
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2011

A feature-based algorithm for spike sorting
involving intelligent feature-weighting mechanism
Kaustubh Anil Patwardhan
University of Iowa

Copyright 2011 Kaustubh Anil Patwardhan

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/1253

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Patwardhan, Kaustubh Anil. "A feature-based algorithm for spike sorting involving intelligent feature-weighting mechanism." MS
(Master of Science) thesis, University of Iowa, 2011.
http://ir.uiowa.edu/etd/1253.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1253&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

A FEATURE-BASED ALGORITHM FOR SPIKE SORTING INVOLVING 

INTELLIGENT FEATURE-WEIGHTING MECHANISM 

 
 

by 

Kaustubh Anil Patwardhan 
 
 
 

A thesis submitted in partial fulfillment  
of the requirements for the Master of 

Science degree in Electrical and Computer 
Engineering in the Graduate College of  

The University of Iowa 
 

July 2011 
 

Thesis Supervisor: Professor Er-Wei Bai 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



 
 

 
Copyright by 

 
KAUSTUBH ANIL PATWARDHAN 

 
2011 

 
All Rights Reserved



 
 

 
 

 
Graduate College 

The University of Iowa 
Iowa city, Iowa 

 
CERTIFICATE OF APPROVAL 

 
 

MASTER’S THESIS 
 
 

This is to certify that the Master’s thesis of 
  

Kaustubh Anil Patwardhan 
 

has been approved by the Examining Committee for the thesis 
requirement for the Masters of Science degree in Electrical and 
Computer Engineering at the July 2011 graduation.  
 
 
 
Thesis Committee: ___________________________________ 
   Er-Wei Bai, Thesis Supervisor 

   ___________________________________ 
   Steven Stasheff 

   ___________________________________ 
   Punam Saha  



 
 

ii 
 

ACKNOWLEDGEMENT 

It gives me great pleasure to present my Master’s thesis titled ‘A feature-based algorithm 

for spike sorting involving intelligent feature-weighting mechanism’ in partial fulfillment of my 

MS degree in Electrical and Computer Engineering. 

First and foremost, I would like to express profound gratitude to my advisor, Professor 

ErWei-Bai, for his invaluable support, encouragement, supervision, patience and useful 

suggestions throughout the research work. His moral support and continuous guidance enabled 

me to complete my work successfully.  

Special thanks to Dr. Steven Stasheff for providing all the data and all his time and 

efforts. I would like to thank Zhizun Cai for all his help and guidance throughout the project. 

This work would not have been possible without Zhijun’s help. 

I would like to thank the members of my committee, Dr. Stasheff and Professor Punam 

Saha for taking time off from their busy schedule.  

Last but not the least I would like to thank my family and all my friends for their love and 

support during the project and throughout my life. 
 



 
 

iii 
 

TABLE OF CONTENTS 

  

LIST OF TABLES ......................................................................................................  v 

LIST OF FIGURES ....................................................................................................  vi 

CHAPTER 

 1. BACKGROUND AND MOTIVATION ............................................  1 

1.1 Retinitis Pigmentosa and the Retina ......................................  1 
1.2 Treatment for RP ...................................................................  2 

                               1.3 Spike Sorting ..........................................................................  3 
                               1.4 Previous Work .......................................................................  4 
                               1.5 Thesis Contribution ................................................................  4 

 2. EXISTING METHODS ......................................................................  5 

2.1 Manual Sorting ......................................................................  5 
2.2 K-means Clustering ...............................................................  6 
2.3 Principal Component Analysis ..............................................  8 
2.4 Support Vector Machines ......................................................  9 

 3. FEATURE BASED APPROACH ......................................................  11 

3.1 Data Used ...............................................................................  11 
3.2 Features Calculated ................................................................  11 
3.3 Weighting Techniques ...........................................................  16 
 3.3.1 Entropy based Feature Weighting .............................  16 

3.3.2 Eigenvalue based Feature Weighting ........................  18 
                               3.4 Clustering Procedure ..............................................................  20 

3.5 Cluster Assignment ................................................................  20 
3.6 Evaluation Measures ..............................................................  21 

 4. RESULTS…………………………………………………..…….....                   23 

4.1 Real Data Sets ........................................................................  23 
4.2 Manual weighting ..................................................................  25 
4.3 Comparison between results of K-means on 32xN data and 
Entropy weighted 9xN data .........................................................  29 
4.4 Comparison between results of K-means on 32xN data and 
Eigenvalue weighted 9xN data.....................................................                  43 
4.5 Comparison between results of K-means on 32xN PCA data and 
Eigenvalue weighted 9xN data………………………………….                  58 

 5. CONCLUSION AND FUTURE DIRECTIONS ................................  77 

 



 
 

iv 
 

APPENDIX  

            A.         SOURCE CODE ................................................................................  78 

A.1 feature_calculation.m ............................................................  78 
A.2 entropy_weighting.m ............................................................  81 

                               A.3 ev_weighting.m .....................................................................  82 
                               A.4 pca.m .....................................................................................  82 
                               A.5 cluster_spikes.m ....................................................................  83 
                               A.6 cluster_assignment.m ............................................................  83 
                               A.7 hungarian.m  .........................................................................  85 
                               A.8 cluster_plots.m ......................................................................  90 

REFERENCES ……………………………………………………………….. 92 



 
 

v 
 

 LIST OF TABLES 

Table  

4.1 Real data sets and some statistics ...............................................................  24 

4.2 Results of manual weighting (set1) ............................................................  26 

4.3 Results of manual weighting (set2) ............................................................  27 

4.4 Results of K-means on 32xN data and Entropy weighted 9xN data ..........  30 

4.5 Results of K-means on 32xN data and 9xN PCA Eigenvalue weighted 
data……. ....................................................................................................  44 

4.6 Results of K-means on 32xN PCA data and 9xN PCA Eigenvalue weighted 
data .............................................................................................................  59 

 

 



 
 

vi 
 

LIST OF FIGURES 

Figure  

3.1 Peak to peak difference ..............................................................................  12 

3.2 Difference between right and left peak ......................................................  13 

3.3 Slope of right peak .....................................................................................  14 

3.4 Polynomial fit .............................................................................................  15 

4.1 Results of manual weighting (set 1) ...........................................................  26 

4.2 Results of manual weighting (set 2) ...........................................................  28 

4.3 Comparison between 32xN K-means and Entropy weighted 9xN data .....  42 

4.4 Comparison between 32xN K-means and 9xN PCA Eigenvalue weighted 
data…………………………………………………………………………. 58 

4.5 Comparison between K-means on 32xN PCA and 9xN PCA Eigenvalue 
weighted data ..............................................................................................  73 

4.6 Plots of clusters based on gold standard .....................................................  74 

4.7 Plots of clusters based on K-means algorithm over original 32xN data .... …..74 

4.8 Plots of clusters based on entropy weighted 9xN data using K-means ......  75 

4.9 Plots of clusters based on PCA over original 32xN data ...........................  75 

4.10 Plots of clusters based on eigenvalue weighted 9xN data using K-means .  76 
 

 

 

 

 

 

 

 



1 
 

 
 

CHAPTER 1 

BACKGROUND AND MOTIVATION 

             This chapter provides the background, motivation and the organization of the thesis. 

1.1 Retinitis Pigmentosa and the Retina  

Retinitis Pigmentosa (RP) is a group of inherited retinal degenerations that lead to 

chronic blindness [1]. The retina is a complex light sensitive tissue that lines the inner surface of 

the eye. It consists of several layers of neurons. The photoreceptor cells are the set of neurons 

that are directly sensitive to light. They are mainly of two types: the rods and cones. Rods 

provide black-and-white vision and function mainly in dim light while cones help us perceive 

colors and support daytime vision. Retinal ganglion cells are a recently discovered type of 

photoreceptor cells located near the inner surface of the retina that provide responses to global 

bright daylight. Light striking the retina produces neural signals from the rods and cones which 

are further processed by other retinal neurons [2]. This leads to action potentials in the retinal 

ganglion cells.  

Action potential refers to the rapid rise and fall of the electric membrane potential of a 

cell. The cell’s plasma membrane consists of voltage gated ion channels which generate these 

action potentials [3]. These channels are shut when the membrane potential is near the resting 

potential of the cell, but they rapidly begin to open if the membrane potential increases to a 

precisely defined threshold value. When the channels open, they allow an inward flow of sodium 

ions, which changes the electrochemical gradient, which in turn produces a further rise in the 

membrane potential. This then causes more channels to open, producing a greater electric 

current. The process proceeds explosively until all of the available ion channels are open, 

resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes 

the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As 
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the sodium channels close, sodium ions can no longer enter the neuron, and they are actively 

transported out of the plasma membrane. Potassium channels are then activated, and there is an 

outward current of potassium ions, returning the electrochemical gradient to the resting state. 

Observing this activity of different neurons can help us understand any changes occurring in the 

morphology of the retina. 

People with RP usually suffer from night blindness and tunnel vision caused by 

photoreceptor degeneration. Abnormalities of the photoreceptors or the retinal pigment 

epithelium (RPE) of the retina lead to progressive visual loss. Its progression varies in each 

individual [4]. This retinal degeneration causes changes in the anatomy of outer retinal pathways 

as well as the morphology of the inner retina. These changes in the inner retinal physiology are 

associated with increased spontaneous activity and burst firing of the ganglion cells. Blindness 

occurs due to the loss of photoreceptors and other inner retinal cells in some cases but the 

ganglion cells still remain viable for months despite this activity [5]. 

1.2 Treatment for RP 

Based on the different stages of the disease, four major approaches to the treatment of 

patients with R.P have been described [6]. The first method corrects the biochemical 

abnormalities that cause vision loss while some photoreceptors remain structurally intact. An 

example is correction of an abnormality of the visual (retinoid) cycle in the form of retinitis 

pigmentosa known as Leber's congenital amaurosis — specifically, the subtype caused by 

mutations in the gene encoding RPE65. Subretinal gene therapy, in which a normal RPE65 gene 

was delivered under the retina by intraocular injection, has successfully and safely corrected 

dysfunction of the visual cycle in patients [7] [8]. The mechanism underlying Leber's congenital 

amaurosis is complex, and there also is a component of progressive retinal degeneration. It is not 

yet known if the correction of the visual-cycle defect halts or slows this degeneration.  
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A second approach to the treatment of R.P. focuses on slowing the progressive 

degeneration of photoreceptors. It involves using neurotrophic factors, nutritional supplements 

and other pharmaceutical agents that improve the viability of neurons by inhibiting proapoptotic 

pathways, activating antiapoptotic signaling, reducing the production of retinotoxic molecules, 

and limiting oxidative damage. 

Two other therapeutic approaches have been tried on animal subjects with advanced 

stages of RP where there are few or no functional photoreceptors remaining. One approach 

focuses on regenerating lost photoreceptors by means of transplantation or genetic manipulation 

of nonphotoreceptor retinal cell types, such as glia. The other approach involves creating 

electrical signals in the visual pathway that substitute for the usual input from photoreceptors.  

The success of most of these treatment approaches largely depends on the preservation of 

a morphologically and functionally intact inner retina [5]. In order to decide a treatment plan, 

one needs to investigate the activity of these neurons to assess photoreceptor functionality and 

how well the inner retina has been preserved. 

A study on retinal degeneration (rd) mice showed that even as the animal turns blind, the 

retinal ganglion cells maintain a high level of activity for many weeks [5]. The activity of these 

neurons can be recorded using multiple electrodes. However, each electrode records waveforms 

from different neurons and we need to distinguish spikes produced by different neurons to 

examine the activity of each neuron.  

1.3 Spike sorting 

Spike sorting refers to the process of assigning these action potentials to different 

neurons. Complex brain processes are reflected by the activity of large neural populations and 

that the study of single-cells in isolation gives only a very limited view of the whole picture [9] 

[10]. Further developments in this area rely to a large extent on the ability to record 
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simultaneously from large populations of cells. This problem is difficult because, a) the 

waveforms being classified are often noisy, b) waveforms coming from the same cell can vary in 

both shape and amplitude, depending on the previous activity of the cell and c) waveforms can 

overlap in time, resulting in even more complex waveforms. The implementation of optimal 

spike sorting algorithms is a critical step forward since it can allow the analysis of the activity of 

a few close-by neurons from each recording electrode. Distinguishing among the spikes 

produced by different neurons is critical in observing the activity of each neuron and detect any 

changes in it.  

1.4 Previous work 

Some of the previously reported approaches include manual sorting [11], k-means 

clustering [12], principal component analysis (PCA) [13] and support vector machines (SVM) 

[14]. However, some of these approaches depend heavily on inputs from human experts while 

others do not consider the inherent features of the neural data. This thesis presents a completely 

different approach by considering the various features of neural data and introducing an 

intelligent weighting mechanism to cluster the spikes without any human intervention. This new 

method also yields improved performance compared to the above mentioned approaches. 

1.5 Thesis contribution: 

This thesis aims to contribute the following: 

• Calculate various features of the neural data based on the geometric properties of the 

waveforms 

• Develop an intelligent weighting technique to weight the features 

• Incorporate the features and weighting techniques into the K-means clustering algorithm 
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CHAPTER 2 

EXISTING METHODS 

Some of the previously reported methods to determine the activity of each neuron include 

manual sorting, K-means clustering and PCA. Following is a brief overview of these existing 

methods. 

2.1 Manual Sorting 

Manual sorting refers to a common and labor-intensive approach which involves 

manually identifying clusters by visual inspection. It involves grouping spikes with similar 

features into clusters, corresponding to the different neurons. This approach has the advantage 

that the human expert can apply information specific to the cells that are being studied. The 

waveforms or firing patterns of neurons can be compared with their known characteristics. This 

knowledge can also be used to decide criteria for including a particular spike to a cluster and 

evaluate the results of the overall clustering procedure. Human sorters use commercial software 

and various techniques such as PCA and manual cluster cutting [15] to label the spikes. These 

softwares provide the users with tools to sort all waveforms from a particular recording one 

channel at a time. This is usually achieved by manual cluster selection and refinement in a 

graphical display constructed by projecting the waveforms onto their first two principal 

components or other features. 

There are, however, several disadvantages of this procedure because (1) you cannot 

differentiate between waveforms visually (2) the rigorous process scales poorly to experiments 

where large number of electrodes are used, (3) the results of this procedure are difficult to 

reproduce due to human biases, (4) it is difficult to design quality metrics to assess this 

subjective approach and (5) it is a very time-consuming task.  
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Significant variability among human sorters has previously been shown for recordings 

from tetrodes and single electrodes [16].Expert human spike sorters have shown widely varying 

performance on both real and synthetic neural datasets. On real data, subjects differed not only in 

what constituted a spike versus noise but even in the number of units present in the data. These 

results point to the need for objective spike-sorting algorithms that provide consistency across 

experiments. Reduced human intervention can definitely improve the time taken for clustering.  

2.2 K-means Clustering 

K-means algorithm is a method of cluster analysis which aims to partition n observations 

into k clusters in which each observation belongs to the cluster with the nearest mean. K-means 

defines a prototype in terms of a centroid, which is usually the mean of a group of points [17]. 

It is an algorithm to classify or to group objects based on attributes/features into k 

number of groups. K is positive integer number. The grouping is done by minimizing the sum of 

the squares of distances between data and the corresponding cluster centroid.  

The basic step of k-means clustering involves determining the number of cluster K and 

assuming the centroid or center of these clusters. Initial centroids can be taken randomly from 

the data. Then the K means algorithm iteratively determines the centroid coordinate, the distance 

of each observation from the centroid and groups the observations based on minimum distance. 

K-Means starts with a single cluster with its center as the mean of the data. This cluster is 

split into two and the means of the new clusters are iteratively obtained. These two clusters are 

again split and the process continues until the specified number of clusters is obtained. To assign 

a point to the closest centroid, we need a proximity measure to quantify ‘closest’ for the neural 

data. In other words, a clustering criterion has to be adopted. Euclidean distance is the most 

commonly used proximity measure. Here is summary of clustering process: 

Algorithm: K-means 
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Given a dataset X with N observations and M variables, the algorithm searches for a seaparation 

of X into K clusters that minimizes the sum of within cluster distance of all variables. 

Step 1 Determine number of clusters K 

Step 2 Randomly select K distinct objects as the initial cluster centers. 

Step 3 For each observation in X, calculate the distances between the observation and each 

cluster center based on a proximity measure such as Euclidean distance and assign the 

observation to the cluster with the shortest distance. 

Step 4 Repeat Step 3 until all observations are assigned to clusters. For each cluster, compute a 

new cluster center as the mean (average) of the observations of that cluster. 

Step 5 Compare the new cluster centers to the previous centers. Stop the process if the centers 

are the same; otherwise go back to Step 3. 

The main weaknesses of K-means clustering are (1) the number of clusters k must be 

determined beforehand and (2) it is unknown as to which variable of the data contributes more to 

the clustering process since it is assumed that each variable has the same weight [17]. In order to 

overcome these difficulties, we need to develop an intelligent mechanism to determine the 

number of clusters and to weight the features based on their contribution to the clustering 

process.  
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2.3 Principal Component Analysis (PCA): 

PCA is a very useful mathematical procedure in analyzing data. It is a method to identify 

various patterns in the data and express the data in such a way as to highlight the variability in 

the data [18]. It is also helpful in compressing the data by reducing the number of dimensions 

without much loss of information.  

PCA converts a set of observations of possibly correlated variables into a set of values of 

uncorrelated variables called principal components. The number of principal components is less 

than or equal to the number of original variables. This transformation is defined in such a way 

that the first principal component has as high a variance as possible and each succeeding 

component in turn has the highest variance among the remaining components. The last 

component has the lowest variance. The dimensionality of the data can then be reduced by 

selecting only the first few principal components. Following is a summary of the process: 

Algorithm: PCA 

Given: A dataset X with N observations and M variables 

Step 1 Organize the data into a matrix of M rows and N columns 

Step 2 Calculate the mean of the data along each dimension M and subtract it from each column 

of the data matrix X. 

Step 3 Calculate the MxM covariance matrix C of the mean-subtracted data. 

Step 4 Determine the MxM eigenvector matrix V and the MxM diagonal matrix D of  

eigenvalues of the covariance matrix C. 
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Step 5 Sort the columns of the eigenvector matrix V and eigenvalue matrix D in order of 

decreasing eigenvalue. 

Step 6 To reduce the dimensions of the original data, choose a subset of the eigenvectors that is 

to select the first L columns of the matrix V since the remaining components can be discarded 

due to their lower variance. 

Step 7 Derive the transformed data by multiplying the transpose of the sorted matrix V (MxM) 

with the original mean subtracted dataset X (MxN). 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑑𝑎𝑡𝑎 = 𝑉′ × 𝑋 

Step 8 Follow K-means procedure to cluster the data 

The main weakness of PCA is that it is very sensitive to outliers which are difficult to 

identify in some cases. The concepts of proximity and distance become less meaningful with 

increasing dimensionality and the process of subspace determination in PCA can be misled in the 

presence of noise and outliers. Assigning different weights to the observations of the data based 

on their relevancy can increase robustness of this method [19]. 

2.4 Support Vector Machines (SVM) 

SVMs are a set of supervised learning methods used to analyze data and identify patterns 

to classify it. It takes a set of input data and predicts the class to which each observation belongs. 

It is a binary classifier which when given a training set, builds a model and assigns the new 

observations into one cluster or the other. The SVM model is a representation of the observations 

as points in space, mapped so that the observations of different clusters are clearly separated. 

New observations are then mapped into that same space and predicted to belong to a particular 
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cluster based on which side of the separation they fall on. Support vector machine constructs a 

hyperplane in a high dimensional space which can be used for classification. Intuitively, a good 

separation is achieved by the hyperplane that has the largest distance to the nearest training data 

points of any cluster. But in many cases, the points are separated by a nonlinear region. Rather 

than fitting nonlinear curves to the data, SVM handles this by using a kernel function to map the 

data into a different space where a hyperplane can be used to do the separation. 

The use of kernels along with the absence of local minima is a major advantage of using 

SVMs. But the choice of the kernel function can also be a drawback. The most serious problem 

with SVMs is the high algorithmic complexity and extensive memory requirements [20].  
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CHAPTER 3 

FEATURE BASED APPROACH 

This chapter explains the proposed method and its working. 

3.1 Data used 

The data was obtained from simultaneous multiple electrode recordings of spontaneous 

and light-evoked extra- cellular action potentials from 30 to 90 retinal ganglion cells of rd1 mice 

[5]. The size of the data was 32xN where N is the number of observations and 32 is the number 

of time instants at which the activity was recorded. An observation refers to a complete 

waveform consisting of 32 data points. Nineteen such data sets were used with varying number 

of observations and number of clusters.  

3.2 Features calculated 

The original input data obtained from rd1 mice is 32 dimensional and it takes a lot of 

time to process it in some cases. Working with this huge data increases the cost of processing 

and also does not take into consideration, the inherent information present in the data. Each 

neuron tends to fire spikes of a particular shape. If the shape can be characterized then that 

information can be used to classify each spike. The spikes can be characterized by measuring 

different features. In general, the more features we have, the better it could be to distinguish 

among different spikes [21]. The proposed method calculates various features of the neural data 

obtained based on the geometric properties of the waveforms. These features reduce the 

dimensions of the data. They also capture the inherent information of the data and this reduced 

representation can then be used in the clustering procedure. All feature values are normalized. 

Following is a brief description of the features calculated from the data. 
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1. Magnitude in frequency domain (magF): This refers to the magnitude of each observation in 

the frequency domain and is obtained by taking the maximum of the absolute value of the Fast 

Fourier Transform of each observation. 

𝑚𝑎𝑔𝐹(𝑥) = max (𝑎𝑏𝑠(𝑓𝑓𝑡(𝑥)) 

where x is the observation.  

2. Magnitude in time domain: This value is obtained by taking the difference of the maximum 

and minimum values of each observation. It is also called the peak-to-peak amplitude [22].  

 

 

 

 

Figure 3.1: Peak to peak difference 

ms 

µV 
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3. Spike variance:  This refers to the variation of the values of observations from their mean and 

is obtained by taking the summation of the square of the difference between each observation 

and its mean and dividing it by the total number of data points. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑗) = � [𝑥 (𝑖) −𝑚𝑒𝑎𝑛(𝑗)]2/32
32

𝑖=1
 

where x(i) are data points of each observation x, 32 is the number of variables of each 

observation and j= 1,…, N is the number of observations. 

 4. Difference between right and left peak: Each observation is divided into two halves based on 

the 32 time instants at which the data is recorded. First half is from 1 to 16 and the second half is 

from 17 to 32 and the difference between the maximum values in each half is calculated. At this 

point, we have neglected any time shifting of the waveform within the window during the 

recording process. 

 

 

 

Figure 3.2: Difference between right and left peak 

µV 

ms 
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5. Slope of the right peak: This is the slope of each waveform as it rises from the valley to the 

peak. 

 

 

 

Figure 3.3: Slope of right peak 

 

 

 

6. Polynomial fit of peak-to-peak: This feature provides the coefficients of a second order 

polynomial fit for the part of each spike from the peak in the left half to the peak in the right half 

of the spike. It considers only the second order coefficient (leading coefficient) of the polynomial 

for each spike as it provides an insight about how deep the valley/ minimum of the spike is. 

µV 

ms
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Figure 3.4: Polynomial fit 

 

 

 The above plot just shows what a polynomial fit does. The waveform has not been taken 

from the data that we worked with. 

7. Polynomial fit of valley-to-peak:  This feature provides the coefficients of a second order 

polynomial fit for the part of each spike from minima of the spike to the peak of the spike in the 

right half. Again, it considers only the second order coefficient (leading coefficient) of the 

polynomial for each spike 

8. Total absolute area under both the positive and negative going peaks [23]: It is the area under 

the peaks of each observation and is calculated by taking the summation of the absolute value of 

the difference between each observation and its mean divided by the number of sampling 

instants. 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑎𝑟𝑒𝑎(𝑗) = � � |𝑥(𝑖) −𝑚𝑒𝑎𝑛(𝑗)| 
32

𝑖=1
� /32 

Time (ms)

Amplitude 
(µV) 
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9. Root mean square (RMS) distance [23]: It is obtained by taking the summation of the square 

of the difference between each observation and its mean, taking the square root of this quantity 

and dividing it by the total number of data points. It would have been ideal to know the 

amplitude of the waveform relative to the resting voltage in between spikes but for simplicity 

purposes, the mean voltage has been considered. 

𝑅𝑀𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑗) = �� [𝑥(𝑖) −𝑚𝑒𝑎𝑛(𝑗)]²
32

𝑖=1
�
1/2

/32 

These nine features form the variables for each observation of the input data. These 

feature vectors are put together as rows in a matrix to get the reduced representation of the 

original data. The new dimensions of the data are now 9xN. Each feature provides some 

information about the original data itself based on its geometric properties and can be used to 

cluster the data and distinguish between the activity of different neurons.  

3.3 Weighting Techniques: 

Although each feature contributes some information about the original data, the 

contribution is not the same. Existing methods used to distinguish between the activity of retinal 

ganglion cells do not take this into consideration.  The more useful a feature is, the more 

important role it should play in the clustering process. Hence, there is a need to assess the 

importance of these features for every data set and put a bias on the more important features in 

order to improve the clustering results. Here, we propose two such intelligent measures to 

determine the dominance of features and weight the features accordingly before clustering the 

data. 

3.3.1 Entropy-based feature weighting: 

Entropy is defined as the measure of uncertainty associated with any random variable 

Each feature provides different amount of information about the original data which can be used 

to improve the clustering. Entropy quantifies the expected value of this information. The higher 
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the entropy value, the higher is the information content associated with the feature. In this 

approach, the information content of each feature is calculated and these entropy values are then 

used to weight the features.  

The values of each feature are initially divided into a number of bins using a histogram. 

The number of bins is decided beforehand. Although entropy values increase with increasing 

number of bins, no improvement is observed in the clustering results. Hence we have chosen 

number of bins = 100 in our case. Once the data is divided into bins, their probability mass 

function is calculated. The entropy of any feature ‘i’ is then defined as  

𝐻(𝑖) = −∑ 𝑝(𝑖, 𝑗) ∗ log [𝑝(𝑖, 𝑗)]𝐵+1
𝑗=1   

where B is the number of bins and p(i, j) is the probability mass function [24]. The feature vector 

is then weighted with its own entropy value. This process is followed for all the nine features. 

Following is a summary of the weighting process: 

Entropy calculation and weighting: 

Given: A dataset X with 9 variables and N observations (9xN) 

Step 1: Select number of bins B used in the histogram. 

Step 2: Divide the data values of each row vector into these bins. 

Step 3: Based on the number of data points in each bin of the histogram, calculate the probability 

mass function (p.m.f) of that feature row vector. 

𝑝(𝑖, 𝑗) = (𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑏𝑖𝑛 𝑗) 𝑁⁄  

where i=1, …, 9 (features) and j= 1, …, (B+1). All values equal to 1 are recorded by the (B+1)th 

column. 

Step 4: Calculate the entropy of each feature (each row of X) using the entropy formula. 
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Step 5: Multiply each feature vector (row of X) with its corresponding entropy value. 

𝑋(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑖) ∗ 𝑋(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) 

where i is the feature and goes from one to nine. 

Step 6: Run K-means algorithm on this entropy weighted data. 

3.3.2 Eigen-value based feature weighting: 

This approach applies the concept of PCA in finding the relative relevance of each 

feature. PCA is performed on the reduced 9xN representation of the original 32xN data. The 

eigenvectors obtained during this process represent the projections of each feature on a lower 

dimensional space. The significance of each eigenvector is associated with its eigenvalue as the 

eigenvalue corresponds to the variance correlated with its eigenvector. The eigenvector with the 

highest eigenvalue is the principle component of the data set and has as high a variance as 

possible. These eigenvalues are used to weight the features [25].  

The data is initially organized. Considering the N observations having nine variables each 

as N column vectors, these N column vectors are placed into a matrix X of dimensions 9xN. The 

mean value is calculated along each of the nine dimensions corresponding to nine features and is 

subtracted from each column (observation) of the matrix X. We then calculate the 9x9 

dimensional covariance matrix of X. The eigenvector matrix V and eigenvalues of this 

covariance matrix are determined. The eigenvectors form the basis of the data. These 

eigenvectors are then sorted based on their eigenvalues, highest to lowest. The eigenvalues and 

eigenvectors are ordered and paired. The ith eigenvalue corresponds to the ith eigenvector. We 

then obtain the 9xN transformed data matrix X’ by multiplying the transpose of the eigenvector 

matrix V with the data matrix X. X’ represents the original data solely in terms of the 

eigenvectors. Each row ‘i’ of X’ corresponds to the projections of the entire data on the ith 

eigenvector. Each row ‘i’ is then weighted with the ith eigenvalue. 
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Following is a summary of the weighting process: 

Eigenvalue based weighting: 

Given: A data set X having M=9 variables and N observations (9xN) 

Step 1: Organize the data into a matrix of M rows and N columns 

Step 2 Calculate the mean of the data along each dimension (feature) M and subtract it from each 

column of the data matrix X. 

𝑚𝑒𝑎𝑛(𝑚) =
1
𝑁
�𝑋(𝑚,𝑛)
𝑁

𝑛=1

 

where m = 1, …, 9 

𝑚𝑒𝑎𝑛 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑋 = 𝑋 −𝑚𝑒𝑎𝑛 ∗ ℎ 

where h is a 1xN row vector of all ones. h[n] = 1, n=1, …, N to match the matrix dimensions for 

subtraction. 

Step 3 Calculate the MxM covariance matrix C of the mean-subtracted data using outer product. 

𝐶 =
1

𝑁 − 1
[𝑋 ∗ 𝑋𝑇] 

where X is mean subtracted data and XT is its transpose.   

Step 4 Determine the MxM eigenvector matrix V and the MxM diagonal matrix D of 

eigenvalues of the covariance matrix C such that CV = VD.  
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Step 5: Sort the columns of V and D in order of decreasing eigenvalue to get the 9x1 eigenvalue 

matrix having the nine eigenvalues in descending order. Normalize the eigenvalues.  

D’(i)  =  𝐷(𝑖) 𝐷𝑚𝑎𝑥⁄  

where i = 1, …., 9 and Dmax is the highest eigenvalue. 

Step 6: Obtain the transformed data X’. 

𝑋′ = 𝑉𝑇 ∗ 𝑋 

Step 7: Weight each feature row vector of transformed data X’ with the corresponding 

eigenvalue. 

𝑋′(𝑖,𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) = 𝑋′(𝑖, 𝑎𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) ∗ 𝐷′(𝑖) 

where i = 1, …., 9 

Step 8: Run K-means to cluster eigenvalue weighted data. 

3.4 K-means Clustering Procedure 

After the features have been calculated, the dimensions of the data have been reduced and 

the features have been weighted, the reduced representation is then clustered using the standard 

K-means clustering algorithm. It provides the labels for each observation of the data describing 

which cluster it belongs to and the cluster centers. These labels can then be used to evaluate the 

clustering procedure if we already have the labels for the original data (gold standard).  

3.5 Cluster assignment 

There is a non-trivial problem of cluster assignment when you are given the original and 

observed labels for the clusters. This is because the labels in each set of clustering results do not 

correspond in a one-to-one manner. For instance, label 1 in original clustering need not 

correspond to label 1 in the observed labels; it may correspond to label 3 in the observed labels 
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and this cannot be always inferred visually. Hence there is a need to determine which observed 

cluster labels correspond to which original cluster labels. To solve this problem, we use the 

standard Hungarian Algorithm [26]. It is a combinatorial optimization algorithm which solves 

the assignment problem in polynomial time. 

3.6 Evaluation measures 

Here I will briefly introduce some of the measures used to evaluate the clustering 

performance. The manually sorted results are used as gold standard. For all the measures, we 

first calculate the following quantities: 

True positives (tp): the number of spikes correctly labeled as belonging to the correct cluster 

True negatives (tn): spikes which were correctly labeled as not belonging to the cluster 

False positives (fp): spikes incorrectly labeled as belonging to the cluster 

False negatives (fn): spikes which were not labeled as belonging to the correct cluster but should 

have been. 

Following are the evaluation measures: 

Precision [27]: It is defined as the number of relevant spikes retrieved divided by the total 

number of spikes retrieved. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall [27]: It is the number of relevant spikes retrieved divided by the total number of spikes 

that should have been ideally retrieved. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

These two measures have a range of 0 to 1 and reach their best value at 1. 
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Missed classifications: These are the number of spikes missed in the observed cluster divided by 

the number of spikes in the original cluster. 

𝑚𝑖𝑠𝑠𝑒𝑑(𝑖) =
𝑓𝑛

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖
 

False classification: This refers to the number of spikes falsely classified in the observed cluster 

divided by the number of spikes in the original cluster. 

𝑓𝑎𝑙𝑠𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑(𝑖) =
𝑓𝑝

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖
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CHAPTER 4 

RESULTS 

All the relevant results of this project are described in this chapter. To determine the 

efficacy of the proposed algorithm, we performed experiments on nineteen real data sets with 

known cluster labels obtained from manual sorting (gold standard).  

Following is a description of these data sets and the results obtained.  

4.1 Real data sets 

Nineteen real data sets were obtained from rd mice. The results of the existing methods 

(K-means, PCA) for these nineteen, thirty two dimensional data sets were obtained. These results 

were used as the baseline (32xN K-means). Some statistics are shown in Table 1.  
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Table 4.1: Real data sets and some statistics 

Data set Total Number of 

Observations / Spikes 

Number of clusters 

sorted052307channel_54 13163 2 

sorted050207channel_31 16764 3 

sorted050207channel_34 5163 2 

sorted050207channel_12 6512 3 

sorted052307channel_23 34681 2 

sorted050207channel_13 4486 2 

sorted050207channel_16 10605 2 

sorted050207channel_46 36469 4 

sorted050207channel_57 14333 3 

sorted050207channel_67 2474 2 

sorted050207channel_78 9184 3 

sorted052307channel_16 2937 7 

sorted052307channel_32 9751 3 

sorted052307channel_37 3812 6 

sorted052307channel_46 9451 7 

sorted052307channel_47 5472 3 

sorted052307channel_63 10524 5 

sorted052307channel_64 8882 5 

sorted052307channel_71 1939 2 
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4.2 Manual weighting 

As mentioned before in section 3.4, all the nine features do not contribute equally 

towards the clustering process. The more important a feature is the more important role it should 

play in the clustering process. Unfortunately, we do not know what the best criterion to decide 

the importance of all the features is or how to select the weights for all the features. To overcome 

this problem, we first selected weights manually for all the features and obtained the results of 

the clustering process. Following is a description of the results for cluster number two of the data 

set: sorted050207channel_31.  

Data set: sorted050207channel_31 

Number of clusters: 3 

Cluster under consideration: cluster # 2 

Number of spikes in data set: 16764 

Number of spikes in cluster # 2: 15637 

Weights: Manual weights set 1 
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Table 4.2: Results of manual weighting (set 1) 

Evaluation measure Cluster 32xN K-means 9xN K-means with 

Manual weights set 1 

Precision C2 0.9975 0.9994 

Recall C2 0.6302 0.689 

Missed C2 0.3698 0.311 

False classified C2 0.0016 0.0004 

 

 

 

 

 

Figure 4.1: Results of manual weighting (set 1) 
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Based on the above results, the existing method falsely classified 25 spikes as belonging 

to cluster 2 and missed 5785 out of 15637 spikes which should have been classified as cluster 2. 

The manually weighted data showed a marked improvement over the baseline results with only 6 

spikes false classified and missed 4863 out of 15637 spikes which is almost 1000 spikes less than 

the baseline result. Following is a description of results for the same cluster of data set: 

sorted050207channel_31 with manual weights set 2. 

Data set: sorted050207channel_31 

Number of clusters: 3 

Cluster under consideration: cluster # 2 

Number of spikes in data set: 16764 

Number of spikes in cluster # 2: 15637 

Weights: Manual weights set 2 

 

 

 

Table 4.3: Results of manual weighting (set 2) 

Evaluation measure Cluster 32xN K-means 9xN K-means with 

Manual weights set 2 

Precision C2 0.9975 0.9886 

Recall C2 0.6302 0.4816 

Missed C2 0.3698 0.5184 

False classified C2 0.0016 0.0056 
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Figure 4.2: Results of manual weighting (set 2) 
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compared to the baseline results. It falsely classified 84 spikes compared to 25 of the baseline 

and missed 8106 out of 15637 spikes compared to 5785 for the baseline. 

 The above results show that we need to select the weights very carefully. If we select set 

1, we get much improved results over the baseline. If we select set 2, we get very poor results. It 

also establishes the fact that there exist sets of weights which can provide an improved 
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other hand, the measures of missed and false classification should have a value of 0 ideally. So 

the lower the value, the better the result is for these two measures. In some cases, the missed or 

false classification value may be more than 1 because the original cluster sizes are very small and 

dividing any number greater than that gives a value which is more than 1. 

4.3 Comparison between results of K-means on 32xN data  

and Entropy weighted 9xN data 

This section provides a comparison between the results of K-means on the original 32xN 

data set and the results of K-means on feature-based, entropy weighted 9xN data set. 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

 
 

Table 4.4: Results of K-means on 32xN data and Entropy weighted 9xN data 

Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

sorted050207channel_12 precision C1 0.9821 0.9539 

  C2 0.8964 0.771 

  C3 0.9163 0.9177 

 recall C1 0.9948 0.9969 

  C2 0.8715 0.8584 

  C3 0.9268 0.8075 

 missed C1 0.0052 0.0031 

  C2 0.1285 0.1416 

  C3 0.0732 0.1925 

 false C1 0.0181 0.0482 

  C2 0.1008 0.2549 

  C3 0.0847 0.0724 

     

sorted050207channel_13 precision C1 0.9695 0.8232 

  C2 0.9307 0.8975 

 recall C1 0.9014 0.8668 

  C2 0.9791 0.8623 

 missed C1 0.0986 0.1332 

  C2 0.0209 0.1377 

 false C1 0.0283 0.1862 

  C2 0.0729 0.0985 

     

sorted050207channel_16 Precision C1 0.1274 0.1551 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C2 0.9961 0.9995 

 Recall C1 0.966 0.9954 

  C2 0.5694 0.6472 

 Missed C1 0.034 0.0046 

  C2 0.4306 0.3528 

 False C1 6.6157 5.4213 

  C2 0.0022 0.0003 

     

sorted050207channel_31 Precision C1 0.9564 0.8268 

  C2 0.9975 0.9978 

  C3 0 0.0005 

 Recall C1 0.9937 0.9946 

  C2 0.6302 0.7382 

  C3 0 0.087 

 Missed C1 0.0063 0.0054 

  C2 0.3698 0.2618 

  C3 0 0.913 

 False C1 0.0453 0.2083 

  C2 0.0016 0.0016 

  C3 0 168.0435 

     

sorted050207channel_34 Precision C1 0.0513 0.0606 

  C2 1 1 

 Recall C1 1 1 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C2 0.522 0.5998 

 Missed C1 0 0 

  C2 0.478 0.4002 

 False C1 18.5077 15.4923 

  C2 0 0 

     

sorted050207channel_46 Precision C1 0.0006 0 

  C2 0.6775 0.6339 

  C3 0.0028 0.0012 

  C4 0.9988 0.9997 

 Recall C1 0.0166 0 

  C2 0.9967 1 

  C3 0.7442 0.3488 

  C4 0.3444 0.4237 

 Missed C1 0.9834 0 

  C2 0.0033 0 

  C3 0.2558 0.6512 

  C4 0.6556 0.5763 

 False C1 27.4679 0 

  C2 0.4745 0.5776 

  C3 265.4419 291.1628 

  C4 0.0004 0.0001 

     

sorted050207channel_57 Precision C1 0.9886 0.957 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C2 0.962 0.9934 

  C3 0.0033 0.0013 

 Recall C1 0.8995 0.5221 

  C2 0.324 0.3731 

  C3 1 0.5 

 Missed C1 0.1005 0.4779 

  C2 0.676 0.6269 

  C3 0 0.5 

 False C1 0.0103 0.0235 

  C2 0.0128 0.0025 

  C3 304 390 

     

sorted050207channel_67 Precision C1 0.9797 0.8701 

  C2 0.9784 0.9024 

 Recall C1 0.9725 0.8773 

  C2 0.9841 0.8965 

 Missed C1 0.0275 0.1227 

  C2 0.0159 0.1035 

 False C1 0.0201 0.131 

  C2 0.0217 0.097 

     

sorted050207channel_78 Precision C1 0.3414 0.117 

  C2 0.9527 0.6949 

  C3 0.9749 0.9881 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

 Recall C1 0.918 0.2882 

  C2 0.9117 0.8961 

  C3 0.6832 0.6038 

 Missed C1 0.082 0.7118 

  C2 0.0883 0.1039 

  C3 0.3168 0.3962 

 False C1 1.7707 2.175 

  C2 0.0452 0.3935 

  C3 0.0176 0.0072 

     

sorted052307channel_16 Precision C1 0.9888 0.9697 

  C2 0.9782 0.3403 

  C3 0.9962 0.9824 

  C4 0.9812 0.7897 

  C5 0.0046 0 

  C6 0 0 

  C7 0.003 0.0056 

 Recall C1 0.5473 0.9877 

  C2 0.534 0.3333 

  C3 0.7689 0.3835 

  C4 0.7009 0.6007 

  C5 0.5 0 

  C6 0 0 

  C7 0.1667 0.3333 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

 Missed C1 0.4527 0.0123 

  C2 0.466 0.6667 

  C3 0.2311 0.6165 

  C4 0.2991 0.3993 

  C5 0.5 0 

  C6 0 0 

  C7 0.8333 0.6667 

 False C1 0.0062 0.0309 

  C2 0.0119 0.6463 

  C3 0.0029 0.0069 

  C4 0.0134 0.16 

  C5 108.5 0 

  C6 0 0 

  C7 56.1667 58.8333 

sorted052307channel_23 Precision C1 0.9996 0.998 

  C2 0.8632 0.892 

 Recall C1 0.9765 0.9822 

  C2 0.9972 0.987 

 Missed C1 0.0235 0.0178 

  C2 0.0028 0.013 

 False C1 0.0004 0.0019 

  C2 0.1581 0.1195 

     

sorted052307channel_32 Precision C1 0.001 0.8932 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C2 1 0.9877 

  C3 0.0021 0 

 Recall C1 0.0022 0.9734 

  C2 0.4661 0.5148 

  C3 1 0 

 Missed C1 0.9978 0.0266 

  C2 0.5339 0.4852 

  C3 0 0 

 False C1 2.1983 0.1164 

  C2 0 0.0064 

  C3 473.6667 0 

     

sorted052307channel_37 Precision C1 0.9989 1 

  C2 0.0122 0.1141 

  C3 0.9242 0.8522 

  C4 0.8735 0.7034 

  C5 0.0066 0.0101 

  C6 0 0 

 Recall C1 0.9103 0.497 

  C2 0.2 0.95 

  C3 0.3245 0.4798 

  C4 0.5413 0.5953 

  C5 0.4286 0.7143 

  C6 0 0 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

 Missed C1 0.0897 0.503 

  C2 0.8 0.05 

  C3 0.6755 0.5202 

  C4 0.4587 0.4047 

  C5 0.5714 0.2857 

  C6 0 0 

 False C1 0.001 0 

  C2 16.225 7.375 

  C3 0.0266 0.0832 

  C4 0.0784 0.2511 

  C5 65 70.2857 

  C6 0 0 

     

sorted052307channel_47 Precision C1 0 0.0043 

  C2 0.632 0.0988 

  C3 1 0.9995 

 Recall C1 0 0.32 

  C2 1 0.8075 

  C3 0.5315 0.3569 

 Missed C1 0 0.68 

  C2 0 0.1925 

  C3 0.4685 0.6431 

 False C1 0 74.16 

  C2 0.5822 7.3662 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C3 0 0.0002 

   32xN Entropy 

sorted052307channel_54 Precision C1 0.9882 0.9897 

  C2 0.9618 0.9882 

 Recall C1 0.9731 0.9919 

  C2 0.9831 0.985 

 Missed C1 0.0269 0.0081 

  C2 0.0169 0.015 

 False C1 0.0117 0.0103 

  C2 0.0391 0.0117 

     

sorted052307channel_63 Precision C1 0.9995 0.9833 

  C2 0.9124 0.9762 

  C3 0 0.0204 

  C4 0.0317 0.0336 

  C5 0 0 

 Recall C1 0.2811 0.4455 

  C2 0.9967 0.6051 

  C3 0 0.3871 

  C4 0.2435 0.3391 

  C5 0 0 

 Missed C1 0.7189 0.5545 

  C2 0.0033 0.3949 

  C3 0 0.6129 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C4 0.7565 0.6609 

  C5 0 0 

 False C1 0.0001 0.0076 

  C2 0.0957 0.0148 

  C3 0 18.6129 

  C4 7.4261 9.7522 

  C5 0 0 

     

sorted052307channel_64 Precision C1 0.9754 0.9723 

  C2 0.0213 0.906 

  C3 0.9193 0.9822 

  C4 0.0091 0.0177 

  C5 0 0.0061 

 Recall C1 0.3611 0.5382 

  C2 0.0075 0.5543 

  C3 0.9804 0.7969 

  C4 0.9615 1 

  C5 0 0.4762 

 Missed C1 0.6389 0.4618 

  C2 0.9925 0.4457 

  C3 0.0196 0.2031 

  C4 0.0385 0 

  C5 0 0.5238 

 False C1 0.0091 0.0154 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C2 0.3454 0.0575 

  C3 0.086 0.0144 

  C4 104.6923 55.5 

  C5 0 77.9524 

     

sorted052307channel_71 Precision C1 0.0529 0.0593 

  C2 1 1 

 Recall C1 1 1 

  C2 0.5744 0.623 

 Missed C1 0 0 

  C2 0.4256 0.377 

 False C1 17.9111 15.8667 

  C2 0 0 

     

sorted052307channel_46 Precision C1 0.703 0.7414 

  C2 0.0014 0 

  C3 0.0163 0.0498 

  C4 0.1639 0.0007 

  C5 0.9973 0.989 

  C6 0.0721 0.8435 

  C7 0.0009 0 

 Recall C1 0.8838 0.9876 

  C2 0.0187 0 

  C3 0.4444 1 
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Data set Metric Cluster 32xN Kmeans 9xN Entropy 

weighted 

  C4 0.9602 0.008 

  C5 0.2845 0.3051 

  C6 0.123 0.5061 

  C7 0.5 0 

 Missed C1 0.1162 0.0124 

  C2 0.9813 0 

  C3 0.5556 0 

  C4 0.0398 0.992 

  C5 0.7155 0.6949 

  C6 0.877 0.4939 

  C7 0.5 0 

 False C1 0.3734 0.3444 

  C2 13.514 0 

  C3 26.75 19.0833 

  C4 4.8964 11.2908 

  C5 0.0008 0.0034 

  C6 1.584 0.0939 

  C7 584 0 

 

  

 

It is difficult to analyze the performance for an entire data set as a whole since a 

particular algorithm performs better for some clusters and poorly for others. Instead, if each 
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cluster is considered as a separate entity, then it is easier to quantify the performance. We had 

264 such clusters in total. Based on this analysis of the experimental results, if we take a vote by 

comparing the values as means for evaluation then the results of K-means on the entropy 

weighted 9xN data are better than the baseline results of K-means on the original 32xN data in 

more than 54% of the cases. The baseline results have a better value in the remaining 46% cases. 

The following plot depicts this comparison.  

 

 

 

 

Figure 4.3: Comparison between results of 32xN K-means and Entropy weighted 9xN data 
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4.4 Comparison between results of K-means on 32xN data  

and Eigenvalue weighted 9xN data 

This section provides a comparison between the results of K-means on the original 32xN 

data sets and the results of K-means on feature-based, eigenvalue weighted 9xN data sets. 
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Table 4.5: Results of K-means on 32xN data and Eigenvalue weighted 9xN data 

Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted050207channel_12 precision C1 0.9821 0.9501 

  C2 0.8964 0.7542 

  C3 0.9163 0.9212 

 recall C1 0.9948 0.9974 

  C2 0.8715 0.861 

  C3 0.9268 0.7874 

 missed C1 0.0052 0.0026 

  C2 0.1285 0.139 

  C3 0.0732 0.2126 

 false C1 0.0181 0.0523 

  C2 0.1008 0.2806 

  C3 0.0847 0.0674 

     

sorted050207channel_13 precision C1 0.9695 0.7842 

  C2 0.9307 0.9013 

 recall C1 0.9014 0.8783 

  C2 0.9791 0.8212 

 missed C1 0.0986 0.1217 

  C2 0.0209 0.1788 

 false C1 0.0283 0.2417 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.0729 0.09 

     

sorted050207channel_16 Precision C1 0.1274 0.1358 

  C2 0.9961 0.9998 

 Recall C1 0.966 0.9985 

  C2 0.5694 0.5864 

 Missed C1 0.034 0.0015 

  C2 0.4306 0.4136 

 False C1 6.6157 6.3549 

  C2 0.0022 0.0001 

     

sorted050207channel_31 Precision C1 0.9564 0.9144 

  C2 0.9975 0.9987 

  C3 0 0.0014 

 Recall C1 0.9937 0.9864 

  C2 0.6302 0.6221 

  C3 0 0.3478 

 Missed C1 0.0063 0.0136 

  C2 0.3698 0.3779 

  C3 0 0.6522 

 False C1 0.0453 0.0924 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.0016 0.0008 

  C3 0 253.2174 

     

sorted050207channel_34 Precision C1 0.0513 0.0556 

  C2 1 1 

 Recall C1 1 1 

  C2 0.522 0.5609 

 Missed C1 0 0 

  C2 0.478 0.4391 

 False C1 18.5077 17 

  C2 0 0 

     

sorted050207channel_46 Precision C1 0.0006 0 

  C2 0.6775 0.6518 

  C3 0.0028 0.0025 

  C4 0.9988 1 

 Recall C1 0.0166 0 

  C2 0.9967 1 

  C3 0.7442 0.4419 

  C4 0.3444 0.4262 

 Missed C1 0.9834 0 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.0033 0 

  C3 0.2558 0.5581 

  C4 0.6556 0.5738 

 False C1 27.4679 0 

  C2 0.4745 0.5342 

  C3 265.4419 179.6512 

  C4 0.0004 0 

     

sorted050207channel_57 Precision C1 0.9886 0.9894 

  C2 0.962 0.9824 

  C3 0.0033 0.0021 

 Recall C1 0.8995 0.7925 

  C2 0.324 0.3463 

  C3 1 0.5 

 Missed C1 0.1005 0.2075 

  C2 0.676 0.6537 

  C3 0 0.5 

 False C1 0.0103 0.0085 

  C2 0.0128 0.0062 

  C3 304 234 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted050207channel_67 Precision C1 0.9797 0.8687 

  C2 0.9784 0.9208 

 Recall C1 0.9725 0.9029 

  C2 0.9841 0.8922 

 Missed C1 0.0275 0.0971 

  C2 0.0159 0.1078 

 False C1 0.0201 0.1364 

  C2 0.0217 0.0767 

     

sorted050207channel_78 Precision C1 0.3414 0.1208 

  C2 0.9527 0.7027 

  C3 0.9749 0.9841 

 Recall C1 0.918 0.2937 

  C2 0.9117 0.8817 

  C3 0.6832 0.6209 

 Missed C1 0.082 0.7063 

  C2 0.0883 0.1183 

  C3 0.3168 0.3791 

 False C1 1.7707 2.1372 

  C2 0.0452 0.373 

  C3 0.0176 0.01 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted052307channel_16 Precision C1 0.9888 0.9731 

  C2 0.9782 0.3867 

  C3 0.9962 0.9638 

  C4 0.9812 0.6324 

  C5 0.0046 0 

  C6 0 0 

  C7 0.003 0.0075 

 Recall C1 0.5473 0.9671 

  C2 0.534 0.2466 

  C3 0.7689 0.3923 

  C4 0.7009 0.4054 

  C5 0.5 0 

  C6 0 0 

  C7 0.1667 0.3333 

 Missed C1 0.4527 0.0329 

  C2 0.466 0.7534 

  C3 0.2311 0.6077 

  C4 0.2991 0.5946 

  C5 0.5 0 

  C6 0 0 

  C7 0.8333 0.6667 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 False C1 0.0062 0.0267 

  C2 0.0119 0.3912 

  C3 0.0029 0.0147 

  C4 0.0134 0.2357 

  C5 108.5 0 

  C6 0 0 

  C7 56.1667 44.1667 

sorted052307channel_23 Precision C1 0.9996 0.9982 

  C2 0.8632 0.8905 

 Recall C1 0.9765 0.9819 

  C2 0.9972 0.9884 

 Missed C1 0.0235 0.0181 

  C2 0.0028 0.0116 

 False C1 0.0004 0.0017 

  C2 0.1581 0.1216 

     

sorted052307channel_32 Precision C1 0.001 0.8793 

  C2 1 1 

  C3 0.0021 0.0007 

 Recall C1 0.0022 0.9634 

  C2 0.4661 0.487 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C3 1 0.6667 

 Missed C1 0.9978 0.0366 

  C2 0.5339 0.513 

  C3 0 0.3333 

 False C1 2.1983 0.1322 

  C2 0 0 

  C3 473.6667 946.3333 

     

sorted052307channel_37 Precision C1 0.9989 0.998 

  C2 0.0122 0.1814 

  C3 0.9242 0.8986 

  C4 0.8735 0.6895 

  C5 0.0066 0 

  C6 0 0.0013 

 Recall C1 0.9103 0.9744 

  C2 0.2 0.975 

  C3 0.3245 0.3783 

  C4 0.5413 0.4799 

  C5 0.4286 0 

  C6 0 1 

 Missed C1 0.0897 0.0256 



52 
 

 
 

Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.8 0.025 

  C3 0.6755 0.6217 

  C4 0.4587 0.5201 

  C5 0.5714 0 

  C6 0 0 

 False C1 0.001 0.002 

  C2 16.225 4.4 

  C3 0.0266 0.0427 

  C4 0.0784 0.2161 

  C5 65 0 

  C6 0 788 

     

sorted052307channel_47 Precision C1 0 0.0893 

  C2 0.632 0.0004 

  C3 1 0.9975 

 Recall C1 0 1 

  C2 1 0.0047 

  C3 0.5315 0.5367 

 Missed C1 0 0 

  C2 0 0.9953 

  C3 0.4685 0.4633 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 False C1 0 10.2 

  C2 0.5822 11.1502 

  C3 0 0.0013 

   32xN  

sorted052307channel_54 Precision C1 0.9882 0.9906 

  C2 0.9618 0.988 

 Recall C1 0.9731 0.9917 

  C2 0.9831 0.9863 

 Missed C1 0.0269 0.0083 

  C2 0.0169 0.0137 

 False C1 0.0117 0.0094 

  C2 0.0391 0.012 

     

sorted052307channel_63 Precision C1 0.9995 0.9841 

  C2 0.9124 0.9549 

  C3 0 0.0004 

  C4 0.0317 0.0438 

  C5 0 0 

 Recall C1 0.2811 0.2955 

  C2 0.9967 0.9922 

  C3 0 0.0161 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C4 0.2435 0.313 

  C5 0 0 

 Missed C1 0.7189 0.7045 

  C2 0.0033 0.0078 

  C3 0 0.9839 

  C4 0.7565 0.687 

  C5 0 0 

 False C1 0.0001 0.0048 

  C2 0.0957 0.0469 

  C3 0 39.2581 

  C4 7.4261 6.8391 

  C5 0 0 

     

sorted052307channel_64 Precision C1 0.9754 0.9685 

  C2 0.0213 0.9351 

  C3 0.9193 0.9842 

  C4 0.0091 0.0017 

  C5 0 0.0043 

 Recall C1 0.3611 0.5201 

  C2 0.0075 0.621 

  C3 0.9804 0.6684 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C4 0.9615 0.1154 

  C5 0 0.3333 

 Missed C1 0.6389 0.4799 

  C2 0.9925 0.379 

  C3 0.0196 0.3316 

  C4 0.0385 0.8846 

  C5 0 0.6667 

 False C1 0.0091 0.0169 

  C2 0.3454 0.0431 

  C3 0.086 0.0107 

  C4 104.6923 67.6923 

  C5 0 76.381 

     

sorted052307channel_71 Precision C1 0.0529 0.0542 

  C2 1 1 

 Recall C1 1 1 

  C2 0.5744 0.585 

 Missed C1 0 0 

  C2 0.4256 0.415 

 False C1 17.9111 17.4667 

  C2 0 0 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted052307channel_46 Precision C1 0.703 0.7881 

  C2 0.0014 0.1055 

  C3 0.0163 0 

  C4 0.1639 0.0246 

  C5 0.9973 0.9492 

  C6 0.0721 0.855 

  C7 0.0009 0 

 Recall C1 0.8838 0.9876 

  C2 0.0187 0.4112 

  C3 0.4444 0 

  C4 0.9602 0.1036 

  C5 0.2845 0.326 

  C6 0.123 0.4207 

  C7 0.5 0 

 Missed C1 0.1162 0.0124 

  C2 0.9813 0.5888 

  C3 0.5556 0 

  C4 0.0398 0.8964 

  C5 0.7155 0.674 

  C6 0.877 0.5793 

  C7 0.5 0 
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Data set Metric Cluster 32xN Kmeans K-means on 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 False C1 0.3734 0.2656 

  C2 13.514 3.486 

  C3 26.75 0 

  C4 4.8964 4.1155 

  C5 0.0008 0.0175 

  C6 1.584 0.0714 

  C7 584 0 

  

  

 

Again, if we take a vote as means for evaluation considering each cluster as a separate 

entity, then the results of K-means on eigenvalue weighted 9xN data are better than the baseline 

results of K-means on the original 32xN data in more than 56% of the cases. The following plot 

depicts this comparison.  
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Figure 4.4: Comparison between 32xN K-means and 9xN PCA Eigenvalue weighted data 

 

 

 

 

4.5 Comparison between results of K-means on 32xN PCA data  

and 9xN PCA Eigenvalue weighted data 

This section provides a comparison between the results of PCA on the original 32xN data 

set and the results of K-means on the feature-based, eigenvalue weighted 9xN data set. 
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Table 4.6: Results of K-means on 32xN PCA data and 9xN PCA Eigenvalue weighted data 

Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted050207channel_12 precision C1 0.9963 0.9501 

  C2 0.9625 0.7542 

  C3 0.8775 0.9212 

 recall C1 0.9803 0.9974 

  C2 0.8156 0.861 

 missed C1 0.0197 0.0026 

  C2 0.1844 0.139 

  C3 0.0096 0.2126 

 false C1 0.0036 0.0523 

  C2 0.0317 0.2806 

  C3 0.1382 0.0674 

     

sorted050207channel_13 precision C1 0.9301 0.7842 

  C2 0.9622 0.9013 

 recall C1 0.9497 0.8783 

  C2 0.9473 0.8212 

 missed C1 0.0503 0.1217 

  C2 0.0527 0.1788 

 false C1 0.0713 0.2417 

  C2 0.0372 0.09 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted050207channel_16 Precision C1 0.0683 0.1358 

  C2 0.9457 0.9998 

 Recall C1 0.5463 0.9985 

  C2 0.5147 0.5864 

 Missed C1 0.4537 0.0015 

  C2 0.4853 0.4136 

 False C1 7.4568 6.3549 

  C2 0.0295 0.0001 

     

sorted050207channel_31 Precision C1 0.1018 0.9144 

  C2 0.9783 0.9987 

  C3 0.0043 0.0014 

 Recall C1 0.452 0.9864 

  C2 0.4498 0.6221 

  C3 0.8696 0.3478 

 Missed C1 0.548 0.0136 

  C2 0.5502 0.3779 

  C3 0.1304 0.6522 

 False C1 3.9891 0.0924 

  C2 0.01 0.0008 

  C3 202.2174 253.2174 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

sorted050207channel_34 Precision C1 0.0546 0.0556 

  C2 1 1 

 Recall C1 1 1 

  C2 0.5531 0.5609 

 Missed C1 0 0 

  C2 0.4469 0.4391 

 False C1 17.3 17 

  C2 0 0 

     

sorted050207channel_46 Precision C1 0.0019 0 

  C2 0.6599 0.6518 

  C3 0.0013 0.0025 

  C4 0.9992 1 

 Recall C1 0.0499 0 

  C2 0.9924 1 

  C3 0.3721 0.4419 

  C4 0.3483 0.4262 

 Missed C1 0.9501 0 

  C2 0.0076 0 

  C3 0.6279 0.5581 

  C4 0.6517 0.5738 



62 
 

 
 

Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 False C1 25.8812 0 

  C2 0.5114 0.5342 

  C3 277.2326 179.6512 

  C4 0.0003 0 

     

sorted050207channel_57 Precision C1 0.9689 0.9894 

  C2 0.9568 0.9824 

  C3 0.0033 0.0021 

 Recall C1 0.907 0.7925 

  C2 0.3112 0.3463 

  C3 1 0.5 

 Missed C1 0.093 0.2075 

  C2 0.6888 0.6537 

  C3 0 0.5 

 False C1 0.0291 0.0085 

  C2 0.014 0.0062 

  C3 306.5 234 

     

sorted050207channel_67 Precision C1 0.9858 0.8687 

  C2 0.9634 0.9208 

 Recall C1 0.9524 0.9029 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.9891 0.8922 

 Missed C1 0.0476 0.0971 

  C2 0.0109 0.1078 

 False C1 0.0137 0.1364 

  C2 0.0376 0.0767 

     

sorted050207channel_78 Precision C1 0.3476 0.1208 

  C2 0.9599 0.7027 

  C3 0.9671 0.9841 

 Recall C1 0.9042 0.2937 

  C2 0.863 0.8817 

  C3 0.7158 0.6209 

 Missed C1 0.0958 0.7063 

  C2 0.137 0.1183 

  C3 0.2842 0.3791 

 False C1 1.6971 2.1372 

  C2 0.0361 0.373 

  C3 0.0243 0.01 

     

sorted052307channel_16 Precision C1 0.9839 0.9731 

  C2 0.967 0.3867 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C3 0.9919 0.9638 

  C4 0.9718 0.6324 

  C5 0.0041 0 

  C6 0 0 

  C7 0.0025 0.0075 

 Recall C1 0.5021 0.9671 

  C2 0.7976 0.2466 

  C3 0.6028 0.3923 

  C4 0.5043 0.4054 

  C5 0.5 0 

  C6 0 0 

  C7 0.1667 0.3333 

 Missed C1 0.4979 0.0329 

  C2 0.2024 0.7534 

  C3 0.3972 0.6077 

  C4 0.4957 0.5946 

  C5 0.5 0 

  C6 0 0 

  C7 0.8333 0.6667 

 False C1 0.0082 0.0267 

  C2 0.0272 0.3912 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C3 0.0049 0.0147 

  C4 0.0147 0.2357 

  C5 121 0 

  C6 0 0 

  C7 67.6667 44.1667 

sorted052307channel_23 Precision C1 0.9971 0.9982 

  C2 0.2446 0.8905 

 Recall C1 0.5459 0.9819 

  C2 0.9893 0.9884 

 Missed C1 0.4541 0.0181 

  C2 0.0107 0.0116 

 False C1 0.0016 0.0017 

  C2 3.0552 0.1216 

     

sorted052307channel_32 Precision C1 0.9796 0.8793 

  C2 0.9993 1 

  C3 0 0.0007 

 Recall C1 0.9986 0.9634 

  C2 0.5134 0.487 

  C3 0 0.6667 

 Missed C1 0.0014 0.0366 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.4866 0.513 

  C3 0 0.3333 

 False C1 0.0208 0.1322 

  C2 0.0003 0 

  C3 0 946.3333 

     

sorted052307channel_37 Precision C1 1 0.998 

  C2 0.0333 0.1814 

  C3 0.944 0.8986 

  C4 0.905 0.6895 

  C5 0.0037 0 

  C6 0 0.0013 

 Recall C1 0.9103 0.9744 

  C2 0.4 0.975 

  C3 0.3272 0.3783 

  C4 0.5752 0.4799 

  C5 0.2857 0 

  C6 0 1 

 Missed C1 0.0897 0.0256 

  C2 0.6 0.025 

  C3 0.6728 0.6217 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C4 0.4248 0.5201 

  C5 0.7143 0 

  C6 0 0 

 False C1 0 0.002 

  C2 11.625 4.4 

  C3 0.0194 0.0427 

  C4 0.0604 0.2161 

  C5 76.1429 0 

  C6 0 788 

     

sorted052307channel_47 Precision C1 0.0084 0.0893 

  C2 0.098 0.0004 

  C3 0.9977 0.9975 

 Recall C1 0.64 1 

  C2 0.6432 0.0047 

  C3 0.4135 0.5367 

 Missed C1 0.36 0 

  C2 0.3568 0.9953 

  C3 0.5865 0.4633 

 False C1 75.56 10.2 

  C2 5.9202 11.1502 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C3 0.001 0.0013 

     

sorted052307channel_54 Precision C1 0.9927 0.9906 

  C2 0.9574 0.988 

 Recall C1 0.9697 0.9917 

  C2 0.9896 0.9863 

 Missed C1 0.0303 0.0083 

  C2 0.0104 0.0137 

 False C1 0.0071 0.0094 

  C2 0.044 0.012 

     

sorted052307channel_63 Precision C1 0.9981 0.9841 

  C2 0.9233 0.9549 

  C3 0.0395 0.0004 

  C4 0.0106 0.0438 

  C5 0 0 

 Recall C1 0.4143 0.2955 

  C2 0.5822 0.9922 

  C3 0.8387 0.0161 

  C4 0.1 0.313 

  C5 0 0 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 Missed C1 0.5857 0.7045 

  C2 0.4178 0.0078 

  C3 0.1613 0.9839 

  C4 0.9 0.687 

  C5 0 0 

 False C1 0.0008 0.0048 

  C2 0.0484 0.0469 

  C3 20.4032 39.2581 

  C4 9.3565 6.8391 

  C5 0 0 

     

sorted052307channel_64 Precision C1 0.9994 0.9685 

  C2 0.8856 0.9351 

  C3 0.9795 0.9842 

  C4 0.0155 0.0017 

  C5 0 0.0043 

 Recall C1 0.4947 0.5201 

  C2 0.4533 0.621 

  C3 0.9361 0.6684 

  C4 0.9615 0.1154 

  C5 0 0.3333 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

 Missed C1 0.5053 0.4799 

  C2 0.5467 0.379 

  C3 0.0639 0.3316 

  C4 0.0385 0.8846 

  C5 0 0.6667 

 False C1 0.0003 0.0169 

  C2 0.0585 0.0431 

  C3 0.0196 0.0107 

  C4 61.2308 67.6923 

  C5 0 76.381 

     

sorted052307channel_71 Precision C1 0.0447 0.0542 

  C2 1 1 

 Recall C1 1 1 

  C2 0.4921 0.585 

 Missed C1 0 0 

  C2 0.5079 0.415 

 False C1 21.3778 17.4667 

  C2 0 0 

     

sorted052307channel_46 Precision C1 0.7076 0.7881 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 0.0005 0.1055 

  C3 0.0266 0 

  C4 0.1623 0.0246 

  C5 0.9908 0.9492 

  C6 0.232 0.855 

  C7 0.001 0 

 Recall C1 0.8838 0.9876 

  C2 0.0093 0.4112 

  C3 0.75 0 

  C4 0.8685 0.1036 

  C5 0.2933 0.326 

  C6 0.2723 0.4207 

  C7 0.5 0 

 Missed C1 0.1162 0.0124 

  C2 0.9907 0.5888 

  C3 0.25 0 

  C4 0.1315 0.8964 

  C5 0.7067 0.674 

  C6 0.7277 0.5793 

  C7 0.5 0 

 False C1 0.3651 0.2656 
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Data set Metric Cluster K-means with 

PCA 

transformed 

32xN 

K-means with 

PCA 

transformed,  

Eigenvalue 

weighted 9xN 

  C2 20.1402 3.486 

  C3 27.4167 0 

  C4 4.4821 4.1155 

  C5 0.0027 0.0175 

  C6 0.9014 0.0714 

  C7 519.5 0 

 

 

 

Based on the same criterion of voting, the above table shows that the results of K-means 

on PCA transformed and eigenvalue weighted 9xN data are better than the results of K-means on 

the PCA transformed 32xN data in more than 53% of the cases. The following plot depicts this 

comparison.  
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Figure 4.5: Comparison between K-means on PCA 32xN and 9xN PCA Eigenvalue weighted 

data 

 

 

 

 

Following are the plots of the various clusters of data set sorted050207channel_12using 

different clustering approaches. It helps us to observe the clustering results visually. It also 

shows why cluster assignment is a big problem as we discussed in section 3.6. 

 

 

 

 

 

123 
141 

0

20

40

60

80

100

120

140

160

PCA 32xN 9xN PCA Eigenvalue
weighted

Real data sets

Number of 
clusters for 
which the 
algorithm 
under 
consideration 
performs 
better than the 
other method 



74 
 

 
 

 

Figure 4.6: Plots of clustering based on gold standard (manual sorting). 

 

 

 

 

Figure 4.7: Plots of clustering based on K-means algorithm over original 32xN data 
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Figure 4.8: Plots of clustering based on entropy weighted 9xN data using K-means 

 

 

 

 

 

Figure 4.9: Plots of clustering based on PCA over original 32xN data 
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Figure 4.10: Plots of clustering based on eigenvalue weighted 9xN data using K-means 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

 All the goals of the thesis mentioned in section 1.5 have been met. Nine different features 

were calculated from the original data sets based on their geometric properties. Two different 

intelligent weighting techniques were developed; first based on entropy of the features and 

second based on the principal component approach using eigenvalues. These techniques were 

then incorporated into the clustering procedure along with the features calculated separately. 

This resulted in an improved clustering performance in more than half of the data sets under 

study. Although it showed negative or no improvement in the remaining few data sets, the new 

approach still holds promise for further research due to the improvements shown over the 

baseline results. 

 With time and a few modifications, the clustering results could be improved even further 

to determine which spike comes from which neuron. A few other and possibly better methods of 

weighting the features could be implemented by selecting different heuristics such as mutual 

information. All the algorithms studied in this thesis perform poorly when the cluster sizes vary a 

lot in a given data set. K-means splits the data halfway between the cluster means leading to 

suboptimal splits. Other clustering algorithms such as Expectation-Maximization (EM) algorithm 

could be used to overcome these shortcomings since EM uses both variances and covariances 

and hence is able to accommodate clusters of variable size in a much better way than K-means. 
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APPENDIX A 

SOURCE CODE 

A.1 feature_calculation.m 

% Code to calculate all features 
% Authors: Zhijun Cai and Kaustubh Patwardhan 
 
clear all; 
clc; 
close all; 
 
 
%% Load data % data loading 
[filename,pathname] = uigetfile('*.mat','Select Spike 
Data','C:\Users\Kaustubh Patwardhan\Documents\Matlab\Kaustubh\data\'); 
load_file = [pathname filename]; 
load(load_file); 
 
DataSets = res1; %comment it for simulated data, uncomment it for actual data 
 
ClusColor = {'b.','r*','go','c.','k*','m.','y*'}; 
ClusColorLine = {'b','r','g','c','k','m','y'}; 
  
[sorted_ID indices] = sort(ID); 
  
%Samples = res1'; 
wav = DataSets(:,indices); 
id = sorted_ID; 
[sampleLength,numSamples]   = size(DataSets); %for metrics 
clear DataSets ;% clear ID 
 
 
%% find the cluster number and corresponding vector, clear noise and  
% unlabeled spikes 
noise_ind = find(id==256); 
id(noise_ind,:) = []; 
wav(:,noise_ind) = [];  
  
err_ind = find(id==255); 
id(err_ind,:) = []; 
wav(:,err_ind) = []; 
  
err_ind = find(id==0); 
id(err_ind,:) = []; 
wav(:,err_ind) = []; 
  
[sampleLength,numSamples]   = size(wav); % dimensions of data 
  
numClusters    = max(id); % number of clusters in the data  
idcopy   = id; 
for ii = 1:numClusters; 
     IDold{ii}  = find(id==ii);  
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end 
 
%% find cluster sizes 
  
for i=1:numClusters 
clust_size_orig(i,1) = nnz(sorted_ID==i); 
end 
  
% calculate features based on the geometric properties of the data 
  
%%  1 find the minimum point happening in the first half 
% set the spike with minimum happening before the half 1 and ones minimum 
% happening after half 0 
 
[minM, minMind] = min(wav);  
minL            = find(minMind<=16); 
minR            = find(minMind>16); 
minPos          = ones(1,numSamples); 
minPos(minR)    = 0; 
 
%% 2 number of minimums 
 
minNums = ones(1,numSamples); 
for ii = 1:numSamples 
  OutInd  = localMinimum(wav(:,ii),5); 
  minNums(1,ii) = numel(OutInd)+1; 
  clear OutInd; 
end 
 
minNums         = minNums/max(minNums); 
 
%% 3 magnitude in frequency domain  
 
wavFFT          = abs(fft(wav)); 
[magF, maxMind] = max(wavFFT(1:16,:));  
magF            = magF/max(magF) ; 
 
%% 4 magnitude in time domain( maximum value minus   minmum value) 
 
magT         = max(wav) - min(wav); 
magT         = magT/max(magT); 
 
%% 5 varaiance 
 
varWav         = var(wav); 
varWav         = varWav/max(varWav);    
 
%% 6, 7, 8, 9 Right Peak and left peak difference, right peak slope and the 
%   polynomial fitting for the peak-to-peak, valley-to-peak 
 
   slopeR          = zeros(1,numSamples);   
   peakRLD         = zeros(1,numSamples);   
   MinCur          = zeros(1,numSamples); 
   MinEndCur       = zeros(1,numSamples); 
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   for ii = 1:numSamples 
        [peakL, indL]  = max(wav(1:minMind(ii),ii)); 
        [peakR, indR]  = max(wav(minMind(ii):end,ii)); 
        peakRLD(ii)    = peakL - peakR; 
        slopeR(ii)     = (peakR-minM(ii))/(indR + minMind(ii) - 1);         
        x              = (indL:indR+minMind(ii)-1)/32; 
        y              = wav(indL:indR+minMind(ii)-1,ii); 
        pp             = polyfit(x',y,2);  clear x y; 
        MinCur(ii)     = pp(1); 
        x2              = (minMind(ii):32)/32; 
        y2              = wav(minMind(ii):32,ii); 
        if minMind(ii)>=30 
          MinEndCur(ii)  = 0;  
        else 
          pp2            = polyfit(x2',y2,2);  clear x2 y2;         
          MinEndCur(ii)  = pp2(1);  
        end 
   end 
  
 peakRLD  = peakRLD/max(abs(peakRLD)); 
 if mean(peakRLD)<0; peakRLD = -peakRLD ;end; 
  
 slopeR   = slopeR/max(slopeR); 
  
 MinCur   = MinCur/max(abs(MinCur));  
 if mean(MinCur)<0; MinCur = -MinCur ;end; 
  
 MinEndCur  = MinEndCur/max(abs(MinEndCur)); 
 if mean(MinEndCur)<0; MinEndCur = -MinEndCur ;end; 
  
 %% 10 Total absolute area under positive and negative going peaks 
  % find mean level of each spike 
 
 spike_mean_level = mean(wav); 
 total_abs_area = (sum(abs(wav - 
repmat(spike_mean_level,sampleLength,1))))/sampleLength; 
 total_abs_area = total_abs_area/max(total_abs_area); 
  
 %% 11 RMS distance 
 
 sq_dist = ((wav-repmat(spike_mean_level,sampleLength,1)).*(wav-
repmat(spike_mean_level,sampleLength,1))); 
 rms_dist = sqrt(sum(sq_dist))/sampleLength; 
 rms_dist = rms_dist/max(rms_dist); 
  
%% Clustering results; 
 
% All Features [minPos; minNums; magF; magT;varWav; peakRLD; slopeR; MinCur ; 
% MinendCur; total abs area; rms dist] 
   
 AllFeatures    = [];       
    %minPosW     = 1;   AllFeatures = [AllFeatures; minPos*minPosW]; 
    %minNumsW    = 1;   AllFeatures = [AllFeatures; minNums*minNumsW]; 
    magFW      = 1;   AllFeatures = [AllFeatures; magF*magFW ];  
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    magTW      = 1;   AllFeatures = [AllFeatures; magT*magTW]; 
    varWavW    = 1;   AllFeatures = [AllFeatures; varWav*varWavW ]; 
    peakRLDW   = 1;   AllFeatures = [AllFeatures; peakRLD*peakRLDW]; 
    slopeRW    = 1;   AllFeatures = [AllFeatures; slopeR*slopeRW];  
    MinCurW    = 1;   AllFeatures = [AllFeatures; MinCur*MinCurW]; 
    MinEndCurW = 1;   AllFeatures = [AllFeatures; MinEndCur*MinEndCurW];  
    total_abs_area_W = 1; AllFeatures = [AllFeatures; 
total_abs_area*total_abs_area_W]; 
    rms_dist_W      = 1;   AllFeatures = [AllFeatures; rms_dist*rms_dist_W ]; 
 
entropy_weighting; 
 

A.2 entropy_weighting.m 

%% Calculate entropy of all features  
% weight each feature with its entropy value 
% Kaustubh Patwardhan 
  
 [numSamples,sampleLength] = size(AllFeatures'); 
 samples=AllFeatures'; 
 
numBins = 100; 
bin_size = 2/numBins; % 2 is the range of sample values, max=1 and min=-1 
  
edge = -1:bin_size:1; 
prob_mass_func=zeros(numBins+1,sampleLength); 
 
% calculate probability mass function using a histogram 
  
for i=1:sampleLength 
    hist(samples(:,i),edge) 
    prob_mass_func(:,i)=(histc(samples(:,i),edge))/numSamples;     
end 
  
bin_entropy = zeros(numBins+1,sampleLength); 
 
% calculate entropy of each feature 
  
for i=1:sampleLength 
    for j=1:numBins+1 
        bin_entropy(j,i) = (prob_mass_func(j,i)*log(prob_mass_func(j,i))); 
    end  
end 
  
bin_entropy(isnan(bin_entropy))=0; 
entropy = -(sum(bin_entropy)); 
total_entropy = sum(entropy); 
[dominant_features,dominant_features_ind]=sort(entropy,'descend'); 
disp('Entropy value for each feature'), disp(entropy') 
 
% weights each feature vector with its entropy value 
 
for i=1:sampleLength 
     samples(:,i) = samples(:,i) * entropy(i);  
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end 
  
cluster_spikes; 
 

 
 

A.3 eigenvalue_weighting.m 
 
% Kaustubh Patwardhan 
% Calculate covariance matrix, its eigenvectors and eigenvalues 
% Obtain transformed data  
% weight each PC / feature vector with its eigenvalue 
 
%% PCA using covariance method 
  
[signals, PC,V,mn]=pca(AllFeatures); 
samples=signals'; 
[numSamples,sampleLength] = size(samples); 
V=V/max(V); 
  
%% EV weighting 
  
for i=1:sampleLength 
    samples(:,i) = samples(:,i) * V(i,:); 
end 
 
cluster_spikes; 
 

A.4 pca.m 
 

% Kaustubh Patwardhan 
%==============inputs are M*N matrix:M dimensions,N sample numbers========= 
% 
function [signals, PC,V, EV, mn]=pca(data) 
% pca1-perform pca using covariance 
% data- M*N matrix of input data 
% signals- M*N projected data 
% PC-each column is a PC (what is a PC?) 
%  V-M*1 matrix of variances 
  
[M,N]=size(data); 
  
%subtract off the mean for each dimension 
mn=mean(data,2); %find the mean along the 2nd(row)dimension 
data=data-repmat(mn,1,N); %subtract mean from data 
  
%calculate the covariance matrix 
covariance=1/(N-1)*(data*data'); %covariance matrix:M*M(12*12) 
  
%find the eigenvectors and eigenvalues 
%V: the covariance of each component PC:the corresponding row vector 
[PC,V]=eig(covariance); %PC:eigenvectors; V:eigenvalues 
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%extract diagonal of matrix as vector 
EV=diag(V); %make a size(V)*size(V) diagonal matrix 
  
%sort the variances in decreasing order 
%For matrices, SORT(X) sorts each column of X in ascending order. 
[junk, rindices]=sort(-1*EV); %rindices are the index of components of V 
EV=EV(rindices); 
PC=PC(:,rindices); 
  
%profect the original data set 
signals=PC'*data; 

 
 

A.5 cluster_spikes.m 
 

%% Kmeans algorithm 
  
[IDX, Mu] = kmeans(samples,numClusters,'Distance','cityblock'); 
  
%% cluster assigment 
  
cluster_assignment; 

A.6 cluster_assignment.m 
 
% compute precision and recall for each observed id being assigned to 
groundtruth-id's 
  
    % start with GT id 1, find all the corresponding observed IDs 
        % #observed nnz(id==1), will be true-positives (for observed id = 1) 
        % #observed nnz(id==2), will be true-positives (for observed id = 2) 
    % repeat for GT IDs 2,.. 
     
% compute the cost matrix for assigment between Obesrved IDs and GT IDs 
  
% use the Hungarian algorithm for making the observed id to GT id assignment 
  
%   gt1  gt2  gt3   
%o1----|----|----| 
%o2----|----|----| 
%o3----|----|----| 
%o4----|----|----| 
  
% [Matching,Cost] = Hungarian(Perf) 
  
% sorted_id = GT arranged in ascending order 
% IDX = observed IDs 
  
%calculate true positives/negatives and false positives/negatives, 
%precision and recall 
% Kaustubh Patwardhan 
  
%find cluster size 
for i=1:numClusters 
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    clust_size_orig(i,1) = nnz(id==i); 
end 
for i=1:numClusters 
    clust_size_clustered(i,1) = nnz(IDX==i); 
end        
  
total_samples = numel(ID); 
  
ID_precision = zeros(numClusters); % define matrices 
ID_recall = zeros(numClusters); 
ID_f_measure = zeros(numClusters); 
Adj_f_measure = zeros(numClusters); 
adj = zeros(1,numClusters); 
ID_rand_index = zeros(numClusters); 
missed_classification= zeros(numClusters); 
false_classification= zeros(numClusters); 
ID_Matthews_corr_coeff = zeros(numClusters); 
  
for i=1:numClusters 
    adj(i) = (exp(-(clust_size_orig(i)/total_samples))/exp(-1)); 
end 
  
for i=1:numClusters 
    for j=1:numClusters 
         
        ID_tp = nnz(id==i & IDX==j); % calculate true positives, true 
negatives, false positives and false negatives 
        ID_tn = nnz(id~=i & IDX~=j); 
        ID_fp = nnz(id~=i & id~=0 & IDX==j); 
        ID_fn = nnz(id==i & IDX~=j); 
         
        precision = (ID_tp)/((ID_tp)+(ID_fp)); 
        recall = (ID_tp)/((ID_tp)+(ID_fn)); 
        missed_classification(i,j) = (ID_fn)/clust_size_orig(i);% 
        false_classification(i,j) = (ID_fp)/clust_size_orig(i);% 
         
        f_score = (2*precision*recall) / (precision + recall); 
        ID_f_measure(i,j) = f_score; 
        Adj_f_measure(i,j) = f_score*adj(i); 
  
        %ID_f_measure(i,j) = (2*precision*recall) / (precision + recall); 
        ID_rand_index(i,j) = (ID_tp + ID_tn)/(ID_tp + ID_tn + ID_fp + ID_fn); 
        ID_Matthews_corr_coeff(i,j) = ((ID_tp*ID_tn)-
(ID_fp*ID_fn))/sqrt((ID_tp+ID_fp)*(ID_tp+ID_fn)*(ID_tn+ID_fp)*(ID_tn+ID_fn)); 
        ID_precision(i,j) = precision; 
        ID_recall(i,j) = recall; 
         
    end 
end 
  
%cost_mat = -ID_f_measure; 
cost_mat = -Adj_f_measure; % cost function matrix, cost function = -(adjusted 
F measure) 
%cost_mat = -ID_Matthews_corr_coeff; 
cost_mat(isnan(Adj_f_measure)) = inf; 
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%cost_mat(isnan(ID_f_measure)) = inf; 
[Matching,Cost] = Hungarian(cost_mat); % hungarian algorithm to assign 
clusters 
  
f_measure = ID_f_measure; 
f_measure(isnan(ID_f_measure)) = 0; % for display purposes 
  
%disp('Precision Matrix')  
disp(diag(Matching*ID_precision')) 
 
%disp('Recall Matrix') 
disp(diag(Matching*ID_recall')) 
 
% disp('F Measure Matrix'), disp(diag(Matching*f_measure')) 
% disp('Rand Index Matrix'), disp(diag(Matching*ID_rand_index')) 
 
%disp('Missed') 
disp(diag(Matching*missed_classification')) 
 
%disp('False-classified') 
disp(diag(Matching*false_classification')) 
 
%disp('Cost function Matrix'), disp(cost_mat) 
 
%disp('Cluster assignment that minimizes the cost') 
disp(Matching) 
 
cluster_plots; 
     

 
A.7 Hungarian.m [28] 

function [Matching,Cost] = Hungarian(Perf) 
%  
% [MATCHING,COST] = Hungarian_New(WEIGHTS) 
% 
% A function for finding a minimum edge weight matching given a MxN Edge 
% weight matrix WEIGHTS using the Hungarian Algorithm. 
% 
% An edge weight of Inf indicates that the pair of vertices given by its 
% position have no adjacent edge. 
% 
% MATCHING return a MxN matrix with ones in the place of the matchings and 
% zeros elsewhere. 
%  
% COST returns the cost of the minimum matching 
  
% Written by: Alex Melin 30 June 2006 
  
  
 % Initialize Variables 
 Matching = zeros(size(Perf)); 
  
% Condense the Performance Matrix by removing any unconnected vertices to 
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% increase the speed of the algorithm 
  
  % Find the number in each column that are connected 
    num_y = sum(~isinf(Perf),1); 
  % Find the number in each row that are connected 
    num_x = sum(~isinf(Perf),2); 
     
  % Find the columns(vertices) and rows(vertices) that are isolated 
    x_con = find(num_x~=0); 
    y_con = find(num_y~=0); 
     
  % Assemble Condensed Performance Matrix 
    P_size = max(length(x_con),length(y_con)); 
    P_cond = zeros(P_size); 
    P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con); 
    if isempty(P_cond) 
      Cost = 0; 
      return 
    end 
  
    % Ensure that a perfect matching exists 
      % Calculate a form of the Edge Matrix 
      Edge = P_cond; 
      Edge(P_cond~=Inf) = 0; 
      % Find the deficiency(CNUM) in the Edge Matrix 
      cnum = min_line_cover(Edge); 
     
      % Project additional vertices and edges so that a perfect matching 
      % exists 
      Pmax = max(max(P_cond(P_cond~=Inf))); 
      P_size = length(P_cond)+cnum; 
      P_cond = ones(P_size)*Pmax; 
      P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con); 
    
%************************************************* 
% MAIN PROGRAM: CONTROLS WHICH STEP IS EXECUTED 
%************************************************* 
  exit_flag = 1; 
  stepnum = 1; 
  while exit_flag 
    switch stepnum 
      case 1 
        [P_cond,stepnum] = step1(P_cond); 
      case 2 
        [r_cov,c_cov,M,stepnum] = step2(P_cond); 
      case 3 
        [c_cov,stepnum] = step3(M,P_size); 
      case 4 
        [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M); 
      case 5 
        [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov); 
      case 6 
        [P_cond,stepnum] = step6(P_cond,r_cov,c_cov); 
      case 7 
        exit_flag = 0; 
    end 
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  end 
  
% Remove all the virtual satellites and targets and uncondense the 
% Matching to the size of the original performance matrix. 
Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con)); 
Cost = sum(sum(Perf(Matching==1))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   STEP 1: Find the smallest number of zeros in each row 
%           and subtract that minimum from its row 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function [P_cond,stepnum] = step1(P_cond) 
  
  P_size = length(P_cond); 
   
  % Loop throught each row 
  for ii = 1:P_size 
    rmin = min(P_cond(ii,:)); 
    P_cond(ii,:) = P_cond(ii,:)-rmin; 
  end 
  
  stepnum = 2; 
   
%**************************************************************************   
%   STEP 2: Find a zero in P_cond. If there are no starred zeros in its 
%           column or row start the zero. Repeat for each zero 
%************************************************************************** 
  
function [r_cov,c_cov,M,stepnum] = step2(P_cond) 
  
% Define variables 
  P_size = length(P_cond); 
  r_cov = zeros(P_size,1);  % A vector that shows if a row is covered 
  c_cov = zeros(P_size,1);  % A vector that shows if a column is covered 
  M = zeros(P_size);        % A mask that shows if a position is starred or 
primed 
   
  for ii = 1:P_size 
    for jj = 1:P_size 
      if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0 
        M(ii,jj) = 1; 
        r_cov(ii) = 1; 
        c_cov(jj) = 1; 
      end 
    end 
  end 
   
% Re-initialize the cover vectors 
  r_cov = zeros(P_size,1);  % A vector that shows if a row is covered 
  c_cov = zeros(P_size,1);  % A vector that shows if a column is covered 
  stepnum = 3; 
   
%************************************************************************** 
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%   STEP 3: Cover each column with a starred zero. If all the columns are 
%           covered then the matching is maximum 
%************************************************************************** 
  
function [c_cov,stepnum] = step3(M,P_size) 
  
  c_cov = sum(M,1); 
  if sum(c_cov) == P_size 
    stepnum = 7; 
  else 
    stepnum = 4; 
  end 
   
%************************************************************************** 
%   STEP 4: Find a noncovered zero and prime it.  If there is no starred 
%           zero in the row containing this primed zero, Go to Step 5.   
%           Otherwise, cover this row and uncover the column containing  
%           the starred zero. Continue in this manner until there are no  
%           uncovered zeros left. Save the smallest uncovered value and  
%           Go to Step 6. 
%************************************************************************** 
function [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M) 
  
P_size = length(P_cond); 
  
zflag = 1; 
while zflag   
    % Find the first uncovered zero 
      row = 0; col = 0; exit_flag = 1; 
      ii = 1; jj = 1; 
      while exit_flag 
          if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0 
            row = ii; 
            col = jj; 
            exit_flag = 0; 
          end       
          jj = jj + 1;       
          if jj > P_size; jj = 1; ii = ii+1; end       
          if ii > P_size; exit_flag = 0; end       
      end 
  
    % If there are no uncovered zeros go to step 6 
      if row == 0 
        stepnum = 6; 
        zflag = 0; 
        Z_r = 0; 
        Z_c = 0; 
      else 
        % Prime the uncovered zero 
        M(row,col) = 2; 
        % If there is a starred zero in that row 
        % Cover the row and uncover the column containing the zero 
          if sum(find(M(row,:)==1)) ~= 0 
            r_cov(row) = 1; 
            zcol = find(M(row,:)==1); 
            c_cov(zcol) = 0; 
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          else 
            stepnum = 5; 
            zflag = 0; 
            Z_r = row; 
            Z_c = col; 
          end             
      end 
end 
   
%************************************************************************** 
% STEP 5: Construct a series of alternating primed and starred zeros as 
%         follows.  Let Z0 represent the uncovered primed zero found in Step 
4. 
%         Let Z1 denote the starred zero in the column of Z0 (if any).  
%         Let Z2 denote the primed zero in the row of Z1 (there will always 
%         be one).  Continue until the series terminates at a primed zero 
%         that has no starred zero in its column.  Unstar each starred  
%         zero of the series, star each primed zero of the series, erase  
%         all primes and uncover every line in the matrix.  Return to Step 3. 
%************************************************************************** 
  
function [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov) 
  
  zflag = 1; 
  ii = 1; 
  while zflag  
    % Find the index number of the starred zero in the column 
    rindex = find(M(:,Z_c(ii))==1); 
    if rindex > 0 
      % Save the starred zero 
      ii = ii+1; 
      % Save the row of the starred zero 
      Z_r(ii,1) = rindex; 
      % The column of the starred zero is the same as the column of the  
      % primed zero 
      Z_c(ii,1) = Z_c(ii-1); 
    else 
      zflag = 0; 
    end 
     
    % Continue if there is a starred zero in the column of the primed zero 
    if zflag == 1; 
      % Find the column of the primed zero in the last starred zeros row 
      cindex = find(M(Z_r(ii),:)==2); 
      ii = ii+1; 
      Z_r(ii,1) = Z_r(ii-1); 
      Z_c(ii,1) = cindex;     
    end     
  end 
   
  % UNSTAR all the starred zeros in the path and STAR all primed zeros 
  for ii = 1:length(Z_r) 
    if M(Z_r(ii),Z_c(ii)) == 1 
      M(Z_r(ii),Z_c(ii)) = 0; 
    else 
      M(Z_r(ii),Z_c(ii)) = 1; 
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    end 
  end 
   
  % Clear the covers 
  r_cov = r_cov.*0; 
  c_cov = c_cov.*0; 
   
  % Remove all the primes 
  M(M==2) = 0; 
  
stepnum = 3; 
  
% ************************************************************************* 
% STEP 6: Add the minimum uncovered value to every element of each covered 
%         row, and subtract it from every element of each uncovered column.   
%         Return to Step 4 without altering any stars, primes, or covered 
lines. 
%************************************************************************** 
  
function [P_cond,stepnum] = step6(P_cond,r_cov,c_cov) 
a = find(r_cov == 0); 
b = find(c_cov == 0); 
minval = min(min(P_cond(a,b))); 
  
P_cond(find(r_cov == 1),:) = P_cond(find(r_cov == 1),:) + minval; 
P_cond(:,find(c_cov == 0)) = P_cond(:,find(c_cov == 0)) - minval; 
  
stepnum = 4; 
  
function cnum = min_line_cover(Edge) 
  
  % Step 2 
    [r_cov,c_cov,M,stepnum] = step2(Edge); 
  % Step 3 
    [c_cov,stepnum] = step3(M,length(Edge)); 
  % Step 4 
    [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(Edge,r_cov,c_cov,M); 
  % Calculate the deficiency 
    cnum = length(Edge)-sum(r_cov)-sum(c_cov); 
 

A.8 cluster_plots.m 
%% Plot Clusters 
  
plottype1 = {'blue';'red';'black';'m'}; 
plottype2 = {'bo';'r*';'k+';'m^';'gs';'yd';'cp'}; 
  
nn = ceil(numClusters/2); 
  
figure; 
 
% original clusters 
 
for ii = 1:numClusters                 
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    subplot(nn,2,ii);        
    plot(wav(:,IDold{ii}),ClusColorLine{ii});grid; 
    %ylim([-200 200]); 
    title(strcat('orignal cluster',num2str(numel(IDold{ii}))));        
end       
       
for ii = 1 : numClusters 
    IDnew{ii} = find(IDX==ii);  
end 
  
figure; 
 
% new clusters 
 
for ii = 1:numClusters  
    subplot(nn,2,ii);        
    plot(wav(:,IDnew{ii}),ClusColorLine{ii}); grid; 
    title(strcat('new cluster',num2str(numel(IDnew{ii})))); 
end          
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