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ABSTRACT

For radiation treatment of cancer and image-based quantitative assessment of

treatment response, target structures like tumors and lymph nodes need to be seg-

mented. In current clinical practice, this is done manually, which is time consuming

and error-prone. To address this issue, a semi-automated graph-based segmentation

approach was developed.

It was validated with 60 real datasets, segmented by two users manually and

with this new algorithm, and 44 scans of a phantom dataset. The results showed

a statistically significant improvement in intra- and interoperator consistency of

segmentations, a statistically significant improvement in speed of segmentation,

and reasonable accuracy against consensus images and phantoms. As such, the

algorithm can be applied in cases that otherwise would use manual segmentation.
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CHAPTER 1

INTRODUCTION

In 18F-fluoro-deoxy-glucose-positron emission tomography (18F-FDG PET or

just FDG PET) functional imaging allows physicians to detect cancer and assess

the activity of cancer cells, including in the head and neck. These cells show up

much better in FDG PET images than in computed tomography (CT) images, as

seen in Figure 1.1, making this imaging modality well suited for measurement of

cancerous tumors and lymph nodes.

(a) (b)

Figure 1.1: A comparison of two imaging modalities for viewing a tumor. (a) The
FDG PET image shows the tumor clearly. (b) The CT image fails to show the same
tumor well.

With consistent measurement of the tumors and nodes, these FDG PET im-

ages could be used to better predict outcomes of treatments by measuring quanti-

tative indices in pre- and post-treatment volumes of tumors and nodes. Consistent
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measurement of those tumors and nodes, however, requires consistent delineation

of the boundaries of those tumors and nodes, which is not trivial. Unfortunately,

FDG PET images are relatively low resolution, generally around 3 × 3 × 3 mm per

voxel, sometimes worse, compared to computed tomography (CT) images at around

0.5 × 0.5 × 0.6 mm. They also tend to be noisy. Both of these make recognizing

the actual boundaries of lesions difficult. At the present time, it is generally done

manually, which introduces issues with reproducibility and time, particularly when

considering large datasets as would be required for response assessment in oncology

clinical trials. This thesis introduces a method to more consistently and rapidly

delineate head and neck lesions in FDG PET volumetric images while still making

segmentations amenable to manual adjustment based on clinically-based knowledge

and hence comparable to those made manually.

1.1 Motivation

As mentioned, FDG PET images give useful information for locating and

assessing the activity of cancerous lesions. These are important for quantitative

analysis for research purposes as well as for treatment. Various methods have been

used to measure different quantitative indices from these scans, such as the maxi-

mum uptake in an object and the volume of an object. While the maximum uptake

often requires only a rough segmentation, the volume requires more specific bound-

aries. Measurements such as the average and accumulated uptake could also be of

use, along with other, not-yet-devised measures, which would require segmenting

the volume. For radiation treatment planning, tumor delineation is required to

calculate a treatment plan, and is currently almost exclusively manual in practice.

While manually drawing an object is currently the state-of-the-art, it has

trouble with consistency and speed. One user making two segmentation of the

same object with the same information at different times will usually make two
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different segmentations, as seen in Figure 1.2. Even with more specific instructions,

the exact boundaries can vary noticeably, adding noise to the derived quantitative

indices and hindering analysis. Once more than one user is making a segmentation

of an object, the differences tend to become even greater.

(a) (b)

Figure 1.2: Two manual segmentations of a pair of lymph nodes by the same user.
(a) The yellow-labeled object is segmented to stretch up vertically. (b) The same
yellow-labeled object is segmented to cut off with the green-labeled object above it
instead.

Though manual is generally the most common FDG PET segmentation ap-

proach, there are more methods available. Many can be fully automated, removing

user interactions entirely and may even be perfectly consistent. Unfortunately, re-

moving the user interaction and judgment entirely removes an important check on

the results. These methods can have success in simple cases, but it’s nearly impossi-

ble to make a completely automated segmentation tool that can handle all complex

cases, some of which are depicted in Figure 1.3. In particular, Figure 1.3a and

Figure 1.3b show cases with opposite solutions, which would look essentially the

same to an algorithm. Semiautomated methods can allow for more interaction to

accomplish more complex segmentations, at the expense of increased user variation,

and still without necessarily being able to handle all the cases.
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(a) (b) (c)

Figure 1.3: (a) A lesion with inhomogeneous tracer uptake. (b) A lesion has faint
and seemingly disjoint parts. (c) A lesion is in close proximity to neighboring lesions.

So, there is a desire for a method that has simple interaction to get good

consistency, but with built in functionality to handle tougher cases that should

allow the user to efficiently control the boundary.

1.2 PET Segmentation Methods

As mentioned before, the most common method is simply manual segmen-

tation, which is generally used in lieu of a real ground truth segmentation. Its

strengths include ability to take full advantage of the medical knowledge and expe-

rience of the user, complete freedom to segment as needed without any algorithmic

requirements getting in the way, and ease of separately segmenting individual le-

sions. Its weaknesses include issues with inconsistency, which limits experimental

reproduceability, and time, which brings a financial expense. Furthermore, occa-

sional jagged edges occur due to the one-slice-at-a-time approach and the limitations

of a user’s manual dexterity, which can be inherently at odds with the knowledge

base.

Another common approach is thresholding, common in many comparative

studies such as Drever’s in 2007 [5], Sheperd’s in 2012 [15], and Zaidi’s in 2012 [19],

wherein the voxels connected to the lesion target voxel above a certain uptake are
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all counted as the lesion. The lesions in a PET image show up as higher-uptake

regions, so a threshold to separate the higher uptake lesion from the lower uptake

background is a sensible way to choose the boundaries in most cases. Thresholding

requires a good choice of base threshold value, and the ways to choose it are varied,

from a constant standard uptake value threshold of 2.5, to percentages such as

40% or 50% of the maximum uptake, to more complex methods incorporating the

signal-to-background ratio (seen in Daisne’s work in 2003 [4] and Schinagl’s work

in 2007 [14]). One of the methods described in Sheperd’s study is region growing

in a sphere centered on a user point, in which the extend of the region growth

is just those connected to the center above a user-defined threshold limited by a

sphere, with similar overall results, though more variability in results. Thresholding

gives good consistency, though less so with a selected threshold, but it leads to

inability to separate out nearby uptake lesions without extension to the algorithm

(shown in Figure 1.4a), inability to handle semi-necrotic regions effectively (shown

in Figure 1.4b), and lack of freedom with regards to handling more complicated

cases.

Classical region growing from Adams’ work in 1994 [1] can be used, with

specific growth criteria as in Li’s in 2008 [10] or in the region growing algorithm

included as part of Sheperd’s 2012 study [15]. While the variant in Sheperd’s study

used a user-chosen threshold as its criterion for region growing, Li’s variant used

more adaptive criteria. This method used an automatically expanding threshold

around the seed. The expansion was limited to the point when the total volume

shot up rapidly, which indicated leakage into the background. This adaptive method

still has many of the issues of thresholds, however, including the issue of ignoring

high-uptake lesion boundaries.

Watershed segmentation, with the standard flood method (on an inverted im-

age) and with minima markers as in Rivest’s 1992 work [13], can also be used for
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(a) (b)

Figure 1.4: Complex cases that pure threshold-based segmentations fail to cover.
(a) Thresholding fails to separate nearby lesions when the separation boundary is
fairly high uptake. (b) Thresholding fails to include necrotic parts of a lesion.

segmenting lesions. The watershed with markers focuses on oversegmenting the

lesions in the scan and then merging section using various user-defined markers

as in Lefvre’s 2007 work [9] for inclusion or exclusion, with some more compli-

cated use of the spatial location of the markers. Watershed segmentation has the

strengths of being able to easily separate lesions, even with high-uptake boundaries

that threshold segmentations can miss. The built-in user interaction from markers

gives users the ability to modify specific points, which can be good for complex seg-

mentation but bad for consistency. Its weaknesses are mainly that watershed basins

boundaries often fail to match up with the lesion boundaries, and that the basin

boundaries themselves are also very susceptible to noise. The first weakness, the

boundary mismatch, requires additional adaptation of the overall algorithm. The

second weakness, noise vulnerability, requires significant de-noising to make water-

sheds effective, or making the ”fluid” of the watershed ”viscous”, as in Vachier’s

2005 version [17], to smooth out edges made rough by noise.
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Methods based on fuzzy clustering or fuzzy C-means are also useable for seg-

mentation, as in Belhassen’s 2010 study [3] and as applied to head and neck cancers

in Zaidi’s in 2012 [19]. In this case, a voxel can be associated with multiple classes

with probabilities based on uptake, though it can be expanded as demonstrated in

Belhassen’s work to include spatial information, reducing the sensitivity to noise.

These algorithms are used to split up C different objects on a scan. Another variant

in Belhassen’s work uses the spatial wavelet transform to better deal with lesions

with inhomogeneous internal uptake. While effective in segmentation, the segmen-

tations these methods made were not generally of different lesions, but rather of

different ”layers” of uptake levels. So, it doesn’t quite do what is desired here.

Stochastic modeling segmentation was used in Aristophanous’s work in 2007

[2] and adapted for FDG PET head and neck tumors in Zaidi’s 2012 study [19].

Here, a Gaussian mixture model is used to assign a probability distribution to

voxels of belonging to individual classes, based on uptake. The approach’s focus

on reducing to binary classification and it’s failure to include spatial information,

however, makes it not ideal for dealing with segmentation of multiple different high-

uptake lesions.

Edge detection methods, such as that described in Geets’s 2007 study [6] and

some methods used in general studies, such as the Sobel operator in Drever’s 2007

study [5], can be used to segment FDG PET lesions. For edge detection in general,

the algorithms are generally good at cutting out individual lesions from other nearby

lesions with proper configuration. However, they don’t tend to naturally have the

adaptability for a combination of inhomogeneous lesions with faint edges within

them and clusters of lesions with similarly faint edges between them, as can occur in

the lesions sought here. The particular segmentation method in Geets’ study utilizes

watersheds for gradient crest detection and cluster analysis to fuse those watersheds.
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It shows some of the drawbacks of edge detection, requiring denoising with an edge-

preserving filter and with the same limitations regarding inhomogeneous lesions and

clustered lesions.

One general idea for methods is to use a series of different algorithms to

cover the weaknesses of individual parts, forming ”pipeline” methods, such as that

of Kuhnigk’s work in 2006 [8], which was adapted for use in FDG PET images in

Sheperd’s 2012 study [15]. Pipeline methods in general can use the various methods

to cover each others’ weaknesses, but the more parts are included to improve the

result, the slower the overall algorithm.

Further methods such as Han’s from 2011 [7] can use PET and CT data to-

gether. While useful, it can bring registration issues depending on the circumstances

of the scans. Once that is handled, though, the higher resolution and contrast avail-

able in CT combined with the information unique to PET can allow for some more

interesting methods, such as that of Han’s, which uses a Markov Random Field to

perform a graphical segmentation, a method shown in in Li’s 1994 work [12].

1.3 Goal

Ultimately, the goal is a segmentation method that is faster and more consis-

tent than manual segmentation, while still able to successfully segment all lesions.

It must handle all the variations of lesion in a way that is as consistent as possible

while still allowing for specific user interaction for changes. It has to be flexible

enough for all circumstances of FDG PET lesion, but be consistent in boundaries

for more normal cases.

As such, the goal is to make a minimally-interactive semi-automated tool, with

well-defined options and modes in its application and an effective default procedure

for use, allowing for the speed and consistency of algorithmic methods and the

accuracy and flexibility of manual or largely manual methods.
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CHAPTER 2

METHODS

A semi-automated tool has been developed to improve consistency and speed

of segmentation with little loss of accuracy. This tool uses optimal surface finding,

published in Li’s 2006 paper [11], in order to convert the image segmentation prob-

lem into an efficiently-solvable graph optimization problem. This graph optimiza-

tion finds a surface that minimizes a cost function for each node, with requirements

for smoothness. The cost function is determined using a ratio of a localized back-

ground calculation to an internal peak calculation. Additional modes also account

for minima and watersheds that might make up edge boundaries. After the base

result, refinement options allow the user to move parts of the final surface out to

specific features or to modify the base cost function. With this, the semi-automated

tool can convert a few actions into a more consistent and predictable segmentation

that can form a complete lesion across inhomogeneous parts or segment individual

lesions near other lesions, with specific user control over the segmentation that still

works in an algorithmic fashion, in only a few seconds. Additionally, a few adap-

tations can be applied to deal with very specific situations, such as highly noisy

lesions or different reconstruction kernels.

2.1 Optimal Surface Finding

The optimal surface finding algorithm is a method described in Li’s paper

in 2006 [11] for converting image segmentation problems into graph optimization

problems which can be solved efficiently. A brief description and explanation are

provided here.

Organize a grid of non-intersecting columns through the region where the
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boundary should be placed (Figure 2.1a). Place graph nodes along these columns

regularly. The columns and the nodes thereon should be as dense as the granularity

of the boundary needs to be; each node is a possible location for the boundary. For

each node, a cost is be assigned. Within constraints, the graph optimization selects

a minimum cost set of nodes, one from each column for the surface.

In the graph, set these nodes based on the cost function in Section 2.2.2 and

Section 2.2.3 (Figure 2.1b). Also, add an edge from each node to the next node

downward with infinite capacity. Minimum cut will use this to get a minimum set

of these nodes that includes, at its highest edge on each column, the minimum set

of individual boundary nodes.

Now, enforce smoothness by adding infinite-capacity edges downward between

columns, decreasing in node by at most the limit of difference (Figure 2.1c). Ad-

ditionally, as described in Sun in 2013 [16], add low-capacity bidirectional edges

laterally to the same node on each adjacent column. This gives a soft smoothness

constraint, which works as a penalty for changing distance outward across columns.

Lastly, for the nodes with difference values above 0, add infinite capacity edges

from the source. For nodes with difference values at or below 0, add infinite capacity

edges to the sink. Now the graph can be solved to find the minimum cost boundary

based on the original node costs. Consider the parts ”below” the boundary to be

the object and segment the corresponding region as such (Figure 2.1d).

The resulting segmentation is an optimal solution to the costs and constraints

of the nodes that results in a fast and efficient segmentation of the region.
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(a) (b)

(c) (d)

Figure 2.1: The steps for optimal surface finding, visualized. (a) Columns are
placed across the boundary region, and nodes are added at regular intervals. (b)
Add edges (red) along the columns with infinite capacity, going toward the interior.
Determine the cost of the nodes (darker blue for greater cost). (c) Add edges
between the columns in order to enforce smoothness, some downward with infinite
capacity (green) for the hard constraint some laterally with minor capacity (cyan)
for the soft constraint. (d) Convert the node costs into differences. Add edges with
the source and sink and solve the maximum flow of the graph. The minimum cut
of nodes is the set within the segmentation. The outer boundary of it (red) is the
surface selected. Voxelize that to get an object label for every voxel (yellow).
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2.2 Main Method

As stated, the approach overall is to convert an image segmentation problem

into a graph optimization problem that can be solved fast enough for an interactive

tool, using the framework described above. A spherical mesh forms the basis for

a graph, with the segments from the center of the sphere to each of the vertices

making up the columns for the boundary locations. The nodes along the column

are assigned a cost based on a threshold and some other factors related to the

contents of the column. Figure 2.2 shows the basic construction adapated to a

spherical shape (or circular, in the two-dimensional representation here).

The exact position of the boundaries of the final mesh are set to optimize a

cost based on uptake at the point of the boundary, uptake in the entire region of

the sphere, and surface smoothness. Since this can all be determined automatically,

the method’s main functionality can run with nothing but a single center point on

an image.

The main method is organized into three parts: graph setup to generate the

basic columns and edges (Section 2.2.1), cost application (Section 2.2.2 and Sec-

tion 2.2.3), and solving (Section 2.2.4). In graph construction, the object is iden-

tified and the overall shape of the graph is assembled. In cost setting, the cost

functions for nodes along the graph are set. During solving, a few more edges are

added to the graph, the minimum cut is solved, and the boundary is turned into a

label volume, with some cleanup. This requires at the very least the uptake image

and a point chosen by the user to indicate the object.

Beyond the main method, there is also refinement, an optional step which

occurs after solving. The changes from this may require solving the graph again.

This will be explained in more detail in Section 2.3.
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(a) (b)

(c) (d)

Figure 2.2: The spherical optimal surface finding algorithm. (a) Place columns
toward the vertices of a spherical mesh and add the nodes. (b) Add intracolumn
edges (red) toward the center with infinite capacity and determine the cost for the
nodes (darker blue for greater cost). (c) Add intercolumn edges columns; green
with infinite capacity and cyan with low capacity. (d) Convert the node costs into
differences with the source and sink and solve the maximum flow. The red boundary
is the border, the yellow section is the final voxelized segmentation.
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2.2.1 Graph Setup

Setting up the graph involves placing the center point, adding the node loca-

tions, and adding the inter- and intra-column edges with appropriate capacities.

For lesion k, the center point cek will be the location for the center of the

spherical graph. Identifying a lesion is the work of the user. The point chosen by

the user, cekuser , can either be used directly as cek or can be used along with the

original PET image I to determine a center point, to improve consistency of the

method with variable user input.

In a process called recentering, the highest uptake voxel within a search radius

of sr = 7 mm of the original point cekuser is used as the new value of the center.

This reduces some of the variability from slightly different voxel choices, but can

cause problems when segmenting lesions with necrotic centers, which are centered

around low-uptake voxels, or when segmenting lesions of a smaller radius than sr

that are in close proximity to higher-uptake lesions. As such, it must be left as an

option, though it should usually be active.

The graph Gk = (V,E) itself is made by starting with a spherical mesh of

ncolumn = 1026 evenly-spaced mesh vertices centered around the final center lo-

cation. Each column has 60 evenly-spaced nodes that represent their correspond-

ing physical location. The radius for this sphere is r = 60.0 mm with a gap of

gap = 1.0 mm between nodes. Node 0 on column i, called ni,0, is 1 mm from the

center, while node ni,nnode−1 is 60 mm from the center, and remaining nodes are

placed in order between them. These nodes, all representing physical locations, are

the vertices of Gk, source and sink aside.

Intracolumn edges are added to E, down along each column toward the cen-

termost node. For every node ni,j where j > 0, an edge is added from ni,j to ni,j−1

with infinite capacity. These allows selection of nodes along each column for the

final segmentation.
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Intercolumn edges need to be added to the graph in order to create the smooth-

ness constraints, as explained previously. The hard smoothness constraint of sc = 5

prevents two adjacent columns in the solution from being more than sc nodes apart.

The soft smoothness constraint of sp = 0.005 which adds a cost of sp for every node

of separation between two adjacent columns’ solutions.

For every node j and j′, where j′ = max(j − sc, 0) on every pair of adjacent

columns i and i′:

1. Add the edge ed1 = {ni,j, ni′,j′} with infinite capacity to E, making one half

of the hard smoothness constraint.

2. Add the edge ed2 = {ni′,j, ni,j′} with infinite capacity to E, making the other

half of the hard smoothness constraint. Now, when solved, the nodes of two

adjacent columns cannot be more than sc nodes apart.

3. Add the edges ed3 = {ni,j, ni′,j} and ed4 = {ni′,j, ni,j} with capacity sp = 0.005

to E, making the soft smoothness constraint. Now, for a given solution surface,

the cost is increased by sp for every node apart two adjacent columns’ nodes

are.

4. Add the edge ed5 = {ni,j, ni′,j−1} with infinite capacity to E, if j 6= 0, allowing

for selection on the column.

There will be additional edges to include in E, as well as the source node s

and the sink node t as required for solving the graph. The cost function c(i, j) must

be calculated in order to add these remaining few edges and solve the graph.

2.2.2 Cost Setting

Setting the costs for the nodes is done by evaluating the uptake at the nodes

and the local circumstances compared to other nodes on the column, especially
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those closer to the center of the mesh. The cost at a node is primarily determined

by deviation from a threshold.

Within the constraints set by the graph in Section 2.2.1, the cost for each

node ni,j determines the surface of the segmented shape, minimizing the sum cost

of the selected surface nodes while maintaining the smoothness. The cost function

c(i, j) has many considerations, such as the minimum surface size, at what point on a

column the object has clearly ended, and what is the ideal location of a border. The

cost function relies heavily on a threshold Th which can be calculated automatically

or set directly via refinement (see Section 2.3.1). The automatic calculation of Th

is complex enough, however, that it is explained separately, in Section 2.2.3. This

section will focus on the overall cost function, leaving Th as a variable.

The base cost function, cbase(i, j), is strictly a function of the linearly-interpolated

uptake at a node, up(i, j). The function is built based on the threshold Th, the

value at the center of the mesh, upce, and the uptake voxels in the region. Ideally,

below the threshold, the cost approximately reflects the likeliness of the uptake to

be part of the background. Above the threshold, the cost is a linear function with

0 at the threshold uptake and 1 at the center uptake. Assuming that the center is

not the boundary and not in a necrotic region (wherein the uptake is below that of

the rest of the lesion, or even below that of the background), the uptakes closer to

that of the center should be less likely than those closer to that of the threshold. If

the center is indeed below the threshold, though, the section of the cost for uptake

over the threshold is just equal to 1.

For uptakes below Th, the cost is essentially the likehood of the uptake to

be part of the background, modeled by a histogram of the overall spherical region.

Restricting to the the radius of the graph, r = 60.0 mm of the chosen center point

cek, produces have a limited set of the voxels from the original volume I. However,

just counting the voxels in this volume in I will have a bias, because the dimensions



17

Figure 2.3: The cost as a function of threshold. The lower uptake side follows H ′

while the upper side is linear. The lowest point where they meet is at Th.

of I are frequently anisotropic. A resampled image called I ′ is made, isotropic in

all dimensions equal to the densest of the original dimensions in I.

All voxels in I ′ within r mm of the center point cek are included in a 100-bin

histogram, H, an example of which is in Figure 2.4a. For H, the lowest bin (at b = 0)

includes the uptake 0 and the highest bin (at b = 99) includes the highest value in

the region. The highest count in H is Hmax. After calculating this histogram, a

normalized, extended copy is made, H ′, an example of which is in Figure 2.4b. The

idea is that the histogram monotonically decreases from low uptake to high. H ′ is

calculated in the following way:

H ′(b) =

{
H(b)/Hmax, if b = 99

max(H ′(b+ 1), H(b)/Hmax), otherwise.
(2.1)

With that, the base cost, cbase(i, j), can be determined:
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(a)

(b)

Figure 2.4: Histograms of the region around a typical lesion. (a) The original
histogram. (b) The modified histogram now forms the profile of the lower side of
the cost function.
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cbase(i, j) =



H ′(bmin(bmax, (bmax + 1) ∗ up(i,j)
H′max

)c), if up(i, j) < Th

0, if up(i, j) = Th
up(i,j)−Th
upce−Th

, if up(i, j) > Th

and upce > Th

1, otherwise.

(2.2)

The structure of the cost function function naturally gives it a scale from

0 to 1 for the relevant levels of uptake. Some cases where a lesion must connect

smoothly to an adjacent, higher-uptake lesion may have costs for the intended region

above 1, but they are generally handled by the label avoidance mode described in

Section 2.4.1.

For a typical object, the value upc is higher than most of the values on a

column, or at the very least higher than any of the uptakes on the column that

would be the boundary. So, values below it are within a 0 to 1 scaling for cost.

As the uptake goes from at the threshold to below, there is a slight gap in

cost as it increases up to the equivalent histogram scale, especially lower on the

histogram. The effect of this is to make the overall function act more like a real

threshold, which segments values only above the threshold, without making it too

forceful. An example of the resulting cost profile of this function is in Figure 2.5.

After determining cbase, there are a few other changes to make to the cost. A

few nodes are ”rejected” due to their unlikeliness, avoiding trivial solutions or clearly

disconnected objects. These nodes are rejected by increasing their cost by rej = 6,

far above the typical scaling. This is applied at close nodes (below jmin = 3), as

well as nodes at and beyond where the uptake has fallen below the median of the 60

mm region around, equal to Mregion. Nodes below this value or beyond such nodes

are affected by the low rejection condition, rclow, at a certain column and node:

rclow(i, j) = j > jmin and minj′=0,1,...,j(up(i, j
′)) < Mregion. (2.3)



20

Figure 2.5: A typical cost profile on a single column i, as a function of j, paired
with the uptake along the column and markings for the threshold. Shown with and
without ccreject.

The first node beyond the close rejection, jmin, is not rejected this way in order

to avoid cases in which all nodes are rejected, which makes the rejection useless.

The condition rclow and the close node limit can be used to put together an equation

for the cost change due to rejection, ccreject(i, j):

ccreject(i, j) =

{
rej, if j < jmin or rclow(i, j) = True

0, otherwise.
(2.4)

This term ccreject is added to cbase to make the final cost c, though additional

cc terms may be added in other modes or with other refinement. Figure 2.5 shows

the final costs from rejection along with the base cost.
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2.2.3 Threshold Calculation

The threshold Th is the primary determining factor for the final boundary of

the segmentation. It’s needed to determine the cost c(i, j) at column i and node

j. It is ultimately based on a high-uptake value within the lesion and a low-uptake

value outside of the lesion, both of which are calculated automatically from the base

point.

Th must be above the background value and below the highest uptake of

the object, but there is more to it than just that, something that percentages

from the background to the maximum cannot capture. On some lesions, there

is a high difference between the lesion and background uptakes, and a fairly high

ideal threshold with it, but not proportionally higher with the lesion uptake, which

could lead to loss of some of the lesion. On others, the lesion uptake is very close to

the background value. A proper approach to the threshold calculation has to work

for both of these. A ratio-based technique such as that of Daisne’s from 2003 [4]

is preferred to the simple percentages, but the method described here uses only a

singular point, identifying the object itself. As such, the single point must determine

an upper object value and a lower non-object or end-of-object value to use the ratio

of, which is not a straightforward process.

While not always accurate, it’s generally useful to roughly approximate an

uptake object as if it were spherical, which gives a simpler object to recognize the

lesion and background uptakes of. This is done using ”shells”. A shell is a set of

all nodes at a certain distance from the center point. That is, a shell shj consists

of all nodes ni,j for all columns i in the spherical mesh, as seen in Figure 2.6.

up(i, j) is the linearly interpolated uptake at the physical location of the node

ni,j. The uptake shell upsh(j) is the set of uptakes for the corresponding nodes in

shj:
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Figure 2.6: Sets of nodes arranged by their shells. All nodes a certain distance from
cek are in the same shell.

upsh(j) = {up(0, j), up(1, j), up(2, j), ..., up(ncolumn − 1, j)}. (2.5)

With the individual uptake shells, a single value for each j must be settled on

to create a profile of the uptake across the entire region, upprofile:

upprofile(j) = med(upshell(j)). (2.6)

This result, upprofile, is a simplified view of lesion. It can be used to make

some estimations, shown in Figure 2.7. The threshold Th is a function of two values
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Figure 2.7: An approximate profile made of shell medians. Marked are two specific
values to be utilized, pe and kn.

found in this profile: the ”peak” pe and the ”knee” kn. The peak pe is a measure of

the approximate maximum intensity of the lesion being segmented. The knee kn is

a measure of the approximate point at which the object fades into the background,

but is not intended to be the background itself. pe is straightforward to determine:

pe = maxj=0,...,nnode−1(upprofile(j)). (2.7)

kn is more complicated. The intent of this is to find a point where the profile

changes from falling rapidly into the background to just being the background,

which gives us a fairly narrow target that stays relatively consistent across the

objects sought in FDG PET images.

The knee is between the steepest descent inward and the shallowest descent

outward. Both of those are needed, and to find those robustly, the gradient of the
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profile must be calculated, which is shown in Figure 2.8. This is up′profile:

up′profile(j) = upprofile(j + 1)− upprofile(j − 1). (2.8)

Figure 2.8: The gradient of upprofile, to determine parts of the slope.

Clearly, this is not defined at j = 0 and j = nnode − 1, but those points will

not be needed.

First, the value of steepest descent in upprofile is found, with a bias toward the

center, shown in Figure 2.9. Along with it, the index jlow at this point is found:

jlow = arg minj=1,...,nnode−2(up′profile(j) ∗ (nnode −
j + 1

nnode

)). (2.9)

The linear bias helps deal with some rare but occurring cases of a significant

outside object appearing in the shell profile. This identifies approximately where
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Figure 2.9: The steepest descent is approximately detected, with the center bias.

on the shell where the lesion is changing from high uptake to low rapidly.

Next, the point where the shell approximately levels out should be found. In

order to avoid possible issues with a reverberating profile gradient going through

the target and back, further calculation is done with a modified version of up′profile,

such that it never decreases in value after jlow. This is up′rising:

up′rising(j) =

{
up′profile(j), if j ≤ jlow

max(up′profile(j), up
′
rising(j − 1)), otherwise.

(2.10)

From this, the latter end of the gradient, where it ends in background, can

be found. To avoid possible issues, this no higher than 0, allowing for no other

disturbances in the profile. The actual j value isn’t needed here; just the gradient

value, up′risinghi :

up′risinghi = min(0,maxj=jlow,jlow+1,...,nnode−1(up′rising(j))). (2.11)
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Figure 2.10: The value for up′rising(j) is monotonically increasing for j above jlow.
Between jlow and up′risinghi is up′risingknee.

With up′risinghi representing the leveled off portion of upprofile and up′profilelow

representing the steep part, the transition can be found, called up′risingknee . These

three values are shown in Figure 2.10, and up′risingknee is calculated as follows:

up′risingknee = 0.75 ∗ up′risinghi + 0.25 ∗ up′profilelow . (2.12)

The index in the shell with an index above jlow where up′rising is closest to

up′risingknee is jknee. As a tiebreaker to deal with multiple equal uprising values equally

close to uprisingknee , use the index closest to where an interpolated uprising function

would equal uprisingknee , rather than just an arbitrary index along the flat line.

Now kn can finally be found:
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kn = upprofile(jknee). (2.13)

With that, the peak and knee are calculated and the threshold can be deter-

mined. The automatically calculated threshold Th is always between kn and pe.

Exactly where is determined by the ratio kn
pe

:

Th% = 0.8 ∗ e
−0.15√
kn
pe ∗

kn
pe . (2.14)

Figure 2.11: The location of Th between kn and pe.

The rather complex equation curve in Equation 2.14 and Figure 2.11 is based

off a few concepts:

1. The higher pe is, the closer to kn the threshold should be, to avoid being

pulled off by a high-uptake object.
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2. The lower pe is, the closer to pe the threshold should be, to preserve the

difference between the object and the background.

3. Since Th can never be lower than kn, the function must converge to 0 at low

kn
pe

.

4. Since Th should never be at pe, the function must converge noticeably below

1 at high kn
pe

.

5. Dividing kn by pe cancels out any issues that could occur from failing to

normalize the the image beforehand.

6. It is preferred to underestimate the threshold slightly than to overestimate

the threshold.

Figure 2.12: The function for Th% shown against windows for 74 objects. When in
error, the preference was generally that the threshold be too low.

The curve was determined heuristically using calculated peak and knee values,

in combination with acceptable minimum and maximum threshold values. As visible
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in Figure 2.12, it is not possible to meet all circumstances. It tends to most often

have issues with extraordinarily high uptake objects and those with a ”midground”

uptake, an area of uptake nearby that is above the background uptake but below

the object’s uptake.

Furthermore, some alternatives to Equation 2.14 to calculate Th% can be used

for other circumstances. The original equation is based more on segmentations

from oncology and is focused on getting all possible voxels of a lesion. However,

this can lead to overestimation of volume in imaging modalities with significant

smoothing. Some variants based on some standard threshold methods can be used

as an alternative to focus more on volume estimation than treatment. These variants

are Th% = 0.40 and Th% = 0.50, based on typical 40% and 50% of maximum

thresholds, fairly common standards already.

With Th%, finding Th is just a matter of placing it between kn and pe:

Th = kn+ Th% ∗ (pe− kn). (2.15)

Now Th can be applied to the equations found in Subsection 2.2.3.

2.2.4 Solving

With the cost function c determined for each node and all the main graph

edges added to E, the source s and sink t still must be added to finally solve the

graph, similar to the manner described in Li’s 2006 work [11]. At each node ni,j,

the cost c(i, j) must be converted to an edge capacity for every node, ce(i, j):

ce(i, j) =

{
c(i, j)− c(i, j − 1), if j > 0

−1, if j = 0.
(2.16)

With this calculated, the source and sink nodes can be incorporated into V .
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For each node ni,j, if ce(i, j) > 0, add the edge edt = {ni,j, t} with capacity ce(i, j)

to E. If ce(i, j) ≤ 0, add the edge eds = {s, ni,j} with capacity −ce(i, j) to E. With

these added, a minimum cut algorithm can be used on Gk. All nodes to which there

is any path with remaining capacity from s is part of the lesion and the outermost

such nodes are the surface. All voxels whose centers are located within the boundary

are part of the base segmentation for object k.

Voxelization can leave disconnected voxels separate from the main segmen-

tation. The main segmentation can be considered the voxels connected in a 6-

neighborhood to the voxel closest to cek. After this culling, the remaining voxels

are the final active segmentation for object k, which are referred to as Sk.

Several examples of segmentations and their cost functions are shown in Fig-

ure 2.13.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: A series of lesions segmented using the methods defined here. All
segmentations on the left side such as (a) are paired with their +x axis costs on the
right such as (b).
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2.3 Refinement Options

If the base algorithm fails or is insufficient, the user can refine the result in

any of three ways: threshold refinement, for global surface changes, edge refinement,

for narrow surface changes, and sealing, for closing gaps between the new and old

objects. Some examples of these in action are in Figure 2.14.

(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Various errors in segmentations, combined with refinement options to
solve them. (a) The overall lesion surface expanded outward too much. (b) Thresh-
old refinement changes the boundary to narrow it. (c) Part of the lesion was ex-
cluded. (d) The part is reintegrated with a single edge refinement point. (e) A
small gap occurs between two adjacent lesions. (f) Sealing fills the gap.

The intent of these refinement options is to give the user fine control over
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the surface and segmentation, but keep the actual result algorithmic even so. The

design of each one is a balance between acting on user input and acting on volume

information.

2.3.1 Threshold (Global) Refinement

Threshold refinement changes the value of Th in order to modify the bound-

aries of the segmentation on a wide scale, likely due to the threshold calculation

giving an unsatisfactory result. The default threshold calculation from Section 2.2.3

is decent, but, as shown in Figures 2.12 and 2.15, it won’t work in every case.

Threshold refinement is simple and predictable. In cases with a widespread

boundary error, the user can place a point for threshold refinement, RTh. In I,

the uptake at the voxel closest to RTh is taken as the new value of Th, changing

the cost function and thus the entire surface. Furthermore, the closest column to

RTh is modified to force the result through the closest node to RTh, which will be

called niTR,jTR . This is intended to use the information from the user effectively,

and possibly save an edge refinement step later. This is accomplished by adding

another cost change function, ccTR:

ccTR(i, j) =

{
1000.0, if i = iTR and j 6= jTR

0, otherwise.
(2.17)

As with ccreject (Equation 2.4) and with all cc equations to come, this is

added to the cost function cbase in the calculation of the final cost c. As a result

of this cost change, the entire graph must be solved again. The result will now

go approximately through the user point, voxel and node spacing aside, along with

similar uptake voxels around the shape, as seen in Figure 2.15.
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(a) (b)

Figure 2.15: A case where the automatic Th is too high. (a) The initial, narrow
segmentation. (b) The refined segmentation, with RTh visible in red.

2.3.2 Edge (Local) Refinement

Edge refinement moves the local surface of the segmentation to a new location

defined by a specific user point, making a localized change in the overall shape. The

intent of this is to fix errors of a narrow scope via a change in the cost. This can solve

errors by adding or removing fairly specific parts of objects, as shown in Figure 2.16.

(a) (b)

Figure 2.16: A lymph node segmentation where an unintended region is included.
(a) The initial segmentation with an extraneous part. (b) The refined segmentation,
with the extraneous part removed and a refinement point visible in red.

This is accomplished in a three step process: identify the extent of the new

surface segment, apply a cost change to make it attractive, and solve the graph

anew with the cost change applied.

The extent of the surface segment is determined based on the columns around
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(a) (b)

(c)

Figure 2.17: An overview of edge refinement propagation. (a) The vector around
REl on the column marked C3 is compared to vectors on adjacent columns within
range to find the best match for the refinement. The vector in this image is smaller
than in practice. (b) Propagation between columns, viewed from the surface of the
spherical mesh. The center column propagates out to adjacent similar columns,
which propagate out further to columns similar to the original. Propagation flows
around dissimilar columns. (c) After the initial propagation, dissimilar columns
may be modified as well. If two thirds of their neighbor columns were considered
similar, the dissimilar column is modified with the original depth it would’ve had.

the refinement point specified by the user, REl . The extent-marking propagation

mechanism, roughly shown in Figures 2.17a and 2.17b, is based on the uptake around

REl . The node closest to it is known as niER,jER . A vector of nodes is formed around,
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made of seven nodes from niER,jER−3 through niER,jER+3. This vector of nodes is

compared to nearby vectors of nodes and adjacent columns, and if found similar to

those, then to columns adjacent to those columns as well, and further out to a limit

of five columns outward. This process is intended to find sections of the uptake in

the graph nodes that are part of the same surface as the original user’s point, so

that a specific smooth surface can be incorporated into the final surface result.

For a specific column being refined, the number of propagations made to reach

it is known as the depth dp. At dp = 5, propagation ceases. To determine if column

i′ is similar and can be included in refinement, there is a similarity function sim

for nodes niER,jER and ni′,j′ and a similarity condition smc also using the depth

dp of the second node to go with it. In short, a column and node will be similar

if the absolute value of the vector differences between the original vector around

niER,jER and the vector around the prospective ni′,j′ are below a certain threshold.

The similarity function sim is as follows:

sim(niER,jER , ni′,j′) =
3∑

∆j=−3

(|upiER,jER+∆j − upi′,j′+∆j|). (2.18)

This equation compares nodes against each other as a vector to track threshold

and overall features. To take into account regional uptake intensity and proximity,

the specific requirement for similarity is first that sim(niER,jER , ni′,j′) be below a

threshold thsim:

thsim = 0.05 ∗
3∑

∆j=−3

(|upiER,jER+∆j|). (2.19)

Also required is that the node j′ be within an intra-column distance from j

equal to the depth dp. The similarity condition function smc is then as follows:
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smc(niER,jER , ni′,j′ , dp) = sim(niER,jER , ni′,j′) < thsim and |jER − j′| ≤ dp. (2.20)

Among all nodes ni′,j′ on a column for which smc is true, the node that min-

imizes the value of the sim function is chosen as the node to center the refinement

cost changes on the column around.

While similarity is useful, it can leave small numbers of unmarked columns

amidst several marked ones, which can result in jagged spots on the surface after

applying the cost change. This can be fixed by checking for these narrow sets

of unmarked columns and marking them in an additional step. For a dissimilar

column to have its cost changed, it must have been skipped in propagation only due

to dissimilarity and two thirds of its immediate neighbors must be similar to the

original column. In this case, its most similar node will be used, within the original

depth dp for which it was considered dissimilar. This is shown in Figure 2.17c.

Once no more columns can be marked as part of the surface, the specific nodes

on each column are collected in a list ERListln , and the associated depth values on

another list ERListld . As such, [ERListln , ERListld ] is a list of nodes paired with

their depth values. The presence of [ni,j′ , dpi,j′ ] in the list means that column i will

be refined around node ni,j′ with an associated depth of dpi,j′ .

On the original column where dp = 0, the closest node is simply taken as the

target point, and the cost is changed on that column so all other nodes besides the

chosen one are increased in cost by 1000.0, the same as for the single specific column

in threshold refinement in Equation 2.17. On other nodes, the cost is decreased

around the target node by 3.0 ∗ e
−∆j2

2∗dp2 , with ∆j being the difference in node from

the target node. This decrease is narrow on low depth nodes, but much wider on

high depth nodes, allowing for a smoother transition from refined to unrefined in

the surface, as well as encouraging selection near the new marked surface, if not
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directly on it due to smoothness constraints. This function is shown at low and

high depths in Figure 2.18.

(a) (b)

Figure 2.18: The cost change around a refinement point. At lower depths, the cost
change is more stark, while it widens out at greater depths, though it is still low
enough to move the boundary solution.

Now the cost change function for the refinement pointREl , ccerl , can be written

in its entirety:

ccerl(i, j) =



1000.0, if (∃j′ | [ni,j′ , dpi,j′ ] ∈ [ERListln , ERListld ]

and dpi,j′ = 0 and j′ 6= j)

−3.0 ∗ e
−(j−j′)2

2∗dp2 , if (∃j′ | [ni,j′ , dpi,j′ ] ∈ [ERListln , ERListld ]

and dpi,j′ 6= 0)

0, otherwise.

(2.21)

With these, multiple edge refinement points can be placed on the graph for a

lesion, each with their own distinct cost change. Their cumulative effect will just

be additive, with the caveat that columns from which propagation originates will

not have their costs further changed. That is, if there is a cost change with dp = 0

on a column, nodes on the column will, in total, be changed only by +1000.0 or not

at all, regardless of other refinement points.

After determining the extent of the modified surface segment and applying the
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cost change, the only thing left to do is solve the graph. This can be done by simply

resolving the graph from scratch with the cumulative effects of all refinement points.

However, to save time, the graph can be solved again using the initial solution from

before the refinement was applied, or the solution from the previous refinement, if

more than one is applied.

2.3.3 Sealing

Sealing is a simple refinement process to fill gaps between segmentations,

occasionally left during segmentations of adjacent lesions. When segmenting such

adjacent lesions, it is difficult to perfectly place the boundary with respect to voxels,

since it is based on physical distance only. As such, there can often be small gaps

between objects that should be touching each other, as in Figure 2.19a.

(a) (b)

Figure 2.19: A case where a segmentation of two adjacent objects leaves a gap
between them. lnew is the red label. (a) The single-voxel gaps are visible. (b) The
gaps are filled after the sealing is complete.

Sealing solves this issue on a voxel level. When a non-object voxel in L is

between an object voxel (label l 6= lbg) and a voxel of the active segmentation Sk

(label lnew), if that voxel corresponds to an uptake in I that is above the threshold

Th, then it is changed by sealing. For a voxel at (x, y, z) in L to be ”between” two

voxels of labels l′ and l′′ means that, along at least one axis direction, the voxel is

adjacent to a voxel of label l′ and label l′′. As an equation, btw(L, x, y, z, l′, l′′) is
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the following:

btw(L, x, y, z, l′, l′′) = ((L(x± 1, y, z) = l′ and L(x∓ 1, y, z) = l′′) or

(L(x, y ± 1, z) = l′ and L(x, y ∓ 1, z) = l′′) or

(L(x, y, z ± 1) = l′ and L(x, y, z ∓ 1) = l′′)).

(2.22)

The equation for btw is confusing, so Figure 2.20 has been provided to give

some examples of what precisely it entails.

(a) (b)

Figure 2.20: An overview of 2D voxel configurations and how btw reacts to them.
(a) Configurations where (x, y, z) (gray) is between voxels for l′ (green) and l′′ (red).
(b) Configurations where (x, y, z) is not between voxels for l′ and l′′.

This condition can be written down as an equation, the voxel seal condition

vsc for a voxel in (x, y, z) space:

vsc(x, y, z) = L(x, y, z) = 0 and btw(L, x, y, z, lnew, l 6= lbg) and I(x, y, z) > Th.

(2.23)

With this condition, the determination of when to seal can be made fairly easily,

and then make the final modified L, which is referred to Lsealed:
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Lsealed(x, y, z) =

{
lnew, if S(x, y, z) = lnew or vsc(x, y, z) = True

L(x, y, z), otherwise.
(2.24)

This closes single-voxel gaps between the active segmentation Sk and adjacent

segmented objects, if they meet the threshold criteria, as shown in Figure 2.19b.

Note that this only expands Sk; sealing does not attempt to expand adjacent lesions.

Since it is accomplished entirely on a voxel level, there is no need to solve the graph

again to make this refinement.

There are additional methods for dealing with this issue, such as label avoid-

ance from Section 2.4.1, which can also reduce the cost of nodes adjacent to the next

lesion, but this still relies on voxels matching with the graph. Additionally, paired

segmentation of lesions as discussed in Section 4.2 can allow for no gap between the

graphs of the lesions and therefore no voxel gap. However, sealing is an effective

way of handling it for single-lesion graphs when label avoidance is insufficient.

2.4 Modes

Beyond the algorithm as described in the previous sections, there are alterna-

tive modes for the algorithm to work in, based on the circumstances of the lesion.

These are for dealing with separate lesions that are near other lesions or with highly

necrotic lesions. These are intended to work when the basic algorithm fails, or is

expected to fail, dealing with cases not recognizable just from the information in

the volume I. These different modes can affect the graph setup, cost setting, solv-

ing, and even refinement steps in various ways, and can be used in combination

with each other. Some image cases where these modes might be used are shown in

Figure 2.21.

1. Label avoidance prevents new lesion labels from overwriting old, as well as

preventing the center from being placed too close to other objects.
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(a) (b)

(c)

Figure 2.21: Circumstances for the different modes. (a) Label Avoidance: Placing
a new object next to an existing one. (b) Splitting: Segmenting one lymph node
in a high-uptake chain. (c) Necrotic Mode: Segmenting a large region below the
overall region median.

2. Splitting cuts off parts from the target object to get the minimum object like

an edge detection algorithm.

3. Necrotic mode makes it easier to segment large necrotic regions where uptake

is low.
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2.4.1 Label Avoidance

The label avoidance mode, demonstrated in Figures 2.22 and 2.23, is intended

for use near other segmented lesions in L that should not be overwritten. It pre-

vents the new segmentation from overwriting other lesions, though the cost function

changes ignore nodes that are on labels equivalent to that of the pending active seg-

mentation Sk. It has effects on the graph setup phase, cost setting phase, and

solving phase.

As mentioned in Section 2.2.1, there is an option for recentering the center of

the graph from cekuser to cek. Label avoidance prevents cek from being placed on

or adjacent (in a 6-neighborhood) to a lesion label in L different from that nearest

to cekuser , as demonstrated in Figure 2.22. This prevents recentering onto other

objects that already exist, and helps reduce ”nesting”, wherein the boundaries in

certain directions are unable to go anywhere due to the presence of another label

immediately in that direction. In the case that there is no viable location for cek to

be recentered to, it is simply set to cekuser .

Figure 2.22: The effect of label avoidance on recentering. The recentering radius
around cekuser is r = 7.0 mm, around two voxels. The point cek must be placed near
it, but many voxels are blocked (shaded red) due to the presence of the existing
yellow-labeled object.
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For changes in the cost setting, label avoidance modifies ccreject (Equation 2.4),

converting it into ccrejectla , which is very similar. This new cost change equation for

rejection requires knowledge of the closest label to a given node, which is known as

li,j for node j on column i. Suppose that the object label currently being applied

(to indicate an object in L) is lnew and that the label for no object in L is lbg. If the

object on a node in a column is some other label l′ not equal to those, then that

node and others beyond it are rejected with label avoidance, to avoid segmenting

into an existing object. This is used to add a new label rejection condition, rclabel,

at a given node and column:

rclabel(i, j) = j > jmin and (∃j′ | 0 ≤ j′ ≤ j and li,j′ 6= lbg and li,j′ 6= lnew). (2.25)

With this, ccreject is modified into ccrejectla :

ccrejectla(i, j) =

{
rej, if j < jmin or rclow(i, j) = True or rclabel(i, j) = True

0, otherwise.

(2.26)

This prevents the graph from placing the boundary into an existing object in

L, the existing labels image. An example of this cost change is shown in Figure 2.23.

One more effect of label avoidance is dealing with cases of adjacent lesions

with no clear boundary. When one lesion is sought next to another, but there is

nothing in cbase to give a useful surface location between them, then something must

be done.

Figure 2.24 shows one of these special cases. Sometimes, a column has no

attractive cost feature such as a minimum from the center until it reaches another

lesion label that blocks off further nodes. The solution would default to selecting

the closest non-rejected node to the center. However, that leaves a gap between
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(a)

(b)

Figure 2.23: The effect of label avoidance on the cost function c. (a) Costs due to
label avoidance along an axis, from cek. Both ccreject and ccrejectla reject the first
few nodes, but ccrejectla also begins to reject as soon as it encounters the other label.
The two points show the different low points in the cost function. (b) The axis on
which the costs are changed, with two points marked. It is for the same lesion as
in Figure 2.22.

two objects that should be in contact. So, an additional cost change function is

added, ccseal, in order to close the gap. The specific condition is that there is never
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(a) (b)

(c) (d)

Figure 2.24: An example of a lesion with no real feature between its center and an
adjacent lesion. (a) The graph center cek and the other lesion in light blue. (b) The
segmentation made due to to the sealing effect of label avoidance. (c) The cost
change due to ccseal for the marked axis. (d) The general shape of the cost change.

a decrease in cost from the center point until the node that is part of another lesion

label. This condition is called the cost seal condition csc for that column on a

certain node:

csc(i, j) = j > jmin and li,j+1 6= (lbg or lnew) and

(@j′, j′′ | jmin − 1 ≤ j′ < j′′ ≤ j and up(i, j′) > up(i, j′′)) and

(@j′ | 0 ≤ j′ ≤ j and li,j′ 6= (lbg or lnew)).

(2.27)
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This condition checks several distinct things. j > jmin prevents the very first

possible node from being rejected, which would lead to all nodes being rejected,

which is meaningless. li,j+1 6= (lbg or lnew) determines that the next node is closest

to another lesion’s label, rather than a background label or a leftover label of the

object being applied. (@j′, j′′ | jmin − 1 ≤ j′ < j′′ ≤ j and up(i, j′) > up(i, j′′))

determines that there are no features between the center and j, such as a decrease

in cost. (@j′ | 0 ≤ j′ ≤ j and li,j′ 6= (lbg or lnew)) makes it exclusive to the first

occurrence of another lesion label, so there can only be at most one node meeting

the condition on any column.

With the cases where this condition is met, there is no real cost feature, so

one must be added. This is what ccseal adds, as shown in Figures 2.24c and 2.24d,

decreasing smoothly below the target node with a depth of dseal = 2.0 and a width

factor of σseal = 1.0:

ccseal(i, j) =

−dseal ∗ e
−(j−j′)2

2∗σ2
seal , if (∃j′ | csc(i, j′) = True and j ≤ j′)

0, otherwise.
(2.28)

Lastly, during the solving process, if somehow (possibly due to edge refine-

ment) the surface includes voxels labeled for other lesions, they will simply not be

overwritten, nor counted as connecting components when removing disconnected

voxels in a 6-neighborhood, as was described in Section 2.2.4.

2.4.2 Splitting

The splitting mode is for individually segmenting lesions, especially lymph

nodes, that could otherwise leak into unlabeled adjacent lesions, as seen in Fig-

ure 2.25. This is accomplished by applying stricter smoothness, reducing node

costs around watershed boundaries and uptake minima, and adding a bias toward

the centermost cost features. While the standard mode would typically combine
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lesions that are in close proximity to each other, the splitting mode singles out a

lesion. This makes the algorithm work similar to watershed algorithms mentioned

in Section 1.2 with regard to boundaries between lesions, but it still acts closer to

a threshold-based segmentation for the boundary with the background.

The soft smoothness constraint from Section 2.2.1 is increased from sp = 0.005

to sp = 0.05, applying a much higher penalty for surface roughness. Parts of

a surface that are further out from the rest of the shape are more likely to be

cut off by the smoothness, which helps for the relatively spherical lymph nodes.

Furthermore, the surface becomes more responsive to the edge refinement presented

in Section 2.3.2.

In the cost setting phase, uptake minima along the axis along with watershed

boundaries are emphasized in the cost function by adding a cost change function,

ccsplit. There are three conditions for applying a cost change on the function, and

each causes a different level of cost change function to be applied. The first splitting

condition is for a local minimum uptake, spcmin, at a certain node and column:

spcmin(i, j) = up(i, j − 1) > up(i, j) ≤ up(i, j + 1). (2.29)

The other two are based on watersheds of different levels. Watershed segmen-

tations must be made of an inversion of I in the spherical region around cek. The

first ”strong” watershed is calculated with a fill level of 20% of the maximum differ-

ence in the spherical region, where the level is the threshold for watershed unions in

Lefvre’s 2007 work [9]. The second ”weak” watershed is calculated with a fill level

of 0% of the maximum, expected to oversegment. An example of these watershed

regions is shown in Figure 2.26.

The label of a strong watershed closest to node ni,j is swsi,j, while the label

for a weak watershed is wwsi,j. When two adjacent nodes on a column are in



49

(a) (b)

(c)

Figure 2.25: A pair of lymph nodes, bridged by high uptake. (a) The segmentation
made with splitting mode, and a single column off of cek. (b) An adjusted view
that better shows the separation between the objects. (c) The base cost along the
marked column, and the base cost with the effect of splitting added.

different watersheds and are in the above-threshold part of the column, one of the

two splitting conditions for watersheds is triggered, spcwws for the weak watershed
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(a) (b)

Figure 2.26: Watersheds for a pair of adjacent lesions. This is the same pair from
Figure 2.25. cek is marked in red. Those on voxels with an uptake below Th are
blacked out, since they do not affect the segmentation. (a) The strong watersheds,
cutting cleanly between the two objects. (b) The weak watersheds, making the
same cut, but adding a secondary cut. Using both allows detection of minor cuts
while emphasizing the major ones.

and spcsws for the strong:

spcsws(i, j) = (swsi,j−1 6= swsi,j and (@j′ | up(i, j′) < Th and 0 ≤ j′ ≤ j)). (2.30)

spcwws(i, j) = (wwsi,j−1 6= wwsi,j and (@j′ | up(i, j′) < Th and 0 ≤ j′ ≤ j)).

(2.31)

These spcs can all be true on multiple nodes on a given column. A single

one is significant enough to affect the outcome, but multiple features at a location,

which can happen often, is much more significant and will be taken over a single

condition. The uptake minima are naturally low points in cbase, but not always

significant enough to affect the surface on their own, and they do not necessarily
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form a complete boundary between lesions. The watersheds may have no effect

on cbase at all, but form complete, reliable boundaries. Combining them makes for

effective detection and prioritization of edges between lesions.

Each node at which a splitting condition is met (or which has a ”feature”) on

is a splitting node. The sets of splitting nodes, snlmin, snlsws, and snlwws, hold all of

these features’ locations. Subsets for each column are useful for the cost equations,

so they are divided into snlmini , snlswsi , and snlwwsi . The contents of the set are

combined in a superset snli consisting of all nodes with features on column i.

At the location of a node with a condition met, a cost change is applied with a

depth d based on the type of splitting node. This cost function, notch, is a function

of the difference in j and the depth d, with a common width factor σ = 2.0. It

is shown in Figure 2.27. This allows for the splitting feature to affect the surface

solution even if smoothness constraints prevent the exact splitting node from being

part of the surface:

notch(∆j, d) = −d ∗ e
−(∆j)2

2∗σ2 . (2.32)

The value of d varies with the feature type. For the uptake minimum, dmin =

0.4. For the weak watershed, dwws = 0.5. For the strong watershed, dsws = 0.2. It

seems off at first that dsws < dwws, but weak watershed features occur on any node

a strong watershed feature occurs, and their effects are additive for a depth of 0.7

at the location, possibly even with a minimum at the same or nearly the same node.

Each feature type has an independent effect on the cost:

ccsplitmin(i, j) =
∑

ni,j′∈snlmini

notch(j − j′, dmin), (2.33)
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Figure 2.27: Profile of the notch equation around each feature. It makes a smooth
decline into the target node and back out, giving some leeway in the final surface
selection to deal with smoothness constraints.

ccsplitwws(i, j) =
∑

ni,j′∈snlwwsi

notch(j − j′, dwws), (2.34)

ccsplitsws(i, j) =
∑

ni,j′∈snlswsi

notch(j − j′, dsws). (2.35)

These are added together, along with a linear bias toward the center-most

features that only applies to columns with features. This bias is a linear value from

0 to a maximum of 1.0 at the outermost node. This bias plus the individual feature

cost changes makes up ccsplit:

ccsplit(i, j) =


ccsplitmin(i, j) + ccsplitwws(i, j)+

ccsplitsws(i, j) + j+1
nnode

, if snli 6= ∅
0, otherwise.

(2.36)

This equation is shown in its various parts in Figure 2.28. As with all cc
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(a) (b)

(c) (d)

(e) (f)

Figure 2.28: Cost changes due to splitting, by component. They are added together
with the base cost to make the modified cost from Figure 2.25. (a) The cost changes
due to uptake minima along the column. (b) The cost changes due to crossing a
strong watershed. (c) The cost changes due to crossing a weak watershed. (d) The
cost changes due to center bias. (e) The base cost. (f) The combined final costs.
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equations, this is added to the cbase function to make the final c function that

the graph will be solved based on. The effect of this and the change to the soft

smoothness constraint, when splitting is active, cause the overall result to be far

more effective at separating out lymph nodes from clusters.

Several examples of this mode’s effect in general are shown in Figure 2.29.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.29: A series of lesions segmented with splitting. All segmentations on the
left side such as (a) are paired with their +z axis costs on the right such as (b).
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2.4.3 Necrotic Mode

Necrotic mode is intended for rather large low-uptake sections of a tumor

or lymph node (as in Figure 2.30). The standard method is intended for objects

with an uptake above that of the background. While many necrotic objects can

be segmented sufficiently just using the edge refinement in Section 2.3.2 due to

the algorithm’s minimal use of the contents of the surface, there are cases extreme

enough where that becomes very tedious or impossible.

Figure 2.30: A massive necrotic part of a lymph node has to be included along with
the high-uptake part.

The intended use of this mode is to segment the low-uptake part of a tumor

that is partially or entirely necrotic while the high-uptake part is segmented with

more standard modes. It could be used to segment both high and low uptake

parts together when combined with edge refinement, however. If there is a non-

necrotic portion, that should be segmented first. This mode prevents low uptake

from causing the function to fail completely due to rejection, and, if label avoidance
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is also active, causes it to seal much more readily to other uptakes nearby.

For the most part, this mode doesn’t specifically promote segmentation of

necrotic regions, but rather reduces the restrictions that prevent them. It affects

the cost setting and one of the refinement options, the voxel-wise sealing, described

in Section 2.3.3.

In the cost setting phase, this mode, too, modifies ccreject (Equation 2.4) by

changing the base rejection condition it relies on, rclow (Equation 2.3). Instead

of rejecting as soon as the uptake goes below the regional median Mregion as in

Equation 2.3, the uptake must first go above the threshold, which is first done at

node jThi on column i:

jThi = minj=0,1,...,nnode−1(j | up(i, j) > Th). (2.37)

With this, the exact condition for low rejection with necrotic mode can be

given:

rclownec(i, j) = j > jmin and minj′=jThi ,jThi+1,...,j(up(i, j
′)) < Mregion. (2.38)

Now the rejection for being too low won’t happen immediately on necrotic

regions. A center cek placed inside this region will be able to functionally segment

the region, as long as the threshold isn’t too low. The threshold will need to be

adjusted, using threshold refinement (Section 2.3.1).

In order to improve sealing to other objects, necrotic mode also interacts with

label avoidance. Specifically, the function for sealing to other objects with no feature

between them, ccseal (Equation 2.28), as well as the cost seal condition for it, csc

(Equation 2.27), are modified as well.

The modification to csc is simple, though with csc’s base complexity, the result
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is still a rather complex equation. To convert csc into cscnec, the variant when label

avoidance and necrotic mode are on, basically the condition against a decrease in

uptake is slackened. It is not checked for along the column until the uptake along

the column has gone above the threshold Th, similar to the equation for rclownec :

cscnec(i, j) = j > jmin and li,j+1 6= lbg and (@j′, j′′ | jThi < j′ < j′′ ≤ j and

jmin − 1 ≤ j′ and up(i, j′) > up(i, j′′)) and (@j′ | 0 ≤ j′ ≤ j and li,j′ 6= lbg).
(2.39)

This is essentially the same as the original csc(i, j), but with one clause mod-

ified. Instead of avoiding an increase in uptake from near the center until the label,

it simply avoids an increase in uptake from the node j = jThi until the label, al-

lowing for uncertain increasing and decreasing in the low-uptake necrotic region.

Furthermore, instead of treating labels of lnew like the background, they are treated

like other labels instead, allowing them to be sealed to.

nsc(i, j) = li,j+1 = lnew and ∀j′ ≤ j | li,j′ = lbg. (2.40)

With just necrotic mode, ccseal only recognizes it.

ccsealnec(i, j) =

−dseal ∗ e
−(j−j′)2

2∗σ2
seal , if (∃j′ | nsc(i, j′) = True and j ≤ j′)

0, otherwise.
(2.41)

With both label avoidance and necrotic mode active, ccseal uses the earlier of

either node of the two sealing conditions for the sealing point:

ccsealla,nec(i, j) =


−dseal ∗ e

−(j−j′)2

2∗σ2
seal , if j′ = min(ja, jb|(∃ja | cscnec(i, ja) = True)

or (∃jb | nsc(i, jb) = True)) and (j ≤ j′)

0, otherwise.

(2.42)
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The result of this is that for a partially necrotic object, if the non-necrotic

section is segmented beforehand, the necrotic part can fairly easily seal into it to

close gaps. This is the intended use of this mode.

Aside from these effects on the cost setup, necrotic mode also affects one of

the refinement options, sealing (Section 2.3.3). Here, necrotic mode just removes

the requirement that the voxel being sealed at be above the threshold. This allows

for more thorough sealing of necrotic voxels.

An example of the overall effect of using necrotic mode as intended is shown

in Figure 2.31.
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(a) (b)

(c) (d)

Figure 2.31: A partially necrotic lesion. The necrotic side is attempted with and
without necrotic mode, and with and without edge refinement. Red points are cen-
ters; blue points are edge refinemen points. (a) Necrotic mode is off, no refinement
is performed. The algorithm stops short due to low uptake rejection. (b) Necrotic
mode is off, refinement is attempted. The algorithm fails to spread significantly
around the refinement points. (c) Necrotic mode is on, no edge refinement is per-
formed. The strictly necrotic part is reasonably segmented. However, the algorithm
doesn’t include the moderate-uptake boundary of the object. (d) Necrotic mode is
on, refinement is applied. The base segmentation is decent and the refinement
spreads effectively to capture the boundary.
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2.5 Adaptations

The algorithm was designed primarily for real data and furthermore based on

radiation oncology segmentations of real data. This results in a focus on expanding

to catch the entire possible extent of a lesion. This focus, however, leads to some

overestimation of volume. In order to better estimate volume for things such as

phantom images, a few adaptations should be applied.

Due to their artificial nature, phantoms may have little or no transition from

object to background, compared to images of real data. Due to the structure of

the cost function as described in Section 2.2.2, the algorithm relies on the presence

of this transition of uptake, which forms the uncertainty for the low-uptake side of

cbase(i, j) (Equation 2.2). An unnaturally uniform background and border region

results in next to no transition voxels between the ”lesion” and the background,

as shown in Figure 2.32. Since a threshold is generally above the background, this

means that for uptakes between the threshold Th and the background, there’s little

to no cost difference between nodes. This causes the soft smoothness constraint

(Section 2.2.1) to seriously affect segmentations.

An adaptation for this known as the ”linear background” adaptation handles

this. The cbase function is modified into c′base, which replaces the histogram-based

portion with another linear relationship between uptake and cost:

c′base(i, j) =



Th−up(i,j)
Th

, if up(i, j) < Th

0, if up(i, j) = Th
up(i,j)−Th
upce−Th

, if up(i, j) > Th

and upce > Th

1, otherwise.

(2.43)

This prevents the minimally-featured histogram from causing surface decisions

that are essentially based only on smoothness for uptake below the threshold.

Other phantoms can have abnormally high noise. This can lead to individual
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(a)

(b)

Figure 2.32: Histograms of uptake in the region around a graph center. (a) A typical
histogram in real data. (b) A histogram for a phantom. The transition from near
0 to 1 is much narrower in this graph.
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voxels that are much higher or lower than the rest of the nearby region. Espe-

cially when combined with recentering, this can significantly influence the automatic

threshold Th, as shown in Figure 2.33. To deal with this, an additional ”threshold

de-noise” adaptation was designed.

The effect of this is that the threshold calculations from Section 2.2.3 that

rely on shells use modified uptake values. Instead of the shells being medians of the

node samples of I directly, a copy of I is filtered through a median filter with a 26-

neighborhood to form Im, which is then sampled at the nodes, and the medians on

each shell used for the profile and threshold calculation. This prevents noisy scans

from hindering the threshold calculation, but doesn’t use Im in the overall process,

thereby preserving any edge information that could be useful in other applications

of this adaption.
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(a) (b)

(c) (d)

Figure 2.33: Segmenting a noisy object without and with threshold de-noise. (a) The
surface cuts off very quickly due to a high threshold. (b) The high threshold is caused
by an effective extra knee in the data. (c) The surface contains the entire object.
(d) The de-noise adapation’s median calculation removes the extra knee and gives
a much more sensible threshold result.
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CHAPTER 3

VALIDATION

An experiment has been designed to test this algorithm against manual seg-

mentation, the current typical gold standard for segmentation. In this section,

results are given that can be used to determine the speed, consistency, and accu-

racy of the algorithm. These results come from application of the algorithm to a

set of real image data and a set of phantom image data.

3.1 Real Data

There were 60 total FDG PET scans in the set of real data. Of these, 59 were

pre-treatment scans, and one was a post-treatment scan. All scans were within the

pharynx region; some at the tonsil, some at the oropharynx, some at the base of

the tongue, some at the pyriform sinus, some at the hypopharynx, and some at

the nasopharynx. The scans had varying TNM staging, but with no metastasis.

The various lesions in the scans add up to 59 primary tumors and 171 lymph

nodes, for a total of 230 different lesions. The scans and individual objects all had

varying characteristics. Some scans had only a single, obvious primary tumor, as

in Figure 3.1a, while others had many lymph nodes in hard-to-separate clusters of

lesions, as in Figure 3.1b.

Previously, a physician looked through all of the scans to identify center points

of the different objects, as well as identify which was a primary tumor, and to

determine the extent of the more complicated objects so that indicator images could

be made. After those were reviewed and some center points revised, every primary

tumor and lymph node in the scans was identified as a separate object.
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(a) (b)

Figure 3.1: Two different cases to compare complexity. (a) A simple case with a
single primary. (b) A very complex case with multiple lesions, including primary
cancer and hot lymph nodes, that must be to split apart.

3.1.1 FDG PET Experimental Methods

There are 60 scans, divided into three sets 20 scans, with each set of approxi-

mately the same overall complexity. With these scans, an experiment was performed

that could directly test four things:

1. How accurately can an expert user make segmentations with the algorithm,

compared to with manual delineation?

2. How consistent is an expert user making the same segmentation twice with

the algorithm, compared to with manual delineation?

3. How consistent are two expert users making the same segmentation with the

algorithm, compared to with manual delineation?

4. How quickly can an expert user make segmentations with the algorithm, com-

pared to with manual delineation?
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For each user, there was a randomized order for segmentation. Every other

scan was segmented using a different method, starting with the semiautomated

method. Every 20 segmentations made would cover all 20 scans in a case, half with

one method and half with another. The next 20 segmentations would cover them

with the previously skipped method, in a different order. The next 40 scans would

be another ordering in the same vein. This occurred for all three sets of 20 scans.

This results in 460 segmented lesions per method per user. To reduce the effect of

learning to use the tool during the experiment, the users were given 10 data sets to

train with that were not included in the experimental data, each segmented with

the algorithm (with some guidance) and manually.

The experiment itself was conducted using 3D Slicer. The manual segmenta-

tions were made with a standard tool in Slicer that filled in a closed shape on an

individual slice of a label volume. The semiautomated segmentations were made

with a custom-built tool, shown in Figure 3.2, with specific checkboxes for the

different modes of operation and refinement options in the algorithm.

To ensure reasonable use of the tool’s various options, instructions were given

regarding general choice of options for the tool:

1. Aim toward the center of the object. Use shift to move all views to it. Check

the center with at least two views (shift on the center in one, then the other)

to be sure your target is near the center.

2. Always use recentering (mentioned in Section 2.2.1), unless it causes serious

problems.

3. For primary tumors (lesion 1), avoid splitting, if you can. This is because

primary tumors are often large and inhomogeneous.

4. For lymph nodes (lesion 2 or higher), use splitting, if you can. It also adapts

the shape to be more spherical overall. Note that edge refinement is generally
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Figure 3.2: The 3D Slicer tool used for the experiment.

stronger with splitting on. This is because lymph nodes are frequently in

closer proximity to other lymph nodes.

5. Label avoidance (Section 2.4.1) is on by default, and should be left on unless

absolutely necessary.

6. If you can’t get two objects to segment separately from each other, try another

order. Smaller objects that are clearly separate are a good choice to start with.

Larger objects that a smaller object seems arbitrarily partitioned off of should

be done first to give a specific area for the smaller one, as well.

7. Use edge refinement for narrow changes in the surface and threshold refinement

for widespread error due to bad threshold.

8. If you can’t get all of a complex shape just with refinement, make a merged

segmentation by just placing another center point. Note: Sealing will have to
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be done for each center point before leaving it, if it is to be done.

9. Seal after other steps, if desired. Refining will undo sealing. Undoing to a

previous state will undo sealing unless you just Redo.

10. When splitting apart lesions, you may modify the gray value transfer function

to see the otherwise invisible uptake boundaries between lesions, but it must

be returned to normal for segmentation afterwards to prevent added variation

of the lesion-to-background surface.

11. When attempting to segment a highly necrotic object, standard methods gen-

erally don’t work well.

(a) Segment the high uptake (dark) parts as normal, as if the low uptake

(light) parts aren’t there.

(b) With label avoidance on, and recentering and splitting all off, open the

Advanced menu and check Necrotic Region.

(c) Aim toward the center of the low uptake parts and make a merging

segmentation. The automatic threshold will quite probably be off.

(d) Refine as needed to include any necessary fringes and to connect to the

high uptake parts.

(e) Seal to complete.

For each case, there was a set of images to specifically, but imprecisely identify

the objects to be segmented and the appropriate labels for them, which also implied

the type of lesion; object 1 was always the primary tumor. All of these were made

manually, with enough information to understand what the intended extend was,

but not enough to give away a specific center point or boundary point. A few

examples are available in Figure 3.3.
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(a) (b)

(c) (d)

Figure 3.3: Indicators for various objects, some simple and some complex.

3.1.2 Performance Metrics

The Dice coefficient is used to assess volumetric overlap. It is used here to

measure consistency through reporting similarity between distinct trials of individ-

ual lesions. It is also used to compare individual trials to an independent image.

This comparison, along with percentage volume error, is used to measure accuracy
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of segmentations. Given two segmentations, A and B, the Dice coefficient DC is

twice the size of their intersection over the sum of each ones size:

DC =
2|A ∩B|
|A|+ |B|

. (3.1)

Due to the lack of a ground truth for the real data, the independent image

used to measure accuracy is instead built as a consensus of manual segmentations

from the users with the Simultaneous Truth and Performance Level Estimation

(STAPLE) algorithm from Warfield’s paper in 2004 [18]. For each lesion, there were

three such consensus images generated: one of both users’ manual segmentations

(the 4-image consensus) and one each for the individual users’ manual segmentations

(the 2-image consensuses). The result STAPLE gives is a series of probabilities,

thresholded at 0.50 to make the final consensus lesion. Figure 3.4 shows one such

consensus and its source parts.

(a)

(b) (c)

(d) (e)

Figure 3.4: A 4-image consensus image compared to its components. (a) The con-
sensus image. (b), (c), (d), (e) The component images (green), with the outline of
the consensus (red) shown over them.
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Time is used, per complete contouring for all lesions in the scan as measured

and per lesion by dividing the time for a scan by the number of lesions, to determine

speed. Additionally, the number of actions, including or excluding discarded actions,

also gives a measurement for speed.

3.1.3 FDG PET Experimental Results

From the experiment, the time to segment all objects in a scan was recorded

for each method and trial, along with the various tools used for the semiautomated

algorithm, and the segmentation image itself. From this series of experiments, data

relevant to the four questions for the validation has been assembled.

The first is an accuracy determination. For this, the segmentations are all

compared to a consensus image, to measure how the manually generated contours

compare to the semiautomated contours. The second and third measures are both

consistency results and are both important. For these, individual lesions from seg-

mentations are simply compared to the same lesions of other segmentations for

the same scan, either for the same user or between trials of between users. The

fourth measurement is a time measurement, nominally the speed of accomplishing

the contouring task. For this, the manual and semiautomated times for cases are

compared, per scan and averaged per lesion. Furthermore, the number of distinct

actions per lesion for the semiautomated tool is included for time measurement.

3.1.3.1 Accuracy of Segmentation

Determining accuracy requires some kind of independent reference standard.

The consensus images mentioned in Section 3.1.2 are used for this purpose. Semiau-

tomated segmentations are compared to the 4-image consensus images. In addition,

the manual segmentations are compared to the 2-image consensus from the opposite
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user to avoid bias issues, these conensuses are made using the manual segmenta-

tions themselves. Since the ground truth each is being compared to is different,

a direct comparison of manual similarity to consensus and semiautomated similar-

ity to consensus is not helpful, and so no test is included comparing manual and

semiautomated results. The Dice coefficient comparisons between segmentations

are shown in Figure 3.5 and Table 3.1.

Figure 3.5: The similarity of the segmentations to consensus images. Semiauto-
mated segmentations are compared to the 4-image consensus. Manual segmenta-
tions are compared to the opposite user’s 2-image consensus.

Table 3.1: Similarity of Segmentations
vs. Consensus

Dice Coefficient

Segmentation Median Mean ± Std. Dev.

User 1 Semiauto 0.7755 0.7640 ± 0.1113

User 2 Semiauto 0.7670 0.7574 ± 0.1207
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Segmentation volume is a common measurement of lesion size, so it’s useful to

compare the volumetric error against a consensus image. These can help determine

if there’s any consistent bias compared to the consensus image. Figure 3.6 and

Table 3.2 show this. Lastly, it’s of interest to compare the percentage error to the

volume of each object, to check for trends between the two. This comparison is

shown in Figures 3.7 and 3.8.

Figure 3.6: The percentage error in volume of the segmentations. Semiautomated
segmentations are compared to the 4-image consensus. Manual segmentations are
compared to the opposite user’s 2-image consensus.

Table 3.2: Percentage Volume Error of
Segmentations vs. Consensus

Percent Error

Segmentation Median Mean ±Std. Dev.

User 1 Semiauto -15.67% -10.21% ± 33.81%

User 2 Semiauto -15.56% -10.43% ± 34.08%
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(a) (b)

Figure 3.7: The percentage volume error for semiautomated segmentations com-
pared to the volume of the lesion. (a) Semiautomated results for user 1 vs. 4-image
consensus. (b) Semiautomated results for user 2 vs. 4-image consensus.

(a) (b)

Figure 3.8: The percentage volume error for manual segmentations compared to the
volume of the lesion. (a) Manual results for user 1 vs. 2-image consensus of user 2.
(b) Manual results for user 2 vs. 2-image consensus of user 1.

3.1.3.2 Intraoperator Consistency

For a single user, a comparison is made between the first and second trial for

every lesion with each method to get a Dice coefficient per lesion, method and user.

The results are in Figure 3.9 and Table 3.3.
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Figure 3.9: The consistency between trials for each user and each segmentation
method.

Table 3.3: Intraoperator Consistency

Dice Coefficient

Segmentation Median Mean ± Std. Dev.

User 1 Semiauto 0.9814 0.9373 ± 0.0982

User 2 Semiauto 0.9736 0.9254 ± 0.1256

User 1 Manual 0.8040 0.7881 ± 0.1108

User 2 Manual 0.7663 0.7513 ± 0.1234

The paired signed rank test gives probabilities pu1 << 0.05 and pu2 << 0.05

of the difference between manual and semiautomated distributions per user being

coincidence, implying them to be significantly different. The result is in favor of

the semiautomated segmentations having higher consistency. Figure 3.10 gives an

example comparing consistency of manual segmentations by one user to consistency
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of semiautomated segmentations by the same user.

(a) (b)

Figure 3.10: An example of intraoperator consistency and inconsistency. The first
trial is outlined and slightly shaded yellow. The second trial is outlined red. (a) The
manual segmentations are significantly different. (b) The semiautomated segmen-
tations are identical.

3.1.3.3 Interoperator Consistency

A similar test is used to compare consistency between users. Because of how

users can have a learn between trials, these comparisons are for the same trial for

either user: trial 1 to trial 1, trial 2 to trial 2. The results are in Figure 3.11 and

Table 3.4.

Table 3.4: Interoperator Consistency

Dice Coefficient

Segmentation Median Mean ± Std. Dev.

Semiauto 0.9610 0.9091 ± 0.1301

Manual 0.6912 0.6902 ± 0.1317
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Figure 3.11: The consistency between users for each segmentation method.

The paired signed rank test comparing automated to manual results gives a

probability p << 0.05 of the differences in results being coincidence, implying that

the semiautomated segmentations having a significantly different (higher) Dice co-

efficient. Figure 3.12 shows an example of the consistency of manual segmentations

and semiautomated segmentations between users.

Besides this, the interoperator variability can be seen in the accuracy results

from Section 3.1.3.1. From the similarity results with consensus images from Fig-

ure 3.5 and Table 3.1, a signed rank test gives pm << 0.05 chance of the difference

between values for the manual results being a coincidence, while another signed rank

test gives ps = 0.0502 > 0.05 chance for the same difference between semiautomated

results being coincidence. The two users’ manual results’ consensus similarity is sig-

nificantly different, while their semiautomated results’ consensus similarity is not.

For volumetric error percentage from Figure 3.6 and Table 3.2, the signed rank test

gives pm << 0.05 that the manual results are different by coincidence, while they
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(a) (b)

Figure 3.12: Two segmented lesions, with their other users’ outlines in red or blue.
(a) The manual segmentations are significantly different. (b) The semiautomated
segmentations are identical.

give ps = 0.6648 > 0.05 chance of coincidence that the semiautomated results differ

by coincidence. Again, the two users’ manual results are significantly different from

each other, while their semiautomated results are not.

3.1.3.4 Time for Segmentation

Time was measured for each complete segmentation, but by counting lesions

per segmentation, an average time per lesion can be calculated (for each scan).

Multiplied by the scans on that lesion, an average time per lesion is calculated for

all lesions across all scans. The overall data per segmentation is in Figure 3.13.

Table 3.5 has the time per segmentation and the calculated time per lesion.

Scans vary significantly in the number and complexity of objects, as well as

the stage of the tumors. The paired signed rank test results were pu1 << 0.05 and

pu2 << 0.05 chance that the differences between manual and semiautomated times

were coincidence. In each case, the signed rank implied that the semiautomated

times for that user were significantly lower.

Also of note is the number of actions for a segmentation. This varies with
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Figure 3.13: The time to segment all objects in a scan, for both methods and both
users.

Table 3.5: Time for Segmentation and Individual Lesions

Seconds

Segmentation Scope Median Mean ± Std. Dev.

User 1 Semiauto Segmentation 211.98 277.45 ± 234.47

User 2 Semiauto Segmentation 134.10 177.91 ± 174.29

User 1 Manual Segmentation 352.47 477.59 ± 412.14

User 2 Manual Segmentation 463.20 623.49 ± 471.80

User 1 Semiauto Lesion 41.42 72.38 ± 90.06

User 2 Semiauto Lesion 27.01 46.41 ± 57.49

User 1 Manual Lesion 70.59 124.59 ± 160.41

User 2 Manual Lesion 98.71 162.65 ± 185.55
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how the user applies the tool, and also with the inclusion or exclusion of discarded

actions, which were undone via the tool’s built in Undo/Redo queue. Figure 3.14

depicts the number of actions, including and excluding discarded actions. Table 3.6

also has the information.

Table 3.6: Actions for a Lesion

Number of Actions Percent of Cases

Segmented

User Actions Median Mean For 90% W/ 1 Action W/ 2 Actions

User 1 All 1 2.7935 7 52.83% 68.48%

User 2 All 1 1.9957 4 61.52% 80.87%

User 1 Final 1 1.7370 3 63.70% 86.30%

User 2 Final 1 1.3761 2 79.57% 91.74%

Figure 3.15 has examples of lesions segmented with one action. Figure 3.16

has examples of lesions that needed a relatively large number of actions to segment.
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(a)

(b)

Figure 3.14: Percentage of lesions completed with each number of actions, including
those that were discarded (blue) and excluding them (green). (a) Plot for user 1.
(b) Plot for user 2.
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(a) (b) (c)

Figure 3.15: Lesions that required only one action. The specific lesion is outlined in
red. (a) A simple object on its own. (b) Again, a simple object on its own. (c) Near
another object, but with a distinct enough natural boundary.

(a) (b) (c)

Figure 3.16: Lesions that required many actions. The specific lesion is outlined in
red. (a) Complex due to the large necrotic region and the border around it. Resolved
with 25 actions, six of which were final. (b) Complex due to an adjacent object with
uncertain boundary and the uncertain boundary with the background. Resolved
with four actions, all four of which were final. (c) Complex due to interaction with
multiple nearby lesions and the awkward shape lead to many actions that were
applied and undone. Resolved with 16 applied actions, only one of which was final.
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3.2 Phantom Data

A set of 44 different scans was used for phantom data testing. There are two

subsets based on different reconstructions, each with 22 volumes. The first set of

22 was very noisy, with frequent high uptake voxels, and voxel size of 2.7 × 2.7

× 3.3 mm. This set was provided by the University of Washington. The second

set of 22 was essentially the opposite, instead with a reconstruction algorithm that

heavily smoothed out all of the ”lesions”, and voxel size of 3.4 × 3.4 × 2.0 mm.

This set was provided by the University of Iowa. For each set of 22, 11 are low

contrast and 11 are high contrast. For those sets of 11, one has longer scan time (or

high-statistics) and the other ten have shorter scan time (or low-statistics). This

makes up to eight noticeably different scan varieties. Furthermore, each volume has

six ”lesions” to use. An overview of the eight different scan varieties available is

shown in Figure 3.17.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: An overview of the various phantom images used. (a) Washington, high
statistics, high contrast. (b) Washington, high statistics, low contrast. (c) Wash-
ington, low statistics, high contrast. (d) Washington, low statistics, low contrast.
(e) Iowa, high statistics, high contrast. (f) Iowa, high statistics, low contrast.
(g) Iowa, low statistics, high contrast. (h) Iowa, low statistics, low contrast.
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Each of the six lesions was a different size. With regards to volume, Lesion 1

> Lesion 2 > Lesion 3 = Lesion 4 > Lesion 6 > Lesion 5:

1. Lesion 1 is a sphere of radius 14 mm.

2. Lesion 2 is a vertical ellipsoid of radii 8.5 × 8.5 × 17 mm.

3. Lesion 3 is a vertical ellipsoid of radii 6.5 × 6.5 × 13 mm.

4. Lesion 4 is a horizontal ellipsoid of radii 13 × 6.5 × 6.5 mm.

5. Lesion 5 is a horizontal ellipsoid of radii 10 × 5 × 5 mm.

6. Lesion 6 is a sphere of radius 6.5 mm.

For this study, all the adaptations from Section 2.5 are applied. The linear

background adaptation helps deal with the smoothed out data from the University of

Iowa phantoms and the minimal uptake transitions in all the high-statistics phantom

scans, while the threshold de-noise adaptation helps deal with the noise in the

University of Washington phantoms, though both were applied for all phantom

images. Furthermore, the alternatives for calculating Th% discussed near the end

of Section 2.2.3, Th% = 0.4 and Th% = 0.5, have been included to study the impact

of the threshold selection method. For comparison, segmentations were made using

standard 40% of maximum uptake and 50% of maximum uptake methods, each on

a background SUV of 1.0.

With the appropriate settings on, the segmentation was made by placing a

cekuser approximately in the center of the lesion with recentering active. For two

specific instances, an additional variant was made with a threshold refinement point.

3.3 Phantom Experimental Results

The percentage error in volume was computed for each segmentation of each

lesion. For the high-statistics phantoms, there was only a single such scan. For
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the low-statistics phantoms, there were 10 scans, of which the median percentage

error is shown in the following graphs. The terms ”UW HC” and similar refer to

the originating university and the contrast level, so ”UW HC” would be the high

contrast scan from the University of Washington, the noisier of the two sets. ”UI

LC” would be the low contrast scan from the University of Iowa, the smoother of

the two sets. These results are shown in Figures 3.18 through 3.23.

(a) (b)

Figure 3.18: The percentage error of the segmentations for lesion 1 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.

(a) (b)

Figure 3.19: The percentage error of the segmentations for lesion 2 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.
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(a) (b)

Figure 3.20: The percentage error of the segmentations for lesion 3 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.

(a) (b)

Figure 3.21: The percentage error of the segmentations for lesion 4 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.

In addition, for lesion 5, high statistics, simple threshold refinement was ap-

plied, when relevant. The result of this is in Figure 3.24. Since the University

of Washington phantoms were already approximately accurate, this was only per-

formed on the Univeristy of Iowa phantoms.
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(a) (b)

Figure 3.22: The percentage error of the segmentations for lesion 5 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.

(a) (b)

Figure 3.23: The percentage error of the segmentations for lesion 6 of the phantoms.
(a) High statistics. (b) Low statistics, median of 10 copies.
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Figure 3.24: The percentage error of the segmentations for lesion 5 of the University
of Iowa phantoms for high statistics, using the normal algorithm with and without
threshold refinement.
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CHAPTER 4

DISCUSSION

With the results of the tests of the algorithm available, the results can be

discussed and a determination made on the success of the algorithm on meeting the

goal from Section 1.3. This is determined by the results from both the real data

tests and the phantom data tests.

4.1 Segmentation Performance

4.1.1 Real Data

Overall, the algorithm was designed using real PET data, so that’s where the

bulk of the experimental data and discussion comes from. Ultimately, these help to

determine accuracy, consistency, and speed.

4.1.1.1 Accuracy

Accuracy is the most complicated aspect to review, for reasons already men-

tioned related to finding a ”correct” segmentation. For real data, the consensus

images are decent, but probably would do better with more users available.

From the results in Section 3.1.3.1, a few things are clear. Figure 3.5 shows the

similarity the semiautomated method has with the 4-image consensus to be as good

or better than the similarity the manual method has with the 2-image consensus.

A direct comparison, however, is very difficult to justify, due to the difference in

ground truth between them. Similar results are gleaned from Figure 3.6. In both

cases, the semiautomated segmentations have much lower standard deviation for

results, but this is likely affected as well by the different ground truth. An ideal
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comparison for accuracy would require much more elaborate statistical analysis to

determine.

For comparison, the threshold-based region growing methods of Li’s 2008 work

[10] had a best average volumetric error of 11.0% and a worst of -79.0% across the

phantom scans included. The best results are comparable to the percent error for

the semiautomated results, -10.2% for user 1 and -10.4% for user 2, a slight under-

estimation as opposed to the slight overestimation in Li’s work, but still similar.

The hybrid PET-CT segmentation methods from Han’s 2011 study [7] had a Dice

coefficient of 0.86 ± 0.051 on their introduced method and 0.78 ± 0.045 on a pure

PET method. The pure PET method is comparable to the semiautomated method

here with Dice coefficients 0.76 ± 0.11 for user 1 and 0.76 ± 0.12 for user 2. These

results aren’t directly comparable due to the significant differences in data and

circumstances, but give an idea of where the algorithm stands.

Figures 3.7 and 3.8 give some insight into the outliers seen for all users and

methods. Over- and underestimation occurred more frequently for the lowest-

volume lesions in the data sets. This caused the relatively high standard deviation

in the percent volume error. On a small volume, even a few voxels difference is a

much greater percentage. This effect was more muted for the semiautomated seg-

mentations, but that may be because of the difference in ground truth. Overall, for

real data, accuracy for the semiautomated segmentations is reasonable, and not too

different from that of the manual segmentations.

4.1.1.2 Consistency

For consistency, there is no question that the semi-automated method is supe-

rior. The results presented in Section 3.1.3.2 and Section 3.1.3.3 are self explanatory,

with fairly large and statistically significant increases in consistency by using the

semiautomated method over manual segmentation, and no statistically significant
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difference in accuracy between users for the semiautomated method.

For intraoperator variation, 43.9% of the lesions segmented by user 1 and

40.9% of the lesions segmented by user 2 were identical between trials in the semi-

automated segmentations, while none of them were for either user in the manual

segmentations. For interoperator variation, 35.7% of the lesions of the same trial

were identical between users in the semiautomated segmentations, again with none

of them identical in the manual segmentations. Interoperator varation was slightly

higher than intraoperator variation, as evidenced by those numbers, but that’s some-

what to be expected. Even with that slightly greater difference, the interoperator

variation with the semiautomated method was lower than either user’s intraoperator

variation with the manual method.

The ultimate result of this is that the algorithm presented here significantly

improves consistency over manual segmentation, both intra- and interoperator.

4.1.1.3 Speed

Speed is another performance metric where the semiautomated algorithm has

a clear advantage. Figure 3.13 and Table 3.5 show that, for each user, the time was

significantly lower for the semiautomated method.

The differences between users are more pronounced for these results. User

1 was more experienced in the manual tracing at the start of the process, and it

shows with the noticeably lower time for manual segmentations as compared to user

2, who had less experience with it. User 2, on the other hand, more readily adapted

to quickly using the semiautomated tool, if with slightly lower overall consistency

than user 1, and thus had a much greater difference in time between manual and

semiautomated segmentation. As seen in Table 3.6 and Figure 3.14, both users

completed the majority of lesions in a singular action, but user 2 typically had to

perform fewer actions per lesion. Despite this, looking at Table 3.1, the two users
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semiautomated results were both nearly equivalent in their accuracy. As such, with

greater experience in using the algorithm, a user could certainly take fewer actions

to get just as good of results, as user 2 was able to.

Even with this variation between users in tool use, the time difference between

methods was still significant for each user. The maximum time for the either user’s

semiautomated segmentation was far below the maximum time for either’s manual

segmentation, and the medians for each were both below, user 2’s especially due to

the aforementioned reasons. In total, of the 120 segmentations per user and method,

user 1 had six segmentations, all from distinct data sets, that were completed faster

with the manual method and user 2 had exactly one such segmentation. On average,

user 1 was about 40% faster with the semiautomated method and user 2 was about

70% faster.

As such, it is safe to say that the segmentation algorithm was indeed much

faster than manual segmentation of the same cases, and therefore is a faster method

overall.

4.1.2 Phantom Data

The phantom data tests focus on something very different from the real data

tests. The base algorithm was based on oncology segmentations, which tends to err

on the side of overstimating size when the overall image is smoother. Other variants

tested showed differing results for the various scan types. What this test shows is

how well strategies may work across different scanners and protocols. Figures 3.18

through 3.23 show the results of the various segmentation methods.

While the algorithm using Equation 2.14 to calculate Th% is respectable across

all ”lesions”, statistics, and contrast levels for the noisier phantom, it is shown to

overestimate the volume in washed out phantom scans like those from University of

Iowa. The high contrast phantoms in particular have more uptake leaking beyond
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the actual boundaries of the ”lesion”, which the algorithm includes based on its

design. While it’s a decent function for the imaging of the real data, it’s useful to

have other variants, such as the Th% = 0.4 and Th% = 0.5 versions of the algorithm,

to better deal with other scanners or protocols. These other variants are better for

the larger objects in the washed out scans, they still may not work particularly well

on the smallest ones. However, they demonstrate significantly different behavior for

volume measurement, showing how a change in the Th% equation, while keeping the

base algorithm framework intact, can allow it to be adapted to different scanners

and protocols.

For comparison, typical threshold methods are also included. For the larger

objects, the variants of the algorithm perform approximately as well or better than

those, while their performance falls off for smaller objects. That said, performance

in general tends to fall off for smaller objects (in the real data, Figures 3.8 and 3.7).

Figure 4.1: Examples of pure threshold segmentations of the high-noise phantoms.
Lone high-uptake voxels can result in a threshold that is wildly off, while lone
low-uptake voxels can result in holes on the segmentation.

As noted, the algorithm and its few variants were all successful at making rea-

sonable segmentations in the presence of serious noise, as compared to the threshold
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methods. Figure 4.1 shows the result of the threshold method on a University of

Washington phantom. For the larger objects in particular, but for ultimately for

all objects, the noise causes significant reduction in volume measured by threhsold

methods due to high points increasing the threshold and low points leaving holes.

The algorithm’s framework, however, avoids this problem entirely.

Lastly, one thing to keep in mind about the algorithm is that it can be readily

refined to solve errors left by the automated portion. Figure 3.24 demonstrates this

for a lesion that had significant volumetric error with the standard algorithm. The

error was virtually eliminated with a singular action.

Overall, the algorithm’s performance in this test shows that it is effective on

some scanners and protocols and can be adapted to different others.

4.2 Future Work

While there are multiple ways of dealing with separate segmentation of nearby

lesions, such as splitting, label avoidance and sealing, these tend to be noticeably

affected by the order in which the objects are segmented. The ideal solution to this

would be a method for mutual segmentation of objects, such that neither had an

”advantage” in the segmentation. A prototype version of this was developed outside

of the main work of this project. It works by making two surfaces in the graph and

warping the columns to direct out from one point and into another, rather than

straight out. While reasonably effective, it is not optimized or ready for use and

testing for validation like the main method. Furthermore, expanding it to more

than two objects will lead to much greater complexity. Figure 4.2 shows the basic

graph construction of the paired segmentation, along with a simple example.
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(a) (b)

Figure 4.2: An example of two-object mutual segmentation. (a) The approximate
graph structure before inter-column edges, with surfaces S1 and S2. Columns of
the two non-spheres bend toward each other on electric field lines. (b) An example
segmentation of two adjacent objects.
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CHAPTER 5

CONCLUSION

FDG PET imaging is important for radiation treatment planning and quanti-

tative analysis of lesions. There are a variety of methods for segmentation of lesions

in PET volumes, but in practice, for all its issues with time and consistency, manual

segmentation by an expert is far and away the most common method.

The goal was to make an algorithm for FDG PET lesion segmentation that is

faster and more consistent across users and trials than manual segmentation, while

still being approximately as accurate. The purpose of this goal has been to allow for

a method that can effectively replace manual segmentation in practice to improve

consistency for quantitative analysis.

The accuracy is, if not identical, not too far off from manual segmentation and

fair compared to other standard methods, allowing this method to be used in place

of manual segmentation without serious handicap. The speed is superior, allowing

for reduced time spent making the segmentation. Finally, the consistency is far

superior, meaning that segmentations made with this method will be more reliable

for quantitative analysis in the future.

As such, this algorithm is directly useful for segmentation in order to reduce

the time and variability of segmentation, without a sacrifice in effective accuracy.



98

REFERENCES

[1] R. Adams and L. Bischof. Seeded Region Growing. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(6):641–647, June 1994.

[2] M. Aristophanous, B. C. Penney, M. K. Martel, and C. A. Pelizzari. A Gaus-
sian mixture model for definition of lung tumor volumes in positron emission
tomography. Medical Physics, 34(11):4223–4235, 2007.

[3] S. Belhassen and H. Zaidi. A novel fuzzy C-means algorithm for unsupervised
heterogeneous tumor quantification in PET. Medical Physics, 37(3):1309–1324,
March 2010.

[4] J. Daisne, M. Sibomana, A. Bol, T. Doumont, M. Lonneux, and V. Gregoire.
Tri-dimensional automatic segmentation of PET volumes based on measured
source-to-background ratios: influence of reconstruction algorithms. Radio-
therapy & Oncology, 69(3):247–250, 2003.

[5] L. Drever, W. Roa, A. McEwan, and D. Robinson. Comparison of three image
segmentation techniques for target volume delineation in positron emission
tomogrophy. Journal of Applied Clinical Medical Physics, 8(2):93–109, 2007.

[6] X. Geets, J. A. Lee, A. Bol, Max Lonneux, and V. Grgoire. A gradient-
based method for segmenting FDG-PET images: methodology and validation.
European Journal of Nuclear Medicine and Molecular Imaging, 34(9):1427–
1438, 2007.

[7] D. Han, J. Bayouth, Q. Song, A. Taurani, M. Sonka, J. Buatti, and X. Wu.
Globally Optimal Tumor Segmentation in PET-CT Images: A Graph-Based
Co-Segmentation Method. In Proceedings of the 22Nd International Conference
on Information Processing in Medical Imaging, volume 22 of IPMI’11, pages
245–256. Springer-Verlag, 2011.

[8] J. Kuhnigk, V. Dicken, L. Bornemann, A. Bakai, D. Wormanns, S. Krass, and
H. Peitgen. Morphological Segmentation and Partial Volume Analysis for Vol-
umetry of Solid Pulmonary Lesions in Thoracic CT Scans. IEEE Transactions
on Medical Imaging, 25(4):417–434, April 2006.
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