor wavelets have been adapted for use in sonar target response characteriza-

tion [47–49]. The authors therein claim the feature space is desirable due to the potential

for dimensionality reduction and quality of features for object representation.

2.5 Acoustic Physics

The sonar target response of an object is largely due to two major components: backscat-

ter from the surface and elastic waves within the object [50]. The elastic waves can be

modeled as a combination of Rayleigh and Whispering Gallery waves [23]. Rayleigh

waves are surface distortions in the solid, while whispering gallery waves are due to

internal resonance where the concave surface acts as a wave guide.
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Chapter 3

Synopsis of Technical Approach and

Data-Driven Investigations

3.1 Characterization of UXO Using Active Sonar

The research was focused primarily on the problem of characterization and classification

of the active sonar signature of several underwater objects, including steel and aluminum

UXO. The data was generously provided by the Applied Physics Laboratory at the

University of Washington, and is in the public domain for the validation of techniques

such as the ones we’ve developed.

We investigated several approaches to characterization and classification of active

sonar targets in cluttered environments. These approaches are potentially comple-

mentary, but were evaluated separately. The first approach used KNN clustering on

frequency extrema, then characterized the resulting clusters using the Mahalanobis dis-

tance. The result was classified using an ANN due to the flexibility of the network in

terms of inputs and tuning. The second approach used Gabor filters for feature extrac-

tion and used SVMs for classification of the resulting features.
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Figure 3.1: Summary of region of interest and location of investigations at the inter-
sections of acoustic physics, machine learning, and feature engineering.

3.2 Using Ellipsoids as Sonar Feature Manifolds

As explained earlier, unsupervised methods of KNN clustering with distance metrics

tend to minimize the variance of the distribution, subject to normalization using the

Euclidean distance. As the Mahalanobis distance is effectively a statistical extension of

the Euclidean distance, it was chosen as a natural metric for the formation of geometric

feature manifolds. These feature manifolds can be described in terms of overlap and

separation relatively easily. This allowed us to build feature models by constructing lists

of feature manifolds from the clustered result of the frequency extrema. The manifold

lists were then culled by searching for significant inter-class overlap. This overlap would

indicate poor separability for frequency features in these regions.
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The remaining “high quality” feature manifolds could be fed into a neural network.

For our purposes, we treated the manifolds as input nodes to our network. If an input

had extrema matching a given manifold, that input node activated. The ANN was

trained with cross validation, and it was found that the resulting classifiers had superior

accuracy on the testing sets, especially in terms of rejection of superfluous features that

would cause a false positive. This approach is discussed in more detail in Chapter 4.

3.3 Using Gabor Wavelets to Derive Sonar Features

We opted to take advantage of the nature of Gabor Wavelets, in part thanks to a

collaboration with NUWC (the National Underwater Warfare Center). We investigated

a broad approach in which a variety of kernels (varying the wavelet parameters) were

generated and used to transform the data. Each transform was evaluated by training

an SVM for classification, and the kernels that yielded the highest accuracy in the

classification phase were selected as the most promising candidates. The investigation

yielded the tools and a framework for evaluating this approach that will work well for

future collaborations with physicists, as they will enable swift iteration and testing for

the kernel parameters suggested by physical models.

The approach (detailed further in Chapter 5) was evaluated using (among other

things) a set of confusion matrices. These matrices allow quick visualization of a multi-

label system’s accuracy in and between each class. This enabled us to give a graphical

indication of quality that makes it easy to see that Rocks are the hardest to accurately

distinguish (which is unsurprising due to their non-standard shapes and compositions),

and aluminum cylinders are difficult to distinguish from aluminum UXO. In each of the

examples presented, the true class had the plurality of predictions.
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3.4 Distinguishing Characteristics

The application of neural networks and wavelets to the underwater target classification

is not new [47–49]. The works presented here bear some resemblance to the approaches

attempted in the past but differ in several key areas. As the investigations presented

here have been split, with separate investigations for the role of neural networks and the

role of Gabor wavelets, the distinctions will also be separated thusly.

Our investigation involving neural networks differs from existing approaches such

as [47] primarily in the choice of inputs. In Chapter 4, we discuss the use of ellip-

soidal geometric manifolds for feature characterization. These manifolds are conducive

to feature culling, and the inputs to the neural network are selected from the generated

manifolds. While existing approaches make use of the neural network by feeding the

entirety of the feature vector (in [47] this is the result of Gabor transformation cross

correlated with the Gabor transform of the input signal to the system), our investiga-

tion predicts high-quality features and allows for variance based on the feature clusters

across all sensor orientation angles. The crux of the difference here is that the use of

geometric feature manifolds in our paper improve the range of sensor angles over which

a classification can be achieved that is well defined and confident.

Our investigation involving Gabor features also differs from existing approaches such

as [47, 48] in terms of the choice of input. In Chapter 5, we discuss the application of the

2D Gabor kernel to the periodogram of the received signal across all sensor orientation

angles. The existing methods use a 1D Gabor transform on the received signal for the

objects. The method presented in Chapter 5 uses multiple sensor orientations in the

evaluation of each set of Gabor parameters. The accuracies are quoted for the entire
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dataset, including all sensor orientation angles. The verification step uses the data one-

dimensionally (i.e. treating each sensor position as a separate received signal, using the

same Gabor parameters to characterize).

While real-world systems can incorporate other techniques for localization in con-

junction with identification, it is also valuable to have identification techniques that

are built with multiple sensor orientations in mind, as glancing results will constitute a

significant portion of received signals.

3.5 Scope of Proposed Work

The investigations to follow are focused on the problem of target recognition from a

machine learning perspective, informed by the physics of the system. The data collection

mechanism is not investigated, as the data set has been inherited from the Applied

Physics Laboratory at the University of Washington. The investigations will include

discussions of the theory and application of several machine learning techniques, along

with some novel approaches to cluster identification and analysis. The investigations

will also make use of standard k-fold validation techniques.
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Chapter 4

Ellipsoid Features

4.1 Introduction

Detection and classification of buried and partially buried targets in active sonar against

background interference from the environment have been a long-standing challenge for

decades. Current state-of-the-art in buried target detection (using active or passive

sonar), signal recovery and source classification techniques combine rich advances in

four complementary directions: (i) Underwater acoustic propagation studies [8–10], in-

cluding noise models [11] and acoustic backscatter studies that may be harnessed to

achieve buried source localization and signal recovery on physics-based principles; (ii)

Information bounds and trade-offs [3, 12–15] that provide mathematical limits on when a

buried signal may be recoverable against background noise and clutter; (iii) Adaptive sig-

nal processing [1–5, 16], learning algorithms [17–20] and object classification techniques

(ref. e.g. [4–7] and references therein) that perform data-driven signal recovery. This in-

cludes array-based methods) and other techniques that acquire side information [4, 5, 7]

to recover buried signals. (iv) Bio-inspired sonar signal processing techniques (e.g. [21]

among others).

Our contribution in this work falls in the third category above, with strong potential

of combining our geometry driven strategy with physics-inspired approaches in (i). Our
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methods provide for improved object recognition, and have a high potential for applica-

bility for image processing applications. Specifically, our intellectual contributions may

be summarized as:

• Formulate the sonar target response as a feature network of overlapping ellipsoids

in a geometric space defined by the average intensity, frequency, and time delay in

the frequency space representation

• Cluster and classify features based on intra-class overlap (measured using Maha-

lanobis distance) between the featured ellipsoids

• Identify methods to promote features that stay relatively invariant over orientation

angle for the same target while culling features that are heavily shared with other

objects, or otherwise fail to enable inter-class discrimination

In essence, we augment two-dimensional (time delay/frequency) into a third dimension

with sensor position to augment, then use those features to characterize future samples

that consist only of the time delay/frequency pair. We validate our method over exper-

imental field data ranging between different orientation angles for different man-made

targets and naturally occurring non-targets (e.g. rock).

4.2 Technical Approach

This approach effectively models the sonar channel as a series of frequency groupings in

space, along a cross-range scan. We adopt a geometric interpretation of intensity extrema

clusters by adapting the Mahalanobis distance as a statistical metric for achieving this

grouping. We consider this geometric manifold technique useful because it allows for
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the augmentation of frequency extrema using variable sensor position, while preserving

computational simplicity. We now provide details below.

We first determine the local maxima of the sonar response in the frequency domain

by employing a standard nearest neighbor comparison. Thresholding is applied to avoid

low-intensity variations (ref Fig. 4.1). We represent the maxima as a list of tuples

representing the (i) rail position, (ii) frequency, and (iii) amplitude at each maximum.

We now cluster the maxima via k-means [51], and convert the resulting clusters into

ellipsoidal features(ref Fig. 4.2 and 4.3).

Figure 4.1: Peak Finding: Extrema are overlaid (in red) on the cross-range frequency
response.

The three-dimensional ellipsoidal features are composed of: (i) a center, with three

sub-features (average cross range sensor location, average intensity of the group, and

average frequency of the group); and (ii) three radii (range of sensor positions, intensity

variation of the group, and frequency range of the group). These features characterize

the acoustic impulses received in terms of frequency and sensor position, and thus carry

the sonar signature of the target. Our preliminary results indicate (ref Fig. 4.3) key

ellipsoidal features remain invariant through a variety of orientation angles and thus,

allow distinguishing a target (e.g. unexploded ordinance) against non-targets (e.g. a
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rock, ref Fig. 4.5). We generate as many separable features as possible, and cull the

result in the feature separation step.

Figure 4.2: Clustering with Overlay: Clusters overlaid back on the cross-range fre-
quency response and shown from top-view. The centroids of each cluster are marked

by green squares.

Figure 4.3: Ellipsoids: An example of what the ellipsoidal features look like in the
3D sensor position/frequency/intensity space. The orientation noted in the title is of
the target, not the sensor. Note that these ellipsoids are well localized in frequency,
and so appear large in this image. Compare to ref Fig. 4.6 to see how the ellipsoids

project on a single sensor orientation.

4.2.1 Feature Separation and Classification

Resulting ellipsoidal features are compared between potential targets using geometric

means. The centroid-to-centroid distance (Equation 4.2), normalized by the radii, is

analogous to the Mahalanobis distance. We cull features that have a normalized distance

to another feature of less than unity. This isolates feature subsets where centroids of
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Algorithm 1 Feature Generation

0: procedure ExtremaSearch(cross range response)
0: for railposition/frequency voxel in periodogram do
0: if I(voxel) > I(neighbors) & threshold then
0: append voxel sensor pos/frequency/intensity

return extrema list
0: procedure KMeans(extrema)

0: procedure EllipsoidGeneration(clusters)
0: for each cluster c do
0: E ← new ellipsoid container
0: E.cx← average rail position of c
0: E.cy ← frequency centroid of c
0: E.cz ← intensity centroid of c
0: E.rx← variance of rail positions for c
0: E.ry ← frequency variance of c
0: E.rz ← intensity variance of c

=0

at least one of the features is in the variation envelope of the another. This ensures

overlapping features are classified into subsets that are most likely separable as a group

within the target’s acoustic signature. Mathematically, this may be stated as

DM =

√
(~x− ~µ)T ~S−1(~x− ~µ) (4.1)

where ~x is a point, ~µ is the mean of the distribution to compute the distance to, and

~S is the covariance matrix of the distribution. In the case of unit variance, the Ma-

halanobis distance collapses to the Euclidean distance [38]. We adopt the l1 norm for

computational efficiency. The inter-feature distance from any given ellipsoidal feature

to any other feature is given by:

DE = ( ~µ1 − ~µ2) ~R2
T

(4.2)

where ~R is the array of radii of the ellipsoid. Due to the nature of ellipsoid generation,

this is analogous to the covariance matrix.
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~R =

(
E.rx−1 E.ry−1 E.rz−1

)

4.2.2 Feature Selection from Overlapping Features

We adopt a subtractive approach to feature selection. If a feature has |DE | < 1 to any

other feature, that feature is considered overlapping. We consider these overlapping,

as the distance is normalized by ellipsoid radius, thus |DE | < 1 indicates ellipsoids

whose centroids fall within the bounds of each other. After generating a large number of

ellipsoidal features, the list is searched for inter-class overlap. Those features are removed

from the list of distinguishing features. The remaining list consists only of features that

do not significantly overlap with known features in other classes. Intra-class overlap

indicates features that remain constant for different target orientations.

4.3 Results

We provide representative results from our investigations which indicate promising fea-

ture separation, despite obfuscation due to sensor orientation. For the purpose of visu-

alization, all feature centroids are plotted as blue points, and the regions of separability

are plotted as red ellipsoids. Features that fall in these regions distinguish between the

given classes. We have provided results that offer separability between two distinct tar-

gets, both unexploded ordinances (UXOs), as well as between a target and a non-target

(rock).

Even for similarly shaped objects such as a steel and aluminum UXO, there is dis-

tinguishability as is evident in Fig. 4.4. The steel UXO exhibits high frequency content,
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Figure 4.4: Steel UXO (Target A) vs AL UXO (Target B): Feature regions in red
separate Steel UXO from Aluminum UXO.

especially on the direct path arrival (16% of generated features exhibit no overlap). Red

regions from ref Fig. 4.4 indicate distinguishability and separability (10% of features can

be found on the direct path that are unique to the steel UXO) between the two distinct

targets.

Figure 4.5: Steel UXO (Target) vs Rock (Non-target): Feature regions (in red) sepa-
rate Steel UXO from a rock.
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Separability between steel UXO and the rock is significantly better, as evidenced by

the increased localization of features in the direct arrival (approx. rail position 300).

The rock does not exhibit any significant high intensity feature localization, while the

UXO shows significantly more intense and tightly grouped 30KHz components over

approximately 15% of rail positions. This is further evidenced by Figs. 4.6 and 4.7 in

the sequel.

Projecting our in-class ellipsoidal features onto the intensity/frequency plane, we

observe visual peak overlap in the one-dimensional data with the generated features

(ref Fig. 4.6). We further observe that the features capture the target’s response as it

changes with orientation angles, e.g. compare between ref Figs. 4.6 and 4.7.

Figure 4.6: Frequency response of a direct hit with Steel UXO ellipsoids overlaid.
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Figure 4.7: Frequency response of a glancing hit with Steel UXO ellipsoids overlaid.

4.3.1 Evaluation against Traditional Correlation-Based Matching

We compared the technique against normalized cross correlation, the basis of matched

field processing [1], with favorable results. The DC component of the cross correlation

of the received signal of the steel UXO with the rock data shows poor visual separability

(see ref Fig. 4.9) across all sensor angles. Quantitatively we observed that with the steel

UXO as reference, matched processing using direct-hit response attains 90.7% and 94.7%

match respectively with Aluminium UXO and the rock. ref Fig. 4.10 shows zero percent-

age overlap between ellipsoidal features from the steel UXO or the rock that match the

extrema received steel UXO data across all sensor angles. Only the features that have

one (and only one) match are counted as matching distinguishing features. The per-

cent of matching ellipsoids is much lower, but the separation is visually distinguishable,
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Figure 4.8: Frequency response of a glancing hit on a rock with Steel UXO ellipsoids
overlaid.

Figure 4.9: Normalized cross correlation of direct-path steel UXO frequency response
with rock response.

especially around the direct-path sensor orientation.
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Figure 4.10: Comparison of template matching using ellipsoidal features and normal-
ized cross correlation.

4.4 Concluding Remarks

We have presented a novel visualization of target response to active sonar that ex-

ploits intra-class feature geometry to achieve enhanced inter-class feature distinction.

Specifically, we have modeled key features as ellipsoids in the time-frequency domain

and derived classification techniques that utilize their overlap or lack thereof, to cluster

the response from an unknown target into known target profiles. We have provided

data-driven validation of our techniques over two well-known targets and one non-target

using public domain sonar data collected by the Applied Physics Laboratory, University

of Washington. Our methods indicate high feature separation between a given target

and other targets as well as non-targets over established state-of-the-art (matched field

processing [2, 16]). Continuing and future directions include validating this promising
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approach over a broader set of field data including more targets and non-targets, as well

as connecting the ellipsoidal features of a given target to its inherent scattering physics.
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Chapter 5

Gabor Feature Investigation

5.1 Introduction

The problem of target identification using active sonar continues to be a challenge. This

problem has far-reaching implications including military, environmental, economic, and

emergency response. Characterization of targets is confounded by several factors:

• Weak ground truths for targets and nonexistent ground truths for unknown targets

makes conventional learning techniques untenable [1–5]

• Intra-target interference (in the case of multi-target scenarios) can cause overlap-

ping resonance components that challenges conventional learning techniques [4–7]

• Artifacts due to boundary and channel effects increase target response complexity,

making the problem more difficult in general

To meet these challenges, we adopt a data-transformative approach using Gabor

wavelets for feature generation. These wavelets are ideal for modeling the system, and

the timefrequency localization characteristic enables high data compression (well-defined

features). Our intellectual contributions are summarized as:

• Generate a series of features that

– Take advantage of the physical properties of the system
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– Exhibit strong data compression via time-frequency locality, enabling well-

defined, distinguishable features

• Make use of a cascaded SVM classifier using our features that yields high accuracy

predictions for target identification [17–19]

The characterization of sonar target response using Gabor features enables the leverag-

ing of the very convenient characteristics of the Gabor wavelet which aren’t just limited

to timefrequency localization. The Gabor wavelet is also particularly useful because the

tunable parameters enable the wavelet to emulate many meaningful physical character-

istics of the system. These include

• Resonance due to Rayleigh waves and whispering gallery waves [52]

• Boundary effects due to object size/shape

Two-dimensional Gabor wavelets are suitable for modeling the responses of acoustic

waves due to their flexibility in representing sharp features (major resonance peaks) as

well as smoother acoustic topography in the time-frequency domain.

5.2 Technical Approach

5.2.1 Gabor Features

The active sonar response of a variety of targets is transformed into the frequency space.

The resulting signal is convolved with a Gabor wavelet, which is defined as

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
) exp(i ∗ 2π

x′

λ
+ ψ) (5.1)
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where:

x′ = x cos θ + y sin θ; y′ = −x sin θ + y cos θ (5.2)

It is clear from Eq. 5.1 that the wavelet is a combination of a Gaussian and a plane

wave. By tuning λ, we can alter the captured frequencies, and by tuning σ, we can

alter the captures scales (the other coefficients play their own role in feature capture).

As a proof of concept, a variety of Gabor kernels were generated, and the data set was

transformed by each. The transformation was performed as a 2-D kernel convolution

across the presented data.

The resulting vectors were used to train SVMs to test discriminating ability. For

the purpose of this kernel selection stage, a linear C-SVC was adopted. The training

and tests sets were generated via random selection and guaranteed to be disjoint. The

resulting SVMs were evaluated via a 5-fold cross validation for robustness. The accura-

cies were between 50% and 65%. Preliminary attempts at boosting the results together

indicated that the classifiers were suitable for combination for higher accuracy.

5.3 Results

We tested our method over the experimental field data collected by the Applied Physics

Laboratory, at the University of Washington.

5.3.1 Transformation Results and Examples

A variety of kernels were generated, and their performance was evaluated by attempting

to train and test a simple linear SVM. Fig. 5.1 is an example of a generated kernel with

λ = .1, θ = 90◦, and σ = 1/6.
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Figure 5.1: Example Gabor kernel.

Figure 5.2: First rock example.

It is clear from Figs. 5.2-5.5 that the transform makes the features more visually

distinct at least. Figs. 5.2 and 5.3 are both examples of a transformed rock, while

Figs. 5.4 and 5.5 are both examples of a steel UXO (Unexploded Ordinance). These

are examples taken from different orientations of the target object, yet the transformed

features (from the convolution) bear striking visual similarity. Despite significant visual
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Figure 5.3: Second rock example.

Figure 5.4: First steel UXO example.

differences in the frequency response of the steel UXO at the different orientations, the

transformed result (in Figs. 5.4 and 5.5) remains strikingly similar. To quantify our

results, we used a simple SVM with a linear kernel to attempt discrimination.
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Figure 5.5: Second steel UXO example.

Figure 5.6: Confusion matrix of λ = .1, θ = 90◦, and σ = 1/6, with 5-fold cross
validation accuracy of 64.61%.

5.3.2 SVM Results and Examples

The confusion matrices (which measure predicted label vs true label) indicate clear pref-

erence towards in-class identification with several artifacts, owing to the large number

of harmonics exhibited by the aluminum cylinder. Our 5-fold cross validation provides
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Figure 5.7: Confusion matrix of λ = .25, θ = 90◦, and σ = 1/6, with 5-fold cross
validation accuracy of 64.44%.

Figure 5.8: Confusion matrix of λ = .1, θ = 45◦, and σ = 1/10, with 5-fold cross
validation accuracy of 64.32%.

high confidence for the reported accuracies of each classifier. The accuracies ranged from

50% to 65%, but we have many classifiers at the high end of the range to choose from.
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Figure 5.9: Confusion matrix of λ = .01, θ = 45◦, and σ = 1, with 5-fold cross
validation accuracy of 64.53%.

5.4 Conclusions

The Gabor features exhibit strong localization and data compression, presenting excit-

ing preliminary results for characterization, discrimination, and classification. It is clear

from the results of the training stage that there is potential for high-quality discrimina-

tion that can be built upon with future work.

These features address the challenges presented earlier by

• Compressing complex responses into well defined, distinct features that enable

high quality discrimination with simple learning techniques

• Enabling characterization using a superposition of these features, mitigating intra-

target interference

• Increasing classifier robustness, mitigating the effects of noise by capturing har-

monic and resonance effects
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5.4.1 Physics-Based Dictionaries

By combining this approach with a characterization of the physical processes in the

system, we can make more intelligent predictions as a starting point for our kernel se-

lection. The wavelet can emulate many relevant features including frequency harmonics

and direct-path arrival impulses. We will evaluate several physical models for accuracy

using our transformation and testing framework.

5.4.2 Boosted Classifiers

Preliminary work indicated that a combination of the classifiers improved discrimina-

tion performance. By building distributions based on distance to the separating plane,

it would be possible to convert that distance into a confidence (instead of a binary

decision), which would allow for the use of a Bayesian cascade for classification refine-

ment. By combining physically predicted models and empirical results, we will present

a comprehensive and robust characterization scheme for active sonar targets.
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Chapter 6

Combined Investigation

6.1 Introduction

Target identification using active sonar is a compound problem. The problem is difficult

to solve with physics-agnostic machine learning approaches due to the dearth of data.

Combined with the complex and cluttered nature of the available samples, traditional

machine learning approaches can suffer from a variety of issues including overtraining.

Physics cognizant matched filter approaches have other issues. The non-stationarity

of the environment as well as environmental clutter are difficult to model. The tar-

get response will change drastically with orientation angle, making reliable dictionaries

difficult to build comprehensively.

The proposed approach is to combine the approaches presented in Chapters 4 and

5, building a physics-cognizant machine learning approach. By using machine learning

methods to select optimal parameters for feature filtering on the acoustic color features,

we can create a feature set with less dependence on target and sensor orientation. By

leveraging the powerful clustering presented in Chapter 4, optimal feature manifolds can

then be identified from the superset of features generated using the method of Chapter

5.
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6.2 Technical Approach

A large number of candidate Gabor kernels were generated for evaluation as potential

feature filters per the approach laid out in Chapter 5. The resulting filtered features

were then clustered per the approach laid out in Chapter 4 to generate ellipsoidal feature

manifolds in the transformed space. The resulting ellipsoids are pictured in figure 6.1.

The same data set without the feature filtering is presented in figure 6.2. The red regions

denote distinguishing characteristics in this new transformed space. These new ellipsoids

look visually striking and seem to be significantly more comprehensive of the range of

possible sensor positions.

Figure 6.1: Ellipsoids generated from the filtered acoustic color features that distin-
guish between a steel and aluminum UXO. Red regions represent distinguishing ellip-

soids. Blue regions represent discarded ellipsoids.

The ellipsoids for the selected Gabor kernel were all selected and culled using the

method described in Chapter 4. Following the machine learning approach described

there, several neural networks were trained. The first neural networks were trained

exactly as in Chapter 4. The ellipsoids from one set of filtered features were used as the
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Figure 6.2: Ellipsoids generated from the unfiltered acoustic color features that dis-
tinguish between a steel and aluminum UXO. Red regions represent distinguishing el-

lipsoids. Blue regions represent discarded ellipsoids.

input neurons. The different filtered features were then combined into one meta neural

network, with input neurons representing the ellipsoids from several filtered sets.

Other Ellipsoids are provided for example purposes here. Figures 6.3, 6.4, and 6.5

show the distinct set of ellipsoids that differentiate some of the classes.
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Figure 6.3: Ellipsoids generated from the filtered features to distinguish an aluminum
UXO from a rock. Red regions represent distinguishing ellipsoids. Blue regions represent

discarded ellipsoids.

Figure 6.4: Ellipsoids generated from the filtered features to distinguish an aluminum
UXO from a steel UXO. Red regions represent distinguishing ellipsoids. Blue regions

represent discarded ellipsoids.
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Figure 6.5: Ellipsoids generated from the filtered features to distinguish an steel UXO
from a rock. Red regions represent distinguishing ellipsoids. Blue regions represent

discarded ellipsoids.
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6.3 Results

All neural networks were evaluated via a 5-fold cross validation. Under 5-fold cross

validation, the data is randomly divided into five equally sized subsets. Each of the

sets is held out for evaluation while the other four are used for training. This helps to

reduce possible sources of data bias. The results are presented in confusion matrices to

provide a clear picture of accuracy including false positives and negatives. All confusion

matrices are presented for the full range of sensor positions. Figure 6.7 shows the

improvement provided by the ellipsoid feature clustering over the original direct SVM

approach presented in Chapter 5, included here in figure 6.6. Four of the transformed

sets were combined with one neural network, and the results are presented in figure 6.8.

These results indicate excellent classification performance across a wide variety of sensor

and object orientations.

Figure 6.6: Confusion matrix for the direct classification approach used in Chapter
5. Accuracy of 64.5%.
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Figure 6.7: Confusion matrix for the results of a neural network trained on a single
feature set. Accuracy of 84.3%.

Figure 6.8: Confusion matrix for the results of a neural network trained using four
different Gabor feature filters. Accuracy of 95%.
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Chapter 7

Remarks and Conclusions

7.1 Collaboration in Works Herein

Chapters 4 and 5 are both primarily derived from papers submitted for publishing.

These papers were written in collaboration with Prof. Ananya Sen Gupta (University of

Iowa) and Dr. Ivars Kiersteins (NUWC). The works presented in this thesis represent

the contribution of the primary author.

7.2 Scope

As previously established, the data collection itself was out of the scope of this work.

As a result, problems like channel disambiguation and beam forming, while important

to the problem at large, have not been addressed.

7.3 Closing statement

Our investigations proceeded in several orthogonal directions and explored complemen-

tary approaches to characterization and classification. The work took advantage of an

understanding of a variety of state-of-the-art technologies and techniques while also en-

abling collaboration with other institutions yielding publishable material. The work is
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documented and archived in the group git server for the support of future work in the

environmental signal processing group.

7.4 Acknowledgment

The authors would like to thank the Applied Physics Laboratory, University of Wash-

ington for providing public-domain active sonar field data used for validation of our
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Appendix

Gabor Transform Examples

The investigation in Chapter 5 yielded a significant number of candidate kernels. For the

purpose of brevity, only a few were included in the chapter for illustrative purposes. Here

is presented a more representative sample of the kernels that were evaluated positively by

our evaluation technique as described in Chapter 5. All figures include the input, output,

and kernel. The input is the periodogram of the signal across a range of sensor positions

(i.e. a sensor sweep). The targets include UXOs (unexploded ordinance), cylinders, and

rocks. The angle specified in the title refers to target orientation with respect to the

sensor. Some objects have large changes in acoustic color response depending on the

face presented to the sensor. The kernel is a 2D Gabor kernel generated as described

in Eq. 5.1. Most of the kernel parameters were kept constant across these examples,

with the only exception being f = 1
λ+ψ , which was varied and found different significant

features. Other combinations of parameters (e.g. θ, σ, γ) were not as successful.

Per Eq. 5.1, σ = 1 and θ = 90◦, and γ = 1.

A.1 λ = 2
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A.2 λ = 10
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A.3 λ = 4
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