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ABSTRACT

Optimization theories and algorithms are used to efficiently find optimal solu-

tions under constraints. In the era of “Big Data”, the amount of data is skyrocketing,

and this overwhelms conventional techniques used to solve large scale and distributed

optimization problems. By taking advantage of structural information in data repre-

sentations, this thesis offers convex and non-convex optimization solutions to various

large scale optimization problems such as super-resolution, sparse signal processing,

hypothesis testing, machine learning, and treatment planning for brachytherapy.

Super-resolution: Super-resolution aims to recover a signal expressed as a

sum of a few Dirac delta functions in the time domain from measurements in the fre-

quency domain. The challenge is that the possible locations of the delta functions are

in the continuous domain [0,1). To enhance recovery performance, we considered de-

terministic and probabilistic prior information for the locations of the delta functions

and provided novel semidefinite programming formulations under the information.

We also proposed block iterative reweighted methods to improve recovery perfor-

mance without prior information. We further considered phaseless measurements,

motivated by applications in optic microscopy and x-ray crystallography. By using

the lifting method and introducing the squared atomic norm minimization, we can

achieve super-resolution using only low frequency magnitude information. Finally, we

proposed non-convex algorithms using structured matrix completion.

Sparse signal processing: `1 minimization is well known for promoting sparse
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structures in recovered signals. The Null Space Condition (NSC) for `1 minimization

is a necessary and sufficient condition on sensing matrices such that a sparse signal can

be uniquely recovered via `1 minimization. However, verifying NSC is a non-convex

problem and known to be NP-hard. We proposed enumeration-based polynomial-

time algorithms to provide performance bounds on NSC, and efficient algorithms to

verify NSC precisely by using the branch and bound method.

Hypothesis testing: Recovering statistical structures of random variables is

important in some applications such as cognitive radio. Our goal is distinguishing two

different types of random variables among n >> 1 random variables. Distinguishing

them via experiments for each random variable one by one takes lots of time and

efforts. Hence, we proposed hypothesis testing using mixed measurements to reduce

sample complexity. We also designed efficient algorithms to solve large scale problems.

Machine learning: When feature data are stored in a tree structured network

having time delay in communication, quickly finding an optimal solution to the regu-

larized loss minimization is challenging. In this scenario, we studied a communication-

efficient stochastic dual coordinate ascent and its convergence analysis.

Treatment planning: In the Rotating-Shield Brachytherapy (RSBT) for can-

cer treatment, there is a compelling need to quickly obtain optimal treatment plans to

enable clinical usage. However, due to the degree of freedom in RSBT, finding optimal

treatment planning is difficult. For this, we designed a first order dose optimization

method based on the alternating direction method of multipliers, and reduced the

execution time around 18 times compared to the previous research.
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PUBLIC ABSTRACT

Optimization theories and algorithms are used to efficiently find optimal solu-

tions under constraints. In the era of “Big Data”, the amount of data is skyrocketing,

and this overwhelms conventional techniques used to solve large scale and distributed

optimization problems. By taking advantage of structural information in data repre-

sentations, this thesis offers convex and non-convex optimization solutions to various

large scale optimization problems such as super-resolution, sparse signal processing,

hypothesis testing, machine learning, and treatment planning for brachytherapy.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

In engineering and science, optimization algorithms and theories play a sig-

nificant role in finding optimal solutions to problems that have lots of constraints.

Mathematicians, economists, and engineers in various fields have studied these op-

timization problems extensively. For example, in signal processing, researchers have

investigated algorithms to recover signals and images with limited measurements and

observations. In economics, investors have tried to maximize profit from limited fi-

nancial budget.

Thanks to improved sensing technologies, we can easily collect data and mea-

surements from various sensors and devices. Thus, the amount of data that we should

deal with in optimization problems is rapidly increasing. Also, a lot of emerging appli-

cations such as smart grid, electric vehicle charge scheduling, transportation networks,

and Internet of things (IoT) require large scale optimization due to their nature of

broad connectivity and huge number of objects. In addition to large problem sizes,

recent optimization problems are different from traditional optimization problems in

other aspects such as distributed data and new data structures. These differences

make conventional solvers inapplicable to these large scale distributed optimization

problems. Thus, the demand for solutions to large scale optimization problems is

ever growing and opening up a variety of new research possibilities. It necessitates
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developing optimization algorithms and theories that can deal with large scale and

distributed optimization problems.

1.2 Background

Optimization theory is a framework for selecting the best solution from feasible

options. An optimization problem can be mathematically formulated as follows:

minimize
x∈Rn

f(x)

subject to x ∈ X , (1.1)

where the vector x is a variable, f ∶ Rn → R is an objective function, and X is

a feasible set. The following subsections describe different types of optimization

problems considered in this thesis.

1.2.1 Convex optimization

The definition of a convex set in [20] is stated as follows: A set X is convex

if and only if the line segment between any two points in X lies in X ; namely, if for

any x, y ∈ X and α ∈ [0,1], we have

αx + (1 − α)y ∈ X . (1.2)

A function f ∶ Rn → R is convex if the domain of f , denoted by dom(f), is a convex

set, and for all x, y ∈ dom(f), and α ∈ [0,1], we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). (1.3)

A convex optimization problem has a convex objective function and a convex feasible

set.
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Convex optimization plays a significant role in mathematical optimization be-

cause it has several advantages. The first advantage is that a local optimal solution

is also a global optimal solution in convex optimization problems, so that we can

safely terminate optimization algorithms when we find a local optimal solution. Sec-

ondly, for convex optimization problems, theoretical convergence of gradient descant

is guaranteed. Hence, we can predict how fast we can obtain a solution. Finally, a

(primal) convex optimization problem can have its dual problem whose optimal value

lower-bounds the optimal value of the primal problem. When strong duality holds, the

primal and dual optimal values become the same. Thus, if the primal problem is hard

to solve, we can solve its dual problem to obtain an optimal solution, or vice versa.

This condition can also be used for stopping criteria of iterative algorithms. In the

following subsections, we introduce different types of convex optimization problems.

1.2.1.1 Linear programming

Linear programming is an important class of convex optimization problem,

which has linear objective function, linear equality and linear inequality constraints.

Mathematically, we can state a linear programming as follows:

minimize
x∈Rn

cTx

subject to aTi x ≤ bi, i = 1,2, ...,m, (1.4)

where c, a1, ..., am ∈ Rn are given vectors and bi, i = 1,2, ...,m, are given constants.

Its feasible region is expressed as a convex polytope, which is the intersection of half
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spaces. We denote the objective function cTx as f(x). For any α, β ∈ R, we have

f(αx + βy) = αf(x) + βf(y). (1.5)

Note that unlike a generic convex function in (1.3), (1.5) has equality.

Linear programming problems have found applications in various fields such

as economics, engineering, power and energy industry, etc. Even though we have

no close-form solutions for generic linear programming, lots of efficient algorithms

to solve linear programming problems ranging from Danzig simplex algorithm to

Karmarkar’s algorithm are introduced in literature [20].

1.2.1.2 Semidefinite programming

Semidefinite programming is another special convex optimization problem

minimizing a linear objective function over the feasible set expressed as the intersec-

tion of the cone of positive semidefinite matrices with an affine space. Mathematically

a semidefinite programming is stated as follows:

minimize
x∈Rn

cTx

subject to x1F1 + x2F2 + ... + xnFn +G ⪯ 0,

Ax = b, (1.6)

where xi is the i-th element of the vector x, F1, F2, ..., Fn, G are m ×m symmetric

matrices, A ∈ Rp×n and b ∈ Rp. It is noteworthy that if F1, F2, ..., Fn, G are diagonal

matrices, then semidefinite programming (1.6) becomes linear programming (1.4).

There are a variety of algorithms to solve semidefinite programming problems.

Interior point methods are well known and implemented in general solvers ranging
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from SDPT3 to SeDuMi [91]. In Chapter 3, we consider semidefinite programming

formulations for solving super-resolution problems.

1.2.1.3 First-order method

In situations where problems are extremely large, more efficient and faster

methods to solve optimization problems are highly desired. Fast algorithms based on

the first-order method are receiving lots of attention due to their speed and practical

uses. Hence, developing fast algorithms based on the first-order method has been

actively researched.

One powerful algorithm to solve convex optimization problems is the Alternat-

ing Direction Method of Multipliers (ADMM). It is also considered a good candidate

solver for large scale optimization problems due to its convergence to an optimal

solution and applicability to various modern large scale applications ranging from

machine learning to computer vision [19]. The optimization problem that we con-

sider in ADMM is stated as follows:

minimize
x∈Rn, z∈Rl

f(x) + g(z)

subject to Ax +Bz = c, (1.7)

where f(x) and g(z) are convex functions, A ∈ Rm×n, B ∈ Rm×l, and c ∈ Rm. The

strategy of ADMM is using the Lagrange multiplier Λ for dual variable of the equality

constraint Ax+Bz = c, and adding a quadratic penalty term for the equality constraint
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as follows:

La(x, z,Λ) = f(x) + h(z) + ⟨Λ, c −Ax −Bz⟩ + ρ
2
∣∣c −Ax −Bz∣∣22, (1.8)

where ρ > 0 is a penalty parameter. Here the function La(x, z,Λ) is called the aug-

mented Lagrangian function. By considering the augmented Lagrangian function,

ADMM searches for the optimal solution without maintaining feasibility at all it-

erations. ADMM minimizes this augmented Lagrangian function over x, z, and Λ

iteratively until it converges.

The rate of convergence shows how fast the intermediate result of an iterative

algorithm goes to the optimal solution by considering the distance at each iteration

between the intermediate result and the optimal value. Hence, it is simply represented

in big-O notation such as O(1
r) for sublinear, and O(cr) for linear convergence, where

r is the number of iteration and c is a constant. The convergence of ADMM has

been well studied under the various conditions. Several studies have shown that

the convergence rate of ADMM is sublinear such as O(1
r) or O( 1

r2 ) at accelerated

version [62, 94]. In particular, when the objective function is strongly convex, it

has been shown that the convergence of ADMM is linear [62, 90]. In Chapter 6, we

consider the proximal graph solver, which is a convex optimization solver based on

ADMM, for large scale cancer treatment planning in brachytherapy.

Another algorithm to solve large scale convex optimization problems is gra-

dient descent. The gradient descent is a conventional iterative method to solve an

optimization problem (1.1). In gradient descent, the (r+1)-th value for x is obtained
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by calculating the following updating equation:

x(r+1) = x(r) − α(r) ▽ f(x(r)), (1.9)

where the super-script represents the iteration number, α is step size, and ▽f(x(r))

is the gradient value of the objective function f at the current point x(r). In order

to improve the performance of the conventional gradient descent, people have devel-

oped various enhanced gradient decent algorithms such as stochastic gradient descent,

proximal gradient descent, primal-dual gradient methods, and coordinate gradient de-

scent methods [20,143,162]. Especially, accelerate and fast gradient descent methods

and their analysis [10,143] have been studied extensively, and widely used in various

applications such as computer vision, machine learning, signal processing and com-

munications [162]. In Chapter 5, we study the first-order method to solve extremely

large scale optimization problems in a distributed network system.

1.2.2 Non-convex optimization

In contrast to convex optimization problems, a non-convex optimization prob-

lem is known to be NP-hard in most cases. A non-convex optimization problem

has a non-convex objective function f(x) or a non-convex feasible set X in (1.1).

Since non-convex problems can have lots of local minimums, figuring out a global

solution from lots of local minimums is quite challenging. Due to the difficulty in

solving non-convex optimization problems, people approached non-convex problems

in the following ways: relaxing non-convex problems to convex problems, using con-

vex optimization to find upper or lower bounds on non-convex problems, and further
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using the bounds to find a global optimal solution. Since some practical problems

are expressed as non-convex problems, research on various non-convex optimization

methods has been widely conducted [144]. In the following subsections, we describe

the approaches to solve non-convex optimization problems in detail.

1.2.2.1 Relaxation to convex optimization

In relaxation, a non-convex objective function is replaced to its close convex

function, and the non-convex constraints are replaced to loose convex constraints,

e.g., convex hull. By relaxing the objective function or the constraints of the non-

convex optimization in various ways, we can have several different relaxed convex

optimization problems. Even though a solution to a non-convex optimization problem

can be different from a solution to its relaxed convex optimization problems, the

relaxation can provide several advantages ranging from computational efficiency to

an approximate solution to the non-convex optimization. Since the solution to the

non-convex optimization can be bounded by the solution to the convex optimization,

we can use this bound to find a global solution to the non-convex optimization.

1.2.2.2 Strategy to find a global solution

Non-convex function can have lots of local minimums. Among them, finding

a global solution is computationally intractable. A simple method to find a global

solution is an exhaustive search method. However, as the size of the feasible set

increases, the exhaustive search method becomes impractical. In order to reduce the

search range, using lower bounds and upper bounds on a global solution is used in
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the branch and bound method for non-convex optimization [57]. By reducing a global

upper bound and increasing a global lower bound, we can finally find a global solution

efficiently.

1.2.2.3 Algorithms to solve non-convex optimization problems

There are non-convex algorithms to solve non-convex optimization problems.

Especially, in low rank matrix completion problems, rank of a matrix is considered

as an objective function or a constraint. Instead of relaxing the rank of a matrix to

the nuclear norm of a matrix or the trace of a matrix, directly using the rank of a

matrix is also possible by conducting the singular value decomposition of the matrix

at each iteration. In Section 3.4, we use this non-convex algorithm for super-resolution

problems. In addition, gradient descent can also be used to find local minimum of a

non-convex function in non-convex optimization problems [87].

1.2.3 Using structural information in data

Compressed sensing is an efficient signal processing technique used to recover

a sparse signal from limited observation data. Here, a sparse signal represents a signal

has only a few nonzero elements. Research on compressed sensing has shown that

when a signal of interest is sparse, the signal can be recovered from fewer samples

than the Nyquist-Shannon sampling theorem requires. Hence, compressed sensing

can reduce the required sampling rate for recovery of the original signal. Because of

this advantage, compressed sensing is used in various applications such as medical

imaging, face recognition, and hologram [77].
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One popular optimization problem considered in compressed sensing, called `1

minimization, is stated as follows:

minimize
x∈Rn

∣∣x∣∣1

subject to x ∈ X , (1.10)

where ∣∣x∣∣1 is `1 norm of x, which is the sum of absolute values of elements of x,

i.e., ∣∣x∣∣1 ≜ ∑n
i=1 ∣xi∣, and X is a convex set. In compressed sensing, it is well known

that we can obtain the sparsest solution by solving `1 minimization problem under

the Null Space Condition (NSC) [52, 55, 110, 152, 171] and the Restricted Isometry

Property (RIP) [31,171]. Extensive research has been dedicated to designing efficient

algorithms to solve `1 minimization [15,32,65,174].

Optimization using structural information can be further extended to matrix

completion problem, which involves finding a low rank matrix from a few randomly

observed matrix elements. For this problem, the authors in [28,151] propose nuclear

norm minimization relaxations. Here, the nuclear norm ∣∣X ∣∣∗ is represented as the

sum of singular values ρi(X) of a matrix X, i.e., ∣∣X ∣∣∗ ≜ ∑k
i=1 ρi(X), rank(X) =

k. By solving this nuclear norm minimization, one can obtain a unique low rank

matrix. Hence, the nuclear norm minimization method can be successfully applied to

recommendation systems, e.g., the Netflix problem, by providing a solution for low-

rank matrix completion. Efficient algorithms to solve matrix completion problems

were also studied in [22,113,128,139].

On a similar track, line spectral problems [45, 51, 98, 138, 168] and phase re-

trieval problems [24], which involve extracting and recovering frequency or phase



11

information, are being actively researched. In particular, atomic norm minimization

has benn proposed to exploit structural information in these problems.

In performing optimization, there are other types of structural information

in data such as block sparse vector, block diagonal matrix, Hankel matrix, Toeplitz

matrix, and full rank matrix. Designing efficient algorithms to solve optimization

problems with structural information is an on-going research topic. In Chapters 2, 3,

4, 5, and 6, we consider optimization problems using structural information in detail.

1.3 Challenges in Large Scale Optimization

1. Size of problem: When the size of the problem is big, large memory space is

required to store large size of intermediate values or given data set. In addition,

calculating the derivative information in full dimension can be considerably

slow. This makes it difficult to check the computational progress in the middle

of calculation. Thus, the size of problem can be a constraint in solving large

scale problems.

2. Data accessibility: Due to cheap data acquisition from sensors, data are

collected broadly, distributively and simultaneously over all the time indices

and places. Transmitting those collected big data from one point to another are

costly. Hence, processing all the data in a central point becomes difficult.

3. Incomplete data: Since data are collected independently over time and space,

the data describing a optimization problem can be incomplete and unavailable

during a certain interval or at specific place. This happens frequently in dis-
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tributed networks. Waiting for entire data to be corrected makes the calculation

of the problem inefficient and slow. Also, the available data can be contami-

nated by noise and outliers.

4. Limit of computational power: In solving a large scale optimization prob-

lem, even a simple full-dimensional vector operation can be very expensive such

as calculating gradient value. Hence, reducing computational burden in full-

dimensional vector operations is required.

5. Limit of time: Practical applications require fast computational responses.

The algorithms should be fast in order to be used in large scale optimization

problems.

1.4 Applications

Optimization techniques can play a significant role in various applications as

follows:

1. Medical treatment planning: The Rotating-Shield Brachytherapy (RSBT)

treatment planning is one of biomedical techniques for cancer treatment, which

delivers directionally modulate radiation to a target organ by rotating radiation-

attenuating shield around a brachytherapy source. The major problem in RSBT

treatment planning is determining optimal dose exposure time and locations for

the target organ without exceeding the tolerance doses of non-target organ in

an optimized fashion. For example, for prostrate treatment, there are many

possible needle locations that brachytherapy source can be delivered in. For
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each needle locations, there are also many positions for dose exposure, which is

called dwell positions. At each dwell position, the target organ gets exposed to

radiation by rotating a shield around a brachytherapy source in predetermined

degree, e.g., 20 degrees, at each time, and it is needed to cover whole 360

degrees. The goal here is finding optimal treatment time and needle locations

from millions of possible treatment planning. Hence, this is one of applications

in which a large scale optimization technique is needed.

2. Machine learning: The amount of collected data is extremely huge and broad,

because data acquisition and regeneration become cheap and easy. People call

this extremely amount of data as big data. Various global companies such as

Google, Amazon, and Facebook are trying to improve their service and increase

their incomes by using those massive data. One good example for this is Google

Flu Trends, which is a web service that Google provides. In the service, Google

provides the anticipated time of flu outbreak by using search engine query data,

and reported that 95% prediction intervals were indicated in [89]. From this

simple example, massive data can play an essential role in obtaining useful in-

formation. Machine learning is designing algorithms that can extract useful

information from massive data set. Since the size of data set is increased and

huge, the operation time in machine learning operations to extract useful infor-

mation is also increased and becomes a bottle-neck. Hence, the fast optimization

technique that can handle large scale optimization problems is required.
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3. Network system optimization: There are various network systems such as

smart Grid, wireless sensor networks, multi-agent systems, networked control

systems, and communication networks. The characteristic that those network

systems share in common is a distributed system. For example, in smart grid,

power generators are distributed. Wireless sensor networks have distributed

sensors, and communication networks have base stations and users in differ-

ent places. In the network framework, the distributed elements such as power

generator, sensor, base station, and user are represented as nodes, and the con-

nection between two nodes is expressed as an edge in the network. Since the

environment and situation that each node has are different, each node can have

shortage and excess of power or information that each system considers. Hence,

there is a room for improvement of a whole system by sharing the storage and

excess at one node with other nodes in optimal manner. Additionally, the cur-

rent network systems become more complex than those in the past. Hence, the

size of optimization problems in network systems is dramatically increased.

4. Image processing: Image processing is a prominent field in which optimiza-

tion techniques using structure information are widely used. Especially, medical

image applications such as MRI and CT scan require high quality images to di-

agnosis disease clearly. However, it takes a large amount of time to take those

high quality images from MRI and CT scan. Hence, there are substantial efforts

to reduce the time by using optimization technique with structure information.

For high quality images, researchers are focusing on the methods to obtain high
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resolution information from samples in low resolution by using optimization

theory. This is known as super-resolution. Also, images can be easily contam-

inated by noise, which makes images hard to be recognized. The optimization

technique comes into play for image denoising to reduce noise factors.

5. Financial engineering: Financial engineering is a multidisciplinary field that

considers engineering methods and tools including optimization theory and tech-

nique to solve financial problems. In financial engineering, optimization tech-

nique can play an important role in maximizing incomes within given restric-

tions, and providing optimal financial strategies to maximize profits. Moreover,

as it is shown through the subprime mortgage crisis happened in U.S., and the

Asian financial crisis, the current financial problems become huge and compli-

cated, because of connections in investments. Therefore, large scale optimiza-

tion technique is required in this field.

1.5 Organization and Contribution

The remainder of this thesis is organized as follows. We provide our contribu-

tions in each chapter as well.

• Chapter 2

We consider the problem of verifying the null space condition, which is a suf-

ficient and necessary condition to guarantee a unique sparse solution from `1

minimization. It is a non-convex optimization problem. For this problem, we

propose fast algorithms to verify the null space condition with upper bound
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as well as enhanced algorithms to verify the null space condition precisely. In

application-wise, we show that our algorithms can be used for checking the ro-

bustness of networks in defective edge detection aspect. Here, the robustness of

networks is expressed as the maximum number of defective edges in networks

which can be uniquely found at the time of detection via `1 minimization with

delay information obtained from random walk.

• Chapter 3

In this chapter, we deal with a super-resolution problem. Our goal here is to

figure out time signal information, which can take any value between 0 and

1, from as few frequency samples as possible. Hence, the size of dimension in

time is infinite. We propose the super-resolution method dealing with various

prior information, and then introduce the block iterative reweighted algorithms

to deal with the case without prior information. After that, we consider the

super-resolution problem with phaseless measurement, called phaseless super-

resolution. Finally, we propose fast algorithms to solve the super-resolution

problem by using structured matrix completion.

• Chapter 4

This chapter describes a signal detection problem in the statistic signal process-

ing. We aim to detect a few abnormal random variables out of lots of normal

random variables. The abnormal and normal random variable follow different

probability distributions. We use mixed observations of random variables in-
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stead of single observation of a random variable at each experiment, which we

call it as compressed hypothesis testing. We propose Neyman-Pearson testing

and maximum likelihood testing methods for optimal detection algorithms as

well as efficient algorithms for the large scale detection problems. We show that

we can reduce the number of observations in detection of abnormal random

variables by using mixed observations.

• Chapter 5

This chapter describes large scale optimization problems for big data. In this

problem, we assume that the dimension of the problem is extremely huge and

data are distributed to lots of local workers. Hence, computing a simple gradient

calculation in full dimension is even expensive or impossible due to the nature

of distribution and huge size of data. In this setting, we study distributed dual

coordinate ascent in a tree network system, which is generalized network system

from a star network having a center computer and local workers connected to

the center, to handle extremely large scale problems in distributed updating

manner. Furthermore, we consider the case when the network has time delay

constraint and provide optimization problem for the optimal number of local

iterations.

• Chapter 6

The Rotating-Shield BrachyTherapy (RSBT) is a practical biomedical appli-

cation for cancer treatment. For practical use in a clinic, calculating optimal
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treatment plans for RSBT is required. However, RSBT cancer treatment plan-

ning has a high degree of freedom due to lots of variables such as radiation

exposure duration time in each radiation source carried by a needle, number of

needles used in treatment, and needle locations, which makes the problem dif-

ficult. The goal of the research on this practical application is providing a fast

optimization solution for optimal cancer treatment in RSBT. For this purpose,

we consider a fast computational method, based on the proximal graph solver

(POGS) - a convex optimization solver using the alternating direction method

of multipliers (ADMM).

• Chapter 7

In this chapter, we introduce future research directions.
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CHAPTER 2
COMPUTABLE PERFORMANCE GUARANTEES FOR

COMPRESSED SENSING MATRICES

2.1 Introduction

Compressed sensing is an efficient signal processing technique to recover a

sparse signal from fewer samples than required by the Nyquist-Shannon theorem,

reducing time and energy spent in sampling operation. These advantages make com-

pressed sensing attractive in various signal processing areas [77].

In compressed sensing, we are interested in recovering the sparsest vector x ∈

Rn that satisfies the underdetermined equation y = Ax. Here R is the set of real

numbers, A ∈ Rm×n, m < n, is a sensing matrix, and y ∈ Rm is the observation or

measurement data. This is posed as an `0 minimization problem:

minimize ∥x∥0

subject to y = Ax, (2.1)

where ∥x∥0 is the number of non-zero elements in vector x. The `0 minimization is an

NP-hard problem. Therefore, we often relax (2.1) to its closest convex approximation

- the `1 minimization problem:

minimize ∥x∥1

subject to y = Ax. (2.2)

It has been shown that the optimal solution of `0 minimization can be obtained by

solving `1 minimization under certain conditions (e.g. Restricted Isometry Property
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or RIP) [29–31,60,64]. For random sensing matrices, these conditions hold with high

probability. We note that RIP is a sufficient condition for sparse recovery [171].

A necessary and sufficient condition under which a k-sparse signal x, (k ≪

n) can be uniquely obtained via `1 minimization is Null Space Condition (NSC)

[55,60,110]. A matrix A satisfies NSC for a positive integer k if

∣∣zK ∣∣1 < ∣∣zK ∣∣1 (2.3)

holds true for all z ∈ {z ∶ Az = 0, z ≠ 0} and for all subsets K ⊆ {1,2, ..., n} with

∣K ∣ ≤ k. Here K is an index set, ∣K ∣ is the cardinality of K, zK is the part of the

vector z over the index set K, and K is the complement of K. NSC is related to the

proportion parameter αk defined as

αk ≜ maximize
{z∶ Az=0, z≠0}

maximize
{K ∶ ∣K∣≤k}

∥zK∥1

∥z∥1

. (2.4)

The αk is the optimal value of the following optimization problem:

maximize
z,{K ∶ ∣K∣≤k}

∥zK∥1

subject to ∥z∥1 ≤ 1, Az = 0, (2.5)

where K is a subset of {1,2, . . . , n} with cardinality at most k. The matrix A satisfies

NSC for a positive integer k if and only if αk < 1
2 . Equivalently, NSC can be verified

by computing or estimating αk. The role of αk is also important in recovery of an

approximately sparse signal x via `1 minimization where a smaller αk implies more

robustness [55, 110,190].

We are interested in computing αk and, especially, finding the maximum k for

which αk < 1
2 . However, computing αk to verify NSC is extremely expensive and was
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reported in [171] to be NP-hard. Due to the challenges in computing αk, verifying NSC

explicitly for deterministic sensing matrices remains a relatively unexamined research

area. In [60,110,120,169], convex relaxations were used to establish the upper or lower

bounds of αk (or other parameters related to αk) instead of computing the exact

αk. While [60, 120] proposed semidefinite programming based methods, [110, 169]

suggested linear programming relaxations to obtain the upper and lower bounds of

αk. For both methods, computable performance guarantees on sparse signal recovery

were reported via bounding αk. However, these bounds of αk could only verify NSC

with k = O(√n), even though theoretically k can grow linearly with n.

Our work drastically departs from these prior methods [60, 110, 120, 169] that

provide only the upper and lower bounds. In our solution, we propose the pick-l-

element algorithms (1 ≤ l < k), which compute upper bounds of αk in polynomial time.

Subsequently, we leverage on these algorithms to develop the tree search algorithm

- a new method to compute the exact αk by significantly reducing computational

complexity of an exhaustive search method. This algorithm offers a way to control

a smooth tradeoff between complexity and accuracy of the computations. In the

conference precursor to this paper, we had introduced Sandwiching Algorithm (SWA)

[52], which employs a branch-and-bound method. Although SWA can also be used to

calculate the exact αk, it has a disadvantage of greater memory usage than TSA. On

the other hand, TSA provides memory and performance benefits for high-dimensional

matrices (e.g., up to size ∼ 6000 × 6000).

It is noteworthy that our methods are different from RIP or the neighborly
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polytope framework for analyzing the sparse recovery capability of random sensing

matrices. For example, prior works such as [64, 69] employ the neighborly polytope

to predict theoretical lower bounds on recoverable sparsity k for a randomly chosen

Gaussian matrix. However, our methods do not resort to a probabilistic analysis and

are applicable for any given deterministic sensing matrix. Also, our algorithms have

the strength of providing better bounds than existing methods [60, 110, 120, 169] for

a wide range of matrix sizes.

2.1.1 Notations and preliminaries

We denote the sets of real numbers, and positive integers as R and Z+ respec-

tively. We reserve uppercase letters K and L for index sets, and lowercase letters

k, l ∈ Z+ for their respective cardinalities. We also use ∣ ⋅ ∣ to denote the cardinality

of a set. We assume k > l ≥ 1 throughout the paper. For vectors or scalars, we use

lowercase letters, e.g., x, k, l. For a vector x ∈ Rn, we use xi for its i-th element. If we

use an index set as a subscript of a vector, it represents the partial vector over the

index set. For example, when x ∈ Rn and K = {1,2}, xK represents [x1, x2]T . We re-

serve uppercase A for a sensing matrix whose dimension is m×n. Since the number of

columns of a sensing matrix A is n, the full index set we consider is {1,2, ..., n}. In ad-

dition, we represent (n
l
) numbers of subsets as Li, i = 1, ..., (nl), where Li ⊂ {1,2, ..., n},

∣Li∣ = l. We use the superscript * to represent an optimal solution of an optimization

problem. For instance, z∗ and K∗ are the optimal solution of (2.5). Since we need

to represent an optimal solution for each index set Li, we use the superscript i∗ to



23

represent an optimal solution for an index set Li, e.g., zi∗. The maximum value of k

such that both αk < 1
2 and αk+1 ≥ 1

2 hold true is denoted by the maximum recoverable

sparsity kmax.

2.2 Pick-l-element Algorithm

Consider a sensing matrix with n columns. Then, there are (n
k
) subsets K

each of cardinality k. When n and k are large, exhaustive search over these subsets

to compute αk is extremely expensive. For example, when n = 100 and k = 10, it

takes a search over 1.7310e+13 subsets to compute αk - a combinatorial task that is

beyond the technological reach of common desktop computers. Our goal is to devise

algorithms that can rapidly yield the exact value of αk. As an initial step, we develop

a method to compute an upper bound of αk in polynomial time, which is called the

pick-l-element algorithm (or simply, pick-l algorithm), where l is a chosen integer such

that 1 ≤ l < k.

Let us define the proportion parameter for a given index set L such that ∣L∣ = l,

denoted by αl,L, as

αl,L ≜ maximize
{z∶ Az=0, z≠0}

∥zL∥1

∥z∥1

. (2.6)

(2.6) is the partial optimization problem of (2.4) only considering the vector z in the

null space of A for a fixed index set L. We can obtain αl,L by solving the following

optimization problem:

maximize
z

∥zL∥1

subject to ∥z∥1 ≤ 1, Az = 0. (2.7)
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Since (2.7) is maximizing a convex function for a given subset L, we cast (2.7) as 2l

linear programming problems by considering all the possible sign patterns of every

element of zL (e.g., if l = 2 and L = {1,2}, then, ∣∣zL∣∣1 = ∣z1∣ + ∣z2∣ can correspond to

2l = 4 possibilities: z1+z2, z1−z2, −z1+z2, and −z1−z2). αl,L is equal to the maximum

among the 2l objective values.

The pick-l algorithm uses αl,L’s obtained from different index sets to compute

an upper bound of αk. Algorithm 2.1 shows the steps of the pick-l algorithm in detail.

The following Lemmata show that the pick-l algorithm provides an upper bound of

αk. Firstly, we provide Lemma 2.1 to derive the upper bound of the proportion

parameter for a fixed index set K, and then, we show that the pick-l algorithm yields

an upper bound of αk in Lemma 2.2.

Lemma 2.1 (Cheap Upper Bound (CUB) for a given subset K). Given a subset K,

we have

CUB(αk,K) ≜ 1

(k−1
l−1

)
∑

{Li⊆K, ∣Li∣=l}

αl,Li ≥ αk,K . (2.8)

Proof. Suppose that when z = zi∗ and z = z∗, we achieve the optimal value of (2.6)

for given index sets Li and K respectively, i.e., αl,Li =
∥zi∗Li

∥1

∥zi∗∥1
and αk,K = ∥z∗K∥1

∥z∗∥1
. Since

each element of K appears (k−1
l−1

) times in {Li ⊆ K, ∣Li∣ = l}, we obtain the following

inequality:

αk,K = ∥z∗K∥1

∥z∗∥1

= 1

(k−1
l−1

)
∑

{Li⊆K, ∣Li∣=l}

∥z∗Li∥1

∥z∗∥1

≤ 1

(k−1
l−1

)
∑

{Li⊆K, ∣Li∣=l}

∥zi∗Li∥1

∥zi∗∥1

= CUB(αk,K).

The inequality is from the optimal value of (2.6) for each index set Li.
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Algorithm 2.1 Pick-l-element algorithm, 1 ≤ l < k for computing an upper bound of
αk
1: Given a matrix A, calculate αl,L’s for all the subsets L, ∣L∣ = l, via (2.7).

2: Sort these (n
l
) different values of αl,L’s in descending order like (2.10).

3: Compute an upper bound of αk via (2.9).

4: If the upper bound is less than 1
2 , then NSC for k ∈ Z+ is satisfied.

Lemma 2.2. The pick-l algorithm provides an upper bound of αk, namely

αk ≤
1

(k−1
l−1

)

(
k
l
)

∑
i=1

αl,Li , (2.9)

where αl,L1 ≥ αl,L2 ≥ ⋯ ≥ αl,Li ≥ ⋯ ≥ αl,L
(
n
l )
. (2.10)

Proof. Without loss of generality, we assume that when z = zi∗, i = 1,2, ..., (nl), αl,Li ’s

are obtained in descending order like (2.10). It is noteworthy that αk,K is defined for

a fixed K set; however, αk is the maximum value over all the subsets with cardinality

k. Suppose that when z = z∗ and K = K∗, αk is achieved in (2.4). From the

aforementioned definitions and similar argument as in Lemma 2.1, we have:

αk = αk,K∗ ≤ 1

(k−1
l−1

)
∑

{Li⊆K∗, ∣Li∣=l}

αl,Li ≤
1

(k−1
l−1

)

(
k
l
)

∑
i=1

αl,Li .

The first inequality is from Lemma 2.1, and the last inequality is from the assumption

that αl,Li ’s are sorted in descending order.

The steps 2 and 3 in Algorithm 2.1, which are sorting αl,L’s and computing

the upper bound of αk with sorted αl,L’s via (2.9), can also be done by solving the
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following optimization problem without sorting operation:

maximize
γi, 1≤i≤(n

l
)

(
n
l
)

∑
i=1

γi αl,Li

subject to 0 ≤ γi ≤
1

(k−1
l−1

)
, 1 ≤ i ≤(

n
l
),

(
n
l
)

∑
i=1

γi ≤
k

l
. (2.11)

Here, we note that 1

(
k−1
l−1

)
×(kl) = k

l . Therefore, for the optimal value, the first (k
l
) largest

αl,Li ’s are chosen with the coefficient 1

(
k−1
l−1

)
.

The upshot of the pick-l algorithm is that we can reduce number of operations

from (n
k
) enumerations to (n

l
). For example, when n = 300, k = 20, and l = 2, the

number of operations is reduced by around 1026 times. Moreover, as n increases, the

reduction rate increases. With the reduced enumerations, we can still have meaning-

ful upper bounds of αk through the pick-l-element algorithm. We will present the

performance of the pick-l algorithm in Section 2.5 showing that the pick-l algorithm

provides better upper bounds than the previous research [60, 110] even when l = 2.

Furthermore, thanks to the pick-l algorithm, we can design a new algorithm based

on a branch-and-bound search to calculate the exact αk by using upper bounds of

αk obtained from the pick-l algorithm. It is noteworthy that the cheap upper bound

introduced in Lemma 2.1 can provide upper bounds on αk,K for specific subsets K,

which enable our branch-and-bound method to calculate the exact αk or more precise

bounds on αk. However, LP relaxation method [110] and SDP method [60] provide

the upper bounds on αk, instead of upper bounds on αk,K for specific subsets K.

Finally, since we are also interested in kmax, we introduce the following Lemma
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2.3 to bound the maximum recoverable sparsity kmax.

Lemma 2.3. The maximum recoverable sparsity kmax satisfies

k(αl) ≜ ⌈l ⋅ 1/2
αl

⌉ − 1 ≤ kmax, (2.12)

where ⌈.⌉ is the ceiling function.

Proof. To prove this lemma, we will show that when k = ⌈l ⋅ 1/2
αl

⌉− 1, αk < 1
2 . This can

be concluded from an upper bound of αk given as follows:

αk = αk,K∗ ≤ 1

(k−1
l−1

)
∑

{Li⊆K∗, ∣Li∣=l}

αl,Li ≤
(k
l
)

(k−1
l−1

)
αl = αl ⋅

k

l
. (2.13)

Note that there are (k
l
) terms in the summation. From (2.13), if αl ⋅ kl < 1

2 , then

αk < 1
2 . In other words, if k < l ⋅ 1/2

αl
, then αk < 1

2 . Since k is a positive integer, when

k = ⌈l ⋅ 1/2
αl

⌉ − 1, αk < 1
2 . Therefore, the maximum recoverable sparsity kmax should be

larger than or at least equal to ⌈l ⋅ 1/2
αl

⌉ − 1.

It is noteworthy that in [110, Section 4.2.B], the authors introduced lower

bound on k based on α1, i.e., k(α1). However, in Lemma 2.3, we provide a more

general result. Furthermore, in Lemma 2.3, instead of using αl, we can use an upper

bound of αl to obtain the recoverable sparsity k; namely, k(UB(αl)) = ⌈l ⋅ 1/2
UB(αl)

⌉−1 ≤

kmax, where UB(αl) represents an upper bound of αl. Since the proof follows the

same track as the proof of Lemma 2.3, we omit the proof.

2.3 Optimized Pick-l Algorithm

We can tighten the upper bound of αk in the pick-l algorithm by replacing

the constant factor 1

(
k−1
l−1

)
in (2.9) with optimized coefficients at the cost of additional
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complexity, which we call as the optimized pick-l algorithm. This optimized pick-l

algorithm is mostly useful from a theoretical perspective. In practice, it gives im-

proved but similar performance in calculating the upper bound of αk to the basic

pick-l algorithm described in Section 2.2. As a theoretical merit of the optimized

pick-l algorithm, we can show that as l increases, the upper bound of αk becomes

smaller or stays the same.

The optimized pick-l algorithm provides an upper bound of αk via the following

optimization problem:

maximize
γi, 1≤i≤(n

l
)

(
n
l
)

∑
i=1

γi αl,Li

subject to γi ≥ 0, 1 ≤ i ≤(
n
l
),

(
n
l
)

∑
i=1

γi ≤
k

l
, (2.14)

∑
{i∶ B⊆Li, 1≤i≤(n

l
)}

γi ≤
(k−b
l−b

)
(k−1
l−1

)
, ∀ b ∈ Z+ s.t. 1 ≤ b ≤ l,

∀ B with ∣B∣ = b .

The optimal value of (2.14) is an upper bound of αk.

In the following lemmata, we show that the optimized pick-l algorithm pro-

duces an upper bound of αk and this bound is tighter than the upper bound obtained

from the basic pick-l algorithm. The last lemma establishes that as l increases, the

upper bound of αk decreases or stays the same.

Lemma 2.4. The optimized pick-l algorithm provides an upper bound of αk.

Proof. The strategy to prove Lemma 2.4 is to show that one feasible solution of (2.14)

gives an upper bound of αk. Suppose when K = K∗, αk is achieved, i.e., αk = αk,K∗ .
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For a feasible solution, let us choose γi = 1

(
k−1
l−1

)
when Li ⊆ K∗, and γi = 0 otherwise,

which we can easily check whether it satisfies the first and second constraints of (2.14).

For the third constraint, let us check the case when b = l first. For b = l, we can choose

an arbitrary index set B such that ∣B∣ = b = l. For the chosen B, there is only one Li

such that B ⊆ Li, which is itself, i.e., Li = B. For other chosen B’s, it is the same.

Hence, the third constraint represents

γi ≤
1

(k−1
l−1

)
, i = 1,2, ...,(n

l
). (2.15)

For b = 1, the third constraint represents

∑
{i∶ B⊆Li, 1≤i≤(n

l
), ∣B∣=1}

γi ≤ 1. (2.16)

Note that there are (n−1
l−1

) numbers of Li’s which have an index set B as a subset.

Among (n−1
l−1

) numbers of γi’s, only γi’s whose corresponding Li’s are the subsets of

K∗ are 1

(
k−1
l−1

)
. Since each element in Li such that Li ⊆ K∗ appears (k−1

l−1
) times in

{i ∶ Li ⊆ K∗, 1 ≤ i ≤ (n
l
)}, the summation of γi, where the corresponding Li’s are

the subset of K∗, becomes 1

(
k−1
l−1

)
× (k−1

l−1
) = 1, which satisfies (2.16). Basically, the third

constraint makes that for an index, the summation of coefficients related to the index

is limited to 1. In the same way, for 1 < b < l, the chosen γi is a feasible solution of

(2.14). From this feasible solution, we have 1

(
k−1
l−1

)
∑{i∶ Li⊆K∗, ∣Li∣=l}αl,Li for the optimal

value, which is an upper bound of αk as shown in (2.13).

Lemma 2.5. The optimized pick-l algorithm provides a tighter, or at least the same,

upper bound of αk than the basic pick-l algorithm.
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Proof. We will show that the optimization problem (2.11) is a relaxation of (2.14). As

in the proof of Lemma 2.4, for b = l, the third constraint of (2.14) represents (2.15),

which is involved in the first constraint of (2.11). Since the third constraint of (2.14)

considers other b values such that 1 ≤ b < l, (2.14) has more constraints than (2.11).

Therefore, the optimized pick-l algorithm, which is (2.14), provides a tighter or at

least the same upper bound than the basic pick-l algorithm, which is (2.11).

Lemma 2.6. The optimized pick-l algorithm provides a tighter or at least the same

upper bound than the optimized pick-p algorithm when l > p.

Proof. We can upper bound the objective function of (2.14) by using (2.8) as follows:

maximize
γi, 1≤i≤(n

l
)

1

( l−1
p−1

)

(
n
l
)

∑
i=1

γi ∑
{j∶ Pj⊂Li, ∣Pj ∣=p}

αp,Pj

subject to γi ≥ 0, 1 ≤ i ≤(
n
l
),

(
n
l
)

∑
i=1

γi ≤
k

l
, (2.17)

∑
{i∶ B⊆Li, 1≤i≤(n

l
)}

γi ≤
(k−b
l−b

)
(k−1
l−1

)
, ∀ b ∈ Z+ s.t. 1 ≤ b ≤ l,

∀ B with ∣B∣ = b .

Note that in the objective function of (2.17), each αp,Pj , 1 ≤ j ≤ (n
p
), appears (n−p

l−p
)

times. Let us define

γ
′

j ≜
1

( l−1
p−1

)
∑

{i∶ Pj⊂Li, 1≤i≤(n
l
)}

γi.

We can relax (2.17) to the following problem, which turns out to be the same as the
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optimized pick-p algorithm:

maximize
γ
′

j , 1≤j≤(n
p
)

(
n
p
)

∑
j=1

γ
′

j αp,Pj

subject to γ
′

j ≥ 0, 1 ≤ j ≤(
n
p
),

(
n
p
)

∑
j=1

γ
′

j ≤
k

p
, (2.18)

∑
{j∶ B⊆Pj , 1≤j≤(n

p
)}

γ
′

j ≤
(k−b
p−b

)
(k−1
p−1

)
, ∀ b ∈ Z+ s.t. 1 ≤ b ≤ p,

∀ B with ∣B∣ = b .

The relaxation is shown by checking the constraints. The first constraint of (2.18) is

trivial to obtain. For the second constraint, we can obtain the second constraint of

(2.18) from the following relations:

(
n
p
)

∑
j=1

γ
′

j =
(
n
p
)

∑
j=1

1

( l−1
p−1

)
∑

{i∶ Pj⊂Li, 1≤i≤(n
l
)}

γi =
1

( l−1
p−1

)
( l
p
)

(
n
l
)

∑
i=1

γi ≤
1

( l−1
p−1

)
( l
p
)k
l
= k
p
,

where the second equality is obtained from the fact that γi, which is a coefficient of

αl,Li , appears ( l
p
) times in ∑

(
n
p
)

j=1∑{i∶ Pj⊂Li} γi. The final inequality is from the second

constraint of (2.17). The third constraint in (2.18) can be deduced from the following

inequality:

∑
{j∶ B⊆Pj , 1≤j≤(n

p
)}

γ
′

j

= 1

( l−1
p−1

)
∑

{j∶ B⊆Pj , 1≤j≤(n
p
)}

∑
{i∶ Pj⊂Li, 1≤i≤(n

l
)}

γi

= 1

( l−1
p−1

)
(n−b
p−b

)(n−p
l−p

)
(n−b
l−b

)
∑

{i∶ B⊂Li, 1≤i≤(n
l
)}

γi

≤ 1

( l−1
p−1

)
(n−b
p−b

)(n−p
l−p

)
(n−b
l−b

)
(k−b
l−b

)
(k−1
l−1

)
, 1 ≤ b ≤ p

=
(k−b
p−b

)
(k−1
p−1

)
, 1 ≤ b ≤ p,
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where the second equality is from the fact that for a fixed Pj, there are (n−p
l−p

) numbers

of Li’s, where Pj ⊂ Li, i = 1, ..., (nl); for a fixed B, there are (n−b
p−b

) numbers of Pj’s,

where B ⊂ Pj, j = 1, ..., (np), and (n−b
l−b

) numbers of Li’s, where B ⊂ Li, i = 1, ..., (nl).

Since (2.18) is obtained from the relaxation of (2.17), the optimal value of (2.18) is

larger or equal to the optimal value of (2.17). (2.18) is just the optimized pick-p

algorithm. Thus, when l > p, the optimized pick-l algorithm provides a tighter or at

least the same upper bound than the optimized pick-p algorithm.

By using larger l in the pick-l algorithm, we can obtain a tighter upper bound

of αk. However, this is only an upper bound of αk, not its exact value. There

is, however, a need to find the exact αk in some applications [54, 83, 191]. To this

end, we propose a new branch-and-bound based approach termed as the tree search

algorithm to find the exact αk. Our design of the tree search algorithm is enabled by

the pick-l algorithms introduced in Sections 2.2 and 2.3.

2.4 Tree Search Algorithm

The Tree Search Algorithm (TSA) relies on representing subsets (with cardi-

nality no bigger than k) of {1, ..., n} using a tree structure. To find the index set K∗

which leads to the maximum αk,K (among all possible index set K’s), TSA applies a

best-first branch-and-bound search over the tree structure [57]. In the tree structure,

each tree node J represents a subset of {1, ..., n} with cardinality no bigger than k.

For a tree node J , we calculate an upper bound of αk,K , which is valid for any child

node K (with cardinality k) of the node J . If this upper bound happens to be smaller
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than a lower bound of αk, TSA will not further explore tree node J and all its child

nodes.

Since TSA does not necessarily have to calculate αk,K for every k-subset K,

TSA can have less computational complexity than the Exhaustive Search Method

(ESM). We will demonstrate the computational complexity of TSA in a statistical

way in the numerical experiment section later. For simplicity of presentations, we

introduce 1-Step TSA, which is based on the pick-1 algorithm. With simple mod-

ifications, we can extend 1-Step TSA to l-Step TSA, which is based on the pick-l

algorithm for l ≥ 2.

2.4.1 Tree structure

A node J in the tree represents an index subset of {1, ..., n} such that ∣J ∣ ≤ k.

An edge in the tree represents a set of indices (for 1-Step TSA, this set has cardinality

1), which we call edge subset. The index set that a node J represents is the union of

all edge subsets that one encounters while traversing from the root node to the node

J . Thus, we have the following rule:

[R1] A parent node is a subset of each of its child node(s).

A node that has no child is referred to as a leaf node. We call the cardinality

of the index set corresponding to J as J ’s height. A tree is considered fully expanded

if every leaf node has cardinality k. In constructing the tree structure, we impose the

following “legitimate order”, which ensures that any child node has a bigger index

than its parent node.
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[R2] “Legitimate order” - Let P , C, and E denote the parent node, child node, and

edge subset between P and C respectively. Then, any index in P must be

smaller than any index in E.

Fig. 2.1 illustrates this rule in a fully-expanded tree when k = 2 and n = 3.

Figure 2.1: Fully expanded tree structure following the legitimate order for k = 2 and n = 3.

2.4.2 Branching node selection and tree expansion

For a tree node J , we calculate a value B(J), which is no smaller than αk,K

for any child node K (with cardinality k) of the node J . B(J) is calculated as

B(J) = αj,J +
t

∑
i=1

α1,{i+max(J)}, (2.19)

where j + t = k, max(J) represents the largest index in J , and α1,{1} ≥ α1,{2} ≥ ... ≥

α1,{n}. For example, in Fig. 2.1, for k = 2, B({1}) = α1,{1} + α1,{2}. In each iteration,

TSA selects a leaf node J with the largest B(J) and branching a new node from the
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node J or the parent of the node J . In order to further reduce the computational

complexity of TSA, we introduce the following simple upper bound calculation instead

of using (2.19) for the new node. For a new node Q attached to the node J in the

tree, TSA computes B(Q) as follows:

B(Q) = αj,J + α1,Q∖J +
t

∑
i=1

α1,{i+max(Q)}, (2.20)

where j+ t+1 = k, max(Q) represents the largest index in Q, and α1,{1} ≥ α1,{2} ≥ ... ≥

α1,{n}. Thus, without calculating αj+1,Q, we can have a value B(Q), which is still an

upper bound of αk,K for any child node K (with cardinality k) of the node Q.

Algorithm 2.2 shows detailed steps of TSA, based on the pick-1 algorithm

(namely, 1-Step TSA). In the description, we define “expanding the tree from a node

J” as follows:

[R3] “Expanding the tree from a node J” - Attaching a new node Q to the node

J , where B(Q) is the largest value defined as (2.20) among all the unattached

child nodes of the node J .

2.4.3 Subtree pruning

The lower bound of αk is calculated by simply computing an exact αk,K , which

is B(K) for a height-k leaf node K after calculating (2.19). Among the exact αk,K

values of height-k leaf nodes, TSA considers the biggest αk,K value as the global lower

bound of αk. If a leaf node in any height has smaller B(⋅) value than the global lower

bound, then, TSA prunes subtree of the leaf node and does not further explore all its

child nodes.
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2.4.4 Two enhancements

To further reduce the computational complexity of TSA, we incorporate two

novel features to TSA. Firstly, when TSA attaches a new node Q to a node J in the

tree structure, TSA computes B(Q) as (2.20). Thus, without calculating αj+1,Q, we

can still have a value B(Q), which is still an upper bound of αk,K for any child node

K (with cardinality k) of the node Q.

Secondly, when TSA adds a new node Q to a node J in the tree structure

(assuming αj,J has already been calculated), TSA does not need to add all of J ’s

child nodes to the tree at the same time. Instead, TSA only adds the node J ’s

unattached child node Q with the largest B(Q) as defined in (2.20). Namely, the

index Q ∖ J is no bigger than the index Q′ ∖ J , where Q′ is any unattached child of

the node J . We note that B(Q) is an upper bound on B(Q′) (according to (2.20)) for

any other unattached child node Q′ of the node J . Thus, B(Q) is still an upper bound

on αk,K for any child node K of any of the node J ’s unattached child nodes. We note

that the methods based on LP [110] and SDP [60] also provide upper bounds on αk.

However, they are unable to determine upper bounds of αk,K , which is for a specific

index set K. This prevents use of LP and SDP methods in our branch-and-bound

method for computing the exact αk.

2.4.5 Advantage of tree search algorithm

Due to the nature of the branch and bound algorithm, we can obtain a global

upper bound and a global lower bound of αk while TSA runs. As the number of
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Algorithm 2.2 Tree search algorithm based on the pick-1-element algorithm (1-Step
TSA)

Input: A ∈ Rm×n, k, l ← 1 ▷ 1-Step TSA, i.e., l = 1
Output: αk

▷ Pre-commputation:
1 compute αl,{i} for i = 1, ..., n via (2.7)

2 permute columns of A in descending order of α1,{i}’s, so that α1,{1} ≥ ... ≥ α1,{n}

▷ Tree expansion:
3 start with root node ∅, where B(∅) = ∑

k
i=1 α1,{i}, in a tree structure Υ

4 Loop
5 J ← a node that has the largest B(⋅) among all the leaf nodes in Υ
6 j ← ∣J ∣
7 if αj,J is not calculated then
8 compute αj,J via (2.7) and update B(J) via (2.19)
9 expand Υ from the parent of J ▷ See [R3]

10 else
11 if j = k then
12 αk ← B(J)
13 break

14 else
15 expand Υ from J ▷ See [R3]
16 end

17 end

18 EndLoop

iterations increases in TSA, we can obtain tighter and tighter upper bounds on αk,

which is the largest B(⋅) among leaf nodes. By using the global upper bound of αk,

we can obtain a lower bound of the recoverable sparsity k via Lemma 2.3. Thus, even

though the complexity of TSA is too high to finish in a timely manner, we can still

obtain new bounds on the recoverable sparsity k by early terminating TSA.

2.5 Numerical Experiments

We conducted extensive simulations to compute the exact αk or its upper

bounds using TSA and the pick-l algorithms. For the same matrices, we compared our
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methods with the previously mentioned approaches that use LP relaxation [110] and

SDP method [60]. We assess the computational complexity in terms of execution time

of the algorithms.1 In addition, we carried out numerical experiments to demonstrate

the computational complexity of TSA statistically.

For LP method in [110] and SDP method in [60], we used the Matlab codes2

provided by the authors. Since these methods use different solvers, we used two

different solvers: CVX [91] - a package for specifying and solving convex programs

- for SDP method and MOSEK [141] - a commercial LP solver - for LP method.

For our methods, we used MOSEK to solve (2.7). Also, to be consistent with the

previous research, matrices were generated from the Matlab code provided by the

authors of [60] at http://www.di.ens.fr/~aspremon/NSPcode.html.

2.5.1 Performance comparison

Firstly, we considered Gaussian matrices and partial Fourier matrices sized

from n = 40 to n = 256. We chose n = 40 so that our results can be compared with

the simulation results in [60].

2.5.1.1 Low-dimensional sensing matrices

Sensing matrices with n = 40: We considered sensing matrices of row di-

mension m = 0.5n, 0.6n, 0.7n, 0.8n, where n = 40. For every matrix size, 10 different

1We conducted our experiments on HP Z220 CMT with Intel Core i7-3770 dual core
CPU @3.4GHz clock speed and 16GB DDR3 RAM, using Matlab (R2013b) on Windows 7.

2LP method from http://www2.isye.gatech.edu/~nemirovs/ and SDP method from
http://www.di.ens.fr/~aspremon/NSPcode.html.
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Table 2.1: αk comparison - Gaussian Matrix
(Floor to the nearest hundredth)

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
c

20 × 40

pick-1 0.28 0.54 0.80 1 1 1/1.1
pick-2 0.28 0.45 0.65 0.84 1 2/1.9
pick-3 0.28 0.45 0.57 0.75 0.91 2/1.9
TSA 0.28 0.45 0.57 0.67 0.75 2/1.9
LPa 0.28 0.49 0.66 0.83 0.97 2/1.6

SDPb 0.28 0.48 0.65 0.80 0.94 2/1.8

24×40

pick-1 0.23 0.45 0.66 0.86 1 2/2.0
pick-2 0.23 0.37 0.52 0.68 0.84 2/2.1
pick-3 0.23 0.37 0.46 0.60 0.74 3/2.8
TSA 0.23 0.37 0.46 0.57 0.65 3/2.8
LP 0.23 0.40 0.55 0.70 0.83 2/2.0

SDP 0.23 0.40 0.55 0.69 0.82 2/2.0

28×40

pick-1 0.18 0.35 0.52 0.69 0.85 2/2.0
pick-2 0.18 0.31 0.45 0.58 0.71 3/3.0
pick-3 0.18 0.31 0.41 0.53 0.65 3/3.0
TSA 0.18 0.31 0.41 0.49 0.57 4/3.5
LP 0.18 0.33 0.48 0.60 0.71 3/3.0

SDP 0.18 0.33 0.47 0.59 0.70 3/3.0

32×40

pick-1 0.14 0.28 0.41 0.54 0.66 3/3.0
pick-2 0.14 0.24 0.36 0.46 0.57 4/3.8
pick-3 0.14 0.24 0.33 0.43 0.52 4/4.1
TSA 0.14 0.24 0.33 0.40 0.47 5/4.9
LP 0.14 0.26 0.37 0.48 0.57 4/3.9

SDP 0.14 0.26 0.37 0.47 0.56 4/4.0

a
Linear Programming [110]

b
Semidefinite Programming [60]

c
median / average

realizations each of Gaussian and partial Fourier matrices were considered. So, we

used total 80 different n = 40 sensing matrices for the numerical experiments in Tables

2.1, 2.2, 2.3 and 2.4. We normalized all of the matrix columns so that they have a

unit `2-norm. The entries of Gaussian matrices were i.i.d standard Gaussian N (0,1).

The partial Fourier matrices had m rows as the partial Fourier bases drawn at ran-

dom. We compared our algorithms - pick-1, pick-2, pick-3 and TSA - to LP and SDP

methods.
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Table 2.2: Execution time (geometric mean) - Gaussian Matrix
(Unit: second)

A
(m×n)

Algo. α1 α2 α3 α4 α5

20×40

pick-1 0.28 0.28 0.28 0.28 0.28
pick-2 0.28 9.68 9.68 9.68 9.68
pick-3 0.28 9.68 233.83 233.83 233.83

TSA 1.20a 11.13b 11.38b 43.44b 551.18c

LP 0.42 0.42 0.42 0.41 0.41
SDP 46.72 74.90 64.27 59.05 56.33

ESM 0.28 9.68 233.83 4.54e3d 6.31e4d

24×40

pick-1 0.28 0.28 0.28 0.28 0.28
pick-2 0.28 9.85 9.85 9.85 9.85
pick-3 0.28 9.85 248.95 248.95 248.95

TSA 1.01a 10.99b 11.67b 23.37b 301.56c

LP 0.46 0.46 0.46 0.44 0.46
SDP 50.93 59.58 49.68 46.15 44.62

ESM 0.28 9.85 248.95 4.82e3d 6.72e4d

28×40

pick-1 0.36 0.36 0.36 0.36 0.36
pick-2 0.36 10.56 10.56 10.56 10.56
pick-3 0.36 10.56 259.92 259.92 259.92

TSA 1.18a 11.87b 11.96b 14.50b 290.96c

LP 0.51 0.50 0.49 0.50 0.50
SDP 48.89 48.94 42.32 39.00 38.83

ESM 0.36 10.56 259.92 5.21e3d 7.13e4d

32×40

pick-1 0.36 0.36 0.36 0.36 0.36
pick-2 0.36 11.35 11.35 11.35 11.35
pick-3 0.36 11.35 281.42 281.42 281.42

TSA 1.14a 13.92b 12.93b 14.01b 307.99c

LP 0.54 0.53 0.54 0.54 0.54
SDP 47.76 47.96 39.92 36.62 34.12

ESM 0.36 11.35 281.42 5.60e3d 7.92e4d

a 1-Step TSA b 2-Step TSA c 3-Step TSA

d Exhaustive Search Method (Estimated time = avg. time to solve (2.7) × # of index sets)
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Table 2.3: αk comparison - Partial Fourier Matrix
(Floor to the nearest hundredth)

A
(m×n)

Algo. α1 α2 α3 α4 α5 kmax
c

20×40

pick-1 0.19 0.39 0.59 0.78 0.98 2/2.0
pick-2 0.19 0.34 0.51 0.68 0.85 2/2.3
pick-3 0.19 0.34 0.47 0.63 0.78 3/2.8
TSA 0.19 0.34 0.47 0.60 0.70 3/2.8
LPa 0.19 0.39 0.59 0.78 0.98 2/2.0

SDPb 0.19 0.39 0.59 0.78 0.98 2/2.0

24×40

pick-1 0.16 0.32 0.48 0.64 0.80 3/2.7
pick-2 0.16 0.29 0.43 0.58 0.72 3/2.9
pick-3 0.16 0.29 0.40 0.53 0.66 3/3.1
TSA 0.16 0.29 0.40 0.49 0.60 4/3.4
LP 0.16 0.32 0.48 0.64 0.80 3/2.7

SDP 0.16 0.32 0.48 0.64 0.80 3/2.7

28×40

pick-1 0.12 0.24 0.37 0.49 0.61 4/3.7
pick-2 0.12 0.23 0.34 0.46 0.57 4/3.9
pick-3 0.12 0.23 0.32 0.43 0.54 4/3.9
TSA 0.12 0.23 0.32 0.41 0.50 4/4.0
LP 0.12 0.24 0.37 0.49 0.61 4/3.7

SDP 0.12 0.24 0.37 0.49 0.61 4/3.7

32×40

pick-1 0.09 0.18 0.28 0.37 0.46 5/4.7
pick-2 0.09 0.17 0.26 0.35 0.44 5/4.7
pick-3 0.09 0.17 0.24 0.33 0.41 5/4.7
TSA 0.09 0.17 0.24 0.32 0.38 5/4.7
LP 0.09 0.18 0.28 0.37 0.46 5/4.7

SDP 0.09 0.18 0.28 0.37 0.46 5/4.7

a Linear Programming [110] b Semidefinite Programming [60] c median / average

For a matrix of given size and type, k was increased from 1 to 5 in unit steps.

Tables 2.1 and 2.3 show the median value of αk and obtained kmax on Gaussian

matrices and partial Fourier matrices respectively. For the recoverable sparsity kmax,

we provide the median value obtained by using the median value of αk and average

value calculated from ten kmax from ten random cases. To be consistent with the

previous research [60], in which the authors used the median value of αk to compare
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SDP method to LP method, we used the median value obtained over 10 random

realizations of sensing matrix and derived the largest recoverable sparsity from the

median value of αk. Compared to the previous works involving LP and SDP methods,

we obtained bigger or at least the same recoverable sparsity kmax by using pick-2, the

pick-3 and TSA. Also, we obtained exact αk values for k = 1,2, ...,5 by using TSA,

while LP and SDP methods only provided an exact αk for k = 1.

For execution time, we calculated the geometric mean to avoid biases for the

average. Tables 2.2 and 2.4 list the averaged execution time. Given our computational

resources, we also estimated execution time to find the exact αk using ESM. For the

estimated execution time, we obtained average time to solve (2.7) from 100 trials and

multiplied the average time to total number of index sets. For example, ESM takes

around 21 hours (= 0.1203 sec. × (40
5
)) to find α5 for one instance of 32 × 40 Gaussian

matrix, where 0.1203 sec. was obtained by running 100 random cases and calculating

the arithmetic mean. 3-Step TSA reduced the computational time in average around

250 times in order to obtain the exact α5.

Sensing matrices with n = 256: We assessed the performance of the pick-l

algorithm for sensing matrices with n = 256. We carried out numerical experiments

on 128 × 256 Gaussian matrices in Fig. 2.2 (a) and 64 × 256 partial Fourier matrices

in Fig. 2.2 (b). Here, for 10 sensing matrices, we obtained the median values of the

upper bounds of αk using the pick-l algorithms and compared the results with the

LP relaxation method [110]. We omitted the SDP method [60] from this experiment

due to its very high computational complexity for n = 256. For the pick-3 algorithm
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(a) 128 × 256 Gaussian matrices (b) 64 × 256 Partial Fourier matrices

Figure 2.2: Median upper bounds of αk from the pick-l algorithm and the LP relaxation
method.

in Fig. 2.2 (a), we calculated the upper bound of α3 via TSA, and used this result

to calculate upper bounds of αk, k = 3,4, ...,8 via (2.13). Fig. 2.2 (a) and (b)

demonstrate that, with an appropriate choice of l, the upper bound of αk obtained

via the pick-l algorithm can be tighter than that from the LP relaxation method.

For example, for 128 × 256 Gaussian matrices, LP relaxation often determines the

maximum recoverable sparsity as 5, while the pick-2 algorithm improves it to 6. In

the pick-3 algorithm, the maximum recoverable sparsity is 7 (α7 = 0.49). For 64×256

partial Fourier matrices, the maximum recoverable sparsity from LP relaxation and

the pick-2 algorithm are 3 and 4 respectively.

2.5.1.2 High-dimensional sensing matrices

Sensing matrix with n ≥ 1024 ∶ We conducted numerical experiments for

Gaussian sensing matrices from n = 1024 to n = 6144. For these numerical exper-

iments in Table 2.5, we calculated the lower bound on the recoverable sparsity k
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and obtained the corresponding execution time. SDP method [60] was not available

to these experiments due to its very high computational complexity. For an upper

bound of α2, denoted by UB(α2), in Table 2.5, we ran TSA for 1 day (24 hours) and

obtained the upper bound of α2. With the upper bound of α2, we obtained the lower

bound of k via Lemma 2.3.

Our numerical results in Tables 2.5 and 2.6 clearly show that our pick-l algo-

rithm outperforms LP and SDP based methods in recoverable sparsity k and execu-

tion time. We note that although our pick-1 algorithm provides the same recoverable

sparsity k as LP method [110] in Tables 2.5 and 2.6, the complexity of LP method is

higher than our method on m × n Gaussian matrices, where m > 1/2n. We achieved

this result by using the null space of the sensing matrix A instead of directly using

the sensing matrix A [52].

Even for extremely large sensing matrices, e.g, 4014 × 4096 and 6021 × 6144,

where LP and SDP cannot provide any lower bound on k due to unreasonable com-

putational time, our pick-l algorithm can provide the lower bound on k efficiently.

Table 2.6 shows the lower bound on k and the execution time in detail for these large

dimensional matrices, where our verified recoverable sparsity k can be as large as 558

on 6134 × 6144 sensing matrix. We obtained the estimated time for LP method by

running Matlab code that the authors provided, which provides the percentage of the

calculation.
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2.5.2 Complexity of tree search algorithm

In this subsection, we carried out numerical experiments to demonstrate the

computational complexity of the tree search algorithm statistically on randomly cho-

sen Gaussian sensing matrices. Fig. 2.3 (a) and (b) show simulation results about

the distribution of execution time and number of nodes located in height 5 in TSA

respectively. For m = 0.5n, we generated 100 random realizations of Gaussian matri-

ces and computed α5 using 3-Step TSA. The maximum number of leaf node whose

cardinality is k is (n
k
) = (40

5
) = 6.58008e5. From Fig. 2.3 (b), we note that for 90 % of

the cases, TSA terminates before 1.6 % of height-5 nodes are attached to the tree.

In addition, we provide the execution time of TSA for different n with fixed

k in Fig. 2.4, and for different k with fixed n in Fig. 2.5 on randomly chosen

Gaussian matrices. In order to obtain the exact αk, we achieved around 100 times

faster execution time via TSA than ESM for k = 3,4.

Fig. 2.6 shows an illustration of the global lower bound and global upper

bound in TSA on 20 × 40 Gaussian sensing matrix.

2.5.3 Application to network tomography problem

We apply our new tools introduced in this paper to verify NSC for sensing

matrices in network tomography problems [36,54,83,175,179,191]. In an undirected

complete graph model for the communication network, the communication delay over

each link can be determined by sending packets through probing paths that are com-

posed of connected links. The delay of each path is then measured by adding the
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(a) (b)

Figure 2.3: Histograms of TSA (based on the pick-3) to find α5 on 100 randomly chosen
20×40 Gaussian sensing matrices for each method. (a) Execution time of TSA. (b) Number
of nodes in TSA.

delays over its links. Generally most links are uncongested, and only a few congested

links have significant delays. It is, therefore, reasonable to think of finding the link

delays as a sparse recovery problem. This sparse problem can be expressed in a sys-

tem of linear equations y = Ax, where the vector y ∈ Rm is the delay of m paths,

the vector x ∈ Rn is the delay vector for the n links, and A is a sensing matrix. The

element Aij of A is 1, if and only if path yi, i ∈ {1, 2, ..., m}, goes through link j,

j ∈ {1, 2, ..., n}; otherwise Aij equal to 0 (see Fig. 2.7). The indices of nonzero

elements in the vector x correspond to the congested links.

In our numerical experiments to verify NSC in network tomography problems,

the paths for sending data packets were generated by random walks of fixed length.

Table 2.7 summarizes the results of our experiments. We note that by using TSA,

one can exactly verify that a total of k = 2 and k = 4 congested link delays can be
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 2.4: The execution time of TSA in log scale as a function of n on randomly chosen
m × n Gaussian matrices, where m = n/2.

uniquely found by solving `1 minimization problem (2.2) for the randomly generated

network measurement matrices 33 × 66 (12-node complete graph) and 53 × 105 (15-

node complete graph) respectively. For a 53 × 105 matrix, 3-Step TSA substantially

reduced the execution time to find α5 around 200 times compared to ESM.
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(a) n = 40 (b) n = 50

Figure 2.5: The execution time of TSA in log scale as a function of k on randomly chosen
m × n Gaussian matrices, where m = n/2.

(a) 20 × 40 (b) 32 × 40

Figure 2.6: Global lower bound and global upper bound in TSA on Gaussian sensing
matrix A for (k, l) = (5,3).



49

Table 2.4: Execution time (geometric mean) - Partial Fourier Matrix
(Unit: second)

A
(m×n)

Algo. α1 α2 α3 α4 α5

20×40

pick-1 0.25 0.25 0.25 0.25 0.25
pick-2 0.25 8.97 8.97 8.97 8.97
pick-3 0.25 8.97 229.37 229.37 229.37

TSA 1.00a 10.28b 16.77b 107.73b 1769.29c

LP 0.37 0.36 0.35 0.38 0.38
SDP 29.70 71.82 70.81 67.26 61.16

ESM 0.25 8.97 229.37 4.61e3d 6.56e4d

24×40

pick-1 0.27 0.27 0.27 0.27 0.27
pick-2 0.27 9.57 9.57 9.57 9.57
pick-3 0.27 9.57 243.33 243.33 243.33

TSA 1.06a 10.75b 19.12b 72.58b 1042.96c

LP 0.40 0.38 0.39 0.40 0.41
SDP 29.24 52.10 53.47 59.83 57.07

ESM 0.27 9.57 243.33 4.83e3d 6.84e4d

28×40

pick-1 0.34 0.34 0.34 0.34 0.34
pick-2 0.34 9.86 9.86 9.86 9.86
pick-3 0.34 9.86 247.52 247.52 247.52

TSA 0.96a 10.89b 14.17b 27.60b 353.26c

LP 0.44 0.44 0.46 0.44 0.44
SDP 29.64 43.04 43.58 46.23 42.38

ESM 0.34 9.86 247.52 5.09e3d 7.37e4d

32×40

pick-1 0.34 0.34 0.34 0.34 0.34
pick-2 0.34 10.51 10.51 10.51 10.51
pick-3 0.34 10.51 263.06 263.06 263.06

TSA 1.12a 11.74b 16.16b 36.35b 437.79c

LP 0.48 0.47 0.46 0.49 0.47
SDP 27.29 31.69 36.33 31.67 31.24

ESM 0.34 10.51 263.06 5.38e3d 7.63e4d

a 1-Step TSA b 2-Step TSA c 3-Step TSA

d Exhaustive Search Method (Estimated time = avg. time to solve (2.7) × # of index sets)
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Table 2.5: Lower bound on k and execution time (Gaussian Matrix with n = 1024)

matrix A Pick-1 k(UB(α2)
b) k(α1) LPa

102 × 1024 2 3 2 2
205 × 1024 4 4 4 4
307 × 1024 5 6 5 5
410 × 1024 7 8 7 7
512 × 1024 9 10 9 9
614 × 1024 12 13 12 12
717 × 1024 16 17 15 16
819 × 1024 21 23 20 21
922 × 1024 32 36 30 32

(a) Lower bound on k

matrix A Pick-1 k(UB(α2)
b) k(α1) LPa

102 × 1024 237 1 day 237 200
205 × 1024 452 1 day 452 429
307 × 1024 796 1 day 796 723
410 × 1024 1207 1 day 1207 1073
512 × 1024 1952 1 day 1952 1600
614 × 1024 2150 1 day 2150 2217
717 × 1024 1337 1 day 1337 2992
819 × 1024 838 1 day 838 3904
922 × 1024 386 1 day 386 4730

(b) Execution time (Unit: second)

a Linear Programming [110] b Upper bound of α2 obtained from 1-Step TSA after 1 day’s run

Figure 2.7: (a) A simple example of a network tomography graph. W , X, Y , and Z are
nodes in the network, and Path1, 2, 3, and 4 are the probing paths through which the
packets are sent. (b) The sensing matrix corresponding to the graph shown in (a). The
rows and columns of the matrix represent probing paths and edges respectively.
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Table 2.6: Lower bound on k and execution time (Gaussian Matrix)

matrix A Pick-1 k(α1) LPa

2007 × 2048 102 90 102

4014 × 4096 152 139 N/Ab

6021 × 6144 190 174 N/A
6134 × 6144 558 406 N/A

(a) Lower bound on k

matrix A Pick-1 k(α1) LP

2007 × 2048 671 671 71948
4014 × 4096 9116 9116 15 daysc

6021 × 6144 38935 38935 65.5 daysd

6134 × 6144 13734 13734 41.7 dayse

(b) Execution time (Unit: second)

a Linear Programming [110] b Not Available c Estimated time (15 hours for 4% calculations)

d Estimated time (15 hours for 1% calculations) e Estimated time (10 hours for 1% calculations)

Table 2.7: αk and execution time in network tomography problems

matrix A Algo. α1 α2 α3 α4 α5 kmax
33 × 66 TSA 0.28 0.41 0.50 0.57 0.62 2
53 × 105 TSA 0.20 0.29 0.36 0.45 0.52 4

(a) αk values (Floor to the nearest hundredth)

matrix A Algo. α1 α2 α3 α4 α5

33 × 66
TSA 1.4 3.7 33.1 457.3 3.0e4
ESM 1.3 42.9 915.2 1.4e4 1.8e5

53 × 105
TSA 2.1 24.4 125.8 834.8 1.0e4
ESM 2.1 109.2 3.7e3 9.6e4 1.9e6

(b) Execution time (Unit: second)

a 1-Step TSA b 2-Step TSA c 3-Step TSA

d Exhaustive search method (Estimated Operation time = avg. time to solve (2.7) (=0.02 sec.) for an index set ×

total number of index sets)
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CHAPTER 3
SUPER-RESOLUTION FOR SPECTRALLY SPARSE SIGNALS

3.1 Spectral Super-resolution With Prior Knowledge

3.1.1 Introduction

In many areas of engineering, it is desired to infer the spectral contents of a

measured signal. In the absence of any a priori knowledge of the underlying statistics

or structure of the signal, the choice of spectral estimation technique is a subjective

craft [134,163]. However, in several applications, the knowledge of signal characteris-

tics is available through previous measurements or prior research. By including such

prior knowledge during spectrum estimation process, it is possible to enhance the

performance of spectral analysis.

One useful signal attribute is its sparsity in spectral domain. In recent years,

spectral estimation methods that harness the spectral sparsity of signals have at-

tracted considerable interest [27, 71, 136, 168]. These methods trace their origins to

compressed sensing (CS) that allows accurate recovery of signals sampled at sub-

Nyquist rate [66]. In the particular context of spectral estimation, the signal is as-

sumed to be sparse in a finite discrete dictionary such as Discrete Fourier Transform

(DFT). As long as the true signal frequency lies in the center of a DFT bin, the

discretization in frequency domain faithfully represents the continuous reality of the

true measurement. If the true frequency is not located on this discrete frequency

grid, then the aforementioned assumption of sparsity in the DFT domain is no longer
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valid [101, 166]. The result is an approximation error in spectral estimation often

referred to as scalloping loss [93], basis mismatch [49], and gridding error [79].

Recent state-of-the-art research [27, 167, 168] has addressed the problem of

basis mismatch by proposing compressed sensing in continuous spectral domain. This

grid-free approach is inspired by the problems of total variation minimization [27]

and atomic norm minimization [168] to recover super-resolution frequencies - lying

anywhere in the continuous domain [0,1] - with few random time samples of the

spectrally sparse signal, provided the line spectrum maintains a nominal separation.

A number of generalizations of off-the-grid compressed sensing for specific signal

scenarios have also been attempted, including extension to higher dimensions [46,

48,187,194].

However, these formulations of off-the-grid compressed sensing assume no prior

knowledge of signal other than sparsity in spectrum. In fact, in many applications,

where signal frequencies lie in continuous domain such as radar [161], acoustics [173],

communications [13], and power systems [202], additional prior information of signal

spectrum might be available. For example, a radar engineer might know the char-

acteristic speed with which a fighter aircraft flies. This knowledge then places the

engineer in a position to point out the ballpark location of the echo from the aircraft

in the Doppler frequency spectrum. Similarly, in a precipitation radar, the spectrum

widths of echoes from certain weather phenomena (tornadoes or severe storms) are

known from previous observations [70]. This raises the question whether we can use

signal structures beyond sparsity to improve the performance of spectrum estimation.
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There are extensive works in compressed sensing literature that discuss re-

covering sparse signals using secondary signal support structures, such as struc-

tured sparsity [38] (tree-sparsity [8], block sparsity [164], and Ising models [37]),

spike trains [6,95], nonuniform sparsity [114,181], and multiple measurement vectors

(MMVs) [72]. However, these approaches assume discrete-valued signal parameters

while, in the spectrum estimation problem, frequencies are continuous-valued. There-

fore, the techniques of using prior support information in discrete compressed sensing

for structured sparsity do not directly extend to spectrum estimation. Moreover, it

is rather unclear as to how general signal structure constraints can be imposed for

super-resolution recovery of continuous-valued frequency components.

In this paper, we focus on a more generalized approach to super-resolution

that addresses the foregoing problems with line spectrum estimation. We propose

continuous-valued line spectrum estimation of irregularly undersampled signal in the

presence of structured sparsity. Prior information about the signal spectrum comes

in various forms. For example, in the spectral information concerning a rotating me-

chanical system, the frequencies of the supply lines or interfering harmonics might

be precisely known [185]. However, in a communication problem, the engineer might

only know the frequency band in which a signal frequency is expected to show up.

Often the prior knowledge is not even specific to the level of knowing the frequency

subbands precisely. The availability of previous measurements, such as in remote

sensing or bio-medicine, can aid in knowing the likelihood of having an active signal

frequency in the neighborhood of a specific spectral band. In this paper, we greatly
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broaden the scope of prior information that can range from knowing only the likeli-

hood of occurrence of frequency components in a spectral subband to exactly knowing

the location of some of the frequencies.

In all these cases, we propose a precise semidefinite program to perfectly re-

cover all the frequency components. When some frequencies are precisely known,

we propose to use conditional atomic norm minimization to recover the off-the-grid

frequencies. In practice, the frequencies are seldom precisely known. However, as

long as the frequency locations are approximately known to the user, we show that

the spectrally sparse signal could still be perfectly reconstructed. Here, we introduce

constrained atomic norm minimization that accepts the block priors - frequency sub-

bands in which true spectral contents of the signal are known to exist - in its semidef-

inite formulation. When only the probability density function of signal frequencies is

known, we incorporate such a probabilistic prior in the spectral estimation problem

by suggesting the minimization of weighted atomic norm. The key is to transform

the dual of atomic norm minimization to a semidefinite program using linear matrix

inequalities (LMI). These linear matrix inequalities are, in turn, provided by theories

of positive trigonometric polynomials [81]. Our methods boost the signal recovery by

admitting lesser number of samples for spectral estimation and decreasing reliance

on the minimum resolution necessary for super-resolution. If the prior information

locates the frequencies within very close boundaries of their true values, then we show

that it is possible to perfectly recover the signal using samples no more than thrice

the number of signal frequencies.
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Our work has close connections with a rich heritage of research in spectral

estimation. For uniformly sampled or regularly spaced signals, there are a number

of existing approaches for spectral estimation by including known signal characteris-

tics in the estimation process. The classical Prony’s method can be easily modified

to account for known frequencies [173]. Variants of the subspace-based frequency

estimation methods such as MUSIC (MUltiple SIgnal Classification) and ESPRIT

(Estimation of Signal Parameters via Rotation Invariance Techniques) have also been

formulated [123,185], where prior knowledge can be incorporated for parameter esti-

mation. For applications wherein only approximate knowledge of the frequencies is

available, the spectral estimation described in [197] applies circular von Mises prob-

ability distribution on the spectrum.

For irregularly spaced or non-uniformly sampled signal, sparse signal recovery

methods which leverage on prior information have recently gained attention [17,108,

114, 181]. Compressed sensing with clustered priors was addressed in [196] where

the prior information on the number of clusters and the size of each cluster was

assumed to be unknown. In [80], MUSIC was extended to undersampled, irregularly

spaced sparse signals in a discrete dictionary, while [122] analyzed the performance

of snapshot-MUSIC for uniformly sampled signals in a continuous dictionary. Our

technique is more general; it applies to irregularly sampled signals in a continuous

dictionary, and is, therefore, different from known works on utilizing prior information

for spectral estimation of regularly sampled signals.
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3.1.2 Problem formulation

In general, the prior information can be available for any of the signal param-

eters such as amplitude, phase or frequencies. However, in this paper, we restrict

the available knowledge to only the frequencies of the signal. We assume that the

amplitude and phase information of any of the spectral component is not known,

irrespective of the pattern of known frequency information. Our approach is to first

analyze the case of a more nebulous prior information, that is the probabilistic priors,

followed by an interesting special case of block priors. The case when some frequen-

cies are precisely known is considered in the end where, unlike previously considered

cases, we recover the signal using the semidefinite program for the primal problem.

We consider a frequency-sparse signal x[l] expressed as a sum of s complex

exponentials,

x[l] =
s

∑
j=1

cje
i2πfj l =

s

∑
j=1

∣cj ∣a(fj, φj)[l] , l ∈ N , (3.1)

where cj = ∣cj ∣eiφj (i =
√
−1) represents the complex coefficient of the frequency fj ∈

[0,1], with amplitude ∣cj ∣ > 0, phase φj ∈ [0,2π), and frequency-atom a(fj, φj)[l] =

ei(2πfj l+φj). We use the index set N = {l ∣ 0 ≤ l ≤ n − 1}, where ∣N ∣ = n,n ∈ N,

to represent the time samples of the signal. We further suppose that the signal in

(3.1) is observed on the index set M ⊆ N , ∣M∣ = m ≤ n where m observations are

chosen uniformly at random. Our objective is to recover all the continuous-valued

the frequencies with very high accuracy using this undersampled signal.

The signal in (3.1) can be modeled as a positive linear combination of the unit-

norm frequency-atoms a(fj, φj)[l] ∈ A ⊂ Cn where A is the set of all the frequency-
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atoms. These frequency atoms are basic units for synthesizing the frequency-sparse

signal. This leads to the following formulation of the atomic norm ∣∣x̂∣∣A - a sparsity-

enforcing analog of `1 norm for a general atomic set A:

∣∣x̂∣∣A = inf
cj ,fj

{
s

∑
j=1

∣cj ∣ ∶ x̂[l] =
s

∑
j=1

cje
i2πfj l , l ∈M} . (3.2)

To estimate the remaining N ∖M samples of the signal x, [39] suggests min-

imizing the atomic norm ∣∣x̂∣∣A among all vectors x̂ leading to the same observed

samples as x. Intuitively, the atomic norm minimization is similar to `1-minimization

being the tightest convex relaxation of the combinatorial `0-minimization problem.

The primal convex optimization problem for atomic norm minimization can be for-

mulated as follows,

minimize
x̂

∥x̂∥A

subject to x̂[l] = x[l], l ∈M. (3.3)

Equivalently, the off-the-grid compressed sensing [168] suggests the following semidef-

inite characterization for ∣∣x̂∣∣A:

Definition 3.1. [168] Let Tn denote the n × n positive semidefinite Toeplitz matrix,

t ∈ R+, tr(⋅) denote the trace operator and (⋅)∗ denote the complex conjugate. Then,

∣∣x̂∣∣A = inf
Tn,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2∣N ∣tr(Tn) + 1

2
t ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[r]Tn x̂

x̂∗ t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. (3.4)

The positive semidefinite Toeplitz matrix Tn is related to the frequency atoms through

the following Vandermonde decomposition result by Carathèodory [33]

Tn = URU∗, (3.5)
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where

Ulj = a(fj, φj)[l], (3.6)

R = diag([b1,⋯, br]). (3.7)

The diagonal elements of R are real and positive, and r = rank(Tn).

Consistent with this definition, the atomic norm minimization problem for the

frequency-sparse signal recovery can now be formulated as a semidefinite program

(SDP) with m affine equality constraints:

minimize
Tn,x̂,t

1

2∣N ∣tr(Tn) + 1

2
t

subject to

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[r]Tn x̂

x̂∗ t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0 (3.8)

x̂[l] = x[l], l ∈M.

When some information about the signal frequencies is known a priori, then our goal

is to find a signal vector x̂ in (3.8) whose frequencies satisfy additional constraints

imposed by prior information. In other words, if C denotes the set of constraints

arising due to prior knowledge of frequencies, then our goal is to find the infimum in

(3.2) over fj ∈ C.

While framing the problem to harness the prior information, a common ap-

proach in compressed sensing algorithms is to replace the classical minimization pro-

gram with its weighted counterpart [114, 181]. However, signals with continuous-

valued frequencies do not lead to a direct application of the weighted `1 approach.
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Rather, such an application leads to a fundamental conundrum: the Vandermonde

decomposition of positive semidefinite Toeplitz matrices works for general frequen-

cies wherein the frequency atom in (3.6) can freely take any frequency and phase

values, and it is not clear how to further tighten the positive semidefinite Toeplitz

structure to incorporate the known prior information. Thus, it is non-trivial to for-

mulate a computable convex program that can incorporate general prior information

to improve signal recovery.

3.1.3 Probabilistic priors

In the probabilistic prior model, the probability density function of the fre-

quencies is known. Let F be the random variable that describes the signal frequencies.

Let the probability density function (pdf) of F be pF (f). The problem of line spec-

trum estimation deals with a finite number of signal frequencies in the domain [0, 1].

For example, we can assume pF (f) to be piecewise constant as follows. Let the do-

main [0,1] consist of p disjoint subbands such that [0,1] = ⋃pk=1Bk where Bk denotes

a subband or a subset of [0,1]. Then the restriction pF (f)∣Bk of pF (f) to Bk is a con-

stant. Figure 3.1 illustrates a simple case for p = 2, where the line spectrum X(f) of

a signal x is non-uniformly sparse over two frequency subbands B1 and B2 = [0,1]/B1,

such that the frequencies fj, j = 1,⋯, s, occur in the subinterval B2 more likely than

in B1.

Intuitively, given probabilistic priors, one may think of recovering the signal x
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Figure 3.1: The probability density function pF (f) of the frequencies shown with the
location of true frequencies in the spectrum X(f) of the signal x[l].

by minimizing a weighted atomic norm given by:

∣∣x̂∣∣wA = inf
cj ,fj

{
s

∑
j=1

wj ∣cj ∣ ∶ x̂[l] =
s

∑
j=1

cje
i2πfj l , l ∈M} , (3.9)

where w = {w1,⋯,ws} is the weight vector, each element wj of which is associated

with the probability of occurrence of the corresponding signal frequency fj. The

weight vectors are assigned using a weight function w(f). The w(f) is a piecewise

constant function in the domain [0,1] such that the restriction w(f)∣Bk of w(f) to Bk

is a constant. Therefore, ∀ {f1,⋯, fj} ∈ Bk, we have w1 = ⋯ = wj = w(f)∣f∈Bk = w(fBk)

(say). The w(f) is a decreasing function of the likelihood of occurrence of frequencies

associated with the subband. For example, a subband with a higher pdf of occurrence

of frequencies than other subbands is likely to have more frequencies than other

subbands. Consequently, such a subband is weighted lightly in comparison to other

subbands, in order to promote more frequency occurrence in such a suband.

The problem of line spectral estimation using probabilistic prior can now be
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presented as the (primal) optimization problem concerning the weighted atomic norm:

minimize
x̂

∥x̂∥wA

subject to x̂[j] = x[j], l ∈M. (3.10)

But we now observe that, unlike weighted `1 norm [114], a semidefinite characteriza-

tion of the weighted atomic norm does not evidently result from (3.8). Instead, we

propose a new semidefinite program for the weighted atomic norm using theories of

positive trigonometric polynomials, by looking at its dual problem. For the standard

atomic norm minimization problem (3.3), the dual problem is framed in this manner:

maximize
q

⟨qM, xM⟩R

subject to ∥q∥∗A ≤ 1 (3.11)

qN∖M = 0,

where ∥ ⋅ ∥∗ represents the dual norm. This dual norm is defined as

∥q∥∗A = sup
∥x̂∥A≤1

⟨q, x̂⟩R = sup
f∈[0,1]

∣⟨q, a(f,0)⟩∣. (3.12)

For the weighted atomic norm minimization, the primal problem (3.10) has only

equality constraints. As a result, Slater’s condition is satisfied and, therefore, strong

duality holds [20]. In other words, solving the dual problem also yields an exact

solution to the primal problem. The dual of weighted atomic norm is given by

∥q∥∗wA = sup
∥x̂∥wA≤1

⟨q, x̂⟩R = sup
φ∈[0,2π],f∈[0,1]

⟨q, 1

w(f)e
iφa(f,0)⟩

R

= sup
f∈[0,1]

∣⟨q, 1

w(f)a(f,0)⟩∣. (3.13)
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The dual problem to (3.10) can be stated hence,

maximize
q

⟨qM, xM⟩R

subject to ∥q∥∗wA ≤ 1 (3.14)

qN∖M = 0,

which by substitution of (3.13) becomes,

maximize
q

⟨qM, xM⟩R

subject to sup
f∈[0,1]

∣⟨q, 1

w(f)a(f,0)⟩∣ ≤ 1 (3.15)

qN∖M = 0.

Let the probabilistic priors consist of distinct weights for p different frequency sub-

bands Bk ⊂ [0,1], k = 1,⋯, p such that [0,1] = ⋃pk=1Bk = ⋃pk=1[fLk , fHk], where fLk

and fHk are, respectively, the lower and upper cut-off frequencies for each of the band

Bk (Figure 3.2). If the probability density function is constant within a frequency

band, then the results of the supremums in (3.15) need not depend on the weight

functions, and therefore, the inequality constraint in the dual problem in (3.15) can
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be expanded as,

maximize
q

⟨qM, xM⟩R

subject to sup
f∈B1

∣⟨q, a(f,0)⟩∣ ≤ w(fB1)

sup
f∈B2

∣⟨q, a(f,0)⟩∣ ≤ w(fB2)

⋮

sup
f∈Bp

∣⟨q, a(f,0)⟩∣ ≤ w(fBp)

qN∖M = 0. (3.16)

We now map each of the inequality constraints in the foregoing dual problem to a

linear matrix inequality, leading to the semidefinite characterization of the weighted

atomic norm minimization. We recognize that the constraints in (3.16) imply Q(f) =

⟨q, a(f,0)⟩ is a trigonometric polynomial [81] in f ∈ Bk:

Q(f) = ⟨q, a(f,0)⟩ =
n−1

∑
l=0

qle
−i2πfl. (3.17)

Since e−i2πfl = cos 2πfl + i sin 2πfl, Q(f) is a trigonometric polynomial. The weights

w(fBk) are nonnegative; therefore, the inequalities in (3.16) imply 1− ∣Q(f)∣2 is non-

negative on the unit circle (∣e−i2πfl∣ = 1). So, we can use the theory of positive trigono-

metric polynomial from [74] to transform (3.16) into linear matrix inequalities. Such

a polynomial can be parameterized by a particular type of positive semidefinite ma-

trix [74, 81]. Thus, we can transform the polynomial inequalities in (3.16), to linear

matrix inequalities, using the results of positive trigonometric polynomials from [74],

as detailed immediately below.
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Figure 3.2: The individual frequencies of spectrally parsimonious signal are assumed to lie
in known frequency subbands within the normalized frequency domain [0,1]. We assume
that all subbands are non-overlapping so that when fHk−1 = fLk , then Bk−1 = [fLk−1 , fHk−1]
and Bk = (fLk , fHk].

3.1.3.1 Gram matrix parametrization

A trigonometric polynomial R(z) =
n−1

∑
k=−(n−1)

rkz−k, which is also nonnegative on

the entire unit circle, can be parametrized using a positive semidefinite, Hermitian

matrix G (called the Gram matrix) that identifies the polynomial coefficients rk as a

function of its elements [74, p. 23]:

rk = tr[ΘkG], (3.18)

where Θk is an elementary Toeplitz matrix with ones on its kth diagonal and zeros

elsewhere. Here, k = 0 corresponds to the main diagonal, and k takes positive and

negative values for upper and lower diagonals respectively.

For the trigonometric polynomial that is nonnegative only over an arc of the

unit circle, we have the following theorem:

Theorem 3.1. [74, p. 12] A trigonometric polynomial

R(z) =
n−1

∑
k=−(n−1)

rkz
−k, r−k = r∗k , (3.19)
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where R ∈ Cn−1[z] for which R(ω) ≥ 0, for any z = eiω, ω ∈ [ωL,ωH] ⊂ [−π,π], can

be expressed as

R(z) = F (z)F ∗(z−1) +DωLωH(z).G(z)G∗(z−1), (3.20)

where F (z), and G(z) are causal polynomials with complex coefficients, of degree at

most n − 1 and n − 2, respectively. The polynomial

DωLωH(z) = d1z
−1 + d0 + d∗1z (3.21)

where

d0 = −
αβ + 1

2
(3.22)

d1 =
1 − αβ

4
+ j α + β

4
(3.23)

α = tan
ωL

2
(3.24)

β = tan
ωH

2
, (3.25)

is defined such that DωLωH(ω) is nonnegative for ω ∈ [ωL,ωH] and negative on its

complementary.1

Since F (z) and G(z) are causal polynomials, the products F (z)F ∗(z−1) and

G(z)G∗(z−1) are positive trigonometric polynomials that can each be separately pa-

rameterized with Gram matrices G1 and G2 respectively.

Proposition 3.2. A trigonometric polynomial R in (3.19) that is nonnegative on

the arc [ωL,ωH] ⊂ [−π,π] or, alternatively, the subband [fL, fH] ⊂ [0,1], can be

1cf. Errata to [74] available online. The 2007 print edition of [74] has an error in the
expression (3.23).
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parameterized using the Gram matrices G1 ∈ Cn×n and G2 ∈ C(n−1)×(n−1) as follows:

rk = Tr[ΘkG1] + Tr[(d1Θk−1 + d0Θk + d∗1Θk+1) ⋅G2]

≜ Lk,fL,fH(G1,G2), (3.26)

where we additionally require the elementary Toeplitz matrix Θk in the second argu-

ment to be a nilpotent matrix of order n−k for ∣k∣ > 0. The translation of frequencies

between the two domains is given by (fL < fH):

ωL =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2πfL ∶ 0 ≤ fL ≤ 0.5

2π(fL − 1) ∶ 0.5 < fL < 1

(3.27)

ωH =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2πfH ∶ 0 < fH ≤ 0.5

2π(fH − 1) ∶ 0.5 < fH ≤ 1

. (3.28)

We use the notation Lk,fL,fH(G1,G2) to concisely denote

Tr[ΘkG1] + Tr[(d1Θk−1 + d0Θk + d∗1Θk+1) ⋅G2]

, where G1 ⪰ 0, G2 ⪰ 0 and Θk is an elementary Toeplitz matrix with ones on the

k-th diagonal and zeros otherwise. Thus rk = Lk,fL,fH(G1,G2) is a function of G1,

G2 and k. We further remark that the constants d0 and d1 depend only on the given

subband [fL, fH]. When it is convenient to refer to the subband in [−π,π] domain,

we change the notation to Lk,ωL,ωH(G1,G2). For a given subband, only the Toeplitz

matrices Θk−1, Θk, and Θk+1 vary for different coefficients of the polynomial. The
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corresponding notation for (3.18) would be rk = Lk(G), where G ⪰ 0. Here, we omit

the band from the subscript to imply the band is [0,1] or [−π,π].

Proof of Proposition 3.2. Let F (z) and G(z) be causal polynomials such that, F (z)

= fTψ(z−1), and G(z) = gTφ(z−1), where f = [f0 f1 ⋯ fn−1
]
T

∈ Cn, and g =

[g0 g1 ⋯ gn−2
]
T

∈ Cn−1 are vectors of coefficients of the causal polynomials F (z)

and G(z) respectively, and

ψ(z−1) = [1 z−1 ... z−(n−1)]
T

, and

φ(z−1) = [1 z−1 ... z−(n−2)]
T

, are the canonical basis vectors of the corresponding polynomials. Let

R(z) =
(n−1)

∑
k=−(n−1)

rkz
−k, r−k = r∗k

A(z) =
n−1

∑
k=−(n−1)

akz
−k = F (z)F ∗(z−1), a−k = a∗k

B(z) =
n−2

∑
k=−(n−2)

bkz
−k = G(z)G∗(z−1), b−k = b∗k

B̃(z) =
n−1

∑
k=−(n−1)

b̃kz
−k =DωLωH(z).G(z)G∗(z−1), b̃−k = b̃∗k.

From the above, rk = ak + b̃k. Let G1 ∈ Cn×n and G2 ∈ C(n−1)×(n−1) be the Gram ma-

trices. Then, as shown in (3.18), the parameterization process yields, ak = tr[ΘkG1].

Also, by definition, if the Gram matrix G2 is associated with a trigonometric poly-
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nomial B(z), then we have

B(z) = φT (z−1) ⋅G2 ⋅ φ(z) = Tr[φ(z) ⋅ φT (z−1) ⋅G2]

= Tr[Φ(z) ⋅G2], (3.29)

where

Φ(z) = [
1
z
⋮

zn−2
][ 1 z−1 ... z−(n−2) ] = [

1 z−1 ⋯ z−(n−2)

z 1 ⋱ z−(n−3)
⋮ ⋱ ⋱ ⋮

zn−2 zn−3 ⋯ 1

].

This leads to the following expressions:

Φ(z) =
n−2

∑
k=−(n−2)

Θkz
−k, (3.30)

z−1Φ(z) = z−1
n−2

∑
k=−(n−2)

Θkz
−k =

n−1

∑
k=−(n−3)

Θk−1z
−k, (3.31)

zΦ(z) = z
n−2

∑
k=−(n−2)

Θkz
−k =

n−3

∑
k=−(n−1)

Θk+1z
−k. (3.32)

Substitution of (3.30)-(3.32) in (3.29) gives the following matrix-parametric expres-

sion,

B̃(z) = (d1z
−1 + d0 + d∗1z)Tr[Φ(z) ⋅G2]

= Tr[(d1z
−1Φ(z) + d0Φ(z) + d∗1zΦ(z)) ⋅G2]

= Tr[(d1

n−1

∑
k=−(n−3)

Θk−1z
−k + d0

n−2

∑
k=−(n−2)

Θkz
−k

+ d∗1
n−3

∑
k=−(n−1)

Θk+1z
−k) ⋅G2]

=
n−1

∑
k=−(n−1)

Tr[(d1Θk−1 + d0Θk + d∗1Θk+1) ⋅G2]z−k.

Then,

b̃k = Tr[(d1Θk−1 + d0Θk + d∗1Θk+1) ⋅G2]. (3.33)
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Substitution of matrix parameterizations of ak and b̃k in the expression of rk completes

the proof.

The dual polynomialQ(f) in (3.17) is nonnegative on multiple non-overlapping

intervals, and can therefore be parameterized by as many different pairs of Gram ma-

trices {G1, G2} as the number of subbands p. In the following subsection, we relate

this parametrization to the corresponding probabilistic weights of the subbands.

3.1.3.2 SDP formulation

Based on the Bounded Real Lemma [74, p. 127] (which, in turn, is based on

Theorem 3.1), a positive trigonometric polynomial constraint of the type ∣R(ω)∣ ≤ 1

can be expressed as a linear matrix inequality [74, p. 143]. Stating this result for the

dual polynomial constraint over a single frequency band, such as those in (3.16), we

have

sup
f∈[fL,fH]

∣⟨q, a(f,0)⟩∣ ≤ γ, (3.34)

if and only if there exist positive semidefinite Gram matrices G1 ∈ Cn×n and G2 ∈

C(n−1)×(n−1) such that,

γ2δk = Lk,ωL,ωH(G1,G2), k ∈ H
⎡⎢⎢⎢⎢⎢⎢⎢⎣

G1 q

q∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.35)

where H is a halfspace, δ0 = 1, and δk = 0 if k ≠ 0. Here, Lk,ωL,ωH(G1,G2) represents

the trace and Gram pair parameterization. There are a total of n coefficients; so,
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the halfspace reference in (3.35) implies that k takes values from 0 to n − 1, leading

to n equalities of the type γ2δk = Lk,ωL,ωH(G1,G2). This linear matrix inequality

representation using positive semidefinite matrix G1 paves way for casting the new

dual problem in (3.16) as a semidefinite program. This above formulation shows

that we have changed the inequality form in the convex optimization problem to

an equality form allowing semidefinite programming for the weighted atomic norm

minimization.

If the cutoff-frequencies ωL or ωH (in [−π,π] domain) are equal to ±π, then

we can write [ωL,ωH] = [ω′

L + τ,ω
′

H + τ] such that [ω′

L,ω
′

H] ⊂ [−π,π]. For the

translated subband [ω′

L,ω
′

H], let the corresponding subband in the domain [0,1] be

[f ′L, f
′

H]. Then, the LMI formulation given by (3.26) becomes valid for this subband.

However, the polynomial q is now evaluated in the domain e−iωe−iτ instead of e−iω.

The SDP for this frequency translation employs a scaled version of LMI in (3.35),

δk = Lk,f ′L,f ′H(G1,G2), k ∈ H
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1
1

γ
q̃τ

1

γ
q̃∗τ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.36)

where

q̃τ [j] = q[j]e−iτj. (3.37)

We now state the semidefinite program for weighted atomic norm minimization with

the probabilistic priors. We use the LMI representation for each of the inequality

constraints in (3.16) as follows:
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maximize
q,

G11,G12,⋯,G1p,
G21,G22,⋯,G2p

⟨qM, xM⟩R

subject to qN∖M = 0 (3.38)

δk1 = Lk1,fL1
′,fH1

′(G11,G21),

k1 = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G11
1

w1

q̃τ1

1

w1

q̃∗τ1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

δk2 = Lk2,fL2
′,fH2

′(G12,G22),

k2 = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G12
1

w2

q̃τ2

1

w2

q̃∗τ2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

⋮

δkp = Lkp,fLp ′,fHp ′(G1p,G2p),

kp = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1p
1

wp
q̃τp

1

wp
q̃∗τp 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

where q̃τk[j] = q[j]e−iτkj, k = 1,⋯, p,

G11,G12,⋯,G1p ∈ Cn×n,

and G21,G22,⋯,G2p ∈ C(n−1)×(n−1).
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Algorithm 3.1 Frequency localization for probabilistic priors

1 Solve the dual problem (3.38) to obtain the optimum solution q⋆.
2 Let F = {f1,⋯, fj ,⋯, fs} be the unknown frequencies of signal x. The unknown frequencies
fj , identify as ∣⟨q⋆, a(fj ,0)⟩∣ = wk, where fj ∈ Bk ⊆ [0,1]. For f ∈ (Bk ∖ F) ⊂ [0,1],
∣⟨q⋆, a(f,0)⟩∣ < wk.

3 The corresponding complex coefficients can be recovered by solving a system of simultaneous

linear equations x̂[l] −
s

∑
j=1

cja(fj ,0)[l] = 0.

The unknown frequencies in x̂ can be identified by the frequency localiza-

tion approach [168] based on computing the dual polynomial, that we state for the

weighted atomic norm problem in Algorithm 3.1. We state that this characteriza-

tion of the spectral estimation is a general way to integrate given knowledge about

the spectrum. If the engineer is able to locate the signal frequency in a particular

subband with a very high degree of certainty, better results can be obtained using

the optimization (3.38). Also, information about signal frequency bands is frequently

available through previous research and measurements, especially in problems per-

taining to communication, power systems and remote sensing. We consider this more

practical case in the following section.

3.1.4 Block priors

Of particular interest to spectral estimation are spectrally block sparse signals

where certain frequency bands are known to contain all the spectral contents of the

signal. Let us assume that all the s frequencies fj of the spectrally sparse signal x

are known a priori to lie only in a finite number of non-overlapping frequency bands

or intervals within the normalized frequency domain [0,1]. Here, the known set C
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Figure 3.3: The individual frequencies of spectrally sparse signal are assumed to lie in
known non-overlapping frequency subbands within the normalized frequency domain [0,1].

is defined as the set B of all frequency bands in which signal frequencies are known

to reside. The prior information consists of the precise locations of all the frequency

bands - the lower and upper cut-off frequencies fLk and fHk respectively for each of

the band Bk - as shown in the Figure 3.3. We, therefore, have fj ∈ B, B = ⋃pk=1Bk =

⋃pk=1[fLk , fHk], where p is the total number of disjoint bands known a priori. This

block prior problem could easily be considered as a special case of probabilistic priors

where the probability of a frequency occurring in known subbands is unity while it is

zero for all other subbands. When the frequencies are known to reside in the set of

subbands B a priori, we propose to minimize a constrained atomic norm ∣∣x̂∣∣A,B for

perfect recovery of the signal:

∣∣x̂∣∣A,B = inf
cj ,fj∈B

{
s

∑
j=1

∣cj ∣ ∶ x̂[l] =
s

∑
j=1

cje
i2πfj l , l ∈M} . (3.39)

As noted earlier, to recover all of the off-the-grid frequencies of the signal x given the

block priors, the direct extension of a semidefinite program from (3.8) to minimize the

constrained atomic norm is non-trivial. We address this problem by working with the
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dual problem of the constrained atomic norm minimization, and then transforming

the dual problem to an equivalent semidefinite program by using theories of positive

trigonometric polynomials. We note that in the case of block priors, (3.12) can

be written as ∥q∥∗
A,B = supf∈B ∣⟨q, a(f,0)⟩∣ = supf∈B ∣Q(f)∣, where Q(f) is the dual

polynomial. The primal problem of constrained atomic norm minimization is given

by

minimize
x̂

∥x̂∥A,B

subject to x̂[l] = x[l], l ∈M, (3.40)

and, similar to (3.11), we can formulate the corresponding dual problem as

maximize
q

⟨qM, xM⟩R

subject to qN∖M = 0 (3.41)

∥q∥∗A,B ≤ 1,

where ∥q∥∗
A,B = supf∈B ∣⟨q, a(f,0)⟩∣. Since B is defined as a union of multiple fre-

quency bands, the inequality constraint in (3.41) can be expanded to p separate

inequality constraints. It can be easily observed that (3.41) is a special case of

(3.15) with all the weights being unity and B ⊆ [0,1] (i. e. the set of bands B

need not necessarily cover the entire frequency range). While framing the semidef-

inite program for this problem, we use a linear matrix inequality similar to that

in (3.35) with γ = 1 for each of the inequality constraint in (3.41), to cast the

dual problem constraint into a semidefinite program. So, when all the frequencies

are known to lie in p disjoint frequency bands, then the semidefinite program for
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the dual problem in (3.41) can be constructed by using p equality-form constraints:

maximize
q,

G11,G12,⋯,G1p,
G21,G22,⋯,G2p

⟨qM, xM⟩R

subject to qN∖M = 0 (3.42)

δk1 = Lk1,fL1
,fH1

(G11,G21),

k1 = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

G11 q

q∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

δk2 = Lk2,fL2
,fH2

(G12,G22),

k2 = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

G12 q

q∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

⋮

δkp = Lkp,fLp ,fHp(G1p,G2p),

kp = 0,⋯, (n − 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

G1p q

q∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

where G11,G12,⋯,G1p ∈ Cn×n,

and G21,G22,⋯,G2p ∈ C(n−1)×(n−1).
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In the extreme case when any of the known frequency bands Bk have ωLk

or ωHk lying exactly on either −π or π, then the dual-polynomial in 3.42 should be

appropriately translated as noted in (3.37).

In many applications, the location of some of the signal frequencies might be

precisely known. One could think of this known poles problem as a probabilistic prior

problem where the cardinality of some sets Bk is exactly unity (and the associated

probability be unity as well), while the remaining frequency subbands have a non-

unity probability. However, there are a few differences. For probabilistic priors, the

probability distribution function is known for the entire interval [0,1] while, in case

of known poles, the probability distribution of the bands of unknown frequencies is

unavailable. Also, unlike block prior formulation, known poles problem does not have

zero probability associated with the remaining subbands.

3.1.5 Known poles

We now consider the case when some frequency components are known a pri-

ori but their corresponding amplitudes and phases are not. Let the index set of all

the frequencies be S, ∣S ∣ = s. Let P be the index set of all the known frequencies,

and ∣P ∣ = p. Namely, we assume that the signal x contains some known frequencies

fj, j ∈ P ⊆ S, ∣P ∣ = p. For known frequencies, let us denote their complex coefficients

as dj and their phaseless frequency atoms as aj[l] = a(fj,0)[l] = ei2πfj l. We define the

conditional atomic norm ∣∣x̂∣∣A,P for the known poles as follows:
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∣∣x̂∣∣A,P = inf
cj ,dj ,fj

{
s−p

∑
j=1

∣cj ∣ ∶ x̂[l] =
s−p

∑
j=1

cje
i2πfj l +

s

∑
j=s−p+1

dje
i2πfj l , l ∈M} . (3.43)

Unlike previously mentioned a priori counterparts of the atomic norm, the semidefi-

nite formulation for ∣∣x̂∣∣A,P easily follows from (3.4).

Proposition 3.3. The conditional atomic norm for a vector x̂ is given by

∣∣x̂∣∣A,P = inf
Tn,x̃,t,dj

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2∣N ∣ tr(Tn) + 1

2
t ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Tn x̃

x̃∗ t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (3.44)

where x̃[l] = x̂[l]− ∑
j∈P

aj[l]dj represents the positive combination of complex sinusoids

with unknown poles.

Proof of Proposition 3.3. From (3.43), we simply have

x̃[l] = x̂[l] −∑
j∈P

aj[l]dj =
s−p

∑
j=1

cje
i2πfj l

, meaning the value of the semidefinite program in (3.44) is same as ∣∣x̃∣∣A = ∣∣x̂∣∣A,P .

The conditional atomic norm minimization problem can be posed as the fol-

lowing semidefinite formulation in a similar way as in (3.8):

minimize
Tn,x̂,x̃,t,dj

1

2∣N ∣tr(Tn) + 1

2
t

subject to

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Tn x̃

x̃∗ t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0 (3.45)

x̂[l] = x[l], l ∈M

x̂[l] = x̃[l] +∑
j∈P

aj[l]dj, l ∈M.
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Algorithm 3.2 Known poles algorithm

1 Solve the semidefinite program (3.45) to obtain x̃.
2 Solve the following dual problem to obtain the optimum solution q⋆

maximize
q

⟨q, x̃⟩R

subject to ∣∣q∣∣∗A ≤ 1 (3.46)

q[l] = 0, l ∈ N ∖M.

3 The unknown frequencies fj , j ∈ P, identify as ∣⟨q⋆, aj⟩∣ = 1. For j ∉ S ∖P, ∣⟨q⋆, aj⟩∣ < 1.
4 Solve the following system of simultaneous linear equations to recover the complex coeffi-

cients of unknown frequencies: x̃[l] − ∑
j∈S∖P

cjaj[l] = 0.

The x̃ can be viewed as the signal filtered of the known poles. The remaining unknown

frequencies in x̃ can be identified by the frequency localization approach that we

restate for x̃ in Algorithm 3.2.

3.1.6 Performance analysis

To identify the true frequencies of the signal from the solution of the dual

problem, we now establish the conditions for finding the dual-certificate of support

when prior information is available. We additionally show that the dual polynomial

requirements can be slackened if the prior information gives the approximate location

of each of the signal frequencies. We further put our result in the context of minimum

number of signal samples required for the reconstruction of the signal x.

Since the primal problem (3.10) has only equality constraints, Slater’s condi-

tion is satisfied. As a consequence, strong duality holds [20]. This allows us to present

the dual-certificate of support for the optimizer of (3.10). In the following theorems,

sign(cj) = cj/∣cj ∣, and Re(⋅) denotes the real part (of a complex number).
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Theorem 3.4. Let the set of atoms {aM(f1,0),⋯, aM(fs,0)} supported on subset

M of N be linearly independent. Then, x̂ = x is the unique solution to the primal

problem (3.10), if there exists a polynomial

Q(f) = ⟨q, a(f,0)⟩ =
n−1

∑
l=0

qle
−i2πfl, (3.47)

such that

Q(fj) = wksign(cj),∀fj ∈ Bk ⊆ [0,1] (3.48)

∣Q(f)∣ < wk,∀f ∈ (Bk ∖F) ⊂ [0,1] (3.49)

qN∖M = 0. (3.50)

Proof of Theorem 3.4. The proof follows from the dual polynomial for the standard

atomic norm minimization problem. We refer the reader to [168] for details. Briefly, it

can be concluded that strong duality holds and we have ⟨qM, xM⟩R =
s

∑
j=1
wj ∣cj ∣ = ∣∣x∣∣wA,

where the vector q satisfies the conditions (3.48), (3.49), and (3.50), and is dual

feasible. As for the uniqueness, let x†[l] = ∑
j
c†je

i2πf†
j l, l ∈ M, be an alternative

minimizer of (3.10) such that x† contains frequencies outside the set F of oracle
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frequencies. Then,

∣∣x∣∣wA = ⟨qM, xM⟩R = ⟨qM, x†
M

⟩R = ⟨qM,∑
j

c†je
i2πf†

j l⟩R

= ⟨qM,∑
k

∑
fj∈F⊂Bk

c†je
i2πfj l +∑

k

∑
f†
h
∈(Bk∖F)

c†he
i2πf†

h
l⟩

R

< ∑
fj∈F⊂Bk

wj ∣c†j ∣ + ∑
f†
h
∈(Bk∖F)

wh∣c†h∣

= ∣∣x†∣∣wA,

resulting in a contradiction that x† is not a minimizer of (3.10). If x† contains only

the oracle frequencies and the same sign pattern cj/∣cj ∣ as that of x, then x† also has

the same complex coefficients as x since the set {aM(f1,0),⋯, aM(fs,0)} is linearly

independent. Therefore, the optimal solution is unique.

Note that at least ∣M∣ = s observations are required to guarantee the linear

independence of the set {aM(f1,0),⋯, aM(fs,0)}. Moreover, following similar argu-

ments in the proof of Proposition 3.7, if frequencies f1, f2,..., and fM are drawn

uniformly at random from [0,1], for any M such that ∣M∣=s, the set of atoms

{aM(f1,0),⋯, aM(fs,0)} are linearly independent with probability 1. As a corol-

lary to Theorem 3.4, we can arrive at the dual polynomial for the block prior problem

as follows.

Corollary 3.5. The x̂ = x is the unique solution to the primal problem (3.40), if
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there exists a polynomial Q(f) such that

Q(fj) = sign(cj),∀fj ∈ F ⊂ B (3.51)

∣Q(f)∣ < 1,∀f ∈ (B ∖F) (3.52)

qN∖M = 0. (3.53)

When the prior information is available to such a generous extent that each

of the individual frequencies are known within close boundaries, as we present next,

an interesting consequence of this relaxation is that the number of samples required

to reconstruct the signal could be bounded.

Theorem 3.6. Let the signal x as in (3.1) be sampled on a subset M of N . If there

exists a polynomial Q(f) such that ∀fj ∈ F ⊂ B,

Q(fj) = sign(cj) (3.54)

Q
′(fj) =

n−1

∑
l=0

lqle
−i2πfj l = 0 (3.55)

Q
′′(fj) =

n−1

∑
l=0

−(2πl)2qle
−i2πfj l = −sign(Re(cj)), (3.56)

and, if each of the frequencies is known within a sufficiently small frequency subband,

then x̂ = x is the unique optimizer of the primal problem (3.40). Further, assuming

fjs are distributed uniformly at random in [0,1], such a dual polynomial exists with

probability 1 when m ≥ 3s.

Proof of Theorem 3.6. The polynomial that we seek can be written asQ(f) = QR(f)+

iQI(f), where QR(f) and QI(f) are the real and imaginary parts respectively. As per
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Theorem 3.4, Q(f) should also satisfy the conditions (3.48) and (3.49). Therefore,

(3.54) is a restatement of (3.48) as follows:

Q(fj) =
n−1

∑
l=0

qle
−i2πfj l = sign(cj) =

cj
∣cj ∣

∀fj ∈ F ⊂ B. (3.57)

For the dual polynomial to achieve an extremum at fj ∈ F ⊂ B as specified by (3.49),

the following is a sufficient condition for its first derivative leading to (3.55):

Q
′(fj) =

n−1

∑
l=0

−i2πlqle−i2πfj l = 0 ∀fj ∈ F ⊂ B. (3.58)

The condition for a maximum at fj ∈ F ⊂ B requires the second derivative ∣Q(fj)∣′′ to

be strictly negative. We have,

∣Q(fj)∣
′′ = −[QR(fj)Q

′

R(fj) +QI(fj)Q
′

I(fj)]2

∣Q(fj)∣3

+ ∣Q′(fj)∣2 +QR(fj)Q
′′

R(fj) +QI(fj)Q
′′

I (fj)
∣Q(fj)∣

∀fj ∈ F ⊂ B. (3.59)

Therefore, for ∣Q(fj)∣′′ to be strictly negative, it is sufficient to require,

∣Q′(fj)∣2 +QR(fj)Q
′′

R(fj) +QI(fj)Q
′′

I (fj) < 0 ∀fj ∈ F ⊂ B. (3.60)

Under the condition (3.60), when the frequencies fj are known to lie in a very small

frequency band Bk such that (fHk − fLk) ≪ 1, then the polynomial constraints are

valid within such a sufficiently small interval.

To satisfy the constraint (3.60), we impose an additional constraint that re-

quires Q
′′

I (fj) to vanish, reducing (3.60) to

QR(fj)Q
′′

R(fj) < 0 ∀fj ∈ F ⊂ B. (3.61)
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Using the definition of dual polynomial from (3.47), we can now cast (3.61) as the

condition (3.56).

Let xfj = ei2πfj . We show that the linear system (3.54), (3.55), and (3.56)

results in a unique solution, given at least 3s equations as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
l0
f1

x
l1
f1

⋯ x
l3s−1
f1

l0x
l0
f1

l1x
l1
f1

⋯ l3s−1x
l3s−1
f1

−(2πl0)
2x
l0
f1

−(2πl1)
2x
l1
f1

⋯ −(2πl3s−1)
2x
l3s−1
f1

x
l0
f2

x
l1
f2

⋯ x
l3s−1
f2

l0x
l0
f2

l1x
l1
f2

⋯ l3s−1x
l3s−1
f2

−(2πl0)
2x
l0
f2

−(2πl1)
2x
l1
f2

⋯ −(2πl3s−1)
2x
l3s−1
f2

⋮ ⋮ ⋱ ⋮

x
l0
fs

x
l1
fs

⋯ x
l3s−1
fs

l0x
l0
fs

l1x
l1
fs

⋯ l3s−1x
l3s−1
fs

−(2πl0)
2x
l0
fs

−(2πl1)
2x
l1
fs

⋯ −(2πl3s−1)
2x
l3s−1
fs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ql0

ql0

ql0

ql1

ql1

ql1

⋮

ql3s−1

ql3s−1

ql3s−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ c1
∣c1 ∣

0 −sign(Re(c1))
c2
∣c2 ∣

0 −sign(Re(c2)) ⋯
cs
∣cs ∣

0 −sign(Re(cs)) ]T , (3.62)

where l0, l1,⋯, l3s−1 are the indices of the samples of the signal x. Proposition 3.7

completes the proof by showing that the system matrix A in (3.62) is invertible with

probability 1, provided the frequencies in the set F = {f1,⋯, fj,⋯, fs} are distributed

uniformly at random.

Proposition 3.7. Let M = {l0, l1,⋯, l3s−1} be the set of indices for 3s samples of the
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signal x. Let hfj = ei2πfj , then the 3s × 3s matrix

As =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl0f1 hl1f1 ⋯ hl3s−1f1

l0 ⋅ hl0f1 l1 ⋅ hl1f1 ⋯ l3s−1 ⋅ hl3s−1f1

l20 ⋅ hl0f1 l21 ⋅ hl1f1 ⋯ l23s−1 ⋅ hl3s−1f1

hl0f2 hl1f2 ⋯ hl3s−1f2

l0 ⋅ hl0f2 l1 ⋅ hl1f2 ⋯ l3s−1 ⋅ hl3s−1f2

l20 ⋅ hl0f2 l21 ⋅ hl1f2 ⋯ l23s−1 ⋅ hl3s−1f2

⋮ ⋮ ⋱ ⋮

hl0fs hl1fs ⋯ hl3s−1fs

l0 ⋅ hl0fs l1 ⋅ hl1fs ⋯ l3s−1 ⋅ hl3s−1fs

l20 ⋅ hl0fs l21 ⋅ hl1fs ⋯ l23s−1 ⋅ hl3s−1fs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.63)

is full rank with probability 1 if the frequencies f1,⋯, fj,⋯, fs are drawn uniformly at

random in [0,1].

Proof of Proposition 3.7. We show As is full-rank by proving that its determinant,

det(As) = ∣As∣ is a non-zero polynomial. For s = 1, we have the matrix,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl0f1 hl1f1 hl2f1

l0 ⋅ hl0f1 l1 ⋅ hl1f1 l2 ⋅ hl2f1

l20 ⋅ hl0f1 l21 ⋅ hl1f1 l22 ⋅ hl2f1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.64)

We note that ∣As∣ easily reduces to a Vandermonde determinant (of order 3), so that

∣As∣ = (l2 − l1)(l2 − l0)(l1 − l0)hl0+l1+l2f1
, which is a non-zero polynomial because l0, l1,
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and l2 are distinct sample indices.

Let us now assume that, for s > 1, ∣As∣ is a non-zero polynomial. We would

like to show that ∣As+1∣ is also a non-zero polynomial. We have,

As+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

As B

C D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (3.65)

where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hl3sfs+1 hl3s+1fs+1
hl3s+2fs+1

l3sh
l3s
fs+1

l3s+1h
l3s+1
fs+1

l3s+2h
l3s+2
fs+1

l23sh
l3s
fs+1

l23s+1h
l3s+1
fs+1

l23s+2h
l3s+2
fs+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦3×3

. (3.66)

Noting that the determinant of row echelon form is same as the original matrix, we

obtain the row echelon form (REF) for the matrix D as follows:

REF (D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h
l3s
fs+1

h
l3s+1
fs+1

h
l3s+2
fs+1

0 (l3s+1−l3s)h
l3s+1
fs+1

(l3s+2−l3s)h
l3s+2
fs+1

0 0 (l3s+2−l3s)(l3s+2−l3s+1)h
l3s+2
fs+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.67)

Let ai,j be the element of the matrix As+1 in ith row and jth column, then by the

Leibniz formula for determinants,

∣As+1∣ = ∑
σ∈S3s+3

sgn(σ)a1,σ(1)a2,σ(2)...a3s+3,σ(3s+3) (3.68)

= Pl3s+l3s+1+l3s+2(hfs+1)∣As∣ + P (hf1 ,⋯, hfs , hfs+1),

where sgn is the sign function of permutations in the permutation group Ss+1,

P (hf1 ,⋯, hfs , hfs+1) is a multivariate polynomial, and Pl3s+l3s+1+l3s+2(hfs+1) is a non-zero

univariate monomial in hfs+1 of degree l3s + l3s+1 + l3s+2. From the row echelon form

in (3.67), we recognize that the highest degree of the variable hfs+1 in the expansion
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(3.68) is l3s + l3s+1 + l3s+2. Note that the polynomial P (hf1 ,⋯, hfs , hfs+1) has lower

degree in hfs+1 than Pl3s+l3s+1+l3s+2(hfs+1). Since ∣As∣ is a non-zero polynomial, the

coefficient of hl3s+l3s+1+l3s+2fs+1
is also a non-zero polynomial. Therefore, ∣As+1∣ is a non-

zero polynomial. Further, the probability that one randomly picks the frequencies

over [0,1] such that each hfj is a root of this non-zero polynomial is zero.2 Thus, by

induction, ∣As∣ is non-zero with probability 1.

The formulation in (3.38) generalizes the prior information. As the cases of

block priors and known poles indicate, the more we know about the spectral structure

of the signal, precise formulations of atomic norm minimization can be evaluated to

boost signal recovery. If all poles are known in the sense of known poles algorithm

(i.e., the amplitudes and phases of all known poles are unknown), then the signal

x can be uniquely reconstructed using the randomly sampled support xM where

∣M∣ = s. Further, it is well known that if the signal is uniformly sampled, then

the Prony’s method can uniquely reconstruct the signal x using no more than 2s

samples. In comparison, our results from Theorem 3.6 show that if each of the poles

are approximately known, then the unique reconstruction of the signal x requires

no more than 3s samples. A comparison of Theorem VI.3 with the result in [168,

Theorem I.1] indicates that when every signal frequency is known within a sufficiently

small frequency subband, the signal can be recovered with lesser samples and without

the restriction of minimum frequency separation.

2An analogous argument for a polynomial with roots over a finite field can be found in
Schwartz-Zippel-DeMillo-Lipton lemma [61,158,201].
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3.1.7 Numerical experiments

We evaluated our algorithms through numerical experiments using the SDPT3

[178] solver for the semidefinite programs. In all experiments, for a particular real-

ization of the signal, the phases of the signal frequencies were sampled uniformly at

random in [0,2π). The amplitudes ∣cj ∣, j = 1,⋯, s were drawn randomly from the

distribution 0.5 + χ2
1 where χ2

1 represents the chi-squared distribution with 1 degree

of freedom.

3.1.7.1 Probabilistic priors

We evaluated the semidefinite program (3.38) for the case when p = 2. Here,

B1 = [0,0.2] and B2 = (0.2,1] so that B1⋃B2 = [0,1]. We consider the situation when

the probability of occurrence of signal frequency in B1 is 1000 times higher than B2.

This results in the pdf values of pF (f)∣B1 = 4.9801 and pF (f)∣B2 = 0.005. A suitable

sub-optimal choice of w(f) could be simply w(f) = 1/pF (f), so that the associated

weights are given by w1 = 0.2008 and w2 = 200.8000. For each random realization of

the signal, the signal frequencies are drawn randomly based on the given probability

density function.

Experiment A.1. A simple illustration of the signal recovery using (3.38) is shown

through frequency localization in Figure 3.4. For a signal of dimension n = 64 and

number of frequencies s = 5, Figure 3.4a shows that even when all samples are observed

(m = 64), the standard atomic norm minimization (3.8) is unable to recover any of

the frequencies, for the maximum modulus of the dual polynomial assumes a value of
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(a) Without any priors (b) With probabilistic priors

Figure 3.4: Frequency localization using dual polynomial for {n, s,m} = {64,5,64}. The
probabilistic priors are pF (f)∣B1=[0,0.2] = 4.9801 and pF (f)∣B2=(0.2,1] = 0.005. The insets
show the same plot on a smaller scale.

unity at many other frequencies. However, given the probabilistic priors, semidefinite

program (3.38) is able to perfectly recover all the frequencies as shown in Figure 3.4b.

Here, ∣Q(fj)∣ = w1 = 0.2008 for fj ∈ F ⊂ B1, and ∣Q(fj)∣ = w2 = 200.8 for fj ∈ F ⊂ B2.

Experiment A.2. A comparison of the statistical performance of (3.38) with the

standard atomic norm for n = 64 is shown in Figure 3.5 over 1000 trials. Here, the pdf

pF (f) is 1000 times higher in the subband (0.3,0.7] than the rest of the spectrum. We

note that the weighted atomic norm is about twice more successful than the standard

atomic norm in recovering the signal frequencies.

3.1.7.2 Block priors

We evaluated the performance of spectrum estimation with block priors through

numerical simulations for the semidefinite program in (3.42). Here, for every random

realization of the signal, the frequencies are drawn uniformly at random in the set of
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Figure 3.5: The probability P of perfect recovery over 1000 trials for {n, s} = {64,5}. The
probabilistic priors are pF (f)∣B1={[0,0.3]⋃(0.7,1]} = 0.0025 and pF (f)∣B2=(0.3,0.7] = 2.4963.

subbands B = ⋃pk=1Bk ⊂ [0,1].

Experiment B.1. We first illustrate our approach through an example in Figure

3.6. Here for n = 64, we drew s = 5 frequencies uniformly at random within p = 3

subbands in the domain [0,1] without imposing any minimum separation condition.

Here, B = (0.35,0.48) ⋃ (0.60,0.80) ⋃ (0.85,0.90). A total of m = 20 observations

were randomly chosen from n regular time samples to form the sample setM. In the

absence of any prior information, we solve (3.11) and show the result of frequency

localization in Figure 3.6a. Here, it is difficult to pick a unique set of s = 5 poles

for which the maximum modulus of the dual polynomial is unity (which will actu-

ally correspond to recovered frequency poles). On the other hand, when block priors

are given, Figure 3.6b shows that solving (3.42) provides perfect recovery of all the

frequency components, where the recovered frequencies correspond to unit-modulus

points of the dual polynomial.

Experiment B.2. We then give a statistical performance evaluation of our new
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(a) Without any priors (b) With block priors

Figure 3.6: Frequency localization using dual polynomial for {n, s,m} = {64,5,20}. The
block priors are B = [0.35,0.48] ⋃ [0.60,0.80] ⋃ [0.85,0.90].

method, compared with atomic norm minimization without any priors (3.11). The

experimental setup and block priors are the same as in Figure 3.6 and no minimum

separation condition was assumed while drawing frequencies uniformly at random in

the set B. Figure 3.8 shows the probability P of perfect recovery for the two methods

for fixed n = 64 but varying values of m and s. For every value of the pair {s,m}, we

simulate 100 trials to compute P . We note that if the frequencies are approximately

known, our method greatly enhances the recovery of continuous-valued frequencies.

Experiment B.3. To illustrate the theoretical result of Theorem 3.6, we now con-

sider the block prior problem when each of the frequencies are known to lie in ex-

tremely small subintervals. For the triplet {n, s,m} = {64,7,18}, Figure 3.7 de-

picts the frequency localization. In the absence of any prior knowledge, the stan-

dard atomic norm minimization of (3.8) fails to locate any of the signal frequen-

cies (Figure 3.7a). However, if the frequencies are approximately known (or, in
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(a) Without any priors (b) With block priors

Figure 3.7: Frequency localization using dual polynomial for {n, s,m} = {64,7,18}.
The block priors consist of small frequency bands around each true pole fj such that
B = ⋃

s
k=1Bk = ⋃

s
k=1[fj − 0.001, fj + 0.001]. The bottom plot has been magnified in the

inset to show the size of the block prior.

other words, the frequency subband of the block prior is very small), then the

semidefinite program in (3.42) perfectly recovers the signal requiring not more than

3s number of samples (m = 18 < 21 = 3s), as shown in Figure 3.7b. Here, the

block priors consist of narrow frequency bands around each true pole fj such that

B = ⋃sk=1Bk = ⋃sk=1[fj − 0.001, fj + 0.001].

Experiment B.4. For the same signal dimension, size and number of blocks as in

the previous experiment, Figure 3.9 shows a comparison of statistical performance

of block prior method with the standard atomic norm minimization over 100 trials.

For every s, the parameter m was varied until m was at least 3s. (Note that the

perfect recovery with 3s samples in Theorem 3.6 holds only when the block prior is

arbitrarily small.)



93

Figure 3.8: The probability P of perfect recovery over 100 trials for n = 64. The block
priors are same as in Figure 3.6.

3.1.7.3 Known poles

We evaluated the known poles algorithm through a number of simulations to

solve the semidefinite program (3.45). In all our experiments, the s frequencies of

the artificially generated signal were drawn at random in the band [0,1]. Except for

Experiment 4, the sampled frequencies were also constrained to have the minimum

modulo spacing of ∆f = 1/⌊(n−1)/4⌋ between the adjacent frequencies. This is the the-

oretical resolution condition for the results in [168], although numerical experiments

suggested that frequencies could be closer, i.e., ∆f could be 1/(n−1). While working
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Figure 3.9: The probability P of perfect recovery over 100 trials for n = 64. The block
priors consist of small frequency bands around each true pole fj as in Figure 3.7.

with the known poles, we draw the first known frequency uniformly at random from

the set of s frequencies. As the number p of known poles increases, we retain the

previously drawn known frequencies and draw the next known frequency uniformly

at random from the remaining set of existing signal frequencies.

Experiment C.1. We simulated a low-dimensional model with the triple (n,m, s) =

(32,9,4) and first solved the semidefinite program (3.8) which does not use any prior

information, i.e., p = 0. For the same realization of the signal, we then successively

increase p up to s−1, and solve the optimization (3.45) of the known poles algorithm.

At every instance of solving an SDP, we record the number k of successfully recov-

ered frequencies along with their complex coefficients. This number also includes
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the known frequencies if the recovery process returns exact values of their complex

coefficients. k = s corresponds to complete success, i.e., recovering all of the unknown

spectral content. k = 0 is complete failure, including the case when the complex

coefficients of the known frequencies could not be recovered. Figure 3.10 shows the

probability P of recovering k frequencies over 1000 trials. Although the complex coef-

ficients of the known frequencies were unknown, the known poles algorithm increases

the probability of accurately recovering all or some of the unknown spectral content.

Experiment C.2. We repeat the first experiment for the higher-dimensional pair

(n,m) = (256,40) and vary s. The probability P over 100 random realizations of the

signal is shown in Figure 3.11 for selected values of s. We observe that the probabil-

ity of successfully recovering all the frequencies using the known poles Algorithm 3.2

increases with p.

Experiment C.3. Figure 3.12 shows the probability P of complete success as a

function of m over 100 trials for the twin (n, s) = (80,6). We note that the known

poles algorithm achieves the same recovery probability when compared to (3.8) with

a smaller number of random observations.

Experiment C.4. We now consider these two cases: (a) when ∆f = 1/(n−1), the res-

olution limit for the numerical experiments in [168], and (b) when the frequencies are

drawn uniformly at random and do not adhere to any minimum resolution conditions.

Figure 3.13 shows the probability P of recovering k frequencies over 1000 trials for the

triple (n,m, s) = (40,15,7). We note that the probability of complete success with

known poles suffers relatively little degradation for the random frequency resolutions.
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These trials include instances when the minimum resolution condition does not hold,

formulation in (3.8) shows complete failure but the known poles algorithm recovers

the unknown spectral content with complete success.

Figure 3.10: The probability P of recovering the unknown spectral content. The probability
is computed for 1000 random realizations of the signal for the triple (n,m, s) = (32,9,4).
(For k > 0, k ≤ p being the invalid cases, the corresponding bars have been omitted.)

3.1.8 Discussion

Our application of properties of positive trigonometric polynomials establishes

a general framework to employ prior information in spectral estimation of undersam-

pled signals. Further interesting investigations are now possible in this framework,

most notably determination of theoretical limit of super-resolution and recovery of

signals in presence of additive noise. We now provide brief insights into these aspects
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Figure 3.11: The probability P of recovering the unknown spectral content for selected
values of s. The probability is computed for 100 random realizations of the signal with
(n,m) = (256,40). (The lower diagonal cases when k > 0, k ≤ p are invalid, and do not
contribute to the result.)

concerning the performance of our algorithms.

3.1.8.1 Super-resolution

Our numerical experiments demonstrate that prior information aids in im-

proving the classical super-resolution limit of 1
n . For example, the standard super-

resolution limit for the signal in Figure 3.4 is 1
64 = 0.0156, yet our approach using

weighted atomic norm could resolve the frequency pair {0.1908,0.1966} with an inter-
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Figure 3.12: A higher probability P of recovering all the unknown frequency content can be
achieved with a smaller number m of random observations using the known poles algorithm.
The probability is computed for 100 random realizations with (n, s) = (80,6).

Figure 3.13: Performance of the known poles algorithm when the frequencies do not satisfy
any nominal resolution conditions. The probability P of successfully recovering k frequencies
is computed for 1000 realizations of the signal with dimensions (n,m, s) = (40,15,7). (a)
∆f = 1/(n−1) (b) Frequencies are selected uniformly at random in the band [0,1].

frequency separation of 0.0058. Further, statistical comparisons in Figures 3.5 and

3.8, where the number of frequencies s are gradually increased for a fixed signal di-

mension n so that the super-resolution limit of 1
n is violated more often than not, show
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superior recovery performance when prior information algorithms are applied. The

clearest instance of lower super-resolution limit in the presence of prior information

appears in the Figure 3.13 where the probability of signal recovery with known-poles

algorithm is higher even when the frequencies are generated without the minimum

separation condition.

As one of the future directions, we intend to pursue the theoretical limits of

super-resolution in presence of prior information. We note that the super-resolution

limit with priors must be at least same as the limit derived in [27] and [168]. For

example, the set Aα of atoms in our formulation of block priors is a subset of the set

Aβ of atoms in [27] and [168]. If the methods described in [27] and [168] are able

to correctly recover the set Aγ of original frequencies (Aγ ⊆ Aα), then the set Aγ

of atoms achieves the smallest atomic norm among the atoms in the set Aβ. Since

Aγ ⊆ Aα ⊆ Aβ, the atoms in Aγ also achieve the smallest atomic norm within the

set Aα. Therefore, at the very least, our method can achieve a super-resolution limit

of [27] and [168], that is, 4
n .

3.1.8.2 Noisy signal with priors

In real applications, the spectral estimation has an additional challenge of

recovering signals in presence of noise. Recent research suggests spectral super-

resolution with noise [26, 140] remains a rich problem, that we would not able to

address in detail within the context of this paper. However, our methods can be

developed further to recover a spectrally sparse signal in presence of noise. Here, we
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first derive the dual problem in presence of noise and prior information, and then

provide a result of numerical experiment as an evidence of improvement and stability

of performance.

Suppose that the observations x′
M

satisfy ∥x′
M
−xM∥2

2 ≤ δ, where δ is a constant.

In this case, the primal atomic norm minimization problem would be

minimize
x̂

∥x̂∥A

subject to ∣∣x̂M − x′M∣∣22 ≤ δ, (3.69)

By the Lagrangian duality, we derive the corresponding dual problem as

maximize
q

⟨qM, x′M⟩R −
√
δ∣∣qM∣∣2

subject to ∥q∥∗A ≤ 1 (3.70)

qN∖M = 0.

Note that when δ is 0, the optimization problems 3.69 and 3.70 are equivalent to the

primal (3.3) and dual (3.11) problems of atomic norm minimization with noiseless

observations. The semidefinite program for the primal problem (3.69) would be iden-

tical to (3.8) except that the equality constraint in (3.8) would now be replaced by

∣∣x̂M−x′
M

∣∣22 ≤ δ. As for the dual problem, we note that only the objective function has

been altered in presence of noise while the constraints are unchanged. On the other

hand, our prior information algorithms change the constraints of the dual problem to

develop the corresponding semidefinite program. Therefore, to recover the signal in

presence of noise, one only needs to add the term −
√
δ∣∣qM∣∣2 to the objective func-

tions of prior information formulations such as (3.38) and (3.42) in order to develop
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Figure 3.14: Mean normalized errors in the recovered signal as a function of Noise-to-Signal
Ratio (NSR) for n = 30, s = 4, m = 15, and B = (0.35,0.40) ⋃ (0.60,0.70) ⋃ (0.85,0.90).

the corresponding SDP.

As an illustration of this approach, we evaluated our block prior SDP in pres-

ence of noise through numerical experiments. We didn’t restrict the frequencies to

any minimum separation and drew them uniformly at random in these experiments.

The complex coefficients were drawn randomly exactly as explained in the beginning

of Section 3.1.7. We didn’t change the values of the following parameters for any of

the signal realizations: signal dimension n = 30, number of frequencies s = 4, number

of random observations m = 15, and block priors B = (0.35,0.40) ⋃ (0.60,0.70) ⋃

(0.85,0.90). We then added complex i.i.d. Gaussian noise to m random samples xM

to obtain the noisy observations x′
M

. The noise was scaled such that its energy δ

provides the specified Noise-to-Signal Ratio, NSR =
√
δ

∣∣x∣∣2
. We evaluated the recovery
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performance in terms of the normalized error ∣∣x−x̂∣∣2
∣∣x∣∣2

.

We then compared the mean normalized errors over 100 realizations for dif-

ferent values of NSR with and without block priors. Figure 3.14 shows the mean

normalized errors for cases when the signal was successfully recovered by either of the

two methods - with or without priors - in the absence of noise. Here, the noiseless

scenario corresponds to NSR = 0. We note that the prior information formulation

yields a higher stability in presence of noise. Similar performance was observed when

we included those realizations where the noiseless recovery was not successful.

Figure 3.14 also shows the performance of a classical noise subspace method,

namely MUSIC [157]. We take the first 1 to m samples of the signal for the numerical

experiments of MUSIC, as this method admits only uniformly-sampled signals. Figure

3.14 shows that the signal recovery through MUSIC has larger errors than our method

in the presence of noise. Since the minimum frequency separation constraints do not

apply to MUSIC, it performs better than the standard atomic norm minimization

when NSR = 0. On the other hand, our prior information techniques achieve super-

resolution limits closer to MUSIC in the noiseless case. One could also choose the

equi-spaced m samples for MUSIC by uniformly sampling m points over the entire

n-dimensional signal vector. In this case, the frequencies f1 and f2 = 0.5 + f1, where

{f1, f2} ∈ [0,1], cannot be distinguished by MUSIC, leading to even higher errors

than shown in Figure 3.14 .
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3.2 Block Iterative Reweighted Algorithms

3.2.1 Introduction

Compressed sensing promises to perform signal recovery using a smaller num-

ber of samples than required by the Nyquist-Shannon sampling theorem. In the

compressed sensing framework, a sparse signal x is recovered from the observation

vector y even though the dimension of y is much smaller than the dimension of x.

Since compressed sensing reduces the sampling rate in recovering sparse signals, it

has made great impacts in various signal processing areas [77].

Compressed sensing has also found application to the problem of line spectral

estimation, which aims to estimate spectral information from few observations. Early-

stage compressed sensing frameworks for spectral estimation [49, 71] assumed that

the frequencies of spectrally sparse signals were located on discretized grid points

in the frequency domain. However, in practice, frequencies can take values in a

continuous domain, giving rise to the so-called basis mismatch problem [49] when the

discretization of the frequency domain is not fine enough.

The breakthrough theory of super-resolution [27] proposed by Candès and

Fernandez-Granda states that sparse continuous-valued frequencies can be exactly

recovered through total variation minimization using a set of n uniformly spaced time

samples, provided the minimum separation between any two frequencies is 4/n. In or-

der to recover continuous-valued frequencies from few randomly chosen nonuniformly-

spaced time samples, Tang et al. proposed off-the-grid compressed sensing that em-

ploys atomic norm minimization for frequency recovery [168]. Later, it was shown
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that the `1 minimization over the fine discrete dictionary provides an approximate

solution to the atomic norm minimization [167].

In this paper, we are interested in recovering spectrally sparse signals with as

few random time samples as possible. It is then natural to ask whether there are

efficient frequency recovery algorithms that can further improve the performance or

relax the frequency separation conditions when compared with the total variation

minimization or atomic norm minimization. We propose new iterative algorithms to

enhance the performance of recovering continuous-valued frequency. In our iterative

algorithms, we estimate the frequency support information from previous iterations,

and use the support information as block prior [137] for reweighted atomic norm

minimization in later iterations. Numerical results show that we can improve recovery

performance by exploiting the block prior provided in earlier iterations.

We remark that there are quite a few works in the literature [32, 40, 78, 142,

184, 194] where iterative reweighted methods have been used to improve sparse re-

covery performance in compressed sensing. However, the sparse signal recovery is

considered over a finite discrete dictionary in [32,40,78,142,184]. Besides [194], only

our work considers recovering continuous-valued frequencies by directly reweighting

in the continuous dictionary through a semi-definite program (SDP). Our work dif-

fers from [194] in that we provide different reweighting schemes that lead to improved

signal recovery performance. In [194], the authors set the reweighting weight w(f)

for a frequency f ∈ [0,1] according to correlations between frequency atoms (see

e.g. Theorem 3 of [194]). In contrast, our method allows w(f) to take more gen-
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eral forms through the dual program of weighted atomic minimization under general

weights [138], thereby lending more flexibility to incorporating external prior infor-

mation and prior information passed on from earlier algorithm iterations. Numerical

experiments show that our iterative algorithms improve both the recovery perfor-

mance and the execution time, compared with [168] and [194].

3.2.2 Background on standard and weighted atomic norm minimization algorithms

In this paper, we denote the set of complex numbers, real numbers, positive

integers and natural numbers including 0 as C, R, Z+, and N respectively. We reserve

calligraphic uppercase letters for index sets. When we use an index set K as the

subscript of a vector x or a matrix F , i.e., xK or FK, it represents the part of the

vector x over index set K or the columns of the matrix F over index set K respectively.

Let x⋆ be a spectrally sparse signal expressed as a sum of k complex exponen-

tials as follows:

x⋆l =
k

∑
j=1

c⋆j e
i2πf⋆j l =

k

∑
j=1

∣c⋆j ∣a(f⋆j , φ⋆j )l, l ∈ N , (3.71)

where f⋆j ∈ [0,1] represents a frequency, c⋆j = ∣c⋆j ∣eiφ
⋆

j is its coefficient, and φ⋆j ∈ [0,2π] is

its phase, N = {l ∶ 0 ≤ l ≤ n−1, l ∈ N} is the set of time indices. Here, a(f⋆j , φ⋆j ) ∈ C∣N ∣ is

a frequency-atom, with the l-th element given by a(f⋆j , φ⋆j )l = ei(2πf
⋆

j l+φ
⋆

j ). In particular,

when phase is 0, we denote the frequency-atom simply as a(fj). We assume that the

signal in (3.71) is observed over the time index set M ⊆ N , ∣M∣ = m ≤ n, where

m observations are chosen randomly. Our goal is to recover all the frequencies with

the smallest possible number of observations. Estimating frequencies is not trivial
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because they are in continuous domain, and their phases and magnitudes are also

unknown.

The atomic norm of a signal x and its dual norm [168, Eq. (II.7)] are defined

respectively as follows:

∣∣x∣∣A = inf{∑
j

∣cj ∣ ∶ x =∑
j

cja(fj)}, (3.72)

∣∣q∣∣∗A = sup
∣∣x∣∣A≤1

⟨q, x⟩R = sup
φ∈[0,2π],
f∈[0,1]

⟨q, eiφa(f,0)⟩R = sup
f∈[0,1]

∣⟨q, a(f)⟩∣, (3.73)

where ⟨q, x⟩R represents the real part of the inner product xHq. Here, the superscript

H is used for the conjugate transpose. In [168], the authors proposed the following

atomic norm minimization to recover a spectrally sparse signal x⋆ using randomly

chosen time samples M ⊆ N :

minimize
x

∣∣x∣∣A

subject to xj = x⋆j , j ∈M. (3.74)

The dual problem of (3.74) is

maximize
q

⟨qM, x⋆M⟩R

subject to qN∖M = 0, ∣∣q∣∣∗A ≤ 1. (3.75)

The constraint ∣∣q∣∣∗
A
≤ 1 in (3.75) can be changed to supf∈[0,1] ∣⟨q, a(f)⟩∣ ≤ 1 using

(3.73). We label ⟨q, a(f)⟩ as the dual polynomial Q(f). Since the Slater condition is

satisfied in (3.74), there is no duality gap between (3.74) and (3.75) [20]. Moreover,

the estimated spectral content comprises the frequencies at which the absolute value

of the dual polynomial, which is derived from q (obtained as a solution of (3.75)),
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attains the maximum modulus of unity. We refer the reader to [168] for details. The

off-the-grid compressed sensing approach in [168] demonstrated that with randomly

chosen observation data, one can correctly obtain frequency information by solving

the atomic norm minimization. However, the atomic norm minimization requires a

certain minimum separation between frequencies for successful recovery.

In [137], we considered frequency recovery with external prior information, and

showed that if the frequencies are known to lie in frequency subbands, we can obtain

better recovery performance by using frequency block prior information. The SDP

formulation adopted inside each iteration of our new algorithms follows that detailed

in [137]. We summarize that SDP formulation in the following paragraph.

Suppose the frequency f of the signal x lies within the frequency block B ⊂

[0,1]. Then, given this block prior information B, the atomic norm with block priors

and its dual are stated respectively as follows [137, Eq. (II.9)]:

∣∣x∣∣A,B = inf{∑
j

∣cj ∣ ∶ x =∑
j

cja(fj), fj ∈ B}, (3.76)

∣∣q∣∣∗A,B = sup
∣∣x∣∣A,B≤1

⟨q, x⟩R = sup
f∈B

∣⟨q, a(f)⟩∣. (3.77)

We formulate the atomic norm minimization with block priors [137, Eq. (III.1)] as

minimize
x

∣∣x∣∣A,B

subject to xj = x⋆j , j ∈M. (3.78)
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The dual problem of (3.78) is

maximize
q

⟨qM, xM⟩R

subject to qN∖M = 0, ∣∣q∣∣∗A,B ≤ 1. (3.79)

Here, B is a union of disjoint frequency blocks within which all the true frequencies

are located, i.e., f⋆j ∈ B, B = ∪rk=1[fLk , fHk], where r is the number of disjoint block

blocks, fLk and fHk are the lowest and highest frequencies of the k-th frequency

block. Using the properties of positive trigonometric polynomials [74,81] and (3.77),

this dual problem can be formulated as an SDP [137, Eq. (III.16)]:

maximize
q,{Gai}

r
i=1,{Gbi}

r
i=1

⟨qM, xM⟩R

subject to qN∖M = 0, (3.80)

δki = Lki,fLi ,fHi(Gai ,Gbi), ki=0,...,(n−1),
i=1,...,r ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Gai q

qH 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, i = 1, ..., r,

where δki = 1 if ki = 0, and δki = 0 otherwise, Gai ∈ Cn×n and Gbi ∈ C(n−1)×(n−1) are

Gram matrices. The trace parameterization term Lk,fL,fH(Ga,Gb) for the frequency

block [fL, fH] ⊂ [0,1] is set to tr[ΘkGa] + tr[(d1Θk−1 + d0Θk + dH1 Θk+1) ⋅Gb], where

Θk is the Toeplitz matrix that has ones on the k-th diagonal and zeros elsewhere,

d0 = −αβ+1
2 , d1 = 1−αβ

4 + iα+β4 , where α = tan(2πfL/2), and β = tan(2πfH/2) when

[fL, fH] ⊂ [0,0.5], and α = tan(2π(fL − 1)/2), and β = tan(2π(fH − 1)/2) when

[fL, fH] ⊂ (0.5,1]. This SDP approach [137] was expanded for more general cases

in [138].
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Although the atomic norm minimization that exploits external prior informa-

tion can improve signal recovery performance, in practice, one may not always have

direct access to prior information. This leads to the question if we can improve the

frequency recovery performance without any external prior information. We describe

new algorithms to address this issue in the following section.

3.2.3 Block iterative (re)weighted atomic norm minimization algorithms

We propose three iterative algorithms to enhance frequency recovery perfor-

mance in the absence of external prior information. In our algorithms, we use es-

timated frequency support information from previous iterations as block prior for

subsequent iterations.

3.2.3.1 Block iterative weighted atomic norm minimization

We first introduce a conceptual algorithm named Block iterative weighted

Atomic Norm Minimization (BANM). BANM solves SDP of (3.80) repeatedly, using

block priors obtained from the previous iteration. In each iteration, BANM estimates

the frequency locations, and then, around the estimated frequencies, BANM forms

blocks which very likely contain the true frequencies. With the block priors so ob-

tained, BANM enhances frequency recovery via solving (3.80) in the next iteration,

using the new block information.

BANM initially sets the iteration number t = 0, frequency block B = [0,1],

f ∈ B, and then solves (3.80). Suppose the solution of (3.80) gives r estimated

frequencies f
(t)
i , i = 1, ..., r, where the superscript (t) is used to represent the iteration
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number. BANM chooses the l frequencies fi1 , fi2 , ..., fil with the largest coefficients

in amplitude among them, where l is a certain integer number. BANM then forms a

union frequency block B with l frequency subbands around the estimated frequencies

f
(t)
ij

, j = 1, ..., l, as

B =
l

⋃
j=1

[f (t)
ij

− τ, f (t)
ij

+ τ], (3.81)

for some small real number τ > 0, τ ∈ [0,1] that determines the size of the subband.

BANM uses the union frequency block B as block prior and solves (3.80) again with

updated parameters. The algorithm continues solving (3.80) and updating (3.81) in

each iteration until either a maximum number of iterations is reached or the solution

of (3.80) converges.

3.2.3.2 Block iterative reweighted `1 and atomic norm minimization mixture

BANM requires solving SDP in each iteration to estimate the location of fre-

quencies, but solving SDP repeatedly causes long execution time. Thus, we propose

using low-complexity algorithm to obtain prior information on frequency locations.

We then use the aforementioned SDP (3.80) only in the last iteration for accurately

determining the frequency locations. This concept is the key to design of our algo-

rithm - Block iterative reweighted `1 and Atomic Norm Minimization Mixture (or

simply, BANM-Mix) algorithm that can achieve super-resolution of frequencies with

low complexity (Algorithm 3.3).

BANM-Mix first discretizes the continuous frequency domain [0,1] in uniform

intervals of size △f . We denote the index set for these intervals as P = {i}pi=1, where
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p = 1/△f . The index set corresponds to p discrete frequency grid points fj = (j−1)/p,

1 ≤ j ≤ p. We have the discrete Fourier matrix F ∈ Cn×p over p discrete frequency grid

points whose element in the j-th column and l-th row is a(fj)l = ei(2πfj l).

Then, BANM-Mix iteratively solves reweighted `1 minimization over this dis-

cretized frequency dictionary to efficiently estimate frequency locations. Different

from iterative reweighted `1 minimization algorithms designed for incoherent discrete

dictionaries [32, 40, 78, 142, 184], our iterative reweighted `1 minimization algorithm

employs novel adaptive gridding and block reweighting strategies to extract frequency

support information from our highly correlated discretized dictionary.

BANM-Mix initializes coefficients c
(0)
i = 0, weights w

(0)
i = 1 for i = 1, ..., p, and

an index set K(0) = {j ∶ j = ql + 1, l = 0,1, ..., (p − 1)/q, q ∈ Z+} ≜ {j}j=1∶q∶p ⊆ P . Let

W (t) = diag(w(t)

K(t)) be a diagonal matrix with weights w
(t)

K(t) , FK(t) ∈ C∣M∣×∣K(t)∣ be the

partial discrete Fourier matrix.

In the t-th iteration, BANM-Mix solves the following weighted `1 minimization

problem over the index set K(t), rather than the larger index set P :

minimize
z

∣∣W (t)z∣∣1

subject to x⋆l = (FK(t)z)l, l ∈M. (3.82)

We then define a vector c(t) having c
(t)

K(t) = z and c
(t)

P∖K(t) = 0.

BANM-Mix then calculates the weight w
(t+1)
i , i = 1, ..., p. We define the index-

wise frequency block BI i as

BI i = {j ∶ i − b/2 ≤ j ≤ i + b/2, j ∈ P}, (3.83)
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Figure 3.15: An illustration of the adaptive gridding. The estimated frequency f2q+1

in the first iteration is depicted by a red pole. The index set K and P have solid and
dotted grid points respectively. The block that contains the red pole in the middle is
the index-wise frequency block BI2q+1, where b = 10.

for some positive integer b, which determines the block width. BANM-Mix computes

the weight w
(t+1)
i by considering the frequency coefficients around fi in the discretized

domain as

w
(t+1)
i = 1

∑j∈BIi ∣c
(t)
j ∣ + ε

, i = 1, ..., p, (3.84)

where ε is a small positive constant to prevent w
(t+1)
i from going to infinity. We refer

to our procedure in (3.84) as block reweighting. Since the discretized dictionary under

consideration has highly correlated columns, block reweighting can accurately reflect

the likelihood of a true frequency existing around fi. Our numerical experiments

showed that earlier reweighting strategies [32, 40, 142, 184], which update wi ← 1
∣ci∣+ε

,

could not correctly reflect the likelihood of a true frequency being at index i and

resulted in worse frequency recovery performance. This is because the solution to

(3.82) will disperse the amplitude of a true frequency into the neighboring indices in
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highly correlated dictionary columns.

After updating w
(t+1)
i for i = 1, ..., p, BANM-Mix updates the index set K(t+1)

through adaptive gridding. In adaptive gridding, BANM-Mix first finds indices i,

1 ≤ i ≤ p, with w
(t+1)
i < (min(w(t+1))+max(w(t+1)))/2, where min(w(t+1)) and max(w(t+1)) are

the minimum and maximum values of the elements of w(t+1) respectively. We define

(min(w(t+1))+max(w(t+1)))/2 as w
(t+1)
mid . Then BANM-Mix updates K(t+1) as

K(t+1) = K(t)⋃( ⋃
{i∶ w

(t+1)
i <w

(t+1)
mid

, i∈P}

BI i). (3.85)

Namely, if w
(t+1)
i < w(t+1)

mid , K(t+1) will include finer grid points (with separation △f )

around frequency (i − 1)/p. Recall that, at the beginning, K(0) has only grid points

with separation q△f . The reason is that when w
(t+1)
i is small, very likely a true

frequency exists around frequency (i − 1)/p. By applying finer gridding around fre-

quency (i−1)/p, one can estimate the frequency location more accurately in the next

iteration. We call this method of applying different resolutions in the discretized

dictionary as adaptive gridding (see Figure 3.15).

The algorithm continues solving (3.82) in each iteration until either a speci-

fied maximum number of iterations (MaxItr) is exhausted or the solution of (3.82)

converges i.e., ∣∣c(t−1) − c(t)∣∣2 ≤ εerr, for some error tolerance εerr > 0. BANM-Mix then

chooses the block prior set B by a union of the frequency blocks around frequency

f
(t)
i satisfying w

(t+1)
i < w(t+1)

mid . With this frequency block information, we use SDP

(3.80) to super-resolve frequencies in the last iteration.
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Algorithm 3.3 Block iterative reweighted `1 and Atomic Norm Minimization Mix-
ture (BANM-Mix) Algorithm

Input: F ∈ Cn×p, x⋆M, MaxItr, b, ε, εerr
Output: frequency f̂ , coefficient ĉ
Initialize: t← 0, c(t) ← 0, w(t) ← 1, K(t) ← {i}i=1∶q∶p, P ← {i}pi=1

for t = 1 to MaxItr do

c
(t)

K(t) ← solution of (3.82), c
(t)

P∖K(t) ← 0
BIi ← frequency block via (3.83) for i = 1, ..., p

w
(t+1)
i ← weight via (3.84) for i = 1, ..., p

if ∣∣c(t−1) − c(t)∣∣2 < εerr then

B ← frequency block via (3.81), where fi satisfying w
(t+1)
i < (min(w(t+1))+max(w(t+1)))/2

f̂ ← f such that ∣Q(f)∣ = 1 in B after solving (3.80)
ĉ ← c satisfying linear equation (3.71) with given f̂ and x⋆M
break

end

K(t+1) ← index set via (3.85)
end

3.2.3.3 Block iterative reweighted `1 minimization

The complexity of BANM-Mix can still be high since we have to solve an

SDP in the last iteration. To further reduce its complexity, we propose the Block

iterative reweighted `1 Minimization (BL1M) algorithm which is the same as BANM-

Mix except that BL1M does not solve SDP in the last iteration. Instead, BL1M uses

postprocessing to estimate the final frequencies from the results of iterative reweighted

`1 minimizations. In the last iteration, BL1M finds the frequency blocks BI i that

satisfy w
(t+1)
i < w

(t+1)
mid . If two frequency blocks BI i overlap, BL1M merges them

into one. BL1M assumes that one frequency block contains only one true frequency.

Suppose that one frequency block (after possible merging) has r grid frequencies

f1, ..., fr whose corresponding coefficients are c1, ..., cr. Then BL1M estimates the

frequency f̂ in that block as f̂ = ∑
r
i=1 fi×∣ci∣

∑
r
i=1 ∣ci∣

.
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3.2.4 Numerical experiments

We compare our algorithms with the standard Atomic Norm Minimization

(ANM) [168], and the Reweighted Atomic norm Minimization (RAM) [194]. We use

CVX [91] to solve convex programs.3 In all experiments, the phases and frequencies

are sampled uniformly at random in [0,2π) and [0,1] respectively. The amplitudes

∣cj ∣, j = 1, ..., k, are drawn randomly from the distribution
√

0.5 + χ2
1 where χ2

1 repre-

sents the chi-squared distribution with 1 degree of freedom.

We evaluate the recovery performance for the signal dimension n = 64, number

of observation m is varied from 8 to 25, block width b = 20, ε = 28, and εerr = 0.5×10−4.

The maximum number of iterations (MaxItr) is set to 20 for both BANM-Mix and

RAM.4 Figure 3.16 and 3.17 show the probability of successful recovery of the entire

spectral content over 50 trials for each parameter setup. We consider a recovery

successful if ∣∣f⋆−f̂ ∣∣2 ≤ 10−3. Figure 3.17 clearly shows that our algorithm outperforms

both ANM and RAM for n = 64 and k = 8.

We assess the computational complexity of algorithms in terms of the average

execution time for signal recovery from 10 trials. Here, we present results when n is

from 120 to 470, m = ⌊n/2⌋, q = 24, p = 214, b = 20, ε = 28, εerr = 0.5 × 10−4. Figure 3.18

shows that the speed of BL1M is faster than that of ANM and RAM. This is because

the latter is based on an SDP while the former uses only `1 minimization.

3We conducted our numerical experiments on HP Z220 CMT with Intel Core i7-3770
dual core CPU @3.4GHz clock speed and 16GB DDR3 RAM, using Matlab (R2013b) on
Windows 7 OS.

4A MaxItr value of 20 was sufficient to guarantee an empirical convergence of our iterative
procedures in most of our experiments.
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Figure 3.16: The probability P of successful frequency recovery (n = 64).

Figure 3.17: The probability P of frequency recovery for (n, k) = (64,8).

3.2.5 Conclusion

The BANM-Mix and BL1M show better recovery than other known iterative

methods [168,194]. In particular, BL1M has shorter execution times than these other

methods. Our simulations empirically exhibit convergence of our iterative proce-
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Figure 3.18: The execution time as a function of signal dimension n.

dures. It would be interesting to perform more comprehensive theoretical analysis of

convergence in the future.

3.3 Phaseless Super-resolution in the Continuous Domain

3.3.1 Introduction

In engineering and science, improving the accuracy and precision of measure-

ment tools, such as microscopy, X-ray crystallography and MRI, is of great interest.

However, due to the physical limitations in measurement tools, sometimes we can only

indirectly or partially observe a signal of interest, e.g., obtaining only low-frequency

information, only low-resolution image, or only the magnitude of a signal. The micro-

scope is a good example of a measurement tool having such physical limitations rang-

ing from low-frequency measurements to phaseless measurements [11,21,100,165,199].

To overcome the limitation of low-frequency measurements, researchers have
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investigated recovering a signal from only its low-frequency Fourier measurements,

and referred to it as super-resolution. The authors in [27] and [168] proposed SDP

based methods for the recovery of signals in the continuous domain under certain

separation conditions, by employing Total Variation Norm Minimization (TVNM)

and Atomic Norm Minimization (ANM) respectively. The precise SDP formulation

of ANM for d-dimensional signals, d ≥ 2, was introduced in [188]. Besides, to address

the issue of phaseless measurements, people studied phase retrieval to obtain phase

information from the magnitude measurements of a signal [82,88]. The authors in [25]

proposed a trace-norm minimization to solve phase retrieval problem with the use of

masks.

Super-resolving a signal from only magnitudes of low-frequency Fourier mea-

surements is often ill-posed due to lack of both phase information and high-frequency

information; and hence it is a challenging problem. The authors in [47,105] considered

the phaseless super-resolution aiming at recovering signals with only low-frequency

magnitude measurements. In the noiseless setting, the authors in [47] proposed a

combinatorial algorithm for signal recovery using only low-frequency Fourier magni-

tude measurements, but this algorithm requires additional distinguishing conditions

on the signal impulses. In the noisy setting, this combinatorial algorithm suffers from

error propagation. Instead of assuming the distinguishing conditions on signals, the

authors in [105] used masks to obtain different types of magnitude measurements. The

authors provably showed that under appropriate choice of masks, an SDP formulation

can be used to recover time-domain impulse signals on the discretized grid.



119

In this paper, we consider super-resolving time-domain impulse signals located

off the grid from only low-frequency Fourier magnitude measurements. To tackle the

continuous domain, we propose a novel SDP formulation, employing ANM to recover

signals from Fourier magnitude measurements. For example, our approach applies

to the magnitude measurements used in [25, 105]. In numerical experiments, we

show the successful signal recovery in the continuous domain from only low-frequency

magnitude measurements. Also, we compare our method to a simple combining

algorithm performing phase retrieval followed by ANM. Our method shows better

recovery performance than the simple algorithm.

Notations: In this paper, we denote the set of complex numbers as C. We

reserve calligraphic uppercase letters for index sets, e.g., N . We use ∣N ∣ as the

cardinality of the index set N . We use the superscripts ∗, T , and H to denote

conjugate, transpose, and conjugate transpose respectively. We reserve i for the

imaginary number, i.e., i2 = −1. We denote a time-domain signal as a lowercase

letter, and its frequency-domain signal as its uppercase letter. To denote a ground

turth signal, we use the superscript o, e.g., xo. For the index of a vector and a matrix,

we start with the index 0; hence, we denote the first element of the vector X as X0,

and the top-left element of a matrix Q as Q0,0.

3.3.2 Problem formulation and background

Let xo(t) be a sum of Dirac functions expressed as follows:

xo(t) =
k

∑
j=1

cojδ(t − toj), (3.86)
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where δ(t) is the Dirac delta function, coj ≠ 0 ∈ C, and toj ∈ [0,1). Its Fourier transform

is given by:

Xo
f =

k

∑
j=1

coje
−i2πftoj =

k

∑
j=1

∣coj ∣a(toj , φoj)f , f ∈ N , (3.87)

where f ∈ N = {0,1, ..., n − 1}, a(toj , φoj) ∈ C∣N ∣ is an atom vector, with the f -th

element given by a(toj , φoj)f = e−i(2πft
o
j−φ

o
j). Simply, Xo = V oco, where Xo ∈ Cn, V o =

[a(to1,0), ..., a(tok,0)], and co = [∣co1∣eiφ
o
1 , ..., ∣cok∣eiφ

o
k]T . We also define the minimum

separation of xo(t), denoted by △t, as the closest distance between any two different

time value toj ’s in cyclic manner [27,168], i.e.,

∆t = min
toi ,t

o
j ∈[0,1), i≠j

∣toi − toj ∣. (3.88)

The goal here is to find xo(t) from the low-frequency Fourier magnitude mea-

surements. We state the phaseless super-resolution problem with masks as follows:

Find x(t)

subject to Z[r, l] = ∣∫
1

0
Dr(t)

k

∑
j=1

cojδ(t − toj)e−i2πltdt∣, (3.89)

for −R ≤ r ≤ R and l ∈ N ,

where Z[r, l] is the l-th frequency magnitude obtained by using the r-th mask func-

tion Dr(t). Depending on the mask function Dr(t), one can have different types

of magnitude information. For example, if we choose 1 + e−i2πt for Dr(t), we have

∣Xo
l +Xo

l+1∣, l ∈ N .

In [105], Jaganathan et al. consider the case when the signal xo(t) is located
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on the grid, i.e., toj ∈ {0,1,2, ....n − 1}. By n-point DFT, (3.89) is equivalent to

Find x

subject to Z[r, l] = ∣⟨fl,Drx⟩∣, (3.90)

for −R ≤ r ≤ R and l ∈ N ,

where x ∈ Cn is a complex valued k-sparse vector, Dr ∈ Cn×n is a diagonal matrix,

and fl is the conjugate of the l-th column of the n point DFT matrix. The authors

in [105] proposed the following semidefinite relaxation-based program for the phaseless

super-resolution in the discrete domain by denoting Y = xxH and relaxing the rank-1

constraint on Y :

minimize
Y

∣∣Y ∣∣1 + λTr(Y )

subject to Z[r, l]2 = Tr(DH
r flf

H
l DrY ), (3.91)

for −R ≤ r ≤ R, l ∈ N , and Y ⪰ 0,

for some λ > 0.

This paper makes no assumption of toj being on the grid. In the next section,

we propose an ANM based semidefinite relaxation of (3.89) to deal with impulse

functions off the grid.

3.3.3 Phaseless super-resolution in the continuous domain

We define the atomic norm of a vector X ∈ C∣N ∣ as follows:

∣∣X ∣∣A = inf{∑
j

∣cj ∣ ∶Xl =∑
j

∣cj ∣a(tj, φj)l, tj∈[0,1),
φj∈[0,2π)

}. (3.92)

We have the following new proposition for the atomic norm:
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Proposition 3.8. For any X ∈ C∣N ∣, N = {0,1, ..., n − 1},

∣∣X ∣∣2A = inf
u,s

{ 1

∣N ∣sTr(Toep(u)) ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(u) X

XH s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0}, (3.93)

where Tr(⋅) is the trace operator, and Toep(u) is the Toeplitz matrix whose first column

is u = [u0, u1, ..., un−1]T . Moreover, suppose after the Vandermonde decomposition

[33, 34, 172], Toep(u) = V DV H , where V = [a(t1,0), ..., a(tr,0)] and D is a positive

diagonal matrix. Then, there exists a vector c such that X = V c and ∑j ∣cj ∣ = ∣∣X ∣∣A.

Proposition 3.8 is similar to Proposition II.1 in [168]; however, Proposition

3.8 considers the trace of sToep(u) instead of the sum of trace of Toep(u) and s.

Proposition 3.8 is essential to derive our new SDP formulation handling phaseless

measurements.

3.3.3.1 Proof of proposition 3.8

Proof. Let us denote the optimal value of the right hand side of (3.93) by SDP(X).

In order to show ∣∣X ∣∣2
A
= SDP(X), we will show that (1) ∣∣X ∣∣2

A
≥ SDP(X) and (2)

∣∣X ∣∣2
A
≤ SDP(X).

The proof of (1) is easily shown by considering a feasible solution of SDP(X).

ForX = ∑j ∣cj ∣a(tj, φj), by choosing a feasible solution, Toep(u) = ∑j ∣cj ∣a(tj, φj)a(tj, φj)H ,

and s = ∑j ∣cj ∣, we have

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(u) X

XH s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=∑
j

∣cj ∣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a(tj, φj)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a(tj, φj)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

H

⪰ 0.

For this feasible solution, 1
∣N ∣
sTr(Toep(u)) = (∑j ∣cj ∣)2, which is ∣∣X ∣∣2

A
. Thus, SDP(X) ≤

∣∣X ∣∣2
A

.
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For the proof of (2), we will show that for any u, s, and X, 1
∣N ∣
sTr(Toep(u)) ≥

∣∣X ∣∣2
A

. Suppose for some u, s ≠ 0, and X, the matrix U in (3.96) is positive semidefi-

nite. From the positive semidefinite condition, we have Toep(u) ⪰ 0 and s > 0. From

the Vandermonde decomposition [33, 34, 172], for any positive semidefinite Toep(u),

we have Toep(u) = V DV H , where V = [a(t1,0) a(t2,0), ...a(tr,0)], and D is a diagonal

matrix having dj as its j-th diagonal element. Since V DV H = ∑r
j=1 dja(tj,0)a(tj,0)H

and ∣∣a(tj,0)∣∣22 = ∣N ∣, we have 1
∣N ∣

Tr(Toep(u)) = Tr(D). Also, from the Vandermonde

decomposition and U ⪰ 0, X is in the range space of V ; in fact, if X is not in

the range of V , we can always find a vector z such that zHUz < 0. Therefore,

X = V w = ∑r
j=1wja(tj,0), where w ∈ Cr. By the Schur complement lemma [20], U in

(3.96) is expressed as follows:

V DV H − 1

s
V wwHV H ⪰ 0. (3.94)

It is noteworthy that we can always find a vector q such that V Hq = sign(w), where

sign(w)Hw = ∑r
j=1 ∣wj ∣, by choosing q = V (V HV )−1sign(w). This is because V H has

full row rank. By choosing q such that V Hq = sign(w), we have

Tr(D) = qHV DV Hq ≥ 1

s
qHV wwHV Hq = 1

s
(∑
j

∣wj ∣)2,

where the inequality is from (3.94). Therefore, we have

1

∣N ∣sTr(Toep(u)) = sTr(D) ≥ (∑
j

∣wj ∣)2 = ∣∣X ∣∣2A.

If s = 0, from the sufficient and necessary condition for the positive semidefi-

niteness of a Hermitian matrix, all of U ’s principal minors need to be non-negative

[135]. Thus, Xj = 0, ∀j ∈ N . In this case, Proposition 3.8 still holds.
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3.3.3.2 Lemma for the positive semidefinite matrix Q

Lemma 3.9. Let Q ∈ C∣N ∣×∣N ∣, and Xo ∈ C∣N ∣. Suppose (1) Q ⪰ 0, (2) Qj,j = Qo
j,j,

Qj,j+1 = Qo
j,j+1, and Qj+1,j = Qo

j+1,j, j ∈ N = {0,1, ..., n − 1}, where Qo = XoXoH , (3)

Xo
j ≠ 0, ∀j ∈ N . Then, Q is uniquely determined as Q =XoXoH .

Proof. From the fact that a Hermitian matrix is positive semidefinite if and only

if all of its principal minors are non-negative [135], all of Q’s principal minors are

required to be non-negative. Let us prove our lemma by induction. When ∣N ∣ =

3, the determinant of Q is −∣Xo
1Q0,2 − Xo

0X
o
1X

o
2
∗∣2, where Q0,2 is unknown. To be

−∣Xo
1Q0,2 −Xo

0X
o
1X

o
2
∗∣2 ≥ 0, Xo

1Q0,2 −Xo
0X

o
1X

o
2
∗ = 0. Since Xo

1 ≠ 0, Q0,2 is determined

uniquely as Xo
0X

o
2
∗. When ∣N ∣ = 4, we can consider the top-left 3 × 3 submatrix of Q

and the bottom-right 3 × 3 submatrix of Q to determine Q0,2 and Q1,3 respectively.

And then, we can deal with 3 × 3 principal submatrix of Q having Q0,4 to determine

Q0,4. In the similar way, when ∣N ∣ = n, we can uniquely determine every unknown

variables in Q. We omit the detailed explanation due to the space limitation.

Motivated by Proposition 3.8, we propose the following squared atomic norm

minimization for the phaseless super-resolution in the continuous domain, simply

phaseless ANM :

minimize
X

∣∣X ∣∣2A

subject to ar(X) = br, r = 1,2, ..., q, (3.95)

where q is the total number of magnitude measurements, ar(X) is the magnitude

mapping function, ∣⟨ar,X⟩∣, ar ∈ C∣N ∣, and br’s are magnitude measurement results.
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From Proposition 3.8, we can change (3.95) to

minimize
u,X,s

1

∣N ∣sTr(Toep(u))

subject to U ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(u) X

XH s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0,

ar(X) = br, r = 1,2, ..., q, (3.96)

where u,X ∈ C∣N ∣ and s ∈ C. From the positive semidefiniteness of U , s ≥ 0, and

Toep(u) ⪰ 0. Besides, if Xj ≠ 0, j ∈ N , then s ≠ 0 from the non-negativeness of all

principal minors of U [135]. However, because of the magnitude constraints, (3.96) is

a non-convex program.

By the Schur complement lemma [20], U ⪰ 0 implies sToep(u) − XXH ⪰ 0.

Since sToep(u) = Toep(su), by defining Q =XXH and u′ = su, and getting rid of the

rank constraint on Q, we have the following SDP relaxation for the phaseless ANM:

minimize
Q⪰0,u′

1

∣N ∣Tr(Toep(u′))

subject to Toep(u′) −Q ⪰ 0,

Ar(Q) = b2
r, r = 1,2, ..., q, (3.97)

where Ar(Q) is a mapping function, Tr(ArQ). Here, Ar = araHr .

After solving (3.97), we can find the optimal Q̂ and optimal Toep(û). Our

analysis of (3.97) in the following section shows that under certain conditions, Q̂ =

XoXoH . We can recover Xo up to global phase by the eigenvalue decomposition

of Q̂. More importantly, because of the structure of Toep(û) = V oDV oH for some
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diagonal matrix D, we can apply any parameter estimation method such as Prony’s

method [14,112,163] or a matrix pencil method [99,156] to find the time location toj ’s.

3.3.4 Performance analysis

We first consider the analysis of (3.97) given a rank-1 matrix Q. And then,

we provide the analysis of (3.97). Finally, we look at one scenario having magnitude

measurements from a set of masks, in which (3.97) provides the desired signal recovery.

Theorem 3.10. For a given rank-1 positive semidefinite matrix Q =XXH , X ∈ C∣N ∣,

the following optimization problem provides the squared atomic norm of X, i.e., ∣∣X ∣∣2
A

:

minimize
u

1

∣N ∣Tr(Toep(u))

subject to Toep(u) −Q ⪰ 0. (3.98)

Proof. We can prove it by using Proposition 3.8. Defining u = u′s, where s > 0 is a

scalar. Then we can re-state the constraint as Toep(u′) − 1
sXX

H ⪰ 0. By the Schur

complement lemma, we have the optimization problem in Proposition 3.8. Therefore,

from Proposition 3.8, the optimal value of (3.98) is the same as ∣∣X ∣∣2
A

.

Corollary 3.11. If (3.97) gives a rank-1 solution to Q, then (3.97) minimizes the

squared atomic norm of X among all vectors X satisfying the given constraints

ar(X) = br, r = 1,2, ..., q.

Proof. From Theorem 3.10, (3.97) provides the minimum squared atomic norm of X

among all vectors X satisfying the constraints ar(X) = br, r = 1,2, ..., q.
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Let us consider the case when we have low-frequency Fourier magnitude mea-

surements from a set of masks. The main difference between [27,168] and our setting

is that we have only magnitude measurements instead of measurements offering both

phases and magnitudes.

Theorem 3.12. Given the magnitude measurements ∣Xo
j ∣, ∣Xo

j + Xo
j+1∣, and ∣Xo

j −

iXo
j+1∣, j ∈ N = {0,1, ..., n − 1}, (3.97) provides the unique solution Q = XoXoH , and

xo(t) is uniquely obtained up to global phase if the following conditions hold: Xj ≠ 0,

∀j ∈ N , and ∆t ≥ 4/∣N ∣.

Proof. Given magnitude data, ∣Xo
j ∣2, ∣Xo

j+1∣2, ∣Xo
j +Xo

j+1∣2, and ∣Xo
j −iXo

j+1∣2, we can find

Qj,j, Qj+1,j+1, Qj,j+1 and Qj+1,j, which are the elements of the diagonal, sub-diagonal,

and super-diagonal of the matrix Q, by simply solving linear equations on Q together.

From Lemma 3.9 in Appendix 3.3.3.2, we can uniquely recover Q = XoXoH and Xo

up to global phase. According to Proposition 3.8 and Theorem 3.10, (3.97) with

Xo is essentially the same as the optimization problem dealing with the standard

ANM [168] or TVNM [27]. Therefore, (3.97) provides unique xo(t) up to global

phase if the separation condition holds, i.e., ∆t ≥ 4/∣N ∣.

3.3.5 Numerical experiments

We compare our phaseless ANM against the standard ANM [168] using mea-

surements offering both phases and magnitudes, as well as against a simple algorithm

which first performs the phase retrieval [25] and then applies the standard ANM [168]

to recover the impulse functions from the recovered signal using the phase retrieval.
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We use CVX [91] to solve (3.97).

Fig. 3.19 (a) and (b) show the probability of successful recovery from the

standard ANM and the phaseless ANM respectively. We conducted 50 trials for each

parameter setting and measured the success rate. At each trial, we chose one time

impulse to1 uniformly at random in [0,1), and another time impulse to2 by adding

the separation ∆t to to1 in the cyclic manner. We sampled the real part and imag-

inary part of time coefficients coj ’s uniformly at random in (0,1). We consider low

frequencies, i.e., M = {0,1, ...,m − 1}, where m < n, M ⊆ N . The x-axis represents

the separation condition ∆t varied from 1/n to 11/n, and y-axis is the number of

low-frequency Fourier measurements m, varied from 2 to 30. For a set of masks in

the phaseless ANM, we use the same masks as those of Theorem 3.12 over the index

set M. Hence, the number of magnitude measurements is 3m − 2. We evaluated the

recovery performance for the signal dimension n = 32. We calculated the Euclidean

distance between the estimated and true time locations. If the distance is less than

10−3, then we consider the estimation successful. Numerical experiments show that

our phaseless ANM can find the exact time locations in the continuous domain with

the same performance as the standard ANM. For large k, e.g., k = 10, our method

also provides the same performance as the standard ANM. We omit the simulation

results in this paper due to the space limitation.

One can think of a simple method conducting the phase retrieval first, and

then doing the standard ANM. To compare our algorithm with this simple method,

we further carried out numerical experiments by varying the number of magnitude
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Figure 3.19: The probability P of successful recovery by varying the separation condition
∆t and the number of measurements when n = 32. (a) Standard ANM. (b) Phaseless ANM

Figure 3.20: The probability P of successful recovery by varying the number of magnitude
measurements q and sparsity k when n = 32. (a) Phase retrieval and then standard ANM
(b) Phaseless ANM

measurements q and the number of sparsity k in (3.86). In this simulation, instead

of using a set of masks used in Theorem 3.12, we randomly chose a vector ar for

each magnitude measurement in (3.95). Fig. 3.20 (a) and (b) show the probability

of successful recovery from the simple combining algorithm and the phaseless ANM

respectively. The x-axis is the number of magnitude measurements q, and y-axis
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is the number of sparsity k. With randomly chosen magnitude measurements, our

method outperforms the simple combining algorithm.

3.4 Fast Alternating Projected Gradient Descent Algorithms for

Recovering Spectrally Sparse Signals

3.4.1 Introduction

Compressed sensing is a signal processing paradigm of reducing the number of

measurements needed for accurate signal recovery [31, 66]. Compressed sensing has

successfully found applications in various areas such as medical imaging, fluorescence

microscopy, face recognition, and radar [77].

Compressed sensing has also found applications in super-resolution and line

spectral estimation, which aims at estimating spectral information from few observa-

tions. To recover spectrally sparse signals from uniformly sampled observations, we

can apply many conventional techniques, such as Prony’s method [150], ESPRIT [155],

matrix pencil method [99], and the Tufts and Kumaresan approach [177]. Recently,

in [27], Candès and Fernandez-Granda proposed a total variation minimization ap-

proach to use a set of uniformly spaced time samples to recover sparse continuous-

valued frequencies. Tang et al. introduced off-the-grid compressed sensing that em-

ploys atomic norm minimization to recover sparse continuous-valued frequencies from

few randomly chosen nonuniformly-spaced time samples in [168]. The total variation

minimization or atomic norm minimization employ semidefinite programs (SDP) for

recovery. Solving these SDP’s is of high complexity, making it difficult to efficiently
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recover spectrally sparse signals of high dimensions. Recently, there have been ad-

ditional efforts to improve the speed or performance of recovering spectrally sparse

signals, including grid discretization [167], structured Hankel matrix completion [45],

iterative reweighting [51,194], and alternating descent conditional gradient for solving

atomic norm minimization [18].

In this paper, we are interested in improving the speed and performance of

recovering spectrally sparse signals, especially targeting recovery of high-dimensional

spectrally sparse signals. Towards this end, we propose to study a non-convex op-

timization approach to structured matrix completion. In particular, we consider

two non-convex optimization formulations: low-rank Hankel and Toeplitz Mosaic

(HTM) matrix completion, and low-rank Hankel matrix completion initially intro-

duced in [45]. We suggest general projected Wirtinger gradient [84] descent methods

for directly solving these two non-convex optimization formulations, without resorting

to convex relaxations. Numerical results show that we can improve the performance

or the speed of recovery using projected Wirtinger gradient descent, compared with

atomic norm minimization [168] and nuclear norm minimization for Hankel matrix

completion [45].

The remainder of this paper is organized as follows. In Section 3.4.2, we

briefly review atomic norm minimization [168] and Hankel matrix completion [45].

In Section 3.4.3, we introduce low-rank Hankel and Toeplitz Mosaic (HTM) matrix

completion. Thereafter, in Section 3.4.4, we propose projected Wirtinger gradient

descent to directly solve the HTM and Hankel completion problems. Finally, in
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Section 3.3.5, we demonstrate the efficacy of our algorithms in terms of signal recovery

performance as well as the computational complexity.

Notations: We denote the set of complex numbers as C. We reserve calli-

graphic uppercase letters for index sets. When we use an index set K as the subscript

of a vector x, i.e., xK, it represents the part of the vector x over index set K. We

use the superscripts H, T , and ∗ for matrix conjugate transpose, transpose, and con-

jugate respectively. For x = [x1, x2, ..., x2n−1]T , the Hankel matrix over x, denoted

Hank(x), is the Hankel matrix with first column equal to [x1, ..., xn]T and last row

equal to [xn, ..., x2n−1]. The Hermitian Toeplitz matrix over x, denoted Toep(x), has

its first column equal to x. We write the Frobenius norm of a matrix A ∈ Cm×n

as ∣∣A∣∣F ≜
√
∑m
i=1∑n

j=1 ∣Aij ∣2, where Aij is the element of A in its i-th row and j-th

column.

3.4.2 Atomic norm minimization and matrix completion

Let x♣ be a spectrally sparse signal expressed as a sum of k complex exponen-

tials as follows:

x♣l =
k

∑
j=1

c♣j e
i2πf♣j l =

k

∑
j=1

∣c♣j ∣a(f♣j , φ♣j )l, l ∈ N , (3.99)

where f♣j ∈ [0,1] represents an unknown frequency, c♣j = ∣c♣j ∣eiφ
♣

j is its coefficient,

φ♣j ∈ [0,2π] is its phase, and N = {l ∶ 1 ≤ l ≤ 2n − 1} is the set of time indices.

Here, a(f♣j , φ♣j ) ∈ C∣N ∣ is a frequency-atom, with l-th element a(f♣j , φ♣j )l = ei(2πf
♣

j l+φ
♣

j ).

When the phase is 0, we denote the frequency-atom simply by a(fj). We assume

that the signal is observed over the time index set M ⊆ N , ∣M∣ = m ≤ 2n − 1, where
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m observations are chosen randomly. Our goal is to recover the true signal with the

smallest possible number of observations. Recovering the true signal is not trivial

because the frequencies are in a continuous domain, and their phases and magnitudes

are also unknown.

In [168], the authors propose the following atomic norm minimization to re-

cover a spectrally sparse signal x♣ using randomly chosen time samples M ⊆ N :

minimize
x

∣∣x∣∣A

subject to xM = x♣M, (3.100)

where ∣∣x∣∣A represents the atomic norm of a signal x, defined as ∣∣x∣∣A = inf{∑j ∣cj ∣ ∶

x = ∑j cja(fj)}. The atomic norm minimization (3.100) can be cast as an SDP as

follows [168, (II.6)]:

minimize
u,x,t

1

2∣N ∣Tr(Toep(u)) + 1

2
t

subject to U1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(u) x

xH t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.101)

xM = x♣M,

where Tr(⋅) is the trace function, and Toep(u) is a Hermitian Toeplitz matrix. We

refer the reader to [168] for details. The atomic norm minimization requires a certain

minimum separation between frequencies for successful recovery.

Inspired by the matrix pencil approach [98, 99], the authors of [45] developed

the Enhanced matrix completion (EMaC) to recover spectrally sparse signals from
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randomly chosen time samples. The EMaC formulation is stated as follows [45, (13)]:

minimize
x

∣∣Hank(x)∣∣∗

subject to xM = x♣M, (3.102)

where ∣∣M ∣∣∗ represents the nuclear norm of a matrix M , which is the sum of the

singular values of M . This convex program can be further as an SDP:

minimize
x,Q1,Q2

1

2
Tr(Q1) +

1

2
Tr(Q2)

subject to U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q1 Hank(x)

Hank(x)H Q2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.103)

xM = x♣M,

where the matrices Q1 and Q2 are Hermitian matrices.

When the underlying frequencies satisfy the separation condition, atomic norm

minimization has better signal recovery performance than EMaC. However, EMaC

provides robust signal recovery even when the separation condition is not satisfied.

Moreover, solving the SDP for atomic norm minimization and EMaC can be slow,

especially for problems of large dimensions. In the next section, we propose new opti-

mization formulations and algorithms which can provide better recovery performance

of spectrally sparse signals in faster speed, compared with atomic norm minimization

and nuclear norm minimization for Hankel matrix completion.
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3.4.3 Hankel and Toeplitz mosaic matrix completion

In this section, we introduce a new optimization formulation, called Hankel

and Toeplitz Mosaic (HTM) matrix completion, to recover spectrally sparse signals.

Our HTM matrix completion is formulated as follows:

minimize
z,x

rank(U3)

subject to U3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(z) Hank(x)

Hank(x)H Toep(z)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.104)

xM = x♣M,

where rank(⋅) denotes the matrix rank. One can relax (3.104) to its nuclear norm

minimization:

minimize
z,x

2Tr(Toep(z))

subject to U3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(z) Hank(x)

Hank(x)H Toep(z)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⪰ 0, (3.105)

xM = x♣M.

The difference between (3.103) and (3.105) is that (3.105) further imposes that the

diagonal matrices are Hermitian Toeplitz matrices.

The following theorem states a relation between (3.105) and atomic norm

minimization.

Theorem 3.13. Let x† be an optimal solution to (3.105), and suppose that Hank(x†)

can be decomposed as V DV T , where D is a diagonal matrix and V has frequency atoms
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as its columns. Then the optimal objective value of (3.105) is the smallest atomic

norm among all signals x satisfying the observation constraints; namely (3.105) is

equivalent to atomic norm minimization.

Proof. From the positive semidefiniteness of U3, Toep(z) ⪰ 0. By the Vandermonde

decomposition [33, 34, 172], for any positive semidefinite Toep(z), we have Toep(z) =

Ṽ D̃Ṽ H , where Ṽ = [a(f1,0) a(f2,0), ...a(fr,0)], and D̃ is a diagonal matrix having

dj > 0 as its j-th diagonal element. Since Ṽ D̃Ṽ H = ∑r
j=1 dja(fj,0)a(fj,0)H and

∣∣a(fj,0)∣∣22 = ∣N ∣, we have 1
∣N ∣

Tr(Toep(z)) = Tr(D). Also, from Hank(x) = V DV T , if

Ṽ is in different range space from V , then, we can always find a vector z such that

zHU3z < 0. Hence, we have Toep(z) = V D̃V H , and the following condition:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(z) Hank(x)

Hank(x)H Toep(z)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V D̃V H V DV T

V ∗DV H V ∗D̃V T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V 0

0 V ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D̃ D

D D̃

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V 0

0 V ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

H

⪰ 0.

Since (3.105) provides the minimum sum of dj > 0’s, Toep(z) becomes the same as

∣∣x∣∣A.

3.4.4 Projected Wirtinger gradient descent for HTM and Hankel matrix completion

We now propose a projected Wirtinger gradient descent algorithm for various

structured matrices, especially, HTM matrix completion and Hankel matrix com-

pletion. We first introduce the method for HTM matrix completion, which solves

(3.104).

Let us define the set of all complex-valued matrices with rank no greater than
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k as follows:

RkC = {L ∈ C2n×2n ∣ rank(L) ≤ k}. (3.106)

We further denote the set of all complex-valued Toeplitz Hankel mosaic matrices that

are consistent with the observed data as

HHTM = {

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Toep(z) Hank(x)

Hank(x)H Toep(z)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∣ z ∈ Cn, x ∈ C2n−1, xM = x♣M}. (3.107)

We then seek a matrix in HHTM with rank no larger than k by considering the

problem:

minimize
L∈RkC,H∈H

1

2
∣∣L −H ∣∣2F . (3.108)

To solve (3.108), we use a projected gradient descent algorithm. We start

with initial values H0 and L0. By considering Wirtinger calculus [84] and applying

gradient descent on the function with complex variables, we derive the update rule

of our projected Wirtinger algorithm as follows:

Lt+1 ∈ PRkC(Lt − δ1(Lt −Ht)),

Ht+1 ∈ PHHTM (Ht − δ2(Ht −Lt+1)), (3.109)

where t is the iteration number, δ1 > 0 and δ2 > 0 are step sizes, and PRkC and PHHTM

are the projections onto RkC and HHTM respectively.

The projection PRkC(X), which is the projection onto the best rank-k approx-

imation to X, is calculated through singular value decomposition. Let the singular

value decomposition of X be X = UΛV H . Then, PRkC(X) = UkΛkV H
k , where Λk is
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Algorithm 3.4 Projected Wirtinger gradient descent method

Input: x♣M, MaxItr, εerr, δ1, δ2, k
Output: x

19 Initialize: L0 ← 0, H0 ← 0
20 for t = 0 to MaxItr do
21 Lt+1 ← PRkC

(Lt − δ1(Lt −Ht))

22 Ht+1 ← PH(Ht − δ2(Ht −Lt+1)) ▷ H is HHTM for HTM completion, or H is the set of
Hankel matrices for Hankel matrix completion

23 if ∣∣Ht+1 −Ht∣∣F /∣∣Ht∣∣F < εerr then
24 break
25 end

26 end

the diagonal matrix that only retains the k largest nonnegative singular values of X,

and Uk and Vk are the matrices whose columns are the corresponding left and right

singular vectors respectively.

The projection PHHTM (X) is carried out for Hankel and Toeplitz matrices

separately due to its mosaic structure. More precisely, for any X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12

X∗
12 X22

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈

C2n×2n, we have

PHHTM (X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2PT (X11 +XT

22) PH(X12)

PH(X12)H 1
2 (PT (X11 +XT

22))
T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Here PH is the projection onto the set of Hankel matrices whose anti-diagonals coin-

cide with the observed data. From [23, (8)],

PH(Y ) = Hank(z),

where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

zi = yi, i ∈M,

zi = mean{Yab∣a + b = i}, otherwise.

(3.110)
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Namely, for the missed measurement signal zi, i ∈ N ∖M, we calculate the average

of the i-th anti-diagonal elements of Y . The operator PT is the projection onto the

set of Toeplitz matrices, and is given by

PT (Y ) = Toep(z),

where zi = mean{Yab∣a − b = i, a ≥ b}. (3.111)

Namely, for Toeplitz matrix projection, we compute the average of the i-th diagonal

elements. The projected Wirtinger algorithm continues the projections as in (3.109)

onto a low-rank matrix and Hankel Toeplitz mosaic matrix until it converges to a

solution or the maximum number of iterations (MaxItr) is exhausted.

The projected Wirtinger for Hankel matrix completion is similar to the pro-

jected Wirtinger for HTM. It uses the projection onto the Hankel matrix, instead of

Hankel Toeplitz mosaic matrix, according to (3.110). Based on Attouch and Bolte’s

theory [5, 16], we provide global convergence analysis of the algorithm in [23]. We

refer the reader to our longer version [23] for details. We summarize our procedure

in Algorithm 3.4.

3.4.5 Numerical experiments

We compare the performance and complexity of our projected Wirtinger gra-

dient descent methods for both HTM and Hankel matrix completion with the stan-

dard Atomic Norm Minimization (ANM) [168], and the Enhanced Matrix Completion

(EMaC) [45]. We conducted our numerical experiments on HP Z220 CMT with Intel

Core i7-3770 dual core CPU @3.4GHz clock speed and 16GB DDR3 RAM, using Mat-
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lab (R2013b release) on Windows 7 OS. We use CVX [91] to solve convex programs

for ANM and EMaC. In all experiments, the phases and frequencies are sampled uni-

formly at random in [0,2π) and [0,1] respectively. The amplitudes ∣cj ∣, j = 1, ..., k,

are chosen as ∣cj ∣ = 1+100.5mj , where mj is randomly drawn in the uniform distribution

on [0,1].

We carried out numerical experiments to compare the signal recovery per-

formance of our projected Wirtinger method with ANM and EMaC. We abbreviate

HTM and Hankel matrix completion using projected Wirtinger to HTM-PW and

EMaC-PW respectively. We varied the number of measurements m from 20 to 127,

and the sparsity k from 1 to 40. We obtained the probability of successful signal

recovery over 100 trials for each parameter setup. We consider a recovery successful

if ∣∣x♣ − x̂∣∣2/∣∣x♣∣∣2 ≤ εsucc, where εsucc = 10−2, x̂ is the estimated signal, and x♣ is the

true signal. Fig. 3.21 demonstrates that the projected Wirtinger algorithms (Fig.

3.21(a) and (b)) improve the phase transition boundary over other algorithms (Fig.

3.21(c) and (d)). We provide Fig. 3.22 to more clearly show the advantage of our

algorithms in signal recovery, where we use the success criterion εsucc = 5 × 10−3. In

particular, when the sparsity k is 40, HTM-PW has 50% success rate with around 87

measurements out of 127 respectively, while the success rate of other algorithms with

the same number of measurements is 0. The 50% success rate of other algorithms is

achieved around 110 for EMaC, and 120 for ANM. Even though HTM-PW has the

best phase transition boundary curve, in certain regions (upper orange color region)

of its phase transition, HTM-PW has smaller success rate than other algorithms. It
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(a) HTM-PW (b) EMaC-PW

(c) ANM (d) EMaC

Figure 3.21: Phase transition for successful signal recovery when the signal dimension
2n − 1 = 127.

would be interesting to understand this phenomenon more deeply. We leave this for

future work.

We assess the computational complexity of our algorithms in terms of the

average execution time by averaging over 10 trials. We provide results in Table

3.1 when the signal dimension (2n − 1) varies from 101 to 1401, m = ⌊(2n−1)/2⌋, and

k = ⌊0.1(2n − 1)⌋. We stopped our projected Wirtinger algorithms when ∣∣Ht+1 −
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Figure 3.22: The probability of signal recovery when (2n − 1, k) = (127,40).

Table 3.1: Execution Time (Unit: seconds)

2n − 1
Project Wirtinger CVX
HTM EMaC ANM EMaC

101 3.7 0.1 27.1 5.7
201 7.1 0.2 787.7 51.6
401 309.7 0.9 N/Aa N/A
601 733.4 1.4 N/A N/A
1001 3612.4 6.6 N/A N/A
1401 8999.2 10.1 N/A N/A

a Not Available (Out of Memory)

Ht∣∣F /∣∣Ht∣∣F ≤ 10−6 or the maximum number of iterations (MaxItr) is exhausted. We

set MaxItr to 1000. The success rate was similar to that shown in Fig. 3.21. Table 3.1

clearly shows that the speed of our projected Wirtinger methods outperform those of

ANM and EMaC.
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CHAPTER 4
COMPRESSED HYPOTHESIS TESTING

4.1 Introduction

In many areas of science and engineering such as network tomography, cogni-

tive radio, and radar, one needs to infer statistical information of signals of interest.

Statistical information of interest can be the mean, variance or even distributions of

certain random variables [56, 73, 107, 118, 127, 146, 147, 186]. Obtaining such statisti-

cal information is essential in detecting anomalous behaviors of random signals. For

example, inferring distributions of random variables has important applications in

quickest detections of potential hazards, in detecting changes in statistical behaviors

of random variables [9,118,147], and also in detecting congested links with abnormal

delay statistics in network tomography [186].

This paper focuses on the anomaly detection problem. In particular, we con-

sider n random variables, denoted by Xi, i ∈ S = {1,2, ..., n}, out of which k (k ≪ n)

random variables follow a probability distribution f2(⋅) while the much larger set

of remaining (n − k) random variables follow another probability distribution f1(⋅).

However, it is unknown which k random variables follow the distribution f2(⋅). Our

goal is to infer the subset of random variables that follow f2(⋅). In our problem setup,

this is equivalent to determining whether Xi follows the probability distribution f1(⋅)

or f2(⋅) for each i. This system model of anomaly detection has appeared in various

applications, such as [118,119,130–132,147].
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In order to infer the probability distribution of these n random variables, one

conventional method is to get l separate samples for each random variable Xi and

then use hypothesis testing techniques to determine whetherXi follows the probability

distribution f1(⋅) or f2(⋅) for each i. To ensure correctly identifying the k anoma-

lous random variables with a high probability, at least Θ(n) samples are needed for

hypothesis testing using these samples involving only individual random variables.

However, when the number of random variables n grows large, the requirement on

sampling rates and sensing resources can be tremendous. For example, in a sensor net-

work, if the fusion center aims to track the anomalies in data generated by n chemical

sensors, sending all the data samples of individual sensors to the fusion center will be

energy-consuming for the energy-limited sensor network. In such scenarios, we would

like to infer the probability distributions of the n random variables with as few data

samples as possible. In some applications, due to physical constraints [73, 127, 186],

we cannot directly get separate samples of individual random variables. Those diffi-

culties raise the question of whether we can perform hypothesis testing from a much

smaller number of samples involving mixed observations.

One way to achieve hypothesis testing with a smaller number of samples is to

utilize the sparsity of anomalous random variables, that is the number of anomalous

random variables k is much smaller than the total number of random variables n. By

utilizing the sparsity of anomalous random variables, [35,130–132] optimized adaptive

separate samplings of individual random variables and reduced the number of needed

samples for individual random variables. It is worth noting that the total number of
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observations is still at least Θ(n) for these methods, if one is restricted to sample the

n random variables individually [35,130–132].

In this paper, we propose a new approach, named compressed hypothesis test-

ing, to find the k anomalous random variables from non-adaptive mixed observations

of n random variables. In this new approach, instead of a separate observation of an

individual random variable, we make each observation a function of the n random vari-

ables. Our hypothesis testing method is motivated by compressed sensing [31,67,68],

which is the technique that recovers a deterministic sparse vector from its linear

projections. Our analysis shows that our new approach can reduce the number of

samples required for reliable hypothesis testing. In particular, we show that the num-

ber of samples needed to correctly identify the k anomalous random variables can

be reduced to O ( k log(n)
minpv ,pw C(pv, pw)

) observations, where C(pv, pw) is the Chernoff

information between two possible distributions pv and pw for the proposed mixed

observations. We also show that mixed observations can strictly increase error ex-

ponents of the hypothesis testing, compared with separate sampling of individual

random variables. For special cases of Gaussian random variables, we derive optimal

mixed measurements to maximize the error exponent of the hypothesis testing. To

reduce the computational complexity, we further design efficient algorithms - message

passing (MP) based algorithm and Least Absolute Shrinkage and Selection Operator

(LASSO) based algorithm - to infer anomalous random variables from mixed obser-

vations. We also provide intensive numerical examples to illustrate the advantage of

the proposed approach.



146

This paper is organized as follows. In Section 4.2, we introduce the mathemat-

ical models for the considered anomaly detection problem. In Section 4.3.1, we inves-

tigate hypothesis testing error performance using time-invariant mixed observations,

propose corresponding hypothesis testing algorithms and provide their performance

analysis. In Section 4.3.2, we consider using random time-varying mixed observa-

tions to identify the anomalous random variables, and derive the error exponent of

wrongly identifying the anomalous random variables. In Section 4.3.3, we consider

using deterministic time-varying mixed observations for hypothesis testing, and de-

rive a bound on the error probability. In Section 4.4, we demonstrate, by examples

of Gaussian random variable vectors, that linear mixed observations can strictly im-

prove the error exponent over separate sampling of each individual random variables.

In Section 4.5, we derive the optimal mixed measurements for Gaussian random vari-

ables maximizing the hypothesis testing error exponent. In Section 4.6, we introduce

efficient algorithms to find abnormal random variables using mixed observations, for

large values of n and k. In Section 4.7, we provide numerical results to demonstrate

the effectiveness of our hypothesis testing method from linear measurements. Section

4.8 describes the conclusion of this paper.

4.2 Mathematical Models

We consider n independent random variables Xi, i = 1,⋯, n. Out of these n

random variables, (n−k) of them follow a known probability distribution f1(⋅); while
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the other k random variables follow another known probability distribution f2(⋅):

Xi ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1(⋅), i ∉ K

f2(⋅), i ∈ K,
(4.1)

where K ⊂ S is an unknown “support” index set, and ∣K∣ = k ≪ n.

Our goal is to determine K by identifying those k anomalous random variables

with as few samples as possible. We take m mixed observations of the n random

variables at m time indices. The measurement at time j is stated as

Y j = gj(Xj
1 ,X

j
2 , ...,X

j
n),

which is a function of n random variables, where 1 ≤ j ≤m. Note that the realization

xji of the random variable Xj
i and the random variable Xj

i follow the same distribu-

tion as the random variable Xi. We assume that the realizations at different time

slots are mutually independent. Although our results can be extended to nonlinear

observations, in this paper, we specifically consider the case when the functions gj’s

are linear due to its simplicity and its wide range of applications. When the functions

gj’s are linear, the j-th measurement is stated as follows:

Y j = gj(Xj
1 ,X

j
2 , ...,X

j
n) =

n

∑
i=1

ajiX
j
i = ⟨aj,Xj⟩, (4.2)

where a sensing vector aj = [aj1, a
j
2, ... , a

j
n]T ∈ Rn×1, and Xj = [Xj

1 ,X
j
2 , ...,X

j
n]T . We

obtain an estimate of the index set using a decision function φ from Y j, j = 1,⋯,m,

as follows:

K̂ = φ(Y 1,⋯, Y m). (4.3)
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We would like to design the sampling functions gj’s and the decision function φ such

that the probability

P (K̂ ≠ K) ≤ ε, (4.4)

for an arbitrarily small ε > 0.

Our approach is motivated by compressed sensing technique. However, our

approach has a major difference from compressed sensing. In our setup, each ran-

dom variable Xi takes an independent realization in each measurement, while in the

conventional compressed sensing problem y = Ax, where y is the observation vector

y ∈ Rm×1 and A ∈ Rm×n is a sensing matrix, the vector x = [x1, x2, x3, ..., xn]T takes the

same deterministic values across all the measurements. In some sense, our problem

is a probabilistic “random-variable” generalization of the compressed sensing prob-

lem. In compressed sensing, Bayesian compressed sensing stands out as one model

where prior probability distributions of the vector x is considered [108,195]. However,

in [108, 195], the vector x = [x1, x2, x3, ..., xn]T is fixed once the random variables are

realized from the prior probability distribution, and then remains unchanged across

different measurements. That is fundamentally different from our setting where ran-

dom variables dramatically change across different measurements. There also exist a

collection of research works discussing compressed sensing for smoothly time-varying

signals [4, 111, 180]. In contrast, the objects of interest in this research are random

variables taking completely independent realizations at different time indices, and we

are interested in recovering statistical information of random variables, rather than

recovering the deterministic values.
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Table 4.1: Three different types of mixed observations

Measurement type Definition

Fixed time-invariant The measurement function is the same at every time index.

Random time-varying A measurement function is randomly generated from a dis-
tribution at each time index.

Deterministic time-varying A measurement function is predetermined, but changed at
each time index to measure a fixed fraction of different ran-
dom variables at different time.

Notations: We denote a random variable and its realization by an uppercase

letter and the corresponding lowercase letter respectively. We use Xi to refer to the

i-th element of the random variable vector X. We reserve calligraphy uppercase

letters S and K for index sets, where S = {q ∶ 1 ≤ q ≤ n} = {q}nq=1, and K ⊆ S. We

use superscripts to represent time indices. Hence, xj represents the realization of a

random variable vector X at time j. We reserve the lowercase letters f and p for

probability density functions. We denote the probability density function pX(x) as

p(x) or pX . We abuse this notation for simplicity and helping understanding.

4.3 Compressed Hypothesis Testing

In compressed hypothesis testing, we consider three different types of mixed

observations, namely fixed time-invariant mixed measurements, random time-varying

measurements, and deterministic time-varying measurements. Table 4.1 shows the

definition of these types. For these different types of mixed observations, we charac-

terize the number of measurements required to achieve a specified hypothesis testing

error probability.
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4.3.1 Fixed time-invariant measurements

In this subsection, we focus on a simple case in which sensing vectors are time-

invariant across different time indices, i.e., a1 = ⋯ = am ≜ a, a ∈ Rn×1. This simple

case helps us to illustrate the main idea that will be generalized to more sophisticated

schemes in later sections.

We first give the likelihood ratio test algorithm in Algorithm 4.1, over l = (n
k
)

possible hypotheses. To analyze the number of required samples for achieving a

certain hypothesis testing error probability, we consider another related hypothesis

testing algorithm based on pairwise hypothesis testing in Algorithm 4.2, which is

suboptimal compared to the likelihood ratio test algorithm. There are l possible

probability distributions for the output of the function g(⋅), depending on which k

random variables are anomalous. We denote these possible distributions as p1, p2,

..., and pl. Our algorithm is to find the true distribution by doing pairwise Neyman-

Pearson hypothesis testing [58] of these l distributions. We provide the complexity

for finding the k anomalous random variables by using the time-invariant mixed

measurements in Theorem 4.1.

Theorem 4.1. Consider time-invariant fixed measurements Y j = ajTXj = aTXj, 1 ≤

j ≤m, for n random variables X1,X2, ...,Xn. Algorithms 4.1 and 4.2 correctly identify

the k anomalous random variables with high probability, with O ( k log(n)
min1≤v,w≤l,v≠w C(pv ,pw)

)

mixed measurements. Here, l is the number of hypotheses, pv, 1 ≤ v ≤ l, is the output

probability distribution for measurements Y = y under hypothesis Hv, and

C(pv, pw) = − min
0≤λ≤1

log (∫ pλv(y)p1−λ
w (y)dy)
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Algorithm 4.1 Likelihood ratio test from deterministic time invariant measurements

Data: observation data y = [y1, y2, ..., ym]T , l = (n
k
)

Result: k anomalous random variables

1 For each hypothesis Hv (1 ≤ v ≤ l), calculate the likelihood pY ∣Hv(y∣Hv).

2 Choose the hypothesis with the maximum likelihood.

3 Decide the corresponding k random variables as the anomalous random variables.

is the Chernoff information between two distributions pv and pw.

Proof. In Algorithm 4.2, for two probability distributions pv and pw, we choose the

probability likelihood ratio threshold of the Neyman-Pearson testing in such a way

that the error probability decreases with the largest possible error exponent, namely

the Chernoff information between pv and pw:

C(pv, pw) = − min
0≤λ≤1

log (∫ pλv(y)p1−λ
w (y)dy) .

So overall, the smallest possible error exponent of making an error between

any pair of probability distributions is

E = min
1≤v,w≤l,v≠w

C(pv, pw).

Without loss of generality, we assume that p1 is the true probability distribu-

tion for the observation data Y = y. Since the error probability Pe in the Neyman-

Pearson testing scales like Pe ≜ 2−mC(pv ,pw) ≤ 2−mE, by a union bound over the l−1 pos-

sible pairs (p1, pw), the probability that p1 is not correctly identified as the true proba-

bility distribution scales at most as l×2−mE, where l = (n
k
). Therefore, Θ(k log(n)E−1)
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Algorithm 4.2 Hypothesis testing from time-invariant mixed measurements

Data: observation data y = [y1, y2, ..., ym]T

Result: k anomalous random variables

1 For all pairs of distinct probability distributions pv and pw (1 ≤ v,w ≤ l and v ≠ w),

perform Neyman-Pearson testing for two hypotheses:

• Y 1, Y 2, ..., Y m follow probability distribution pv

• Y 1, Y 2, ..., Y m follow probability distribution pw

2 Find a certain w∗ such that pw∗ is the winning probability distribution whenever it

is involved in a pairwise hypothesis testing.

3 Declare the k random variables producing pw∗ as anomalous random variables.

4 If there is no such w∗ in Step 2, then declare a failure in finding the k anomalous

random variables.

samplings are enough for identifying the k anomalous samples with high probability.

When E grows polynomially with n, this implies a significant reduction in

the number of samples needed. If we are allowed to use time-varying non-adaptive

sketching functions, we may need fewer samples. In the next subsection, we discuss

the performance of time-varying non-adaptive mixed measurements for this problem.
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4.3.2 Random time-varying measurements

Inspired by compressed sensing where random measurements often give desir-

able sparse recovery performance [31,68], we consider random time-varying measure-

ments. In particular, we assume that each measurement is the inner product between

X and one independent realization aj = [aj1, a
j
2, ..., a

j
n]T of a random sensing vector A

at time j. Namely, each observation is given by

Y j = ⟨Aj,Xj⟩ =
n

∑
i=1

ajiX
j
i , 1 ≤ j ≤m,

where aj = [aj1, a
j
2, ..., a

j
n]T is a realization of the random sensing vector A with pdf

pA(a) at time j. We assume that the realizations aj’s of A are independent across

different time indices.

We first give the likelihood ratio test algorithm over (n
k
) hypotheses, namely

Algorithm 4.3. For the purpose of analyzing the error probability of the likelihood

ratio test, we further propose a hypothesis testing algorithm based on pairwise com-

parison, namely Algorithm 4.4.

The number of samples required to find the abnormal random variables are

stated in Theorem 4.2.

Theorem 4.2. Consider time-varying random measurements Y j = yj, 1 ≤ j ≤m, for

n random variables X1, X2, ..., and Xn. Algorithms 4.3 and 4.4 correctly identify the

k anomalous random variables with high probability, in O ( k log(n)
min

1≤v,w≤l,v≠w
IC(pA,Y ∣Hv ,pA,Y ∣Hw )

)

random time-varying measurements. Here, l is the number of hypotheses, pA,Y ∣Hv ,

1 ≤ v ≤ l is the output probability distribution for measurements Y and random sensing
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Algorithm 4.3 Likelihood ratio test from random time-varying measurements

Data: observation and sensing vector at time from 1 to m: (A1 = a1, Y 1 = y1),

(A2 = a2, Y 2 = y2), ..., (Am = am, Y m = ym)

Result: k anomalous random variables

1 For each hypothesis Hv, 1 ≤ v ≤ l, l = (n
k
), calculate the likelihood pA,Y ∣Hv(aj, yj, j =

1, ...,m ∣Hv).

2 Choose the hypothesis with the maximum likelihood.

3 Decide the corresponding k random variables as the anomalous random variables.

vectors A under hypothesis Hv, and

IC(pA,Y ∣Hv , pA,Y ∣Hw)

= − min
0≤λ≤1

log (∫ pA(a) (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy) da)

= − min
0≤λ≤1

log (EA (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy))

is the inner conditional Chernoff information between two hypotheses for measure-

ments Y , conditioned on the probability distribution of time-varying sensing vectors

A.

Proof. In Algorithm 4.4, for two different hypotheses Hv and Hw, we choose the

probability likelihood ratio threshold of the Neyman-Pearson testing in a way, such

that the hypothesis testing error probability decreases with the largest error exponent,

namely the Chernoff information between pA,Y ∣Hv and pA,Y ∣Hw :

IC(pA,Y ∣Hv , pA,Y ∣Hw) = − min
0≤λ≤1

log (∫ pλA,Y ∣Hv
(a, y)p1−λ

A,Y ∣Hw
(a, y)dy) .
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Algorithm 4.4 Hypothesis testing from random time-varying measurements

Data: observation and sensing vector at time from 1 to m: (A1 = a1, Y 1 = y1),

(A2 = a2, Y 2 = y2), ..., (Am = am, Y m = ym)

Result: k anomalous random variables

1 For all pairs of hypotheses Hv and Hw (1 ≤ v,w ≤ l and v ≠ w, l = (n
k
)), perform

Neyman-Pearson testing of the following two hypotheses:

• (A1, Y 1), (A2, Y 2), ..., (Am, Y m) follow the probability distribution

pA,Y ∣Hv(a, y∣Hv)

• (A1, Y 1), (A2, Y 2), ..., (Am, Y m) follow probability distribution

pA,Y ∣Hw(a, y∣Hw)

2 Find a certain w∗ such that Hw∗ is the winning hypothesis, whenever it is involved

in a pairwise hypothesis testing.

3 Declare the k random variables producing Hw∗ as anomalous random variables.

4 If there is no such w∗ in Step 2, declare a failure in finding the k anomalous random

variables.

Since the random time-varying sensing vectors are independent of random

variable X and the hypothesis Hv or Hw, we obtain the following equations:

pA,Y ∣Hv(a, y∣Hv) = p(a∣Hv)p(y∣Hv, a) = p(a)p(y∣Hv, a),

pA,Y ∣Hw(a, y∣Hw) = p(a∣Hw)p(y∣Hw, a) = p(a)p(y∣Hw, a).
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Then the Chernoff information is simplified to

IC(pA,Y ∣Hv , pA,Y ∣Hw)

= − min
0≤λ≤1

log (∫ pA(a) (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy) da)

= − min
0≤λ≤1

log (EA (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy))

Using Holder’s inequality, we have

IC(pA,Y ∣Hv , pA,Y ∣Hw) ≥ −min
a

log (1 − pA(a) + pA(a)e−C(pY ∣A,Hv ,pY ∣A,Hw )) ,

where

C(pY ∣A,Hv , pY ∣A,Hw) = − min
0≤λ≤1

log (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy)

is the well-known Chernoff information between pY ∣A,Hv , and pY ∣A,Hj . So as long as

there exist sensing vectors A of a positive probability, such that the regular Chernoff

information is positive, then the inner condition Chernoff information IC(pA,Y ∣Hv , pA,Y ∣Hw)

will also be positive.

Overall, the smallest possible error exponent between any pair of hypotheses

is

E = min
1≤v,w≤l,v≠w

IC(pA,Y ∣Hv , pA,Y ∣Hw).

Without loss of generality, we assume H1 is the true hypothesis. Since the

error probability Pe in the Neyman-Pearson testing is

Pe ≜ 2−m(IC(pA,Y ∣Hv ,pA,Y ∣Hw )) ≤ 2−mE.

By a union bound over the l−1 possible pairs (H1,Hw), the probability that H1 is not

correctly identified as the true hypothesis is upper bounded by l × 2−mE in terms of



157

scaling. So m = Θ(k log(n)E−1) samplings are enough for identifying the k anomalous

samples with high probability. When E grows polynomially with n, this implies a

significant reduction in the number of required samples.

4.3.3 Deterministic time-varying measurements

In this subsection, we consider mixed measurements which are allowed to vary

over time. However, each sensing vector is predetermined, so that exactly P (A = a)m

(assuming that P (A = a)m are integers) measurements use a realized sensing vector

a. In contrast, in random time-varying measurements, each sensing vector A is taken

randomly, and thus the number of measurements for each random variable X is

random. We define the predetermined sensing vector at time j as aj or Aj in a

random variable form.

In deterministic time-varying measurements, we first give the likelihood ratio

test algorithm among l = (n
k
) hypotheses in Algorithm 4.5. For the purpose of ana-

lyzing the error probability, we consider another hypothesis testing algorithm based

on pairwise comparison with deterministic time-varying measurements in Algorithm

4.6.

Theorem 4.3. Consider time-varying deterministic observations Y j = yj, 1 ≤ j ≤m,

for n random variables X1, X2, ..., and Xn. l is the number of hypotheses for the

distribution of the vector X = [X1,X2, ...,Xn]T .

For λ ∈ [0,1] and two hypotheses Hv and Hw (1 ≤ v,w ≤ l), define

pλ(y∣a,Hv,Hw) =
pλ
Y ∣A,Hv

(y∣a,Hv)p1−λ
Y ∣A,Hw

(y∣a,Hw)

∫ pλY ∣A,Hv
(y∣a,Hv)p1−λ

Y ∣A,Hw
(y∣a,Hw)dy

,
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Algorithm 4.5 Likelihood ratio test from deterministic time-varying measurements

Data: observation data y = [y1, y2, ..., ym]T , y ∈ Rm×1, deterministic sensing vectors

[a1, a2, ..., am]T ∈ Rm×n

Result: k anomalous random variables

1 For each hypothesis Hv (1 ≤ v ≤ l), calculate the likelihood pY ∣Hv ,A(y∣Hv, a).

2 Choose the hypothesis with the maximum likelihood.

3 Declare the corresponding k random variables as the anomalous random variables.

Qλ,v→w = EA {D (pλ(y∣a,Hv,Hw) ∣∣ p(y∣a,Hv))} ,

Qλ,w→v = EA {D (pλ(y∣a,Hv,Hw) ∣∣ p(y∣a,Hw))} .

Furthermore, we define the outer conditional Chernoff information OC(pY ∣A,Hv , pY ∣A,Hw)

between Hv and Hw, under deterministic time-varying sensing vector A, as

OC(pY ∣A,Hv , pY ∣A,Hw) = Qλ,v→w = Qλ,w→v,

where λ is chosen such that Qλ,v→w = Qλ,w→v.

Then with O( k log(n)
min

1≤v,w≤l,v≠w
OC(pY ∣A,Hv ,pY ∣A,Hw )

) random time-varying measurements,

with high probability, Algorithms 4.5 and 4.6 correctly identify the k anomalous ran-

dom variables. Here l is the number of hypotheses, pY ∣A,Hv , 1 ≤ v ≤ l is the output

probability distribution for observations Y under hypothesis Hv and sensing vector A,

and OC(pY ∣A,Hv , pY ∣A,Hw) is the outer conditional Chernoff information.



159

Algorithm 4.6 Hypothesis testing from deterministic time-varying measurements

Data: observation data y = [y1, y2, ..., ym]T , y ∈ Rm×1, deterministic sensing vectors

[a1, a2, ..., am]T ∈ Rm×n

Result: k anomalous random variables

1 For all pairs of hypotheses Hv and Hw (1 ≤ v,w ≤ l and v ≠ w), perform Neyman-

Pearson testing of the following two hypotheses:

• Y 1, Y 2, ..., Y m follow the probability distribution pY ∣Hv ,A(y∣Hv, a)

• Y 1, Y 2, ..., Y m follow probability distribution pY ∣Hw,A(y∣Hw, a)

2 Find a certain w∗, such that Hw∗ is the winning hypothesis, whenever it is involved

in a pairwise hypothesis testing.

3 Declare the k random variables producing Hw∗ as anomalous random variables.

4 If there is no such w∗ in Step 2, declare a failure in finding the k anomalous random

variables.

Moreover, the outer conditional Chernoff information is equal to

OC(pY ∣A,Hv , pY ∣A,Hw)

= − min
0≤λ≤1

∫ pA(a) log (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy) da

= − min
0≤λ≤1

EA (log (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hw
(y)dy)) .

Proof. In Algorithm 4.6, for two different hypotheses Hv and Hw, we choose the

probability likelihood ratio threshold of the Neyman-Pearson testing in a way, such
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that the hypothesis testing error probability decreases with the largest error exponent.

Now we focus on deriving what this largest error exponent is, under deterministic

time-varying measurements. The framework of this proof follows the book of Cover

[58, Chap. 11].

For simplicity of presentation, we first consider a special case: there are only

two possible sensing vectors a1 and a2; and one half of the sensing vectors are a1 while

the other half are a2. The conclusions can be extended to general distribution pA(a)

on A, in a similar way of reasoning. In addition, we assume that the observation data

is over a discrete space χ, which can also be generalized to a continuous space without

affecting the conclusion in this theorem. Since we use the probability mass function

over a discrete space, we will use upper letters for the probability mass function to

distinguish the probability density function over a continuous space in this proof.

Suppose we take m measurements in total, our assumption translates to that 1
2m

measurements are taken from the sensing vector a1, and 1
2m measurements are taken

from the sensing vector a2. Without loss of generality, we consider two hypotheses

denoted by H1 and H2. Under the sensing vector a1, we assume that H1 generates

distribution P1 for observation data; H2 generates distribution P2 for observation

data. Under a2, we assume that H1 generates distribution P3 for observation data;

H2 generates distribution P4 for observation data. Please refer to Table 4.2 for the

observation distributions under different sensing vectors and different hypotheses.

Suppose that P is the empirical distribution of observation data under the

sensing vector a1, and that P ′ is the empirical distribution of observation data under
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Table 4.2: Hypothesis testing measurement distribution

H1 H2

a1 P1 P2

a2 P3 P4

the sensing vector a2. Then the Neyman-Pearson testing decides that hypothesis H1

is true if, for a certain constant T ,

1

2
[D(P ∣∣P2) −D(P ∣∣P1)] +

1

2
[D(P ′∣∣P4) −D(P ′∣∣P3)] ≥

1

n
log(T ),

where D(P ∣∣Q) ≜ ∑y∈X P (y) log P (y)
Q(y) , which is the relative entropy or Kullback-Leibler

distance between two probability mass functions P and Q. By the Sanov’s theorem

[58], the error exponent of the second kind, namely wrongly deciding “hypothesis H1

is true” when hypothesis H2 is actually true, is given by the following optimization

problem:

minimize
P,P ′

1

2
D(P ∣∣P2) +

1

2
D(P ′

∣∣P4)

subject to

1

2
[D(P ∣∣P2) −D(P ∣∣P1)] +

1

2
[D(P ′

∣∣P4) −D(P ′
∣∣P3)] ≥

log(T )

n
,

∑
y

P (y) = 1,

∑
y

P ′
(y) = 1.
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Using the Lagrange multiplier method, we try to minimize

L(P,P ′, λ, v1, v2)

= D(P ∣∣P2)
2

+ D(P ′∣∣P4)
2

+ λ(D(P ∣∣P2) −D(P ∣∣P1)
2

+ D(P ′∣∣P4) −D(P ′∣∣P3)
2

− log(T )
n

)

+ v1 (∑
y

P (y) − 1) + v2 (∑
y

P ′(y) − 1) .

Differentiating with respect to P (y) and P ′(y), we get

1

2
[log( P (y)

P2(y)
) + 1 + λ log(P1(y)

P2(y)
)] + v1 = 0,

1

2
[log(P

′(y)
P4(y)

) + 1 + λ log(P3(y)
P4(y)

)] + v2 = 0.

From these equations, we can obtain the minimizing P and P ′,

P = Pλ(y∣a1) = Pλ1 (y)P 1−λ
2 (y)

∑y∈χ P
λ
1 (y)P 1−λ

2 (y)
,

P ′ = Pλ(y∣a2) = Pλ3 (y)P 1−λ
4 (y)

∑y∈χ P
λ
3 (y)P 1−λ

4 (y)
,

where λ is chosen such that 1
2[D(P ∣∣P2) − D(P ∣∣P1)] + 1

2[D(P ′∣∣P4) − D(P ′∣∣P3)] =

1
n log(T ).

By symmetry, the error exponent of the second kind, and the error exponent

of the first kind are stated as follows respectively:

1
2D(Pλ(y∣a1) ∣∣ P2) + 1

2D(Pλ(y∣a2) ∣∣ P4),

1
2D(Pλ(y∣a1) ∣∣ P1) + 1

2D(Pλ(y∣a2) ∣∣ P3).

The first exponent is a non-decreasing function in λ, and the second exponent is

a non-increasing function in λ. In fact, the optimal error exponent, which is the
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minimum of these two exponents, is achieved when they are equal:

1
2D(Pλ(y∣a1) ∣∣ P2) + 1

2D(Pλ(y∣a2) ∣∣ P4)

= 1
2D(Pλ(y∣a1) ∣∣ P1) + 1

2D(Pλ(y∣a2) ∣∣ P3).

This finishes the characterization of the optimal error exponent in pairwise hypothesis

testing, under deterministic time-varying measurements.

We further prove that this error exponent is equivalent to

OC(PY ∣A,Hv , PY ∣A,Hw)

= − min
0≤λ≤1

∫ PA(a) log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy) da

= − min
0≤λ≤1

EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy)) . (4.5)

In the proof, we restrict our attention to Hv = H1 and Hw = H2. We will show that

the λ ∈ [0,1] that minimizes EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy)) exactly leads to

the following equality:

1
2D(Pλ(y∣a1) ∣∣ P2) + 1

2D(Pλ(y∣a2) ∣∣ P4)

= 1
2D(Pλ(y∣a1) ∣∣ P1) + 1

2D(Pλ(y∣a2) ∣∣ P3). (4.6)

Moreover, under that minimizer λ, we also obtain the following equality:

−EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy))

= 1
2D(Pλ(y∣a1) ∣∣ P1) + 1

2D(Pλ(y∣a2) ∣∣ P3). (4.7)

On the one hand, we obtain following equations from (4.6) and the definition
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of the relative entropy:

0
(4.6)= 1

2
[D(Pλ(y∣a1) ∣∣ P1) −D(Pλ(y∣a1) ∣∣ P2)]

+1

2
[D(Pλ(y∣a2) ∣∣ P3) −D(Pλ(y∣a2) ∣∣ P4)]

= 1

2

∑y P
λ
1 (y)P 1−λ

2 (y) log(P2(y)
P1(y)

)
∑y P

λ
1 (y)P 1−λ

2 (y)

+1

2

∑y P
λ
3 (y)P 1−λ

4 (y) log(P4(y)
P3(y)

)
∑y P

λ
3 (y)P 1−λ

4 (y) . (4.8)

Let a particular λ satisfy (4.8). Under this λ, the hypothesis testing error exponent

is equal to

1

2
D(Pλ(y∣a1) ∣∣ P1) +

1

2
D(Pλ(y∣a2) ∣∣ P3),

and it is further derived from the definition of the relative entropy as follows:

1

2

1

∑y P
λ
1 (y)P 1−λ

2 (y)∑y
(P λ

1 (y)P 1−λ
2 (y)

[(1 − λ) log(P2(y)
P1(y)

) − log (∑
y

P λ
1 (y)P 1−λ

2 (y))])

+ 1

2

1

∑y P
λ
3 (y)P 1−λ

4 (y)∑y
(P λ

3 (y)P 1−λ
4 (y)

[(1 − λ) log(P4(y)
P3(y)

) − log (∑
y

P λ
3 (y)P 1−λ

4 (y))]).

Since the first parts of both summations are equal to 0 from (4.8), we have the

following equation:

1

2
D(Pλ(y∣a1) ∣∣ P1) +

1

2
D(Pλ(y∣a2) ∣∣ P3)

= −1

2
log (∑

y

P λ
1 (y)P 1−λ

2 (y)) − 1

2
log (∑

y

P λ
3 (y)P 1−λ

4 (y)), (4.9)

which is just −EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy)) under this λ achieving (4.6).
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On the other hand, to minimize

EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy)) ,

we set the derivative of (4.9) with respect to λ to 0 as follows:

0 = 1

2

∑y P
λ
1 (y)P 1−λ

2 (y) log(P2(y)
P1(y)

)
∑y P

λ
1 (y)P 1−λ

2 (y) + 1

2

∑y P
λ
3 (y)P 1−λ

4 (y) log(P4(y)
P3(y)

)
∑y P

λ
3 (y)P 1−λ

4 (y) .

It is noteworthy that (4.10) is the same as (4.8). Let us denote a minimizer λmin =

arg min
0≤λ≤1

EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hw

(y)dy)). Then, when λ = λmin, (4.8) is satisfied.

Furthermore, for λ = λmin, we obtain (4.9). It states that for λ = λmin, the following

equation is satisfied:

−EA (log (∫ P λ
Y ∣A,Hv

(y)P 1−λ
Y ∣A,Hv

(y)dy)) = 1

2
D(Pλ(y∣a1) ∣∣ P1) +

1

2
D(Pλ(y∣a2) ∣∣ P3).

(4.10)

Therefore, we conclude the equivalence of the two different definitions of outer Cher-

noff information.

Overall, the smallest possible error exponent between any pair of hypotheses

is

E = min
1≤v,w≤l,v≠w

OC(PY ∣A,Hv , PY ∣A,Hw).

Without loss of generality, we assume H1 is the true hypothesis. Since the

error probability Pe in the Neyman-Pearson testing is

Pe ≜ 2−mOC(PY ∣A,Hv ,PY ∣A,Hw ) ≤ 2−mE.

By a union bound over the l−1 possible pairs (H1,Hw), the probability that H1 is not

correctly identified as the true hypothesis is upper bounded by l × 2−mE in terms of
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scaling, where l = (n
k
). Therefore, m = Θ(k log(n)E−1) samplings are enough for iden-

tifying the k anomalous samples with high probability. When E grows polynomially

with n, this implies a significant reduction in the number of samples needed.

4.4 Examples of Compressed Hypothesis Testing

In this section, we provide simple examples in which smaller error probability

can be achieved in hypothesis testing through mixed observations than the traditional

individual measurement based approach, under the same number of measurements.

In particular, we consider Gaussian distributions in our examples. We also introduce

the method to obtain the optimal sensing vectors in a given problem.

4.4.1 Example 1: two Gaussian random variables

In this example, we consider n = 2, and k = 1. We group the two random vari-

ables X1 and X2 in a random vector [X1,X2]T . Suppose that there are two hypotheses

for a 2-dimensional random vector [X1,X2]T , where X1 and X2 are independent:

• H1: X1 ∼ N (A,σ2) and X2 ∼ N (B,σ2),

• H2: X1 ∼ N (B,σ2) and X2 ∼ N (A,σ2).

Here A and B are two distinct constants, and σ2 is the variance of the two Gaussian

random variables. At each time index, only one observation is allowed, and the

observation is restricted to a linear mixing of X1 and X2. Namely

Y j = a1X1 + a2X2.
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We assume that the sensing vector [a1, a2]T does not change over time.

Clearly, when a1 ≠ 0 and a2 = 0, the sensing vector reduces to a separate

observation of X1; and when a1 = 0 and a2 ≠ 0, it reduces to a separate observation

of X2. In both these two cases, the observation follows distribution N (A,σ2) for one

hypothesis, and follows distribution N (B,σ2) for the other hypothesis. The Chernoff

information between these two distributions are

C(N (A,σ2),N (B,σ2)) = (A −B)2

8σ2
.

When hypothesis H1 holds, the observation Y j follows Gaussian distribution

N (a1A + a2B, (a2
1 + a2

2)σ2). Similarly, when hypothesis H2 holds, the observation Y j

follows Gaussian distribution N (a1B + a2A, (a2
1 + a2

2)σ2). The Chernoff information

between these two Gaussian distributions N (a1A + a2B, (a2
1 + a2

2)σ2) and N (a1B +

a2A, (a2
1 + a2

2)σ2) is given by

[(a1A + a2B) − (a1B + a2A)]2

8(a2
1 + a2

2)σ2
= [(a1 − a2)2(A −B)2]

8(a2
1 + a2

2)σ2
≤ 2(A −B)2

8σ2
,

where the last inequality follows from Cauchy-Schwarz inequality, and takes equality

when a1 = −a2.

Compared with the Chernoff information for separate observations of X1 or

X2, the linear mixing of X1 and X2 doubles the Chernoff information. This shows

that linear mixed observations can offer strict improvement in terms of reducing the

error probability in hypothesis testing, by increasing the error exponent.
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4.4.2 Example 2: Gaussian random variables with different means

In this example, we consider the mixed observations for two hypotheses of

Gaussian random vectors. In general, suppose that there are two hypotheses for an

n-dimensional random vector [X1,X2, ...,Xn]T ,

• H1: [X1,X2, ...,Xn] follow jointly Gaussian distributions N (µ1,Σ1),

• H2: [X1,X2, ...,Xn] follow jointly Gaussian distributions N (µ2,Σ2).

Here Σ1 and Σ2 are both n × n covariance matrices.

At each time instant, only one observation is allowed, and the observation is

restricted to a time-invariant sensing vector. Namely

Y j = ⟨A,Xj⟩,

where A ∈ Rn×1.

Under these conditions, the observation follows distribution N (ATµ1,ATΣ1A)

for hypothesis H1, and follows distribution N (ATµ2,ATΣ2A) for the other hypoth-

esis H2. We would like to choose a sensing vector A which maximizes the Chernoff

information between the two possible univariate Gaussian distributions, namely

max
A

C(N (ATµ1,A
TΣ1A),N (ATµ2,A

TΣ2A)).
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In fact, the Chernoff information between these two distributions [145] is

C(N (ATµ1,A
TΣ1A),N (ATµ2,A

TΣ2A))

= max
0≤α≤1

[1

2
log(A

T (αΣ1 + (1 − α)Σ2)A
(ATΣ1A)α(ATΣ2A)1−α

)

+ α(1 − α)(A
T (µ1 − µ2))2

2AT (αΣ1 + (1 − α)Σ2)A
] .

We first look at the special case when Σ = Σ1 = Σ2. Under this condition, the

maximum Chernoff information is given by

max
A

max
0≤α≤1

α(1 − α)[AT (µ1 − µ2)]2

2ATΣA
.

Taking A′ = Σ
1
2A, then this reduces to

max
A′

max
0≤α≤1

α(1 − α)[(A′)TΣ− 1
2 (µ1 − µ2)]2

2(A′)TA′
.

From Cauchy-Schwarz inequality, it is easy to see that the optimal α = 1
2 , A′ =

Σ− 1
2 (µ1 − µ2), and A = Σ−1(µ1 − µ2). Under these conditions, the maximum Chernoff

information is given by

1

8
(µ1 − µ2)TΣ−1(µ1 − µ2).

Note that in general, A′ = Σ− 1
2 (µ1 − µ2) is not a separate observation of a certain

individual random variable, but rather a linear mixing of the n random variables.

4.4.3 Example 3: Gaussian random variables with different variances

In this example, we look at the mixed observations for Gaussian random vari-

ables with different variances. Consider the same setting in Example 2, except that

we now look at the special case when µ = µ1 = µ2. We will study the optimal sensing
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vector under this scenario. Then the Chernoff information becomes

C(N (ATµ,ATΣ1A),N (ATµ,ATΣ2A))

= max
0≤α≤1

1

2
log(A

T (αΣ1 + (1 − α)Σ2)A
(ATΣ1A)α(ATΣ2A)1−α

).

To find the optimal sensing vector A, we are solving this optimization problem

max
A

max
0≤α≤1

1

2
log(A

T (αΣ1 + (1 − α)Σ2)A
(ATΣ1A)α(ATΣ2A)1−α

).

For a certain A, we define

B = max (ATΣ1A,ATΣ2A)
min (ATΣ1A,ATΣ2A) .

Note that B ≥ 1. By symmetry over α and 1−α, maximizing the Chernoff information

can always be reduced to

max
B≥1

max
0≤α≤1

1

2
log (α + (1 − α)B

B1−α
). (4.11)

The optimal α is obtained as follows by finding the point which makes the first order

differential equation to zero:

α = −(B − 1) +B log(B)
(B − 1) log(B) .

By plugging the obtained optimal α to (4.11), we obtain the following optimization

problem:

max
B≥1

1

2
{−1 + B

B − 1
log(B) + log( B − 1

B log(B))} . (4.12)

We note that the objective function is an increasing function in B, when B ≥ 1.
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Lemma 4.4. The following optimization problem

max
0≤α≤1

1

2
log (α + (1 − α)B

B1−α
),

is an increasing function in B ≥ 1.

Proof. We only need to show that for any α ∈ [0,1], (α+(1−α)BB1−α ) is an increasing

function in B ≥ 1. In fact, the derivative of it with respect to α is

α(1 − α)(Bα−1 −Bα−2) ≥ 0.

Then the conclusion of this lemma immediately follows.

This means we need to maximize B, in order to maximize the Chernoff in-

formation. Hence, to find the optimal A maximizing B, we solve the following two

optimization problems:

max
A

ATΣ1A subject to ATΣ2A ≤ 1, (4.13)

and

max
A

ATΣ2A subject to ATΣ1A ≤ 1. (4.14)

Then the maximum of the two optimal objective values is equal to the optimal ob-

jective value of optimizing B, and the corresponding A is the optimal sensing vec-

tor maximizing the Chernoff information. These two optimization problems are not

convex optimization programs, however, they still admit zero duality gap from the S-

procedure, and can be efficiently solved [20]. In fact, they are respectively equivalent
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to the following two semidefinite programming optimization problems:

minimize
γ,λ

− γ

subject to λ ≥ 0

⎛
⎜⎜⎜
⎝

−Σ1 + λΣ2 0

0 −λ − γ

⎞
⎟⎟⎟
⎠
⪰ 0,

(4.15)

and

minimize
γ,λ

− γ

subject to λ ≥ 0

⎛
⎜⎜⎜
⎝

−Σ2 + λΣ1 0

0 −λ − γ

⎞
⎟⎟⎟
⎠
⪰ 0.

(4.16)

Thus they can be efficiently solved.

For example, when Σ1 and Σ2 are given as follows:

Σ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we obtain [0,0,−1]T for the optimal sensing vector A. This is because the diagonal

elements in the covariance matrices Σ1 and Σ2 represent the variance of random

variables [X1,X2,X3]T , and the biggest difference in variance is shown in random

variable X1 or X3. Therefore, checking the random variable X3 (or X1) through

realizations is an optimal way to figure out whether the random variables follows Σ1

or Σ2. On the other hand, if the random variables are dependent, and Σ1 and Σ2 are
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given as follows:

Σ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5 0.5

0.5 1 0.5

0.5 0.5 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0.5 0.5

0.5 1 0.5

0.5 0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then, we obtain [0.4463,0.0022,−0.8949]T for the optimal sensing vector A which

maximizes the Chernoff information.

4.4.4 Example 4: k = 1 anomalous random variable among n = 7 random variables

Consider another example, where k = 1 and n = 7. n − k = 6 random variables

follow the distribution N (0,1); and the other random variable follows distribution

N (0, σ2), where σ2 ≠ 1. We assume that all random variables X1, X2,..., and X7 are

independent. So overall, there are 7 hypotheses:

• H1: (X1, X2, ..., X7) ∼ (N (0, σ2), N (0,1), ..., N (0,1)),

• H2: (X1, X2, ..., X7) ∼ (N (0,1), N (0, σ2), ..., N (0,1)),

• ......

• H7: (X1, X2, ..., X7) ∼ (N (0,1), N (0,1), ..., N (0, σ2)).

We first assume that separate observations of these 7 random variables are

obtained. For any pair of hypotheses Hv and Hw, the probability distributions for

the output are respectively N (0, σ2) and N (0,1), when Xv is observed; the proba-

bility distributions for the output are respectively N (0,1) and N (0, σ2), when Xw is
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observed. From (4.5), the Chernoff information between Hv and Hw is given by

OC(pY ∣A,Hv , pY ∣A,Hw)

= − min
0≤λ≤1

EA (log (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hv
(y)dy))

= − min
0≤λ≤1

[1

7
(log (∫ pλ

N (0,1)(y)p1−λ
N (0,σ2)

(y)dy))

+1

7
(log (∫ pλ

N (0,σ2)
(y)p1−λ

N (0,1)(y)dy))] .

Optimizing over λ, we obtain the optimal λ = 1
2 , and that

OC(pY ∣A,Hv , pY ∣A,Hw) =
1

7
log(B + 1

2B
1
2

), (4.17)

where B = max (σ2,1)
min (σ2,1) .

Now we consider using the parity check matrix of (7,4) Hamming codes to

obtain measurements as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1T

a2T

a3T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We use the row vectors of the parity check matrix as sensing vectors for deterministic

time varying measurements. For example, the i-th row vector is used for the j-th

mixed measurement, where i = (j mod 3) + 1. For any pair of hypotheses Hv and

Hw, there is always a sensing vector among 3 sensing vectors which measures one and

only one of Xv and Xw. Without loss of generality, we assume that that a sensing

vector measures Xv but not Xw. Suppose Hv is true, then the output probability

distribution for that measurement is N (0, σ2 + s(A)); otherwise when Hw is true,

the output probability distribution is given by N (0,1 + s(A)), where 1 + s(A) is the
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number of ones in the sensing vector A. The Chernoff information between Hv and

Hw is bounded by

OC(pY ∣A,Hv , pY ∣A,Hw)

= − min
0≤λ≤1

EA (log (∫ pλY ∣A,Hv
(y)p1−λ

Y ∣A,Hv
(y)dy))

≥ − min
0≤λ≤1

1

3
log (∫ pλ

N (0,σ2+s(A))
(y)p1−λ

N (0,1+s(A))
(y)dy) ,

where the final inequality is obtained by considering only one sensing vector among

3 sensing vectors. From (4.12), this lower bound is given by

1

6
{−1 + B

B − 1
log(B) + log( B − 1

B log(B))} ,

where

B = max (σ2 + s(A),1 + s(A))
min (σ2 + s(A),1 + s(A)) .

Simply taking λ = 1
2 , we obtain another lower bound of OC(pY ∣A,Hv , pY ∣A,Hw)

as follows:

− min
0≤λ≤1

1

3
log (∫ pλ

N (0,σ2+s(A))
(y)p1−λ

N (0,1+s(A))
(y)dy)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
3 × 1

2 log (σ
2+s(A)+1

2
√
σ+s(A)

), if σ2 ≥ 1,

1
3 × 1

2 log ( s(A)+2

2
√

1+s(A)
), if σ2 < 1.

When σ2 ≫ 1, for separate observations,

OC(pY ∣A,Hv , pY ∣A,Hw) =
1

7
log(σ

2 + 1

2σ
) ∼ 1

7
log(σ

2
);

while for measurements through the parity-check matrix of Hamming codes, a lower
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bound of OC(pY ∣A,Hv , pY ∣A,Hw) asymptotically satisfies

OC(pY ∣A,Hv , pY ∣A,Hw) =
1

6
log

⎛
⎝
σ2 + s(A) + 1

2
√
σ2 + s(A)

⎞
⎠
∼ 1

6
log

σ

2
.

So in the end, the minimum Chernoff information between any pair of hypotheses,

under mixed measurements using Hamming codes as sensing vectors, is bigger than

the Chernoff information obtained using separate observations. This means that

mixed observations can offer strict improvement in the error exponent of hypothesis

testing problems.

4.5 Characterization of Optimal Sensing Vector Maximizing the Error

Exponent

In this section, we derive a characterization of the optimal deterministic time-

varying measurements which maximize the error exponent of hypothesis testing. We

further explicitly design the optimal measurements for some simple examples. We

begin with the following lemma about the error exponent of hypothesis testing.

Lemma 4.5. Suppose that there are overall l = (n
k
) hypotheses. For any fixed k and

n, the error exponent of the error probability of hypothesis testing is given by

E = min
1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw).

Proof. We first give an upper bound on the error probability of hypothesis testing.

Without loss of generality, we assume H1 is the true hypothesis. The error probability
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Pe in the Neyman-Pearson testing is stated as follows:

Pe = 2−mOC(pY ∣A,Hv ,pY ∣A,Hw ) ≤ 2−mE.

By a union bound over the l − 1 possible pairs (H1,Hw), the probability that H1 is

not correctly identified as the true hypothesis is upper bounded by l × 2−mE in terms

of scaling.

Now we give a lower bound on the error probability of hypothesis testing.

Without loss of generality, we assume that E is achieved between the hypothesis H1

and the hypothesis H2, namely,

E = OC(pY ∣A,H1
, pY ∣A,H2

).

Suppose that we are given the prior information that either hypothesis H1 or

H2 is true. Knowing this prior information will not increase the error probability.

Under this prior information, the error probability behaves asymptotically as 2−mE as

m → ∞. This shows that the error exponent of hypothesis testing is no bigger than

E.

The following theorem gives a simple characterization of the optimal proba-

bility density function pA(a) for the sensing vector. This enables us to explicitly find

the optimal sensing vectors, under certain special cases of Gaussian random variables.

Theorem 4.6. In order to maximize the error exponent in hypothesis testing, the

optimal sensing vectors have a distribution p∗A(a) which maximizes the minimum of

the pairwise outer Chernoff information between different hypotheses:

p∗A(a) = arg max
pA(a)

min
1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw).
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When k = 1 and the n random variables of interest are independent Gaus-

sian random variables with the same variances, the optimal p∗A(a) admits a discrete

probability distribution:

p∗A(a) = ∑
σ as a permutation

1

n!
δ(a − σ(a∗)),

where a∗ is a constant n-dimensional vector such that

a∗ = arg max
a

∑
1≤v,w≤l,v≠w

C(pY ∣A,Hv , pY ∣A,Hw).

Proof. The first statement follows from Lemma 4.5. So we only need to prove the

optimal sensing vectors for Gaussian random variables with the same variance under

k = 1. We let l = (n
k
). For any pA(a), we have

min
1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw)

≤ 1

(n
2
) ∑

1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw)

≤ 1

(n
2
) ∑

1≤v,w≤l,v≠w
∫ pA(a)C(pY ∣A,Hv , pY ∣A,Hw)da

= 1

(n
2
) ∫

pA(a) ∑
1≤v,w≤l,v≠w

C(pY ∣A,Hv , pY ∣A,Hw)da

≤ 1

(n
2
) ∑

1≤v,w≤l,v≠w

C(pY ∣A∗,Hv , pY ∣A∗,Hw),

where the second inequality follows from the fact that for any functions fi(λ), i =

1, ..., l, and for any λ in the intersection domain of all the fi(λ)’s, minλ(f1(λ)+f2(λ)+

... + fl(λ)) ≥ minλ f1(λ) +minλ f2(λ) + ... +minλ fl(λ), and A∗ is the same expression

for a∗ in the form of random variable.
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On the other hand, for two Gaussian distributions with the same variances,

the optimal λ in (4.5) is always equal to 1
2 , no matter what pA(a) is chosen. By

symmetry, when

p∗A(a) = ∑
σ as a permutation

1

n!
δ(a − σ(a∗)),

and λ = 1
2 , for any two different hypotheses Hv and Hw,

OC(pY ∣A,Hv , pY ∣A,Hw)

= ∫ p∗A(a)C(pY ∣A,Hv , pY ∣A,Hw)da

= 1

(n
2
) ∫

p∗A(a) ∑
1≤v,w≤l,v≠w

C(pY ∣A,Hv , pY ∣A,Hw)da

= ∫ p∗A(a)
1

(n
2
) ∑

1≤v,w≤l,v≠w

C(pY ∣A∗,Hv , pY ∣A∗,Hw)da

= 1

(n
2
) ∑

1≤v,w≤l,v≠w

C(pY ∣A∗,Hv , pY ∣A∗,Hw),

where the first equality is from the fact that λ = 1
2 is the common maximizer for

Chernoff information, the second equality is from the permutation symmetry of p∗A(a),

the third equality is again from the generation of p∗A(a) from permutations of a∗, and

the last equality follows from ∫ p∗A(a)da = 1.

This means that under p∗A(a),

min
1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw)

= 1

(n
2
) ∑

1≤v,w≤l,v≠w

C(pY ∣A∗,Hv , pY ∣A∗,Hw).

This further implies that the upper bound on min
1≤v,w≤l,v≠w

OC(pY ∣A,Hv , pY ∣A,Hw) is achieved,

and we can conclude that p∗A(a) is the optimal distribution.
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We can use Theorem 4.6 to calculate explicitly the optimal sensing vectors for

n independent Gaussian random variables of the same variance σ2, among which k = 1

random variable has a mean µ1 and the mean of the other (n−1) random variables is

µ2. To obtain the optimal measurements maximizing the error exponent E, we first

need to calculate a constant vector a∗ such that

a∗ = arg max
a

∑
1≤v,w≤l,v≠w

C(pY ∣A,Hv , pY ∣A,Hw).

After a simple calculation, a∗ is the optimal solution to

maximize
a

1

(n
2
) ∑

1≤i,j≤n,i≠j

(ai − aj)2

subject to
n

∑
i=1

a2
i ≤ 1,

(4.18)

where ai represents the i-th element of vector a, and the corresponding optimal error

exponent is

1

(n
2
) ∑

1≤i,j≤n,i≠j

(a∗i − a∗j )2(µ1 − µ2)2

8σ2
n

∑
i=1

(a∗i )2

.

This optimization problem is not a convex optimization program, however, it

still admits zero duality gap from the S-procedure, and can be efficiently solved [20]. In

fact, we get the optimal solution a∗ = [ 1√
2
, −1√

2
,0, ...,0]T . Then an optimal distribution

p∗A(a) for the sensing vector is

p∗A(a) = ∑
σ as a permutation

1

n!
δ(a − σ(a∗)).

Namely, this optimal sensing vector is to uniformly choose two random variables, say

X1 and X2, and take their weighted sum 1√
2
X1− 1√

2
X2. Correspondingly, the optimal
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error exponent is

(µ1 − µ2)2

8σ2

n

(n
2
)
= (µ1 − µ2)2

4σ2(n − 1) .

In contrast, if we perform separate observations of n random variables individually,

the error exponent will be

(µ1 − µ2)2

8σ2

n − 1

(n
2
)

= (µ1 − µ2)2

4σ2n
.

In fact, linear mixed observations increase the error exponent by n
n−1 times. When n

is small, the improvement is significant. For example, when n = 2, the error exponent

is doubled.

From this example of Gaussian random variables with different means, we can

make some interesting observations. On the one hand, quite surprisingly, separate

observations of random variables are not optimal in maximizing the error exponent.

On the other hand, in the optimal measurement scheme, each measurement takes a

linear mixing of only two random variables, instead of mixing all the random variables.

It is interesting to see whether these observations hold for other types of random

variables.

4.6 Efficient Algorithms for Hypothesis Testing from Mixed

Observations

In Section 4.3, we introduce the likelihood ratio test algorithms for three differ-

ent types of mixed observations. Even though the likelihood ratio test is the optimal

test achieving the smallest hypothesis testing error probability, conducting the likeli-

hood ratio test over (n
k
) hypotheses is computationally challenging. Especially, when
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n and k are large, finding k abnormal random variables out of n random variables

is almost impossible by using the likelihood ratio test. To overcome this drawback,

we further design efficient algorithms to find k abnormal random variables among n

random variables for large n and k by using Least Absolute Shrinkage and Selection

Operator (LASSO) algorithm [170], and Message Passing (MP) algorithm [129].

4.6.1 LASSO based hypothesis testing algorithm

We propose to use the LASSO algorithm to detect k anomalous random vari-

ables when they have different means from the other n−k random variables. Without

loss of generality, we assume that each of the abnormal random variables has a non-

zero mean, while each of the other (n − k) random variables has mean 0.

LASSO, also known as Basis Pursuit denoising [44], is a well-known sparse

regression tool in statistics, and has been successfully applied to various fields such as

signal processing [43], machine learning [162], and control system [117]. For a sensing

matrix A ∈ Rm×n, and observation y ∈ Rm, the LASSO optimization formulation is

given as follows:

minimize
x

1

2
∣∣y −Ax∣∣22 + λ∣∣x∣∣1, (4.19)

where x is a variable, and λ is a parameter for the penalty term, `1 norm of x, which

makes more elements of x driven to zero as λ increases.

We use the LASSO formulation (4.19) to obtain a solution x̂, by taking y =

[Y 1, ..., Y m]T and A as an m×n matrix with its j-th row equal to the sensing vector

Aj. Since we are interested in finding k abnormal random variables, we solve (4.19)
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and select k largest elements of x̂ in amplitude. We decide the corresponding k

random variables as the k abnormal random variables.

4.6.2 MP based hypothesis testing algorithm

We further design a message passing method to discover general abnormal

random variables, even if the abnormal random variables have the same mean as

the regular random variables. Our message passing algorithm uses bipartite graph to

perform statistical inference. We remark that message passing algorithms have been

successfully applied to decoding for error correcting code [129], including Low Density

Parity Check (LDPC) code.

Let us denote the j-th linear mixed function by ajTX, where X is a random

variable vector, and aj is the j-th sensing vector for a linear mixed observation. The

observation random variable at time j, i.e. Y j, is simply represented as ajTXj as in

(4.2). Note that over time indices j’s, the random variable vector X takes independent

realizations. Now we define a bipartite factor graph as follows. We will represent a

random variable Xi using a variable node on the left, and represent an observation

Y j as a check node on the right. Variable nodes and check nodes appear on two

sides of the bipartite factor graph. A line is drawn between a node Xi and a node

Y j if and only if that random variable Xi is involved in the observation Y j. We call

the observation Y j linked with Xi as a neighbor of Xi. We will denote the set of

neighbors of Xi by N(Xi). Similarly, the set of random variable Xi’s linked with a

random variable Y j is denoted by N(Y j). Fig. 4.1(a) is an example of the factor
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Figure 4.1: Illustration of a factor graph (a) from a matrix (b). A random variable Xi

and Y j are considered as a variable node and a check node in the graph respectively.

Figure 4.2: (a) Message sent from a check node to a variable node. The message
sent from a check node Y 1 to a variable node X2 (red arrow) is expressed as the
probability PY 1→X2

(X2 is abnormal ∣ Y 1 = y1) by considering probabilities PXi→Y 1 ,
i = 4,5,8 (blue arrow). (b) Message sent from a variable node to a check node. The
message sent from a variable node X2 to a check node Y 1 (red arrow) is expressed as
the probability PX2→Y 1(X2 is abnormal) by considering probability PY 2→X2

.

graph for a given sensing matrix A in Fig. 4.1(b). In our message passing algorithm,

messages are exchanged between variable nodes and check nodes.

The messages exchanged between variable nodes and check nodes are the prob-

abilities that a random variable Xi is abnormal. More precisely, the message sent from

a variable node Xi to a check node Y j is the probability that the variable node Xi is

abnormal, namely PXi→Y j(Xi is abnormal), based on local information gathered at
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variable node Xi. Similarly, the message sent from a check node Y j to a variable node

Xi is the probability that the variable node Xi is abnormal based on local information

gathered at variable node Y j. For example, Fig. 4.2(a) shows the message sent from

a check node Y 1 to a variable node X2, which is the probability that X2 is abnormal

given observation y1 and incoming messages from X4 to Y 1, X5 to Y 1, and X8 to Y 1.

Fig. 4.2(b) illustrates the message from a variable node X2 to a check node Y1, which

is the probability that X2 is abnormal when we consider the incoming message from

Y 2 to X2. The message m from a check node Y j to a variable node Xi is expressed

as a function of incoming messages from neighbors of Xi and Y j, and given by

mY j→Xi = f(mX
l∈N(Y j)∖Xi

→Y j , Y
j) = PYj→Xi(Xi is abnormal ∣ Yj = yj), (4.20)

where f(⋅) is a function calculating the probability of Xi being abnormal based on

incoming messages from its neighbor variable nodes and realized observation yj. The

message m from a variable node to a check node is expressed by

mXi→Y j = h(mY l∈N(Xj)∖Y
j
→Xi

) = PXi→Y j(Xi is abnormal), (4.21)

where h(⋅) is a function calculating the probability of Xi being abnormal based on

incoming messages from check nodes. In the same way, we calculate the probability

that Xi is normal.

4.7 Numerical Experiments

In this section, we numerically evaluate the performance of mixed observations

in hypothesis testing. We first simulate the error probability of identifying anomalous
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random variables through linear mixed observations. The linear mixing used in the

simulation is based on sparse bipartite graphs. In sparse bipartite graphs [12,160,189],

n variable nodes on the left are used to represent the n random variables, and m

measurement nodes on the right are used to represent the m measurements. If and

only if the i-th random variable is nontrivially involved in the j-th measurement,

there is an edge connecting the i-th variable node to the j-th measurement node.

Unlike sparse bipartite graphs already used in LDPC codes, and compressed sensing

[12,160,189], a novelty in this paper is that our sparse bipartite graphs are allowed to

have more measurement nodes than variable nodes, namely m ≥ n. In this simulation,

there are 6 edges emanating from each measurement node on the right, and there are

6m
n edges emanating from each variable node on the left. After a uniformly random

permutation, the 6m edges emanating from the measurement nodes are plugged into

the 6m edge “sockets” of the left variable nodes. If there is an edge connecting the i-th

variable node to the j-th measurement node, then the linear mixing coefficient before

the i-th random variable in the j-th measurement is set to 1; otherwise that linear

mixing coefficient is set to 0. We call the Likelihood Ratio Test (LRT) with separate

observations and mixed (compressed) observations as SLRT and CLRT respectively.

We also abbreviate the message passing and LASSO based hypothesis testing method

to MP and LASSO in the figures below.
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4.7.1 Random variables with different variances

In the first simulation example, we take n = 100, and let m vary from 50 to 450.

We assume that k = 1 random variable follows the Gaussian distribution N (0,100),

and the other (n − k) = 99 random variables follow another distribution N (0,1). We

used likelihood ratio test algorithms to find the anomalous random variables through

the described linear mixed observations based on sparse bipartite graphs. For compar-

ison, we also implement the likelihood ratio test algorithms for separate observations

of random variables, where we first make ⌊mn ⌋ separate observations of each random

variables, and then made an additional separate observation for uniformly randomly

selected (m mod n) random variables. For each m, we perform 1000 random trials,

and record the number of trials failing to identify the anomalous random variables.

The error probability, as a function of m, is plotted in Fig. 4.3. We can see that linear

mixed observation offers significant reduction in the error probability of hypothesis

testing, under the same number of observations.

We further carry out simulations for n = 200. Fig. 4.4 and 4.5 show the

hypothesis testing error probability when normal and abnormal random variables

follow the Gaussian distributions N (0,1) and N (0,100) on k = 1 and 2 respectively.

The hypothesis testing error probability is obtained from 1000 random trials. In this

simulation, we use MP based hypothesis testing algorithm and compare it against

LRT methods.

For large values of n and k, Fig. 4.6 shows the performance of MP based

hypothesis testing algorithm when the two types of random variables have different
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Figure 4.3: Error probability as a function of m in log scale when (n, k) = (100,1).
The normal and abnormal random variables followN (0,1) andN (0,100) respectively.

variances. We set k from 1 to 11 when n = 1000. In this parameter setup, LRT

methods have difficulties in finding the k abnormal random variables out of n. The

normal and abnormal random variables follow the Gaussian distribution N (0,1) and

N (0,100) respectively, and the error probability is obtained from 500 random trials.

4.7.2 Random variables with different means

Under the same simulation setup as in Fig. 4.3, we test the error probability

performance of mixed observations for two Gaussian distributions: the anomalous

Gaussian distribution N (0,1), and the normal Gaussian distribution N (8,1). We

also slightly adjust the number of total random variables as n = 102, to make sure that

each random variable participates in the same integer number 6m
n of measurements.
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Figure 4.4: Error probability as a function of m in log scale when (n, k) = (200,1).
The regular and abnormal random variables followN (0,1) andN (0,100) respectively.

Mixed observations visibly reduce the error probability under the same number of

measurements, compared with separate observations. For example, even when m =

68 < n = 102, CLRT correctly identifies the anomalous random variable in 999 out of

1000 cases by using m mixed observations from the bipartite graphs. Fig. 4.7 shows

the result when the two types of random variables have different expectations.

In addition, we carry out simulations to show the results from MP and LASSO

based hypothesis testing methods and compare them against the results from LRT

methods. Fig. 4.8 and 4.9 have the simulation results when the normal and abnormal

random variables follow the Gaussian distribution N (0,1) and N (7,1) on k = 1 and

2 respectively. The error probability is obtained from 1000 random trials.

We compare the performance of MP and LASSO based hypothesis testing algo-

rithms on large values of n and k which is the computational challenging case for LRT
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Figure 4.5: Error probability as a function of m in log scale when (n, k) = (200,2).
The regular and abnormal random variables followN (0,1) andN (0,100) respectively.

in Fig. 4.10 and 4.11. For this simulation, we set n to 1000 and k from 1 to 11, and

for each m, we perform 500 random trials to obtain the error probability. The normal

and abnormal random variables follow N (0,1) and N (8,1) respectively. Finally, Fig.

4.12 shows the comparison result between MP and LASSO based hypothesis testing

methods.

4.7.3 Random variables with different means and variances

We further test the error probability performance of mixed observations for

two Gaussian distributions with different means and variances. Fig. 4.13 and 4.14

show the results when two types of random variables have different means and vari-

ances. The abnormal and normal random variables follow N (0,1), and N (7,100)

respectively. We obtain the error probability from 1000 random trials. The simula-

tion results show that CLRT and MP still identify the abnormal random variables
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Figure 4.6: Error probability of MP based hypothesis testing algorithm as a function
of m in log scale on various k values when n = 1000. The normal and abnormal
random variables follow N (0,1) and N (0,100) respectively.

with fewer observations than SLRT.

4.8 Conclusion

In this paper, we have studied the problem finding k anomalous random vari-

ables following a different probability distribution among n random variables, by

using non-adaptive mixed observations of these n random variables. Our analysis has

shown that mixed observations, compared with separate observations of individual

random variables, can significantly reduce the number of samples required to identify

the anomalous random variables accurately. Compared with conventional compressed

sensing problems, in our setting, each random variable may take dramatically different

realizations in different observations.

There are some questions that remain open in performing hypothesis testing
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Figure 4.7: Error probability as a function of m in log scale when n = 102. The
normal and abnormal random variables follow N (8,1) and N (0,1) respectively.

from mixed observations. For example, for random variables of non-Gaussian dis-

tributions, it is not explicitly known what linear mixed observations maximize the

anomaly detection error exponents. In addition, it is very interesting to explore the

mixed observations for anomaly detection for random variables with unknown abnor-

mal probability distributions.
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Figure 4.8: Error probability as a function of m in log scale when (n, k) = (200,1).
The normal and abnormal random variables follow N (0,1) and N (7,1) respectively.

Figure 4.9: Error probability as a function of m in log scale when (n, k) = (200,2).
The normal and abnormal random variables follow N (0,1) and N (7,1) respectively.
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Figure 4.10: Error probability of MP based hypothesis testing algorithm as a function
of m in log scale on various k values when n = 1000. The regular and abnormal random
variables follow N (0,1) and N (8,1) respectively.

Figure 4.11: Error probability of LASSO based hypothesist testing algorithm as a
function of m in log scale on various k values when n = 1000. The regular and
abnormal random variables follow N (0,1) and N (8,1) respectively.



195

Figure 4.12: Error probability as a function of m in log scale on various k values
when (n, k) = (1000,5). The regular and abnormal random variables follow N (0,1)
and N (8,1) respectively.

Figure 4.13: Error probability as a function of m in log scale when (n, k) = (200,1).
The regular and abnormal random variables followN (0,1) andN (7,100) respectively.
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Figure 4.14: Error probability as a function of m in log scale when (n, k) = (200,2).
The regular and abnormal random variables followN (0,1) andN (7,100) respectively.
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CHAPTER 5
NETWORK CONSTRAINED DISTRIBUTED DUAL COORDINATE

ASCENT FOR MACHINE LEARNING

5.1 Introduction

In modern society, the abundance of sensors enables data to be ubiquitously

collected at an astonishing speed. The amount of data that we can access and learn

actionable information from is skyrocketing. This propels our society into an era of

big data. “Big data” is dramatically impacting our everyday lives, and almost every

aspect of our society, including education, science, engineering, finance, healthcare,

and management [42]. The Google flu trend service is one example of using big data

for better healthcare services [89].

To make use of big data, one often uses large-scale convex optimizations to

learn actionable information from these big data [106]. However, very often big

data are collected and stored at different locations. Due to the constraints of limited

storage volumes and network communication bandwidths, sometimes it is not possible

to pool these distributed data at one central location, and then perform centralized

machine learning over these data. This necessitates performing machine learning in

a distributed manner.

In order to overcome this obstacle of distributed data, researchers have stud-

ied various optimization methods such as synchronous Stochastic Gradient Decent

(SGD) [41], synchronous Stochastic Dual Coordinate Ascent (SDCA) [106,192], asyn-

chronous SGD [200], and asynchronous SDCA [97,102]. Even though the convergence
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of SGD does not depend on the size of data, it is reported in [96] that SDCA can

outperform SGD when we need relatively high solution accuracy. Furthermore, asyn-

chronous updating scheme can suffer from the conflicts between intermediate results.

Motivated by these facts, the authors in [106, 192] considered a synchronous

distributed dual coordinate ascent algorithm for solving regularized loss minimiza-

tion problems, in a star network. In this star network, data are distributed over

a few local workers, which can individually communicate with the central station.

In [106, 192], the authors derived the convergence rate of the distributed dual co-

ordinate ascent algorithm, with respect to the number of iterations. The proposed

distributed optimization framework in [106] is free of tuning parameters or learning

rates, compared with SGD-based methods. Moreover, the duality gap in [106] readily

provides a fair stopping criterion and efficient accuracy certificates. In [97, 102], the

authors investigated the performance of asynchronous SDCA.

In practical communication networks, computers are not always organized in a

star work, and can have very different network topologies. It is unclear how to design

and analyze dual coordinate ascent algorithms for a network with general topologies.

In addition, it is unknown how network communication delays (not merely the number

of communication rounds) will impact the design and convergence rate of distributed

dual coordinate ascent algorithms [106, 192]. We remark that, in [176], the authors

considered communication delays and provided the convergence bound in terms of

time for consensus based distributed optimization.

In this paper, we study how the network communication constraints will im-
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pact the convergence speed of distributed dual coordinate ascent optimization algo-

rithms. Firstly, we consider the design and analysis of distributed dual coordinate

ascent algorithms for regularized loss minimization, in a general tree structured net-

work. We give the convergence rate analysis of the distributed dual coordinate as-

cent algorithm for the considered tree network. Secondly, by considering network

communication delays, we optimize the network-constrained dual coordinate ascent

to maximize its convergence speed. Our results show that under different network

communication delays, to achieve maximum convergence speed, one needs to adopt

delay-dependent number of local iterations for distributed dual coordinate ascent al-

gorithms.

Notations: We denote the set of real numbers as R. We use [k] to denote

the index set of the coordinates in the k-th coordinate block. For a index set Q,

we use Q and ∣Q∣ to represent the complement and the cardinality of Q respectively.

We use bold letters to represent vectors. If we use an index set as a subscript of a

vector (matrix), we refer to the partial vector (partial matrix) over the index set (with

columns over the index set). The superscript (t) is used to denote the t-th iteration.

For example, α
(t)

[k]
represents a partial vector α over the k-th block coordinate at the

t-th iteration. We use the superscript ⋆ to denote the optimal solution.

5.2 Problem Setup

We have the following regularized loss minimization problem for machine learn-

ing applications [97, 102,106,159,192]:
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minimize
w∈Rd

P (w) ≜
λ

2
∣∣w∣∣

2
+

1

m

m

∑
i=1

`i(w
Txi), (5.1)

where xi ∈ Rd, i = 1, ...,m, are dataset, `i(⋅ ), i = 1, ...,m, are loss functions, and λ

is the regularization parameter. Depending on the loss functions, one can consider

(5.1) as various machine learning problems ranging from regression to classification.

For example, if the loss function is the hinge loss function, the optimization problem

with labeled dataset {(xi, yi)}, i = 1, ...,m, where yi ∈ R is label information, is the

Support Vector Machine (SVM).

By using the conjugate function, i.e., `i(a) = supb ab− `∗i (b), where a, b ∈ R and

`i(⋅) is convex, we can obtain the dual problem of (5.1) as follows:

maximize
α∈Rm

D(α) ≜ −
λ

2
∣∣Aα∣∣

2
−

1

m

m

∑
i=1

`∗i (−αi), (5.2)

where αi is the i-th element of the dual vector α, and the data matrix A ∈ Rd×m

has the normalized training data 1
λmxi in its i-th column; namely Ai = 1

λmxi. Since

we have the primal-dual relationship as w(α) ≜ Aα, we have the duality gap as

P (w(α)) −D(α).

In this paper, we consider data being distributed over a network of computers.

5.3 Review of Distributed Dual Coordinate Ascent for a Star Network

The authors in [102, 106, 192] consider a star network as shown in Fig. 5.1

and assume that each local worker has disjoint parts of dataset. Specifically, the

k-th local worker has training data {(xi, yi)}, i ∈ [k], where [k] is the index set

for the training data of the k-th local worker. Hence, if the star network has K

local workers, ∣ ∪Kk=1 [k]∣ = m. In [106], the author introduced Algorithm 5.1 for the



201

Algorithm 5.1 Distributed Dual Coordinate Ascent [106]
Input: T ≥ 1
Output: w, α
Data: {(xi, yi)}

m
i=1 distributed over K local workers

Initialization: α
(0)
[k]
← 0 for all local workers, and w(0) ← 0

for t = 1 to T do
for all local workers k = 1,2, ...,K in parallel do

(△α[k],△wk) ← LocalDualMethod(α
(t−1)
[k]

,w(t−1))

α
(t)
[k]
← α

(t−1)
[k]

+ 1
K △α[k]

end
send △wk, k = 1, ...,K, to the central station
w(t) ← w(t−1) + 1

K ∑
K
k=1△wk

distribute w(t) to local workers
end

Figure 5.1: Illustration of a distributed star network, where Wi, i = 1,2,3, are local
workers.

distributed dual coordinate ascent. In Algorithm 5.1, LocalDualMethod(⋅) represents

any dual method to solve (5.2). The Stochastic Dual Coordinate Ascent (SDCA),

denoted by LocalSDCA(⋅), is a possible candidate for LocalDualMethod(⋅) [106]. The

convergence rate of the algorithm is given as follows [106].

Theorem 5.1 ( [106, Theorem 2] ). Assume that Algorithm 5.1 is run for T outer

iterations of K local computers, with the procedure LocalSDCA(⋅) having local geomet-
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ric improvement Θ. Further, assume the loss functions `i(⋅ ) are 1/γ-smooth. Then,

the following geometric convergence rate holds for the global (dual) objective:

E[D(α∗) −D(α(T )
)] ≤ (1 − (1 −Θ)

1

K

λmγ

ρ + λmγ
)

T

(D(α∗) −D(α(0)
)), (5.3)

where ρ is any real number satisfying

ρ ≥ ρmin ≜ maximize
α∈Rm

λ2m2∑
K
k=1 ∣∣A[k]α[k]∣∣

2 − ∣∣Aα∣∣2

∣∣α∣∣2
≥ 0.

For LocalSDCA(⋅), Θ can be set to the following value with s ∈ [0,1] [106]:

Θ = (1 −
s

m̃
)

H

, (5.4)

where m̃ ≜ maxk=1,...,Kmk is the size of the largest block of coordinates among K local

workers, H is the number of local (or inner) iterations in LocalSDCA(⋅), and s ∈ [0,1]

is a step size which determines how far the next solution will be from the current

solution at each iteration.

5.4 Generalized Distributed Coordinate Ascent Algorithms for

Tree-structured Networks

Earlier works [106, 192] provide the convergence analysis for distributed dual

coordinate ascent algorithms in a star network as illustrated in Fig. 5.1. However, the

communication network connecting different local workers is not necessarily a simple

star network, but instead can be an arbitrary undirected connected graph. The design

and analysis of distributed dual coordinate ascent algorithm in a communication

network of general topology is not well understood [192]. One may argue that, in

a connected communication network, we can always form a virtual star network by
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Figure 5.2: A tree-structured network, which has two layers. In the network, the
center (root node) has 3 direct child nodes S1, S2 and S3. Each node Si has 3 direct
local workers Wij, j = 1,2,3.

connecting local workers to the central station through the relays of other computers.

However, the communication delay from one particular local worker to the central

station can be very large (long relays), significantly slowing down the convergence of

the distributed learning algorithm. Thus it is necessary to spend more computational

resources on performing distributed optimization among local workers close to each

other first, before communicating intermediate computational results to a central

station.

Motivated by these network constraints, in this section, we investigate the

design and analysis of a recursive distributed dual coordinate ascent algorithm over a

general tree structured network, instead of a star network. We choose to investigate

the tree network, because every connected communication network has a spanning

tree. In addition, the tree structured network is a generalization of the star network.
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We first describe a general tree network, with a 2-layer tree network example

illustrated in Fig. 5.2. In the considered tree network, the root node corresponds to

the central station. Any other tree node corresponds to a local worker. Each tree

node may have several direct child nodes. Without loss of generality, we assume that

only the local workers corresponding to the leaf nodes have access to the distributed

data, namely disjoint segmented blocks of the data matrix A (In fact, if a non-leaf

node Q stores data, one can create a virtual leaf node L attached to Q, and “stores”

data in L). For a tree node Q, we also use Q to denote the set of indices of data

points stored in the subtree with Q as the root node (the subtree includes Q, indirect

and direct child nodes of Q). We use [Q,k] to denote the set of indices of data points

stored in the subtree whose root node is the k-th direct child node of Q. If Q is a leaf

node, we use mQ to denote the number of data points stored in Q. In a tree network,

a node can only communicate with its child nodes or parent nodes.

We are ready to introduce the generalized distributed dual coordinate ascent

algorithm (which we call TreeDualMethod) for solving (5.2) dealing with data stored

in a general tree structure network. Algorithm 5.2, Algorithm 5.3 and Procedure A

describe respectively the computational steps of TreeDualMethod for a general tree

node (not root or leaf), the root node, and a leaf node.

5.5 Convergence Analysis of TreeDualMethod for a Tree Network

In this section, we show that for a tree network, there is a recursive relation

between the convergence rate of the algorithm at a tree node Q, and the convergence
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Algorithm 5.2 TreeDualMethod: General Distributed Dual Coordinate Ascent for
a General Tree Node Q (not root or leaf)
Input: T ≥ 1, αQ, w

Initialization: α
(0)
[Q,k]

← α[Q,k] for all direct child nodes k of node Q , w(0) ←wQ

for t = 1 to T do
for all direct child nodes k = 1,2, ...,K of Q in parallel do

(△α[Q,k],△wk) ← TreeDualMethod(α
(t−1)
[Q,k]

,w(t−1))

α
(t)
[Q,k]

← α
(t−1)
[Q,k]

+ 1
K △α[Q,k]

end

reduce w(t) ← w(t−1) + 1
K ∑

K
k=1△wk

end

Output: △αQ ≜ α
(T )

Q −α
(0)
Q , and △wQ ≜w(T ) −w(0) = AQ△αQ

Algorithm 5.3 TreeDualMethod: General Distributed Dual Coordinate Ascent for
the Root Node Q
Input: R ≥ 1

Initialization: α
(0)
[Q,k]

← 0 for all direct child nodes k of node Q, w(0) ← 0

for t = 1 to R do
for all direct child nodes k = 1,2, ...,K in parallel do

(△α[Q,k],△wk) ← TreeDualMethod(α
(t−1)
[Q,k]

,w(t−1))

α
(t)
[Q,k]

← α
(t−1)
[Q,k]

+ 1
K △α[Q,k]

end

reduce w(t) ← w(t−1) + 1
K ∑

K
k=1△wk

end

Output: α(R), and w(R)

rate of the algorithm at Q’s direct child nodes.

We assume that Q has K direct child nodes, and denote the dual variable

vector corresponding to its k-th direct child node by α[Q,k], 1 ≤ k ≤K. We define the

local suboptimality gap for Q’s k-th direct child node as:
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Procedure A. TreeDualMethod: General Distributed Dual Coordinate
Ascent for a Leaf Tree Node Q

Input: H ≥ 1, αQ ∈ RmQ , and w ∈ Rd consistent with other coordinate blocks
of α s.t. w = Aα

Data: {(xi, yi)}
mQ
i=1

Initialization: △αQ ← 0 ∈ RmQ , and w(0) ←w
for h = 1 to H do

choose i ∈ {1,2, ...,mQ} uniformly at random

find △α maximizing −λm2 ∣∣w(h−1) + 1
λm △ αxi∣∣

2 − `∗i (−(α
(h−1)
i +△α))

α
(h)
i ← α

(h−1)
i +△α

(△αQ)i ← (△αQ)i +△α
w(h) ← w(h−1) + 1

λm △ αxi
end
Output: △αQ and △wk ≜ AQ△αQ

εQ,k(α) ≜ maximize
α̂

[Q,k]

D((α[Q,1], ..., α̂[Q,k], ...,α[Q,K],αQ))

−D((α[Q,1], ...,α[Q,k], ...,α[Q,K],αQ)), (5.5)

Note that the suboptimality gap for the k-th child node is defined when α[Q,i]’s (i ≠ k)

and αQ are fixed. We further assume that we have the following local geometric

improvement for the k-th direct child node of Q.

Assumption 5.5.1 (Direct child node geometric improvement of TreeDualMethod).

Let us consider a tree node Q. We assume that there exists Θ ∈ [0,1) such that for any

given α, TreeDualMethod for Q’s k-th direct child node returns an update △α[Q,k]

such that

E[εQ,k((α[Q,1], ...,α[Q,k−1],α[Q,k] +△α[Q,k], ...,α[Q,K],αQ))] ≤ Θ ⋅ εQ,k(α). (5.6)

We remark that this geometric improvement condition holds true if the k-th

direct child node of Q is a leaf child node. For a leaf node, TreeDualMethod uses
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LocalSDCA in [106] as described in Procedure A. The following proposition [106]

gives a bound on the convergence for a leaf node B (even when the input w to

Procedure A is determined also by αQ and αQ∖B).

Proposition 5.2 ( [106] ). Let us consider a tree node Q whose direct child node

B is a leaf node. Assume loss functions `i(⋅) are 1/γ-smooth. Then for leaf node B,

Assumption 5.5.1 holds with

Θ = (1 −
λmγ

1 + λmγ

1

mB
)

H

. (5.7)

where mB is the size of data stored at node B.

Our new result Theorem 5.3 shows that if the geometric improvement condition

holds true for direct child nodes of Q, then the geometric improvement condition also

holds true for Q, thus leading to a recursive calculation of the convergence rate for

the tree network.

Theorem 5.3. Let us consider a tree node Q which has K direct child nodes. The

K direct child nodes satisfy the local geometric improvement requirement Assumption

5.5.1, with parameters Θ1, Θ2, ..., and ΘK. We assume that Algorithm 5.2 (or

Algorithm 5.3) has an input w, and Algorithm 5.2 (or Algorithm 5.3) is run for

T iterations. We further make the assumption that the loss functions `i(⋅ ) are 1/γ-

smooth.

Then, for any input w to Algorithm 5.2 (or Algorithm 5.3), the following

geometric convergence rate holds for Q:
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E[D(α∗Q,αQ) −D(α
(T )

Q ,αQ)]

≤ (1 − (1 −Θ)
1

K

λmγ

ρ + λmγ
)

T

(D(α∗Q,αQ) −D(α
(0)
Q ,αQ)), (5.8)

where Θ = maxk Θk, and ρ is any real number satisfying

ρ ≥ ρmin ≜ maximize
α∈R∣Q∣

λ2m2∑
K
k=1 ∣∣A[Q,k]α[Q,k]∣∣

2 − ∣∣AQαQ∣∣
2

∣∣αQ∣∣2
≥ 0.

Because Theorem 5.3 works for any non-leaf tree node, by combining it with

Proposition 5.2, we can recursively obtain the convergence rate of the generalized

distributed dual coordinate ascent algorithm for the whole tree network (noting that

(1 − (1 −Θ) 1
K

λmγ
ρ+λmγ)

T

is the “Θ” for Q, seen by the direct parent node of Q).

Theorem 5.3 is different from Theorem 2 of [106] in two aspects. Firstly,

Theorem 5.3 works for any tree node in a general tree network, beyond the star

network discussed in [106]. Secondly, Theorem 5.3 is true, even when the input w

of Algorithm 5.2 is not only determined by αQ, but also determined by αQ. To see

this, we note that, at the root node, w = AQαQ +AQαQ, and the root node will pass

w to tree node Q by recalling TreeDualMethod(⋅) for the root node’s child nodes.

Our proof of Theorem 5.3 addresses this challenge that the input w is also affected

by αQ. Due to the space limitations, we omit the proof in this paper.

So far we have discussed how the network topology can affect the conver-

gence speed of distributed dual coordinate ascent algorithms. In the next section, we

consider how the communication delays, another major network constraint, impact

the convergence of distributed dual coordinate ascent algorithms. By considering

communication delays, we optimize the number of local iterations H for maximum
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convergence speed.

5.6 Impacts of Communication Delays on the Convergence Rate of

Distributed Dual Coordinate Ascent Algorithms

Earlier works [106, 192] bounded the convergence of distributed dual coor-

dinate ascent algorithms with respect to the number of inner and outer iterations.

However, in distributed dual coordinate ascent algorithms, there may be significant

communication delays between computers. Thus the convergence of distributed dual

coordinate ascent algorithms not only depends on how many iterations of these al-

gorithm have been run, but also depend on the communication delays in performing

these iterations. Thus we aim to investigate the convergence of distributed dual co-

ordinate ascent algorithms with respect to total time used, including computational

time and communication delays.

In this paper, for simplicity, we consider the star network as shown in Fig. 5.1

and the corresponding Algorithm 5.1, even though our analysis can be generalized to

a tree network. We assume that the round-trip communication delay between a local

worker and the central station is tdelay. Intuitively, If tdelay is close to 0, the local

worker might want to perform a small number of local iterations, and communicate

with the central station at a higher frequency; on the other hand, if tdelay is large,

there is a large communication cost and, to speed up convergence, local workers may

want to perform more local iterations before communicating with the central station.

We use tlp to denote the computational time for one local iteration at a worker, and
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use tcp to denote the computational time for one parameter update at the central

station.

We assume each local worker performs H local iterations before communicat-

ing with the central station, and, in total, there are T outer iterations. The total

experienced time is given by

ttotal = (tlpH + tdelay + tcp) ⋅ T. (5.9)

Hence, the number T of outer iterations is given by

T = ttotal/(tlpH+tdelay+tcp). (5.10)

In (5.8), for T outer iterations, the expected gap between the optimal objective

value and the current objective value for Algorithm 5.1 is given by :

(1 − (1 − [1 − δ]

H

)
C

K
)

T

, (5.11)

where δ = s
m̃ and C = λmγ/(ρ+λmγ).

Our goal is to minimize the gap in objective value (5.11) under a given total

time ttotal, by optimizing over the number H of local iterations. Hence, by plugging

(5.10) into (5.11) , we obtain the following optimization problem

minimize
H

(1 − (1 − [1 − δ]

H

)
C

K
)

ttotal
tlpH+tdelay+tcp

. (5.12)

Through (5.12), we can obtain the fastest convergence speed by adjusting H

according to tcp, tdelay, and tlp. Our results as shown in the numerical section show

that, as tdelay increases, the optimal number H of local iterations also increases.
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5.7 Numerical Experiments

In this section, we give numerical results showing how communication delays

impact the convergence of distributed dual coordinate ascent algorithms.

Fig. 5.3 shows the optimal number H of local iterations, from optimizing

(5.12). In the optimization, we set (C,K, δ, ttotal, tlp, tcp) = (0.5,3, 1/300,1,4 × 10−5,3 ×

10−5), which were measured in the numerical experiments for the star network model

(unit of time is second). We set tdelay = r × tlp, where r is a parameter indicating

how severe the communication delay is. Figure 5.3 (a) shows the objective values

of (5.12) when H is varied from 1 to 2000. The red line represents the optimal

convergence bound at the optimal number of local iterations. Fig. 5.3 (b) shows the

optimal number of local iterations to achieve the fastest convergence rate for different

communication delays, where r is varied from 0 to 10e10.

We further experimented with solving synthetic linear regression problems for

the star network shown in Fig. 5.1, in order to demonstrate how communication delays

affect the optimal number of local iterations. We generated dataset A ∈ R100×600 with

i.i.d. zero-mean unit-variance Gaussian elements. We assigned evenly divided dataset

to 3 local workers, i.e., 200 vectors for each local worker. We measured the average

processing time tlp for one iteration by running LocalSDCA over the 3 disjoint dataset.

And tdelay is set as tdelay = r × tlp, with r = 10 and 10e5 for Fig. 5.4 (a) and Fig. 5.4

(b) respectively. For fixed r, we varied the number H of local iterations from 10 to

10e4. When tdelay = 10e5×tlp, we can see that the best number of local iterations H is

1000 or 10000. When tdelay = 10 × tlp, H = 100 or 1000 provides the best convergence
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(a) (b)

Figure 5.3: (a) The objective value of (5.12) when the number of iterations H is
varied from 1 to 2000, where (C,K, δ, ttotal, tlp, tcp) = (0.5,3, 1/300,1,4 × 10−5,3 × 10−5)
and tdelay = r × tlp. The red line represents the optimal number of local iterations to
achieve the fastest convergence rate. (b) Optimal number of iterations to achieve the
fastest convergence rate, when the parameters are the same as (a) and r is varied
from 0 (no delay) to 1010.

results. Those numerical experiments are consistent with our predictions in Fig. 5.3.
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(a) r = 10e1 (b) r = 10e5

Figure 5.4: Convergence rate in terms of operation time with different tdelay = r × tlp
in communication.
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CHAPTER 6
FAST DOSE OPTIMIZATION FOR ROTATING SHIELD

BRACHYTHERAPY

6.1 Introduction

High-dose-rate brachytherapy (HDR-BT) involves placing a radiation source

inside of or adjacent to a target organ, i.e., tumor. Conventional HDR-BT uses an

unshielded brachytherapy source with a radially-symmetric dose distribution [115,

148], which limits the intensity modulation capacity of the approach. Rotating-

shield brachytherapy (RSBT) has a rotating radiation-attenuating shield around a

brachytherapy source. The RSBT concepts for single-catheter treatment [75] and

multi-catheter treatment [76] were introduced by Ebert in 2002 and 2006 respectively.

In the multi-helix RSBT (H-RSBT) treatment, a radiation source travels in-

side a brachytherapy applicator having helical keyways. While moving along the

applicator for a given keyway, the partial shield rotates around the radiation source

simultaneously. In traveling along each keyway, the radiation source stops at desig-

nated locations called dwell positions. By adjusting the distance between adjacent

dwell positions, the rotation angle of the partial shield is determined accordingly.

Intensity modulated dose distributions can be delivered to the target with reduced

dose exposure to non-target organs by controlling the treatment time in an optimal

manner for each dwell position. Hence, it is reported that a radiation source with

rotating shields can deliver more conformal dose distributions than an unshielded

radiation source. [59]
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HDR-BT treatment plans are often generated using inverse planning tools

[2, 7, 53, 63, 104, 121, 133]. Based on the given clinical prescription, various optimiza-

tion problems were introduced previously ranging from minimizing treatment time

under restrictions [116, 153] to minimizing dose error [3, 104, 121, 133]. Inverse plan-

ning by simulated annealing (IPSA) [121] is a well known method to optimize the

dose volume histogram (DVH) directly with given constraints. The BrachyVision

treatment planning system (Varian Medical System Inc., Palo Alto, CA) uses this

type of DVH-based optimization algorithm. [133]

Unlike the conventional HDR-BT optimization, the RSBT optimization prob-

lem has the additional optimization variables of radiation exposure time at each angle

of the shield. Due to the increased degrees of freedom in RSBT, RSBT optimization

is more difficult than that for the conventional HDR-BT. In addition, there is a com-

pelling need to quickly obtain optimal treatment plans in RSBT to enable clinical

usage. To achieve this, researchers have used the dose-surface optimization (DSO)

method [126,193], which minimizes the total dose errors over only voxels on the HR-

CTV surface. Instead of dealing with only voxels on the HR-CTV surface, Liu et

al. [125] defined the region of interest in tumor which includes the surface of HR-

CTV as well as the inside voxels of tumor. Additionally, the authors used the total

variation (TV) norm penalty in their optimization problem to make smooth changes

in the emission times of adjacent beams in the treatment process to facilitate the

efficient delivery of an RSBT plan. This optimization problem for RSBT is called

asymmetric dose-volume optimization with smoothness control (ADOS).
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In this paper, we consider the ADOS optimization problem. A fast computa-

tional method is proposed to solve the ADOS optimization problem for the optimal

cancer treatment planning for RSBT. Liu et al. used a commercial optimization

solver called CPLEX [125]. In order to efficiently solve the ADOS optimization prob-

lem, which is a large-scale RSBT optimization problem, we designed an optimization

method based on the proximal graph solver (POGS) [85], which is a solver using the

alternating direction method of multipliers (ADMM). For using POGS, we derived

closed-form formulas for the proximal operators used in POGS. Further, we applied

our method to the H-RSBT, which is a mechanically-feasible delivery technique for

RSBT proposed by Dadkhah et al. [59]. In the numerical experiments, we considered

cervical cancer, even though our method is also applicable to other types of cancer

such as breast cancer and prostate cancer.

6.2 Background on the Multi-helix RSBT

6.2.1 Delivery method

In order to deliver the radiation dose to a target organ, we consider a me-

chanically feasible delivery technique for RSBT, called the multi-helix RSBT (H-

RSBT) [59]. Fig. 6.1 shows the illustration of the H-RSBT method. The shield

opening is represented by the azimuthal and zenith emission angles, denoted by ∆ϕ

and ∆θ respectively.

In H-RSBT, a Xoft Axxent radiation source, inside its cooling catheter, with

a freely-rotating partial radiation shield is translated inside an applicator with six
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Figure 6.1: (a) Illustration of multihelix rotating shield brachytherapy (H-RSBT)
system. (b) Partially shielded radiation source.

helical keyways carved out of the inner wall. The six keyways are evenly spaced

on the applicator cross section, by 60○, and each keyway has a helical pitch of one

rotation per 33.3 mm of translation. The partial shield has a protruding key that

travels down a given keyway, and, due to the helical design of the keyways, the

shield rotates about the radiation source as the source catheter is translated, and

the emission angle of the shield is known for a given keyway and translational dwell

position. As the H-RSBT applicator has 6 helices, with 33.3 mm of translation along

the applicator per helical rotation and 1.7 mm spacing between dwell positions, it

yields 17.5○ of rotation for the shield per 5 mm (standard dwell position spacing) of

its translation along the applicator. The dose calculation resolution was 1×1×3 mm3

for all cases. The transmission through the shield is 0.1% and approximated to be 0%

for the dose calculation. For each patient considered, 45○ azimuthal emission angle

was used for treatment planning. The zenith emission angle of the modeled shields

was an asymmetric 116○, which is consistent with previous work. [59]
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6.2.2 Radiation source model and dose calculation

For H-RSBT, the delivery is parameterized by keyway number and dwell posi-

tion number along the keyway. To quantitatively describe the structure of high-dose-

regions formed by a partially shielded source, we introduce the notation of beamlet. A

beamlet, denoted by Di(j, b), is defined as the dose rate at point r⃗i with the shielded

source positioned at the j-th dwell position while the shield is aligned with the b-th

keyway.

To calculate the beamlet, we use the TG-43 dose calculation model of Rivard

et al. [154]. The radiation source is assumed to be partially shielded 50kVp Xoft

AxxentTM (Sunnyvale, CA). To be consistent with previous work [126, 182, 193], we

consider that the dose to the points blocked by the shield is 0, since the transmission

rate from 50kVp Xoft AxxentTM can be controlled to be less than 0.1% when using a

0.5 mm tungsten shield. [126, 193] Then, we can quantify the radiation dose amount

at the point r⃗i, denoted by di, as a time-weighted sum of all beamlets as follows:

di =∑
j,b

Di(j, b)tj,b, (6.1)

where tj,b is the duration time of the beamlet Di(j, b).

In the next subsection, we introduce the RSBT optimization problem having

asymmetric penalty parameters for HR-CTV and organs at risk (OARs), with TV

regulation term for smoothness in the beamlet emission times.
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6.3 Optimization problem for cancer treatment planning in RSBT

6.3.1 Problem Formulation

Let t ∈ Rmn×1 be the beamlet emission time vector for all keyways and all dwell

positions, where m and n are the number of keyways, i.e, m = 6, and the number of

dwell positions along a keyway respectively. We can obtain t by vectorizing tj,b in

Eqn. (6.1); namely, the vector t ∈ Rmn×1 is a concatenated vector, which is expressed

as t = [t[1]T , t[2]T , ..., t[m]T ]T , where t[j] ∈ Rn×1 is the dwell time vector for all the

beamlets along a keyway, and the super-script T represents the transpose. Let us

define a concatenated dose rate matrix D = [D[1],D[2], ...,D[m]] ∈ Rl×mn, where

D[j] ∈ Rl×n, j = 1, ...,m, is the dose rate matrix for the j-th selected keyway, and l

is the number of voxels that we are interested in. We denote the whole index set for

voxels of interest (VOIs) as IV OIs and the index set for HR-CTV, bladder, rectum,

sigmoid, and normal tissue around the HR-CTV as Itumor, Ibladder, Irectum, Isigmoid,

and Inormal respectively. The dose rate matrix D has information about dose rate

delivered to each tissue point in IV OIs from each beamlet.

We consider the following RSBT optimization problem having a quadratic

objective function with total variation (TV) regulation term for smooth beamlet

emission times:

minimize
t∈Rmn,d∈Rl

∑
i∈IV OIs

h(di) +
m

∑
j=1

β∣∣Lt[j]∣∣1

subject to Dt = d,

t ≥ 0, (6.2)
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where D ∈ Rl×mn is a dose rate matrix, t ≥ 0 is the element-wise non-negative emission

time, di, which is the i-th element of d, is the dose amount at the i-th voxel as

introduced in Eqn. (6.1). In Eqn. (6.2),

h(di) ≜ (λ+iH(di − d̂i) + λ−iH(d̂i − di))(di − d̂i)2,

where H(x) is the unit step function, which is H(a) = 1 if a > 0, and H(a) = 0 if

a ≤ 0, and λ+i and λ−i represent overdose and underdose penalty parameters for the

i-th voxel respectively. L ∈ Rn×n is the matrix which calculates TV norm of a vector;

namely, L is defined as follows:

L ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 ... 0 0

0 1 −1 0 ... 0 0

0 0 1 −1 ... 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ... 1 −1

0 0 0 0 ... 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

d̂i is a prescribed dose amount for the i-th voxel. d̂i can have a different value for each

VOI. For example, d̂i = d̂tumor if i ∈ Itumor, and d̂i = d̂badder if i ∈ Ibladder. We denote the

prescribed dose amount for HR-CTV, bladder, rectum, sigmoid, and normal tissue

around the HR-CTV as d̂tumor, d̂bladder, d̂rectum, d̂sigmoid, and d̂normal. For λ+i and λ−i ,

we use different non-negative overdose and underdose parameter values including 0.

The TV norm alleviates the positioning uncertainty in the treatment process.

If we have two dramatically different emission times tj,b and tj+1,b between two adja-

cent beamlets along the same keyway, a small error in the dwell positions may cause
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an unacceptable treatment result. By applying the smoothness term between two

adjacent beamlets along the same keyway in H-RSBT, we can reduce the treatment

error caused by the positioning uncertainty in the treatment process.

Since we use different penalty parameter values for the overdose and underdose

of a voxel, we call Eqn. (6.2) as RSBT optimization problem having asymmetric

penalty parameters or simply ADOS.

6.3.2 POGS implementation

In order to simplify the sum of the TV norms in Eqn. (6.2), let us introduce

a matrix L̄ ≜ Im×m ⊗ L, where ⊗ is the Kronecker product, and Im×m is an m ×m

identity matrix. By assigning L̄t = y and introducing the indicator function I(⋅), we

restate Eqn. (6.2) as follows:

minimize
t,y∈Rmn,d∈Rl

∑
i∈IV OIs

h(di) + β∣∣y∣∣1 + I(x ≥ 0)

subject to Dt = d,

L̄t = y, (6.3)

where D ∈ Rl×mn, L̄ ∈ Rmn×mn, and I(t ≥ 0) is the element-wise indicator function;

namely, I(ti ≥ 0) = 0 if ti ≥ 0, and I(ti ≥ 0) =∞ if ti < 0.

By letting

A =
⎛
⎜⎜⎜
⎝

D

L̄

⎞
⎟⎟⎟
⎠
, z =

⎛
⎜⎜⎜
⎝

d

y

⎞
⎟⎟⎟
⎠
,
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we can further simplify Eqn. (6.3) into

minimize
t∈Rmn,z∈Rl+mn

l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1 + I(t ≥ 0)

subject to At = z, (6.4)

where z[a∶b] is the partial vector of z by taking vector z from the a-th element to the

b-th element. We define the following functions:

g(t) = I(t ≥ 0), (6.5)

f(z) =
l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1. (6.6)

Then we turn Eqn. (6.4) into a graph-form convex optimization problem [85], where

the constraint is z = At, and A = [DT L̄T ]T ∈ R(l+mn)×mn. We have derived the detailed

updating rules for each optimization variable in the POGS solver for Eqn. (6.4). We

introduce our derived results in detail for the proximal operators used in the POGS

solver, updating steps, and stopping criteria as follows.

The POGS updates primal variables, conducts the projection onto the space

z = At, and then, updates dual variables iteratively until the stopping criteria are

satisfied or the maximum number of iterations, denoted by MaxItr, is reached. The

primal variable and dual variable are updating variables to be used for optimality

condition in the algorithm. For the primal variable, dual variable, and projection

result, we used (t̂, ẑ), (t, z), and (t̃, z̃) respectively. We introduce each updating steps

in detail for our optimization problem in Eqn. (6.4). We use the super-script k to

represent the k-th iteration.
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Updating primal variables t̂k+1 and ẑk+1: In updating the primal variables,

we use the following proximal operators with a penalty parameter ρ:

t̂k+1 = Proxg(tk − t̃k)

= argmin
t

I(t ≥ 0) + ρ
2
∣∣t − (tk − t̃k)∣∣2,

ẑk+1 = Proxf(zk − z̃k)

= argmin
z

l

∑
i=1

h(zi) + β∣∣z[l+1∶l+mn]∣∣1 +
ρ

2
∣∣z − (zk − z̃k)∣∣2.

The proximal operator is used to make a compromise between the solution at the k-th

iteration and the function value with the solution at the k + 1 iteration. We are able

to explicitly derive closed-form formulas for the proximal operators. For t̂k+1 ∈ Rmn,

we have

t̂k+1 =max(tk − t̃k,0), (6.7)

where max(a, b) provides the maximum value between a and b element-wise. For

ẑk+1
i , 1 ≤ i ≤ l, we also derive

ẑk+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zki − z̃ki −
β
ρ , if zki − z̃ki >

β
ρ

zki − z̃ki +
β
ρ , if zki − z̃ki < −

β
ρ

0, otherwise

. (6.8)

For ẑk+1
i , l + 1 ≤ i ≤ l +mn, we obtain

ẑk+1
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2λ+i d̂i+ρ(z
k
i −z̃

k
i )

2λ+i +ρ
, if zki − z̃ki ≥ d̂i,

2λ−i d̂i+ρ(z
k
i −z̃

k
i )

2λ−i +ρ
, if zki − z̃ki < d̂i.

. (6.9)
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POGS uses the adaptive value for ρ as default to further increase the convergence

speed.

Projection onto z = At from (t̂k+1+t̃k, ẑk+1+z̃k): The projection operation is

mapping the primal variables to the closest feasible solution. The projected variables

onto z = At from (t̂k+1+ t̃k, ẑk+1+ z̃k), denoted as tk+1 and zk+1, are obtained by solving

the following optimization:

minimize
t,z

1

2
∣∣t − (t̂k+1 + t̃k)∣∣22 +

1

2
∣∣z − (ẑk+1 + z̃k)∣∣22

subject to At = z

By solving this optimization and using Lagrange conditions [20], we have the following

formulation:

⎛
⎜⎜⎜
⎝

tk+1

zk+1

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

I AT

A −I

⎞
⎟⎟⎟
⎠

−1

⎛
⎜⎜⎜
⎝

t̂k+1 + t̃k +AT (ẑk+1 + z̃t)

0

⎞
⎟⎟⎟
⎠
.

Updating dual variables t̃k+1 and z̃k+1: We obtain the dual variable at

iteration (k + 1) by updating the dual variable at the k-th iteration as follows:

t̃k+1 = t̃k + t̂k+1 − tk+1,

z̃k+1 = z̃k + ẑk+1 − zk+1.

We summarize the updating steps in Algorithm 6.1.

Stopping criteria: For the stopping criteria, we define the primal and dual

residuals as follows:

∣∣At̂k+1 − ẑk+1∣∣2 ≤ εpri,

∣∣AT v̂k+1 + µ̂k+1∣∣2 ≤ εdual, (6.10)
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Algorithm 6.1 Fast treatment planning for RSBT in POGS implementation

Input: A ∈ R(l+mn)×mn, MaxItr, λ+, λ−, d̂ ∈ Rl, β
Output: t
Initialize: k ← 0, tk ← 0, zk ← 0, t̃← 0,z̃ ← 0
for k = 1 to MaxItr do

Updating primal variables t̂k+1, ẑk+1:
t̂k+1 ← Proxg(t

k − t̃k) ▷ See (6.7)
ẑk+1 ← Proxf(z

k − z̃k) ▷ See (6.8) and (6.9)
Projection onto z = At:

(
tk+1

zk+1)← (
I AT

A −I
)

−1

(
t̂k+1 + t̃k +AT (ẑk+1 + z̃t)

0
)

Updating dual variables t̃k+1, z̃k+1:
t̃k+1 ← t̃k + t̂k+1 − tk+1

z̃k+1 ← z̃k + ẑk+1 − zk+1

if Stopping criteria are met then
break

end

end

where v̂k+1 = −ρ(ẑk+1−zk+ z̃k), µ̂k+1 = −ρ(t̂k+1−tk+ t̃k). Here, εpri and εdual are positive

tolerances for primal and dual residuals respectively:

εpri = εabs + εrel∣∣ẑk+1∣∣2,

εdual = εabs + εrel∣∣µ̂k+1∣∣2, (6.11)

where we used (εabs, εrel) = (10−4,10−2) in the numerical experiments.

6.4 Treatment Planning

Five patients with cervical cancer were considered, whose HR-CTV volumes

range from 42.2 to 98.8 cm3. Table 6.1 shows the volume and maximum dimension of

HR-CTV for five patients. All the HR-CTVs and OARs were manually contoured by

physicians on T2 weighted 1×1×3 mm3 resolution MR images taken with a Siemens

MAGNETOM 3T scanner (Siemens, Germany) at the beginning of the first fraction
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Figure 6.2: EQD2 dose distributions on MR images for five patient cases obtained
from CPLEX and POGS with H-RSBT using 45○ azimuthal angle.

of brachytherapy. A titanium Fletcher-Suit-Delclos style tandem and ovoids (Varian

Medical Systems, Palo Alto, CA) were used as the brachytherapy applicator. We

used the same datasets as the previous research conducted by Liu et al. [125] and

Dadkhah et al. [59].

Table 6.1: HR-CTV volumes and dimensions for all patients

Patient Num. HR-CTV volume (cm3) HR-CTV maximum dimension (cm)

Case 1 42.2 6.3
Case 2 45.8 7.4
Case 3 78.0 8.6
Case 4 98.8 9.6
Case 5 75.0 7.5
Avg. 68.0 7.9
SDa 23.8 1.8

a
Standard Deviation

All the patients had external beam radiation treatment in 25 fractions at 1.8
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Table 6.2: Parameter settings

Method d̂tumor d̂bladder d̂rectum d̂sigmoid d̂normal
a Tumor Bladder Rectum Sigmoid Normalb

β
λ+i / λ−i λ+i / λ−i λ+i / λ−i λ+i / λ−i λ+i / λ−i

CPLEX 40 25 20 20 40 0/ 2 2/ 0 2/ 0 2/ 0 2/ 0 100
POGS 40 25 20 20 40 0/ 2 2/ 0 2/ 0 2/ 0 2/ 0 100

a Prescribed dose amount for tumor boundary b Penalty parameter for tumor boundary

Table 6.3: Comparison between POGS and CPLEX for 45○ azimuthal angle

Case Method
HR-CTV HR-CTV Bladder Rectum Sigmoid Execution
D90 (Gy) D100 (Gy) D2cc (Gy) D2cc (Gy) D2cc (Gy) time (sec.)

Case 1
CPLEX 110.8 54.0 89.9 62.4 75.0 32.1
POGS 111.4 54.0 90.0 64.7 74.7 2.1

Case 2
CPLEX 111.5 44.3 90.0 72.2 54.4 37.0
POGS 111.5 44.3 90.0 71.7 54.8 2.1

Case 3
CPLEX 96.0 44.3 85.9 57.3 75.0 65.4
POGS 95.0 44.3 85.2 55.1 75.0 3.9

Case 4
CPLEX 107.0 55.3 90.0 69.9 54.0 39.4
POGS 106.9 55.4 90.0 69.8 54.0 2.3

Case 5
CPLEX 112.7 44.3 90.0 68.1 59.2 65.4
POGS 112.7 44.3 90.0 68.1 59.2 3.2

Average
CPLEX 107.6 48.4 89.2 66.0 63.5 47.9
POGS 107.5 48.5 89.0 65.9 63.5 2.7

Gy/fraction. We assume that the external beam radiotherapy dose was uniformly

delivered to the HR-CTV and OARs for all the patient cases. The dose in each voxel

was converted to equivalent dose in 2 Gy per fraction of external radiation therapy

(EQD2) using the linear quadratic model, [109] where the linear-quadratic parameter,

α/β, is set to 3 Gy for OARs and 10 Gy for HR-CTV.

For VOIs, we define the voxels located at a distance between 3 mm and 20 mm

to the radiation source path or those within 10 mm inside and outside of the HR-CTV

boundary surface. [125] We deal with the HR-CTV, HR-CTV boundary, bladder,

sigmoid, and rectum inside of VOIs in our optimization problem. The optimization
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parameter settings are shown in Table 6.2.

For all the brachytherapy treatment plans, we escalated the EQD2 of the

HR-CTV without exceeding the D2cc tolerance of the bladder, rectum, and sigmoid

colon. We used 90 Gy for bladder tolerance, and 75 Gy for rectum and sigmoid

colon tolerances according to Groupe Européen de Curiethérapie, European Society

for Therapeutic Radiology and Oncology (GEC ESTRO). [92,149]

6.5 Numerical Experiments

Optimized treatment plans were generated for all patients using the POGS

method and the previously considered CPLEX method. [125] The same objective

function, with the same input parameters and beamlets, was minimized for each

patient with both methods. A total variation term was included in the objective

function as a regularization term, resulting in smoothly-varying emission times along

each keyway. The regularization promotes robustness of the resulting overall dose

distribution with respect to small errors (expected ≤ 1 mm) in source positioning.

The rectum, bladder, sigmoid colon, HR-CTV, and HR-CTV boundary were the

structures considered.

We compared our method with the previous research conducted by Liu et

al. [125] using CPLEX [103] for H-RSBT. We evaluated the quality of the delivery

plans as well as the execution time to solve Eqn. (6.2) with POGS [85]. Since Liu

et al. compared their method based on CPLEX with other existing RSBT dose

optimization methods ranging from DSO to IPSA in their previous research [125], we
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only compared POGS and CPLEX in this paper.

The comparison metrics for the quality of the delivery plans are the HR-CTV

D90, HR-CTV D100, OARs D2cc, DVH, and dose distributions. Since the goal of this

research is achieving a fast solution to the RSBT dose optimization problem without

compromising the plan quality, we compared the execution times to solve Eqn. (6.2)

for all five patient cases. We conducted our numerical experiments on HP Z220 CMT

with an Intel Core i7-3770 dual core CPU @3.4GHz clock speed and 16GB DDR3

RAM, using Matlab (R2013b) on the Windows 7 operating system.

Table 6.4: Dimension of D ∈ Rl×mn in Eqn. (6.2)

Patient Num. l ×mn

Case 1 54693 × 144
Case 2 51109 × 126
Case 3 79065 × 222
Case 4 50680 × 144
Case 5 59220 × 228
Avg. 58953 × 173

Results for five cervical cancer patient cases are shown in Table 6.3. Table 6.4

shows the dimension of the dose matrix D in Eqn. (6.2). Fig. 6.3 shows the corre-

sponding DVH in H-RSBT. With the same parameter settings as in Table 6.2, POGS

can achieve an RSBT plan with almost the same D90 value (less than 1% difference)

as that achieved by CPLEX in each of the five patient cases. D2cc values for OARs

obtained by POGS are also almost the same (less than 1% difference) as those from

CPLEX. For the execution time, we achieved around 18 times faster speed to solve
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Figure 6.3: Dose volumn histograms (DVH) of all treatment planning for five patient
cases in H-RSBT with 45○ azimuthal angle.

the ADOS problem for H-RSBT than the CPLEX based method on average. Over

all patients, total optimization times were 32.1-65.4 seconds for CPLEX and 2.1-3.9

seconds for POGS.

Fig. 6.2 shows that the EQD2 figures were similar for each case between

CPLEX and POGS.
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6.6 Discussion

Various treatment planning methods in radiation therapy have been studied.

One of the well known methods, which is called IPSA, was introduced to directly

optimize DVH with given constraints in heuristic way. Due to its heuristic nature, a

global solution is not guaranteed. Instead of directly optimizing DVH, we consider

the voxel-wise optimization problem for the RSBT treatment planning, called ADOS

optimization problem, which can be expressed in a convex optimization problem. We

can take advantage of the convexity to obtain a global solution.

In the ADOS optimization problem, we reduced the size of the ADOS op-

timization problem by defining VOIs. Instead of defining VOIs, the whole voxels

can be considered in the optimization problem under the expectation of better treat-

ment quality with heavy computation. Since parallel computing and GPU-based high

performance computing can play an important role in solving extremely large-scale

optimization problems, there is a rising question about the usability of POGS in

parallel computing environment or GPU-based implantation. The implementation of

POGS in such environment is another research work.

In addition, we used a partial shield with 4○ azimuthal angle in H-RSBT for

our numerical experiments. However, finding the optimal shield angle in H-RSBT

is still an open problem. In order to determine the size of angle and the radiation

exposure time at each angle of shield, considering both variables in the optimization

problem is also a possible optimization problem.

Finally, POGS (and ADMM) was used in previous research on intensity-
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modulated radiation therapy (IMRT) [85, 198], fluence map optimization [86], and

external beam radiotherapy (EBRT) optimization [124]. Right at the time of submit-

ting our journal manuscript, we learned of the recently-appearing (published on April

12th, 2017) work [124] which applied POGS algorithms to EBRT dose optimization.

The work [124] focused on EBRT, while our paper is the first work to use POGS in

brachytherapy, including the mechanically-feasible delivery system called H-RSBT.

In our paper, we use TV norm to promote smoothly-varying emission times along

each keyway, such that the treatment plan is robust to positioning errors of dwell po-

sitions. By comparison, the TV norm is instead applied to promote the smoothness

of the resulting fluence map in the research [124] and simplify the delivery. Our pro-

posed method is applicable to conventional HDR-BT as well as dynamic modulated

brachytherapy [183] with simple modifications, since they share similar mechanisms

as H-RSBT.

6.7 Conclusion

POGS substantially reduced treatment plan optimization time around 18 times

for RSBT with similar HR-CTV D90, OAR D2cc values, and EQD2 figure comparing

to CPLEX, which is significant progress toward clinical translation of RSBT. Over all

cervical cancer patients, total optimization times were 32.1-65.4 seconds for CPLEX

and 2.1-3.9 seconds for POGS. POGS is also applicable to conventional high-dose-rate

brachytherapy.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

Our future plans for each subject are provided in the following sections.

7.1 Super-resolution

Based on our previous research on super-resolution, applying our proposed

super-resolution theories and algorithms to various applications can be one specific

research area. The possible applications include X-ray crystallography, optic mi-

croscopy, and Direction of Arrival (DoA) radar. Since images can be understood as

the sum of unit step functions, by calculating the derivative of images, we can ex-

press the images as the sum of Dirac delta functions; our super-resolution algorithms

ranging from the phaseless super-resolution algorithm to the super-resolution with

prior information are then applicable. Therefore, by using our super-resolution meth-

ods, we can obtain high resolution images with low frequency magnitude information,

which is one specific example. Designing numerical algorithms to solve even larger

super-resolution problems in 2D or 3D fast is another direction of this research.

7.2 Designing algorithms for distributed system

As introduced in the introduction and motivation section, optimization prob-

lems in the technological era of ubiquitous computing and networking will be even

larger and much more complicated than the traditional optimization problems. In

addition, the amount of data that we can access is skyrocketing. Therefore, the de-
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mand for efficient algorithms to solve the large scale optimization problems in the

distributed system model is extensively increasing. As for designing algorithms for

distributed systems, current research involves reducing the complexity of the op-

timization problems by taking advantage of data structure information, as well as

dealing with distributed processors and memories. For this research, use of the first

order methods such as coordinate descent, stochastic gradient descent, and dual coor-

dinate ascent has been encouraged due to their low complexity and adequate quality

of solution. The communication-efficient first order method is especially interesting

for this research. The authors in [106] proposed the distributed dual coordinate ascent

method with the geometric convergence rate on the optimization problem minimizing

a convex and smooth loss function with a convex regularization term in a star network

model. In order to deal with highly connected system models targeting the Internet

of Things (IoTs) and big data problems, designing general algorithms for various net-

work models such as ring, randomly connected models, and fully connected models

is one potential research topic [50].

7.3 Optimal treatment plan for rotating-shield brachytherapy

In the rotating-shield brachytherapy for prostate cancer, around 15-20 needles

are used to deliver radiation source to prostate. In the previous research [1], the au-

thors have chosen the locations of needles somehow arbitrary. For optimal treatment

planning, determining the optimal needle locations as well as the optimal number

of needles is an open problem. Hence, we can conduct research on developing an
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algorithm for prostate cancer to choose the optimal number of needles as well as the

locations. For the possible needle locations, we are able to discretize the target organ

and consider each grid point as a possible needle location. In the algorithm, we can

consider block sparsity to choose possible needle locations, since tumor tissues can

be located closely each other. Therefore, designing an algorithm for prostate is a

possible direction for the rotating-shield brachytherapy.
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