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ABSTRACT

Optic disc edema can arise from a variety of possible causes, some benign and

some life threatening. For timely appropriate medical intervention, or to reduce

patient anxiety in the event none is needed, it is critical that the cause and severity

of a swollen optic disc be determined as soon as possible.

In this doctoral work, several algorithms are pieced together to determine the

cause of optic disc edema. The process of determining the cause of swelling involves

the extraction of several features, many of which are relatively new to the field of

ophthalmology. Included among these are the shape of Bruch’s membrane as found

semi-automatically from SD-OCT images and the presence and orientation of folds in

the retina, which are also most visible in SD-OCT images, and some selected features

from 2D fundus images.

One specific cause of optic disc edema, called papilledema, is due to raised in-

tracranial pressure. This, too, has a variety of possible causes, and often urgency (or

severity) is rated by the Frisén scale, which is a 0-5 ordinal rating of severity (with

0 being normal). In the event papilledema is found to be the cause of swelling, this

doctoral work also seeks to implement a more robust measurement of severity than

the Frisén scale. Specifically, the total retinal volume (TRV) of the optic disc has

been computed from SD-OCT images in other work. It is believed that the TRV

serves as a more reliable means of assessing papilledema severity, as it is a continu-

ous, repeatable measurement that is not subject to observer interpretation. As part

of this doctoral work, the TRV is estimated from fundus images, which are faster and

cheaper to obtain than SD-OCT images.

Thus, the aims of this thesis consist of finding and quantifying folds in the retina,

using folds (and other features) to distinguish between the causes of a swollen optic

disc, and, in the event an optic disc is swollen due to papilledema, to assess the severity

of the swelling by estimating the TRV from fundus images. While the ultimate goal of
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this work would be to entirely diagnose a patient with optic disc edema from fundus

images, that is beyond the scope of a single thesis. Thus the efforts here are to build

towards that.
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PUBLIC ABSTRACT

The optic disc is the region in the back of the eye that connects the eye to the

optic nerve, which connects to the brain. It is the only nerve that is visible without

undergoing an invasive procedure, and thus can be of immense value for divining

problems that may be taking place in the brain or even the rest of the nervous

system. Specifically, if the optic disc is swollen, it could indicate any number of

problems, some of which could demand urgent medical intervention. Alternatively,

a swollen optic disc could mean nothing at all, as some people have optic discs that

naturally appear that way.

In clinics, the severity of optic disc edema, or more specifically papilledema, is

assessed on a 0-5 scale (with 0 being normal), called the Frisén scale. This is prob-

lematic for two reasons. For one, the Frisén scale is subjective and ordinal, meaning

that clinicians can disagree and not know how close they are to agreement. More-

over, the second reason is that optic disc edema is not a widely understood condition

throughout all of medical practice - indeed the Frisén scale is meant to apply to only

one specific cause of optic disc edema (papilledema), but is often applied to anything

that looks swollen because only experts in the field can tell the difference. A major

component of this doctoral work is to put effort towards creating a classifier that tells

that difference automatically. The classifier uses metrics from various filter responses

and operations (called features) in a large array of decision trees (called random forest

classification) to determine the most likely cause of optic disc edema. Furthermore,

in the event the optic disc is deemed to be swollen due to papilledema, another ap-

plication of random forest that uses averages instead of classification (called random

forest regression) is used to also estimate the severity of the swelling on a continuous

scale.
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CHAPTER 1
INTRODUCTION

Evaluation of the optic disc is one of the few ways a medical practitioner can

noninvasively obtain some sense of a patient’s condition beyond the limit of what is

observed. The optic disc is the area where the optic nerve joins with the eye. Because

it exists in the eye, it is visible by looking through the pupil. The significance of this

is easy to overlook at first glance - a major nerve, one directly connected to the brain,

can be viewed by anyone by merely looking. There is no need for invasive sample

collections or laboratories to analyze them.

The healthy optic nerve head has a somewhat standard appearance, which oph-

thalmologists know and understand quite well. However, deviations from this stan-

dard appearance could be indicative of any number of conditions, including glaucoma,

papilledema, optic neuropathy, optic neuritis, hemorrhaging, and even some viruses.

While there are a variety of ways the optic disc can deviate from a healthy ap-

pearance, this thesis focuses on cases in which the optic disc is swollen. Optic disc

edema can be due to several conditions, some of which can be life-threatening while

others are benign. For this reason, it is critical that an accurate diagnosis is made

promptly to alleviate undue anxiety for the patient, or so that appropriate treatment

can be given as soon as possible. For example, pseudopapilledema is a condition that

causes the optic disc to appear swollen, but is understood to be benign. Whereas

papilledema is very similar in appearance to pseudopapilledema, but is the result of

raised intracranial pressure, which could be indicative of any number of issues in the

nervous system, or more specifically the brain.

Papilledema is commonly assessed by either direct inspection of the back of the eye

or through the equivalent evaluation of a captured fundus image, which is a picture

of the back of the eye. The swelling observed in fundus images is quantified using

the Frisén scale [3] or modified Frisén scale (MFS) [4], which is a 0-5 ordinal rating
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of severity with 0 indicating a normal healthy eye. The criteria for the Frisén scale

is judged subjectively and requires manual inspection by a clinical expert, making

the evaluations susceptible to inconsistencies. Two fundus images of the same eye

can differ in quality, which may affect a grade, and two clinical experts grading

the same image may interpret the significance of various features differently. For

example, under both the traditional Frisén scale and the MFS, a key qualitative

difference between a Frisén grade of 1 or a grade of 2 is whether the obscuration of

the ONH border is confined to the nasal region of the optic nerve head, or whether

the obscuration is circumferential. However, there is the possibility of ambiguity

if the obscuration is only nearly circumferential or that a part of the border is only

beginning to obscure, but is still distinct. Moreover, there are other equally important

criteria for assessing the severity of papilledema, such as vessel swelling, that may not

entirely fit the expected progression of the Frisén scale, thus adding uncertainty to

a diagnosis. Adding to that, the grading is ordinal, as opposed to continuous, which

implies one cannot determine how close a case of optic disc edema is to the next

severity level based on a Frisén grading.

Previously, in an attempt to address the subjectivity of Frisén grading, Echegaray

et al. [5] proposed an approach to semi-automatically predicting Frisén-scale grades

from color fundus image features. The work by Echegary et al. involves attempts to

quantify the qualitative criteria of the Frisén-scale stages, by assessing the obscuration

of the ONH boundary for stages one and two while also considering vessel obscuration

and other features to distinguish between the more severe stages. There were a

combined total of 24 vessel, ONH, and peripapillary features used in a random forest

classification, but the most significant features were the ones most closely based on

Frisén grading criteria, as one might expect. While this alleviates the effects of

qualitative human interpretation, it still does not address the problem of the ordinal

nature of the Frisén grading scheme.
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With the introduction of optical coherence tomography [6], and more recently

spectral-domain optical coherence tomography (SD-OCT), the swelling of the ONH

has instead been quantified via the total retinal volume (TRV) [7]. This quantification

is done through an automated volumetric segmentation of the physical space between

the internal limiting membrane (ILM) and retinal pigment epithelium (RPE) within

a 6× 6mm area, roughly centered on the ONH. A strong correlation has been found

between the TRV and expert-defined Frisén scale grades [7]. Given its continuous

nature and better consistency across repeated examinations, it is assumed that the

SD-OCT-based ONH volume serves as a better measure of the severity of optic nerve

edema [4] and is treated, in this doctoral work, as the gold standard for assessing pa-

pilledema severity. However, computing this volume requires clinicians to capture the

ONH using SD-OCT imagery, which necessitates the use of expensive equipment not

commonly available in either an emergency room or telemedical setting. The ability

to accurately assess the degree of optic nerve edema in emergency and telemedical

settings is highly desirable as many causes of optic nerve edema can indicate serious

underlying conditions that need to be diagnosed expeditiously.

A large part of this doctoral work involves using SD-OCT-based 3D volumetric

measures as a standard reference for measuring the severity of optic nerve edema.

Specifically, a regression-based approach for predicting the 3D SD-OCT-based TRV

of the ONH is developed from features extracted from relatively inexpensive 2D color

fundus photographs, thereby obtaining a continuous assessment of the severity of

optic nerve edema from fundus photographs alone. This is done by taking some of

the more significant features found by Echegaray and building on them to obtain a

feature set suitable for predicting continuous scale TRV.

While the severity of optic disc edema is important to discern, it is important

to first determine the cause of swelling. Papilledema (Section 2.1), for example, can

be indicative of severe underlying conditions such as a brain tumor or hemorrhage,
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or could effectively mean nothing in the case of pseudo-papilledema (Section 2.2).

Anterior ischemic optic neuropathy (AION, Section 2.3) may not be fatal, but can

result in vision loss. There are many ailments that can result in optic disc edema,

and each has its own cause. An expedient correct diagnosis is essential for starting

early treatment.

The theme of this doctoral work is to use both 3D SD-OCT and 2D fundus

images to determine the cause of a swollen optic nerve head and to assess the severity

of a swollen optic disc by predicting TRV from fundus images alone, thus obtaining

the severity and the risk to the patient. My work can be summarized by the

following aims:

• Aim 1: Detect and quantify folds around the optic nerve head. It has

been found [8] that several types of folds can exist in cases of optic disc edema,

notably peripapillary wrinkles, retinal folds, and choroidal folds. These findings

are still somewhat new, so while a concise method for quantifying folds in some

standardly accepted way has not yet been developed, it serves as an essential

step towards determining a cause and severity for optic disc edema to detect

and categorize the resulting folds. These folds are detected in the retina and

quantified for use as features in Aim 2.

• Aim 2: Use fundus and SD-OCT image features to distinguish be-

tween various causes of optic nerve edema. An approach for extraction

of a number of features from both fundus and SD-OCT images is developed

for classifying a case of ONH edema based on its cause. In addition to the

quantification of folds, it has been found that Bruch’s membrane bends towards

the vitreous in cases of papilledema, and away from the vitreous in cases of

pseudo-papilledema [9]. Previous work has been done to model the shape for

high definition raster scans, which are a specific imaging mode that is not always

used clinically, but this approach is applied to the more standardly available
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volumetric images. The causes distinguished depends on the data available,

which is discussed in Section 2.5.

• Aim 3: Develop an approach to assess optic nerve head edema sever-

ity by predicting the total retinal volume. Features from prior work are

used and new features are developed from color fundus photographs alone to

train a random forest regression analysis for predicting the total retinal volume

as computed from 3D SD-OCT volumetric images acquired on the same day.

1.1 Thesis Organization

The remainder of this thesis is organized as follows.

• Chaper 2 introduces the clinical background, including the various causes of

edema to be distinguished and how optic disc swelling is currently assessed.

• Chaper 3 discusses the technical details including image modalities and estab-

lished processing techniques used in this thesis.

• Chaper 4 provides a detailed account of the detection of folds.

• Chaper 5 continues the work of the previous chapter by discussing how folds

are quantified, and what additional features are used in the distinction between

causes of optic disc edema.

• Chaper 6 looks specifically at papilledema cases to predict the severity of optic

disc swelling on a continuous scale.

• Chaper 7, concludes and summarizes previous chapters to discuss possible

directions for future work.
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CHAPTER 2
CLINICAL BACKGROUND

2.1 Papilledema

The nervous system can be modeled as a closed container filled with organic

material and fluid. This is not biologically accurate, as there is always an exchange

of fluid with the rest of the body, but for this thesis, this simple model serves as a

suitable illustration. As a closed system, if pressure is applied to any part of the

nervous system (particularly the brain), that increase in pressure may be detectable

at any other part of the nervous system. This is what is referred to when one mentions

a rise in intracranial pressure (ICP). When the optic disc is swollen due to raised ICP,

it is called papilledema. There are a number of causes for elevated ICP, such as a

head injury or a brain tumor, but raised ICP can also be idiopathic. Symptoms of

raised ICP include headaches and nausea, but these can also be indicative of many

possible ailments that have nothing to do with raised ICP. Blindness is not a typical

symptom during the early stages of papilledema. However, other visual symptoms

such as grey vision or double vision can occur. These symptoms could be caused by

factors other than raised ICP, so they are not symptoms one can rely on, alone, for

diagnosing someone with papilledema.

Among the most sensitive methods of detecting and monitoring an elevation in

ICP is a lumbar puncture [10]. This is an invasive procedure, involving the insertion

of a catheter into the spine, which carries some significant risks. Fortunately the

ONH (Fig. 2.1), which is directly connected to the nervous system, can be observed

noninvasively with no notable risk to the patient, and some conclusions about the

status of the ICP of a patient can be drawn.

The current standard for assessing the swelling of an ONH is known as the Frisén

scale, a 0-5 ordinal rating of severity (Fig. 2.2). However, assigning a grade can

be an imprecise practice. The grading is mostly based on the fact that over time a
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Figure 2.1: Diagram showing the basic anatomy of the eye as it applied to this thesis.
The optic nerve head is the region in which the optic nerve meets the eye and can be
observed through the pupil.

buildup of axoplasmic fluid obscures the ONH border and/or the veins and arteries in

the region. The Frisén criteria qualifies this obscuration by considering the common

order in which the obscuration occurs. At Frisén stage 1, there is only an obscuration

of the ONH border in the nasal region. At stage 2, the entire ONH border becomes

circumferentially obscured. At stage 3, at least one major blood vessel becomes

obscured as it leaves the optic disc. At stage 4, the blood vessels on the disc become

obscured. Finally, stage 5 is assessed by a total obscuration of all vessels on and

leaving the optic disc [4]. While seemingly straightforward, in practice there is no

guarantee that events will discretely occur in precisely this order. For example, if

the clinician is viewing an image of poor quality, they may be led to believe that

there is more swelling than there actually is, or they might overcompensate for the

photographic blur of the image and assign a lesser grade. Another example is if the

optic disc border is not completely circumferentially obscured before a blood vessel

leaving the ONH region starts to show signs of obscuration. In this case, a grading
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Figure 2.2: Fundus images of the ONH with Frisén grades of 0, 2, and 4, from left to
right.

of 1, 2, or 3 could be justified, and for reasons such as these, there tends to be inter-

and intra-observer variation in the assignment of Frisén grades [11].

Some other common indicators of optic disc swelling, in general, which are not

considered part of the Frisén grading scheme include a twisting and/or swelling of

the veins [12] and folds in the retina or choroid [8] (Fig. 2.3). The twist in the veins

is a result of the ONH swelling, and does not contribute to the cause [13]. The

swollen optic nerve creates a pinching of the veins as they leave the retina, causing

a higher pressure in the veins inside the eye. As such, it would seem likely that

some quantitative assessment of the twist and swelling of the veins, compared to the

arteries, could be a means of assessing the severity of the swelling using only the

information provided in the image.

Additionally, folds around the optic disc [8] come about due to tensile pressure

generated by the ONH swelling. The presence of folds is an effect rather than a

cause of swelling, but some quantitative measurement of fold characteristics could

indicate severity or possibly cause. There are three main types of folds, and they

are peripapillary wrinkles, retinal folds, and choroidal folds, and each of them is

more easily visualized in SD-OCT images than in fundus images [8]. In the case of

choroidal folds, this is particularly true as they occur on and between the retinal
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(a) (b) (c) (d)

Figure 2.3: A mild case of swelling (a), absent of significantly twisted vessels or retinal
folds. An example of an image with significantly twisted and swollen veins (b). An
example of retinal folds (c). A blow-up of the green box to more clearly see the folds
(d).

pigment epithelium (RPE) and Bruch’s membrane (BM) layers, which are layers that

are not normally visible in fundus images.

2.2 Pseudopapilledema

Pseudopapilledema can be similar to papilledema in appearance. However, it is

often a benign condition that requires only routine review [14]. Not a lot is known

about the cause of pseudopapilledema, apart from the fact that it is likely a congenital

condition and often includes the presence of calcified deposits called drusen [15]. One

thing that is certain is that pseudopapilledema does not come about due to raised

intracranial pressure, and thus is not the result of a hemorrhage, tumor, concussion,

or any of the possible causes of true papilledema. As such, it is vital to efficiently

make this distinction between papilledema and pseudopapilledema early on to avoid

unnecessary and costly treatments and, of course, alleviate anxiety in the patient.

One indication of real papilledema is the shape of Bruch’s membrane (BM). The

rise in ICP tends to cause BM to bend towards the vitreous [9], which can be de-

tected through SD-OCT scans. This, along with the presence of drusen, can aid in

differentiating between papilledema and pseudopapilledema.
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2.3 Anterior Ischemic Optic Neuropathy

Like any part of the human body, a reduction in blood supply leads to problems

in the eye. In the case of ischemic optic neuropathy [16], this can lead to blindness

or severely impaired vision. Ischemia of the optic nerve is typically categorized as

either anterior (AION) [17] or posterior (PION) [18], which corresponds to the region

of the optic nerve, relative to the optic nerve head, where the cause of the ischemia

is located. While the problem tends to mostly affect people over the age of 50, it is

possible for any age to acquire it. AION is the most common form of ischemic optic

neuropathy, but both AION and PION can be further divided into either having

arteric or non-arteric causes. PION, specifically, has a third possible cause, which is

due to surgical complications, however, of the two, this doctoral work deals entirely

with AION.

AION has two further classifications, which is determined by whether the cause

is arteric. Arteric AION is due to some form of vascular inflammation, typically

giant cell arteritis, which requires prompt treatment to avoid vision loss. Non-arteric

AION (NAION), which is the most common form of AION, is due to inadequate

perfusion due to a rise in intraocular pressure or a drop in blood pressure, which is

why its symptoms are most commonly first noted on waking in the morning. Some

work has been done on ways to distinguish AION from papilledema by evaluating the

RNFL thickness [19]. Additionally, much like pseudopapilledema, in cases of AION

it is assumed that the BM would not bend towards the vitreous. And finally, AION

tends to result in a chalky white swelling of the optic disc (Fig. 2.4). This gives a few

options for singling out a classification for the cause in a case of optic disc edema.

2.4 Other Causes of Optic Nerve Edema

Apart from papilledema, pseudopapilledema, and AION, other causes of optic

nerve edema can include infiltrative or inflammatory disorders, such as venous si-

nus thrombosis, sarcoid optic neuropathy, infiltrative optic neuropathy, subarachnoid
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(a) (b)

Figure 2.4: An example of AION (a) and papilledema (b). The ONH total retinal
volume (section 3.2) of these two images were 18.14 and 18.04 mm3, respectively.

hemorrhaging, Grave’s compressive optic neuropathy, Leber’s hereditary optic neu-

ropathy, neuroretinitis, and optic nerve sheath meningioma. While this doctoral work

intends to lay the groundwork for classifying as many of these as possible, no known

dataset includes a sufficient quantity of images with swelling due to each of these

causes.

2.5 Datasets

The University of Iowa Hospitals and Clinics (UIHC) is involved in an ongoing data

collection effort to obtain fundus/SD-OCT image pairs taken on the same day from

patients with optic disc edema. As of October 30, 2017, there has been usable SD-

OCT/fundus image pairs acquired from a total of 88 patients, 63 with papilledema,

14 with NAION, and 11 with optic disc edema for other reasons. Additionally, the

Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) [20] is a multi-centered

clinical trial used to ascertain the effects of acetazolamide in cases of papilledema.

While the IIHTT dataset does not serve as a way to determine the cause of optic disc

edema, as the dataset consists entirely of papilledema, a few of the algorithms in this
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doctoral work were developed on it.



13

CHAPTER 3
TECHNICAL BACKGROUND

3.1 Assigning Frisén Grades to Fundus Images

The work of Echegaray et al. [5] was to determine a feature set for the semi-

automatic assignment of Frisén grades to fundus images. The most important feature

in their work was the vessel discontinuity index (VDI), which was a simple count

of discontinuities in the vessel segmentation. The segmentation was acquired by

enhancing the vessels using a method [21] that considers a local second order Taylor

expansion to generate a Hessian matrix. An eigenvalue analysis of the Hessian was

used to detect the presence and direction of any local tubular structures (i.e. vessels).

Once the vessels were enhanced, a segmentation was achieved via a local entropy

thresholding method [22].

The second most important feature found was the obscuration around the disc

margin. This was found by dividing the ONH into sectors and assessing the ‘blur-

riness’ of each sector. Related to the obscuration around the disc margin were the

disc margin ratios. These were found by finding the points with the greatest radial

intensity gradient from the ONH center, every 2 degrees. These points were fit to

an ellipse, and the shortest distance between each point and the edge of the ellipse

was found and divided by the distance between the opposite point and its shortest

distance to the edge of the ellipse.

All of the most important features found by Echegaray et al. were variants of these

features. However, the main drawback of this approach is the fact that it predicts

Frisén grade, which is ordinal and subjective (more on this in section 3.2).

3.2 SD-OCT Layer Segmentation

As far as segmentation methods go, dynamic programming is probably the easiest

to understand and implement. This method is fast for 2D images, but has three key

drawbacks, in that it is time consuming to enforce circularity constraints, cannot be
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used to segment multiple boundaries simultaneously, and cannot be feasibly extended

to surface segmentations in 3D images. Somewhat recently [23], a new segmentation

method has been presented which represents an image as a graph, and uses a min-cost

closed set algorithm to generate a segmentation. This has a number of advantages,

including ease of enforcing circularity constraints, the simultaneous segmentation of

multiple layers, and, of course, the fact that it can be extended to any number of

dimensions. As such, it is a natural approach to layer segmentation (Fig. 3.1) in

SD-OCT images of the optic nerve.

In fact, this method has already been developed [24], by segmenting a cost image

generated through a combination of edge-based and region-based sub-images. The

edge-based sub-image uses a combination of a Gaussian and Sobel filters to create

a cost image, which is translated into a graph by assigning the cost of each pixel

to the cost of a corresponding node. A surface feasibility constraint, which assures

connectivity, is applied as well. This can also be performed on images that have

been down-sampled in the z -direction, with the results used to localize each higher-

resolution search for better processing speed [7].

As the scaling of SD-OCT images in physical space is commonly recorded when the

image is taken, a segmentation of the top and bottom layers of an ONH conveniently

allows for an absolute measurement of the volume of the ONH. Since the swelling of

the ONH is, in a sense, defined by the additional space the ONH takes up, which is

another way of saying ‘volume,’ it stands to reason that the total retinal volume (TRV

Fig. 3.2) as computed through this segmentation would serve as a far better measure

of optic nerve edema than the Frisén scale [7]. Not only is TRV continuous, but it is

also reproducible. While it may be true that there is some natural variation in the

TRV due to variation in attributes such as patient size, one of the main assumptions

in this doctoral work is that the TRV is the best measure by which optic nerve edema

severity can be assessed.
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Retinal Pigment Epithelium + 
Bruch’s Membrane

Retinal Nerve Fiber Layer (RNFL)

Ganglion Cell Layer + Inner Plexiform Layer

Figure 3.1: Indication of the ONH layers of interest.

(a) (b) (c)

Figure 3.2: Example of how TRV is computed. The original fundus image (a). A
slice from the SD-OCT segmentation (b). A 3D rendering of the full segmentation
(c). The TRV is computed as the physical space between the red and yellow surfaces
- in this example, which corresponds to a Frisén grade of 4, the TRV is 22.61 mm3.
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Figure 3.3: A depiction of where a 5-line raster scan comes from.

3.3 Quantification of BM Shape

As mentioned in sections 2.2 and 2.4, a rise in intracranial pressure can manifest

at the eye and that increase in pressure tends to bend the BMO towards the vitreous.

Some work has been done to quantify this bending [2]. However, the method used

requires a somewhat uncommon use of SD-OCT images, called 5-line raster scans [9].

The use of high density 5-line raster scans offers the advantages of higher image

quality and simplicity in identifying the center-most scan (Fig. 3.3), where the shape

changes of BM are most pronounced.

The shape was computed by eigenvalue decomposition of 20 points marked on

the Bruch’s membrane boundary (Fig. 3.4). There were three eigenvectors associated

with the decomposition, but two are not considered relevant to a diagnosis, and

their only purpose is to limit the influence their variation has on the third shape

parameter (Fig. 3.5). These two eigenvectors assessed the width (size) of the BMO

and the lateral evenness of one side relative to the other. By quantifying these two

attributes, it leaves the bending of BM to be quantified without their influence, which

constitutes the third1 eigenvector coefficient. This coefficient describes the bending

1Of the three shape parameters, this is commonly listed as the 2nd coefficient, due to the fact
they are ordered by weight, and the bending tends to be the second-most descriptive component of
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of BM towards or away from the vitreous, which, as described in sections 2.2 and 2.3,

may be a significant indication as to whether or not a swollen optic disc is due to

raised intracranial pressure.

The points were marked in a semi-automated fashion. That is, only the points

corresponding to the BMO were marked. Then, a 2D version of the segmentation

algorithm discussed in section 3.2 was used to determine the location of Bruch’s

membrane, using the marked points as a ‘very low cost’ location to force the segmen-

tation through them. The remaining 18 points were then automatically generated

by placing them on the layer segmentation equidistant from each other, to cover a

total of 2.5mm in each direction. Then, using Procrustes analysis and an eigende-

composition on the entire dataset, the shape of each 20-point set was approximated

by its most relevant eigenvectors. As it happens, the eigenvector associated with the

second-most amount of variance represents the bending of BM towards the vitreous

in prior work. In any event, once a shape model has been computed, and the relevant

shape parameters determined, any SD-OCT image can be modeled for its shape.

3.4 Vessel Segmentation

Automated vessel segmentation is a topic that has had a rather large amount of

work put into it, with a variety of approaches. The method used in this thesis involves

a ridge detection algorithm [25]. In an image, a ridge can be thought of in much the

same way one might think of a ridge geographically - that is, a thin but long peak

among an otherwise homogeneous area. The applications of finding ridges should be

somewhat clear in regards to detecting vessels, as that is precisely what vessels tend

to be. This approach first applies a Gaussian derivative, then uses the Hessian to

determine the direction and strength of an assumed ridge at each pixel. A gradient

is stepped once in the direction of minimum Hessian response and the sign of the

difference in the gradient before-and-after the step is taken, and multiplied by the

the shape.
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Figure 3.4: Examples of how the shape of BM is modeled in 2D images. An eigenvalue
decomposition would be performed on the points to reconstruct their shape using the
eigenvectors derived from a Procrustes analysis and PCA across 116 similarly marked
images.
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Figure 3.5: Shape parameters and their ranges. The first and third describe the BMO
width and lateral evenness, respectively. The second coefficient describes the bending
towards or away from the vitreous [2], which is the parameter of most interest in this
doctoral work.
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sign of the eigenvalue of the maximum Hessian response. Essentially, this looks at the

most likely direction of a ridge at each pixel, and checks for ascent in one direction

normal to ridge direction, and ascent in the opposite direction. If the ascent/ascent

or descent/descent combination is found, that pixel is marked as a ‘true’ for being a

part of a ridge, and the sign of the Hessian eigenvalue is then applied to determine

whether it is a local minima or local maxima - effectively resulting in a trinary image

of all ridges.

Of course, not every ridge is going to be a vessel, and not every pixel of every

vessel is going to be a ridge. The next step involves partitioning every ridge pixel

into groups. The rules of the group are designed to check for proximity and direction.

There are three metrics that are used to determine if each pixel is to be assigned to

a group, or if it should form its own. In addition to proximity and direction, there

is also a check for a parallel component. Two parallel ridges may be two vessels,

which would share a direction component, by definition, but could also be within the

limits of proximity. To test for this, the product is taken of a unit vector in the same

direction of the minimum Hessian eigenvector with a unit vector in the direction of the

two pixels to be potentially grouped. If the resulting vector magnitude is sufficiently

high, it can be said that the two pixels are not parallel and, given the other two

metrics being satisfactory, belong to the same group. From there, all non-ridge pixels

are further assigned to a group based solely on proximity.

A kNN classifier is applied to each group. Features are built based on a transfor-

mation that samples a line through each point in a group perpendicular to the ridge

direction. The features include the height (pixel intensity at ridge), width (distance

between strongest gradient locations on sampled line through ridge points), height-to-

width ratio, edge strength, edge strength-to-width ratio, average edge height, height

minus edge height, and the ratio of height to edge height. Additional features include

the straight-line distance of each set, length, curvature, local average, standard devia-
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tion, green-to-red frame local average ratio, and ridge strength (average eigenvalue).
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CHAPTER 4
DETECTION AND QUANTIFICATION OF FOLDS IN SD-OCT

IMAGES (AIM 1)

4.1 Introduction

The retinal area around the optic disc sometimes responds to the biomechanical

physical stress of swelling by exhibiting visible wrinkles (or folds) of the tissue around

the optic disc [26]. The presence and variety of retinal and choroidal folds [27] (Fig.

4.1) in cases of papilledema give rise to the possibility of different causes of optic disc

swelling resulting in different types and severities of folds. Moreover, if the swelling

is congenital (i.e. pseudopapilledema), it is much more likely that there will be no

folds at all. In this chapter, the detection of folds is explained. The quantification

of folds, however, is reserved for practical use, and is discussed in greater detail in

Section 5.2.3 where it is used for distinguishing between causes of optic disc edema.

4.2 Fold Enhancement

The layers in the SD-OCT images of the optic disc are first segmented [28] using

a graph-based method developed for optic disc swelling. The layer segmentation

algorithm has a smoothing feature that can complicate its direct use to visualize

folds, as the smoothed surface cuts through the local average of minor fluctuations

(a) (b) (c)

Figure 4.1: Cross-sectional example of folds. The modified en face image (a) shows
folds in the topology. The cross sectional image (b) through the central slice, and a
magnification of the cross sectional image centered on the folds (c).
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(a) (b)

(c)

Figure 4.2: (a) Fold-enhanced image generated by averaging within 7 pixels of the ILM
boundary. (b) Vessel image by averaging across the RPE layer. (c) A fold-enhanced
image without visible folds.

along the ILM. As such, a fold-enhanced 2D image is generated by taking the average

pixel value within 7 pixels of the ILM (a total span of about 29.3 microns). The result

is a 2D image in which folds appear to be thin, tube-like structures. One obstacle is

that there are other thin, tube-like structures we expect to see in these images – the

blood vessels and artifacts. To robustly account for blood vessels, an en face image

of the RPE complex layer is also generated (where vessels are most pronounced).

Features from both the ILM and RPE (Fig. 4.2) images are used for classification.
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(a) (b) (c)

Figure 4.3: Some truths marked for the first revision of this fold detection work as
presented at MICCAI in 2017 [1]. Red areas indicate areas with folds. Blue indicates
vessels. Green indicates image artifacts.

4.3 Reference Standard

SD-OCT images acquired by the University of Iowa Hospitals and Clinics were

converted to fold-enhanced images and marked. This occurred in two phases. The

first, initial, phase involved a regional marking (Fig. 4.3) but carried with it the issue

of precision being a major limiting factor to the results. It is difficult to precisely

define where a folded area stops being a folded area, and marking a region makes

it critical that the boundary is as accurate as possible. Since then, the folds were

marked again such that the peak of each fold was marked (Fig. 4.4). However, due

to limitations in resolution, the fold-enhanced images were upsampled by a factor of

four prior to marking.

4.4 Feature Extraction

The thin tube-like appearance of folds in the fold-enhanced image suggests a detec-

tion method similar to one would use for a vessel segmentation, but also accounting

for parallel repetition. The method employed here involves feature extraction and

pixel-based classification using random forest regression. The full feature lists can

be seen in Table 4.1 for the initial iteration of this algorithm, and Table 4.2 for the
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(a) (b) (c)

Figure 4.4: The truths marked for final fold detection work. While the vessels and
artifacts were also marked, a separate classifier was not run on them, and fold pixels
aligned with either a vessel or artifact were simply omitted from the truth.

final version. Gabor responses [29] are computed at 15◦ intervals, with wavelengths

ranging from 4 to 25 pixels. These are applied to the fold-enhanced image and the

en face image of the RPE, each upsampled by a factor of 4 since it is not expected

that the physical wavelength of the folds will always be a whole integer value. In

physical space, this means the Gabor wavelengths range between 30 and 187.5 mi-

crons. The maximum Gabor response across all wavelengths and orientation angles,

MG, for each pixel location in the fold-enhanced image is extracted and summed to

the maximum Gabor response from the inverse of the fold-enhanced image, M ′
G. The

orientation and coherence [30, 31] images are computed for MG,M
′
G, and their sum

M ′
G +MG = IG (Fig. 4.5, 4.6).

A line of 29 sample points are extracted from each pixel location in IG spanning

435 microns (roughly half-pixel intervals), perpendicular to the orientation. The

newest version of this algorithm involves truth images that were upsampled by a

factor of 4, and the natural way to work with that is to also upsample the test

images themselves by 4. To keep this line of 29 sample points consistent with its

purpose, in the updated algorithm it needs to be increased to 113 sample points to
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span the same 435 microns. In regions with folds present, this sample would have a

sinusoidal element to it. This is quantified this by taking the Fourier transform of each

sample, and the Fourier transform of the derivative of each sample (to remove linear

components). Disregarding the 0th Fourier coefficient, the highest Fourier response

should correspond to the frequency of the sinusoidal element, if one exists. For the first

iteration of this work, the highest Fourier element was used to create the magnitude,

phase, and frequency of a test signal, and the test signal was removed from the sample.

The standard deviation of the leftover signal is then taken as a feature to determine

how dominant the sinusoidal element was. However, for the updated version, the

highest Fourier element was used to create a fit to a sinusoid, and the RMS error

of the fit was used as a feature. Additionally, the Fourier magnitudes are used as

features, directly.

In addition to detecting folds, in the initial version of this algorithm, vessels and

artifacts were also detected to mask out the fold response. The Gabor response to the

vessel image (RPE complex en face image) seemed to be sufficient for vessel detection.

As the artifacts to be detected tend to occur across the image, rather than in isolated

areas, the horizontal average of the vertical derivative is used as a feature across

the entire image - i.e. for this feature, every pixel on the same horizontal (similar

to Fig. 4.6(f)) has the same value for a given image. Additionally, as the artifacts

often appear to be the result of a horizontal shift when the image is captured, the

displaced location of the minimum average vertical derivative when each horizontal

slice is shifted across its full range is used as a feature. Finally, since the direction of

artifacts is close to zero, the cosine of the direction divided by the standard deviation

across the horizontal was used as a feature.

Feature

count

Description

1 RPE complex image
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2 Radial distance from center determined automatically [7]

3-24 Coherence of Gabor responses to upsampled fold-enhanced im-

ages (each pixel-wavelength used as a separate feature)

25 Coherence of average Gabor response across all wavelengths

26 Gaussian filter applied to 25

27-48 Coherence of Gabor responses to upsampled inverse of fold-

enhanced image

49 Coherence of average Gabor response to inverse fold-enhanced

image

50 Gaussian filter applied to 49

51 Local maximum in 7× 7 window of fold-enhanced image

52 Local minimum in 7× 7 window of fold-enhanced image

53 Range in a 7× 7 window (i.e. features 52 - 51)

54 Normalized version of feature 53 (i.e. (52-51)/(52+51))

55 MG

56 M ′
G

57-78 Gabor responses of RPE complex image

79-100 Gabor responses of inverse of RPE complex image

101 Average of 57-78

102 Average of 79-100

103 Orientation of IG (sum of average Gabor responses)

104 Coherence of IG

105 Standard deviation of cross section after top frequency removed

106 Standard deviation of derivative of cross section after top fre-

quency removed
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107-120 Sorted magnitude of Fourier response of cross section

121-133 Sorted magnitude of Fourier response of derivative of cross sec-

tion

134 Maximum Fourier response of cross section

135 Difference between max and second rank Fourier responses of

cross section

136 Difference between max and third rank Fourier responses of cross

section

137 - 139 Features 134-136 repeated for derivative of cross section

140 Vertical displacement measure of fold-enhanced image

141 Local max of 140

142 Vertical displacement measure of RPE complex image

143 Local max of 142

144 Vertical derivative of fold-enhanced image

145 Vertical derivative of RPE complex image

146 Product of features 144 and 145

147 Locally normalized IG

148 Coherence of thresholded and skeletonized IG

149 11× 11 median filter applied to IG

Table 4.1: Complete list of features used for initial fold classification as reported at
MICCAI 2017 [1].

4.5 Classification

The vessels, folds, and artifacts were marked for each image to generate truths

(Figs. 4.3, 4.4). For the initial work, these were classified using a common feature
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Feature count Description

1 RPE complex image
2 Radial distance from center

3 MG

4 M ′
G

5 IG
6-51 Gabor response (evens) and coherence (odds)

of MG at increasing frequencies
52-95 Gabor response (evens) and coherence (odds)

of M ′
G at increasing frequencies

96 Max Gabor response across all wavelengths
and orientations of RPE complex image

97 Max Gabor response across all wavelengths
and orientations of inverse RPE complex image

98 Sum of (96) and (97)

99 Magnitude of sinusoidal fit using Fourier transforms
100 RMS Error of sinusoidal fit
101 Peak count for each signal

102 - 104 (99 - 101) repeated for derivative of signal
105 Horizontal disjoint measurement for fold-enhanced image
106 Horizontal disjoint measurement for vessel image
107 Cosine divided by standard deviation of direction

Table 4.2: Complete list of features used for final fold classification.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Some selected features (a) Radius (b) IG (c) Coherence of MG (d) Co-
herence of M ′

G (e) Gabor response to vessel image (f) Magnitude of fit to sinusoid
normal to direction.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Some selected features (a) RMS error of fit sinusoid normal to direction (b)
Peak count of signal normal to direction (c) Magnitude of fit to sinusoid of derivative
(d) RMS error of sinusoid fit do derivative (e) Peak count for derivative of signal
normal to direction (f) Cosine divided by standard deviation.
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set, but were trained as separate classifiers. The features were extracted from the

fold-enhanced and RPE complex images, and trained in three leave-one-patient out

random forest regression analyses with 10,000 trees, each ten decisions deep, with

a true set to 1 and a false set to 0. Once trained, the entire feature set from the

left-out image was tested for each of the three classifiers, resulting in a pixel-level

probability map. The results from the vessel and artifact classifications were used to

mask (omit) positive results from the fold classification, while the vessel and artifact

truths were used to mask the fold truth. The classifier was trained on 120 samples

taken at random locations from each feature set of the 20 patients acquired from The

University of Iowa Hospitals and Clinics (minus one left-out patient) to include an

equal mix of folds, vessels, artifacts, and background.

For the updated version of this algorithm, only one classifier was trained, after

masking out folds that overlapped vessel and artifact truth locations. There are still

120 samples taken per image for training, and they are still evenly distributed among

fold, vessel, artifact, and vessel locations, but the difference is that there is only

one classifier instead of three. The idea is that the features that resulted in a high

probability of vessels and artifacts from the initial work will, instead, result in a low

probability of folds if the vessel and artifact truths are used to mask the fold truth.

While this carries a small risk of missing some folds that only overlap vessels, the

main point of this work is not to track every fold but to determine a simple yes or no

to the question of fold presence to distinguish between causes of optic disc edema.

4.6 Results

A total of 20 of the 88 usable SD-OCT images acquired from the University of

Iowa Hospitals and Clinics (section 2.5) were marked for the presence of retinal folds.

Since the results are to be a probability map, and the marking of truths is a somewhat

tedious process, there is no need to use all 88 of the images, as there is effectively a

sample for every pixel. Combined with the fact that the images are upsampled by 4
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for greater resolution in marking the truth, this means that with 20 images there are

already almost 13 million samples available for testing.

The initial pixel-based classification with a regionally marked truth was reported

at MICCAI of 2017, with an AUC of 0.804 achieved [1]. Example probability maps

can be viewed in Fig. 4.7. This result was obtained by simultaneously evaluating

three thresholds at once. The fold, vessel, and artifact probability maps were each

adjusted through their full range and a maximum true positive rate found for each

false positive rate. The resulting ROC chart can be found in Fig. 4.9(a). With the

second attempt, only the folds were predicted, with the vessels and artifacts serving

as a mask (Fig. 4.8). However, three ROC charts were created from this. The first

is the obvious one, which is a simple per-pixel threshold, which results in an AUC of

0.896 (Fig. 4.9(b)). The second and third both accounted for the fact that, despite the

attempt to mark the folds precisely, there is still going to be a little bit of discrepancy,

in that it is never going to be clear exactly how much of a fold ought to be marked.

Essentially, the skeleton was marked in the truths, but if a probability map shows

that a detected fold is slightly thinner than the marked skeleton, that shouldn’t be

counted as a problem - as the point is to detect for presence, not to track precisely.

As such, an evaluation was made in which each fold marked in the truth was treated

as a whole object, and when the probability map was thresholded, if any pixel in

that object was found, the whole object was counted as a true positive. This still

leaves the question of how to handle false positive results, and two approaches were

taken for this. The first was to count the total number of objects detected that did

not belong to a marked truth. The second is to treat the false positive just as it is

normally treated - that is, pixel-based. These two methods can be summarized by

noting that the coordinates of the ROC curve with the object based true positive

rate and pixel-based false positive rate is represented by (P (t)/Pf ′ , N(t)/Nf ), where

t is the threshold, N(t) is the number of folds detected at each threshold, Nf is the
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total number of fold objects in the dataset, P (t) is the number of non-fold pixels

detected for each threshold, and Pf ′ is the total number of pixels that are not part of

a fold object. A similar representation could be made for the case where the non-fold

objects constitute the false positive rate, except instead of pixels for the x-coordinate,

the total count of non-fold objects would be used. These two resulted in an AUC of

0.976 (Fig. 4.9(c)) and 0.964 (Fig. 4.9(d)), respectively.

4.7 Discussion

Despite the overall decent results, there are still some shortcomings that could

be addressed. Particularly, the fact that there is no existing standard for the finding

and marking of folds manually adds a fundamental ambiguity to the task of finding

them automatically - no matter how reasonable a ground truth appears to be, unless

it is vetted in some way, any classification based on that truth is going to be subject

to justifiable scrutiny. That said, given the assumption that the truth was marked

in a way that accurately captures both the presence and location of folds, the results

here are quite good. The most notable problems seem to arise from exactly what

one would expect: the vessels, artifacts, and the ONH. The vessels and artifacts are

fairly well understood, though features were added in an attempt to alleviate that

as much as possible. Indeed, this seemed to work fairly well, but qualitatively, it is

far from ideal. Future work may consist of separate classifiers for both the vessels

and artifacts, and using that to mask the probability map of the folds. This has

the benefit of treating the vessel and fold problem as one that is already fairly well

understood, thus allowing the focus of work to be strictly on fold features.

The ONH, however, is an entirely different matter. As shown in Fig. 4.10, the

topology of the ONH is unpredictable with the method used in this doctoral work

for fold enhancement. There could be any number of contours and patterns that

present themselves, and indeed there are times when folds legitimately do appear on

the ONH. For this doctoral work, the radius from the approximate center of the ONH
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Figure 4.7: Fold enhanced image shown alongside resulting probability maps. Red
corresponds to folds, blue to vessels, and green to artifacts.
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Figure 4.8: Fold enhanced image shown alongside resulting probability maps for the
final iteration of this work.
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(d)

Figure 4.9: Resulting ROC curves of the initial classification technique (a) with an
AUC of 0.804, reported at MICCAI in 2017 [1]. And ROC curves for the final classi-
fication technique, which includes traditional ROC generation with an AUC of 0.896
(b), ROC of objects with an AUC of 0.976 (c), ROC of objects for true positives and
traditional for false positives with an AUC of 0.964 (d).

was used as a feature, and the ONH was effectively masked by simply not marking

anything on the ONH as a fold. While this is reasonable in the sense that one cannot

mark what one cannot see, it goes back to the problem of there being no standard way

to visualize folds in the first place. However, this is somewhat less problematic than

it may seem, as a reliable way to visualize folds on the ONH would necessarily include
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(a) (b) (c)

Figure 4.10: Some additional probability maps. (a) and (c) had no folds marked in
the truth, and despite a somewhat high presence of red markings, it can be seen that
the red is not nearly as bright as the true folds in (b).

the side-effect of eliminating the unpredictable topology of the ONH in fold-enhanced

images.

4.7.1 Categorization of Folds and Wrinkles

Ultimately, the main goal of this chapter is to determine if folds exist. However,

there is clinical significance to categorizing folds, once found. Specifically, the orien-

tation, which is discussed where it is assumed to be more useful (Section 5.2.3), is of

interest to the determination of the cause of optic disc edema. It may be worthwhile

to point out that orientation, spatial frequency, coherence, and other attributes are

easier to obtain than the actual presence of folds, as some of these additional metrics

are features used for fold classification. Clinically, folds are classified as either peri-

papillary wrinkles, retinal folds, or choroidal folds. Peripapillary wrinkles are defined

as wrinkles within a half-disc diameter from the ONH center, whereas retinal folds

are defined as folds greater than half a disc diameter from the disc. These categories,

for example, could be assigned directly to any area found to have a fold by a slight

alteration of features 2 and 107 from Table 4.2, and a segmentation of the opening

to Bruch’s membrane [32]. However, as it is explained in Section 5.2.3, it could be
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expected that, apart from existence, orientation alone is to be the more important

attribute for distinguishing the cause of edema.

4.7.2 Supplementary Topic: Fold Enhancement
Techniques

In this subsection, the methods considered for creating the fold-enhanced image

are discussed in detail. Since the automatic identification of folds is something of a

largely unexplored area, in many ways the work in this thesis involved starting from

scratch – though not truly as work has been done to identify folds manually [27] [26].

The first step is to enhance folds such that they can be more easily identified. There

is no established method for doing so, and indeed no ground truth for such a thing

to compare various methods for accuracy. The idea of creating an image before work

can even begin is something of which its significance can be easily overlooked, as

no matter how the images are produced or how reasonable they seem to look, there

is always the chance that something is missing, and there is no way to tell without

starting over. However, despite this, one needs to start somewhere, and the best

option is to approach with reason and see where it leads. To that end, it only needs

to be asked what folds are, and that answer is small fluctuations on a surface.

Each of the methods involved generating an en face image - as this deals with a

surface it is both sufficient and far simpler to deal with a 2D image. The results are

shown in Fig. 4.11, and are listed below:

(a) The ILM segmentation inherently includes some smoothing, which overlooks

small fluctuations on the surface. For this image, the surface is iteratively

relaxed by taking the vertical derivative and moving the surface at each pixel

until a maximum derivative in the axial direction is found, with no smoothness

constraints. The difference between the relaxed surface vertical location and

the original smoothed surface vertical location is shown.
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(b) The maximum difference between the relaxed and smoothed surfaces from (a)

are used to create a range around the smoothed surface, and the average SD-

OCT intensity in that range is shown.

(c) The smoothed surface is again relaxed but instead of finding the maximum

derivative, it instead looks for the location for each pixel that results in a near-

constant SD-OCT value throughout the surface. The difference between the

smoothed and relaxed surface is shown as in (a).

(d) The maximum difference between the relaxed surface from (c) and smoothed

surface are again used to create a range that is averaged as in (b).

(e) An average between 7 pixels of the ILM.

(f) Uses the surface of constant value (as found in (c)) to compute the average

within 7 pixels.

(g) The same as in (f) but taking the median instead of the average.

(h) The SD-OCT image anterior to the ILM is set to zero and a summed cumu-

latively in the anterior-posterior direction. The surface of constant value is

found within the cumulative sum image. The difference between the surface of

constant value and the smoothed surface is shown.

(i) The relaxed surface is found after a local normalization and the average vector

normal to the surface is found. A dot product of the normal at each location

on the surface and the average is shown.

(j) The same as (i) except the SD-OCT is laterally upsampled by a factor of 2

using bicubic interpolation first.

(k) The same as in (j) but upsampled by 2 using bilinear interpolation.
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(l) The same as (i) but using the dot product with a local normal instead of the

normal for the whole image, and upsampled by 2.

The method in Fig. 4.11(e) was the one selected for this work. Again, one can

only really base this decision on a qualitative assessment, and while Fig. 4.11 (g) and

(h) both seem plausible alternatives, the folds in Fig. 4.11(e) seem to be the clearest.

It could be noted, however, that the methods used to produce images Fig. 4.11(i,j,k)

seem like a better way to visualize folds in the choroid, as choroidal folds tend to be

of a wavelength that is too large for any practical surface smoothing to neglect its

undulations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: The resulting images from multiple attempts to enhance folds in SD-
OCT images. The method resulting in figure (e) was the one ultimately chosen for
the work in this thesis.



42

CHAPTER 5
DISTINGUISHING BETWEEN CAUSES OF OPTIC DISC EDEMA

(AIM 2)

5.1 Introduction

In this chapter, an algorithm is developed that distinguishes between papilledema

and other causes of optic disc edema. There are a number of methods that can be

used to distinguish papilledema from other causes [33, 34], including invasive tech-

niques such as lumbar punctures [35], and imaging techniques such as orbital ultra-

sonography [36] and fluorescein angiography [37], but ideally one would like to extract

as much information as possible from a single imaging modality. The data acquired

by The University of Iowa Hospitals and Clinics has 88 usable fundus/SD-OCT im-

age pairs taken on the same day with multiple causes of optic disc edema, and since

fundus images are the simplest of the two image types to obtain, it would be ideal if

diagnostics could eventually be performed entirely with fundus images. While such a

project may be a bit ambitious for one thesis, it is useful to work towards that ideal,

and that is, in part, what is done here.

5.2 Features for Distinguishing Cause of Optic
Disc Edema

Both SD-OCT and fundus features are used, such as RNFL thickness, BM shape,

and fold-related features from Aim 1. The fundus features can be found in the next

chapter. A summary feature list can be seen in Table 5.1. The intent is to identify

features that are important to assessing both the cause and severity of optic disc

edema.

5.2.1 Fundus Features

Much of this will be covered more thoroughly in the next chapter, but as the con-

tents of the next chapter are exclusively about assessing the severity of papilledema, it

seemed worthwhile first to show the algorithm that determines which patients actually
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# Image Source Name
1 Fundus Swollen ONH area
2 Fundus Vessel Discontinuity Index
3 Fundus MUCH Parameters
4 Fundus Disc Margin Obscuration Ratios
5 Fundus Disc Margin Obscuration Parameters
6 Fundus Small Vessel Obscuration
7 Fundus Vessel Border Obscuration
8 Fundus Artery-Vein Ratio
9 SD-OCT Fold Parameters

10 SD-OCT TRV
11 SD-OCT BMO Shape
12 SD-OCT RNFL Thickness

Table 5.1: A summary list of features used for distinctions between causes of optic
disc edema. Note that there are up to 12 variants of each of these, which consists of
ratios, nonlinear transformations, and absolute differences. The full list can be seen
in Fig. 5.6.

have it. Many of the fundus features covered are explicitly designed for determining

severity. However, these features are expected to change in a way that is relatively

well correlated to a change in severity of papilledema. Thus, it stands to reason that

if it is not true papilledema then the correlation will have some discongruity. For

example, if it is found that the area of the optic disc swelling (section 6.3.2) would

indicate a high severity but the vessel tortuosity (section 6.3.1) suggests little or no

severity, then this increases the likelihood that it is not true papilledema.

5.2.2 BM Shape

A relatively recent method for giving some insight as to the cause of optic disc

swelling consists of an analysis based on Bruch’s membrane (BM) [2, 9]. The idea

is that when swelling is due to raised intracranial pressure, the increased pressure

is relatively contained within the nervous system, and is the direct cause of the

swelling visible at the optic disc. Since the optic nerve, which is posterior to the
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eye, is effectively pushing forward to cause the swelling, the back of the eye bends

forward with it. Shape analysis of Bruch’s membrane is performed using eigenvector

decomposition and Procrustes analysis. Prior work on this topic (section 3.3) uses

5-line raster scans, which are a modified version of normal SD-OCT images, except

with much higher resolution at the cost of less area covered. The 5-line raster scans

represent 9mm of physical space in the lateral direction, whereas volumetric scans

only represent 6mm. The algorithm is designed to assume a 2.5mm distance from

the BMO marked and the final landmark placed on the Bruch’s membrane layer. For

the 5-line raster scans, as long as they are reasonably centered, an extra 2.5mm of

space to work with on each side is a relatively safe assumption, but in volumetric

scans it is markedly uncommon. While it may be true that the algorithm could

be redesigned to consider a smaller area, for comparison, it is ideal that the shape

parameter computations for the 5-line raster and volumetric scans to be as similar as

possible, thus making a 2.5mm landmark length essential. To that end, the boundary

is extrapolated by fitting 50 pixels on each side to a quadratic equation (Fig. 5.1).

The conversion from raster scans to volumetric was reported at ARVO in 2016 [38],

with a correlation of 0.967 (Fig. 5.2). Each patient was left out and eigenvectors

computed for all patients remaining. The overall eigenvectors can be seen in Fig. 5.4

and all shape points can be seen in Fig. 5.3. The shape parameters for each left-out

patient is computed for each image in the dataset acquired from the University of

Iowa and used as a feature. Unlike the work in [2, 9], for this data it appeared that

the first two eigenvectors showed some upward bending. As such, both were used as

features, in addition to a simple addition of the two eigenvalues to accentuate upward

bending.

5.2.3 Folds and Wrinkles

In the case of pseudopapilledema, there is no actual swelling. It is just the way a

particular patient’s optic disc looks naturally. As such, there is no mechanical stress,
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(a)

(b)

Figure 5.1: A high-definition raster scan (a) and the central slice of a volumetric scan
(b), with landmarks shown. Note the difference in image quality and the reduced
size in the lateral direction necessitating an extrapolation of the bottom layer on the
ends.

Figure 5.2: Correlation between shape parameter computed from raster scans and
shape parameter computed from volumetric SD-OCT images.



46

(a)

(b)

Figure 5.3: Results of shape analysis in the University of Iowa dataset. (a) is all the
plotted shapes, as they are, whereas (b) is the same shapes reproduced using only the
first three eigenvectors. Green and blue are NAION, pink and red are papilledema,
and gray and black are cases of optic disc edema due to other causes.

and we should not expect to see folds at all. For true papilledema, as mentioned in

the previous section, the pressure originates posterior to the eye, pressing it forward.

Just as pressing into a large rubber sheet will produce wrinkles that are aligned

radially from the point of pressure, so too are we more likely to see this in true

papilledema. For AION, which means anterior ION, the source of pressure is not

outside the eye. This suggests a pushing from within the optic disc, which is likely to

result in concentric folds, if any. From these observations, it seems prudent to extract

the fold direction and detection as a feature.

The complete list of fold features can be seen in Table 5.2. Using an automatically
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Figure 5.4: Eigenvectors of this dataset shown by increasing eigenvalues, c.

approximated center for the optic disc, a direction map is produced to determine

which orientations should be labeled at either concentric or radial, relative to the

optic disc center. Combined with the probability maps from the previous chapter, it



48

# Feature Description
1 Max fold probability after 11× 11 local minimum filter
2 Cosine of orientation angle at location corresponding to (1)
3 Cosine of max orientation angle of all pixels above threshold
4 Count of pixels in probability map above threshold
5 Count of pixels in largest object after thresholding
6 Cosine of max orientation angle of grouped objects using k-means clustering

Table 5.2: List of all fold features obtained from fold probability maps as created
using the methods from chapter 4. Note that all angles listed (2, 3, and 6) use the
cosine of the difference between the orientation angle at that location and the angle of
radial direction with respect to the ONH center at that location. This causes values
to range between 0 and 1 and a value of 0.15 is used when no folds are found, as that
value is on the cusp between what could be defined as a radial fold or a concentric
fold.

is a straightforward task to threshold and determine the presence and direction of folds

in a given SD-OCT image. The direction of the folds is measured as it aligns with the

radial direction. Thus, it serves to only extract the minimum value of fold alignment

direction from an entire fold-enhanced image, as any radial fold suggests a higher

probability of true papilledema. Whereas if a minimum fold alignment direction is

still somewhat high, this suggests a concentric fold, which is only an indication that

it is not pseudopapilledema.

Theoretically, in the event there are no folds, the random forest analysis should

be able to handle that with a simple binary distinction, but it still raises the question

of what value for fold direction should be used in the event there are no folds. Since

there are to be two separate classifiers (Section 5.3), it makes sense that this answer

may be different for each. The fold orientation is computed for each fold by taking the

cosine of the difference between the orientation of a region and the radial direction

with respect to the approximate ONH center. This results in high values for radial

folds and low values for concentric folds. For the papilledema classifier, it is expected

that if folds are present, a high (radial) value should give a high degree of certainty
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for a true outcome, so a low value if no folds are found makes the best sense. For the

NAION classifier, it is expected that low (concentric) values will give a more likely

positive result, thus perhaps a high value is best. However, while all this may be

a reasonable approach, there is something to be said for the simplicity in picking a

value that is consistent for each. Perhaps the best idea, then, is to pick a value that is

on the cusp between what would be identified as radial and what would be identified

as concentric. Since the value of the orientation is determined as the cosine of the

difference between the radial direction and the direction of a given fold, this would

place the cusp at about 0.15, which is the value used in this work when no folds are

found.

Using the optimal threshold from Fig. 4.9(c), fold probability maps were thresh-

olded for each patient. A local minimum was found in an 11× 11 window across the

probability map, and the max for the filtered image used as a feature. Additionally,

the orientation angle corresponding to the location of the maximum probability map

value was used, in addition to the maximum orientation angle of all thresholded ob-

jects. The total number of true pixels in the thresholded image and the total number

of pixels in the largest object were both used as features as well.

The final fold feature was found by applying a k-means clustering algorithm to the

objects in the thresholded image. The dimensions in the k-means clustering are the

orientation angle and x and y position of the centroid of each object. The cosine of

the orientation angle is used to force it to vary between 0 (completely concentric) and

1 (completely radial), and the position coordinates are scaled to also range between -1

and 1, with respect to the approximated center of the opening to Bruch’s membrane.

The k of the k-means clustering algorithm is increased until the Euclidean distance

between any point in a group and the centroid does not exceed 1/8. Once all of

the k-means clusters meet this condition, any cluster with less than three members

was eliminated (Fig. 5.5). The maximum average orientation angle of the remaining
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clusters is used as a feature. The maximum is taken to identify when folds are entirely

concentric.

5.3 Classification

Classification is performed using a leave-one-patient-out random forest regression

analysis with a positive condition set to 1 and a negative condition set to 0. The two

main classifiers were performed on cases of papilledema volume matched to optic disc

edema due to other causes, and cases of NAION volume-matched to optic disc edema

due to other causes. For the papilledema classifier, there was an average papilledema

volume of 13.9 mm3 with a standard deviation of 3.22, while the average volume

for other patients was 14.94 mm3 with a standard deviation of 3.74. The patients

were volume matched by use of a greedy algorithm that selected image pairs with

the smallest difference in volumes until everything under a 4.5 mm3 difference was

matched. A total of 25 patient pairs were extracted from this process. This process

was repeated for NAION patients, resulting in 14 pairs, with an average volume of

NAION images of 13.56 mm3 and standard deviation of 3.27, while other patients in

this classifier had an average volume of 14.79 mm3 with a standard deviation of 3.57.

Other supplementary classifiers were also used, without volume matching and using

only SD-OCT or fundus features.

5.4 Results

Of a total of 88 patients, 63 were diagnosed with true papilledema, and 14 were

diagnosed with NAION. At the time of writing this, there were no viable images with

pseudopapilledema, but 11 had optic disc edema due to other causes. When a classi-

fier was trained and tested on papilledema patients volume matched to other causes of

optic disc edema, using a leave-one-patient-out random regression analysis, an AUC

was achieved of 0.89. When the same method was applied to volume matched NAION

patients, an AUC of 0.847 was achieved. Unfortunately, as mentioned there was an
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(a) (b)

Figure 5.5: Examples of fold-enhanced images (a) with the resulting k-means grouping
(b).
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insufficient number of pseudopapilledema patients for classification (Fig. 5.7). Addi-

tionally, a classifier was trained for both papilledema and NAION, without volume

matching, for comparison purposes. An AUC of 0.861 for the papilledema classifier

and 0.863 for the NAION classifier was achieved for these. This whole process was

also repeated using only fundus features (Fig. 5.8).

Using leave-one-patient-out regression meant that the random forest importance

could be computed with each iteration and summed across all iterations. The cu-

mulative importance can be found in Fig. 5.6.The most important feature for the

papilledema classifier was a fundus feature, which was the nasal/temporal border

gradient ratio (item 13 in Table 6.1). Some other important features include the

shape parameter (SD-OCT), the artery-to-vein ratio (Fundus), and max vessel width

(Fundus). The remaining features were all relatively equal in importance, except

for two that seemed to be largely unimportant. In contrast to the most important

feature, the least important features were the nasal/temporal distance-to-ellipse fit ra-

tios at 30 degree intervals (items 10 and 11 in Table 6.1). The lateral nasal/temporal

distance-to-ellipse fit ratio (item 9), however, was of comparable importance to the

rest.

For the NAION classifier, the most important feature was the shape parameter,

followed closely by the nasal/temporal vessel border gradient ratio (item 3 in Table

6.1), max vessel width, and fold orientation. The remaining features were, again, all

comparable in importance, except for the low importance features which were the 30

degree nasal/temporal distance-to-ellipse fit ratios and the count of fold pixels.

5.5 Discussion

Looking at Fig. 5.8, there seems to be something of an anomaly, in that the

volume-matched regression analysis from using fundus features only actually per-

formed better than the non-volume-matched. This is peculiar news. Granted, this

was only an exercise in curiosity, and the classification based on fundus features alone
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Figure 5.6: Cumulative importance of each feature, summed as each patient is left
out and the regression analysis trained.
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Figure 5.7: ROC charts from all features for (a) The volume-matched classifier be-
tween papilledema and all other causes of optic disc edema (b) the volume-matched
classifier between NAION and other causes (c) papilledema classifier without volume
matching, and (d) AION classifier without volume matching. Resulting AUCs were
0.89, 0.847, 0.861, and 0.863, respectively.

was not expected to perform well, but the fact that the results seem reasonable is

unexpected. As to why this would not perform as well when the volumes are not

matched invites much investigation, and although predicting cause from fundus fea-

tures alone was not a goal in this doctoral work, I cannot help but speculate. Of

the most important features in this fundus-only classification of cause was the nasal-
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Figure 5.8: ROC charts from fundus features only for (a) The volume-matched clas-
sifier between papilledema and all other causes of optic disc edema (b) the volume-
matched classifier between NAION and other causes (c) papilledema classifier without
volume matching, and (d) AION classifier without volume matching., with AUCs of
0.88, 0.832, 0.593, and 0.59, respectively.

temporal gradient ratio. This makes sense as, because these images were volume

matched, some of the high-severity images were left out. On the other hand, pa-

pilledema is partly identified through a ‘c-shaped halo’ of obscuration around the

optic disc at the lower severity levels, whereas other causes of optic disc edema are

not. Thus, we expect to see a different nasal/temporal gradient ratio for papilledema
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cases than for other causes, at this severity level, but not at all severity levels.

In any event, the results in Fig. 5.7 are the main ones of interest in this doctoral

work. Fig. 5.7(a) has an AUC of 0.89. While this does not qualify as a bad result, it

leaves room for improvement, as is the case with the NAION classifier with an AUC

of 0.863. It should be noted that the AUC of the NAION volume-matched cases using

only SD-OCT features (Fig. 5.9) was 0.668, which seems rather low compared to the

use of the full feature list and fundus-only features. It would appear odd that the full

feature list should perform well at all, considering the fact that there are more features

than data sets. This is likely due to the robustness of a random forest classifier in the

face of redundant features. In an attempt to confirm this, the SD-OCT and fundus

features were separately compressed by training to an intermediate number for each,

and that number was used in place of the SD-OCT or fundus features in the classifier

(Fig. 5.10). Indeed it doesn’t seem to be the case that the number of features had a

negative impact on the results, as the compressed feature sets performed poorly.



57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - specificity

se
n

si
ti

v
it

y

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - specificity

se
n

si
ti

v
it

y
(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - specificity

se
n

si
ti

v
it

y

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 - specificity

se
n

si
ti

v
it

y

(d)

Figure 5.9: ROC charts from SD-OCT features only for (a) The volume-matched
classifier between papilledema and all other causes of optic disc edema (b) the volume-
matched classifier between NAION and other causes (c) papilledema classifier without
volume matching, and (d) AION classifier without volume matching, with AUCs of
0.848, 0.668, 0.816, and 0.816, respectively.
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Figure 5.10: Using the volume-matched results from the fundus-only and SD-OCT-
only features as features for each other. (a) Papilledema volume matched with fundus-
only features used in a classifier, and the results of that classifier added to SD-OCT
features and a classifier ran again. (b) The same thing except the first classifier was
the SD-OCT-only features, and these results were added to fundus-only features. (c)
The same as (a) but for NAION. (d) The same as (b) but for NAION. AUCs were
0.757, 0.566, 0.612, and 0.714, respectively.
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CHAPTER 6
QUANTIFICATION OF OPTIC DISC EDEMA SEVERITY IN CASES

OF PAPILLEDEMA (AIM 3)

6.1 Introduction

In the event optic disc edema is due to raised intracranial pressure (papilledema),

the swelling is often measured by the Frisén scale [3], which is a 0-5 ordinal rating of

severity (with 0 being normal). This rating requires clinical expertise and is subject

to the interpretation of the measurer, making it prone to inconsistencies. With the

introduction of spectral-domain optical coherence tomography (SD-OCT), an auto-

mated segmentation of the layers of the ONH has been developed, and the total retinal

volume (Fig. 3.2) has been computed [28] in cases of papilledema, with a strong corre-

lation found between the volume of the ONH and expert-defined Frisén scale grades.

Given its continuous and repeatable nature, it is assumed that the SD-OCT-based

ONH volume serves as a better representation for the severity of optic nerve edema,

in papilledema cases. However, computing this volume requires one to capture the

ONH with SD-OCT imagery, which requires the use of expensive equipment that is

not commonly available in either an emergency room or telemedical setting. Having

the ability to assess the severity of optic nerve edema in such settings is highly desir-

able, as many causes of optic nerve edema can indicate serious underlying conditions

that need to be diagnosed early.

On the other hand, Echegaray et al. [5] proposed a classification approach to

predict the Frisén-scale grades from color fundus features. In this thesis, given the

limitations associated with Frisén-scale grades, instead of using Frisén-scale grades as

the reference standard it is assumed SD-OCT-based 3D volumetric calculations serve

as a more reliable reference standard for measuring the degree of optic nerve edema.

In this chapter, a regression-based approach for predicting the volume computed from

a 3D SD-OCT segmentation of the ONH from features extracted from 2D color fundus

photographs is developed, thereby obtaining a continuous assessment of the severity
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of optic nerve edema from fundus photographs alone.

6.2 Preprocessing Steps Prior to Feature
Extraction

Some preprocessing steps were implemented prior to feature extraction. The first

was determining the magnification, which was important as a first step as other

preprocessing steps rely on it. The next step was the vessel segmentation, as discussed

in section 3.4. The vessel segmentation was used twice for two different scales - one for

the whole image and one restricted to only the ONH area. The vessel segmentation

[39] used was robust enough that the magnification was not needed for the whole

image, however for the ONH-vessel segmentation, this was required for proper scaling.

The last preprocessing step was the generation of the cost image used to segment the

ONH or the ONH swelling. For healthy eyes, segmentation is usually straightforward,

but as the primary interest for this thesis is in images with optic disc edema, it is

expected that there will be images that do not have a clear ONH boundary. Thus,

there is a heavy reliance on the magnification for initial segmentations to be later

refined, which is accounted for in the cost image generation.

6.2.1 Magnification

As the intent is to approximate a physical volume, the issue of scale is signifi-

cant. However, among the datasets available, the individual magnifications and focal

lengths of the fundus images were not recorded. To compensate for this, the magnifi-

cation was approximated by manually registering the fundus image to the en face of

the SD-OCT image (Fig. 6.1), using a three-point registration. While this is not an

absolute magnification, it serves as a relative metric. This was computed by finding

the pixel distance between each registration point, and generating ratios of fundus

distances to SD-OCT distances. The median distance ratio was used as the magnifi-

cation. The median was used instead of the mean because artifacts in the SD-OCT
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image provide for the possibility of outliers. Each resulting median ratio was nor-

malized by dividing by the maximum of the entire data set (for example, the dataset

acquired by the University of Iowa Hospitals and Clinics had a maximum scaling fac-

tor of 0.9376). This was done in an attempt to alleviate a possible degree of variation

in other datasets affecting the algorithm unexpectedly; i.e. if the true magnifications

and focal lengths were recorded, the calculated physical scale for each image could

be similarly normalized, resulting in the same (0, 1] range - despite the fact that the

scaling factor is relative, this allows it to be treated as absolute.

6.2.2 Cost Function Generation for Segmenting the
ONH Swelling Area

In swollen cases, the ONH boundary is often obscured, which complicates a seg-

mentation of the ONH (in both 2D and 3D images) - which is partial motivation for

segmenting the swollen area, instead of attempting to segment the disc, itself. Seg-

menting the ONH swelling area from the peripheral area is among the more important

tasks in this thesis. This is done by unwrapping the image about a manually approx-

imated center, generating a cost function, and using a graph-based algorithm [40] to

find a single, continuous border.

The cost function is generated by first performing a vessel segmentation and using

second-order interpolation to inpaint the vessels. This minimizes the effect the hard

boundary of the vessels has on the segmentation. However, especially on the ONH,

vessels can sometimes overlap and appear too large or unusual of shape to be marked

as a vessel by a machine, preventing them from being detected by a vessel detection

algorithm (Fig. 6.2). To circumvent this, a mask is applied near the center of the

ONH. The mask is made using a simple 4-dimensional k-means segmentation. Three

of the dimensions consisted of the RGB values, and the fourth was the radius from

the approximated center. The inpainted image is segmented into three regions (k =

3), which was assumed to be the ONH, the peripheral area, and the background
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(a)

(b)

Figure 6.1: The maximum (a) and minimum (b) magnified fundus images acquired by
the University of Iowa Hospitals and Clinics. Shown is each en face of the SD-OCT
image alongside the greyscale of the fundus image, and the three manually marked
registration points shown as red, green, and blue dots. These image pairs correspond
to a relative scaling value of 1 and 0.603, respectively.
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(KO, KP , KB).

However, the nature of the problem is that the ONH and the peripheral area are

not easy to distinguish in cases of optic disc edema - not even manually. As such,

a distinction is introduced by modifying the radius dimension. That is, instead of a

linear radius, a Gaussian radius was used, with standard deviation scaled by mag-

nification. This allows for the simple control over an expected optic disc radius by

adjusting the Gaussian variance, and further allows uncertainty in the approximated

center position to be considered by adjusting the Gaussian magnitude. More gener-

ally, if d is the vector of features used in the k-means classification, then d1,2,3 are the

RGB values, and

d4 =
√
te−r

2/(1002tM), (6.1)

where M is the magnification and r is the radius in pixels. It is important to re-

member that the point of this k-means segmentation is not to come up with a final

segmentation, but to error on the side of under-approximation of the ONH boundary

- to mask out a region that can be said to be part of the ONH with high certainty,

such that vessel anomalies on the ONH don’t disrupt the segmentation. This is why

a value of 100 pixels was chosen for the standard deviation - because a radius of 100

pixels is smaller than any ONH radius, at the magnifications of the images in the Uni-

versity of Iowa dataset. The purpose of t is to create a smooth boundary by checking

the boundary between the ONH and peripheral area and iteratively increasing t if

there are large jumps (i.e. greater than 20 pixels) in boundary radius between 0.5

degree increments (Fig. 6.3).

Using the unwrapped inpainted image, a median filter is applied in an attempt

to diminish the impact any remaining smaller vessels or other anomalies may have

on our cost function generation. Then, a small Gaussian is applied and a vertical

derivative taken. It is relatively well known that the ONH area tends to have less

color overall than the peripheral area, and that it is generally brighter. As such,
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it is expected that the standard deviation of the vertical derivatives, the maximum

of the vertical derivatives, and the mean of vertical derivatives, across each RGB

frame, are each useful indicators of the boundary between the swollen ONH and the

peripheral area. To compute the cost function, consider how each value is expected

to have an impact. The expectations for what the mean and maximum produce

are straightforward, but the information that the standard deviation provides may

be slightly less obvious. A low standard deviation is indicative of each color frame

changing in intensity at a similar rate, which suggests there is not a shift in color.

In such a case, the maximum tells us nothing that the mean does not tell us. On

the other hand, a high standard deviation indicates that at least one color frame

is changing notably more than the other(s). In this case, the maximum becomes

something worth paying careful attention to, because that is where all the change is

going to be found. In an attempt to combine these in the most useful way possible,

the maximum is weighed by the standard deviation and summed with the mean.

More generally, our cost function can be defined as

C(i, j) = (Ī ′f (i, j) + σI′f (i,j) × max
f={r,g,b}

I ′f (i, j))×M,


M = 1, (i, j) ∈ KP

M = 0.5, (i, j) ∈ KO

M = 0, (i, j) ∈ KB

(6.2)

where I ′ is the radial derivative image (that is, vertical derivative for the unwrapped

case). The intent of summing with the mean is to establish a threshold or minimum

value for each pixel, which becomes relevant when the standard deviation is near zero.

Once this cost function is constructed, a graph search approach is used to segment the

ONH swelling from the peripapillary area, while preserving circularity constraints.
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(a) (b)

Figure 6.2: A fundus image before (a) and after (b) inpainting. Note some of the over-
lapping vessels on the inferior region of the ONH that are still visible after inpainting.
This could cause errors in the segmentation.

6.3 Feature Extraction

In this section, each feature is discussed in detail. The complete feature list can be

found in Table 6.1. Because there is sometimes only a slight variation in computation

method between one feature and another, when each feature is first described, it is

annotated with angle brackets〈0〉 to indicate its place in Table 6.1.

6.3.1 Vessel Features

The Vessel Discontinuity Index (VDI) is the count of discontinuities in the vessel

segmentation〈1〉 and was found by Echegaray et al. to be of particular significance in

classifying the severity of ONH swelling. This is due to the vessel detection algorithm

failing to detect sections of the vessels that are obscured by a swollen ONH. The VDI

was found by unwrapping the vessel segmentation about the approximate center of

the ONH, using local entropy thresholding to create a binary image [22], computing

the skeleton, shrinking it for 30 iterations to remove spurious branches, and counting
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Figure 6.3: K-means results for increasing values of t. Each image is unwrapped at
0.5o resolution - i.e. 720 pixels in the horizontal direction. The brighter, top, part in
each figure is the k-means cluster in question (KO). The boundary between the top
cluster and the central cluster (KP ) is evaluated for smoothness, and t is increased
in Eq. 6.1 until any jump in the border between the top and middle cluster does not
exceed 20 pixels. For these images, t = {1, 4, 6, 9, 11, 13, 15}.
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# Description

1 Vessel Discontinuity Index (VDI)
2 VDI scaled by distance from center
3 Border Vessel nasal to temporal gradient ratio
4 Ratio of ONH vessels to Peripheral scaled
5 Ratio of ONH vessels to Peripheral limited
6 Artery-to-Vein ratio
7 Max vessel width
8 ONH swelling area
9 Ratio of central nasal to temporal distance to fit ellipse edge
10 Ratio of superior nasal to inferior temporal distance to fit ellipse edge
11 Ratio of inferior nasal to superior temporal distance to fit ellipse edge
12 Mean ONH swelling border gradient value
13 ONH temporal to nasal border gradient ratio
14 MUCH components (four total)
15 dMUCH imaginary component minus phase
16 Maximum of small vessel sums
17 Mean of max 5 small vessel sums
18 Maximum of small vessel means
19 Mean of max 5 small vessel means
20 Maximum vessel curvature
21 Mean of five highest vessel curvatures
22 Mean of greater-than-average vessel curvatures
23 ONH vessels to Peripheral scaled
24 Mean of small vessel means greater than the mean
25 Max vessel segment tortuosity
26 Location of tortuosity trend derivative equal to 1
27 Tortuosity trend parameter

Table 6.1: Table of all fundus features.
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the number of upper end-points (Fig. 6.4). Additionally, as it is expected that the

count of vessel discontinuities nearest the ONH is a more reliable indicator for the

swelling, a scaled version of the VDI〈2〉 is also calculated, with each discontinuity

weighted exponentially by its distance in pixels (scaled by magnification) from the

approximate center.

In addition to quantifying the errors caused in the vessel detection due to vessel

obscuration, the vessel segments that were detected are also looked at in an attempt to

assess some measure of how close they were to becoming errors. An evaluation of the

vessel gradient at the borders of the vessels is a straightforward way of evaluating the

obscuration of the vessels. However, the vessels are too randomly distributed in both

location and numbers to evaluate them all in any consistent way. As such, it would

seem prudent to focus on the location with the most clinical significance - and that is

the vessels as they leave the surface of the ONH. Using the border found as described

in section 6.2.2, the gradients of the detected vessels along the ONH borderline are

evaluated. Specifically, in cases of papilledema it is common for the nasal region to

exhibit signs of swelling before the temporal region. Thus, a ratio of temporal vessel

border gradients to nasal vessel border gradients is used for a feature〈3〉.

In severe cases of papilledema, even the large vessels on the ONH become ob-

scured. As such, a simple count of vessel pixels on the ONH, and off, was used to

create another ratio. However, despite this being unitless, magnification can have a

significant influence due to coverage. For example, if the magnification is such that

the ONH takes up more than half the image, one would expect this ratio to be much

larger than at smaller magnifications. To address this, the region outside the ONH is

limited to 50 pixels in radius, scaled by magnification〈4〉, and scaled by magnification

squared〈23〉. However, this 50-pixel radius still depends on the accuracy of our ONH

segmentation, which is intentionally not accurate because the intent is to segment the

swelling of the ONH, not the ONH itself (unless there is no swelling). So, another
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(a)

(b)

(c)

Figure 6.4: For features 〈1, 2〉: (a) Vessel segmentation. (b) The unwrapped vessel
segmentation. Image cropped vertically at 500 pixels to show most relevant region.
(c) The found vessel discontinuities, circled in red.
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ratio is introduced consisting of the total vessel pixels inside the ONH swelling area

to those outside, scaled by the magnification〈5〉.

Swelling of the optic disc tends to restrict blood flow out of the eye, which can

cause retinal veins to expand [12]. As such, a measure of the maximum vessel width

could be used as an additional indicator of the severity of the swelling. For this,

the binary vessel segmentation was eroded completely, counting the number of pixels

removed at each iteration. From analyzing the erosions of several images outside of

our dataset, it was noticed that the resulting count, when plotted against the iteration

number, was approximately Gaussian. This information is used by noting that if there

is no significant difference between artery and vein widths, they will both erode at the

same rate and approach zero pixels at the same rate, effectively resulting in matching

Gaussians. However, if the veins are notably wider than the arteries, the arteries will

erode sooner, and the veins will erode after that, effectively resulting in a disjointed

Gaussian.

This disjoint is quantified by taking the log of the count of pixels eroded at each

iteration (Fig. 6.5) and fitting the trend to a parabola, starting with the first three

iterations and adding each iteration to the fit. The intercept with 0 for each parabola

fit is computed, and the minimum intercept is assumed to represent the parabolic

parameters that correspond to the maximum artery width. The remaining iterations

are split up into groups of three, with each group also fit to a parabola. The quadratic

and linear parameters of each fit are compared to the artery fit, and the closest

match is assumed to be the curve corresponding to the veins, with its intercept with

0 assumed to represent the maximum vein width. From this, an artery-to-vein ratio

(AVR)〈6〉 is computed as a ratio of the intercepts. Since this is a unitless ratio, it

is not dependent on magnification. However, the intersection of 0 with the venous

parabola, scaled by magnification, is used for a representation of the maximum vessel

width〈7〉.
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The last group of vessel features are an attempt to quantify vessel curvature.

As the ONH swells, it restricts blood flow out of the eye. As mentioned above, this

restriction can cause the veins to swell, but also sometimes to twist. This tortuosity of

the vessels is computed by breaking the skeletonized vessel segmentation into objects

with only two endpoints. Any skeletal object with more than two endpoints is broken

up at its intersections. The area of the convex hull of each object is computed,

along with the length of the skeleton. The area-to-length ratio is computed for each

object. The max〈20〉 and mean of the max five〈21〉 were computed. Additionally,

as most lower-value ratios are expected to correspond to noise objects (and, more

importantly, most noise objects to have low ratios), the average ratio of all ratios

greater than the average〈22〉 is also taken.

6.3.2 Optic Disc Features

Using the segmentation found from section 6.2.2, the most straightforward and

obvious feature to use is the cross sectional area of the swollen ONH〈8〉. This is

computed by a simple count of the pixels enclosed by the ONH swelling border, and

scaled by magnification. Ratios of the deviations in the ONH swelling edges〈9,10,11〉,

with respect to an ellipse fit, are used as features as in Echegaray et al [5]. The

distance, in pixels, between the edge of a fit ellipse and a point on the segmentation

at 30 degree intervals is first found. Then the ratio of the temporal distance to nasal

distance was computed by the transformation r = (1 + dt)/(1 + dn) to eliminate the

possibility of errors due to a nasal distance of zero.

These edge ratios are assumed relevant because the ONH border becomes obscured

with increasing severity. Thus, a greater uncertainty in ONH edge location is expected

for swollen cases, which results in different ratios than would be found from healthy

patients. However, the theory behind these ratios only holds for mild-to-moderate

cases of swelling (also identified as Frisén grades 1 or 2), in which the ONH border

is not circumferentially obscured. For anything beyond that, the temporal edge is
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Figure 6.5: For features 〈6, 7〉: The artery (a) and vein (b) fits. The black dots are
the log of erosion counts at each iteration. For (a) the brightest red indicates a fit to
the first three points, and as each point is added the shown curve approaches blue -
i.e. the second-brightest red indicates a fit to the first four point, the third-brightest
the first five points, and so on. The fit with the lowest intersection with 1 is chosen to
represent the arteric width. This selected fit is shown in (b) in green and annotated
with dots in (a). For (b) three points are selected at a time, starting with the last
point used for the arteric fit. The group of three that has the quadratic and linear
parameters most closely matching the arteric fit is chosen for the venous fit. The
selected venous fit is annotated with dots in (b). The intersections with 1 for the
arteric and venous fits are used for the AVR 〈6〉 and the venous intersect with 1 is
scaled by magnification and used for the maximum vessel width 〈7〉.
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expected to be just as uncertain as the nasal edge, and these ratios could easily go

the other way. For such cases, some measure of the obscuration of the ONH border

is still a good idea. Using the radial gradient image, a magnification-scaled Gaussian

filter is applied to achieve a pseudo-normalization of sharpness across magnifications.

Masking out the vessels, the mean gradient strength along the ONH border is used

as a feature〈12〉.

As mentioned, the Gaussian filter is applied in an attempt to achieve a pseudo-

normalization for various magnifications - the same edges are naturally sharper at

lower magnifications, and the effects magnification has on decorrelating this feature

with the truth needs to be minimized. However, there are other factors besides

magnification that could interfere with the reliability of this feature, such as image

artifacts, contrast inconsistency, and of course the image simply being out of focus. In

an attempt to address this, another ratio of the mean vessel border gradient strength

on the nasal side to the mean vessel border gradient strength on the temporal side〈13〉

is created. While it is expected that this will be limited in the same way as the

elliptical fit error ratios 〈9, 10, 11〉, for the same reasons, it is also expected that this

will be a more stable feature, as there is no need to offset the means to account for

the variance in relative image clarity between images.

The in-painted greyscale image is unwrapped about the approximate center and

vertically cropped to 800 pixels1, scaled by magnification. This image is then his-

togram equalized to achieve a quasi-normalization, and the horizontal mean is taken.

In the ideal case, the Mean of the Unwrapped Cropped Histogram-equalized image

(MUCH) would resemble a half-wavelength sinusoid (Fig. 6.6). As such, a measure of

how sinusoidal the MUCH is could be indicative of how ideal the overall appearance

of the ONH is. The imaginary component, phase, magnitude, and real component〈14〉

1800 pixels was experimentally determined on a separate set of images to be enough to include
the ONH area, but exclude the edges of the fundus image. This assumes the ONH is reasonably
centered in the fundus image.
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of the first coefficient of the FFT of the MUCH are used as features - the phase is

shifted to range between (0, 2π). To minimize the effects of non-sinusoidal elements,

instead of using the MUCH directly, the derivative of the MUCH is used. This shifts

the expected high value, in the case of healthy eyes, from the cosine (real) component

to the sine (imaginary) component. In normal eyes the phase is ideally expected to

be zero, or near zero, and the imaginary component to be high. To accentuate this

expectation, the difference between the imaginary component and the phase is also

as a feature〈15〉.

With the ONH segmented, there was also a focus on the small vessels overlaying

the ONH. In swollen cases, these vessels tend to become harder to distinguish, and

it would be prudent to quantify that. To do this, first an image of only the swollen

ONH area is created, scaled, and upsampled by 4. The upsampling is done because

the small vessels on the ONH are usually too small to be detected using the method

in section 6.3.1. However, the vessel segmentation results from 6.3.1 is used to mask

the vessel segmentation here, to prevent the larger vessels from interfering with this

evaluation.

The small-vessel segmentation (Fig. 6.7) is thresholded, resulting in an object

image. Each object is then skeletonized, shrunk, and cleaned. The distance from each

skeletal pixel to the nearest dark point in the object image is computed. Each object

is evaluated for the consistency of distance values its skeleton contains. Specifically,

the standard deviation and sum of skeletal distance values are stored for each object.

The sums are computed because the longer a detected vessel is, the more it can be

said that the vessels on the surface of the ONH are visible. Each object sum is

also weighted by the standard deviation of the skeletal distances, as larger detected

objects with high sums may not be long thin vessel-like objects. The maximum

weighted sum〈16〉, and the average of the top five〈17〉 are each used as features. These

features are also repeated using means instead of sums 〈18,19〉.
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Figure 6.6: For features 〈19, 20, 21, 22, 23〉: (a) The unwrapped, cropped, and
histogram-equalized image. (b) The horizontal mean (MUCH).
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(a)

(b)

Figure 6.7: Small vessel segmentations corresponding to total retinal volumes of (a)
12.57mm3 and (b) 26.56mm3.
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6.3.3 Feature Selection

With the 24 features extracted, the next step is to determine which of these are

the most useful for predicting volume. Additionally, it is also true that some of these

features are likely to be of unequal use for varying volumes. The presence of small

vessels on the ONH, for example, is expected to carry significant weight for moderate

to high swelling, but deviations in the results from quantifying small vessel presence

for mild swelling should be comparable to that of normal patients. While this is

precisely the sort of thing that a random forest regression analysis is intended to take

into account, it may prove prudent to ensure the results include as much of the range

of the truth values as possible. In so many words, when the truth is plotted against

the results and fit linearly, a high correlation is of primary interest, but obtaining

slope as close to 1 as can be achieved may also prove worthwhile. Intuitively, a slope

of exactly zero or a slope of exactly one would necessarily have a high correlation, but

it is also known that, practically speaking, such ideal values are unlikely. To get a

sense of what happens when either the slope or correlation is prioritized, a cascaded

random forest regression analysis is implemented using the following steps:

1. Select one patient to leave out. This results in two datasets - one entirely

consisting of the left-out patient (P ) and the other consisting of all other patients

(P ′).

2. Train the random forest classifier on all of P ′ to generate importance values for

each feature.

3. Run a leave-10%-out random forest regression analysis on P ′.

(a) Order features by importance.

(b) First four features are included.

(c) Remaining features are added or removed four at a time. If a reduction in
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RMS is found, each of the four is swapped out one by one. If no reduction

in RMS is found, the next four in the list are added.

(d) Repeat 3c until a feature selection that results in the lowest RMS is found

for P ′.

4. Using the results of the regression analysis, P ′ is further divided into four groups

P ′′1 , P
′′
2 , P

′′
3 , P

′′
4 for each 25th volumetric percentile of P ′. Step 3 is repeated, for

each P ′′n . However, because the dataset used to develop this algorithm is limited

in size, adjacent P ′′n±1 are added to the group that is to be left out and iterated

over. This results in five total regression analysis random forest models, each

with their own set of features.

5. The left-out patient P is then tested on the model that results from (3).

6. Depending on which percentile the results from 5 falls in, P is then tested on

the corresponding model from 4, to obtain a final volume prediction for P .

7. Steps 1 through 6 are repeated for each patient.

Naturally, to save processing time, it serves to only train the model from step 4 that

is to be used, rather than all four. The intent of this is to use a standard leave-

one-patient-out random forest regression analysis to prioritize the highest possible

correlation, at the possible cost of a slope further from one, but to compare these

results with this cascaded random forest regression analysis to attain a slope closer

to one at the cost of correlation.

6.4 Experimental Methods and Results

Multiple fundus/SD-OCT image pairs were taken for each of 44 patients with pa-

pilledema at the University of Iowa. The SD-OCT-derived ONH volume correspond-

ing to each color fundus photograph was computed using the methodology described

in [28] from the SD-OCT images. One fundus/SD-OCT image pair was selected for
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further analysis from each of the 44 patients by choosing the image pair with the

largest amount of swelling from the ONH volume computation of the SD-OCT im-

age. When more than one fundus image was available for a given SD-OCT volume,

the fundus image which had the ONH area most in focus was chosen for use in this

algorithm.

When comparing the volumes computed with from the SD-OCT images and the

volumes predicted through this method, initial results were reported at an SPIE

conference in 2015 [41], with a mean square error of 2.27 mm3 and correlation of

R = 0.788. Since then, after refining features, a mean square error of 1.93 mm3 was

achieved with a correlation of R = 0.887. After feature selection, an RMS error of

1.93 mm3 was achieved, with a correlation coefficient of R = 0.902, and using feature

selection in a cascaded random forest regression analysis resulted in an RMS error of

1.87 mm3 with a correlation coefficient of R = 0.888.

An importance metric for each feature was also computed by running the classifier

on the entire data set and extrapolating the increase in accuracy associated with trees

that include each feature (Fig. 6.8). The predicted and actual values are shown in

Fig. 6.9. The most important features dealt with the ONH. The area enclosed by the

swollen ONH boundary〈8〉 and its greyscale entropy〈13〉 were of particular importance.

Additionally, the first imaginary component of the FFT of the MUCH〈19,20〉 turned

out to be of notable importance, along with the mean derivative of the swollen ONH

boundary〈12〉. This suggests that, for the purpose of estimating the swelling of the

ONH, features derived from the ONH are the best indicators.

6.5 Discussion

The determination of severity covered in this chapter applies only to papilledema

cases. While useful, it may also be prudent to determine if there is a clinical use for

the volume-defined severity for other causes of optic disc edema. While the features

extracted in this doctoral work were primarily intended to follow the progression of



80

0.01
0.17

0.02
2.95

0.58
0.03
0.03

0.48
0.51

1.82
1.51

1.77
0.18

0.24
0.32

0.20
0.31

0.09
0.05

0.13
0.12

0.21
0.01

0.17
0.47

0.57
2.01

0.16

0 0.5 1 1.5 2 2.5 3 3.5

Edge deviation at 0°
Edge deviation at -30°
Edge deviation at +30°

ONH segmentation area
Ratio of vessel pixels on ONH to peripheral vessels (scaled by magnification)

Ratio of vessel pixels on ONH to peripheral vessels (limited by radius)
Artery-Vein ratio
Max vessel width

Imaginary component + phase of MUCH
Imaginary MUCH component

Phase of MUCH component
Real MUCH component

Magnitude of MUCH component
Vessel Discontinuity Index

Weighted VDI
Average border gradient value

Nasal/temporal vesel gradient ratio at ONH border
Nasal/temporal ONH gradient ignoring vessels

Max vessel tortuosity
Average of max five vessel tortuosities

Average of vessel tortuosities greater than average
Count of vessel tortuosities greater than average

Interpolated count of vessel tortuosities using tend fit
Max small vessel sums

Average of max five small vessel sums
Average of small vessel sums greater than average

Max of small vessel means
Average of max five small vessel means

Figure 6.8: Average importance of each feature used for prediction of volume from
fundus features.

the Frisén scale, swelling due to any cause is going to have similarities to swelling

due to any other cause. As such, these same features may perform just as well when

trained on other causes of swelling.

In any event, these results are overall decent. There is clearly room for improve-

ment, but it is unclear as to how much improvement is even possible. The idea of

predicting a 3D attribute from 2D data is inherently limited. This is underscored

by noting that one of the most important features was that of the ONH swelling

area, which was constructed for the sole purpose of obtaining a direct cross-section of

what the TRV represents. Indeed, perhaps the most prevalent reason for most of the

outliers is that an accurate segmentation of the swollen ONH area depends mainly

on lighting, focus, contrast, and any number of imaging nuances that can become a

problem. In Fig. 6.10, for example, we can see that an outlier in this prediction had

an ONH swelling segmentation far inside the area that one might consider swollen.
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Figure 6.9: Plot of predicted vs. actual volume. The first plot (a) is using all features
in a leave-one-out random forest regression. This resulted in a correlation ofR = 0.887
and an RMS of 1.87 mm3. The slope of the trend line was 0.717. The second plot
(b) was after a non-cascaded feature selection, using up to steps 3d in section 6.3.3
in an attempt to get the highest correlation. This had a resulting correlation of
R = 0.902 and an RMS of 1.93 mm3, with a trend slope of 0.62. The final plot (d)
used all of the steps in section 6.3.3 in an attempt to get the highest slope and had
a resulting R = 0.888 and an RMS of 1.87 mm3 with a trend slope of 0.714. The
feature occurrence (c) shows how many times each feature was used, with the feature
labels corresponding to Table 6.1. Confidence bands (95%) are shown in green.

This is mainly due to the dull color of the swelling around the ONH overlapping the

ONH itself, which creates difficulty in finding an appropriate segmentation, even by
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hand. Furthermore, in Fig. 6.11, we see that the small vessel calculations on the

ONH were more clear than one might reasonably expect, as compared to the small

vessel calculation for the nearest image in volume, which was not only obscured by a

cataract, but also magnified enough for the original vessel segmentation to find the

small vessels on the ONH. This plus the venous dilation inherent in ONH swelling

images caused some of the small vessels to be masked before computing the small

vessel attributes.

Another example in Fig. 6.12 shows hemorrhaging being treated as detected vessels

(Fig. 6.13), which again a false border for the ONH and creates false small vessels

on the ONH. On top of all of this, another key feature was the MUCH components,

which were effectively a way to determine a radial intensity profile between the ONH

and the surrounding area after local histogram equalization. In Fig. 6.14 we can see

the shadows in (a) and the hemorrhaging in (c) set the groundwork for giving a high

contrast between the ONH and the surrounding area in a radial intensity profile, thus

contributing to the outlier status. Furthermore, the reliability of the MUCH depends

heavily on a good segmentation of the ONH swelling area, as the MUCH is centered

on that area. If the segmentation is clipped, as in Fig. 6.10(b) or Fig. 6.12(b), it

will offset the center to capture the best contrast in radial intensity, which is falsely

inflated by shadows and hemorrhaging.

In future work, it would be useful to detect and inpaint hemorrhaging separately,

in addition to implementing some form of image correction in the event of cataracts.

While this seems to be a bit daunting, especially the latter, it could be possible given

that one can view a fundus image with a cataract and still know what they are looking

at. As long as the expectations are known, it could be possible to adjust an image in

such a way that allows a machine to work within the framework of those expectations,

instead of attempting to train around the anomalies.
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(a) (b)

(c) (d)

Figure 6.10: Original fundus image (a) and ONH swelling segmentation (b) of an
outlier. This had a predicted volume of 13.1 mm3, but an actual volume of 16.0 mm3.
Compared to the next-closest image in volume (c and d) of actual volume 16.2 mm3,
with a predicted volume of 15.8 mm3. The swelling area would normally be outside
the dull area in (a), but due to the contrast between the ONH and the surrounding
area, it is instead inside the dull area.
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(a) (b)

(c) (d)

Figure 6.11: The small vessel and vessel segmentation (VDI) comparisons for an
outlier (a and c) with an image of similar volume (b and d) that was not an outlier.
These are additional features continued from Fig. 6.10. This is an example of an
image with notably better quality than others of comparable volume resulting in a
prediction of much lower volume.
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(a) (b)

(c) (d)

Figure 6.12: Original fundus image (a) and ONH swelling segmentation (b) of another
outlier. This had a predicted volume of 16.7 mm3, but an actual volume of 20.7 mm3.
Compared to the next-closest image (c and d) of actual volume 20.8 mm3, with a
predicted volume of 22.6 mm3. The brightness of the area on the ONH compared to
the dull color of the swelling around it contributed to a false, smaller, segmentation
that resulted in a low prediction.
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(a) (b)

(c) (d)

Figure 6.13: The small vessel and vessel segmentation (VDI) comparisons for an
outlier (a and c) with an image of similar volume (b and d) that was not an outlier.
These are additional features from Fig. 6.12. The hemorrhaging in (a) results in a
number of false vessels which affect the VDI, but also add a number of false vessels
to the small vessel attributes.
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(a) (b)

(c) (d)

Figure 6.14: Greyscale inpainted image the MUCH components were extracted from.
Actual (predicted) volumes were (a) 16.0 mm3 (13.1 mm3) (b) 16.2 mm3 (15.8 mm3)
(c) 20.7 mm3 (16.7 mm3) (d) 20.8 mm3 (22.6 mm3). The shadows in (a) and (c)
around the ONH accounts for a low prediction.
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CHAPTER 7
CONCLUSIONS

Swelling of the optic disc may be somewhat rare, both in general and compared to

other problems that may be found with the optic disc, but when it is a problem it tends

to be one of particular significance. With the exception of pseudopapilledema, when

an optic disc is swollen there is at least the threat of abrupt loss of eyesight. The ease

with which the back of the eye can be observed to check for this is awfully convenient,

but there is still the possibility of observer uncertainty. Due to the rarity of optic

disc edema, there tends to not be extensive training on the topic for emergency or

any personnel outside of a neuro-ophthalmology clinic. It is, thus, an understatement

to say that a device that can automatically assess a risk, and its severity, would be

useful.

Pseudopapilledema tends to be the ultimate confounder in this field, as an optic

disc that looks swollen naturally is easy to mistake for one that is swollen for risky

reasons. There are a number of ways that experienced ophthalmologists can tell the

difference, but it is not something the general population of medical practitioners

tends to know. Somewhat recently, folds in the retina have been discovered that are

caused due to the pressure a swollen optic disc applied to its surrounding area. These

folds are perhaps most easily visualized in SD-OCT images, but can also usually be

seen in fundus images, and are a bit of a giveaway when it comes to determining

if an optic disc is swollen due to some problem. In Chapter 4 folds were evaluated

for their presence and attributes. In addition to the presence of folds ruling out the

likelihood of pseudopapilledema, it has been theorized that different types of optic

disc edema can result in different types of folds. As the detection and quantification

of folds is a largely unexplored area, this doctoral work first started with a discussion

on how to best visualize them. Truths were marked, and features extracted to train

a pixel-based classifier to produce a probability map in the service of detecting folds.
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The attributes of the folds are, indeed, among the features used, which simplifies the

results as part of a classification of the cause.

In Chapter 5, the heart of the issue was addressed, and that is the distinction of the

cause of optic disc edema. As mentioned, the ultimate goal is to determine the cause

and severity of optic disc edema using only fundus images, completely automatically.

However, this is also a largely undeveloped area and as such it is important to give

it a useful starting point. Along that line of logic, both SD-OCT and fundus images

were used. Among other things, the shape of Bruch’s membrane is believed to be an

important factor in distinguishing between causes for which the optic disc is swollen

due to problems posterior to the optic disc or anterior. Specifically, it is theorized

that the opening to Bruch’s membrane is likely to bend towards the eye in the event

an optic disc is swollen due to raised intracranial pressure (papilledema). Shape

modeling has been implemented to quantify the bending of Bruch’s membrane, but

ordinarily requires special SD-OCT imaging variations to make it work reliably. Part

of the work in this thesis was to extend the same shape modeling theory to standard

SD-OCT images, to consolidate diagnosis to a more widely used imaging technique.

Additionally, many fundus features were used to determine the cause of optic disc

edema. Many of them were used in Chapter 6 to predict volume and were designed

to each correlate to the criteria by which papilledema is ordinarily assessed. The idea

being that if one or more of such features correlated poorly, while others correlated

well, a possible explanation is that the cause of optic disc edema was due to something

other than papilledema.

The fundus features in question were additionally used to predict volume from

fundus images. The volume of an optic disc (also called total retinal volume or

TRV) was taken from SD-OCT images and is believed to be a more reliable standard

for measuring papilledema severity than the current Frisén grading system, which

is ordinal and subjective. These features consisted of vessel features and optic disc
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features. As it is the optic disc that is swollen, it is expected that features related

to the optic disc would be the most substantial in an algorithm designed to predict

the severity of the swelling. This proved to be correct, and the cross sectional area

of the swelling along with various texture attributes related to the optic disc turned

out to be the most important in the classifier. However, the vessel features were

not insignificant. The swelling of the optic disc limits blood flow out of the eye by

constricting the vessels at the optic disc. This results in several different problems

that can be, and were, detected, measured, and used as features. Future work could

include the detection of folds from fundus images. This is not a simple task, as

folds do not show up easily in fundus images but when they are visible they can be

definitive. Additional future work may also include different sorts of cameras. For

example, there is a camera that provides a sweep of focal points in an image capture.

It may prove useful to get a sense of the topology of the optic disc from this sweep [42]

and combined with some implementation of shape modeling, predictions of the cause

of optic disc edema may be more accurate. Infrared cameras could also provide an

image of sub-retinal layers, giving a better image of the optic disc even in the event

of swelling. Stereoscopic imaging may be used as a possibly faster way to compute

topology. There are a variety of possibilities when one considers the source of the

images to work with, each with their limitations and benefits.

To summarize, this doctoral work consisted of the development of several machine-

learning approaches to determine both the cause and, in some cases, the severity of

optic disc edema based on features found in both SD-OCT and fundus images. The

ultimate goal to this work is of progress towards the development of an algorithm

that completely diagnosis a cause of optic disc edema, in addition to some estimate

of its urgency, using only fundus images.
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