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ABSTRACT

This thesis compares and contrasts currents- and varifolds-based diffeomor-

phic image registration approaches for registering tree-like structures in the lung and

surface of the lung. In these approaches, curve-like structures in the lung—for exam-

ple, the skeletons of vessels and airways segmentation—and surface of the lung are

represented by currents or varifolds in the dual space of a Reproducing Kernel Hilbert

Space (RKHS). Currents and varifolds representations are discretized and are param-

eterized via of a collection of momenta. A momenta corresponds to a line segment

via the coordinates of the center of the line segment and the tangent direction of the

line segment at the center. A momentum corresponds to a mesh via the coordinates

of the center of the mesh and the normal direction of the mesh at the center. The

magnitude of the tangent vector for the line segment and the normal vector for the

mesh are the length of the line segment and the area of the mesh respectively. A

varifolds-based registration approach is similar to currents except that two varifolds

representations are aligned independent of the tangent(normal) vector orientation.

An advantage of varifolds over currents is that the orientation of the tangent vectors

can be difficult to determine especially when the vessel and airway trees are not con-

nected. In this thesis, we examine the image registration sensitivity and accuracy of

currents- and varifolds-based registration as a function of the number and location

of momenta used to represent tree like-structures in the lung and the surface of the

lung. The registrations presented in this thesis were generated using the Deformetrica
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software package, which is publicly available at www.deformetrica.org.
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PUBLIC ABSTRACT

Registration of lung CT images is important for many radiation oncology

applications including assessing and adapting to anatomical changes, accumulating

radiation dose for planning or assessment, and managing respiratory motion. For

example, variation in the anatomy during radiotherapy introduces uncertainty be-

tween the planned and delivered radiation dose and may impact the appropriateness

of the originally-designed treatment plan. Frequent imaging during radiotherapy

accompanied by accurate longitudinal image registration facilitates measurement of

such variation and its effect on the treatment plan. The cumulative dose to the

target and normal tissue can be assessed by mapping delivered dose to a common

reference anatomy and comparing to the prescribed dose. The treatment plan can

then be adapted periodically during therapy to help mitigate the impact of these

changes by ensuring the cumulative delivered dose is concordant with the prescribed

dose[16, 10, 18]. Furthermore, image registration can also help measure how the tu-

mor changes during or after treatment, which can potentially assist in predicting early

response to therapy. These applications all rely on accurate tracking of lung motion

over the breathing cycle and anatomical and functional changes over time.

The main contribution of this thesis is a sensitivity analysis of the feature-

based (currents- and varifolds-based) image registration methods to learn how to

choose good parameters for the algorithm and parametrize lung features in the lung,

such as the centerline of the pulmonary vessel and airway trees, and surface of the

vi



lung.
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CHAPTER 1
INTRODUCTION

Registering lung CT images is an important problem for many applications

including tracking lung motion over the breathing cycle, tracking anatomical and

function changes over time, and detecting abnormal mechanical properties of the

lung.

Accurate image registration is critical for clinical study. However, the ability of

an algorithm to match anatomy throughout the lung may be limited by the complex

variations in the anatomy and limited image contrast. One approach to improving

registration accuracy is to highlight and extract known anatomy such as pulmonary

airways or blood vessels[3] to improve the matching at these tissue locations.

Image registration correspondence can be defined either through intensity-

based or feature-based approaches. Intensity-based approaches register images by

minimizing differences in intensities between the moving (deformed template) and

target images. In general, intensity-based registration approaches have the advantage

of not needing user intervention but often do a poor job of aligning features such as

points, lines and surfaces contained in the images. Feature-based approaches are

attractive because they directly match features, but they often require a priori point-

to-point correspondence, which can be challenging in radiotherapy applications where

this is often not known. Current- and varifold-based image registration are feature-

based registration approaches with the advantage that no point correspondence is

assumed between the objects being registered ([17],[6],[7]). The currents framework
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has been successfully applied to perform registrations of MR images ([17],[5],[6]) and

also lung CT images ([9]). A varifold-based registration approach [4] is similar to

current-based registration approach except that two varifold representations can be

aligned in an orientation invariant manner which will be discussed in the next section.

Current- and varifold-based image registration is built using the Large De-

formation Diffeomorphic Metric Mapping (LDDMM) framework ([14],[15]). This

framework produces correspondence maps (transformations) between images that are

guaranteed to be diffeomorphisms.1 In this work, the velocity field of the LDDMM

framework is represented by currents ([5]) and the control points of the deformation

field are not necessarily dense in order to get desired registration results ([6],[8]).

The contribution of this paper is a sensitivity analysis of the current- and

varifold-based image registration methods to the number and location of momenta

representing tree-like structures, such as the centerline of the pulmonary vessel and

airway trees, and surface in the lung.

1A diffeomorphism is a bijective, differentiable map between two manifolds such that its
inverse is also differentiable.
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CHAPTER 2
METHODS

Currents and varifolds are mathematical objects that can be used to model

general geometrical objects. A current is a linear functional on the space of compactly

supported differential k-forms , on a smooth manifold which is continuous in the sense

of distributions. Any set of curves or surfaces can be represented in terms of currents

and also varifolds. The advantage of using currents and varifolds to register images

is that the similarity measure is defined in the space of currents or varifolds, which

does not assume any kind of point-correspondence between structures. A varifold can

be considered a generalization of the idea of a current in the sense that the tangent

vector of its representative momenta are not oriented. Theoretically, varifolds are

weaker objects than currents due to the lack of orientation of the tangent vector of

the momenta used to represent a shape. However, this “weaker” side of varifolds is a

desirable property when matching line segments with uncertain tangent orientation.

2.1 Currents Representation

2.1.1 Curve Currents Representation

The current representation of a curve L is defined by the path/line integral

along the curve through a test vector field ω via

L(ω) =

∫
L

ω(x)tτ(x)dλ(x) (2.1)

where, τ is the tangent of the curve at point x and dλ is the Lebesgue measure on

the curve[9]. The test vector field ω is an element of a space of possible vector fields
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W , where W is a Reproducing Kernel Hilbert Space (RKHS). In this work, W is a

space of square integrable vector fields convolved with a smoothing Gaussian kernel:

ω(x) = KW (x, .)α, where the pair (x, α) is called a momentum. The tangent vector

along the curve gives a natural action of the curve on vector fields. The norm of the

current is defined in the dual space (currents space) W ∗ of W . W is a closed span of

the vector fields ω(x) = KW (x, .)α. The dual space of W denoted as W ∗ is a closed

span of Dirac delta currents δαx , where a Dirac delta current is the dual representation

of the basis vector field KW (x, .)α. Based on the Riesz representation theorem1, there

is a linear mapping between W and its dual space W ∗, LW : W → W ∗ such that

LW (ω)(ω′) =< ω, ω′ >W (2.2)

where <,>W denotes inner prodcut of the RKHS, i.e., LW maps a vector filed ω to

a corresponding current and the current LW (ω) is an operator itself, which operates

on a vector field.

Therefore, δαx = LW (KW (x, .)α)

In a discrete setting, curves may be represented as polygonal lines(a connected

series of line segemtns) where the direction of the tangent is constant over each line

segment. In this case, the current representation of a polygonal curve is given by

L(ω) =
∑
k

ω(xk)
tτ(xk) (2.3)

where xk is the center of each line segment and τ(xk) is the tangent vector at xk. The

1This theorem establishes an important connection between a Hilbert space and its
(continuous) dual space. If the underlying field is the real numbers, the two are isometrically
isomorphic.
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magnitude of τ(xk) is proportional to the length of the line segment centered at xk.

2.1.2 Surface Currents Representation

The current representation of a surface S is defined by the flux integral through

a test vector field ω via

S(ω) =

∫
S

ω(x)tn(x)dλ(x) (2.4)

where, n is the unit normal of the surface at point x and dλ is the Lebesgue measure

on the surface. The test vector field ω is an element of a space of possible vector

fields W , where W is a Reproducing Kernel Hilbert Space (RKHS).

Similar as curve currents, in discrete setting the continuous current equation

of surface Eq. 2.4 can be replaced by:

S(ω) =
∑
k

ω(xk)
tn(xk) (2.5)

where xk is the center of each mesh and n(xk) is the normal vector at xk[9]. The

magnitude of n(xk) is proportional to the area of the mesh centered at xk.

2.2 Diffeomorphic Deformation Framework

2.2.1 Currents Framework

We first describe the image registration cost function for two curves represented

by currents. Let L1 and L2 be two curves that we want to register. Each curve is

mapped to its dual space currents representation denoted as T1 and T2, respectively.

Each current is represented as the finite sum of Dirac delta currents using Eq. 2.3 as

T1 =
∑

n δ
α
x and T2 =

∑
m δ

β
y . The distance between two currents is defined as the
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norm squared difference of the currents computed in the RKHS dual space given by

||T1 − T2||2W ∗ = < T1 − T2, T1 − T2 >W ∗

= < T1, T1 >W ∗ + < T2, T2 >W ∗ −2 < T1, T2 >W ∗

=
∣∣∣∣∣∣∑

n

δαx −
∑
m

δβy

∣∣∣∣∣∣2
W ∗

=
∑
n,n′

KW (xn, xn′)α
t
nαn′ − 2

∑
n,m

KW (xn, ym)αtnβm

+
∑
m,m′

KW (ym, ym′)β
t
mβm′ (2.6)

The image registration cost function for currents is defined as

C = ||φ∗T1 − T2||2W ∗ + γ
∣∣∣∣∣∣∑

i

vti(x)∆
∣∣∣∣∣∣2
V

(2.7)

where φ is the transformation from the coordinate system of current T1 to that of T2

and φ∗ is the differential of φ[9]. φ∗ is also called the pushforward or total derivative

of φ. The pushforward φ∗ transforms the current T1 into the coordinate system of

the current T2. Be careful, instead of deforming points in the images, the curve and

surface currents are being deformed here. Both curve currents and surface currents

can be represented by the Direct Delta current δαx and the transformation of it is

given by

φ∗δ
α
x = δ

dxφ(α)
φ(x) (2.8)

where α is the tangent vector of a curve. For surface currents, the Eq. 2.8 becomes

φ∗δ
u×v
x = δ

dxφ(u)×dxφ(v)
φ(x) (2.9)

where u× v is the normal of the surface[5].
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2.2.2 Varifolds Framework

A varifold is a generalization of a current in the sense that the tangent vector

of its representative momenta are not oriented. A varifold representation provides

an advantage over a current representation for representing structures in which the

orientation of the constitute line segments are unknown or difficult to discern. This is

true for the current application in which the vessel trees may consist of disconnected

line segments due to, for example, where a tumor or other pathology interrupts the

vessel trees.

The image registration cost function for two curves represented by varifolds is

similar to that for currents. Except for the term < T1, T2 >W ∗ in Eq. 2.7 is computed

as: ∑
n,m

KW (xn, ym)
(αtnβm)2

|αn||βn|
(2.10)

instead of using ∑
n,m

KW (xn, ym)αtnβm (2.11)

as mentioned at www.deformetrica.org.

Therefore, we rewrite Eq. 2.7 for varifolds as:

||T1 − T2||2W ∗ = < T1 − T2, T1 − T2 >W ∗

= < T1, T1 >W ∗ + < T2, T2 >W ∗ −2 < T1, T2 >W ∗

=
∑
n,n′

KW (xn, xn′)
(αtnαn′)

2

|αn||α′n|
− 2

∑
n,m

KW (xn, ym)
(αtnβm)2

|αn||βn|

+
∑
m,m′

KW (ym, ym′)
(βtmβm′)

2

|βm||βm′|
(2.12)
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2.2.3 Representation of Diffeomorphism Flows

The second term in Eq. 2.7 is the discretized regularization term on the velocity

of the transformation φ and is represented as
∫ 1

0
||vt||2V dt in continuous setting. ∆ is

the time interval. vt is the velocity field at time t and can also be thought of as an

element of a RKHS space. Therefore, it can be represented in terms of momenta

vti =
∑
i

KV (., xi(t))αi(t) (2.13)

where (xi(t), αi(t)) is the time varying momenta that parameterizes diffeomorphic

transformation model.

Momenta are used to parametrize the velocity field vt of the transformation φ

in a similar way that momenta are used to parameterize the shapes of the objects,

T1 and T2, to be registered. The relationship between the transformation φ and the

time varying velocity field vt is given by the O.D.E.

d

dt
φvt (x) = vt(φ

v
t (x, t)) (2.14)

where t ∈ [0, 1] and φ = φv1. The time varying transformation φvt is an isotopy between

the identity transformation at time t = 0 (i.e., φv0 = Id) and the transformation φ that

maps T1 into the shape of T2 at time t = 1 (i.e., φv1 = φ). The superscript v on the

transformation φvt denotes the dependence of the transformation on the velocity field

vt. Note that varifolds cannot be used to represent the velocity field since the velocity

field is a vector field in which the direction of the vectors are important. In the case

of of parameterizing the velocity field with momenta, the magnitude of the vector no

longer represents the length of a segment, but rather, it represents the velocity of the
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transformation at certain point in time. The momenta representing the velocity field

can be considered as vector weighted control points of the velocity field. Note that

the location of the momenta are not fixed during the registration process and are free

to move around during the registration process. The Deformetrica software was used

to find the optimal location and direction for the control points of the velocity field

for registration for the results generated for this paper [8].

2.3 Preprocessing and Sampling

2.3.1 Preprocessing

The Iterative Closest Point (ICP) [1] algorithm was used to rigidly align the

shapes before registration. The main reason to use ICP is to remove the translational

and rotational differences between the set of momenta locations of the moving and

target shapes before nonrigid alignment.

2.3.2 Vessel Tree and Skeleton Extraction

For most radiation therapy interventions, the lung is imaged via computed

tomography(CT). In a CT image, the vessels in a lung appear bright on a dark

background. We used the Jerman et al. vesselness filter [12] to extract the vessel

tree segmentation from a 3D CT image volume. In this method, the Hessian matrix

is computed from the intensity values of the CT at each voxel location. Next, the

eigenvalues are computed from the Hessian matrix. Tubular structures are then

identified at voxel locations with one negligible eigenvalue and two similar non-zero

negative eigenvalues. The skeletons extracted for 2D fundus images are generated
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using a morphological thinning algorithm in ITK (www.itk.org). The vessel tree

segmentation for 3D were then skeletonized using minimum cost paths[13]. The

generated skeletons are located in discrete space in image coordinates, therefore line

segments that represent the skeleton produces a piece-wise constant polygonal line

with stair-step artifacts. A contour with stair-step artifacts gives a poor current and

varifold representation since the tangent vectors from one line segment to the next

do not vary smoothly. To over come this problem, we fit a second order polynomial

to each vessel branch using regression. The fitted second order polynomial produced

a smooth approximation to each branch that could be sampled at any resolution.

In this work, the momenta were sampled from the polynomial curves using

units of pixels in 2D (voxels in 3D) in which the pixel (voxel) dimensions were

isotropic. If branch length was not an multiple of the sampling period, we reduced

the sample period enough to uniformly sampled the branch.

2.3.3 Lung Segmentation and Surface Triangularization

To extract lung surface, all fives lobes (right upper, right middle, right lower,

left upper, and left lower) were delineated by individual trained by an experienced

radiation oncologist using a commercial radiation oncology software suite (MIM Mae-

stro v6.6.4, Cleveland, OH). Then the contours were converted to binary masks. We

used the software iso2mesh(iso2mesh.sourceforge.net) to yield the trangularized mesh

lung surface.

The visualization of the skeleton of the vessels in the lung and trangularized
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mesh are implemented using Python and VTK(www.vtk.org).



12

CHAPTER 3
EXPERIMENTS

3.1 Phantom Data Experiments

3.1.1 Evaluation Methods

The registration results were evaluated using symmetric average closest dis-

tance(SACD) between two shapes. The average closest distance from one shape con-

sisting of multiple curves to another is computed by taking each point in one shape

and finding the closest point on the second shape. These distances are then aver-

aged to get the average closest point distance. The average closest distance measured

from one shape to another is often different than the average closest point distance

computed when the roles of the two shapes are reversed. To mitigate this problem,

we compute the symmetric average closest point distance which is the average of the

distance compute from shape I1 to shape I2 and the distance computed from shape

I2 to shape I1. The symmetric average closest point distance between two shapes I1

and I2 is given by

d(I1, I2) =
1

2

(
1

N1

∑
y∈I1

min
x∈I2

d(x, y) +
1

N2

∑
x∈I2

min
y∈I1

d(y, x)

)
. (3.1)

3.1.2 Sensitivity to the Number/Position of Momenta and the Kernel Size of the

RKHS

One of the most important considerations for currents and varifolds registra-

tion of tree-like structures is (1) how to choose the number of the momenta, (2) how

to choose the standard deviation λs of the Gaussian kernel KW in Eq. 2.7 for the
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shape and (3) how to choose the standard deviation λφ of the Gaussian kernel KV in

Eq. 2.13 for the deformation field.

To start to answer these questions, we designed an experiment that registered

eight pairs of simple 2D branch structures (see Fig. 3.1) multiple times using different

numbers momenta (see Fig. 3.2) and varying the shape kernel standard deviation

λs. We kept the the deformation kernel standard deviation λφ fixed at 250 for this

experiment. The registration error was computed for each registration and was used

to evaluate the performance of each registration.

Figure 3.1 shows four of eight pairs of structures that were registered in this

experiment. In this figure, the blue shape was registered to the red shape. Note that

the bottom point of the vertical line segment for all of the red and blue structures

start at the same location. Registration pairs 5, 6, 7 and 8 are not shown in this

figure since they reverse the roles of the fixed and moving structures shown in panels

a, b, c and d, respectively. The shapes in this figure were chosen to mimic a single

simple branching structure from a real 3D pulmonary airway or vessel tree.
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(a) Registration pair 1. (b) Registration pair 2.

(c) Registration pair 3. (d) Registration pair 4.

Figure 3.1: Simple 2D test structures used to characterize current- and varifold-based regis-

tration parameter selection. Red represents target structures and blue represents template

structures. Registration pairs 5, 6, 7 and 8 are not shown in the figure; these registration

pairs reverse the target and template structures shown in panels a, b, c and d, respectively.

Note that the bottom point of the vertical line segment for all of the red and blue structures

start at the same location.

Figure 3.2 shows how the momenta were positioned on one of the registration

pairs. We similarly put the locations of momenta for other registration pairs.
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(a) Template and target shapes with 3

momenta.

(b) Template and target shapes with 6

momenta.

(c) Template and target shapes with 9

momenta.

(d) Template and target shapes with 12

momenta.

Figure 3.2: Examples showing the number and placement of momenta.

This figure shows that the momenta were uniformly spaced along each of the

branches for a total of 3, 6, 9 and 12 momenta for each shape. The case of three total

momenta corresponds to the limiting case of one momentum per branch. We limited

this experiment to 4 momenta per branch since we wanted to determine the fewest

number of momenta required to accurately represent a branch. The reason for this is

that the computation time increases as the number of momenta increases.
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Figure 3.3: The effect of number of momenta on registration. For each kernel size, we use

different number of momenta to represent the skeletons in the currents space and compute

averaged registration error.

The graph in Fig. 3.3 shows the results of registering the eight pairs of branch-

ing shapes as a function of shape kernel standard deviation λs and the number of

momenta used to parameterize the shapes. Each curve on the graph corresponds to

a different shape kernel standard deviation λs. Each point on a curve is the average

value of all eight registration results.

The graph in Fig. 3.3 shows that for this experiment, the lowest registration

error is achieved for the shape kernel size of 150, which is λs = 150, which is 150/460 =

0.33 times of the average branch size and for nine momenta. The registration error

is similar for 9 and 12 momenta, but we prefer the smaller of these two numbers.
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Figure 3.4: Registation error for each individual registration pair.
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We also plot the results for each individual shape in Fig. 3.4, the x-axis is the

registration error evaluated using SACD and the y-axis is different shape kernel size.

We can see they are consistent with the averaged results as plotted in Fig.3.3.

This experiment suggests that one should use at least three momenta for a

long branch without much curvature and a shape kernel size of 0.33 (1/3) times the

average branch length.

The experiments were did so far on the 2D phantom shapes are based on the

fact that the number of momenta used to represent the target and source template

are the same. However, it hard to have the same number of samples for template

and target shape for 3D real lung vessel trees. We will discuss about this more in

later section. Therefore, another set of experiments we did using the eight pairs of

shapes is we use different number of momenta to represent the source and target

templates. Then we registered them using different kernel sizes and calculate the

SACD registration error as we defined in Sec. 3.1.1 .
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(a) High Resolution to Low Resolution. (b) Low Resolution to High Resolution.

Figure 3.5: Registration with variant resolution of target and source template.

As shown in Fig. 3.5, we use different number of momenta to represent the

template and target shape, for example, we can use six momenta to represent the

template shape and three momenta to represent the target shape as shown in Fig. 3.5a

or we can use three momenta to represent the template shape and six momenta to

represent the target shape as shown in Fig. 3.5b.

In Fig. 3.6, along the x-axis “Test3 6” means we use three momenta to rep-

resent the template(moving) shape and six momenta to represent the target(fixed)

shape. “Test6 3” means the other way around, i.e. e use six momenta to represent

the template(moving) shape and three momenta to represent the target(fixed) shape.

We can see we achieve a smaller registration error when we use more momenta to rep-

resent template(moving) shape,especially, when the number of the momenta used to

represent the shape is also small. When we sampled the shape finely, the registration
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errors of these two cases were more similar.
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(a) Registration error with deformation kernel size 100, shape kernel size 150.
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(b) Registration error with deformation kernel size 150, shape kernel size 150.
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(c) Registration error with deformation kernel size 200, shape kernel size 150.
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(d) Registration error with deformation kernel size 250, shape kernel size 150.

Figure 3.6: Registration error with variant resolution of target and source template. Test3 6

means we use 3 momenta to represent the template shape and 6 momenta to represent the

target shape, Test6 3 means we use 6 momenta to represent the template shape and 3

momenta to represent the target shape and etc..
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3.1.3 Simulated Vessel Tree Registration

In the next series of experiments, we used two simple 2D vessel trees (see

Fig. 3.7a) that were were drawn to scale based on real 3D vessel trees extracted from

CT images. The pixel dimensions for these vessel trees are 1 mm x 1 mm. In these

experiments we varied the the deformation kernel standard deviation λφ, the shape

kernel standard deviation λs and and the momenta sample period. The units for

these variables are listed as pixels which are equal to 1 mm for these shapes.

Figure 3.7a shows two typical lung vessel branching structures with 31 branches

and 15 branch points to be registered. The template (moving) vessel tree shape has

31 branches and 15 branch points. The minimum, maximum, mode and average (std

dev) branch lengths were 7, 33, 9 and 13.1(6.18) pixels, respectively. The target vessel

tree shape has 31 branches and 15 branch points. The minimum, maximum, mode

and average (std dev) branch lengths were 6, 32, 8 and 13.8(6.48) pixels, respectively.

The vessel trees shown in 3.7a were registered 9*4*5 = 180 times with 9 differ-

ent momenta sampling periods, 4 different shape kernel standard deviations λs and 5

different deformation kernel standard deviations λφ. Panels 3.7b-3.7d show the regis-

tration results when the sampling period equaled 1, 5 and 9 pixels, respectively, while

keeping the shape kernel standard deviation λs fixed at 3 pixels and the deformation

kernel standard deviation λφ fixed at 10 pixels. Result shown in Panel 3.7b was the

best registration result out of the 180 registrations. Figure 3.7 demonstrates that the

registration results got gradually worse as the sampling period increased.
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Target
Template

(a) Template (moving) and target vessel

trees before registration. These shapes

have the same scale as a subtree of a real

3D vessel tree.

Target
Deformed Template

(b) Template and target shapes after reg-

istration: sample period = 1 pixel, de-

formation kernel size = 10 pixels, shape

kernel size = 3 pixels.

Target
Deformed Template

(c) Template and target shapes after reg-

istration: sample period = 5 pixel, de-

formation kernel size = 10 pixels, shape

kernel size = 3 pixels.

Target
Deformed Template

(d) Template and target shapes after reg-

istration: sample period = 9 pixel, de-

formation kernel size = 10 pixels, shape

kernel size = 3 pixels.

Figure 3.7: Examples showing the number and placement of momenta.
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Figure 3.8 shows the registration error as a function of the momenta sampling

period and the shape kernel standard deviation λs. For these results the deformation

kernel standard deviation λφ was fixed at 10 pixels. This figure shows that the best

registration results were produced for the smallest sampling period.
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Figure 3.8: Registration error as a function of the momenta sampling period and the shape

kernel standard deviation λs while keeping the deformation kernel standard deviation λφ

was fixed at 10 pixels. The notation d10s3 corresponds to λφ = 10 pixels and λs = 3 pixels.

Figures 3.9 and 3.10 shows the registration error as a function of the momenta

sampling period and the deformation kernel standard deviation λφ. For these results

the shape kernel standard deviation λs was fixed at 3 and 9 pixels, respectively. These

figures show that the best registration results were produced for λφ = 10 pixels which
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is roughly the same size as the mode of the template and target branch lengths.
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Figure 3.9: Registration error as a function of the momenta sampling period and the defor-

mation kernel standard deviation λφ while keeping the shape kernel standard deviation λs

was fixed at 3 pixels. The notation d10s3 corresponds to λφ = 10 pixels and λs = 3 pixels.

Table. 3.1 shows that computation times increase as we decrease the defor-

mation kernel size and decrease the momenta sampling period. The best registration

results for the shapes shown in Fig. 3.7a were for sampling period 1 pixel, deforma-

tion kernel standard deviation 10 pixels and shape kernel standard deviation 3 pixels

which took approximately 6 minutes to compute.
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Figure 3.10: Registration error as a function of the momenta sampling period and the

deformation kernel standard deviation λφ while keeping the shape kernel standard deviation

λs was fixed at 9 pixels. The notation d10s3 corresponds to λφ = 10 pixels and λs = 3

pixels.

3.1.4 Varifold Orientation Robustness

Based on the definitions of currents (See Eq. 2.1) and varifolds (See Eq. ??),

theoretically varifold representations should give better registration with unknown

tangent orientations than currents. In order to learn more about the orientation

robustness of the varifold representations, we did the following experiment. We used

the same template and target shapes as in Section 3.1.3. We manually flipped the

orientation of some branches in our template shape (see Fig. 3.11) to see how the

registration results of currents- and varifold- representations differed. We sampled the
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Kernel Size d5s3 d10s3 d15s3 d20s3 d25s3

SP = 1 30m 47s 6m 12s 2m 31s 1m 33s 1m 9s
SP = 5 43m 47s 3m 34s 1m 9s 27s 20s
SP = 9 38m 25s 3m 17s 40s 22s 17s

Table 3.1: Computation time with respect to different deformation kernel standard devia-

tions λφ and momenta sample periods for the experiments shown in Fig. 3.7. SP represent

the momenta sampling period in units of pixels. The notation d5s3 corresponds to λφ = 5

pixels and λs = 3 pixels. For this registration experiment, the shape kernel standard devia-

tion λs did not have a noticeable affect on the computation time. Note that the smaller the

momenta sampling period, the more momenta were used to parameterize the template and

target shapes. Note that the smaller λφ, the more momenta were needed to parameterize

the registration transformation.

template shape with sample period 1 and uses deformation kernel standard deviation

λφ = 10 pixels and a shape kernel standard deviation λs = 3 pixels.

First, we reversed the orientations of three branches on the template shapes

and used currents and varifolds to represent our shape respectively.

The registration result of varifold representations is shown in Figure. 3.7b (a)

and the registration result of current presentations is shown in Figure 3.11 (b). The

region in the black circles in Figure. 3.7b (a) and (b) shows the three branches where

we flipped the orientations of tangent vectors. We can see inside the black circle,

two shapes don’t align well with current representations while the varifolds-based

registration give as a better result.
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Similarly, we flipped seven branches of the template shape as shown inside

the black circle in 3.11 (c) and (d). We can see the registration result of current

representations in 3.11 (c) is bad inside the black circle, while the registration result

of varifold representation 3.11 (d) keeps the same.

Therefore, we can see varifolds representation is more robust to orientations

of tangent vectors as we expected. As we showed in this experiment, when we flipped

some branch’s orientations, the registration result for varifold representations are the

same no matter how many branches’s orientations are flipped while the registration

result of current presentations are not.
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Target
Deformed Template

(a) Current registration result;

3 branches flipped orientation.

Target
Deformed Template

(b) Varifold registration result;

3 branches flipped orientation.

Target
Deformed Template

(c) Current registration result;

7 branches flipped orientation.

Target
Deformed Template

(d) Varfold registration result; 7 branches

flipped orientation.

Figure 3.11: Registration results using current and varifold representations. The circles

show the branches that had opposite tangent orientations between the template and the

target. Notice that the current-based registration fails while the varifold-based registration

does a good job of registering the shapes.
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3.2 Real Data Varifolds- Based Registration – A Multi-resolution

Framework

3.2.1 2D Fundus Images

The 2D fundus images data we are using in this thesis are obtained from the

High-Resolution Fundus image database [2].

The fixed image is generated directly from the original fundus mask resampled

to a smaller size which also had the intended consequence of interpolating the original

binary (0 or 255) image to a range of intermediate values to produce a more realistic

vesselness image (rather than a binary mask). The moving image is generated by

deforming the fixed fundus image using elastix(http://elastix.isi.uu.nl) with a known

B-Spline represented displacement filed. The size of the fixed and moving images are

1428 × 960. The original fixed and moving fundus images and extracted skeletons

are shown in Fig. 3.12. The fixed structure has 447 branches and the minimum,

maximum mode and average (std dev)branch lengths are 3, 64, 12 and 15 pixels,

respectively. The moving structure has 404 branches and the minimum, maximum

mode and average (std dev)branch lengths are 2, 55, 8 and 12 pixels, respectively.

In this experiment, we fully sampled the fixed and moving skeleton and only

vary the shape and deformation kernel sizes.



31

(a) Target Image (b) Source Image

(c) Target Skeleton (d) Source Skeleton

Figure 3.12: 2D Fundus images and extracted skeletons.

We started from a large deformation kernel size - 120 and shape kernel size -

50. Then reduce them separately. For deformation kernel size, we chose 120, 80, 40

and 20. For shape kernel size, we chose 50, 30, 15, and 5. We ran the algorithm using

all combinations of the different deformation and shape kernel sizes and computed

the SACD registration error as defined in 3.1.1.

In addition, we manually labeled ten corresponding landmarks at junction
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positions of the fixed and moving vessels as shown in 3.13. The first five(red) were

labeled at junctions of large branches while the last five(blue) were labeled at junctions

of smaller branches. We computed the landmarks error for these ten landmarks and

also computed the landmarks error for the “red” and “blue” landmarks separately to

see how the deformation and shape kernel sizes affect the matching of branches with

different length.

(a) Labeled Landmarks in Fixed Fundus

Image

(b) Labeled Landmarks in Moving Fun-

dus Image

Figure 3.13: Manually labeled landmarks in fundus images at junction positions.
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Kernel Size d120 d80 d40 d20

s50 1.22 1.24 1.31 1.44
s30 1.14 1.16 1.14 1.41
s15 1.22 1.06 0.91 1.12
s5 2.62 3.97 4.47 5.93

Table 3.2: SACD Registration error.

As we can see in Table. 3.2, the smallest registration error we got is when

the deformation kernel size is 40 ans the shape kernel size is 15. Correspondingly,

in Table. 3.3, the landmarks errors are much smaller when we have shape kernel size

15 at junctions of both short branches and long branches. There were no landmarks

error for d20s15 because the deformations of some landmarks were too large and they

were deformed outside the working domain.

We also notice the distance between landmarks error of longer branches and

shorter branches are smaller when the shape kernel sizes are smaller. However, we

can also learned from the Table. 3.3 the shape kernel size should not be too small

when the dissimilarity between the two shapes is large at beginning.

For the experiments we did for phantom data, we learned that the shape kernel

size should be around 1/3 of the averaged shape, which was not consistent with the

conclusion of this experiment.

The reason is that the deformation of the phantom shapes and 2D simulated

vessels are relative small comparing with this experiment and the structures in this

case are more complex than the previous two.
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Kernel Combined Combined SmallBr SmallBr LargeBr LargeBr
Size Error Std Error Std Error Std

Before Reg 42.95 27.71 45.82 26.63 40.07 28.45

d120s50 10.75 7.51 13.71 7.75 7.80 5.94
d120s30 8.62 5.88 10.36 6.21 6.87 4.96
d120s15 3.05 1.10 3.47 0.83 2.65 1.18
d120s5 20.77 18.10 23.13 18.92 18.41 16.91

d80s50 11.55 8.84 15.70 9.43 7.39 5.75
d80s30 8.95 6.19 10.92 6.29 6.97 5.41
d80s15 3.21 2.14 3.13 1.51 3.29 2.62
d80s5 29.16 25.42 36.01 29.62 22.30 17.91

d40s50 17.55 13.74 22.66 14.82 12.45 10.29
d40s30 11.72 9.20 13.97 9.44 9.46 8.36
d40s15 3.39 2.43 3.42 2.03 3.36 2.78
d40s5 33.55 28.43 38.08 31.50 29.01 24.16

d20s50 28.37 18.12 31.18 19.17 25.60 16.55
d20s30 29.56 17.49 33.63 18.93 25.48 14.84
d20s15 – – – – – –
d20s5 40.33 26.26 43.95 26.07 36.71 25.95

Table 3.3: Registration landmark errors.
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Error Type d120s50 d80s30 d120s50 d80s30 d120s50 d80s30
d40s15 d40s15 d20s5

Combined Error 9.05 3.47 0.93
Combined Std 6.55 2.42 0.88
SmallBr Error 10.75 3.81 0.71
SmallBr Std 6.45 1.53 0.36

LargeBr Error 7.35 3.76 1.14
LargeBr Std 6.20 3.03 1.15

SACD 1.11 0.97 0.77

Table 3.4: 2D Fundus images multi-resolution varifold-based registration errors in 2D.

Therefore, in order to get a better registration results, we proposed a multi-

resolution strategy, we used larger deformation kernel size and shape kernel size first

to perform a “affine-like” registration, which can align the shapes globally. Then we

chose smaller deformation kernel size and shape kernel size to match the details of

the structure.

As shown in Table. 3.4, the multi-resolution framework can improved the reg-

istration results, the smallest landmarks error is 0.93 and the smallest SACD is 0.77,

while in Table. 3.2 and Table. 3.3, the smallest SACD is 0.91 and the smallest land-

marks error is 3.05. Especially, the landmarks error improved a lot, which means we

achieved a good matching correspondence.

We visualize the registration results as overlayed shapes in Fig. 3.14. We can

see the multi-resolution framework can match the short branches better than the

results with one single resolution.
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(a) Overlayed skeletons before registra-

tion. In this experiment, we fully sample

the skeletons.

(b) Overlayed skeletons after registration

with deformation kernel size 20, shape

kernel size 5(d20s5).

(c) Overlayed skeletons after registration

with deformation kernel size 80, shape

kernel size 15(d80s15).

(d) Overlayed skeletons af-

ter registration with multi-

resolution(d120s50 d80s30 d40s30 d20s15).

Figure 3.14: 2D Fundus images varifolds-based registration results with various deformation

and shape kernel sizes.
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3.2.2 3D Lung CT Images

Finally, we moved to the experiments of 3D real data. The data we used is a

pair of baseline and mid-treatment computed tomography(CT) scans of human lungs

which were acquired on a CT simulator(Philips Brilliance Big Bore, Fitchburg, WI)

under IRB-approved protocols. The mid-treatment scan was taken 5 weeks later than

the baseline scan was taken[11].

The size of the CT images we used in this experiment are 512 × 512 × 130

voxel and the spacing along x, y, z each direction are 1.1719mm, 1.1719mm, 2mm.

We know each lung has five lobes, three at right and two at left. We can

consider a lung as a complex shape that consist of five lobes different lobes and we

register them with known correspondence. We still get a unique deformation, but

the estimation of this deformation is constrained to match each pair of homologous

objects as introduced in [8]. We make the registration more constrained, i.e. we math

the right upper lobe to the right upper lobe, the left upper lobe to the left upper lobe

and etc. as shown in Fig. 3.15. For this patient, the position of the tumor is at the

right lower and middle lobe and these two lobes are collapsed together because of

atelectasis, so we combined the masks of right middle lobe and right lower lobe and

treated them as one object as shown in Fig. 3.15 in green.
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Before	Treatment(baseline	scan) After	Treatment(mid-treatment	scan)

Figure 3.15: Extracted vessel skeleton and lung surface.

We segmented the lung vessels and lung surface first, then extracted the skele-

tons of the vessels and generated the triangular meshes of the lung surface as described

in Section. 2.3.3 and Section. 2.3.2.

In stead of registering the whole lung, which would take longer time to run the

algorithm, we registered the right upper lobe first. We registered the before treatment

scan to after treatment scan. For the shape before treatment as shown in Fig. 3.16a

in blue, the average and mode of branch length are 14.6mm and 7.2mm. For the

shape after treatment as shown in Fig. 3.16a in red,the average and mode of branch

length are 14.3mm and 5.2mm.
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(a) Overlayed 3D skeletons before regis-

tration. This is the right upper lobe of a

human lung.

(b) Overlayed 3D skeletons after regis-

tration with deformation kernel size 80,

shape kernel size 15.

(c) Overlayed 3D skeletons after regis-

tration with deformation kernel size 50,

shape kernel size 12, then followed by

shape kernel size 5.

(d) Overlayed 3D skeletons after regis-

tration with multi-resolution framework.

We use larger kernel sizes for both kernel

first, then reduce both wisely.

Figure 3.16: 3D right upper lobe of real human lung varifolds-based registration results.
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As the results we can see in Fig. 3.16, multi-resolution framework with appro-

priate parameters can improve the registration results. At the coarsest resolution,

the shape kernel size should be around the averaged branch length of the shape in

order to get a good pre-aligned, and the deformation kernel size should be relatively

large, since we want a “affine-like” registration at the first resolution. Then, both of

the kernel sizes should be reduced. However, remember the smaller the deformation

kernel size, the more control points we need for the deformation field, this would

increase the computation and the algorithm would run slower. We should reduce the

deformetion kernel size wisely, as in Table. 3.3, different deformation kernel sizes with

same shape kernel sizes can give similar registration, we should choose the larger one

to reduce the computation. At the finest resolution, the shape kernel size and defor-

mation kernel size should be near 1/3 of the average branch length and the average

branch length.

We also registered the right upper lobe of the lung with varifold surface rep-

resentation. Fig. 3.17a is the generated triangular meshes of the lung surface for the

before treatment scan and Fig. 3.17b is the generated triangular meshes of lung sur-

face for the after treatment scan. These triangular meshes were generated from the

mask of the lung, which is a 3D image volume using the open source “iso2mesh” as

mentioned in Sec. 2.3.3.
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(a) Triangularized template lung surface

of right upper lobe.

(b) Triangularized source lung surface of

right upper lobe.

Figure 3.17: 3D Triangularized lung surface of right upper lobe.

The overlayed surface meshes before and after registrations are shown in

Fig. 3.18. In Fig.3.18a, the red surface is the target shape and blue surface is the

template shape. Same in Fig. 3.18, the red surface is the target shape and green

surface is the deformed template shape. We can see the registration result is really

good, they perfectly match. This result also came from a multi-resolution framework.

In Fig. 3.19, we register the whole lung using both lung vessels and surface

information and run the algorithm with only two resolutions. In Fig. 3.19b is the

deformed template shape and in Fig. 3.19b is the target shape. Comparing the

deformed template shape with template shape we have in Fig. 3.15, we can see the

result is acceptable even with two resolutions. Especially, for the right upper lobe.
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(a) Overlayed surface meshes of right up-

per lobe of template and target shapes

before registration.

(b) Overlayed surface meshes of right up-

per lobe of template and target shapes

after registration.

Figure 3.18: Registration results of meshes of right upper lobe of human lung.

(a) Skeletons and meshes of deformed

template whole human lung.

(b) Skeletons and meshes of target whole

human lung.

Figure 3.19: Skeletons and meshes of 3D whole human lung after registration.
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CHAPTER 4
CONCLUSION AND DISCUSSION

This thesis investigated the mathematical framework for registering 3D pul-

monary vessel and surface using currents and varifolds. We constructed 2D exper-

iments using simple tree shapes to measure the sensitivity of current and varifold

registration to (1) the momenta sample period ∆, (2) the standard deviation λs of

the Reproducing Kernel Hilbert Space (RKHS) Gaussian kernel used to represent

shapes and (3) the standard deviation λφ of the RKHS Gaussian kernel used to

parameterize the diffeomorphic registration transformation. For the experiments pre-

sented, we conclude that the best registration results for the simple phantom shapes

were produced when (1) ∆ was as small as possible, (2) λφ was close to the average of

the template and target branch lengths and (3) λs was close to 1/3 of the average of

the template and target branch lengths. We also showed that current- and varifold-

based registration give equivalent results if the tangent orientations of the momenta

are consistent between the moving shape and the target shape. We further showed

that varifold-fold registration gives the same result for randomly oriented tangents.

Then we registered real medical data-the 2D fundus images and 3D human lung CT

images. For real medical data, the structure of the skeleton of the vessels are much

more complex than the phantom shapes. Therefore we proposed a multi-resolution

framework, which suggested to register the complex shape start from large deforma-

tion kernel size and choose the shape kernel size as the average branch length. Then

wisely reduce them. At the finest resolution, the deformation kernel size shape should
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be around the average branch length of the shapes and the shape kernel size should

be around 1/3 of the average branch length. We also showed some registration results

of surface representation and combined curve and surface representation, which give

us very promising results. We will extend this work more in the future.
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