
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2011

A feature-based algorithm for spike sorting
involving intelligent feature-weighting mechanism
Kaustubh Anil Patwardhan
University of Iowa

Copyright 2011 Kaustubh Anil Patwardhan

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/1253

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Patwardhan, Kaustubh Anil. "A feature-based algorithm for spike sorting involving intelligent feature-weighting mechanism." MS
(Master of Science) thesis, University of Iowa, 2011.
http://ir.uiowa.edu/etd/1253.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages

A FEATURE-BASED ALGORITHM FOR SPIKE SORTING INVOLVING

INTELLIGENT FEATURE-WEIGHTING MECHANISM

by

Kaustubh Anil Patwardhan

A thesis submitted in partial fulfillment
of the requirements for the Master of

Science degree in Electrical and Computer
Engineering in the Graduate College of

The University of Iowa

July 2011

Thesis Supervisor: Professor Er-Wei Bai

Copyright by

KAUSTUBH ANIL PATWARDHAN

2011

All Rights Reserved

Graduate College

The University of Iowa
Iowa city, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Kaustubh Anil Patwardhan

has been approved by the Examining Committee for the thesis
requirement for the Masters of Science degree in Electrical and
Computer Engineering at the July 2011 graduation.

Thesis Committee: ___________________________________
 Er-Wei Bai, Thesis Supervisor

 Steven Stasheff

 Punam Saha

ii

ACKNOWLEDGEMENT

It gives me great pleasure to present my Master’s thesis titled ‘A feature-based algorithm

for spike sorting involving intelligent feature-weighting mechanism’ in partial fulfillment of my

MS degree in Electrical and Computer Engineering.

First and foremost, I would like to express profound gratitude to my advisor, Professor

ErWei-Bai, for his invaluable support, encouragement, supervision, patience and useful

suggestions throughout the research work. His moral support and continuous guidance enabled

me to complete my work successfully.

Special thanks to Dr. Steven Stasheff for providing all the data and all his time and

efforts. I would like to thank Zhizun Cai for all his help and guidance throughout the project.

This work would not have been possible without Zhijun’s help.

I would like to thank the members of my committee, Dr. Stasheff and Professor Punam

Saha for taking time off from their busy schedule.

Last but not the least I would like to thank my family and all my friends for their love and

support during the project and throughout my life.

iii

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES .. vi

CHAPTER

 1. BACKGROUND AND MOTIVATION .. 1

1.1 Retinitis Pigmentosa and the Retina 1
1.2 Treatment for RP ... 2

 1.3 Spike Sorting .. 3
 1.4 Previous Work ... 4
 1.5 Thesis Contribution .. 4

 2. EXISTING METHODS .. 5

2.1 Manual Sorting .. 5
2.2 K-means Clustering ... 6
2.3 Principal Component Analysis .. 8
2.4 Support Vector Machines .. 9

 3. FEATURE BASED APPROACH .. 11

3.1 Data Used ... 11
3.2 Features Calculated .. 11
3.3 Weighting Techniques ... 16
 3.3.1 Entropy based Feature Weighting 16

3.3.2 Eigenvalue based Feature Weighting 18
 3.4 Clustering Procedure .. 20

3.5 Cluster Assignment .. 20
3.6 Evaluation Measures .. 21

 4. RESULTS…………………………………………………..……..... 23

4.1 Real Data Sets .. 23
4.2 Manual weighting .. 25
4.3 Comparison between results of K-means on 32xN data and
Entropy weighted 9xN data ... 29
4.4 Comparison between results of K-means on 32xN data and
Eigenvalue weighted 9xN data... 43
4.5 Comparison between results of K-means on 32xN PCA data and
Eigenvalue weighted 9xN data…………………………………. 58

 5. CONCLUSION AND FUTURE DIRECTIONS 77

iv

APPENDIX

 A. SOURCE CODE .. 78

A.1 feature_calculation.m .. 78
A.2 entropy_weighting.m .. 81

 A.3 ev_weighting.m ... 82
 A.4 pca.m ... 82
 A.5 cluster_spikes.m .. 83
 A.6 cluster_assignment.m .. 83
 A.7 hungarian.m ... 85
 A.8 cluster_plots.m .. 90

REFERENCES ……………………………………………………………….. 92

v

 LIST OF TABLES

Table

4.1 Real data sets and some statistics ... 24

4.2 Results of manual weighting (set1) .. 26

4.3 Results of manual weighting (set2) .. 27

4.4 Results of K-means on 32xN data and Entropy weighted 9xN data 30

4.5 Results of K-means on 32xN data and 9xN PCA Eigenvalue weighted
data……. .. 44

4.6 Results of K-means on 32xN PCA data and 9xN PCA Eigenvalue weighted
data ... 59

vi

LIST OF FIGURES

Figure

3.1 Peak to peak difference .. 12

3.2 Difference between right and left peak .. 13

3.3 Slope of right peak ... 14

3.4 Polynomial fit ... 15

4.1 Results of manual weighting (set 1) ... 26

4.2 Results of manual weighting (set 2) ... 28

4.3 Comparison between 32xN K-means and Entropy weighted 9xN data 42

4.4 Comparison between 32xN K-means and 9xN PCA Eigenvalue weighted
data…………………………………………………………………………. 58

4.5 Comparison between K-means on 32xN PCA and 9xN PCA Eigenvalue
weighted data .. 73

4.6 Plots of clusters based on gold standard ... 74

4.7 Plots of clusters based on K-means algorithm over original 32xN data …..74

4.8 Plots of clusters based on entropy weighted 9xN data using K-means 75

4.9 Plots of clusters based on PCA over original 32xN data 75

4.10 Plots of clusters based on eigenvalue weighted 9xN data using K-means . 76

1

CHAPTER 1

BACKGROUND AND MOTIVATION

 This chapter provides the background, motivation and the organization of the thesis.

1.1 Retinitis Pigmentosa and the Retina

Retinitis Pigmentosa (RP) is a group of inherited retinal degenerations that lead to

chronic blindness [1]. The retina is a complex light sensitive tissue that lines the inner surface of

the eye. It consists of several layers of neurons. The photoreceptor cells are the set of neurons

that are directly sensitive to light. They are mainly of two types: the rods and cones. Rods

provide black-and-white vision and function mainly in dim light while cones help us perceive

colors and support daytime vision. Retinal ganglion cells are a recently discovered type of

photoreceptor cells located near the inner surface of the retina that provide responses to global

bright daylight. Light striking the retina produces neural signals from the rods and cones which

are further processed by other retinal neurons [2]. This leads to action potentials in the retinal

ganglion cells.

Action potential refers to the rapid rise and fall of the electric membrane potential of a

cell. The cell’s plasma membrane consists of voltage gated ion channels which generate these

action potentials [3]. These channels are shut when the membrane potential is near the resting

potential of the cell, but they rapidly begin to open if the membrane potential increases to a

precisely defined threshold value. When the channels open, they allow an inward flow of sodium

ions, which changes the electrochemical gradient, which in turn produces a further rise in the

membrane potential. This then causes more channels to open, producing a greater electric

current. The process proceeds explosively until all of the available ion channels are open,

resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes

the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As

2

the sodium channels close, sodium ions can no longer enter the neuron, and they are actively

transported out of the plasma membrane. Potassium channels are then activated, and there is an

outward current of potassium ions, returning the electrochemical gradient to the resting state.

Observing this activity of different neurons can help us understand any changes occurring in the

morphology of the retina.

People with RP usually suffer from night blindness and tunnel vision caused by

photoreceptor degeneration. Abnormalities of the photoreceptors or the retinal pigment

epithelium (RPE) of the retina lead to progressive visual loss. Its progression varies in each

individual [4]. This retinal degeneration causes changes in the anatomy of outer retinal pathways

as well as the morphology of the inner retina. These changes in the inner retinal physiology are

associated with increased spontaneous activity and burst firing of the ganglion cells. Blindness

occurs due to the loss of photoreceptors and other inner retinal cells in some cases but the

ganglion cells still remain viable for months despite this activity [5].

1.2 Treatment for RP

Based on the different stages of the disease, four major approaches to the treatment of

patients with R.P have been described [6]. The first method corrects the biochemical

abnormalities that cause vision loss while some photoreceptors remain structurally intact. An

example is correction of an abnormality of the visual (retinoid) cycle in the form of retinitis

pigmentosa known as Leber's congenital amaurosis — specifically, the subtype caused by

mutations in the gene encoding RPE65. Subretinal gene therapy, in which a normal RPE65 gene

was delivered under the retina by intraocular injection, has successfully and safely corrected

dysfunction of the visual cycle in patients [7] [8]. The mechanism underlying Leber's congenital

amaurosis is complex, and there also is a component of progressive retinal degeneration. It is not

yet known if the correction of the visual-cycle defect halts or slows this degeneration.

3

A second approach to the treatment of R.P. focuses on slowing the progressive

degeneration of photoreceptors. It involves using neurotrophic factors, nutritional supplements

and other pharmaceutical agents that improve the viability of neurons by inhibiting proapoptotic

pathways, activating antiapoptotic signaling, reducing the production of retinotoxic molecules,

and limiting oxidative damage.

Two other therapeutic approaches have been tried on animal subjects with advanced

stages of RP where there are few or no functional photoreceptors remaining. One approach

focuses on regenerating lost photoreceptors by means of transplantation or genetic manipulation

of nonphotoreceptor retinal cell types, such as glia. The other approach involves creating

electrical signals in the visual pathway that substitute for the usual input from photoreceptors.

The success of most of these treatment approaches largely depends on the preservation of

a morphologically and functionally intact inner retina [5]. In order to decide a treatment plan,

one needs to investigate the activity of these neurons to assess photoreceptor functionality and

how well the inner retina has been preserved.

A study on retinal degeneration (rd) mice showed that even as the animal turns blind, the

retinal ganglion cells maintain a high level of activity for many weeks [5]. The activity of these

neurons can be recorded using multiple electrodes. However, each electrode records waveforms

from different neurons and we need to distinguish spikes produced by different neurons to

examine the activity of each neuron.

1.3 Spike sorting

Spike sorting refers to the process of assigning these action potentials to different

neurons. Complex brain processes are reflected by the activity of large neural populations and

that the study of single-cells in isolation gives only a very limited view of the whole picture [9]

[10]. Further developments in this area rely to a large extent on the ability to record

4

simultaneously from large populations of cells. This problem is difficult because, a) the

waveforms being classified are often noisy, b) waveforms coming from the same cell can vary in

both shape and amplitude, depending on the previous activity of the cell and c) waveforms can

overlap in time, resulting in even more complex waveforms. The implementation of optimal

spike sorting algorithms is a critical step forward since it can allow the analysis of the activity of

a few close-by neurons from each recording electrode. Distinguishing among the spikes

produced by different neurons is critical in observing the activity of each neuron and detect any

changes in it.

1.4 Previous work

Some of the previously reported approaches include manual sorting [11], k-means

clustering [12], principal component analysis (PCA) [13] and support vector machines (SVM)

[14]. However, some of these approaches depend heavily on inputs from human experts while

others do not consider the inherent features of the neural data. This thesis presents a completely

different approach by considering the various features of neural data and introducing an

intelligent weighting mechanism to cluster the spikes without any human intervention. This new

method also yields improved performance compared to the above mentioned approaches.

1.5 Thesis contribution:

This thesis aims to contribute the following:

• Calculate various features of the neural data based on the geometric properties of the

waveforms

• Develop an intelligent weighting technique to weight the features

• Incorporate the features and weighting techniques into the K-means clustering algorithm

5

CHAPTER 2

EXISTING METHODS

Some of the previously reported methods to determine the activity of each neuron include

manual sorting, K-means clustering and PCA. Following is a brief overview of these existing

methods.

2.1 Manual Sorting

Manual sorting refers to a common and labor-intensive approach which involves

manually identifying clusters by visual inspection. It involves grouping spikes with similar

features into clusters, corresponding to the different neurons. This approach has the advantage

that the human expert can apply information specific to the cells that are being studied. The

waveforms or firing patterns of neurons can be compared with their known characteristics. This

knowledge can also be used to decide criteria for including a particular spike to a cluster and

evaluate the results of the overall clustering procedure. Human sorters use commercial software

and various techniques such as PCA and manual cluster cutting [15] to label the spikes. These

softwares provide the users with tools to sort all waveforms from a particular recording one

channel at a time. This is usually achieved by manual cluster selection and refinement in a

graphical display constructed by projecting the waveforms onto their first two principal

components or other features.

There are, however, several disadvantages of this procedure because (1) you cannot

differentiate between waveforms visually (2) the rigorous process scales poorly to experiments

where large number of electrodes are used, (3) the results of this procedure are difficult to

reproduce due to human biases, (4) it is difficult to design quality metrics to assess this

subjective approach and (5) it is a very time-consuming task.

6

Significant variability among human sorters has previously been shown for recordings

from tetrodes and single electrodes [16].Expert human spike sorters have shown widely varying

performance on both real and synthetic neural datasets. On real data, subjects differed not only in

what constituted a spike versus noise but even in the number of units present in the data. These

results point to the need for objective spike-sorting algorithms that provide consistency across

experiments. Reduced human intervention can definitely improve the time taken for clustering.

2.2 K-means Clustering

K-means algorithm is a method of cluster analysis which aims to partition n observations

into k clusters in which each observation belongs to the cluster with the nearest mean. K-means

defines a prototype in terms of a centroid, which is usually the mean of a group of points [17].

It is an algorithm to classify or to group objects based on attributes/features into k

number of groups. K is positive integer number. The grouping is done by minimizing the sum of

the squares of distances between data and the corresponding cluster centroid.

The basic step of k-means clustering involves determining the number of cluster K and

assuming the centroid or center of these clusters. Initial centroids can be taken randomly from

the data. Then the K means algorithm iteratively determines the centroid coordinate, the distance

of each observation from the centroid and groups the observations based on minimum distance.

K-Means starts with a single cluster with its center as the mean of the data. This cluster is

split into two and the means of the new clusters are iteratively obtained. These two clusters are

again split and the process continues until the specified number of clusters is obtained. To assign

a point to the closest centroid, we need a proximity measure to quantify ‘closest’ for the neural

data. In other words, a clustering criterion has to be adopted. Euclidean distance is the most

commonly used proximity measure. Here is summary of clustering process:

Algorithm: K-means

7

Given a dataset X with N observations and M variables, the algorithm searches for a seaparation

of X into K clusters that minimizes the sum of within cluster distance of all variables.

Step 1 Determine number of clusters K

Step 2 Randomly select K distinct objects as the initial cluster centers.

Step 3 For each observation in X, calculate the distances between the observation and each

cluster center based on a proximity measure such as Euclidean distance and assign the

observation to the cluster with the shortest distance.

Step 4 Repeat Step 3 until all observations are assigned to clusters. For each cluster, compute a

new cluster center as the mean (average) of the observations of that cluster.

Step 5 Compare the new cluster centers to the previous centers. Stop the process if the centers

are the same; otherwise go back to Step 3.

The main weaknesses of K-means clustering are (1) the number of clusters k must be

determined beforehand and (2) it is unknown as to which variable of the data contributes more to

the clustering process since it is assumed that each variable has the same weight [17]. In order to

overcome these difficulties, we need to develop an intelligent mechanism to determine the

number of clusters and to weight the features based on their contribution to the clustering

process.

8

2.3 Principal Component Analysis (PCA):

PCA is a very useful mathematical procedure in analyzing data. It is a method to identify

various patterns in the data and express the data in such a way as to highlight the variability in

the data [18]. It is also helpful in compressing the data by reducing the number of dimensions

without much loss of information.

PCA converts a set of observations of possibly correlated variables into a set of values of

uncorrelated variables called principal components. The number of principal components is less

than or equal to the number of original variables. This transformation is defined in such a way

that the first principal component has as high a variance as possible and each succeeding

component in turn has the highest variance among the remaining components. The last

component has the lowest variance. The dimensionality of the data can then be reduced by

selecting only the first few principal components. Following is a summary of the process:

Algorithm: PCA

Given: A dataset X with N observations and M variables

Step 1 Organize the data into a matrix of M rows and N columns

Step 2 Calculate the mean of the data along each dimension M and subtract it from each column

of the data matrix X.

Step 3 Calculate the MxM covariance matrix C of the mean-subtracted data.

Step 4 Determine the MxM eigenvector matrix V and the MxM diagonal matrix D of

eigenvalues of the covariance matrix C.

9

Step 5 Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order of

decreasing eigenvalue.

Step 6 To reduce the dimensions of the original data, choose a subset of the eigenvectors that is

to select the first L columns of the matrix V since the remaining components can be discarded

due to their lower variance.

Step 7 Derive the transformed data by multiplying the transpose of the sorted matrix V (MxM)

with the original mean subtracted dataset X (MxN).

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑑𝑎𝑡𝑎 = 𝑉′ × 𝑋

Step 8 Follow K-means procedure to cluster the data

The main weakness of PCA is that it is very sensitive to outliers which are difficult to

identify in some cases. The concepts of proximity and distance become less meaningful with

increasing dimensionality and the process of subspace determination in PCA can be misled in the

presence of noise and outliers. Assigning different weights to the observations of the data based

on their relevancy can increase robustness of this method [19].

2.4 Support Vector Machines (SVM)

SVMs are a set of supervised learning methods used to analyze data and identify patterns

to classify it. It takes a set of input data and predicts the class to which each observation belongs.

It is a binary classifier which when given a training set, builds a model and assigns the new

observations into one cluster or the other. The SVM model is a representation of the observations

as points in space, mapped so that the observations of different clusters are clearly separated.

New observations are then mapped into that same space and predicted to belong to a particular

10

cluster based on which side of the separation they fall on. Support vector machine constructs a

hyperplane in a high dimensional space which can be used for classification. Intuitively, a good

separation is achieved by the hyperplane that has the largest distance to the nearest training data

points of any cluster. But in many cases, the points are separated by a nonlinear region. Rather

than fitting nonlinear curves to the data, SVM handles this by using a kernel function to map the

data into a different space where a hyperplane can be used to do the separation.

The use of kernels along with the absence of local minima is a major advantage of using

SVMs. But the choice of the kernel function can also be a drawback. The most serious problem

with SVMs is the high algorithmic complexity and extensive memory requirements [20].

11

CHAPTER 3

FEATURE BASED APPROACH

This chapter explains the proposed method and its working.

3.1 Data used

The data was obtained from simultaneous multiple electrode recordings of spontaneous

and light-evoked extra- cellular action potentials from 30 to 90 retinal ganglion cells of rd1 mice

[5]. The size of the data was 32xN where N is the number of observations and 32 is the number

of time instants at which the activity was recorded. An observation refers to a complete

waveform consisting of 32 data points. Nineteen such data sets were used with varying number

of observations and number of clusters.

3.2 Features calculated

The original input data obtained from rd1 mice is 32 dimensional and it takes a lot of

time to process it in some cases. Working with this huge data increases the cost of processing

and also does not take into consideration, the inherent information present in the data. Each

neuron tends to fire spikes of a particular shape. If the shape can be characterized then that

information can be used to classify each spike. The spikes can be characterized by measuring

different features. In general, the more features we have, the better it could be to distinguish

among different spikes [21]. The proposed method calculates various features of the neural data

obtained based on the geometric properties of the waveforms. These features reduce the

dimensions of the data. They also capture the inherent information of the data and this reduced

representation can then be used in the clustering procedure. All feature values are normalized.

Following is a brief description of the features calculated from the data.

12

1. Magnitude in frequency domain (magF): This refers to the magnitude of each observation in

the frequency domain and is obtained by taking the maximum of the absolute value of the Fast

Fourier Transform of each observation.

𝑚𝑎𝑔𝐹(𝑥) = max (𝑎𝑏𝑠(𝑓𝑓𝑡(𝑥))

where x is the observation.

2. Magnitude in time domain: This value is obtained by taking the difference of the maximum

and minimum values of each observation. It is also called the peak-to-peak amplitude [22].

Figure 3.1: Peak to peak difference

ms

µV

13

3. Spike variance: This refers to the variation of the values of observations from their mean and

is obtained by taking the summation of the square of the difference between each observation

and its mean and dividing it by the total number of data points.

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑗) = � [𝑥 (𝑖) −𝑚𝑒𝑎𝑛(𝑗)]2/32
32

𝑖=1

where x(i) are data points of each observation x, 32 is the number of variables of each

observation and j= 1,…, N is the number of observations.

 4. Difference between right and left peak: Each observation is divided into two halves based on

the 32 time instants at which the data is recorded. First half is from 1 to 16 and the second half is

from 17 to 32 and the difference between the maximum values in each half is calculated. At this

point, we have neglected any time shifting of the waveform within the window during the

recording process.

Figure 3.2: Difference between right and left peak

µV

ms

14

5. Slope of the right peak: This is the slope of each waveform as it rises from the valley to the

peak.

Figure 3.3: Slope of right peak

6. Polynomial fit of peak-to-peak: This feature provides the coefficients of a second order

polynomial fit for the part of each spike from the peak in the left half to the peak in the right half

of the spike. It considers only the second order coefficient (leading coefficient) of the polynomial

for each spike as it provides an insight about how deep the valley/ minimum of the spike is.

µV

ms

15

Figure 3.4: Polynomial fit

 The above plot just shows what a polynomial fit does. The waveform has not been taken

from the data that we worked with.

7. Polynomial fit of valley-to-peak: This feature provides the coefficients of a second order

polynomial fit for the part of each spike from minima of the spike to the peak of the spike in the

right half. Again, it considers only the second order coefficient (leading coefficient) of the

polynomial for each spike

8. Total absolute area under both the positive and negative going peaks [23]: It is the area under

the peaks of each observation and is calculated by taking the summation of the absolute value of

the difference between each observation and its mean divided by the number of sampling

instants.

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑎𝑟𝑒𝑎(𝑗) = � � |𝑥(𝑖) −𝑚𝑒𝑎𝑛(𝑗)|
32

𝑖=1
� /32

Time (ms)

Amplitude
(µV)

16

9. Root mean square (RMS) distance [23]: It is obtained by taking the summation of the square

of the difference between each observation and its mean, taking the square root of this quantity

and dividing it by the total number of data points. It would have been ideal to know the

amplitude of the waveform relative to the resting voltage in between spikes but for simplicity

purposes, the mean voltage has been considered.

𝑅𝑀𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗) = �� [𝑥(𝑖) −𝑚𝑒𝑎𝑛(𝑗)]²
32

𝑖=1
�
1/2

/32

These nine features form the variables for each observation of the input data. These

feature vectors are put together as rows in a matrix to get the reduced representation of the

original data. The new dimensions of the data are now 9xN. Each feature provides some

information about the original data itself based on its geometric properties and can be used to

cluster the data and distinguish between the activity of different neurons.

3.3 Weighting Techniques:

Although each feature contributes some information about the original data, the

contribution is not the same. Existing methods used to distinguish between the activity of retinal

ganglion cells do not take this into consideration. The more useful a feature is, the more

important role it should play in the clustering process. Hence, there is a need to assess the

importance of these features for every data set and put a bias on the more important features in

order to improve the clustering results. Here, we propose two such intelligent measures to

determine the dominance of features and weight the features accordingly before clustering the

data.

3.3.1 Entropy-based feature weighting:

Entropy is defined as the measure of uncertainty associated with any random variable

Each feature provides different amount of information about the original data which can be used

to improve the clustering. Entropy quantifies the expected value of this information. The higher

17

the entropy value, the higher is the information content associated with the feature. In this

approach, the information content of each feature is calculated and these entropy values are then

used to weight the features.

The values of each feature are initially divided into a number of bins using a histogram.

The number of bins is decided beforehand. Although entropy values increase with increasing

number of bins, no improvement is observed in the clustering results. Hence we have chosen

number of bins = 100 in our case. Once the data is divided into bins, their probability mass

function is calculated. The entropy of any feature ‘i’ is then defined as

𝐻(𝑖) = −∑ 𝑝(𝑖, 𝑗) ∗ log [𝑝(𝑖, 𝑗)]𝐵+1
𝑗=1

where B is the number of bins and p(i, j) is the probability mass function [24]. The feature vector

is then weighted with its own entropy value. This process is followed for all the nine features.

Following is a summary of the weighting process:

Entropy calculation and weighting:

Given: A dataset X with 9 variables and N observations (9xN)

Step 1: Select number of bins B used in the histogram.

Step 2: Divide the data values of each row vector into these bins.

Step 3: Based on the number of data points in each bin of the histogram, calculate the probability

mass function (p.m.f) of that feature row vector.

𝑝(𝑖, 𝑗) = (𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑏𝑖𝑛 𝑗) 𝑁⁄

where i=1, …, 9 (features) and j= 1, …, (B+1). All values equal to 1 are recorded by the (B+1)th

column.

Step 4: Calculate the entropy of each feature (each row of X) using the entropy formula.

18

Step 5: Multiply each feature vector (row of X) with its corresponding entropy value.

𝑋(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑖) ∗ 𝑋(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠)

where i is the feature and goes from one to nine.

Step 6: Run K-means algorithm on this entropy weighted data.

3.3.2 Eigen-value based feature weighting:

This approach applies the concept of PCA in finding the relative relevance of each

feature. PCA is performed on the reduced 9xN representation of the original 32xN data. The

eigenvectors obtained during this process represent the projections of each feature on a lower

dimensional space. The significance of each eigenvector is associated with its eigenvalue as the

eigenvalue corresponds to the variance correlated with its eigenvector. The eigenvector with the

highest eigenvalue is the principle component of the data set and has as high a variance as

possible. These eigenvalues are used to weight the features [25].

The data is initially organized. Considering the N observations having nine variables each

as N column vectors, these N column vectors are placed into a matrix X of dimensions 9xN. The

mean value is calculated along each of the nine dimensions corresponding to nine features and is

subtracted from each column (observation) of the matrix X. We then calculate the 9x9

dimensional covariance matrix of X. The eigenvector matrix V and eigenvalues of this

covariance matrix are determined. The eigenvectors form the basis of the data. These

eigenvectors are then sorted based on their eigenvalues, highest to lowest. The eigenvalues and

eigenvectors are ordered and paired. The ith eigenvalue corresponds to the ith eigenvector. We

then obtain the 9xN transformed data matrix X’ by multiplying the transpose of the eigenvector

matrix V with the data matrix X. X’ represents the original data solely in terms of the

eigenvectors. Each row ‘i’ of X’ corresponds to the projections of the entire data on the ith

eigenvector. Each row ‘i’ is then weighted with the ith eigenvalue.

19

Following is a summary of the weighting process:

Eigenvalue based weighting:

Given: A data set X having M=9 variables and N observations (9xN)

Step 1: Organize the data into a matrix of M rows and N columns

Step 2 Calculate the mean of the data along each dimension (feature) M and subtract it from each

column of the data matrix X.

𝑚𝑒𝑎𝑛(𝑚) =
1
𝑁
�𝑋(𝑚,𝑛)
𝑁

𝑛=1

where m = 1, …, 9

𝑚𝑒𝑎𝑛 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑋 = 𝑋 −𝑚𝑒𝑎𝑛 ∗ ℎ

where h is a 1xN row vector of all ones. h[n] = 1, n=1, …, N to match the matrix dimensions for

subtraction.

Step 3 Calculate the MxM covariance matrix C of the mean-subtracted data using outer product.

𝐶 =
1

𝑁 − 1
[𝑋 ∗ 𝑋𝑇]

where X is mean subtracted data and XT is its transpose.

Step 4 Determine the MxM eigenvector matrix V and the MxM diagonal matrix D of

eigenvalues of the covariance matrix C such that CV = VD.

20

Step 5: Sort the columns of V and D in order of decreasing eigenvalue to get the 9x1 eigenvalue

matrix having the nine eigenvalues in descending order. Normalize the eigenvalues.

D’(i) = 𝐷(𝑖) 𝐷𝑚𝑎𝑥⁄

where i = 1, …., 9 and Dmax is the highest eigenvalue.

Step 6: Obtain the transformed data X’.

𝑋′ = 𝑉𝑇 ∗ 𝑋

Step 7: Weight each feature row vector of transformed data X’ with the corresponding

eigenvalue.

𝑋′(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) = 𝑋′(𝑖, 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) ∗ 𝐷′(𝑖)

where i = 1, …., 9

Step 8: Run K-means to cluster eigenvalue weighted data.

3.4 K-means Clustering Procedure

After the features have been calculated, the dimensions of the data have been reduced and

the features have been weighted, the reduced representation is then clustered using the standard

K-means clustering algorithm. It provides the labels for each observation of the data describing

which cluster it belongs to and the cluster centers. These labels can then be used to evaluate the

clustering procedure if we already have the labels for the original data (gold standard).

3.5 Cluster assignment

There is a non-trivial problem of cluster assignment when you are given the original and

observed labels for the clusters. This is because the labels in each set of clustering results do not

correspond in a one-to-one manner. For instance, label 1 in original clustering need not

correspond to label 1 in the observed labels; it may correspond to label 3 in the observed labels

21

and this cannot be always inferred visually. Hence there is a need to determine which observed

cluster labels correspond to which original cluster labels. To solve this problem, we use the

standard Hungarian Algorithm [26]. It is a combinatorial optimization algorithm which solves

the assignment problem in polynomial time.

3.6 Evaluation measures

Here I will briefly introduce some of the measures used to evaluate the clustering

performance. The manually sorted results are used as gold standard. For all the measures, we

first calculate the following quantities:

True positives (tp): the number of spikes correctly labeled as belonging to the correct cluster

True negatives (tn): spikes which were correctly labeled as not belonging to the cluster

False positives (fp): spikes incorrectly labeled as belonging to the cluster

False negatives (fn): spikes which were not labeled as belonging to the correct cluster but should

have been.

Following are the evaluation measures:

Precision [27]: It is defined as the number of relevant spikes retrieved divided by the total

number of spikes retrieved.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

Recall [27]: It is the number of relevant spikes retrieved divided by the total number of spikes

that should have been ideally retrieved.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

These two measures have a range of 0 to 1 and reach their best value at 1.

22

Missed classifications: These are the number of spikes missed in the observed cluster divided by

the number of spikes in the original cluster.

𝑚𝑖𝑠𝑠𝑒𝑑(𝑖) =
𝑓𝑛

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖

False classification: This refers to the number of spikes falsely classified in the observed cluster

divided by the number of spikes in the original cluster.

𝑓𝑎𝑙𝑠𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑(𝑖) =
𝑓𝑝

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖

23

CHAPTER 4

RESULTS

All the relevant results of this project are described in this chapter. To determine the

efficacy of the proposed algorithm, we performed experiments on nineteen real data sets with

known cluster labels obtained from manual sorting (gold standard).

Following is a description of these data sets and the results obtained.

4.1 Real data sets

Nineteen real data sets were obtained from rd mice. The results of the existing methods

(K-means, PCA) for these nineteen, thirty two dimensional data sets were obtained. These results

were used as the baseline (32xN K-means). Some statistics are shown in Table 1.

24

Table 4.1: Real data sets and some statistics

Data set Total Number of

Observations / Spikes

Number of clusters

sorted052307channel_54 13163 2

sorted050207channel_31 16764 3

sorted050207channel_34 5163 2

sorted050207channel_12 6512 3

sorted052307channel_23 34681 2

sorted050207channel_13 4486 2

sorted050207channel_16 10605 2

sorted050207channel_46 36469 4

sorted050207channel_57 14333 3

sorted050207channel_67 2474 2

sorted050207channel_78 9184 3

sorted052307channel_16 2937 7

sorted052307channel_32 9751 3

sorted052307channel_37 3812 6

sorted052307channel_46 9451 7

sorted052307channel_47 5472 3

sorted052307channel_63 10524 5

sorted052307channel_64 8882 5

sorted052307channel_71 1939 2

25

4.2 Manual weighting

As mentioned before in section 3.4, all the nine features do not contribute equally

towards the clustering process. The more important a feature is the more important role it should

play in the clustering process. Unfortunately, we do not know what the best criterion to decide

the importance of all the features is or how to select the weights for all the features. To overcome

this problem, we first selected weights manually for all the features and obtained the results of

the clustering process. Following is a description of the results for cluster number two of the data

set: sorted050207channel_31.

Data set: sorted050207channel_31

Number of clusters: 3

Cluster under consideration: cluster # 2

Number of spikes in data set: 16764

Number of spikes in cluster # 2: 15637

Weights: Manual weights set 1

26

Table 4.2: Results of manual weighting (set 1)

Evaluation measure Cluster 32xN K-means 9xN K-means with

Manual weights set 1

Precision C2 0.9975 0.9994

Recall C2 0.6302 0.689

Missed C2 0.3698 0.311

False classified C2 0.0016 0.0004

Figure 4.1: Results of manual weighting (set 1)

5785

25

4863

6
0

1000

2000

3000

4000

5000

6000

7000

spikes missed spikes false
classified

32xN Kmeans

Kmeans on 9xN with
manual weights set 1

Number of
spikes

27

Based on the above results, the existing method falsely classified 25 spikes as belonging

to cluster 2 and missed 5785 out of 15637 spikes which should have been classified as cluster 2.

The manually weighted data showed a marked improvement over the baseline results with only 6

spikes false classified and missed 4863 out of 15637 spikes which is almost 1000 spikes less than

the baseline result. Following is a description of results for the same cluster of data set:

sorted050207channel_31 with manual weights set 2.

Data set: sorted050207channel_31

Number of clusters: 3

Cluster under consideration: cluster # 2

Number of spikes in data set: 16764

Number of spikes in cluster # 2: 15637

Weights: Manual weights set 2

Table 4.3: Results of manual weighting (set 2)

Evaluation measure Cluster 32xN K-means 9xN K-means with

Manual weights set 2

Precision C2 0.9975 0.9886

Recall C2 0.6302 0.4816

Missed C2 0.3698 0.5184

False classified C2 0.0016 0.0056

28

Figure 4.2: Results of manual weighting (set 2)

 Based on the above results, the manually weighted data set (set 2) performed very poorly

compared to the baseline results. It falsely classified 84 spikes compared to 25 of the baseline

and missed 8106 out of 15637 spikes compared to 5785 for the baseline.

 The above results show that we need to select the weights very carefully. If we select set

1, we get much improved results over the baseline. If we select set 2, we get very poor results. It

also establishes the fact that there exist sets of weights which can provide an improved

performance over the baseline results.

 Following sections provide a description of the results for the two proposed weighting

methods based on entropy and eigenvalues. For each of the following tables, column 1 refers to

the data set under consideration, column 2 refers to the evaluation measure, column 3

corresponds to the particular cluster of the data set under consideration. Columns 4 and 5 refer to

the two clustering approaches that are being compared. The evaluation measures of precision and

recall reach their best value at 1 and worst at 0. So any number close to 1 is desirable. On the

5785

25

8106

84
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

spikes missed spikes false
classified

32xN Kmeans

Kmeans on 9xN with
manual weights set 2

Number
of spikes

29

other hand, the measures of missed and false classification should have a value of 0 ideally. So

the lower the value, the better the result is for these two measures. In some cases, the missed or

false classification value may be more than 1 because the original cluster sizes are very small and

dividing any number greater than that gives a value which is more than 1.

4.3 Comparison between results of K-means on 32xN data

and Entropy weighted 9xN data

This section provides a comparison between the results of K-means on the original 32xN

data set and the results of K-means on feature-based, entropy weighted 9xN data set.

30

Table 4.4: Results of K-means on 32xN data and Entropy weighted 9xN data

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

sorted050207channel_12 precision C1 0.9821 0.9539

 C2 0.8964 0.771

 C3 0.9163 0.9177

 recall C1 0.9948 0.9969

 C2 0.8715 0.8584

 C3 0.9268 0.8075

 missed C1 0.0052 0.0031

 C2 0.1285 0.1416

 C3 0.0732 0.1925

 false C1 0.0181 0.0482

 C2 0.1008 0.2549

 C3 0.0847 0.0724

sorted050207channel_13 precision C1 0.9695 0.8232

 C2 0.9307 0.8975

 recall C1 0.9014 0.8668

 C2 0.9791 0.8623

 missed C1 0.0986 0.1332

 C2 0.0209 0.1377

 false C1 0.0283 0.1862

 C2 0.0729 0.0985

sorted050207channel_16 Precision C1 0.1274 0.1551

31

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C2 0.9961 0.9995

 Recall C1 0.966 0.9954

 C2 0.5694 0.6472

 Missed C1 0.034 0.0046

 C2 0.4306 0.3528

 False C1 6.6157 5.4213

 C2 0.0022 0.0003

sorted050207channel_31 Precision C1 0.9564 0.8268

 C2 0.9975 0.9978

 C3 0 0.0005

 Recall C1 0.9937 0.9946

 C2 0.6302 0.7382

 C3 0 0.087

 Missed C1 0.0063 0.0054

 C2 0.3698 0.2618

 C3 0 0.913

 False C1 0.0453 0.2083

 C2 0.0016 0.0016

 C3 0 168.0435

sorted050207channel_34 Precision C1 0.0513 0.0606

 C2 1 1

 Recall C1 1 1

32

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C2 0.522 0.5998

 Missed C1 0 0

 C2 0.478 0.4002

 False C1 18.5077 15.4923

 C2 0 0

sorted050207channel_46 Precision C1 0.0006 0

 C2 0.6775 0.6339

 C3 0.0028 0.0012

 C4 0.9988 0.9997

 Recall C1 0.0166 0

 C2 0.9967 1

 C3 0.7442 0.3488

 C4 0.3444 0.4237

 Missed C1 0.9834 0

 C2 0.0033 0

 C3 0.2558 0.6512

 C4 0.6556 0.5763

 False C1 27.4679 0

 C2 0.4745 0.5776

 C3 265.4419 291.1628

 C4 0.0004 0.0001

sorted050207channel_57 Precision C1 0.9886 0.957

33

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C2 0.962 0.9934

 C3 0.0033 0.0013

 Recall C1 0.8995 0.5221

 C2 0.324 0.3731

 C3 1 0.5

 Missed C1 0.1005 0.4779

 C2 0.676 0.6269

 C3 0 0.5

 False C1 0.0103 0.0235

 C2 0.0128 0.0025

 C3 304 390

sorted050207channel_67 Precision C1 0.9797 0.8701

 C2 0.9784 0.9024

 Recall C1 0.9725 0.8773

 C2 0.9841 0.8965

 Missed C1 0.0275 0.1227

 C2 0.0159 0.1035

 False C1 0.0201 0.131

 C2 0.0217 0.097

sorted050207channel_78 Precision C1 0.3414 0.117

 C2 0.9527 0.6949

 C3 0.9749 0.9881

34

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 Recall C1 0.918 0.2882

 C2 0.9117 0.8961

 C3 0.6832 0.6038

 Missed C1 0.082 0.7118

 C2 0.0883 0.1039

 C3 0.3168 0.3962

 False C1 1.7707 2.175

 C2 0.0452 0.3935

 C3 0.0176 0.0072

sorted052307channel_16 Precision C1 0.9888 0.9697

 C2 0.9782 0.3403

 C3 0.9962 0.9824

 C4 0.9812 0.7897

 C5 0.0046 0

 C6 0 0

 C7 0.003 0.0056

 Recall C1 0.5473 0.9877

 C2 0.534 0.3333

 C3 0.7689 0.3835

 C4 0.7009 0.6007

 C5 0.5 0

 C6 0 0

 C7 0.1667 0.3333

35

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 Missed C1 0.4527 0.0123

 C2 0.466 0.6667

 C3 0.2311 0.6165

 C4 0.2991 0.3993

 C5 0.5 0

 C6 0 0

 C7 0.8333 0.6667

 False C1 0.0062 0.0309

 C2 0.0119 0.6463

 C3 0.0029 0.0069

 C4 0.0134 0.16

 C5 108.5 0

 C6 0 0

 C7 56.1667 58.8333

sorted052307channel_23 Precision C1 0.9996 0.998

 C2 0.8632 0.892

 Recall C1 0.9765 0.9822

 C2 0.9972 0.987

 Missed C1 0.0235 0.0178

 C2 0.0028 0.013

 False C1 0.0004 0.0019

 C2 0.1581 0.1195

sorted052307channel_32 Precision C1 0.001 0.8932

36

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C2 1 0.9877

 C3 0.0021 0

 Recall C1 0.0022 0.9734

 C2 0.4661 0.5148

 C3 1 0

 Missed C1 0.9978 0.0266

 C2 0.5339 0.4852

 C3 0 0

 False C1 2.1983 0.1164

 C2 0 0.0064

 C3 473.6667 0

sorted052307channel_37 Precision C1 0.9989 1

 C2 0.0122 0.1141

 C3 0.9242 0.8522

 C4 0.8735 0.7034

 C5 0.0066 0.0101

 C6 0 0

 Recall C1 0.9103 0.497

 C2 0.2 0.95

 C3 0.3245 0.4798

 C4 0.5413 0.5953

 C5 0.4286 0.7143

 C6 0 0

37

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 Missed C1 0.0897 0.503

 C2 0.8 0.05

 C3 0.6755 0.5202

 C4 0.4587 0.4047

 C5 0.5714 0.2857

 C6 0 0

 False C1 0.001 0

 C2 16.225 7.375

 C3 0.0266 0.0832

 C4 0.0784 0.2511

 C5 65 70.2857

 C6 0 0

sorted052307channel_47 Precision C1 0 0.0043

 C2 0.632 0.0988

 C3 1 0.9995

 Recall C1 0 0.32

 C2 1 0.8075

 C3 0.5315 0.3569

 Missed C1 0 0.68

 C2 0 0.1925

 C3 0.4685 0.6431

 False C1 0 74.16

 C2 0.5822 7.3662

38

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C3 0 0.0002

 32xN Entropy

sorted052307channel_54 Precision C1 0.9882 0.9897

 C2 0.9618 0.9882

 Recall C1 0.9731 0.9919

 C2 0.9831 0.985

 Missed C1 0.0269 0.0081

 C2 0.0169 0.015

 False C1 0.0117 0.0103

 C2 0.0391 0.0117

sorted052307channel_63 Precision C1 0.9995 0.9833

 C2 0.9124 0.9762

 C3 0 0.0204

 C4 0.0317 0.0336

 C5 0 0

 Recall C1 0.2811 0.4455

 C2 0.9967 0.6051

 C3 0 0.3871

 C4 0.2435 0.3391

 C5 0 0

 Missed C1 0.7189 0.5545

 C2 0.0033 0.3949

 C3 0 0.6129

39

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C4 0.7565 0.6609

 C5 0 0

 False C1 0.0001 0.0076

 C2 0.0957 0.0148

 C3 0 18.6129

 C4 7.4261 9.7522

 C5 0 0

sorted052307channel_64 Precision C1 0.9754 0.9723

 C2 0.0213 0.906

 C3 0.9193 0.9822

 C4 0.0091 0.0177

 C5 0 0.0061

 Recall C1 0.3611 0.5382

 C2 0.0075 0.5543

 C3 0.9804 0.7969

 C4 0.9615 1

 C5 0 0.4762

 Missed C1 0.6389 0.4618

 C2 0.9925 0.4457

 C3 0.0196 0.2031

 C4 0.0385 0

 C5 0 0.5238

 False C1 0.0091 0.0154

40

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C2 0.3454 0.0575

 C3 0.086 0.0144

 C4 104.6923 55.5

 C5 0 77.9524

sorted052307channel_71 Precision C1 0.0529 0.0593

 C2 1 1

 Recall C1 1 1

 C2 0.5744 0.623

 Missed C1 0 0

 C2 0.4256 0.377

 False C1 17.9111 15.8667

 C2 0 0

sorted052307channel_46 Precision C1 0.703 0.7414

 C2 0.0014 0

 C3 0.0163 0.0498

 C4 0.1639 0.0007

 C5 0.9973 0.989

 C6 0.0721 0.8435

 C7 0.0009 0

 Recall C1 0.8838 0.9876

 C2 0.0187 0

 C3 0.4444 1

41

Data set Metric Cluster 32xN Kmeans 9xN Entropy

weighted

 C4 0.9602 0.008

 C5 0.2845 0.3051

 C6 0.123 0.5061

 C7 0.5 0

 Missed C1 0.1162 0.0124

 C2 0.9813 0

 C3 0.5556 0

 C4 0.0398 0.992

 C5 0.7155 0.6949

 C6 0.877 0.4939

 C7 0.5 0

 False C1 0.3734 0.3444

 C2 13.514 0

 C3 26.75 19.0833

 C4 4.8964 11.2908

 C5 0.0008 0.0034

 C6 1.584 0.0939

 C7 584 0

It is difficult to analyze the performance for an entire data set as a whole since a

particular algorithm performs better for some clusters and poorly for others. Instead, if each

42

cluster is considered as a separate entity, then it is easier to quantify the performance. We had

264 such clusters in total. Based on this analysis of the experimental results, if we take a vote by

comparing the values as means for evaluation then the results of K-means on the entropy

weighted 9xN data are better than the baseline results of K-means on the original 32xN data in

more than 54% of the cases. The baseline results have a better value in the remaining 46% cases.

The following plot depicts this comparison.

Figure 4.3: Comparison between results of 32xN K-means and Entropy weighted 9xN data

121

143

0

20

40

60

80

100

120

140

160

32xN Kmeans 9xN Entropy
weighted

19 Real data sets

Number of
clusters for
which the
algorithm
under
consideration
performs
better

43

4.4 Comparison between results of K-means on 32xN data

and Eigenvalue weighted 9xN data

This section provides a comparison between the results of K-means on the original 32xN

data sets and the results of K-means on feature-based, eigenvalue weighted 9xN data sets.

44

Table 4.5: Results of K-means on 32xN data and Eigenvalue weighted 9xN data

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

sorted050207channel_12 precision C1 0.9821 0.9501

 C2 0.8964 0.7542

 C3 0.9163 0.9212

 recall C1 0.9948 0.9974

 C2 0.8715 0.861

 C3 0.9268 0.7874

 missed C1 0.0052 0.0026

 C2 0.1285 0.139

 C3 0.0732 0.2126

 false C1 0.0181 0.0523

 C2 0.1008 0.2806

 C3 0.0847 0.0674

sorted050207channel_13 precision C1 0.9695 0.7842

 C2 0.9307 0.9013

 recall C1 0.9014 0.8783

 C2 0.9791 0.8212

 missed C1 0.0986 0.1217

 C2 0.0209 0.1788

 false C1 0.0283 0.2417

45

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.0729 0.09

sorted050207channel_16 Precision C1 0.1274 0.1358

 C2 0.9961 0.9998

 Recall C1 0.966 0.9985

 C2 0.5694 0.5864

 Missed C1 0.034 0.0015

 C2 0.4306 0.4136

 False C1 6.6157 6.3549

 C2 0.0022 0.0001

sorted050207channel_31 Precision C1 0.9564 0.9144

 C2 0.9975 0.9987

 C3 0 0.0014

 Recall C1 0.9937 0.9864

 C2 0.6302 0.6221

 C3 0 0.3478

 Missed C1 0.0063 0.0136

 C2 0.3698 0.3779

 C3 0 0.6522

 False C1 0.0453 0.0924

46

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.0016 0.0008

 C3 0 253.2174

sorted050207channel_34 Precision C1 0.0513 0.0556

 C2 1 1

 Recall C1 1 1

 C2 0.522 0.5609

 Missed C1 0 0

 C2 0.478 0.4391

 False C1 18.5077 17

 C2 0 0

sorted050207channel_46 Precision C1 0.0006 0

 C2 0.6775 0.6518

 C3 0.0028 0.0025

 C4 0.9988 1

 Recall C1 0.0166 0

 C2 0.9967 1

 C3 0.7442 0.4419

 C4 0.3444 0.4262

 Missed C1 0.9834 0

47

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.0033 0

 C3 0.2558 0.5581

 C4 0.6556 0.5738

 False C1 27.4679 0

 C2 0.4745 0.5342

 C3 265.4419 179.6512

 C4 0.0004 0

sorted050207channel_57 Precision C1 0.9886 0.9894

 C2 0.962 0.9824

 C3 0.0033 0.0021

 Recall C1 0.8995 0.7925

 C2 0.324 0.3463

 C3 1 0.5

 Missed C1 0.1005 0.2075

 C2 0.676 0.6537

 C3 0 0.5

 False C1 0.0103 0.0085

 C2 0.0128 0.0062

 C3 304 234

48

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

sorted050207channel_67 Precision C1 0.9797 0.8687

 C2 0.9784 0.9208

 Recall C1 0.9725 0.9029

 C2 0.9841 0.8922

 Missed C1 0.0275 0.0971

 C2 0.0159 0.1078

 False C1 0.0201 0.1364

 C2 0.0217 0.0767

sorted050207channel_78 Precision C1 0.3414 0.1208

 C2 0.9527 0.7027

 C3 0.9749 0.9841

 Recall C1 0.918 0.2937

 C2 0.9117 0.8817

 C3 0.6832 0.6209

 Missed C1 0.082 0.7063

 C2 0.0883 0.1183

 C3 0.3168 0.3791

 False C1 1.7707 2.1372

 C2 0.0452 0.373

 C3 0.0176 0.01

49

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

sorted052307channel_16 Precision C1 0.9888 0.9731

 C2 0.9782 0.3867

 C3 0.9962 0.9638

 C4 0.9812 0.6324

 C5 0.0046 0

 C6 0 0

 C7 0.003 0.0075

 Recall C1 0.5473 0.9671

 C2 0.534 0.2466

 C3 0.7689 0.3923

 C4 0.7009 0.4054

 C5 0.5 0

 C6 0 0

 C7 0.1667 0.3333

 Missed C1 0.4527 0.0329

 C2 0.466 0.7534

 C3 0.2311 0.6077

 C4 0.2991 0.5946

 C5 0.5 0

 C6 0 0

 C7 0.8333 0.6667

50

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 False C1 0.0062 0.0267

 C2 0.0119 0.3912

 C3 0.0029 0.0147

 C4 0.0134 0.2357

 C5 108.5 0

 C6 0 0

 C7 56.1667 44.1667

sorted052307channel_23 Precision C1 0.9996 0.9982

 C2 0.8632 0.8905

 Recall C1 0.9765 0.9819

 C2 0.9972 0.9884

 Missed C1 0.0235 0.0181

 C2 0.0028 0.0116

 False C1 0.0004 0.0017

 C2 0.1581 0.1216

sorted052307channel_32 Precision C1 0.001 0.8793

 C2 1 1

 C3 0.0021 0.0007

 Recall C1 0.0022 0.9634

 C2 0.4661 0.487

51

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C3 1 0.6667

 Missed C1 0.9978 0.0366

 C2 0.5339 0.513

 C3 0 0.3333

 False C1 2.1983 0.1322

 C2 0 0

 C3 473.6667 946.3333

sorted052307channel_37 Precision C1 0.9989 0.998

 C2 0.0122 0.1814

 C3 0.9242 0.8986

 C4 0.8735 0.6895

 C5 0.0066 0

 C6 0 0.0013

 Recall C1 0.9103 0.9744

 C2 0.2 0.975

 C3 0.3245 0.3783

 C4 0.5413 0.4799

 C5 0.4286 0

 C6 0 1

 Missed C1 0.0897 0.0256

52

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.8 0.025

 C3 0.6755 0.6217

 C4 0.4587 0.5201

 C5 0.5714 0

 C6 0 0

 False C1 0.001 0.002

 C2 16.225 4.4

 C3 0.0266 0.0427

 C4 0.0784 0.2161

 C5 65 0

 C6 0 788

sorted052307channel_47 Precision C1 0 0.0893

 C2 0.632 0.0004

 C3 1 0.9975

 Recall C1 0 1

 C2 1 0.0047

 C3 0.5315 0.5367

 Missed C1 0 0

 C2 0 0.9953

 C3 0.4685 0.4633

53

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 False C1 0 10.2

 C2 0.5822 11.1502

 C3 0 0.0013

 32xN

sorted052307channel_54 Precision C1 0.9882 0.9906

 C2 0.9618 0.988

 Recall C1 0.9731 0.9917

 C2 0.9831 0.9863

 Missed C1 0.0269 0.0083

 C2 0.0169 0.0137

 False C1 0.0117 0.0094

 C2 0.0391 0.012

sorted052307channel_63 Precision C1 0.9995 0.9841

 C2 0.9124 0.9549

 C3 0 0.0004

 C4 0.0317 0.0438

 C5 0 0

 Recall C1 0.2811 0.2955

 C2 0.9967 0.9922

 C3 0 0.0161

54

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C4 0.2435 0.313

 C5 0 0

 Missed C1 0.7189 0.7045

 C2 0.0033 0.0078

 C3 0 0.9839

 C4 0.7565 0.687

 C5 0 0

 False C1 0.0001 0.0048

 C2 0.0957 0.0469

 C3 0 39.2581

 C4 7.4261 6.8391

 C5 0 0

sorted052307channel_64 Precision C1 0.9754 0.9685

 C2 0.0213 0.9351

 C3 0.9193 0.9842

 C4 0.0091 0.0017

 C5 0 0.0043

 Recall C1 0.3611 0.5201

 C2 0.0075 0.621

 C3 0.9804 0.6684

55

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 C4 0.9615 0.1154

 C5 0 0.3333

 Missed C1 0.6389 0.4799

 C2 0.9925 0.379

 C3 0.0196 0.3316

 C4 0.0385 0.8846

 C5 0 0.6667

 False C1 0.0091 0.0169

 C2 0.3454 0.0431

 C3 0.086 0.0107

 C4 104.6923 67.6923

 C5 0 76.381

sorted052307channel_71 Precision C1 0.0529 0.0542

 C2 1 1

 Recall C1 1 1

 C2 0.5744 0.585

 Missed C1 0 0

 C2 0.4256 0.415

 False C1 17.9111 17.4667

 C2 0 0

56

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

sorted052307channel_46 Precision C1 0.703 0.7881

 C2 0.0014 0.1055

 C3 0.0163 0

 C4 0.1639 0.0246

 C5 0.9973 0.9492

 C6 0.0721 0.855

 C7 0.0009 0

 Recall C1 0.8838 0.9876

 C2 0.0187 0.4112

 C3 0.4444 0

 C4 0.9602 0.1036

 C5 0.2845 0.326

 C6 0.123 0.4207

 C7 0.5 0

 Missed C1 0.1162 0.0124

 C2 0.9813 0.5888

 C3 0.5556 0

 C4 0.0398 0.8964

 C5 0.7155 0.674

 C6 0.877 0.5793

 C7 0.5 0

57

Data set Metric Cluster 32xN Kmeans K-means on

PCA

transformed,

Eigenvalue

weighted 9xN

 False C1 0.3734 0.2656

 C2 13.514 3.486

 C3 26.75 0

 C4 4.8964 4.1155

 C5 0.0008 0.0175

 C6 1.584 0.0714

 C7 584 0

Again, if we take a vote as means for evaluation considering each cluster as a separate

entity, then the results of K-means on eigenvalue weighted 9xN data are better than the baseline

results of K-means on the original 32xN data in more than 56% of the cases. The following plot

depicts this comparison.

58

Figure 4.4: Comparison between 32xN K-means and 9xN PCA Eigenvalue weighted data

4.5 Comparison between results of K-means on 32xN PCA data

and 9xN PCA Eigenvalue weighted data

This section provides a comparison between the results of PCA on the original 32xN data

set and the results of K-means on the feature-based, eigenvalue weighted 9xN data set.

115

149

0

20

40

60

80

100

120

140

160

32xN K-means 9xN PCA Eigenvalue
weighted

19 Real data sets

Number of
clusters for
which the
algorithm
under
consideration
performs
better

59

Table 4.6: Results of K-means on 32xN PCA data and 9xN PCA Eigenvalue weighted data

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

sorted050207channel_12 precision C1 0.9963 0.9501

 C2 0.9625 0.7542

 C3 0.8775 0.9212

 recall C1 0.9803 0.9974

 C2 0.8156 0.861

 missed C1 0.0197 0.0026

 C2 0.1844 0.139

 C3 0.0096 0.2126

 false C1 0.0036 0.0523

 C2 0.0317 0.2806

 C3 0.1382 0.0674

sorted050207channel_13 precision C1 0.9301 0.7842

 C2 0.9622 0.9013

 recall C1 0.9497 0.8783

 C2 0.9473 0.8212

 missed C1 0.0503 0.1217

 C2 0.0527 0.1788

 false C1 0.0713 0.2417

 C2 0.0372 0.09

60

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

sorted050207channel_16 Precision C1 0.0683 0.1358

 C2 0.9457 0.9998

 Recall C1 0.5463 0.9985

 C2 0.5147 0.5864

 Missed C1 0.4537 0.0015

 C2 0.4853 0.4136

 False C1 7.4568 6.3549

 C2 0.0295 0.0001

sorted050207channel_31 Precision C1 0.1018 0.9144

 C2 0.9783 0.9987

 C3 0.0043 0.0014

 Recall C1 0.452 0.9864

 C2 0.4498 0.6221

 C3 0.8696 0.3478

 Missed C1 0.548 0.0136

 C2 0.5502 0.3779

 C3 0.1304 0.6522

 False C1 3.9891 0.0924

 C2 0.01 0.0008

 C3 202.2174 253.2174

61

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

sorted050207channel_34 Precision C1 0.0546 0.0556

 C2 1 1

 Recall C1 1 1

 C2 0.5531 0.5609

 Missed C1 0 0

 C2 0.4469 0.4391

 False C1 17.3 17

 C2 0 0

sorted050207channel_46 Precision C1 0.0019 0

 C2 0.6599 0.6518

 C3 0.0013 0.0025

 C4 0.9992 1

 Recall C1 0.0499 0

 C2 0.9924 1

 C3 0.3721 0.4419

 C4 0.3483 0.4262

 Missed C1 0.9501 0

 C2 0.0076 0

 C3 0.6279 0.5581

 C4 0.6517 0.5738

62

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 False C1 25.8812 0

 C2 0.5114 0.5342

 C3 277.2326 179.6512

 C4 0.0003 0

sorted050207channel_57 Precision C1 0.9689 0.9894

 C2 0.9568 0.9824

 C3 0.0033 0.0021

 Recall C1 0.907 0.7925

 C2 0.3112 0.3463

 C3 1 0.5

 Missed C1 0.093 0.2075

 C2 0.6888 0.6537

 C3 0 0.5

 False C1 0.0291 0.0085

 C2 0.014 0.0062

 C3 306.5 234

sorted050207channel_67 Precision C1 0.9858 0.8687

 C2 0.9634 0.9208

 Recall C1 0.9524 0.9029

63

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.9891 0.8922

 Missed C1 0.0476 0.0971

 C2 0.0109 0.1078

 False C1 0.0137 0.1364

 C2 0.0376 0.0767

sorted050207channel_78 Precision C1 0.3476 0.1208

 C2 0.9599 0.7027

 C3 0.9671 0.9841

 Recall C1 0.9042 0.2937

 C2 0.863 0.8817

 C3 0.7158 0.6209

 Missed C1 0.0958 0.7063

 C2 0.137 0.1183

 C3 0.2842 0.3791

 False C1 1.6971 2.1372

 C2 0.0361 0.373

 C3 0.0243 0.01

sorted052307channel_16 Precision C1 0.9839 0.9731

 C2 0.967 0.3867

64

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C3 0.9919 0.9638

 C4 0.9718 0.6324

 C5 0.0041 0

 C6 0 0

 C7 0.0025 0.0075

 Recall C1 0.5021 0.9671

 C2 0.7976 0.2466

 C3 0.6028 0.3923

 C4 0.5043 0.4054

 C5 0.5 0

 C6 0 0

 C7 0.1667 0.3333

 Missed C1 0.4979 0.0329

 C2 0.2024 0.7534

 C3 0.3972 0.6077

 C4 0.4957 0.5946

 C5 0.5 0

 C6 0 0

 C7 0.8333 0.6667

 False C1 0.0082 0.0267

 C2 0.0272 0.3912

65

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C3 0.0049 0.0147

 C4 0.0147 0.2357

 C5 121 0

 C6 0 0

 C7 67.6667 44.1667

sorted052307channel_23 Precision C1 0.9971 0.9982

 C2 0.2446 0.8905

 Recall C1 0.5459 0.9819

 C2 0.9893 0.9884

 Missed C1 0.4541 0.0181

 C2 0.0107 0.0116

 False C1 0.0016 0.0017

 C2 3.0552 0.1216

sorted052307channel_32 Precision C1 0.9796 0.8793

 C2 0.9993 1

 C3 0 0.0007

 Recall C1 0.9986 0.9634

 C2 0.5134 0.487

 C3 0 0.6667

 Missed C1 0.0014 0.0366

66

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.4866 0.513

 C3 0 0.3333

 False C1 0.0208 0.1322

 C2 0.0003 0

 C3 0 946.3333

sorted052307channel_37 Precision C1 1 0.998

 C2 0.0333 0.1814

 C3 0.944 0.8986

 C4 0.905 0.6895

 C5 0.0037 0

 C6 0 0.0013

 Recall C1 0.9103 0.9744

 C2 0.4 0.975

 C3 0.3272 0.3783

 C4 0.5752 0.4799

 C5 0.2857 0

 C6 0 1

 Missed C1 0.0897 0.0256

 C2 0.6 0.025

 C3 0.6728 0.6217

67

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C4 0.4248 0.5201

 C5 0.7143 0

 C6 0 0

 False C1 0 0.002

 C2 11.625 4.4

 C3 0.0194 0.0427

 C4 0.0604 0.2161

 C5 76.1429 0

 C6 0 788

sorted052307channel_47 Precision C1 0.0084 0.0893

 C2 0.098 0.0004

 C3 0.9977 0.9975

 Recall C1 0.64 1

 C2 0.6432 0.0047

 C3 0.4135 0.5367

 Missed C1 0.36 0

 C2 0.3568 0.9953

 C3 0.5865 0.4633

 False C1 75.56 10.2

 C2 5.9202 11.1502

68

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C3 0.001 0.0013

sorted052307channel_54 Precision C1 0.9927 0.9906

 C2 0.9574 0.988

 Recall C1 0.9697 0.9917

 C2 0.9896 0.9863

 Missed C1 0.0303 0.0083

 C2 0.0104 0.0137

 False C1 0.0071 0.0094

 C2 0.044 0.012

sorted052307channel_63 Precision C1 0.9981 0.9841

 C2 0.9233 0.9549

 C3 0.0395 0.0004

 C4 0.0106 0.0438

 C5 0 0

 Recall C1 0.4143 0.2955

 C2 0.5822 0.9922

 C3 0.8387 0.0161

 C4 0.1 0.313

 C5 0 0

69

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 Missed C1 0.5857 0.7045

 C2 0.4178 0.0078

 C3 0.1613 0.9839

 C4 0.9 0.687

 C5 0 0

 False C1 0.0008 0.0048

 C2 0.0484 0.0469

 C3 20.4032 39.2581

 C4 9.3565 6.8391

 C5 0 0

sorted052307channel_64 Precision C1 0.9994 0.9685

 C2 0.8856 0.9351

 C3 0.9795 0.9842

 C4 0.0155 0.0017

 C5 0 0.0043

 Recall C1 0.4947 0.5201

 C2 0.4533 0.621

 C3 0.9361 0.6684

 C4 0.9615 0.1154

 C5 0 0.3333

70

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 Missed C1 0.5053 0.4799

 C2 0.5467 0.379

 C3 0.0639 0.3316

 C4 0.0385 0.8846

 C5 0 0.6667

 False C1 0.0003 0.0169

 C2 0.0585 0.0431

 C3 0.0196 0.0107

 C4 61.2308 67.6923

 C5 0 76.381

sorted052307channel_71 Precision C1 0.0447 0.0542

 C2 1 1

 Recall C1 1 1

 C2 0.4921 0.585

 Missed C1 0 0

 C2 0.5079 0.415

 False C1 21.3778 17.4667

 C2 0 0

sorted052307channel_46 Precision C1 0.7076 0.7881

71

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 0.0005 0.1055

 C3 0.0266 0

 C4 0.1623 0.0246

 C5 0.9908 0.9492

 C6 0.232 0.855

 C7 0.001 0

 Recall C1 0.8838 0.9876

 C2 0.0093 0.4112

 C3 0.75 0

 C4 0.8685 0.1036

 C5 0.2933 0.326

 C6 0.2723 0.4207

 C7 0.5 0

 Missed C1 0.1162 0.0124

 C2 0.9907 0.5888

 C3 0.25 0

 C4 0.1315 0.8964

 C5 0.7067 0.674

 C6 0.7277 0.5793

 C7 0.5 0

 False C1 0.3651 0.2656

72

Data set Metric Cluster K-means with

PCA

transformed

32xN

K-means with

PCA

transformed,

Eigenvalue

weighted 9xN

 C2 20.1402 3.486

 C3 27.4167 0

 C4 4.4821 4.1155

 C5 0.0027 0.0175

 C6 0.9014 0.0714

 C7 519.5 0

Based on the same criterion of voting, the above table shows that the results of K-means

on PCA transformed and eigenvalue weighted 9xN data are better than the results of K-means on

the PCA transformed 32xN data in more than 53% of the cases. The following plot depicts this

comparison.

73

Figure 4.5: Comparison between K-means on PCA 32xN and 9xN PCA Eigenvalue weighted

data

Following are the plots of the various clusters of data set sorted050207channel_12using

different clustering approaches. It helps us to observe the clustering results visually. It also

shows why cluster assignment is a big problem as we discussed in section 3.6.

123
141

0

20

40

60

80

100

120

140

160

PCA 32xN 9xN PCA Eigenvalue
weighted

Real data sets

Number of
clusters for
which the
algorithm
under
consideration
performs
better than the
other method

74

Figure 4.6: Plots of clustering based on gold standard (manual sorting).

Figure 4.7: Plots of clustering based on K-means algorithm over original 32xN data

0 10 20 30 40
-150

-100

-50

0

50

100
orignal cluster1930

0 10 20 30 40
-150

-100

-50

0

50

100
orignal cluster1985

0 10 20 30 40
-150

-100

-50

0

50

100
orignal cluster2597

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster1836

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2747

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster1929

75

Figure 4.8: Plots of clustering based on entropy weighted 9xN data using K-means

Figure 4.9: Plots of clustering based on PCA over original 32xN data

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2285

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2210

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2017

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster1899

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster1682

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2931

76

Figure 4.10: Plots of clustering based on eigenvalue weighted 9xN data using K-means

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2050

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2406

0 10 20 30 40
-150

-100

-50

0

50

100
new cluster2056

77

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

 All the goals of the thesis mentioned in section 1.5 have been met. Nine different features

were calculated from the original data sets based on their geometric properties. Two different

intelligent weighting techniques were developed; first based on entropy of the features and

second based on the principal component approach using eigenvalues. These techniques were

then incorporated into the clustering procedure along with the features calculated separately.

This resulted in an improved clustering performance in more than half of the data sets under

study. Although it showed negative or no improvement in the remaining few data sets, the new

approach still holds promise for further research due to the improvements shown over the

baseline results.

 With time and a few modifications, the clustering results could be improved even further

to determine which spike comes from which neuron. A few other and possibly better methods of

weighting the features could be implemented by selecting different heuristics such as mutual

information. All the algorithms studied in this thesis perform poorly when the cluster sizes vary a

lot in a given data set. K-means splits the data halfway between the cluster means leading to

suboptimal splits. Other clustering algorithms such as Expectation-Maximization (EM) algorithm

could be used to overcome these shortcomings since EM uses both variances and covariances

and hence is able to accommodate clusters of variable size in a much better way than K-means.

78

APPENDIX A

SOURCE CODE

A.1 feature_calculation.m

% Code to calculate all features
% Authors: Zhijun Cai and Kaustubh Patwardhan

clear all;
clc;
close all;

%% Load data % data loading
[filename,pathname] = uigetfile('*.mat','Select Spike
Data','C:\Users\Kaustubh Patwardhan\Documents\Matlab\Kaustubh\data\');
load_file = [pathname filename];
load(load_file);

DataSets = res1; %comment it for simulated data, uncomment it for actual data

ClusColor = {'b.','r*','go','c.','k*','m.','y*'};
ClusColorLine = {'b','r','g','c','k','m','y'};

[sorted_ID indices] = sort(ID);

%Samples = res1';
wav = DataSets(:,indices);
id = sorted_ID;
[sampleLength,numSamples] = size(DataSets); %for metrics
clear DataSets ;% clear ID

%% find the cluster number and corresponding vector, clear noise and
% unlabeled spikes
noise_ind = find(id==256);
id(noise_ind,:) = [];
wav(:,noise_ind) = [];

err_ind = find(id==255);
id(err_ind,:) = [];
wav(:,err_ind) = [];

err_ind = find(id==0);
id(err_ind,:) = [];
wav(:,err_ind) = [];

[sampleLength,numSamples] = size(wav); % dimensions of data

numClusters = max(id); % number of clusters in the data
idcopy = id;
for ii = 1:numClusters;
 IDold{ii} = find(id==ii);

79

end

%% find cluster sizes

for i=1:numClusters
clust_size_orig(i,1) = nnz(sorted_ID==i);
end

% calculate features based on the geometric properties of the data

%% 1 find the minimum point happening in the first half
% set the spike with minimum happening before the half 1 and ones minimum
% happening after half 0

[minM, minMind] = min(wav);
minL = find(minMind<=16);
minR = find(minMind>16);
minPos = ones(1,numSamples);
minPos(minR) = 0;

%% 2 number of minimums

minNums = ones(1,numSamples);
for ii = 1:numSamples
 OutInd = localMinimum(wav(:,ii),5);
 minNums(1,ii) = numel(OutInd)+1;
 clear OutInd;
end

minNums = minNums/max(minNums);

%% 3 magnitude in frequency domain

wavFFT = abs(fft(wav));
[magF, maxMind] = max(wavFFT(1:16,:));
magF = magF/max(magF) ;

%% 4 magnitude in time domain(maximum value minus minmum value)

magT = max(wav) - min(wav);
magT = magT/max(magT);

%% 5 varaiance

varWav = var(wav);
varWav = varWav/max(varWav);

%% 6, 7, 8, 9 Right Peak and left peak difference, right peak slope and the
% polynomial fitting for the peak-to-peak, valley-to-peak

 slopeR = zeros(1,numSamples);
 peakRLD = zeros(1,numSamples);
 MinCur = zeros(1,numSamples);
 MinEndCur = zeros(1,numSamples);

80

 for ii = 1:numSamples
 [peakL, indL] = max(wav(1:minMind(ii),ii));
 [peakR, indR] = max(wav(minMind(ii):end,ii));
 peakRLD(ii) = peakL - peakR;
 slopeR(ii) = (peakR-minM(ii))/(indR + minMind(ii) - 1);
 x = (indL:indR+minMind(ii)-1)/32;
 y = wav(indL:indR+minMind(ii)-1,ii);
 pp = polyfit(x',y,2); clear x y;
 MinCur(ii) = pp(1);
 x2 = (minMind(ii):32)/32;
 y2 = wav(minMind(ii):32,ii);
 if minMind(ii)>=30
 MinEndCur(ii) = 0;
 else
 pp2 = polyfit(x2',y2,2); clear x2 y2;
 MinEndCur(ii) = pp2(1);
 end
 end

 peakRLD = peakRLD/max(abs(peakRLD));
 if mean(peakRLD)<0; peakRLD = -peakRLD ;end;

 slopeR = slopeR/max(slopeR);

 MinCur = MinCur/max(abs(MinCur));
 if mean(MinCur)<0; MinCur = -MinCur ;end;

 MinEndCur = MinEndCur/max(abs(MinEndCur));
 if mean(MinEndCur)<0; MinEndCur = -MinEndCur ;end;

 %% 10 Total absolute area under positive and negative going peaks
 % find mean level of each spike

 spike_mean_level = mean(wav);
 total_abs_area = (sum(abs(wav -
repmat(spike_mean_level,sampleLength,1))))/sampleLength;
 total_abs_area = total_abs_area/max(total_abs_area);

 %% 11 RMS distance

 sq_dist = ((wav-repmat(spike_mean_level,sampleLength,1)).*(wav-
repmat(spike_mean_level,sampleLength,1)));
 rms_dist = sqrt(sum(sq_dist))/sampleLength;
 rms_dist = rms_dist/max(rms_dist);

%% Clustering results;

% All Features [minPos; minNums; magF; magT;varWav; peakRLD; slopeR; MinCur ;
% MinendCur; total abs area; rms dist]

 AllFeatures = [];
 %minPosW = 1; AllFeatures = [AllFeatures; minPos*minPosW];
 %minNumsW = 1; AllFeatures = [AllFeatures; minNums*minNumsW];
 magFW = 1; AllFeatures = [AllFeatures; magF*magFW];

81

 magTW = 1; AllFeatures = [AllFeatures; magT*magTW];
 varWavW = 1; AllFeatures = [AllFeatures; varWav*varWavW];
 peakRLDW = 1; AllFeatures = [AllFeatures; peakRLD*peakRLDW];
 slopeRW = 1; AllFeatures = [AllFeatures; slopeR*slopeRW];
 MinCurW = 1; AllFeatures = [AllFeatures; MinCur*MinCurW];
 MinEndCurW = 1; AllFeatures = [AllFeatures; MinEndCur*MinEndCurW];
 total_abs_area_W = 1; AllFeatures = [AllFeatures;
total_abs_area*total_abs_area_W];
 rms_dist_W = 1; AllFeatures = [AllFeatures; rms_dist*rms_dist_W];

entropy_weighting;

A.2 entropy_weighting.m

%% Calculate entropy of all features
% weight each feature with its entropy value
% Kaustubh Patwardhan

 [numSamples,sampleLength] = size(AllFeatures');
 samples=AllFeatures';

numBins = 100;
bin_size = 2/numBins; % 2 is the range of sample values, max=1 and min=-1

edge = -1:bin_size:1;
prob_mass_func=zeros(numBins+1,sampleLength);

% calculate probability mass function using a histogram

for i=1:sampleLength
 hist(samples(:,i),edge)
 prob_mass_func(:,i)=(histc(samples(:,i),edge))/numSamples;
end

bin_entropy = zeros(numBins+1,sampleLength);

% calculate entropy of each feature

for i=1:sampleLength
 for j=1:numBins+1
 bin_entropy(j,i) = (prob_mass_func(j,i)*log(prob_mass_func(j,i)));
 end
end

bin_entropy(isnan(bin_entropy))=0;
entropy = -(sum(bin_entropy));
total_entropy = sum(entropy);
[dominant_features,dominant_features_ind]=sort(entropy,'descend');
disp('Entropy value for each feature'), disp(entropy')

% weights each feature vector with its entropy value

for i=1:sampleLength
 samples(:,i) = samples(:,i) * entropy(i);

82

end

cluster_spikes;

A.3 eigenvalue_weighting.m

% Kaustubh Patwardhan
% Calculate covariance matrix, its eigenvectors and eigenvalues
% Obtain transformed data
% weight each PC / feature vector with its eigenvalue

%% PCA using covariance method

[signals, PC,V,mn]=pca(AllFeatures);
samples=signals';
[numSamples,sampleLength] = size(samples);
V=V/max(V);

%% EV weighting

for i=1:sampleLength
 samples(:,i) = samples(:,i) * V(i,:);
end

cluster_spikes;

A.4 pca.m

% Kaustubh Patwardhan
%==============inputs are M*N matrix:M dimensions,N sample numbers=========
%
function [signals, PC,V, EV, mn]=pca(data)
% pca1-perform pca using covariance
% data- M*N matrix of input data
% signals- M*N projected data
% PC-each column is a PC (what is a PC?)
% V-M*1 matrix of variances

[M,N]=size(data);

%subtract off the mean for each dimension
mn=mean(data,2); %find the mean along the 2nd(row)dimension
data=data-repmat(mn,1,N); %subtract mean from data

%calculate the covariance matrix
covariance=1/(N-1)*(data*data'); %covariance matrix:M*M(12*12)

%find the eigenvectors and eigenvalues
%V: the covariance of each component PC:the corresponding row vector
[PC,V]=eig(covariance); %PC:eigenvectors; V:eigenvalues

83

%extract diagonal of matrix as vector
EV=diag(V); %make a size(V)*size(V) diagonal matrix

%sort the variances in decreasing order
%For matrices, SORT(X) sorts each column of X in ascending order.
[junk, rindices]=sort(-1*EV); %rindices are the index of components of V
EV=EV(rindices);
PC=PC(:,rindices);

%profect the original data set
signals=PC'*data;

A.5 cluster_spikes.m

%% Kmeans algorithm

[IDX, Mu] = kmeans(samples,numClusters,'Distance','cityblock');

%% cluster assigment

cluster_assignment;

A.6 cluster_assignment.m

% compute precision and recall for each observed id being assigned to
groundtruth-id's

 % start with GT id 1, find all the corresponding observed IDs
 % #observed nnz(id==1), will be true-positives (for observed id = 1)
 % #observed nnz(id==2), will be true-positives (for observed id = 2)
 % repeat for GT IDs 2,..

% compute the cost matrix for assigment between Obesrved IDs and GT IDs

% use the Hungarian algorithm for making the observed id to GT id assignment

% gt1 gt2 gt3
%o1----|----|----|
%o2----|----|----|
%o3----|----|----|
%o4----|----|----|

% [Matching,Cost] = Hungarian(Perf)

% sorted_id = GT arranged in ascending order
% IDX = observed IDs

%calculate true positives/negatives and false positives/negatives,
%precision and recall
% Kaustubh Patwardhan

%find cluster size
for i=1:numClusters

84

 clust_size_orig(i,1) = nnz(id==i);
end
for i=1:numClusters
 clust_size_clustered(i,1) = nnz(IDX==i);
end

total_samples = numel(ID);

ID_precision = zeros(numClusters); % define matrices
ID_recall = zeros(numClusters);
ID_f_measure = zeros(numClusters);
Adj_f_measure = zeros(numClusters);
adj = zeros(1,numClusters);
ID_rand_index = zeros(numClusters);
missed_classification= zeros(numClusters);
false_classification= zeros(numClusters);
ID_Matthews_corr_coeff = zeros(numClusters);

for i=1:numClusters
 adj(i) = (exp(-(clust_size_orig(i)/total_samples))/exp(-1));
end

for i=1:numClusters
 for j=1:numClusters

 ID_tp = nnz(id==i & IDX==j); % calculate true positives, true
negatives, false positives and false negatives
 ID_tn = nnz(id~=i & IDX~=j);
 ID_fp = nnz(id~=i & id~=0 & IDX==j);
 ID_fn = nnz(id==i & IDX~=j);

 precision = (ID_tp)/((ID_tp)+(ID_fp));
 recall = (ID_tp)/((ID_tp)+(ID_fn));
 missed_classification(i,j) = (ID_fn)/clust_size_orig(i);%
 false_classification(i,j) = (ID_fp)/clust_size_orig(i);%

 f_score = (2*precision*recall) / (precision + recall);
 ID_f_measure(i,j) = f_score;
 Adj_f_measure(i,j) = f_score*adj(i);

 %ID_f_measure(i,j) = (2*precision*recall) / (precision + recall);
 ID_rand_index(i,j) = (ID_tp + ID_tn)/(ID_tp + ID_tn + ID_fp + ID_fn);
 ID_Matthews_corr_coeff(i,j) = ((ID_tp*ID_tn)-
(ID_fp*ID_fn))/sqrt((ID_tp+ID_fp)*(ID_tp+ID_fn)*(ID_tn+ID_fp)*(ID_tn+ID_fn));
 ID_precision(i,j) = precision;
 ID_recall(i,j) = recall;

 end
end

%cost_mat = -ID_f_measure;
cost_mat = -Adj_f_measure; % cost function matrix, cost function = -(adjusted
F measure)
%cost_mat = -ID_Matthews_corr_coeff;
cost_mat(isnan(Adj_f_measure)) = inf;

85

%cost_mat(isnan(ID_f_measure)) = inf;
[Matching,Cost] = Hungarian(cost_mat); % hungarian algorithm to assign
clusters

f_measure = ID_f_measure;
f_measure(isnan(ID_f_measure)) = 0; % for display purposes

%disp('Precision Matrix')
disp(diag(Matching*ID_precision'))

%disp('Recall Matrix')
disp(diag(Matching*ID_recall'))

% disp('F Measure Matrix'), disp(diag(Matching*f_measure'))
% disp('Rand Index Matrix'), disp(diag(Matching*ID_rand_index'))

%disp('Missed')
disp(diag(Matching*missed_classification'))

%disp('False-classified')
disp(diag(Matching*false_classification'))

%disp('Cost function Matrix'), disp(cost_mat)

%disp('Cluster assignment that minimizes the cost')
disp(Matching)

cluster_plots;

A.7 Hungarian.m [28]

function [Matching,Cost] = Hungarian(Perf)
%
% [MATCHING,COST] = Hungarian_New(WEIGHTS)
%
% A function for finding a minimum edge weight matching given a MxN Edge
% weight matrix WEIGHTS using the Hungarian Algorithm.
%
% An edge weight of Inf indicates that the pair of vertices given by its
% position have no adjacent edge.
%
% MATCHING return a MxN matrix with ones in the place of the matchings and
% zeros elsewhere.
%
% COST returns the cost of the minimum matching

% Written by: Alex Melin 30 June 2006

 % Initialize Variables
 Matching = zeros(size(Perf));

% Condense the Performance Matrix by removing any unconnected vertices to

86

% increase the speed of the algorithm

 % Find the number in each column that are connected
 num_y = sum(~isinf(Perf),1);
 % Find the number in each row that are connected
 num_x = sum(~isinf(Perf),2);

 % Find the columns(vertices) and rows(vertices) that are isolated
 x_con = find(num_x~=0);
 y_con = find(num_y~=0);

 % Assemble Condensed Performance Matrix
 P_size = max(length(x_con),length(y_con));
 P_cond = zeros(P_size);
 P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);
 if isempty(P_cond)
 Cost = 0;
 return
 end

 % Ensure that a perfect matching exists
 % Calculate a form of the Edge Matrix
 Edge = P_cond;
 Edge(P_cond~=Inf) = 0;
 % Find the deficiency(CNUM) in the Edge Matrix
 cnum = min_line_cover(Edge);

 % Project additional vertices and edges so that a perfect matching
 % exists
 Pmax = max(max(P_cond(P_cond~=Inf)));
 P_size = length(P_cond)+cnum;
 P_cond = ones(P_size)*Pmax;
 P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);

%***
% MAIN PROGRAM: CONTROLS WHICH STEP IS EXECUTED
%***
 exit_flag = 1;
 stepnum = 1;
 while exit_flag
 switch stepnum
 case 1
 [P_cond,stepnum] = step1(P_cond);
 case 2
 [r_cov,c_cov,M,stepnum] = step2(P_cond);
 case 3
 [c_cov,stepnum] = step3(M,P_size);
 case 4
 [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);
 case 5
 [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);
 case 6
 [P_cond,stepnum] = step6(P_cond,r_cov,c_cov);
 case 7
 exit_flag = 0;
 end

87

 end

% Remove all the virtual satellites and targets and uncondense the
% Matching to the size of the original performance matrix.
Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con));
Cost = sum(sum(Perf(Matching==1)));

%%%
% STEP 1: Find the smallest number of zeros in each row
% and subtract that minimum from its row
%%%

function [P_cond,stepnum] = step1(P_cond)

 P_size = length(P_cond);

 % Loop throught each row
 for ii = 1:P_size
 rmin = min(P_cond(ii,:));
 P_cond(ii,:) = P_cond(ii,:)-rmin;
 end

 stepnum = 2;

%**
% STEP 2: Find a zero in P_cond. If there are no starred zeros in its
% column or row start the zero. Repeat for each zero
%**

function [r_cov,c_cov,M,stepnum] = step2(P_cond)

% Define variables
 P_size = length(P_cond);
 r_cov = zeros(P_size,1); % A vector that shows if a row is covered
 c_cov = zeros(P_size,1); % A vector that shows if a column is covered
 M = zeros(P_size); % A mask that shows if a position is starred or
primed

 for ii = 1:P_size
 for jj = 1:P_size
 if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0
 M(ii,jj) = 1;
 r_cov(ii) = 1;
 c_cov(jj) = 1;
 end
 end
 end

% Re-initialize the cover vectors
 r_cov = zeros(P_size,1); % A vector that shows if a row is covered
 c_cov = zeros(P_size,1); % A vector that shows if a column is covered
 stepnum = 3;

%**

88

% STEP 3: Cover each column with a starred zero. If all the columns are
% covered then the matching is maximum
%**

function [c_cov,stepnum] = step3(M,P_size)

 c_cov = sum(M,1);
 if sum(c_cov) == P_size
 stepnum = 7;
 else
 stepnum = 4;
 end

%**
% STEP 4: Find a noncovered zero and prime it. If there is no starred
% zero in the row containing this primed zero, Go to Step 5.
% Otherwise, cover this row and uncover the column containing
% the starred zero. Continue in this manner until there are no
% uncovered zeros left. Save the smallest uncovered value and
% Go to Step 6.
%**
function [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M)

P_size = length(P_cond);

zflag = 1;
while zflag
 % Find the first uncovered zero
 row = 0; col = 0; exit_flag = 1;
 ii = 1; jj = 1;
 while exit_flag
 if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0
 row = ii;
 col = jj;
 exit_flag = 0;
 end
 jj = jj + 1;
 if jj > P_size; jj = 1; ii = ii+1; end
 if ii > P_size; exit_flag = 0; end
 end

 % If there are no uncovered zeros go to step 6
 if row == 0
 stepnum = 6;
 zflag = 0;
 Z_r = 0;
 Z_c = 0;
 else
 % Prime the uncovered zero
 M(row,col) = 2;
 % If there is a starred zero in that row
 % Cover the row and uncover the column containing the zero
 if sum(find(M(row,:)==1)) ~= 0
 r_cov(row) = 1;
 zcol = find(M(row,:)==1);
 c_cov(zcol) = 0;

89

 else
 stepnum = 5;
 zflag = 0;
 Z_r = row;
 Z_c = col;
 end
 end
end

%**
% STEP 5: Construct a series of alternating primed and starred zeros as
% follows. Let Z0 represent the uncovered primed zero found in Step
4.
% Let Z1 denote the starred zero in the column of Z0 (if any).
% Let Z2 denote the primed zero in the row of Z1 (there will always
% be one). Continue until the series terminates at a primed zero
% that has no starred zero in its column. Unstar each starred
% zero of the series, star each primed zero of the series, erase
% all primes and uncover every line in the matrix. Return to Step 3.
%**

function [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov)

 zflag = 1;
 ii = 1;
 while zflag
 % Find the index number of the starred zero in the column
 rindex = find(M(:,Z_c(ii))==1);
 if rindex > 0
 % Save the starred zero
 ii = ii+1;
 % Save the row of the starred zero
 Z_r(ii,1) = rindex;
 % The column of the starred zero is the same as the column of the
 % primed zero
 Z_c(ii,1) = Z_c(ii-1);
 else
 zflag = 0;
 end

 % Continue if there is a starred zero in the column of the primed zero
 if zflag == 1;
 % Find the column of the primed zero in the last starred zeros row
 cindex = find(M(Z_r(ii),:)==2);
 ii = ii+1;
 Z_r(ii,1) = Z_r(ii-1);
 Z_c(ii,1) = cindex;
 end
 end

 % UNSTAR all the starred zeros in the path and STAR all primed zeros
 for ii = 1:length(Z_r)
 if M(Z_r(ii),Z_c(ii)) == 1
 M(Z_r(ii),Z_c(ii)) = 0;
 else
 M(Z_r(ii),Z_c(ii)) = 1;

90

 end
 end

 % Clear the covers
 r_cov = r_cov.*0;
 c_cov = c_cov.*0;

 % Remove all the primes
 M(M==2) = 0;

stepnum = 3;

% ***
% STEP 6: Add the minimum uncovered value to every element of each covered
% row, and subtract it from every element of each uncovered column.
% Return to Step 4 without altering any stars, primes, or covered
lines.
%**

function [P_cond,stepnum] = step6(P_cond,r_cov,c_cov)
a = find(r_cov == 0);
b = find(c_cov == 0);
minval = min(min(P_cond(a,b)));

P_cond(find(r_cov == 1),:) = P_cond(find(r_cov == 1),:) + minval;
P_cond(:,find(c_cov == 0)) = P_cond(:,find(c_cov == 0)) - minval;

stepnum = 4;

function cnum = min_line_cover(Edge)

 % Step 2
 [r_cov,c_cov,M,stepnum] = step2(Edge);
 % Step 3
 [c_cov,stepnum] = step3(M,length(Edge));
 % Step 4
 [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(Edge,r_cov,c_cov,M);
 % Calculate the deficiency
 cnum = length(Edge)-sum(r_cov)-sum(c_cov);

A.8 cluster_plots.m
%% Plot Clusters

plottype1 = {'blue';'red';'black';'m'};
plottype2 = {'bo';'r*';'k+';'m^';'gs';'yd';'cp'};

nn = ceil(numClusters/2);

figure;

% original clusters

for ii = 1:numClusters

91

 subplot(nn,2,ii);
 plot(wav(:,IDold{ii}),ClusColorLine{ii});grid;
 %ylim([-200 200]);
 title(strcat('orignal cluster',num2str(numel(IDold{ii}))));
end

for ii = 1 : numClusters
 IDnew{ii} = find(IDX==ii);
end

figure;

% new clusters

for ii = 1:numClusters
 subplot(nn,2,ii);
 plot(wav(:,IDnew{ii}),ClusColorLine{ii}); grid;
 title(strcat('new cluster',num2str(numel(IDnew{ii}))));
end

92

REFERENCES

1. Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores
visual responses in retinitis pigmentosa. Science. 2010;329(5990):413–417.

2. "Sensory Reception: Human Vision: Structure and functioon of the Human Eye" vol. 27,
Encyclopaedia Britannica, 1987

3. Barnett MW, Larkman PM (June 2007). "The action potential". Pract Neurol 7 (3): 192–7.

4. Koenekoop, R.K. (2003). Novel RPGR mutations with distinct retinitis pigmentosa
phenotypes in French-Canadian families. American journal of ophthalmology 136(4), pp. 678-68

5. Stasheff SF. Emergence of sustained spontaneous hyperactivity and temporary preservation of
OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. Journal of
Neurophysiology. 2008;99(3):1408–1421.

6. Jacobson SG, Cideciyan AV (2010) Treatment possibilities for retinitis pigmentosa. N Engl J
Med 363:1669–1671

7. Bramall AN, Wright AF, Jacobson SG, McInnes RR. The genomic, biochemical, and cellular
responses of the retina in inherited photoreceptor degenerations and prospects for the treatment
of these disorders. Annu Rev Neurosci 2010;33:441-472

8. Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with
gene therapy. Prog Retin Eye Res 2010;29:398-427

9. Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-
art and future challenges. Nature Neuroscience 7:456-461.

10. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nature Neuroscience

7:446-451.

11. Spike Sorting. D. N. Hill, D. Kleinfeld and S. B. Mehta. In Observed Brain Dynamics by P.
P. Mitra and H. Bokil, 2007, Oxford Press, 9:257-270.

12. Hartigan, J. A. (1975). Clustering Algorithms. Wiley. ISBN 0-471-35645-X. MR0405726

13. Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag. pp. 487.
doi:10.1007/b98835. ISBN 978-0-387-95442-4.

14. Corinna Cortes and V. Vapnik, "Support-Vector Networks", Machine Learning, 20, 1995.

15. Wood F, Black MJ, Vargas-Irwin C, Fellows M, Donoghue JP. On the variability of manual
spike sorting. IEEE Trans. Biomed. Eng. 2004;51:912–8.

16. K. D. Harris, D. A. Henze, J. Csicsvari, H. Hirase, and G. Buzsáki, “Accuracy of tetrode
spike separation as determined by simultaneous intracellular and extracellular measurements,” J.
Neurophysiol., vol. 81, no. 1, pp. 401–414, 2000.

93

17. Teknomo, Kardi. K-Means Clustering Tutorials. http:\\people.revoledu.com\kardi\
tutorial\kMean\

18. Lindsay I Smith. A tutorial on Principal Components Analysis,
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

19. Hans-Peter Kriegel , Peer Kröger , Erich Schubert , Arthur Zimek, A General Framework for
Increasing the Robustness of PCA-Based Correlation Clustering Algorithms, Proceedings of the
20th international conference on Scientific and Statistical Database Management, July 09-11,
2008, Hong Kong, China

20. Horváth (2003) in Suykens et al. p 392

21. M. S. Lewicki, “A review of methods for spike sorting: the detection and classification of
neural action potentials,” Network, vol. 9, no. 4, pp. R53–R78, 1998.

22. Schmidt EM. Computer separation of multi-unit neuroelectric data: a review. Journal of
Neuroscience Methods. 1984;12(2):95–111.

23. O’Connell, R.J., Kocsis, W. A. and Schoenfeld, R.L. (1973) Minicomputer identification and
time of nerve impulses mixed in a single recording channel, Proc. IEEE, 61: 1615-1621.

24. Schneider, T.D, Information theory primer with an appendix on logarithms, National Cancer
Institute, 14 April 2007.

25. Qingjiu Zhang, Shiliang Sun: “Weighted Data Normalization Based on Eigenvalues for
Artificial Neural Network Classification”. Proceedings of the 16th International Conference on
Neural Information Processing: Part I, pp. 349-356, 2009.

26. R.E. Burkard, M. Dell'Amico, S. Martello: Assignment Problems. SIAM, Philadelphia (PA.)
2009. ISBN 978-0-89871-663-4

27. Olson, David L.; Delen, Dursun ”Advanced Data Mining Techniques” Springer; 1 edition
(February 1, 2008), page 138, ISBN 3540769161

28. Alex Melin, Hungarian Algorithm:
http://www.mathworks.com/matlabcentral/fileexchange/11609

	University of Iowa
	Iowa Research Online
	Summer 2011

	A feature-based algorithm for spike sorting involving intelligent feature-weighting mechanism
	Kaustubh Anil Patwardhan
	Recommended Citation

	Acknowledgement
	table of contents
	list of tables
	list of FIGURES

