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ABSTRACT

Demand response is one of the critical technologies necessary for allowing large-

scale penetration of intermittent renewable energy sources in the electric grid. Data

centers are especially attractive candidates for providing flexible, real-time demand

response services to the grid because they are capable of fast power ramp-rates, large

dynamic range, and finely-controllable power consumption. This thesis makes a con-

tribution toward implementing load shaping with server clusters through a detailed

experimental investigation of three broadly-applicable datacenter workload scenarios.

We experimentally demonstrate the eminent feasibility of datacenter demand response

with a distributed video transcoding application and a simple distributed power con-

troller. We also show that while some software power capping interfaces performed

better than others, all the interfaces we investigated had the high dynamic range

and low power variance required to achieve high quality power tracking. Our next

investigation presents an empirical performance evaluation of algorithms that replace

arithmetic operations with low-level bit operations for power-aware Big Data process-

ing. Specifically, we compare two different data structures in terms of execution time

and power efficiency: (a) a baseline design using arrays, and (b) a design using bit-

slice indexing (BSI) and distributed BSI arithmetic. Across three different datasets

and three popular queries, we show that the bit-slicing queries consistently outper-

form the array algorithm in both power efficiency and execution time. In the context

of datacenter power shaping, this performance optimization enables additional power
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flexibility – achieving the same or greater performance than the baseline approach,

even under power constraints. The investigation of read-optimized index queries leads

up to an experimental investigation of the tradeoffs among power constraint, query

freshness, and update aggregation size in a dynamic big data environment. We com-

pare several update strategies, presenting a bitmap update optimization that allows

improved performance over both a baseline approach and an existing state-of-the-art

update strategy. Performing this investigation in the context of load shaping, we

show that read-only range queries can be served without performance impact under

power cap, and index updates can be tuned to provide a flexible base load. This

thesis concludes with a brief discussion of control implementation and summary of

our findings.
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PUBLIC ABSTRACT

When resources are limited, most people benefit from “playing nice.” The

most effective kind of sharing is about more than politeness and good manners. It’s

about relationships and trust. Those things take a lot of effort and understanding –

especially between people with opposing goals – but they’re worth it in the end. The

idea of datacenter demand response is to design a mutually-beneficial relationship

between an unpredictable electricity user (load) and a cautious electricity supplier

(utility). The challenge is a difficult one, but the benefits to both participants are

worth it in the end.

Demand response is a way for large electric loads to “play nice” both with util-

ities and with other loads that can’t control their own power consumption. Sharing

strategies are beneficial to both loads and utilities because electric power is a funda-

mentally limited resource. This isn’t just because most power plants run off of limited

energy sources like coal and natural gas. At any given instant, loads can use no more

power than is being generated at that moment. And, to avoid power surges, utilities

have to pay money to “dump” any excess power that they generate. It’s impossible to

predict exactly how much power will be needed at any given moment, and renewable

energy suppliers like wind and solar make it difficult for utilities to precisely control

the amount of power they generate. If some loads help utilities out by temporarily

raising or lowering their power consumption, the delicate balance between generation

and load is easier to maintain and everyone receives cheaper, more reliable power.
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Datacenter operators have become so good at providing transparent access to

Internet applications, scientific computing, business analytics and other services, that

it’s easy to forget that “the cloud” is a collection of physical machines that need reg-

ular maintenance and lots of electrical power. Datacenters’ large, quickly-changing,

and unpredictable electric load currently makes it more difficult for utilities to pro-

vide reliable power. However, some of the very features that make datacenters such

difficult customers can actually let datacenters provide demand response services that

other controllable loads can’t. In particular, datacenters are uniquely well-suited to

provide realtime demand response services because of their ability to quickly change

their power consumption across a wide range of power levels. Other types of demand

response (peak capping, emergency service) can help with long-term reliability plan-

ning. However, realtime demand response is especially valuable in the fast-changing

power grid of today, because it can respond quickly and continuously to unpredictable

loads and renewable generation.

The benefit both to utilities and datacenters is very much worth the effort of

making datacenter demand response a reality, and this thesis answers several ques-

tions related to that goal: As a way of showing that power shaping is actually practi-

cal, it presents experimental video transcoding service that also provides a high quality

fast power shaping service to the electric grid. Next, we explore how power shaping af-

fects the performance of two common datacenter workloads: Read-optimized queries

(used to quickly explore large datasets which do not change very often), and update-

aware indexing (used to speed up access to large, frequently-changing datasets such
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as Twitter trending tweets). In these contexts, we show that certain performance

optimizations can also have a positive impact on power requirements. This reduction

in required power consumption gives clusters serving these workloads the flexibility

they need to participate in load shaping programs. We finish up by mentioning some

preliminary ideas on designing power controllers that are robust to the complex and

quickly-changing environments of real-world datacenters.
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CHAPTER 1
DATACENTER DEMAND RESPONSE

1.1 Roadmap

This thesis uses experimental results from a power-aware cluster to show how

the fast response time, large dynamic range, and fine-grained controllability, of com-

puter servers can allow datacenters to provide flexible, large-scale, real-time demand

response services to the grid. The power characteristics of server clusters are highly-

dependent on the workloads served by those clusters. So, as a step toward imple-

menting load-shaping services on a larger scale, we analyze the power-performance

tradeoffs of several important datacenter workloads including video transcoding and

two classes of Big Data analytics workloads. We also present some preliminary results

on a controller implementation.

1.1.1 Why Datacenter Demand Response?

Data centers are an important and ever-increasing portion of the electric load

in the US electric power grid [1]. However, in their current configuration, datacenters

are not particularly friendly to the grid. The largest of them can require hundreds

of megawatts guaranteed capacity [2], but frequently experience large, unpredictable

fluctuations in actual power consumption [3].

Demand response in datacenters has been proposed [4] as a way to can turn this

challenge into an opportunity. Instead of paying a premium for colocated generation

or other reliability services from utilities, datacenter operators may soon be able to
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offer reliability services to the electric grid through realtime demand response.

At the same time, datacenters also have a significant amount of excess capacity.

In other words, there is considerable evidence (summarized in Section 1.2) that shows

that datacenters operate at substantially less than peak utilization most of the time.

This suggests the possibility that the “spare capacity” of computer servers can be

used to provide load-shaping services to the electric grid and indeed this idea has

been proposed [5], and is being actively studied by researchers [4, 6–13].

This thesis represents a new contribution to the datacenter demand response

literature by specifically considering real-time demand response at much shorter time-

scales than previous work in this area. Compared to other types of electric loads,

computer servers are especially well-suited to provide real-time services because their

power consumption is controllable to (a) a fine granularity over (b) a large dynamic

range of power levels with (c) fast ramp rates, and back up these arguments with

detailed experimental evidence. A video transcoding application in Chapter 2 demon-

strates that highly-parallelizable workloads with flexible performance constraints can

be adapted to high quality power shaping with a simple controller.

1.1.2 Scope of Investigation

When workloads are more complex, the challenge of realtime datacenter power

control must be considered jointly with the performance impact of this power shaping.

To that end, we investigate common workloads within two important “Big Data”

architectures: Bitmap Indexing and Update-aware Indexing. These two classes are
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important because the past few years have seen an explosion in stored data volumes

[14] and have produced a major change in how people and computing systems interact

with data. Terabyte-sized datasets are now common in earth, space and life sciences

[15], finance, and security and law enforcement [16]. At the same time, the decades-

long trend of processors becoming faster (Moore’s law) [17] appears to be coming to

a close [18]. This fact and several other factors have led to an increasing dependence

on cloud services employing distributed algorithms over server clusters in large-scale

datacenters [19].

Optimizing the performance of Big Data algorithms is a problem of obvious

importance and is being investigated on many fronts. However, the computational per-

formance can no longer be considered in isolation from its effects on power consump-

tion which accounts for a large fraction of the costs [20] of operating large datacenters.

Much previous literature (summarized in Section 1.2) has considered the power im-

pact of computational workloads [7,21–28]. The majority of previous work differs from

our contribution in two ways. First, where other work focuses on ways to improve

the energy performance and resource utilization of algorithms through top-down ar-

chitectural optimizations and scheduling, our experimental investigations investigate

low-level software power control features and direct algorithmic power/performance

tradeoffs without power-aware scheduling. Second, our work does not only focus on

reducing energy or power, but specifically investigates the potential for power shaping

over time.
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1.1.3 Thesis Outline

The rest of this thesis is organized as follows. The remainder of Chapter 1

provides a more detailed motivation for this work and provides a brief overview of the

relevant previous literature. Specifically, we discuss: (1) why fast demand response

is needed, why datacenters are attractive in this area and how this thesis makes a

contribution to the demand response literature, (2) which kinds of datacenter work-

loads are amenable to power shaping, (3) how this thesis fills a gap in the power-aware

computing research, and finally (4) the experimental testbed cluster which is common

to the remaining chapters.

The next three chapters summarize three different experimental investigations

of power shaping in a datacenter context. Each investigation studies a specific dat-

acenter application with high power requirements, and these applications are chosen

to be representative of a larger class of relevant workloads. The chapters are arranged

such that the application space becomes more specific. In particular, we introduce

the concept and general framework for datacenter power shaping in the context of

general-purpose batch computing workloads and a sample video transcoding applica-

tion. We follow this with an in-depth study of the tradeoffs that power capping brings

out in latency-sensitive “big data” queries. We finish by investigating load shaping

in the context of a latency-sensitive “streaming big data” application.

The purpose of Chapter 2 is to demonstrate the possibility of doing realtime

power tracking in a realistic datacenter context. In this chapter, we (1) show that a

simple controller around a standard video transcoding application can achieve high-



5

quality power tracking on a timescale of seconds; (2) experimentally demonstrate the

fast ramp rate, large dynamic range, and finely-controllable power consumption of

server clusters; and (3) present a detailed experimental investigation of the power

characteristics associated with different software-based power capping interfaces. In-

cluded in this investigation is a practical discussion of these interfaces and their

advantages and limitations for realtime demand response.

In the interest of simplicity, Chapter 2 makes the implicit assumptions of

constant CPU load, few job dependencies between servers, and software quality of

service metrics that apply only on timescales much longer than the timescales on

which demand response is performed. Together, Chapters 3 and 4 investigate what

happens when these three assumptions do not apply. Specifically, we demonstrate

that with the appropriate choice of algorithms, time-sensitive service guarantees can

be met under power cap, and investigate load shaping using more complex workloads

(time-varying computational load and possible inter-server dependencies).

With the goal of better understanding the performance impact of load shap-

ing, Chapter 3 investigates the power-performance tradeoffs of a big data query op-

timization called bit-sliced indexing, compared to a baseline approach. Even though

this particular optimization was not designed with power in mind, we show that it

achieves better or higher performance than the baseline approach, with lower peak

power requirements.

In the context of load shaping, Chapter 3 is focused on meeting QoS guar-

antees under power cap. The assumption in this chapter is that load shaping will
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be achieved in part due to some unrelated always-available, always-deferrable “base”

workload that is executing in parallel with the queries. Chapter 4 investigates an ap-

plication where deferring the “base” workload can impact performance. Specifically

we investigate the power-performance tradeoffs of update-aware bitmap indexing. In

this application, we show that high-priority read queries do not suffer latency penalty

under power cap and the lower-priority updates provide a flexible base workload which

can be adjusted for power shaping. We show that while power capping does impact

query freshness, the impact is manageable. In addition to the power-performance

tradeoffs of state-of-the-art update-aware indexing strategies, we present an index

update optimization that achieves improved performance over the current state of

the art, especially under multi-row updates.

Chapter 5 concludes with a brief discussion and some preliminary results re-

lated to the control aspects of real-time power shaping, along with open research

questions for further study.

1.2 Motivation and Context of Realtime Demand Response

The idea of using load shaping to increase power grid reliability has been

around since Edison’s time [29]. However, grid operators have traditionally not em-

phasized load-side management, relying instead on the paradigm of providing energy

on demand to completely passive consumers who have essentially unrestricted ability

to vary their usage over time.

Indeed, active load-side management was arguably redundant in the tradi-
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tional power grid. Grid operators have long been aware of the high degree of statisti-

cal regularity in electricity demand over time on daily, weekly and yearly time-scales

and were traditionally able to take advantage of these patterns to predict loads and

optimize generation schedules accordingly [30].

This situation has changed dramatically with the increasing penetration of

intermittent renewables like wind and solar in the grid; renewable energy generation

has proved to be far less predictable than load [31], and treating renewables as “neg-

ative loads” is not only expensive and wasteful [32] in many ways, it also strains

the existing reliability and stability mechanisms of the grid [33]. This has led to a

growing recognition that large-scale energy storage and/or “virtual storage” [5,34] in

the form of demand response are essential to accommodate renewable energy sources

in the grid.
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A simple case study illustrates how realtime demand response can provide a

benefit over slower demand response. Fig. 1.1, plots the area control error (ACE) of

the Midcontinent Independent System Operator (MISO) over a two hour period [35].

During this period, 460 MWh of energy is dumped and 200 MWh of unscheduled

energy purchases are made. Simulations show that using 200 MW demand response

capacity with a ramp rate of 10 MW/min reduces the dumped energy by a mere

70 MWh. Increasing the ramp rate to 100 MW/min reduces the dumped energy by

190 MWh. And, similar results hold for the purchased energy reductions.

1.2.1 Real-Time Demand Response

The idea of using load shaping to increase power grid reliability has been

around since Edison’s time [29]. However, grid operators have traditionally not em-

phasized load-side management. Instead they have provisioned resources according

to the paradigm of providing energy on demand to completely passive consumers who

can vary their usage over time without restriction.

For many years, this paradigm was appropriate – in part because active load-

side management was arguably redundant in the face of load forecasting. Grid opera-

tors have long been aware of the high degrees of statistical regularity in the variation

of electricity demand over time on daily, weekly and yearly time-scales. Traditionally,

electric power utilities have been able to take advantage of these patterns to predict

loads and optimize generation schedules accordingly [30].

This situation changed dramatically with the increasing penetration of inter-
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mittent renewables like wind and solar in the grid. First, renewable energy generation

has proved to be far less predictable than load [31]. Second, treating renewables as

“negative loads” is not only expensive and wasteful [32] in many ways, but it also

strains the existing reliability and stability mechanisms of the grid [33]. These issues

have led to a growing recognition that large-scale energy storage and/or “virtual stor-

age” [5, 34] in the form of demand response are essential to accommodate renewable

energy sources in the grid. Unfortunately, the electric grid cannot take full advantage

of certain demand response services like frequency response or voltage regulation, due

to a lack [5, 36,37] of participating realtime loads.

Datacenters exhibit three features that make them especially attractive can-

didates for real-time demand response.

1. Fast power ramp rate

2. Large dynamic range

3. Finely-tunable power consumption (i.e. not on/off type loads)

Even so, the field of datacenter demand response is very young. As mentioned

in a 2014 survey of datacenter demand response [4], the the majority of applicable

research from previous years has been separated across disciplines and is not specif-

ically targeted at datacenter demand response. Importantly, many of the existing

power-aware scheduling algorithms operate on a timescale of hours or longer – which

wastes the full flexibility of datacenters as demand response resources [12]. When the

time scale of interest shrinks to seconds or less, as is the case with realtime demand

response, it is clear that the challenge of realtime power shaping within a datacenter
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is still very much an open problem [8]. The broad goal of our research is to help fill

this gap.

1.2.2 Datacenter Demand Response

There has been significant recent interest in the idea of datacenters as a de-

mand response resources [4, 6–13].

An empirical study by Lawrence Berkeley National Laboratory (LBNL) dis-

cussed the advantages and disadvantages of various datacenter demand response

strategies [6]. The LBNL study was an important proof of concept that datacen-

ter demand response was possible. Because we are interested in the fastest possible

timescales, our work focuses more narrowly on realtime CPU throttling rather than

on higher-order scheduling or cooling-system control.

The other existing work in datacenter demand response has been largely math-

ematical – focused on algorithms for optimizing price performance of different data-

center models in demand response markets. For example, the authors of [7] presented

an economically-driven algorithm for distributed workload migration in a demand

response context. The proposal [9] made an economic case for for datacenter demand

response, providing a mathematical framework for optimizing datacenter workload

against day-ahead dynamic pricing. At faster timescales, [11] presents simulation

results and a control strategy for the joint optimization of datacenter and plug-in

electric vehicles for frequency regulation. Similarly, [12] modeled a realtime demand

response market with participating datacenter loads controlled via CPU throttling.
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And, [8] studied joint fulfillment of probabilistic quality of service guarantees while

performing regulation service to the grid and provided a partial implementation. Our

work differs from existing research in that we are not focused on market participation,

but on the details of actually implementing datacenter demand response. In partic-

ular, we provide measurements from a proof-of-concept cluster achieving realtime

demand response with a simple distributed algorithm and we outline the software

interfaces available to power-aware systems designers.

Our work is a contribution to the field in two important ways. First, we con-

sider realtime demand response (i.e. controlling loads on short time-scales on the

order of tens of seconds) rather than predictive methods (minute-ahead, etc). Sec-

ond, we consider direct capping of server power consumptions, rather than indirectly

managing power through the workload scheduler.

1.2.3 Relation to Power-Aware Computing

Power considerations are being increasingly recognized as economically crucial

to the operation of computing systems of all scales ranging from mobile devices to

super-computers. For large data centers that are typically used to provide Big Data

processing services, this recognition has motivated the development of sophisticated

methods [21,22] for managing and controlling the two major categories of power con-

sumption: (a) the building maintenance and cooling systems, and (b) the computer

servers themselves.

Power-aware computing [23] can be broadly defined as a class of hardware
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and software design techniques that specifically account for power consumption in

some way. It is important to note that designing with power in mind can be done

at many different architectural levels (all the way from chip layout to high level

software abstractions) and is not necessarily the same as designing to minimize power

consumption. That is why we frame our discussion in terms of power, energy, and

performance tradeoffs rather than simply exploring energy reductions.

For example, at the cluster scheduling level, there exists a growing literature

on power shaping of servers in order to match renewable generation. For instance,

[38] and [24] dispatch respectively batch workloads and MapReduce jobs to shape

datacenter power to match predicted generation over the course of a day. Likewise, [7]

discussed the geographical migration of virtual machines in response to hour-ahead

locational marginal pricing. In these methods, the goal of power-aware design is not

to minimize the total energy consumption, but rather to move intensive computations

to a time or location that is most efficient. In this context, datacenter-scale workloads

which have some flexibility in their power consumption are useful and attractive for

more than just their processing power per watt.

Similarly, power aware design can be done at the instruction scheduling level.

For example, modern processors and operating systems are designed to dynamically

scale voltage and frequency (DVFS) to achieve maximum performance-per-watt for

a given workload. Other methods operate at the firmware level [26] to manage the

temperature of realtime systems, or at the operating system [27] and hypervisor [28]

levels.
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Much of the previous work in power aware data management has focused on

ways to improve the energy performance of existing systems through better query

plans or other “top-down” optimizations [25] – leveraging better resource utilization

to save energy without sacrificing performance, or providing ways to trade off among

power, energy, and performance. One of the goals of this thesis is to take a “bottom-

up” approach to power aware algorithm design. The basic idea is similar to the one

proposed in [39], but applied at a cluster computing level: Bit slicing allows better

resource utilization of the processor on a per-instruction basis. We investigate the

cluster-level tradeoffs among power, energy, and performance of distributed bit sliced

queries compared to baseline distributed queries.

1.3 Workload Applicability for Datacenter Demand Response

To understand which kinds of workloads are amenable to fast power shaping, it

is important to have a basic working knowledge of how demand response agreements

work in practice. There is some variation in how these contracts work, but operators

that offer realtime demand response programs (PJM, for example) generally provide

a power shaping signal (illustrated by P (t) in Fig. 1.2) around an agreed-upon long

term average power value P , as illustrated in Fig. 1.2.

The demand response resource attempts to track this power shape as closely as

possible, and there are typically penalties assessed for different measures of deviation

from the setpoint.
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1.3.1 Properties of Applicable Workloads

Now, consider the example scenario of Fig. 1.3, which depicts a cluster that

a datacenter has allocated to participate in a demand response program. Because of

the high development/operations cost associated with re-tooling the existing cloud

management infrastructure, the cluster must work with an existing power-unaware

scheduling framework.

Furthermore, since the power metric is calculated on a similar or faster timescale

than the service metric, scheduling parameters alone are insufficient to meet the re-

quired power shaping guarantees. Rather than purchasing specialized hardware, the

team must use existing realtime power management features – specifically, the servers’

CPU thermal management infrastructure – to control the power shaping.

In short, the engineers in charge of the demand response compute team have

the ability to

• select which workloads to admit to their cluster,

• set limited scheduler parameters such as job priorities, and

• set a “CPU utilization” cap – (such as maximum clock frequency, number of

cores allocated, periodically-enforced processor time limits, etc).

As is shown in the simplified server power and performance model shown

in Fig. 1.4, CPU load can always be throttled to effect a reduction in server power.

However, an increase in power consumption requires pre-existing CPU demand. From

this model, it is also clear that the workload assigned to each power-shaping server

must include some performance flexibility.
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Demand-response-applicable workloads have the following properties:

• They are CPU-intensive workloads (CPU throttling reduces server power).

• They always have useful work to do (reduction in CPU throttle increases per-

formance).

• Part of the workload is insensitive to small latency increases.

1.3.2 Workloads in this Thesis

In this thesis, we investigate three different workloads at different stages along

the applicability spectrum.

The video transcoding workload represents a “low-hanging fruit,” for par-

ticipation in load shaping. Since many commercial transcoding services only offer

best-effort QoS, the short timescale performance need not be considered. Cluster op-

erators simply need only set the agreed-upon average power setpoint (P , in Fig. 1.2)

high enough to service their average demand. Chapter 2 shows that a very simple

distributed controller can achieve industry-grade power tracking performance in this

scenario.

In Chapter 3, we investigate are read-optimized big data queries. This work-
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Figure 1.5: Experimental Setup

load has inter-server job dependencies and quality of service constraints on response

time. An experimental evaluation of the performance tradeoffs of power capping

shows that bit sliced index queries always outperformed the baseline approach, and

also required less power to do so.

Chapter 4 investigates update-aware indexes, as a widely-applicable workload

that also hits all the main aspects required for high-quality demand response: It is

CPU-intensive, there is always benefit to having a fresher index, and in dynamic big

data environments, there is not much penalty for having a slightly stale index.

1.4 Experimental Setup

In this section, we describe the experimental hardware and software setup of

the server cluster which is common to many experiments throughout this thesis. The

cluster is pictured in Fig. 1.5 and was chosen as a small-scale model that approximates
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as closely as possible commonly-used server hardware configurations in datacenters

[1, 40].

The cluster consists of four standard Dell PowerEdge R320 rack servers each

powered by an Intel Xeon E5-2400 series processor with 6 cores and hyperthreading

enabled. The servers all run 64-bit Ubuntu Server operating system version 15.04

with the 3.19.0-43-generic Linux kernel, and power management options are set to

their default settings.

To obtain faster power measurements than are available from a commercial

power distribution unit (PDU), we powered the servers through a specially instru-

mented power strip. A National Instruments PCIe-6323 data acquisition card mea-

sures the wall voltage and the output of amplified current shunts (Linear Technology

LT1999 amplifier and a 0.02 Ω resistor, with combined nominal current measurement

tolerance of ±1.6%). A standard desktop PC serves as a monitor computer that reads

five channels (one for rack voltage, and four for individual server currents) at 10 kS/s

from the data acquisition card.

On the monitor computer, a software application polls rack-level power mea-

surements from the data acquisition card, block averages these measurements at a

configurable rate, and either saves the results locally to a file, or streams aggregated

(total cluster power) measurements back to the cluster as power control feedback.
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CHAPTER 2
POWER CHARACTERISTICS OF SIMPLE WORKLOADS

One of the primary goals of chapter is to introduce a general framework for

datacenter power shaping and to explore the primary power metrics of interest in a

realistic context. With this in mind, we begin by studying the power behavior of a

testbed cluster running architecturally simple workloads. In particular, this chapter

intentionally select a class of workloads that have relatively constant CPU load, few

job dependencies between servers, and quality of service metrics that apply only on

timescales longer than the power shaping timescale.

In order to make the point that datacenter demand response is eminently

feasibly, we identify video transcoding as an important real-world application with

minimal QoS constraints that also is highly CPU-intensive. The best-effort QoS

constraints mitigate business concerns about load-shaping participation and the in-

creased power costs from compute-heavy clusters further incentivizes load shaping.

After showing that industry-grade power tracking can be achieved with minimal in-

frastructure changes and a simple distributed controller, we discuss the ubiquity of

software interfaces for directly controlling server power consumption. Complementing

the results of [41], we explore the tradeoffs of these software interfaces, and show that

while some interfaces perform better than others, all interfaces investigated have low

enough variability and high enough dynamic range do perform high quality fast load

shaping.
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2.1 A Simple Power-Tracking Experiment

Our first experiment (discussed in more detail in [42]) is intended to illustrate

that very simple software methods can be effective in accurately controlling the real-

time power consumption of servers under realistic conditions using an example video

transcoding workload.

Using the experimental testbed cluster outlined in Section 1.4, we chose a

100 ms averaging window1. We streamed the power measurements at 10 S/s, and

stream the power target only when it changes, and calculated the tracking error

separately on each server. The result is functionally equivalent to streaming e(t) to

each server, as shown in Fig. 2.1 at 10 S/s. Pset in this experiment represents a desired

total power setpoint for all the servers in the cluster combined and can be thought

of as the signal that the electric grid sends to request demand response services from

the cluster. The servers independently perform power shaping using only the total

power tracking error signal e(t) that is common to all servers.

In this experiment, the cluster is programmed to use the Linux avconv program

to transcode video chunks from an NFS-mounted data store in a manner similar to the

dynamic GOP transcoding scheme described in [43]. Each server has a worker which

grabs the next available 10-minute block from the shared video source file, transcodes

that block, and writes the result back to the shared drive, for later concatenation.

1We did not perform zero-crossing detection when choosing the borders for the block
averaging operation on the instantaneous power. So, the measurements presented through-
out this thesis have a higher variance than would have been obtained from averaging real
power over an integer number of cycles. In other words, the tracking error measurements
are somewhat conservative values.
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Figure 2.1: Block Diagram of Simple Control Scheme

The source files are chosen to be large enough that the transcoding takes longer

than the duration of the power tracking test. We chose the highly parallelizable

transcoding application because it is especially well-suited for power tracking using

simple controllers running independently on each server. It is worth noting that some

major commercial transcoding services (such as Amazon Elastic Transcoder [44])

offer pay-per-video pricing at a best-effort conversion speed that is similar to the

application we use in this experiment. Furthermore, by replacing the simple controller

in Fig. 2.1 with the one described in [45], we can achieve realtime power tracking with

soft service level agreement (SLA) enforcement. But, that is outside of the scope of

this thesis.

We assume that our realtime controllable load cluster has a demand response

regulation service agreement in the PJM market. According to [46, 47], the cluster

must respond to a signal s(t) ∈ [0, 1] from the utility, so that its measured power

consumption (measured in 10-second intervals) is close to Pset in Eq. (2.1) with D
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Figure 2.2: Tracking Target with Four Servers

and B being the dynamic range and base load agreed upon in the contract.

Pset(t) = Ds(t) +B (2.1)

In this experiment, we choose that B to be cluster’s power consumption with

all the servers at idle, and D to be the maximum possible dynamic range. We choose

s(t) to vary in a piecewise-constant manner over time to show the cluster’s closed-loop

response to a step input.

In order to track the Pset(t) calculated from Eq. (2.1), the controller on server

i simply integrates the received tracking error e(t), and uses a standard anti-windup

procedure to produce a signal τi(t) ∈ [0, 1], which represents the fraction of the time

that the CPU on server i is active.
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We use the “userspace idle injection” interface described in Section 2.3 (es-

sentially, using Linux signals to duty cycle the workload) to adjust τi whenever the

servers receive an updated error signal measurement e(t) (which is updated every

100 ms in our setup, as noted earlier). Adjustments to τi change server i’s power

consumption in a software and hardware-dependent manner, indicated by Fi(τ) in

Fig. 2.1.

The power tracking experiment shown in Fig. 2.2 shows a maximum settling

time of around 3 s and a root mean square tracking error (see Eq. (2.3)) of around

40 W for the whole cluster. Calculating the PJM-defined [46] “precision score,” we

get a value of 0.86 for this interval, which is well above the minimum value of 0.75.

It should be noted that this tracking error was achieved with a very basic distributed

controller without any communication between nodes – and might be expected to

improve with more advanced control.

2.2 Exploring Server Power Characteristics

In the power tracking experiment of Section 2.1, our controller made no as-

sumptions on the control plant. Datacenter power management literature often as-

sumes that the power consumption of a computer server s follows the power model

of Eq. (2.2) with τ ∈ [0, 1] being percent CPU time [48], and Ki, Ii constants.

Fi(τ) = Kiτ + Ii (2.2)
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2.2.1 Experiment to Test Accuracy of Power Model

We designed an experiment to test the accuracy of the model of Eq. (2.2) for

our servers, under the “userspace idle injection” CPU-throttling interface we used in

Section 2.1. For this purpose, we first measured the idle power Ii, and the dynamic

range Ki for each of our four servers. After this, we ran the Linux stress program

for 90 s for 100 evenly-spaced increments of τ ranging from 0 to 1, recording power

measurements in 100 ms block averages. For each value of τ , we compared Fi(τ)

(the server power predicted by Eq. (2.2)) with F̂i(t, τ), the measured server power

consumption at time t. Using this information, we found the root mean square error

(RMSE) according to Eq. (2.3) with T = 100 ms and N = 900.

RMSE(τ) =

√√√√ 1

N

N−1∑
n=0

|F̂i(nT, τ)− Fi(τ)|2 (2.3)

Since RMSE compares the measured power with the predicted power at every

sample, it gives a more conservative measure of the accuracy of Eq. (2.2), than simply

comparing Fi(τ) with the average measured power F̂i(τ). Fig. 2.3 plots RMSE versus

τ and shows that the maximum RMSE is around 3 W, meaning that Eq. (2.2) is a

reasonably accurate model for the power consumption of a server using the user-space

idle injection method to control the CPU duty cycle τ .

To put these measurements into context, we can calculate the worst-case PJM

“precision score,” using Eq. (2.2) as the setpoint, to see whether a datacenter could

feasibly use an open-loop controller based on Eq. (2.2). In our measurements, the

calculated minimum value of 0.95 was actually higher than the score we got for our
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Figure 2.3: Minimum Tracking Error in Cluster

closed-loop controller in part because of the setpoint fluctuations in the previous

section, and in part because the simple controller is not tuned to avoid overshoot.

An open loop controller has obvious drawbacks, but it is encouraging to note that it

is at least in theory feasible.

2.2.2 Ramp Rate and Dynamic Range Experiment

Our next experiment is designed to measure the maximum possible ramp rate

of the cluster. Our strategy in this experiment was to signal each server in the cluster

at exactly the same instant to transition from an idle CPU state to full load, thereby

driving the entire cluster from the lowest to the highest power consumption state in

as short a time interval as possible.
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Figure 2.4: Fast Ramp Rate of Cluster

In order to achieve this synchronized transition, we wrote a simple remote

procedure call (RPC) software to run on each server. This software responded to IP

multicast requests to stop and start a computationally-intensive workload. Specifi-

cally, we chose the Linux stress [49] workload generator (performs repeated square

root operations) for this experiment, but similar results were obtained with a variety

of other computationally-intensive workloads (k-means clustering, financial markets

simulation, and video transcoding are a few examples). As Fig. 2.4 shows, it is pos-

sible to obtain a fast power ramp rate of about 625 W/s, over a dynamic range of

around 145 W, or 50% of the maximum power. To put this into context, consider

scaling these results up to a 10 MW, 1.5 PUE datacenter with a fourth of its servers

designated to participate in demand response. At this scale, the datacenter could
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absorb almost a megawatt, at a rate of up to 4 MW/s.

2.3 Exploring Software Methods for Direct Power Control

In the experiments described in Sections 2.1 and 2.2, we used the userspace

idle injection interface for throttling the CPU time. However, there are a number of

different software methods for throttling CPU time, each with unique features and

availability. Furthermore, each of these methods produces different statistics for the

measured power F̂i(τ). As it turns out, some methods are more suited to power con-

trol than others. For example, the userspace idle injection interface we used earlier

is more deterministic and more closely matches Eq. (2.2) than the other methods we

investigated. Some previous work such as [50] have produced good experimental mea-

surements in the context of power-aware metering, and previous studies like [51] have

made contributions to the theoretical side of modeling server power. We complement

these studies with a detailed experimental investigation that focuses on the specific

software interfaces used to modulate the server power consumption.

We used measured power samples F̂i(τ), across the full range of τ ∈ [0, 1] to

estimate some power statistics for each interface. Furthermore, to gain insight into

why the power statistics look as they do, we also measured the percentage of time

spent by the processor in each of its active and idle states (in the following, we refer to

this information as “state residency”) using hardware counters in a modified version

of Intel’s turbostat [52] utility.
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2.3.1 Experiment to Compare Power Modulating Interfaces

In the experiments described in Sections 2.1 and 2.2, we used a “userspace

idle injection” interface for controlling the CPU time. We now justify this choice of

interface by presenting a detailed experimental comparison with a number of alter-

native software methods for controlling CPU utilization. Each of these methods have

a different power characteristic Fi(τ). It turns out that the userspace idle injection

interface we used earlier is more deterministic and more closely matches Eq. (2.2)

compared to the other methods which makes it more suitable for our power tracking

application.

Throughout the experiment, we recorded both the server power consumption

(averaged in 500 ms blocks) and processor state residency information (again, col-

lected in 500 ms blocks), and grouped those samples by τ . We removed outliers from

each group using the median absolute deviation method [53]. And, for each sample

group, we recorded the mean and a conservative estimate2 of the sample range. We

performed this experiment for each of the four servers in our cluster, and present

results from one server for space considerations and because the power and state

residency statistics were nearly identical across the four servers.

If the model of Eq. (2.2) were correct, plotting the mean of measured power

F̂i(τ) against τ should produce a straight line with slope Ki (the dynamic range of

the server), and y-intercept Ii (the idle power). And for many interfaces, this is close

to what we observe, as is shown by the near-linear slope of Fig. 2.5.

2The observed range after outlier rejection, plus 3 standard deviations.
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Figure 2.5: Power Profile of Server 4 under cgroups Interface

2.3.2 Linux cgroups Interface

The “user-space idle injection” interface that we used in our previous experi-

ments is a custom implementation of a standard and more widely used CPU-capping

framework called cgroups. We thus begin our discussion of the different power mod-

ulating interfaces by looking in detail at the Linux cgroup interface. Like many other

interfaces, cgroups uses a general technique called idle cycle injection (ICI) to rapidly

pause and resume processes in order to limit the average workload “seen” by the pro-

cessor. Unlike direct dynamic voltage and frequency scaling (DVFS) methods which

control processor state without modifying the computational workload, ICI can be

used to access the full dynamic range of server power. Because ICI does not directly

control processor state, the power consumption at a particular τ may have a larger



30

Mean

Range estimate

.

.

.

.

.

.

.

.

G
. . . . . . . . . .

. . . . . . . . . .

Figure 2.6: Residency Distribution of Server 4 under cgroups
Interface

C-state residency varies
with power management
configuration

Busy time varies with
processor wake-up jitter

Discrete p-state values
produce multimodal
power distribution

Figure 2.7: Detailed Look at Power and Processor State Samples
for τ0 = 0.81



31

variance than a DVFS interface would produce. Because of this variance, ICI has

been traditionally used in long-term average power control applications like thermal

management [26,27] rather than direct power control. However, our results show that

ICI can be quite effective at controlling server power consumption, even on short time

scales.

To understand why Fi(τ) shows nondeterministic behavior, consider Fig. 2.7,

which gives a detailed look at the observed processor behavior and measured power

consumption for the cgroups interface at τ = 0.81. Cgroup’s default scheduler allows

setting a CPU time cap within a periodic interval (set to 100 ms in our case). Once

the workload exceeds its allotted time cap, the operating system pauses the workload

processes, and power management features automatically transitions the server to one

of its idle states. Not only is there some variation to which idle state gets entered,

but there is some jitter in the processor’s wake-up cycle – both of which work to

producing a non-constant power consumption, even at a constant τ .

Fig. 2.6 gives a look at the processor behavior under the cgroups interface,

across the full range of τ . At the top left, the “Busy time” graph has a unit slope,

and a small estimated range for each τ – showing that the cgroups interface is effective

at enforcing its CPU time cap. At the top right, the “Average p-state” graph gives

a reason for the nonlinearity around τ = 0.7 in the power graph of Fig. 2.5. At

this τ , the power management system stops using the lower-power active modes of

the processor, and starts running the processor at maximum speed whenever it is

active. At the lower left and right, the “Time in c-state” graphs show that the power
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management system under the cgroups interface prefers to let the processor idle in

its lowest-power sleep mode (c-state 6).

Compared to the userspace idle injection interface we used in our previous

experiments, one of the main advantages of the cgroups interface is that it has been

built in to the Linux kernel since 2008, and is already in use for managing resources in

several cluster computing environments (for example, YARN’s LinuxContainerExecu-

tor and MESOS’s default containerizer). Furthermore, cgroups is designed to work

on arbitrary groups of processes and therefore can throttle some groups of processes

independently from others. The primary disadvantage is that this method is tied

to Linux, while other methods may apply across many different operating system

kernels.

2.3.3 Other Idle Cycle Injection Interfaces

Userspace Idle Injection

Inspired by the Linux cpulimit program, we designed a custom userspace tool

to perform ICI using the Linux SIGSTOP and SIGCONT signals. We ran the same

experiment as for the cgroups interface. This tool does the same thing as the cgroups

interface, except that our tool operates in user space and throttles processes in a

more synchronized manner. As shown in Fig. 2.10, this causes the power management

system to essentially “duty cycle” the processor – toggling between sleep mode and

the highest active state. Because the power management system decides to stop using

low power active processor modes around τ = 0.2 rather than cgroup’s τ = 0.7, the



33

F̂i(τ) for the userspace interface more closely matches Fi(τ) predicted by Eq. (2.2).

The power profile of this tool is the least variable and most linear of all ICI

interfaces we tested. The advantage of such a tool is that it can be run in the

background of any POSIX operating system, without accessing operating system or

hypervisor power management policies. The disadvantage is that it is a custom tool,

which only offers marginal improvements over the well-maintained and more full-

featured cgroups interface.

Hypervisor CPU Capping

Various datacenter power management thesiss such as [28] have made use of

hypervisor-based CPU throttling techniques. The Xen Project [54] provides a widely-

deployed open source hypervisor, whose sched-credit framework uses ICI to arbitrate

processor access among virtual machines (VMs). The current implementation uses a

priority queue and an accounting thread to ensure that the virtual CPUs assigned to

the VM do not exceed their CPU use cap for each 30-ms accounting interval.

In order to run a workload comparable with the other interfaces, we instan-

tiated a paravirtualized linux guest VM allocated twelve virtual CPUs (two for each

hyperthreaded physical core), and ran the same repeated-square-root workload as

for the cgroups interface. Compared to the cgroups interface, the power variance at

each interface setpoint is higher and Fig. 2.8 shows that the power profile achieves

the full dynamic range but is highly nonlinear. Similar to the cgroups interface, the

hypervisor-based interface has the advantage of being integrated into existing virtu-
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alized environments and the disadvantage of being tied to those environments. Xen’s

sched-credit interface has the further inconvenience of a highly nonlinear setpoint-to-

power characteristic.

userspace
hypervisor
rapl
cpufreq
cgroups

Figure 2.8: Comparison of Mean of F̂ (τ) for Server 4 under
Different Power Modulating Interfaces

2.3.4 Direct Voltage and Frequency Scaling Interfaces

Rather than throttling workload and letting power management automatically

transition processor state, dynamic voltage and frequency scaling (DVFS) interfaces

communicate with the processor package directly in order control its operating state.

As such, these interfaces offer much tighter control over the server power consump-

tion. However, because they do not cause the processor to enter sleep states, DVFS
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Figure 2.9: Comparison of Standard Deviation of F̂ (τ) for Server 4
under Different Power Modulating Interfaces

interfaces do not allow power control over the server’s full dynamic range.

Cpufreq Driver

For example, several thesiss like [55,56] have successfully applied the userspace

governor of the Linux acpi-cpufreq legacy driver to implement energy-aware DVFS on

older processors. However, it is worth noting that most modern Intel processors only

allow DVFS “hinting” rather than direct control. The more modern intel pstate driver

offloads power consumption to hardware and does not include a userspace governor.

This technique has the advantage of a very low power variance at each setpoint, but

only about half of the dynamic range is controllable. Further, as Fig. 2.10 shows, the

cpufreq driver only allows twelve distinct voltage-frequency pairs, meaning that the
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power characteristic of Fig. 2.8 has only twelve unique levels.

Proprietary On-chip Power-Limiting

The next DVFS technique is an improvement to the quantized cpufreq in-

terface. RAPL precisely limits the processor package and the memory power con-

sumption using a proprietary hardware mechanism, but the observed state residency

(see Fig. 2.8) indicates that a DVFS technique is used. Certain Intel processors sup-

port a model-specific register (MSR) interface called Running Average Power Limit

(RAPL) [57]. thesiss like [58] use the RAPL API to shape the power consump-

tion of servers running transactional workloads to achieve high energy efficiency with

minimal service-level objective violations. This technique again has very low power

variance at each setpoint and covers almost the same dynamic range as the cpufreq

interface. But, it is not limited to discrete levels of power consumption, as in the

cpufreq interface.

2.4 Chapter Summary

The measurements in Section 2.3 showed that server power can be controlled

with fast ramp rate, across a wide dynamic range, and with a high level of precision

using several different power modulating software interfaces.

Out of all the power-modulating interfaces discussed in Section 2.3, the Linux

cgroups interface stands out because of its low power variance, ubiquitous availability

(almost all Linux servers have this feature), and highly flexible nature (allows different

process groups to be managed separately). However, it is important to consider the
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Figure 2.10: Comparison of Mean State Residency Profile for
Server 4 under Different Power Modulating Interfaces

specific needs of that datacenter when selecting a power modulating interface for

servers in a realtime datacenter demand response system. For example, Xen’s sched-

credit interface may be more applicable in a highly virtualized environment, or the

RAPL interface may be more appropriate if precise controllability is valued over

dynamic range. Even direct DVFS or custom software solutions may offer the best

tradeoff for certain applications.

Furthermore, our experiments have shown that the linear power model of

Eq. (2.2) commonly used in datacenter power management literature is not always

valid, depending on the interface used. Server power Fi(τ), with CPU time τ con-

trolled by Xen’s sched-credit interface, for example, exhibits highly nonlinear depen-
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dence on τ . The results of our comparison of the software power control interfaces

can be summarized as follows.

• The linear model of Eq. (2.2) relating server power to CPU time holds reason-

ably well for the Linux cgroups, userspace idle injection, and RAPL interfaces,

but is not a good model for the Xen sched-credit interface or the cpufreq driver

interface.

• Idle Cycle Injection is very effective in providing a wide dynamic range but

suffers from increased power variance.

• Direct Dynamic Voltage and Frequency Scaling is effective in accurate power

control with low variance, but offers a limited dynamic range.

In this chapter, we have provided experimental evidence that datacenters are

attractive controllable loads. And, as a first step toward understanding the details of

implementing a controller for datacenter power shaping we have compared and con-

trasted several different classes of cpu-utilization capping software available to rack

servers. Custom software used in this thesis is open source and can be downloaded

from [59]. Our power tracking experiment showed that a very simple controller can

exceed industry power tracking specifications. Further measurements showed a dy-

namic range of around 50% of the maximum power, and practically no upper limit

on the power ramp rate.
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CHAPTER 3
POWER TRADEOFFS OF READ-OPTIMIZED QUERIES

Where Chapter 2 introduced a general framework for load shaping and inves-

tigated power characteristics of the cluster under architecturally simple workloads,

this chapter undertakes to experimentally investigate a scenario where (1) there may

be job dependencies between servers and (2) quality of service metrics are calculated

on timescales similar to the power shaping timescale. Rather than repeating the full

“closed loop” power tracking experiment of Section 2.1, we undertake a detailed in-

vestigation of the power-performance tradeoffs of a latency-sensitive workload under

power cap – implicitly assuming that the “base” CPU load required for load shaping

can be supplied by some parallel workload whose deferral does not impact QoS. Chap-

ter 4 takes this notion a step further by exploring a workload where the performance

of high priority jobs depends indirectly on the low priority workload performance.

This chapter and Chapter 4 together demonstrate that several important

latency-sensitive “big data” workloads are amenable to load shaping, given an appropriately-

chosen query implementation. The application we have in mind in both of these

chapters is a big data analytics engine which serves latency-sensitive queries on a

distributed dataset. In this chapter, we discuss the performance impact of power

capping on three different types of read-optimized query algorithms using a bit-sliced

datastructure. We find that the power requirements for the optimized algorithms are

significantly lower than a baseline approach, and have improved performance. Since

the read latency of clusters using the bit-slicing optimization is scarcely impacted by
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power cap, load shaping can be achieved in these clusters simply by the addition of a

parallel deferrable “base” CPU load. Put differently, clusters which migrate from the

baseline query approach to the bit-slicing optimization could gain enough flexibility

in their power requirements to support load shaping and an additional low-priority

workload.

In Chapter 4, we extend the discussion to an application with differentiated

QoS requirements. In this case, we also assume a big data query service, but in an

environment where the base data is frequently updated. We also make the assumption

that the cluster is already using read-optimized bitmap index algorithms to serve their

customers so there is no latency flexibility. Instead, as is common with many big-data

applications, we assume there is some flexibility in query freshness and show that read

latency is not compromised under power cap.

3.1 Performance Impact of Power Capping

As stated previously, our purpose in this chapter is to perform a power-aware

performance evaluation of two different classes of Big Data indexing algorithms: (a)

traditional distributed index requiring arithmetic operations such as multiplications

and additions and (b) a distributed version of Bit-Sliced Indexing (BSI). The latter

algorithms use only bit-wise operations and were designed with the expectation that

they will execute faster on modern processors than algorithms that use traditional

arithmetic operations. However, the effect of using bit-wise operations on power

consumption is not a-priori obvious. On the one hand, one might expect that faster
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algorithms would require less energy simply because the processor is used for a shorter

period of time. On the other hand, modern hardware has power configurations that

control the different states of the hardware e.g. frequency and voltage scaling, and

many of these configurations deliver higher throughput at the expense of higher power

consumption.

In this chapter, we explore the energy, power, and performance tradeoffs ex-

perimentally. Specifically, we consider three well-known queries that are recognized

as fundamental to a large variety of Big Data applications: (a) aggregation [60], (b)

top-k [61], and (c) nearest neighbor [62] queries. For each of these three queries,

we conducted a series of experiments comparing traditional indexing algorithms that

use arithmetic operations against alternative implementations that use only bit-wise

operations. For these experiments, we use a Spark cluster that was instrumented

to measure in real-time the consumption of individual servers as well as to impose

configurable power limits on the processors of each server in the cluster.

Bitmap indices, first introduced in [63], are a way to represent arbitrary group-

ings of a set of records. Each bit position in the bitmap corresponds to a particular

record, and the value of that bit marks the record’s membership in the group. In the

context of Big Data, bitmap indices are used to speed up queries on records with a

particular property or attribute value-range. For categorical attributes, one bitmap

vector is created for each attribute value. Continuous attributes are discretized into

a set of ranges (or bins) and bitmaps are generated for each bin.

Figure 3.1 shows an example of a dataset whose two attributes can each take
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on 3 distinct values (cardinality=3). One way to index this dataset is to generate

one bitmap for each attribute value and set the bit is set if the tuple has that value.

In this way, a query asking for tuples with Attributes 1 amd 2 equal 1 can be an-

swered by simply ANDing the corresponding bitmap vectors together. The resulting

bitmap satisfies this selection query. This method (called equality encoding [63]) is

only one of several bitmap encoding schemes. For example, range [64], interval [64],

and workload and attribute distribution oriented [65], and even several commercial

database management encodings all leverage bitmaps to enhance indexing and query

performance.

Raw Equality BSI
=1 =2 =3 B1[1] B1[0]

1 1 0 0 0 1
2 0 1 0 1 0
1 1 0 0 0 1
3 0 0 1 1 1
2 0 1 0 0 1
3 0 0 1 1 1

Figure 3.1: Simple Example of Equality Encoded Bitmaps and Bit-
Sliced Indexing for a Table with Two Attributes and
Three Values per Attribute.

3.1.1 Review of Bit-Sliced Indexing

BSI (Bit-Sliced Index) [63,66] can be considered a special type of bitmap index

encoding [67] designed to support complex queries over a large number of attributes.

In this method, one bitmap (a BSI) is created for each attribute A, and “slice” k of

this bitmap points to all the records whose A attribute has bit k set.
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BSI arithmetic for a number of operations is defined in [66], and often requires

only simple logic operations.

Previous work in bit slicing has focused almost exclusively on the memory

savings, algorithmic efficiency, and query speed up of BSI. However, given the fact

that the most common BSI operations only require logic gates and shift registers

rather than full adders, it is reasonable to expect that this particular encoding might

have power and energy performance features that other indexing schemes do not.

Compression of Bit-Vectors

Even though BSI is the most compact representation of an attribute (only

dlog2 valuese vectors are needed to represent all values), the high density of bit vec-

tors makes them hard to compress any further – making it very challenging to fit a

complete set of indices into memory.

There have been several different approaches proposed for dealing with this

challenge. For example, a Bitmap Index for Database Service (BIDS) [68] indexes

data selectively, storing compressed BSIs only for point and range queries.

Unfortunately, many of these proposed solutions to overcoming the index size

challenge have difficulties. For example, BIDS actually requires an additional index

such as Trojan [69] to retrieve complex queries. Moreover, BIDS compresses BSIs

indiscriminately where it has been shown that this can have significant overhead in

many high-dimensional queries [70]. Similarly, BBC also suffers from CPU intensive

query retrieval which can be costly both in terms of query duration and in energy
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consumption.

For very large datasets, all attempts to store a complete set of indices in a

single machine’s memory will eventually encounter limitations and in many cases,

the indices must be distributed across multiple servers. It is in this space of massive

distributed indices that we are interested in exploring the energy tradeoffs of BSI

queries, compared to distributed arrays-based queries.

To maximize the size of index set that we can store and for better query

performance, our implementation uses a modification of the Enhanced Word Aligned

Hybrid (EWAH) [71] index compression method, that is described in [70]. This

technique makes access to the bitmaps more CPU-friendly by using words instead

of bytes to match the computer architecture, and only compresses the sparse bit-

vectors.

Distributed Query Execution using Bit-Vector Arithmetic

Since our goal is to compare the power, energy, and performance tradeoffs of

distributed BSI based queries with a more traditional distributed query approach,

we will now discuss how big data analytics queries are executed using bitmap-based

indices. Following this, we will describe the power measurement infrastructure set up

over a Spark cluster.

Consider a relational big-dataset D with m attributes and n tuples. Bitmap

indices are built over each attribute value or range of values and stored column-wise.

The data can be partitioned vertically by grouping the bitmaps into multiple parti-
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tions and/or horizontally, by splitting the bitmaps into segments. The query process-

ing over bitmaps is done by executing bit-wise operations over one or more bitmap

columns, then if horizontal partitioning was applied, the results are concatenated.

Traditional Distributed Queries

Querying an arrays-based distributed index is straightforward. The data is

partitioned horizontally by rows across all servers in the cluster. When a query is

made, a local agent sequentially scans through each row to see which ones match the

query. Data must be examined on a field-by-field basis, and traditional arithmetic

operations are used to perform the required matching tests. Once the local agent has

collected all the matching records from its machine, it forwards these results on to an

aggregator. Finally, the aggregators cooperate with each other to return the records

of interest.

A Note on Hybrid Bitmap Compression

Before digging into the details of our bit-sliced index (BSI) implementation, a

few notes on the compression method we used are in order. BSI encodes the binary

representation of attribute values using one bit-vector to represent each binary digit.

Since BSI bitmaps exhibit a high bit-density, i.e. a large number of bits is set in

each bitmap, they do not compress well and are often stored verbatim, i.e. not

compressed. However, queries execute a cascade of bit-wise operations. Often, even

when the original bit-vectors are dense, the intermediate results become sparse and

could benefit from compression. The hybrid compression [70] allows compressed and
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verbatim bitmaps to coexist and be queried together.

Hybrid uses EWAH to compress the bit-vectors using groups of w-bits to

maintain the alignment with verbatim bitmaps. EWAH uses two types of words to

compress the bitmaps: marker words and literal words. Half of a marker word is used

to encode the fills. The upper half (most significant bits) of the fill word encode the

fill value, and the run length. The remaining bits contain the number of literal words

following the run.

Verbatim Bitmap (in hex) 400003C0 00000000 00000000 00000000 001FFFF0 000001FF
EWAH Bitmap (in hex) 0000 0001 400003C0 0003 0002 001FFFF0 000001FF

Figure 3.2: A Verbatim Bitmap and its EWAH Encoding.

Figure 3.2 shows the EWAH encoding for a bitmap representing 128 bits,

assuming 32-bit words. The EWAH bit-vector always starts with a marker-word. The

first half of a marker-word represents the header specifying the type and number of

fill words. The second half of the marker-word tells the number of literals that follow

a marker-word (1 in the example). After the literal word comes another marker-word.

The first bit (0) indicates a run of zeros and the value 3 is the number of words in

the run. The second half of the marker word indicates that there are two literals

following the fill.
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3.1.2 Description of Bit-Sliced Queries

Selection and Range Queries over Compressed Bit-Vectors

A selection query is a set of conditions of the form A op v, where A is an

attribute, op ∈ {=;<;≤;>;≥} is the operator, and v is the value queried. We refer

to point queries as the queries that use the equal operator (A = v) for all conditions

and range queries to the queries using a between condition (e.g. v1 ≤ A ≤ v2).

The values queried, vi, are mapped to bitmap bins, bi, for each attribute. If

the bitmaps correspond to the same attribute then the resulting bitmaps are ORed

together, otherwise they are ANDed together. In the case of selection queries, the

resulting bitmap has set bits for the tuples that satisfy the query constraints.

Algorithm 1: Pseudo-Code for SUM Aggregation over BSI
Input: BSI B
Output: sum

1 sum = 0;
2 for Each slice bi ∈ B do
3 sum+= COUNT(bi)× 2i;
4 end
5 return sum

In parallel, these operations can be done independently over the different parti-

tions as long as the bit positions are maintained consistently across partitions. For ver-

tical partitions, bitmaps can be operated together. For horizontal partitions, bitmaps

can be concatenated together.
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Aggregation Queries

Bitmap indices are well known for their improved performance on aggregation

queries. A COUNT aggregation can be performed just by counting the number of

set bits in an equality encoded bitmap. BSI indices allow to compute efficient SUM

aggregations as well. Algorithm 1 shows the pseudo-code to perform SUM aggregation

for a BSI B that encodes the values to be aggregated. The algorithm returns the SUM

aggregate value corresponding to the aggregation of the values by counting the number

of ones in each bit-vector bi ∈ B, and multiplying it by the corresponding power of

2 (2i) (Line 3). This operation is done by calling the specialized CPU instruction

POPCNT. Also, note that this multiplication is effectively a shift operation of i

positions.

This aggregation can be combined with selection queries efficiently by ANDing

the selection bitmap together with each slice in the BSI before performing the SUM

aggregation.

Note that the result for the SUM aggregation is just a number, not a bitmap or

BSI. In parallel, SUM aggregation is computed over each partition and these partial

sums are then reduced into a global aggregate.

Top-k Preference Queries

In this work we define as Top-k query the process of summing all the attribute

values for each data object and then perform ranking over the resulting aggregation.

The steps of performing the top-k preference query over a BSI attribute are
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depicted in Figure 3.3:

• First, the weights are applied to their respective dimensions for each data ob-

ject. Using BSI arithmetic, this multiplication is done by shifting bit-slices and

performing additions (SUM BSI). This multiplication and addition procedures

are described in Algorithm 2 and 3 respectively by Guzun et al. in [72].

• Aggregate all the dimensions into one dimension by summing the values across

attributes.

• Extract the top-k data objects by finding k rows with the largest values in

the aggregated attribute. This procedure over a BSI attribute is described in

Algorithm 4.2 by Rinfret et al. in [66].

BSI Index

Apply weight 
function to 

slices and map 
by depth

Aggregate by 
depth

Final 
reduce BSI top-K

top-K result

Figure 3.3: Top-k (preference) Query Stages using Distributed BSI
Arithmetic

In the second step described above, for performing SUM BSI in parallel we use

the slice-depth mapping as described in [73]. This aggregation algorithm promotes

the bit-slices as the processing data units and applies the lessons-learned in computer

arithmetic optimization to further improve the performance of the parallel aggrega-

tion. The basic idea of this approach lies in use the bit-slice depth as the mapped

key and implement a two-phase algorithm.In the first phase, the slices are added by
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bit-depth, producing a weighted partial sum BSI. In the second phase, all the partial

sums are added together in a method similar to a carry-save adder.

3.2 Experimental Results

3.2.1 Experimental Setup

In this section we evaluate the execution times and energy usage of the three

types of queries described above: SumAggregation, Top−k, and kNN . We compare

the algorithms that use the BSI index and distributed bit-vector arithmetic (refer-

enced as BSI) against distributed map-reduce methods (referenced as Arrays). We

did not evaluate individual logical bitwise operations such as AND or XOR, since the

Top− k, and kNN consist of a string of these types of operations.

In our experiments we used two synthetically generated datasets with uniform

distribution, and two representative scientific datasets from recent publications in

particle physics and face detection. The two synthetically generated datasets have

1 Billion (designated as Synth) and 200 Million rows respectively (designated as

SynthSmall), with a cardinality of 109 (30 slices per BSI). The two nonsynthetic

datasets are referred to in the remainder of this paper as HIGGS and Images. The

HIGGS dataset was provided by the authors of [74], who used Monte Carlo simulations

to produce 21 kinematic features representative of measured particle detector events,

and then generated 7 high-level classification features from the “raw” event data.

This dataset has a high cardinality, as each attribute is represented by real numbers

with with numeric precision of 16. In a non-compressed form, this dataset has a size
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of 7.4 GB.

The Images [75] data are from the Edith Cowan University face detection

database. The database consists of over 3200 color images of various skin types

and their corresponding images of segmented skin regions. In our experiments we

used 2000 of these images. Each pixel is sampled together with a 6x6 pixel block

surrounding it. Thus each pixel has 6x6x3 = 108 features. The size of this dataset is

approximately 20 GB.

For the SumAggregation, Top − k, and kNN queries, the raw data is hori-

zontally partitioned and stored as HDFS object files, to avoid incurring parsing costs

during query execution. We did not consider vertical partitioning as the queries under

evaluation involve all the dimensions, and vertical partitioning would require more

data shuffling. For all queries, the data is arranged such that sub-tasks can be ex-

ecuted in parallel over each partition and then aggregated. The HIGGS data were

stored as Doubles, the Images data as Integers, and the synthetically-generated data,

as Longs.

In choosing the parameters for our 4-server Spark cluster, we set the HDFS

replication factor to 3, the number of Spark executors to 8 with 6 cores per executor,

and allocated 8GB of memory to each executor.

3.2.2 Measurement Procedure

Some power-aware algorithm designs emphasize the common wisdom that

“faster is better” when it comes to energy savings. And, BSI is indeed faster than the
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Figure 3.4: Queries without Power Constraints - Higgs Dataset -
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Figure 3.6: Queries without Power Constraints - Higgs Dataset -
Knn Query

distributed query over arrays. However, BSI has design advantages which go beyond

accessing hardware acceleration features (like GPU) or simply “pushing the processor

harder” (caching and other ways to reduce non-CPU latency). These “extra” benefits

are most clearly seen when the processor is constrained to a certain maximum power

– as might be the case in datacenters seeking to save power by allowing an increased

inlet temperature for the servers or in datacenters with many smaller servers rather

than a few high-powered servers.

To enforce a maximum processor power consumption for each server, we used

the Running Average Power Limit (RAPL) hardware feature accessible via a model-

specific register (MSR) interface on many Intel servers. Extensive initial measure-
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ments showed that RAPL accurately limited the processors’ power consumption to

within less than a watt of the desired value, so we assumed that the limit was accu-

rately enforced throughout the rest of the experiments.

For each combination of query type, algorithm, dataset, and per-processor

power cap, we ran twenty sequential queries over the whole dataset (we will refer to

one of these query sets as an “application”) while logging the cluster’s total power

consumption over the entire interval. We extracted the duration of each application,

defined to be the difference between the last job’s completion time and the first job’s

start time, from the Spark logs.

Because the total run time for each application was often small compared to

the application’s resource allocation time, it was useful to separate the “working time”

from the “container setup time.” To do this, we configured the Spark scheduler to

defer until all resources were allocated before starting any of the application’s jobs.

Since there is some variation in the duration of an application run and be-

cause unrelated background processes on the cluster cause some uncontrollable power

variation, we ran each application ten times.

For convenience of discussion, let us define di,j to be the j’th measured duration

of application i. Further, let 〈di,j〉j = 1
jmax−jmin

∑jmax

jmin
di,j be the sample average of

the duration. In the discussion that follows, when we speak about application i’s

“duration,” we refer specifically to 〈di,j〉j.

The notion of application i’s “energy” requires a bit more explanation since

the quantity we are interested in is actually the extra energy required to run the
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application rather than to just sit idle. To avoid “double counting” the effect of idle

power consumption in our energy comparison, we measured the average idle power of

the whole cluster over a 30 min interval, and subtracted this value from the measured

power consumption before using that power to calculate energy. Specifically, let pi,j,k

to be the k’th time sample of measured cluster power when running application i

for the j’th time, bl to be the l’th time sample of the measured cluster power at

idle. Application i’s “energy” is then the average extra energy it takes to run the

application instead of sitting idle for that time, or 〈di,j × (pi,j,k − 〈bl〉l)〉j.

Table 3.1: Energy, Time, and Power Tradeoffs among
Arrays and BSI - Aggregation Queries

Higgs Img Syn SmSyn
arr bsi arr bsi arr bsi arr bsi

Peak(W) 125.9 81.9 145.8 99.1 145.9 86 159.6 111.1

enrg time enrg time enrg time enrg time
22Wratio 2.9 2.2 9.9 8.6 323.1 194.4 18.3 13.4
35Wratio 3.2 2.4 9.5 9.2 326.6 169.5 18.6 12.5

Table 3.2: Energy, Time, and Power
Tradeoffs among Arrays
and BSI - Top-K Queries

Higgs Img
arr bsi arr bsi

Peak(W) 140.2 128.7 159.7 143.1

enrg time enrg time
22Wratio 2.4 2.5 3.4 3.7
35Wratio 2 2.1 2.9 3.6
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Table 3.3: Energy, Time, and Power
Tradeoffs among Arrays
and BSI - KNN Queries

Higgs Img
arr bsi arr bsi

Peak(W) 128.3 117.1 154.8 141.8

enrg time enrg time
22Wratio 2 2 5.6 5.9
35Wratio 1.8 1.7 4.8 5.8

3.2.3 Peak Power Experiment

Our first experiment was to compare the peak cluster power consumption

under BSI queries with the peak cluster power consumption under distributed queries

over arrays. To limit the influence of outliers on each application’s peak power, we

performed an ensemble average across the ten application runs in order to obtain a

typical load shape for that application li(k) = 〈pi,j,k〉j. The typical load shapes for

the Higgs dataset, without power constraints are shown in Figs. 3.4 to 3.6 and suggest

that the BSI queries consistently exhibit a lower peak power than the queries over

arrays. The other datasets tabulated in Tables 3.1 to 3.3 tell a similar story.

The hardware counters available to us did not allow for detailed measurement

of the processor state. However, one reasonable explanation for BSI’s lower peak

power is that the computational load of BSI-based queries is composed of simple logic

operations, rather than more complicated arithmetic. At a hardware level, this might

be expected to reduce the number of logic transitions, resulting in a reduced dynamic

processor power. Furthermore, depending on the operating system and processor
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Figure 3.7: Queries with 25 W Power Constraint - Higgs Dataset -
Aggregation Query

power management behavior, unused adders could be switched off, resulting in a

reduced static power draw.

3.2.4 Duration Experiment

Because the BSI and the traditional arrays-based queries have different peak

power, we were curious about the effects of processor power capping both on the

duration of the queries and the total energy that the queries consumed. Put a different

way, the significantly-shorter runtime of the BSI algorithms suggests some flexibility

in their power constraints. In fact, our results showed that even the power-constrained

BSI queries were faster than the corresponding unconstrained queries over arrays.

Figs. 3.7 to 3.9 show the effect of a 25 W per-processor power cap (since the
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power cap applied only to the processor, the whole server power was not strictly

constrained) on the cluster. Comparing Fig. 3.9 with Fig. 3.6, the power cap had a

negligible impact on the duration of the BSI query, while it had a large impact on

the duration of the distributed array query.

We systematically evaluated the effect of power capping on the duration of the

query sets. We chose five different power caps, ranging from the minimum processor

power (22 W) to the maximum processor power (35 W). We recorded the minimum,

maximum, and mean duration over the ten application runs for each power cap. This

data is shown for the Higgs dataset in Figs. 3.10, 3.12 and 3.12. As is especially

evident in Fig. 3.12, power capping often has a stronger effect on the distributed
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array scan query duration than it does on the BSI query duration.

3.2.5 Energy Ratio Compared to Duration Ratio

To get a better understanding of the tradeoff between the energy required to

run a query and the time a query takes to run, we calculated the ratio of distributed

arrays application energy to BSI energy and the ratio of distributed arrays-based

application duration to BSI duration for a wide variety of query types and datasets.

As is shown in Tables 3.1 to 3.3, the worst-performing BSI queries were around twice

as fast as the corresponding arrays-based queries. Furthermore, with the exception of

the Aggregation queries on the Higgs and Images dataset, every combination we ran

showed that the query execution over arrays’ duration was more sensitive to power

capping – with the BSI queries showing improved relative performance as the power

cap approached its minimum.

We also observed that every aggregation query showed energy gains beyond

what might be expected from the faster runtime alone. The BSI shows very extreme

improvement over the arrays in the aggregation query with synthetic dataset because

the index size for BSI fit into memory, but index size for the arrays was too large to

fit into memory.

3.3 Chapter Summary

In this chapter, we set out to experimentally evaluate the power, energy, and

performance tradeoffs of distributed BSI, compared to a more traditional array based

query indexing. In the first few sections, we included enough background and imple-
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mentation details to reproduce our experiment. Our results over three popular types

of Big Data queries (aggregation, top-k, and k-nearest neighbor) and several real-

world and synthetic datasets showed that BSI consistently outperforms non-indexed

data in execution time. It was Furthermore, the peak power of BSI was always lower

than the peak power of the arrays-based approach. Because of this, the relative per-

formance (in terms of duration) of all but two of the BSI queries got even better as

the power cap became smaller.

The power and energy characteristics of BSI suggest more effective resource

allocation strategies within a datacenter. Servers with power constraints (due to

temperature, electricity prices, etc) can be allocated to query processing, while un-

constrained servers can be put to other use. For future work we plan to explore other

types of indexing and analytic queries, as well as emerging hardware technologies

such as co-processors.

Because the read latency of clusters using the bit-slicing optimization is some-

what insensitive to power cap, it is possible to achieve load shaping simply by the

addition of a parallel deferrable “base” CPU load. Put another way, clusters which

migrate from the baseline query approach to the bit-slicing optimization could gain

enough flexibility in their power requirements to support load shaping and an addi-

tional low-priority workload.
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CHAPTER 4
POWER SHAPING WITH UPDATE-AWARE BITMAP QUERIES

As with Chapter 3, the larger context of this chapter is investigating the

power/performance tradeoffs of demand response-applicable workloads which have

QoS metrics calculated on timescales similar to the load shaping timescale. Where

Chapter 2 focused on architecturally simple workloads in order to introduce a general

framework for datacenter demand response and Chapter 3 investigated a more com-

plex workload where QoS could be made insensitive to power capping, this chapter

explores a situation where deferring the low-priority “base” workload can impact the

performance of the high-priority workload. The specific application of interest is a

“streaming big data” service, where queries are latency-sensitive, but have some small

flexibility in freshness.

In this chapter, we begin with with an experiment demonstrating that even

in a cluster environment, simple job priorities can allow query latency to be unaf-

fected by power cap, while index refreshing supplies sufficient “reserve load” to do

bidirectional load shaping. Following this experiment, we provide some brief context

and motivation for update-aware bitmap indices in dynamic big data environments,

compared to other strategies. We then present a new bitmap update strategy which

outperforms the existing state-of-the-art method, at least in the single server case.
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4.1 Priorities and Power Shaping

While any workload with differentiated QoS requirements can benefit from

job priorities, low-power algorithms like the ones used for bit-sliced-index queries in

Chapter 3 may have the added benefit of not requiring separate power-aware priority

management. For example, consider a situation where the cluster’s power setpoint

can vary between 280W to 400W. If the high-priority workload on that cluster only

uses a maximum of 240W, there will always be at least 40W available – suggesting

extra compute capacity to ensure low-priority jobs do not starve. Beyond setting the

high priority workload’s share to maximum, no further adjustments of job priorities

are needed – regardless of how the power setpoint varies within that range.

The ability to avoid adjusting job priorities in realtime is especially helpful

when operating in a cluster environment. For example, cluster management frame-

works like Apache Spark [76, 77], and YARN [78] allow for setting static job queue

priorities using configuration files but provide no simple way for adjusting queue

priorities during runtime.

One important difference between traditional operating-system priority man-

agement and cluster-level priorities is the granularity of the scheduling units. For

scalability reasons, cluster schedulers generally do not support the ability to suspend

and resume low-priority tasks in order to share CPU time at a fine-grained level.

Instead, workload priorities generally take the form of queuing order, reserved CPU

bins, and preemption (ability to cancel lower-priority tasks).

Since cancelling and restarting tasks incurs both computational and power
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overhead, the coarse granularity of cluster-level priorities raises the question of whether

or not the simple priority policy as described above actually applies in a cluster en-

vironment. In the context of latency-sensitive query reads and lower-priority index

updates, we are curious if the simple policy can (1.) ensure that queries do not suffer

latency impact under power cap, and (2.) does not cause updates to starve or query

freshness to degrade excessively. Furthermore, cancelling and restarting tasks might

cause temporary jumps above or dips below the current power setpoint – impacting

the quality of the power tracking. So, we are also interested to evaluate the dynamic

power behavior of this particular workload.

4.1.1 Query Latency and Freshness

Architecture and Setup

The hardware setup is the same as described in Chapter 1, and the cluster

architecture is similar to the setup described in Chapter 3. Specifically, the cluster

runs an up-to-date Spark-on-YARN stack (Spark 2.1.1 on YARN 2.3) and consists

architecturally of four “executor” nodes, one “master” node, and a separate non-

cluster node for monitoring power consumption. We use the RAPL interface discussed

in Chapter 2 to enforce the power caps.

The diagram in Fig. 4.1 gives a functional view of the software setup. The idea

behind this architecture is to optimize for a scenario where the cluster must provide

low-latency reads to a constantly-changing database, while providing a best-effort

query freshness guarantee. In this experiment, the database consists of 100 columns,
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1 million rows, and uniformly-distributed values of cardinality 100. We investigate

the power tradeoffs of four different update strategies on a run-length encoded bitmap

index. Each update strategy is discussed and compared in more detail in the following

sections. In this section, we focus on showing that read-only query latency does not

suffer under power cap,

To avoid an update queuing bottleneck, incoming updates are hashed by row

or column (depending on which indexing strategy is used) to a queue on the executor

node containing the data to be updated. In this experiment, updates arrive as Poisson

process and are uniformly distributed across the rows and the columns of the database.

The rate of updates is constant across all experiment runs, and is set at 1000 rows

per second.

The master node uses the default Spark scheduler to repeatedly trigger “snap-

shot” updates, which merge all updates which have been accumulated since the last
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snapshot into a new database version.

Versioning is done to avoid contention with incoming queries. In this particular

experiment, we checkpoint after every update in order to ensure maximum possible

query speed. However, it is worth noting that our update architecture uses Spark’s in-

memory Resilient Distributed Datasets [77] paradigm and therefore does not require

disk checkpointing with every update.

In this experiment, wide range queries (with value selectivity of 99% and

column selectivity of 50%) arrive at the master node according to a Poisson process.

The arrival rate is selected to be the same for all test runs and is set at 4 queries

per second (corresponding to around 50 million rows per second, given the choice

of column selectivity). The query priorities are set somewhat conservatively in that

while queries are always first in line at the cluster scheduling queue, each update

aggregation task can be preempted (cancelled and restarted) only once, and queries

have no “reserved” cpu slots. This is done to avoid wasting compute resources and

to ensure that the full dynamic range of power can be used.

Experimental Results

By measuring the instantaneous power consumption of the cluster at each

power capping level, we obtained the results of Figs. 4.2 and 4.3, which show that

this update-aware indexing architecture provides high quality dynamic power char-

acteristics. Fig. 4.2 shows that this particular workload has sufficient CPU load to
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ensure the power consumption stays within the controllable range1 for the power cap-

ping interface we selected. Fig. 4.3 plots the PJM “power tracking score” measure [46]

discussed in Chapter 2, which indicates how “cleanly” the measured instantaneous

power consumption matches a desired setpoint value. A value of 100% indicates

that there is no variability around the setpoint. While certain update disciplines

responded better to power capping than others, all workloads manage to stay well

above the minimum score (75%) required to participate in PJM’s regulation reserve

market.

Having answered our question the dynamic power characteristics of this work-

load, we now verify our intuition that the low power requirements of bitmap index

queries translates to a query latency guarantee across a range of power caps. This

experimental validation is especially important, considering the coarse-grained nature

1Please refer to Chapter 2 for a discussion of how server power dynamic range relates to
the choice of power capping interface.
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of the cluster priority mechanisms.

As is shown in Fig. 4.4, there are some differences in query latency across

update discipline that we will discuss later. However, the current takeaway is that

query latency does not pay a penalty for power capping. Furthermore, the results

of Fig. 4.5 show that the query freshness degrades smoothly under power capping –

indicating that the updates do not starve even when allocating high priority to the

queries.

4.2 Read-Optimized Queries on Changing Datasets

In the previous section, we showed that a mixed workload of high-priority

queries and best-effort updates to a distributed bitmap-indexed database can provide

good power tracking characteristics while ensuring high quality of service for queries.

In the course of investigating this particular workload with respect to power shaping,

we discovered a new bitmap index updating technique that outperforms the existing



70

70 80 90 100
0

0.5

1

1.5

2

Power Available (f)

La
te
nc
y
(s
)

Query Latency

UA optimized

In-place
UA with fence

In-place with fence

Figure 4.4: Query Latency under Power Cap

70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

Power Available (f)

S
ta
le
ne
ss
(f
)

Query Staleness

UA optimized

In-place
UA with fence

In-place with fence

Figure 4.5: Query Staleness under Power Cap



71

state-of-the-art solution. Similarly to the bit-sliced index query optimizations of

Chapter 3, this update optimization was not designed with power in mind, but it did

have the fortunate side-effect of reducing the power required for updates.

We begin by briefly outlining the broader context of update-aware indexing

and discuss existing techniques for update-aware bitmap indices. Following this, we

discuss the

4.2.1 Dynamic Datasets and Update-Aware Indexing

Architectural frameworks like Apache Storm (Twitter) and Spark Streaming

provide convenient development platforms for performing queries on large, constantly-

changing datasets. In fact, over half of the 900 companies surveyed in Databricks’ 2016

report indicated that they used Spark Streaming in their production environments

[79]. The use cases of these dynamic big data frameworks range from fraud detection

and network traffic analysis, recommendation engines, data warehousing, business

analytics, and scientific computing [80].

Indexing has long been employed to reduce query latency in traditional database

solutions. And, many of the distributed query processing frameworks that work atop

streaming solutions (SparkSQL and Apache Cassandra, for example) also employ

caching and indexes as a way to speed up data access. However, as with traditional

databases, a common assumption is that the indexed data changes infrequently. Even

so, there is a small but growing body of indexing solutions that do efficiently sup-

port updates. For example, two application-specific updateable indexes include fat
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Figure 4.6: In-Place Updates with Word-Aligned Bitmaps

B-trees [81], which support parallel filesystem access, and velocity-constrained in-

dexes [82], which are designed for moving object databases. However, these two

application-specific approaches rely on prior knowledge of the class of queries and the

structure of the data represented by the index.

4.2.2 Update-Aware Bitmap Indices

In the space of “big data analytics,” unstructured data and ad-hoc queries are

the norm rather than the exception. As discussed in Chapter 3, run-length encoded

(RLE) bitmap indices are one type of compressed index that is particularly useful in

unstructured data, unknown query environments because they can directly support

a wide range of queries and column operations without the need to decompress or

access the main dataset.

Two previous approaches have been proposed to add support for updates up-

dates to RLE bitmap indices. An approach called update-conscious bitmaps [83] made

use of a per-column “existence mask.” This approach enabled an efficient delete-

then-append operation without re-encoding the index. A technique called UpBit [84]
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improved on the update-conscious bitmaps by employing a distributed per-value an-

cillary index called an “update vector.”

This work differs from the previous proposals for update aware bitmap index-

ing in two ways. First, while previous efforts have targeted on single-server multi-

processors, this implementation is designed expressly for “the cloud” – making use

of the widely-deployed Apache Spark framework. Second, our approach allows im-

proved support for multi-row updates. This is especially useful in shared-computing

cloud platforms, where there may be benefit to micro-batching the update tasks2.

We further show that this approach has a reduced memory imprint, compared to the

previous technique.

2Put another way, there may be excessive network bandwidth or overhead cost to dis-
tributing updates individually.
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4.3 Optimizing for Multi-Row Updates

4.3.1 Review of Single-Row Updates

The basic premise behind update-aware indices is to avoid re-encoding the en-

tire with every update. In the case of bitmap indices, the following example illustrates

how the UpBit design is able to achieve improved update performance over single-

row in-place updates. We will extend this example in the next section to explain how

our aggregation-optimized strategy allows continued performance improvements, even

under muti-row updates.

For ease of explanation, our example considers a simple word-aligned bitmap

encoding for the index, but it should be noted that a similar logic applies across a

range of different bitmap encodings. The bitmap index of Fig. 4.6 uses a word length

of 64 and indicates that rows {1, 25, 99, 2100} are initially set. In this example, there

are two updates which must be applied to the index:

1. First, row 99 is to be unset.

2. In the next update, row 80 is to be set.

An in-place update proceeds as is shown in Fig. 4.6, where shaded words

highlight words that have been modified by the update. In order to determine which

encoded word contains bit 99, the first two words must be read. Since the word

previously encoding bit 99 is now empty, it must be merged into the following run of

zeros. This operation changes the length of the encoded bitmap, and thereby triggers

a read-and-copy operation on the remainder of the bitmap. When bit 80 is set in the

second update, the entire bitmap must again be re-encoded.
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To see how maintaining a separate sub-index for updates can help improve

update speed, consider Fig. 4.7. To determine whether bit 99 needs unsetting, the

first two words of the main index, and the first word of the (empty) sub-index are

read. Since bit 99 is set in the main index and has not already been marked as unset

in the sub-index, two words are written to the sub-index to mark bit 99 as needing

flipped. In this case, it is important to note that the remainder of the main index

need not be read, nor does the main index need to be copied. Similarly, when bit 80

is set, only the sub-index is re-encoded.

4.3.2 Need to Support Multi-Row Updates

This ability to gradually absorb updates comes at a slight cost to query read

performance since the sub-index and the main index must be XOR’ed together to

determine which rows are actually set or unset. One idea to mitigate this performance

hit is to periodically merge the sub-index back into the main index. At low update

rates, this is mergeback alone is sufficient to ensure that the sub-index remains sparse

enough to make the read overhead of the sub-index negligible.

However, the case of aggregated updates can quickly limit these performance

gains. To see this, consider a slight modification to the previous example:

1. First, rows 99 and 2100 are to be unset.

2. In the next update, rows 80 and 256 are to be set.

As is shown in Fig. 4.8, the size of the sub-index can grow much more rapidly

than intuition might suggest. If the sub-index reaches its mergeback density after only
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a small number of multi-row updates, the performance of this approach can actually

be worse than in-place updates, due to the overhead of maintaining two indices rather

than one.

This can happen even at relatively small batch sizes. For instance, consider a

database attribute with uniformly-distributed data of cardinality m. If a word size

of w bits is used, the expected density of non-fill words in the m main index bitmaps

is 1 −
(
1− 1

m

)w
. With w = 64 and m = 100, a little under half of the words are

non-empty.

If updates are uniformly distributed across the rows, and are aggregated at

some fraction p of the total number of rows, a given word has a 1−
(
1−

(
1
m

+ p− 2p
m

))w
probability of needing changed. With w = 64, m = 100, and p = 0.05, that comes

to around a 3% density of non-empty words after just one multi-row update. In this

case, the size of the secondary index would be expected to reach the size of the main

index after only around 20 multi-row updates.

In order to keep the density of the secondary index from growing too rapidly

in the presence of aggregated updates, it is possible to exploit the fact that when
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the main index is relatively dense, there is a relatively high likelihood of any given

update intersecting a literal word in the original index. As long as updating the word

does not result in changing the size of the encoded bitmap, the word can be modified

in-place without triggering a full re-encode of the bitmap. Only words which would

trigger a full re-encode of the main index are merged into the secondary index. The

algorithm is shown in Algorithm 2.

Algorithm 2: Pseudo-Code for Aggregation-Optimized Update-Aware Index
Input: rows to set S, rows to unset U
Output: new main index bv and new secondary index uv
/* Ws,u is a list of (set, unset) word pairs */

1 tmp→ {};
2 Ws,u ← rowToWords(S,U);
3 for Each si, ui ∈ Ws,u do
4 w ← findWordIn(i,bv) ⊕ findWordIn(i,uv);
5 if isRun(i,bv) then
6 if isRun(i,uv) then
7 appendWordTo(w,i,tmp)
8 end
9 else

10 updateInplace(si ∨ (w¬ui),i,bv)
11 end

12 end
13 else
14 updateInplace(si ∨ (w¬ui),i,bv)
15 end

16 end
17 newUV ← uv ⊕ tmp;
18 return (bv, newUV )
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4.4 Performance Comparison of Aggregation-Optimized Bitmaps

Having now have explained the context, motivation, and operation of aggregation-

optimized bitmaps, we can revisit our previously-described query latency and fresh-

ness experiment to discuss the tradeoffs of this particular update optimization. Fol-

lowing this discussion, we present a more traditional performance comparison using

a single server and non-parallelized queries.

In both experiments, we compare the performance of our aggregation-optimized

bitmaps (labeled “UA optimized” in the figures) with three other update strategies.

The primary comparison of interest is, an implementation of UpBit [84] (labeled “UA

with fence” in the figures, because it makes use of fence pointers to improve the speed

of random row access on the main index). And, as a common baseline for comparison,

we also included in-place updates (re-encode the whole index, with every update) and

in-place updates making use of fence pointers to improve the speed of random row

access.

4.4.1 Revisiting Query Latency, Freshness, and Power Characteristics

The average power consumption shown in Fig. 4.2 indicates that using a row-

by-row update strategy (as is done when employing fence pointers) incurs a noticeable

power overhead. UpBit has the best power tracking score (see Fig. 4.3) of the inter-

faces investigated, due to the fact that its extra power overhead was consistent over

time rather than being the result of unpredictible “bursts” of power. A surprising

aspect of this particular experiment, considering the single-server results in the next
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section, is that the UpBit strategy seems to have noticeably-improved query perfor-

mance over both our aggregation-optimized approach and even the in-place updates

under the specific choice of update rate. Given that query read time is necessarily

slower than the in-place query reads (due to the necessity of reads needing to merge

the secondary and main indices), we must conclude that the query latency advantage

is the result of some other aspect of the system. Further investigation is needed to

better understand this behavior. And, it is worth noting that this particular exper-

iment only investigates updates at a single, relatively low rate. Had we chosen a

higher update rate, it is possible that the results would show a different scenario.

Finally, we can observe that Figs. 4.5 and 4.9 demonstrating how update-aware

bitmaps outperform in-place updates. In this case, as well, the UpBit implementation

and our aggregation-optimized approach perform similarly.
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4.4.2 Performance Comparison Experiment

To better understand the performance of the aggregation-optimized bitmaps,

we designed a simple single-server experiment involving one 100000-row column ini-

tialized to uniformly distributed data with cardinality 100. Rather than allowing

updates and queries to proceed in parallel as in Section 4.1, 200 updates are inter-

leaved sequentially with range range queries (value selectivity of 99% and attribute

selectivity of 50%). We vary the update aggregation size between 0.0001% and 10%

of the total number of rows. After each update, we measured the total size of the

index in words. For this experiment, we chose a mergeback size of 100 words for the

update-aware indices. To ensure the validity of our results, each test was repeated

four times.

From Fig. 4.10, it is clear that the aggregation-optimized bitmaps outperform

or match the other strategies for all but the highest aggregation sizes – at which point

the in-place updates start to outperform the other methods. The results of Fig. 4.4

show similar query latency for both aggregation-optimized bitmaps and the UpBit

implementation. As discussed previously, the query latency of in-place updates is

necessarily lower than can be achieved by update-aware bitmaps, due to the extra step

of merging the main and secondary bitmap indices with every read. Last, the results

of Fig. 4.12 show improved memory performance over the UpBit implementation.
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4.5 Chapter Summary

The goal of this chapter has been to investigate the power/performance trade-

offs of a particular streaming big data application: Update-aware bitmap indexing

with simultaneous read-only queries. The first experiment in this chapter was in-

tended to show that the low power requirements of bitmap index queries mean that

the latency of this portion of the workload need not suffer under power cap. We

demonstrated this point with a full-featured implementation of a streaming query

service with an updateable bitmap index. In the second part of this chapter, we

discussed the details of a new kind of update-aware bitmap which is well-suited to

handle aggregated updates, and showed that it outperforms the existing state-of-the

art indexing strategy.
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CHAPTER 5
CONCLUSION

In this thesis, we have investigated the power and performance tradeoffs of

three different workloads along dimensions that are relevant to fast power shaping

with datacenter loads. Chapters 2 to 4 each present example software applications

representing datacenter workloads with progressively more specific QoS requirements.

One aspect which the preceding chapters do not cover in detail (though, it was men-

tioned briefly in Chapter 2) is the question of systematic realtime controller design.

We conclude this thesis with a few thoughts and preliminary results on the control

aspects of power shaping.

5.1 Ideas on a Controller

Contrasting to relevant control literature such as [85], which employs a com-

plex model predictive control to the problem of datacenter power shaping, our own

experience with the wide variability of server power behavior across different work-

loads makes us curious whether it is possible and in fact advisable to avoid making

many assumptions on the power model used to for server power control.

In particular, given that the relationship between the power f and CPU time

x is unknown (except that it is increasing), and also given feedback on the workload

progress y that a server is making, we are interested to know about how well the

simple feedback controller described by Eq. (5.1) can allocate available power (in the

sense of job completion time), with α being adjusted by an external integral controller
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Figure 5.1: Differentiated Workload with Equal Power Assignment

to ensure zero steady-state error.

xi = yiα (5.1)

5.1.1 Preliminary Experimental Results

The situation of interest is one like that experienced in many cluster computing

environments, where the tasks assigned to individual servers can proceed in parallel

until they finish – at which point they must wait until the slowest server completes

before moving to the next stage of computation. As such, we designed a simple

experiment to see if such a control strategy we could achieve better performance than

equal CPU allocation (as we used in our simple controller of Chapter 1).

We achieved an unequal loading among our four servers by repeatedly run-

ning range queries that targeted some nodes more than others. Given that many

partitioning schemes intentionally place similar data on the same node, there is a

strong possibility of unequal loading among servers – at least on short time scales.
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Figure 5.2: Differentiated Workload with Power Allocated Propor-
tionally to Expected Completion Time

Because the workload we ran consisted of many short stages (each finishing in less

than a second), the notion of “progress” had to be emulated by taking the inverse of

non-idle time spent on each server. In both cases, the power setpoint was 203W. The

basline approach using equal CPU allocation among all servers is shown in Fig. 5.1,

and completes around 58 seconds. When we set the CPU allocation in proportion

to each server’s expected completion time once at the very beginning of the job, we

did indeed achieve a shorter total completion time, around 50 seconds – even without

using feedback.

5.1.2 Inspiration from an Optimization Problem

While thinking about the applicability of this particular feedback strategy, it

is interesting to note that it is the solution of the following fairly general optimization

problem.

In Eq. (5.2), fi(xi) represents the power that server i uses, given xi percent
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CPU utilization.

fi(x) =


gi(x) 0 ≤ x ≤ 1

gi(1) x > 1

where

gi(x) is strictly increasing and continuous

(5.2)

Each job is divided into several independent subtasks, one sent to each server.

All subtasks must complete in order for the job to finish.

If wi is the amount of work remaining on server i, and that server is working

at xi percent of its maximum speed si, then the estimated time remaining is wi

sixi
.

Defining constants yi = wi

si
, the estimated time of completion of the job is maxi

yi
xi

.

The goal is to minimize this estimated completion time, under a cluster power

setpoint constraint P (assuming that constraint is feasible in the sense that
∑

i fi(0) ≤

P and
∑

i fi(1) ≥ P ). The problem is specified in Eq. (5.3).

J = min
x1,x2,...,xn

max
i

yi
xi

subject to∑
i

fi(xi) = P

assuming∑
i

fi(0) ≤ P ≤
∑
i

fi(1)

(5.3)
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We hypothesize that the optimal value is given in Eq. (5.4).

J∗ =
1

α

with α such that∑
i

fi(αyi) = P

(5.4)

The proof takes two parts. First, we show that there exists exactly one α

such that
∑

i fi(αyi) = P . Next, we show that the solution xi = αyi is at least as

good as the optimal choice of xi = x∗i within the power setpoint constraint space∑
i fi(xi) = P .

Existence of Equality Constraint Solution

Show that there exists exactly one α such that
∑

i fi(αyi) = P .

Let hi(α) = fi(αyi) and let i∗ = argminiyi, with h∗ = hi∗(α) and y∗ = yi∗ . By

definition (5.2), h∗(α) is strictly increasing (SI) for 0 ≤ α ≤ 1
y∗

and also by definition,

all other hi(α)’s are nondecreasing in that range. The sum of an SI function with a

nondecreasing function is SI, so F (α) =
∑

i hi(α) is SI in the range 0 ≤ α ≤ 1
y∗

.

By definition, F ( 1
y∗

) =
∑

i fi(
yi
y∗

). Furthermore, by definition of y∗ as the

minimum yi, we have y∗ ≤ yi ∀i. This directly implies that yi
y∗
≥ 1, and because

fi(x) = fi(1) for x > 1, also means that f(yiy
∗) = fi(1).

So, F ( 1
y∗

) =
∑

i fi(1). Since F (0) =
∑

i fi(0), and F (α) SI and continuous for

0 ≤ α < 1
y∗

, there must exist exactly one α ∈ [0, 1
y∗

] such that F (α) = P for any∑
i fi(0) ≤ P ≤

∑
i fi(1).
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Minimization under Constraint

With α such that
∑

i fi(αyi) = P , choosing xi = αyi gives maxi
yi
αyi

= 1
α

.

Assume there exists some optimal choice of xi = x∗i 6= αyi with
∑

i fi(x
∗
i ) = P that

gives a better completion time maxi
yi
x∗i

= 1
β
< 1

α
.

Since 1
β

is the maximum, 1
β
≥ yi

x∗i
∀i. Further, since 1

α
> 1

β
, we have 1

α
>

yi
x∗i

=⇒ x∗i ≥ αyi. Since fi(xi) is strictly increasing in the range 0 ≤ xi ≤ 1, then

fi(x
∗
i ) > fi(αyi) =⇒

∑
i fi(x

∗
i ) >

∑
i fi(αyi). Since we have already shown that

there must be some α such that
∑

i fi(αyi) = P , then
∑

i fi(x
∗
i ) > P , which is a

contradiction of x∗i being in the power setpoint constraint space.

5.2 Summary of Thesis Contributions

In Chapter 1, we motivated the problem of demand response by discussing how

datacenters’ large, quickly-changing electric loads can be adapted to power shaping.

Not all software workloads within datacenters are well-suited for demand response,

and we discussed the software features that make strong candidates for load shap-

ing. One workload that has ubiquitous application in today’s datacenters is video

transcoding. As discussed in Chapter 2, its heavy CPU use and inherent QoS flex-

ibility make video transcoding and workloads with similar properties “low-hanging

fruit” to add value to datacenters by participating in demand response. As a way

to emphasize this point, we presented a very simple power shaping controller that

achieved industry-grade power tracking while performing best-effort transcoding. In

Chapters 3 and 4, we discussed the power and performance tradeoffs of differnet big
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data query optimizations using bitmap indices – beginning with read-only queries,

and finishing with an investigation of queries in a dynamic data environment. Our

findings showed that there are several important latency-sensitive “big data” appli-

cations which can participate in load shaping without compromising QoS, with an

appropriate choice of query implementation.
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