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ABSTRACT 

 
 

In order to leverage advances made in body-armor materials, as well as to further the design 

landscape, considering body armor as a complete human-centric system is becoming more 

prevalent.  This trend necessitates a greater focus on human systems integration (HSI) and 

human-centric design.  Digital human models (DHMs) provide a powerful tool for HSI, 

but modeling-and-simulation tools, let alone DHMs, have rarely been used with body 

armor.  With respect to analysis, this is changing.  New methods for evaluating body armor 

from a biomechanical perspective have been developed within the SantosTM DHM.  It is 

now possible to import digital models of body-armor systems, place them on an avatar, 

simulate various tasks (i.e., running, aiming, etc.), and then virtually evaluate the armor’s 

effect on performance, balance, mobility, bulk, etc.  However, with respect to design, there 

are no available simulation tools to help users balance the goals of maximizing mobility 

and survivability concurrently. 

 
In response to these growing needs, there are two new areas of work being proposed and 

discussed. First, this work leverages a series of new virtual evaluation capabilities for 

Personal Protective Equipment (PPE) and implements a filter that automatically evaluates 

and selects from a library of designs the most advantageous PPE system based on user-

selected objectives and constraints. Initial tests have shown realistic results with minimal 

computational demand. 
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Secondly, this thesis proposes a new method for armor-system topology optimization that 

optimizes not only biomechanical metrics but also external (to the DHM system) metrics 

from potentially complex injury and protection models.  The design variables for this 

optimization problem represent the position on the body of small body-armor elements.  

In addition, the existence of each element is modeled as a variable, such that unnecessary 

elements are determined and removed automatically. This inclusion of location in 

combination with the traditional existence variable is a novel inclusion to the topology 

optimization method. Constraints require that no two elements overlap.  The objective 

functions that govern where the armor elements are moved must be general enough to 

function with any external data, such as survivability.  Thus, a novel process has been 

developed for importing external data points (i.e., stress at points in the body resulting 

from a blast simulation) and using regression analysis to represent these points 

analytically.  Then, by using sequential quadratic programming for gradient-based 

optimization, the armor elements are automatically positioned in order to optimize the 

objective function (i.e., minimize potential injury).  This new approach allows any metric 

to be used in order to determine general body-armor concepts upstream in the design 

process.  This system has the potential to become especially useful when trying to 

optimize multiple objectives simultaneously, the results of which are not necessarily 

intuitive.  Thus, given a specified amount of material, one can determine where to place it 

in order to, for example, maximize mobility, maximize survivability, and maximize 

balance during a series of specified mission-critical tasks.  The intent is not necessarily to 

provide a final design with one “click”; accurately considering all aspects of hard and soft 
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armor is beyond the scope of this work.  However, these methods work towards 

providing a design aid to help steer system concepts. 

 

Test cases have been successfully run to maximize coverage of specific external data for 

internal organs (and thus survivability) and mobility, while minimizing weight. The 

weight metric has also been successfully used as a constraint in the optimal armor design.   

In summary, this work provides 1) initial steps towards an automated design tool for 

body armor, 2) a means for integrating different analysis models, and 3) a unique 

example of human-in-the-loop analysis and optimization. 
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PUBLIC ABSTRACT 

 

In order to leverage advances made in body-armor materials, as well as to further the design 

landscape, considering body armor as a complete human-centric system is becoming more 

prevalent. This trend necessitates a greater focus on human systems integration (HSI) and 

human-centric design.  Digital human models (DHMs) provide a powerful tool for HSI, 

but these modeling-and-simulation tools, have rarely been used with body armor. 

Currently, with respect to design, there are no available simulation tools to help users 

balance the goals of maximizing mobility and survivability concurrently. 

In response to these growing needs, two approaches are discussed. First, this work 

leverages a series of new virtual evaluation capabilities for Personal Protective 

Equipment (PPE) and implements a filter that automatically evaluates and selects from a 

library of designs, the most advantageous PPE system based on user-selected objectives 

and constraints.  

Secondly, this thesis proposes a new method for armor-system design optimization that 

optimizes not only biomechanical metrics but also external (to the DHM system) metrics 

from potentially complex injury and protection models. This new approach allows any 

metric to be used in order to determine general body-armor concepts upstream in the 

design process.  This system has the potential to become especially useful when trying to 

optimize multiple objectives simultaneously, the results of which are not necessarily 

intuitive.  Thus, given a specified amount of material, one can determine where to place it 

in order to, for example, maximize mobility, maximize survivability, and maximize 

balance during a series of specified mission-critical tasks.  
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INTRODUCTION 

1.1	Problem	Statement	

 

There are essentially two major problems that will be addressed in this thesis.  

The first problem is deciding which armor system is optimal for a specific warfighter and 

set of tasks, based on user-defined metrics. This will be done by running a series of 

calculations, normalizing metrics, and supplying the user with the optimal armor system 

as well as the rating of the system.  The second problem to be addressed is the design of 

an optimal armor system, based off any number of external data sources. This problem 

will be formulated by automatically determining the location and existence of small 

armor components on an avatar. There are two major difficulties to overcome in order to 

perform optimal armor system design. The first problem lies in forming a smooth, 

continuous objective function that is bounded along the surface of Santos.  The second 

problem is to transform the available metrics within Santos in order to provide the basis 

for the objective function. 

 

Personal protective equipment (PPE) is a critical component for Warfighter survivability 

and performance, and designing a suitable PPE system is a complex and time-consuming 

task with multiple design variables and constraints. To date most effort with PPE design 



 

 

 

2

has centered on materials development in response to necessary blast and ballistics 

requirements. Recently, however, the design focus has shifted towards the complete 

body-armor system, not just the material(s) of a single plate or component. Improvement 

in survivability, stemming from incremental changes in material properties, can be 

minimal, and increased mobility can often be more advantageous than slightly stronger or 

lighter materials. Consequently, the field of human factors is starting to play an 

increasingly important role. Accordingly, digital human modeling (DHM) offers 

significant opportunities for improved body-armor system design with potential reduction 

in developmental cost and timing.  This thesis provides a method to take advantage of 

DHM capabilities in order to design measurably improved armor systems, as well as to 

select the optimal armor system for the right task and warfighter. The armor systems 

designs are improved by calculating values for metrics considered important for optimal 

design, such as weight, coverage, mobility, etc.  Design of the armor systems will be 

performed by using continuous optimization by determining the location and existence of 

armor components on an avatar.  There are several challenges, such as:  

 

1. Defining design objectives 

2. Formulating a continuous optimization problem 

3. Creating a system that allows for any new information to be processed and used 

as an objective function 
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These difficulties arise from the lack of easily bounded, continuous, and smooth variables 

to use to determine the location of the armor components on the avatar. Therefore, a 

transformation of variables is used in order to overcome this problem. This approach 

provides a method for systematically improving armor system design in a field that 

currently lacks any such tools. 

 

Another problem is the lack of currently available design and evaluation tools for PPE. 

Often, the design of PPE can be task specific. For instance, there are situations in which 

the armor must be as lightweight as possible, thus sacrificing coverage. Other scenarios 

require increased coverage, which may lead to reduced range of motion.  Previously, 

these design decisions were handled by experimental trial and error.  By leveraging the 

modeling and simulation capabilities of DHM software, however, one would be able to 

run a great number of tasks, modify and test new designs, and mathematically measure 

the effects of the design with regards to human factors. Thus, new capabilities have been 

developed for virtually importing body armor and parenting it to the Santos DHM. Santos 

can then execute a variety of tasks like reaching, aiming, walking, etc.  By leveraging the 

capabilities within the DHM software, new information regarding the effects of the armor 

system with respect to human factors can be made available and therefore be used to 

improve the selection and design of armor systems. 

 

While there are tools that exist to evaluate armor within the Santos DHM that is used, 

these tools required methods be developed to leverage their capabilities for design and 

optimal selection. Concurrently, the virtual armor is automatically tested with respect to 
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weight, coverage, bulk, geometric encumbrance, range of motion, joint torque, balance, 

and performance. This allows one to compare various PPE systems from a human-factors 

perspective.  This method of optimal design has not been attempted with regards to armor 

systems. This new capability of quantifying the armor systems effects allows for the 

methods laid out in this thesis, which include 1) the down-selection of the optimal armor 

system based on user-defined criteria and tasks, and 2) the ability to optimally design 

new armor systems based on user-defined metrics or third-party data.  Both of these 

processes have previously been performed manually and without thorough and 

measurable scientific merit.  While it is true that some problems, such as finding the 

maximum amount of weight on a warfighter, can be done fairly quickly and intuitively 

with manual testing, this is simply not the case for more complicated and, in reality, 

meaningful design considerations. For example, armor coverage does not necessarily 

equate to survivability, as some areas are much more important to vitality.  Mobility is 

also a serious concern, as it’s not only important to ensure that the warfighter is capable 

of completing both routine and emergency tasks, but also to consider the effects of long-

term use.  Specifically, the biomechanical effect and propensity of injury due to the loads 

that the warfighter carries are of specific concern (Knapik, Reynolds, & Harman, 2004).  

If one were trying to design an armor system that allowed for maximum mobility and 

survivability, specifically including multiple sets of statistical survivability data while 

trying to minimize the weight of the armor system, the problem becomes too difficult to 

be done quickly and correctly by trial and error.  It is for these complex systems that 

DHM and armor system design optimization is being proposed.  
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Currently, there is no quantifiably correct method for selecting an optimal armor system 

for a given warfighter and task. This thesis proposes leveraging these new evaluation 

capabilities and implementing an optimization-based filter that automatically and 

virtually evaluates and selects the most advantageous PPE system. First, a library of 

employable, applicable armor systems is compiled. The user then indicates which metrics 

are used as objectives (i.e., minimize weight) and which metrics are used as constraints 

(i.e., ensure that weight is no more than twenty pounds). Then, the user sets up a task or 

set of tasks during which the armor is evaluated. Finally, the optimization filer 

automatically selects the system that optimizes the specified objectives while satisfying 

the specified constraints. As new and successful armor systems are found, they can then 

be added to the library filtering system, which can provide optimal designs more quickly. 

Initial tests have shown realistic results with minimal computational demands. 

 

Secondly, work involves approaching the problem of armor design from a dynamic 

optimization standpoint by actually creating new armor systems on the fly. Using metrics 

made available within the Santos software, armor components are automatically created 

or deleted and moved over Santos’s surface. Eventually, higher-fidelity injury models 

pertaining to damage of internal organs will be used to provide additional objective 

functions and constraints. The proposed capabilities can be used not just with body 

armor, but with other types of equipment as well, and thus pave the way for automatic 

human-centric optimal design. 

 

  As a very brief overview of how the problem was approached, the system must: 
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1) Make use of any internal or third-party data in order to formulate the objective 

function 

2) Determine the set of design variables that includes the number of armor pieces 

as well as the location for each armor piece, verifying that all design variables 

abide by any constraints 

3) Determine the associated objective function value for each armor piece. The 

value is determined by the objective function, which is formulated based on 

the metric or metrics being considered 

4) Repeat the process until an optimal solution is found, and place armor 

components in determined positions based on the objective functions design 

variables 

1.2	Literature	Review	

 

The general concept of body armor design and continuous design optimization has been 

studied before.  There are also areas of research that can be noted for their similarities 

and therefore be learned from and possibly applied to the problem at hand.  This section 

includes an overview into the state of the art of armor design as well as human systems 

integration, specifically noting the gap between the two that this thesis attempts to 

address. There is also discussion on multi-level optimization, facility location problems, 

and topology optimization.  These three topics have attributes similar to the optimal 
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armor system design problem and were therefore researched in order to determine if any 

techniques could be applied.  There is also a section discussing collision detection, which 

needed to be researched in order to understand different possible methods of preventing 

overlap between armor components in the system.   

 

The specific application of armor system design under consideration here has been 

severely under-researched.  While there has been a great deal of study of the materials 

used to develop the armor systems, there has been very little actual research into the 

proper placement when considering human factors.  By performing the proper studies and 

thoroughly looking into the effects of armor size and placement on the body, it may be 

possible to provide a more complete, comfortable, and protective armor system without 

restricting the user. 

 

 Armor Design 

 

The bulk of armor design research has been done on the subject of material design.  

These studies look into the attributes of the material, including weight, flexibility, and 

durability, as well as how it performs under impact.  There is a myriad of these materials 

and studies, as well as studies the focus on the correct performance metrics in order to 

properly evaluate the materials (Kaliraj, Narayanasamy, Rajkumar, Mohaideen, & 

Manickam, 2014), (Mahbub, Wang, & Arnold, 2014), (Valença, Griza, Oliveira, 
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Sussuchi, & Cunha, 2014), (Lou, Hsing, Hsieh, & Lin, 2013), (Li, Wang, Lou, & Lin, 

2013).  These material metrics focus on a range of topics, including life cycle, ballistic 

testing, damage tolerance, repair, through-thickness reinforcement, energy dissipation, 

and rate-dependent failure mechanisms, to name a few (Gama, et al., 2001).  There are 

studies that seek to use these and/or other similar metrics in order to develop new 

materials that can be used in place of previous materials as body armor.  Developing a 

lightweight ceramic-metal based armor is based on the pioneering work of Wilkins et al. 

(Wilkins, Cline, & Honodel, Fourth Progress Report Of Light Armour Programs, 1969), 

who also later studied the penetration mechanism of such armor (Wilkins, Cline, & 

Honodel, Mechanics Of Penetration and Perforation, 1978) (Wilkins, Cline, & Honodel, 

Computer Simulation of Penetration Phenomeon, 1980).  Evaluation of  PPE with regards 

to human factors and ergonomics is a subject less studied, but some work has been done 

(Hennessy & Zielinski, 2006), and a good deal of this work focuses on soft armor 

evaluation (Goldfarb, Ciurej, Weinstein, & Metker, 1975), (Gu, 2006), (Metker, Prather, 

Coon, Swann, & Hopkins, 1978). 

 

In the realm of PPE, there is substantial room for growth in terms of the methods used for 

simulating, evaluating, and selecting armor systems. Studies have shown that the load 

that warfighters are required to carry can leave them with long-term injury (Knapik, 

Reynolds, & Harman, 2004). With this in mind, it becomes clear that every piece of 

equipment that the warfighter is required to wear should be designed optimally in order to 

be as effective and useful as possible. 
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With respect to modeling and simulation of body armor, there has been little, if any, work 

conducted in the context of a complete human model. There have been some 

experimental studies of the biomechanical and physiological effects of body armor with 

respect to additional loads during tasks like walking and aiming (Harman, Frykman, 

Pandorf, Tharion, & Mello, 1999), (Hasselquist, Bensel, Corner, Gregorczyk, & 

Schiffman, 2008). Other than these efforts, although there has been extensive work 

involving ballistic and blast analysis of body armor directly, there is little work that 

accounts for the interaction between body armor and human performance, especially with 

regard to computational models. Work has also been done to provide the first automated 

system for evaluating PPE from an HSI perspective, and this work leverages the 

underlying platform (Mathai, et al., 2010) (Marler, Mathai, Johnson, & Taylor, 2012). 

 

 Human Systems Integration 

 

One of the important aspects of this work is that the optimization of the armor systems is 

done with a focus on the human element.  Problems that focus specifically on human 

interaction are often in the category of Human Systems Integration (HSI). The objectives 

of HSI are to have a positive and significant effect on the relationship between the 

production and operations of systems and equipment and human interaction (Booher, 

2003). This category of problems tends to focus primarily on how humans perform tasks 

and the optimal way to design the surrounding system in order to allow humans to 
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perform the task both comfortably and efficiently.  A typical area of study is that of 

ingress/egress from vehicles (Chateauroux & Xuguang, 2010), (Gwynne & Kuligowski, 

2010) . Here the digital human model (DHM) is used to simulate human motion in order 

to design a vehicle in such a way that it is easiest to enter and exit. This is the standard 

use of the HSI, and its study of how a human interacts with a static, or discrete, number 

of systems or environments. The novelty in the methods and approaches laid out in this 

thesis is found in the fact that the DHM is used to automatically optimize the system 

around it. 

 

An analog can be drawn to the problem of designing the optimal armor system. However, 

there is a subtle difference in how one must think of the interaction between the system 

and the human.  In the armor system design, it is not a direct human-to-system 

interaction, but rather an interaction caused as a byproduct of the human motion while an 

armor system is being worn.  A similar problem is introduced in HSI with regards to 

clothing worn in hazardous environments (Adams, Slocum, & Keyserling, 1994), 

(Murray, Simon, & Sheng, 2011), (Li, et al., 2013). While these studies are important and 

informative, they differ from the armor system design problem in both their uses and 

complexity.  In the armor system design problem, there are different variables, such as 

armor component size, location, and existence, as well as more metrics, such as 

penetration, survivability, coverage, etc. 
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 Multi-Level Optimization 

 

In the armor design optimization problem at hand, a number of different divisions will be 

investigated in order to find the optimal set of sub-divisions for the problem. When this 

problem was first being formulated, it was unclear whether these sub-divisions would be 

made per joint, per area of the body, or per armor piece.  It was also considered that 

different objective function metric (i.e., survivability, mobility, etc.) be evaluated 

separately and returned to an upper level that manages each sub-objective function in 

order to find an overall optimal solution.  The topic that discusses these types of 

approaches is known as multi-level optimization. There is no literature that uses this 

approach with regards to designing optimal human systems integration. 

 

Multi-level optimization is an approach that allows for a system of optimization sub-

problems that are solved independently in order to optimize a higher-level problem.  

Using decomposition techniques, the problem is separated hierarchically into two levels. 

The goal of the second level is to coordinate the actions of the first-level sub-problems.  

The first level works as an optimization level, using an algorithm to solve the sub-

problems, each of which, when solved independently provide an overall optimum to the 

original problem. There are many different interconnection forms of the subsystems, but 

the hierarchical form is the most common.  In essence, one can look at multi-level 

optimization as a systematic approach to a technique of solving problems known as 

“divide and conquer.”  Multi-level optimization works under the assumption that, by 
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finding the local minimum to a set of smaller, easy-to-solve sub-problems, we will tend 

towards the overall globally minimal and therefore optimal solution. 

Multi-level optimization using decomposition is a method that is applicable in many 

different fields and cases, but is especially prevalent in the process of network 

optimization.  Layered architectures form one of the most fundamental structures of 

network design. In network design, each layer controls a subset of decision variables and 

observes a subset of constant parameters and variables from the other layers.  The layers 

work to support each other by hiding the complexity of the layer below it, in order to 

provide a service to the layer above. 

 

In most optimization problems, there is often more than one way to divide and conquer.  

It is also safe to assume that some layering structures are more efficient than others. 

Examining the different possible choices of modularized design leads to the study of 

“how to” and “how not to” structure the layers of the optimization problem.  Although 

the general principle of layering is widely recognized as an extremely effective and 

efficient method in certain types of optimization problems, there is little quantitative 

understanding to guide a systematic, rather than ad hoc, process of designing the layers.  

A large portion of the focus in the area pertains specifically to applying proper layering in 

computer network architectures.  A short list of  more formal approaches can be found to 

address this issue in papers such as Layering as Optimization Decomposition: A 

Mathematical Theory of Network Architectures (Chang, Low, Calderbank, & Doyle, 

2007), On Two Level Optimization (Bialas & Karwan, 1982), as well as books such as 
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Multilevel Optimization: Algorithms and Applications (Migdalas, Pardalos, & Värbrand, 

1998).   

 

 Facility Location Problems 

 

On a basic level, the armor placement optimization problem is analogous to the set of 

problems known as facility location optimization problems.  These problems have been 

covered by a wide range of literature (Drezner, Klamroth, Schobe, & Wesolowsky, 2002) 

(Francis, Jr., & White, 1991) (Chan, 2011).  The general facility location problem is 

concerned with the determination of the optimal number, size, and geographic 

configuration of facilities, in a manner that continuously optimizes a certain set of criteria 

(Moujahed, Simonin, & Koukam, 2009).  The difference between the typical facility 

location problem and the optimal armor system design problem is that instead of 

changing the number, size, and geographic configuration of, say, a fire station in order to 

maximize the number of homes that it could reach in a minimum amount of time, similar 

techniques are being applied to pieces of armor to protect the maximum amount of vital 

area while minimizing the effect on range of motion, balance, weight, etc. The facility 

location problem has evolved to consider multiple criteria, which is especially important 

if it is to be used in this process. An extensive list of methods and applications of multi-

criteria facility location problem approaches and uses can be found in the literature 

(Farahani, Steadieselfi, & Asgari, 2010). 
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Specifically, the armor system optimal design problem can be thought of as a dynamic 

location-relocation problem, which is described in detail in the literature (Reza, Abedian, 

& Sharahi, 2009). This location-relocation can be summarized by saying that the decision 

maker selects a primary location, followed by relocation and development times and new 

facility location after relocation. For our purposes, the development times have no effect.  

The uniqueness here is that instead of having a “decision maker,” we use an optimization 

process to determine a new location for each armor component (or “facility”) on each 

iteration.  Applying the topic of facility location problems is a novel approach to design 

with regard to human factors, and especially to a wearable human system. 

 

 Topology Optimization 

 

Topology optimization is a form of optimization that focuses on material distribution 

(Bendsoe & Sigmund, 2003).  It is often used in structural problems to optimize the 

layout of material within a given design space for a given set of loads and boundary 

conditions. Topology optimization is typically used as a high-level approach for arriving 

at a conceptual design proposal, which is then improved by human designers.  This is 

very similar to what will need to be done for the system armor design optimization.  In a 

sense, the armor system design problem could be approached as a topology optimization 

problem. This would be done by using topology optimization techniques to decide the 
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existence of armor pieces, trying to maximize the objective function while remaining 

within any bounds of the problem.  This approach was eventually modified due to the 

problem of checkerboarding.  Checkerboarding is a common problem with topology 

optimization (Sigmund & Petersson, 1998) (Zhou, Shyy, & Thomas, 2001) (Bendsoe & 

Sigmund, 2003) in which the optimization process removes material in order to satisfy 

constraints, but this often results in enough gaps so that the end solution becomes 

unusable and unrealistic.  These results are currently accepted; however, a designer is 

often required after the fact to correct the unrealistic aspects of the design.  

 

1.3	Motivation		

 

Given the current state of the art, there is a distinct need for human modeling-and-

simulation capabilities that bridge the gap between ballistic armor models and the 

Warfighters who use them. Armor must be analyzed, designed, and selected not just with 

consideration of ballistic capabilities, but also with consideration of usability and human 

interaction. Recent tools have been developed within the Santos DHM software (Mathai, 

et al., 2010) that allow for assessment of armor tools, and it is by leveraging these tools 

that this thesis proposes a way to select an optimal armor system for a specific task, and 

furthermore to be able to design new armor systems based on quantifiable armor system 

metrics. While it would be possible to design armor systems within the Santos software 

manually, the work in this thesis allows for automation of the design. These improved 
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designs could allow for major improvements in design time, usability, and performance 

from the Warfighters who use them. 

 

There has been work in the area of noting the exact effect that armor systems can have on 

the Warfighters (Hasselquist, Bensel, Corner, Gregorczyk, & Schiffman, 2008). Studies 

like this acknowledge the effects that body armor has on the physiology, biomechanics, 

and performance of the body. There exists a gap, however, as to how to address the armor 

systems’ shortcomings, as well as how to compare between different armor systems.   

 

1.4	Hypotheses	

 

The primary focus of this work can be broken down into three main hypotheses. This 

work proposes that, by leveraging Santos’s already existing armor evaluation tools, it is 

possible 1) for existing armor systems to be selected based on performance during task 

simulation, and 2) for new armor systems to be automatically and optimally designed 

based on user-specified criteria and third-party objectives.  If the second hypothesis holds 

true, then 3) predictive DHM capabilities and product performance can be integrated and 

embedded within an overarching optimization process. 

 

With regards to the first hypothesis, relating to the method of down-selecting an armor 

systems based on performance during task selection, the evaluation of the method 
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validity is straightforward.  In order to accurately test this method, it is a primary concern 

to have a large number of both armor systems and tasks.  The number of armor systems is 

important to ensure that there is a wide variety of options for the method to select, and the 

number of tasks is important to provide a number of different scenarios for which those 

armor systems are selected.  Once both of these components are made readily available, 

the testing can be performed extensively by modifying any number of the performance 

metrics, as well as combining any number of tasks together. 

 

The second hypothesis is slightly less able to be objectively validated. Not only does the 

method need to design an armor system, but the design needs to be optimal based on the 

criteria provided to formulate the objective function.  Once it becomes possible to 

determine the existence and location of any number of armor components, it is possible 

to design what could be defined as an “armor system.”  However, this result is only 

useful if the solution can be mathematically defined as optimal based on the criteria that 

it was supplied to meet. That is, a problem in which the system is intended to maximize 

coverage and minimize weight is considered sufficient and optimal if no other solution 

can be provided without lowering the value of objective function.  In order to test this 

hypothesis, one must first develop an optimization method for determining the location 

and/or existence of armor pieces. By modifying certain design variables, it becomes 

possible to move these armor pieces in order to maximize or minimize certain user-

defined values, such as coverage, weight, range of motion, etc. Once the system for 

moving the armor components is in place, the next step is to determine a method to 

import, interpret, and make use of any third-party information.  This information needs to 
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be easy for a user to incorporate in the optimization process, as well as meaningful, in 

order to provide relevant results.  While this general process is considered the realm of 

human systems integration, and is not new, the novelty of the application is.  The 

approach also contains novelty in its use of a modified version of topology optimization, 

which includes location along with existence in order to prevent the checkerboard 

problem. 

 

The third hypothesis states that predictive DHM capabilities and product performance 

can be integrated and embedded within an overarching optimization process.  The 

proposed method leverages the existing DHM capabilities of Santos as a possible driver 

for the generation of performance data to be used in the optimization’s objective function.  

In order to verify that this is possible, data from Santos must be used as input for either 

the constraint or the objective function. The resulting output must modify the armor 

system and affect the performance metrics in Santos.  This continual optimization loop, 

combined with third-party metrics, would allow for an overarching design optimization 

process.  This process would only currently be able to be used through the armor system 

optimization filter, although it could be extended to the armor system optimal design in 

the future. 
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1.5	Goals	

 

The primary goals for this work are as follows: 

 

To create an Armor System Optimization Filter to automatically select the optimal armor 

system for a given warfighter and task based on user-defined criteria of the importance of 

a set of metrics as well as design constraints: 

1) Implement a method of down-selection that allows for control over all the 

available metrics 

2) Down-selection should be able to take any number of armor systems, tasks, or 

combination of metrics 

 

To create an Armor System Design Optimization that will implement third-party data in 

order to optimize the location and existence of a number of armor components: 

3) Implement a technique that will allow for the location of an armor component 

to be placed exclusively on the surface of the Santos avatar 

4) Implement a method to constrain the armor components from overlapping 

each other 

5) Implement a method to allow third-party data sets to be used as objective 

functions in order to determine the location and existence of the armor 

components 
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6) Allow for constraints, such as total weight of an armor system, to be placed on 

the objective function. These constraints determine the existence of armor. 

7) Allow for multiple metrics to be combined in order to make a single objective 

function. 

 

1.6	Overview	

 

Chapter 2 focuses on Santos, the underlying work that provides the digital human model 

that is used to calculate armor system design metrics. Specifically, it lays the foundation 

of how Santos’s joints are calculated, motion is predicted, and different performance 

metrics are determined. The driving force behind the down-selection process is the 

performance metrics that exist within Santos, and they are explained in detail within the 

chapter. 

 

Chapter 3 details the concept, approach, and results of the armor optimization filter. This 

is a tool that is used to select the correct armor configuration under specific 

circumstances. The user defines a set of criteria as well as any number of tasks, and the 

armor optimization filter will correctly down-select, through all available armor sets, the 

system that maximizes or minimizes all metrics.   
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Chapter 4 focuses on the system design optimization.  This is the process of determining 

the location and existence of armor components in order to maximize/minimize user-

defined metrics.  Following the introduction is an in-depth review of the approach.  This 

section contains detailed information for the design variables, constraints, and objective 

functions.  The chapter concludes with a section detailing the test cases as well as the 

results.  

 

The final chapter includes a summary, discussion, and future work.  
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BACKGROUND 

2.1	Introduction	

 

In order to understand some of the processes and methods used later in this work, 

it is important to be introduced to some fundamental background information.  The 

majority of this work focuses on leveraging the already existing DHM software Santos.  

These capabilities provide the ability to accurately model human motion, as well as 

human interaction. Because the goal of this thesis is to focus on the human interaction 

aspect of armor design and use, these tools are critical.  The following chapter provides 

an overview of the capabilities that are used in Santos, as well as a basic understanding of 

how they are performed. 

 

2.2	Santos	

 Overview 

 

In order to understand how motion is simulated in Santos, which is used for the filter, and 

therefore how a portion of the armor metrics is calculated, it is important to understand 

the capabilities and foundation of Santos. This section lays out how the avatar is 
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structured and how posture is predicted, which allows for motion simulation (Mathai, et 

al., 2010).  

 

The ways in which human posture and motion are simulated depend on how the skeleton 

and joints are modeled.  The Santos avatar treats the skeleton as a series of links, where 

each pair of links contains at least one revolving joint.  Expanding this method allows for 

modeling the entire human body as a series of several kinematic chains, as shown  

in Figure 1. The variable  is a joint angle and represents the rotation of a single revolute 

joint. There is one joint angle for each degree of freedom (DOF). The variable 

 is the vector of joint angles in an n-DOF model and represents a 

specific posture. The variable  is the position vector in Cartesian space that 

describes the location of an end-effector with respect to the global coordinate system. For 

a given set of joint angles,  is determined using the DH method (Denavit & 

Hartenberg, 1955). With this work, a 55-DOF model for the human torso, arms, legs, and 

neck, as well as six global DOFs, three for translation of the hip point and three for 

rotation about the hip point, is created. 
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Figure 1: The underlying Santos digital human model 

 

A fundamental element in the proposed motion simulation method is optimization-based 

posture prediction, as detailed in the literature (Marler et al. 2009). Given the human 

model described above, the design variables for the posture-prediction problem are , 

measured in units of radians. In this case, the objective function is proportional to the 

deviation from the avatar’s initial position . Because some joints articulate more readily 

than others, a weight  is introduced to stress the relative stiffness of a joint. The first 

constraint, called the distance constraint, requires the end-effector to contact a target 

point. In addition, each joint angle is constrained to lie within predetermined limits. The 

variable  represents the upper limit, and  represents the lower limit. The optimum 

posture for the system is then determined by solving the following problem: 
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Find:            

to minimize:        

subject to:  

 

Equation 1: Posture optimization formulation in Santos 

 

With  being a small positive number that approximates zero. The equation above is 

solved using the optimization software SNOPT, discussed in Section 2.3. 

 

 Armor Performance Evaluation 

 

Leveraging the posture prediction methods detailed in Section 2.2.1, motion can be 

simulated by defining tasks for the avatar (Mathai, et al., 2010). Given the simulation of a 

task using motion simulation, the performance of body armor systems is evaluated from 

an HSI perspective using a series of metrics described in this section. These metrics then 

provide the constraints and objective functions for the system optimization filter 

discussed in Chapter 3 and are laid out in detail in the literature (Mathai, et al., 2010).  

With the approach that is used for the armor system design optimization, it would be 

possible to use these metrics if a point cloud were created from their information; 

however, this would be future work. 

DOFRq

   2
1

n
I

Effort i i i
i

f w q q


 q

 end-effector target pointDistance   x q x

;  1, 2, ,L U
i i iq q q i DOF   





 

 

 

26

 

Coverage measures the percentage of the body that is covered by the armor. This metric 

is estimated by calculating the area of the polygons on the avatar’s skin that are covered 

by armor models. In the Santos environment, all three-dimensional models are made up 

of a mesh of triangular elements, so the coverage area can be determined by calculating 

the triangle area on Santos’s body mesh that is overlapped by armor. 

 

The balance metric is a measure of how stable the avatar is while performing the 

provided task. The stability parameter essentially compares the position of the zero 

moment point (ZMP) (Marler et al., 2011) to the center of the foot support region 

(polygon formed by connecting the heels and toes of the feet as seen in Figure 2). The 

center of the foot support region is assumed to be the most stable balance point. The ZMP 

is affected by the weight of armor as well as the task being performed. 

 

 

Figure 2: Diagram indicating the location of ZMP and foot support region 
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The weight of the armor is simply calculated by estimating the volume of each armor 

piece and considering user-defined density. The software is also capable of estimating the 

average density of the armor if the user provides the weight. 

 

The restriction metric essentially indicates which armor would have to be removed in 

order to perform the full range of motion for the specified task. The restriction value is 

used to measure the intersection between each armor component as well as between the 

armor and the skin. In order to perform this estimation, the armor components are filled 

with voxels (three-dimensional polygons that represent unit volume), and the 

intersections between armor voxels are measured to estimate the overall restriction, as 

shown in Figure 3. Portions of armor can then be exported to CAD systems for redesign. 

 

Range of motion is the measure of the extent to which joint rotation is restricted due to 

armor. Before the armor is parented to the avatar, each joint has a default range of 

motion. This range is reflective of the normal joint rotation for an average human. In 

order to determine the range of motion of a joint as affected by armor, the joint is rotated 

from the minimum value through the maximum value in small increments. For joints that 

have more than a single degree of freedom, the range of motion test is performed with 

each degree. At each increment along the default range of motion, collisions between two 

polygons representing skin on armor, skin on skin, or armor on armor are checked. If a 

collision occurs, then the test is terminated, and the last incremented value is set as the 

new range of motion. 
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Figure 3: (a) Surrogate geometry representing armor is placed on the avatar. Armor 

geometry is analyzed for encumbrance. Encumbered volume is represented in red. (b)  

Volume of the armor that interferes with task performance is shown. (c) Exported OBJ 

version of armor showing encumbered volume (red) and unencumbered volume (green). 

 

Task performance is measured by aggregating performance measures for each of the 

interpolated postures. These measures include discomfort, potential energy, and joint 

displacement (Marler et al, 2009). The performance measures are evaluated at discrete 

uniform intervals during the motion. The time intervals are specified by the user. 

 

When various weights (i.e., body mass, armor mass, etc.) and forces are considered, 

necessary joint-torques are predicted, subject to strength limits and characteristics 

(Marler et al,, 2012). Relative values for these joint-torques are displayed graphically on 

the avatar during task completion in order to show which joints are exercising the highest 

torques. In addition, a joint-torque performance measure is calculated based on joint 
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torques generated in Santos while performing the task. This measure is a reflection of the 

armor weight on Santos as well as the task being performed. 

 

These metrics will be the foundation upon which the current Armor System Optimization 

Filter method is based by providing the overall score for each armor system. Although 

the approach discussed in Chapter 3 uses only these metrics, it was designed in such a 

way as to allow for any additional calculations to be implemented in the filtering process.    

 

2.3	SNOPT	

 

The methods put forth in this thesis focus on the transformation and use of external data 

in order to create objective functions that satisfy certain constraints and trend towards 

design goals.  The objective functions that will be discussed in Chapter 4 for the armor 

system design optimization are solved using the software SNOPT (Gill, Murray, & 

Saunders, 2002), which utilizes sequential quadratic programming (SQP).  SQP has 

become the most successfully used method for solving nonlinearly constrained 

optimization problems.   In order to use SQP, both the problem’s objective function and 

its constraints need be continuously twice differentiable. The SQP method is based on 

gradients, meaning that it requires gradients for the objective function as well as the 

constraints.  The gradients used in this method can be determined either analytically or 

computationally; however, providing analytical gradients will reduce computational time 
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and can increase accuracy.  A drawback of using any gradient-based approach is that 

there is a tendency to find a local minimum as opposed to a global minimum.  A local 

minimum is a point that is minimum only within a local area of feasible space, whereas a 

global minimum is the minimum over the entire feasible space.  SQP methods work by 

solving a sequence of optimization sub-problems.  Each of the sub-problems is solved by 

optimizing a quadratic model of the objective function subject to a linearization of the 

constraints.   In the case that the problem is unconstrained, then the method will reduce to 

Newton’s method.  Although SNOPT is not the only optimization software package that 

implements SQP (NPSOL is another notable such package), SNOPT was designed with 

the motivation of being able to solve increasingly large models.  To this end, SNOPT was 

developed on a new sparse SQP algorithm. The approach that SNOPT uses specifically 

exploits the sparseness of the constraint Jacobian and maintains a limited quasi-Newton. 

This is especially relevant to the problem of armor system design, as the constraint 

Jacobian for the armor overlap discussed in Section 4.2.2 is a sparse matrix. 
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ARMOR SYSTEM OPTIMIZATION FILTER 

 

This chapter provides the methodology and results of using the armor optimization filter. 

This chapter builds upon the Santos avatar and the newly developed metrics for 

evaluating armor systems discussed in the previous chapter. Previously, all armor 

systems needed to be evaluated independently, which could be time intensive. It was 

apparent that a useful tool could be developed by leveraging the metrics that existed in 

Santos and implementing them into an automated filtering method. The filtering method 

laid out in this chapter is intended to be a practical tool used to select the optimal armor 

system for a specific set of tasks, given specific criteria (e.g., minimal weight and 

maximum range of motion). 

 

3.1	Introduction	

 

Currently, with respect to human factors, PPE systems are evaluated on a manual basis, 

which can lead to sub-optimal designs or to an unclear and unquantifiable understanding 

of the shortcomings of a given armor system. For example, it may be extremely difficult 

for a warfighter to maintain a certain aiming posture over an extended period of time with 

a PPE system that was designed for someone who weighed 20 KG more and measured 

several centimeters taller. Recalling the first hypothesis proposed in Chapter 1, it was 
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theorized that it would be possible for existing armor systems to be down-selected based 

on performance during task simulation. The method developed in this chapter strives to 

automate the process that is now performed experimentally.  For practical purposes, there 

is no single optimal armor for every situation, purpose, or warfighter, as different tasks 

require different objectives. The proposed armor system design optimization is intended 

to provide new designs based on the user-defined set of metrics, which are used to 

emphasize certain aspects. These metrics are calculated using the DHM software, which 

allows for strictly quantifiable results. With this in mind, there is an unlimited number of 

optimal designs that can be generated from this process. The proposed down-selection 

method can be used as an efficient way to select from these already approved optimal 

designs, without the need for extensive education on what went into the original design.  

This process can be used for quickly and efficiently selecting the armor that is most fitted 

for the task at hand. 

 

3.2	Approach	

 

The armor system optimization filter leverages already existing armor metrics; however, 

the metrics necessitated normalization in order to be compared. New methods and 

functionality were added to the software in order to implement the armor system 

optimization filter, and they are explained below. 
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The single requirement in order to run the system at all is that an armor system library 

must exist.  After the library is selected, the user must define criteria in order to allow the 

method to determine the optimal armor system. From those pre-processing steps on, the 

approach can be thought of as a cyclical process with the following steps: 

 

1. The armor system is imported onto the Santos avatar 

2. Any tasks that have been defined are simulated 

3. All armor system metrics are calculated 

4. Results for the armor system are stored in a data structure 

5. The library is searched for the next armor system 

 

These steps are repeated until there are no longer any armor systems remaining in the 

library. The scores are then compared, and the optimal armor system is loaded onto the 

Santos avatar, with the corresponding scores displayed to the user.  This process is 

illustrated in Figure 4 as well as outlined with psuedocode in Figure 5. 

 



 

 

 

34

 

 

 

 

Figure 5: Pseudocode for Armor System Optimization Filter 

 

This process is performed by first allowing the user to define the constraints and 

weighting factors of each metric. This is the primary user input that accompanies the 

rendering of tasks, as well as the selection of an armor library. The method then imports 

an armor system, simulates the defined tasks and calculates the metrics, stores the results, 

and finds any other armor systems available in the library.  This process is automatically 

Display Optimal 
System & Results

Simulate 
User Defined 

Task

Calculate 
Metrics

Store 
Results

Search 
Library

Import 
Armor 
System

Define constraints 
and weights of 

metrics

Figure 4: Flowchart of the armor system optimization filter process 
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repeated until the library is entirely searched through, and the optimal armor system as 

well as results are returned to the user. Each of the steps shown above is explained in 

detail in the following sections.  

 

 Define Constraints and Weights of Metrics 

 

The search filter provides the user with a set of definable weights and constraints for each 

metric as shown in Figure 6. The weighted slider shown beneath each metric allows the 

user to define the emphasis with which they would like to consider that score for the 

overall rating. If the weight is set to zero, then that metric is not considered at all. If all of 

the weights are set equally, then the filter searches for the optimal armor system with 

respect to all metrics.  
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Figure 6: Graphical user interface to define metric weight-factors and constraints 

 

 Import Armor System 

 

Armor systems can be created and stored on Santos using any modeling object set as an 

“armor” piece.  When a model is set as an armor piece, it is then considered in all armor 

metric calculations. These armor pieces are parented to Santos’ joints. When an armor 

piece is parented to a joint, it will move with respect to that joint throughout any task that 

is being performed in order to mimic real motion throughout a task.  A special file 
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configuration was made in Santos to allow any set of armor pieces, with all relevant 

information to be saved and loaded back onto an avatar. Each armor system is loaded 

onto this avatar, with individual armor pieces being parented to their appropriately 

corresponding joints. These joints are determined either by name association in the file or 

by closest location.  After an armor system’s metrics have been evaluated, the armor 

pieces are removed from the avatar to allow for the next armor system.  

 

 Simulate User-Defined Task 

 

Because some of the metrics, such as weight, coverage, and bulk, can be calculated 

without the use of any motion, the down-selection process can be performed without the 

need for any user-defined task. However, in order for all of the metrics to be calculated, a 

task must be rendered in the Santos software. These tasks can be linked together in order 

to form a complex task such as walking, then laying down, and then aiming.  There is a 

pre-existing set of tasks available in the Santos software, but a user is also able to create 

any task that they deem necessary.  

 

 



 

 

 

38

 Calculate Metrics 

 

The usefulness of the down-selection method depends heavily on the metrics that it uses 

to determine the optimal armor system.  In this case, the types of metrics have been laid 

out in Section 2.2.2. In order to make use of these metrics, they required normalization 

for easy comparison.  Each score is normalized to be between 0 and 1. A five-star rating 

system (Figure 7) has been developed as a quick and easy way to compare different 

armor configurations. A five-star rating represents the highest score and a zero-star rating 

represents the worst score. The star ratings are based on the comparison parameters 

discussed in the previous section and generally indicate average performance during task 

completion. In general, each star represents 20% of the maximum outcome. The 

methodology to calculate the various star ratings is described as follows. 

 

 

Figure 7: Star rating system and GUI for the Armor System Optimization Filter 
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3.2.4.1	Performance	

 

For the performance rating, the performance measure values are converted to a ratio of 

the maximum possible performance measure value and then averaged. The average is 

converted to a percentage and assigned a rating. This gives us: 

            

݃݊݅ݐܴܽ	݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ ൌ ቀ ௉௘௥௙௢௥௠௔௡௖௘	௪௜௧௛	௔௥௠௢௥

௉௘௥௙௢௥௠௔௡௖௘	௪௜௧௛௢௨௧	௔௥௠௢௥	
ቁ   ∈ ሺ0,1ሻ   

Equation 2: Normalized formulation of performance metric 

 

3.2.4.2	Range	of	Motion	

 

For the range of motion rating, the range of motion with armor is compared to the default 

(assumed maximum) range of motion for Santos. Each joint on the avatar has an existing 

default range of motion. The default range of motion is meant to mimic the normal joint 

rotation for an average human. For the range of motion with armor, each joint is rotated 

from its lowest range to its highest in small increments. At each increment, a collision 

detection is performed between the armor and the skin. If a collision occurs, the test is 

terminated and this new angle is determined as the range of motion. The ratio of the total 

range of motion with armor as compared to the default range of motion is then converted 

into a percentage and a star rating.  
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݃݊݅ݐܴܽ	݊݋݅ݐ݋ܯ	݂݋	ܴ݁݃݊ܽ ൌ ቀோ௔௡௚௘	௢௙	ெ௢௧௜௢௡	௪௜௧௛஺௥௠௢௥
஽௘௙௔௨௟௧	ோ௔௡௚௘	௢௙	ெ௢௧௜௢௡

ቁ   		∈ ሺ0,1ሻ   

Equation 3: Normalized formulation of range of motion metric 

 

3.2.4.3	Balance	

 

The balance metric uses the measures of the distance of the ZMP (Marler, Knake, & 

Johnson, Optimization-Based Posture Prediction for Analysis of Box-Lifting Tasks., 

2011) from the center of the foot support region and the distance of the ZMP from the 

nearest edge of the foot support region. These two values are then converted into a ratio 

in order to estimate the stability metric. By evaluating the metric over a series of 

postures, a rating is determined from the average balance. 

           

݃݊݅ݐܴܽ	݈݁ܿ݊ܽܽܤ ൌ 	∑
൬

ವ೔ೞ೟ೌ೙೎೐	೚೑	೟೓೐	ೋಾು	೑ೝ೚೘	಴೐೙೟೐ೝ೔
ವ೔ೞ೟ೌ೙೎೐	೚೑	ೋಾು	೑ೝ೚೘	೙೐ೌೝ೐ೞ೟	೐೏೒೐೔

൰

௡
௡
௜ୀ	଴    ∈ ሺ0,1ሻ  

  

where: 

݊ = the number of postures in a motion 

Equation 4: Normalized formulation of balance metric 
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3.2.4.4	Coverage	

 

As discussed in the previous section, the coverage rating utilizes the polygon mesh of 

Santos. The coverage of the armor is calculated by summing the area of the polygons of 

Santos that are covered by the armor pieces. This is then compared with the total polygon 

area of Santos. The ratio of the armor coverage area to the total body surface area is used 

to determine the rating.  

            

݃݊݅ݐܴܽ		݁݃ܽݎ݁ݒ݋ܥ ൌ 	 ቀ஺௥௘௔	௢௙	ௌ௔௡௧௢௦	஼௢௩௘௥௘ௗ	௕௬	஺௥௠௢௥

்௢௧௔௟	஺௥௘௔	௢௙	ௌ௔௡௧௢௦
ቁ  ∈ ሺ0,1ሻ 

Equation 5: Normalized formulation of coverage metric 

    

3.2.4.5	Restriction	

 

The restriction metric for each armor piece always exists between 0 and 1. Therefore, the 

rating for restriction is the average of the total armor restriction of each armor piece.  

         

       

݃݊݅ݐܴܽ		݊݋݅ݐܿ݅ݎݐݏܴ݁ ൌ 	∑
ሺோ௘௦௧௥௜௖௧௜௢௡	௢௙	௔௥௠௢௥	௖௢௠௣௢௡௘௡௧ሻ೔

௡
௡
௜ୀ	଴    ∈ ሺ0,1ሻ 

where: 

 ݊ = the number of armor pieces 

Equation 6: Normalized formulation of restriction metric 
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3.2.4.6	Weight	

 

In order to calculate the weight rating, the weight of the armor has to be compared to a 

baseline standard. The baseline standard is derived from the current weight of the armor 

worn by Warfighters, as published by PEO Soldier (Fricker & Wilson, 2010). The 

standard armor weight is approximately 15 kg. The rating is based on the ratio of 

standard armor weight to the weight of the armor being tested. This is based on the 

assumption that any new armor configuration design has to be less than 15 kg for it to be 

a design improvement. 

 

݁ݎ݋ܿܵ		ݐ݄ܹ݃݅݁ ൌ 	 ൬
ݐ݄ܹ݃݅݁	݊݋ݏ݅ݎܽ݌݉݋ܥ െ ݐ݄ܹ݃݅݁	ݎ݋݉ݎܣ	

ݐ݄ܹ݃݅݁	݊݋ݏ݅ݎܽ݌݉݋ܥ
൰ 

݃݊݅ݐܴܽ	ݐ݄ܹ݃݅݁ ൌ 	݂ሺܹ݄݁݅݃ݐ		݁ݎ݋ܿܵሻ ൌ ൝
0, ݁ݎ݋ܿܵ		ݐ݄ܹ݃݅݁ ൏ 0

,݁ݎ݋ܿܵ		ݐ݄ܹ݃݅݁ ݁ݎ݋ܿܵ		ݐ݄ܹ݃݅݁ ൑ 1
1, ݁ݎ݋ܿܵ		ݐ݄ܹ݃݅݁ ൐ 1

 

where: 

 .The weight the armor is to be compared to. Default set 15KG = ݐ݄ܹ݃݅݁	݊݋ݏ݅ݎܽ݌݉݋ܥ

Equation 7: Normalized formulation of weight metric 
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3.2.4.7	Torque	

 

The torque rating is compared to the base rating of the avatar in motion without any 

armor present, giving the equation: 

            

Torque	Rating ൌ 	1	 െ 	 ቀ ்௢௥௤௨௘	௪௜௧௛	௔௥௠௢௥

்௢௥௤௨௘	௪௜௧௛௢௨௧	௔௥௠௢௥	
ቁ ∈ ሺ0,1ሻ     

Equation 8: Normalized formulation of torque metric 

 

The rating must be subtracted from 1 because the metric determines the decrease in 

torque due to the armor.  This subtraction allows that a higher value is optimal, which is 

how the rest of the metrics operate. 

 

3.2.4.8	Bulk	

 

The bulk metric is based on the ratio of the volume of the body armor on the avatar, over 

what would be the volume of the entire avatar covered in one inch of armor. The one-

inch armor allows for the rating to be between zero and one for all practical purposes. 

The maximum volume of the armor system was chosen empirically in order to ensure the 

range of the rating; however, it could be easily modified in the future if a new maximum 

is found to be more useful.         
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݃݊݅ݐܴܽ	݈݇ݑܤ ൌ 	 ௏௢௟௨௠௘	௢௙	஺௥௠௢௥

௏௢௟௨௠௘	௢௙	௘௡௧௜௥௘	௕௢ௗ௬	௖௢௩௘௥௘ௗ	௪௜௧௛	ଵ	௜௡௖௛	௔௥௠௢௥	
          ∈ ሺ0,1ሻ 

Equation 9: Bulk rating normalized 

 

3.2.4.9	Overall	Score	

 

All of the metrics stated above are normalized between 0 and 1, and once they are 

normalized, they are multiplied by the user-defined weight to give a final value for each 

metric.  All of these metrics are the summed to give an overall score. This formula can be 

described as 

            

Overall Rating ൌ	∑ ௜ݓ
௡
௜ୀ଴ ∗ ሺݏ௜ሻ 

Equation 10: Overall rating of an armor system. 

 

where ݓ௜  and ݏ௜ are the user-defined weight and the normalized score, respectively, of a 

metric	݅, and ݊ is the number of armor metrics. The range of  ݏ௜ is also from 0 to 1. After 

each metric calculation, the constraints are checked, and if any constraint is violated, the 

testing of that armor system ceases in order to save time, and all scores are reported as 

zero. 
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 Store results 

 

In order to compare armor systems, the scores must be stored and compared after the last 

armor system’s metrics have been computed.  However, in order to prevent redundant 

computations, each individual metric for all armor systems must be stored, so that when 

an armor system is determined optimal, the ratings of each metric can be displayed to the 

user.  These metrics are placed in a data structure that allows for quick comparison, and 

are all deleted after the optimal armor system is determined and displayed to the user. 

 

 Search the Library 

 

The software then iterates through all of the available armor configurations in the 

provided folder and performs the user-defined task with each. In order to perform in 

minimum time, only the configurations/evaluations necessary to obtain the metrics of 

interest are considered. For example, if a weighting factor of a metric is set to zero, that 

metric is not calculated.  Additionally, an armor system’s calculations are immediately 

halted if a constraint is found to be validated. After the software has iterated through all 

of the possible armor configurations and found the one that is optimal over the user-

defined weight, it is placed back on the avatar with its ratings displayed. 
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3.3	Results	

 

In order to test the system, four different examples are provided below. An example 

library of body armor systems is shown in Figure 8, which was used for all of the 

examples. For each example case, a series of three different tasks (acquiring a target 

while standing, grenade throwing, and acquiring a target while prone) is used (Figure 9).  

 

 

Figure 8: An example library of armor systems 
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For the first example (Figure 10), weighting factors for coverage, range of motion, 

restriction, bulk, performance, balance, and torque were set to zero, while the weighting 

factor for armor weight was set to 1. This implies that the only criteria in selecting an 

armor system would be the minimum weight. Since the example entails setting the 

weights of coverage, range of motion, restriction, bulk, performance, balance, and torque 

to zero, those calculations are not performed. Thus, the armor system with the lightest 

weight is selected. 

 

 

Figure 9: The three tasks performed for an Armor System 
Optimization Filter example 
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Figure 10: Armor System Optimization Filter metric results with optimal armor system 
for minimum weight 

 

For the second example (Figure 11), weighting factors for armor weight, range of motion, 

restriction, bulk, performance, balance, and torque were set to zero, while the weighting 

factor for coverage was set to 1. This implies that the only criteria in selecting an armor 

system would be maximum coverage. Since the example entails setting the weights of 

armor weight, range of motion, restriction, bulk, performance, balance, and torque to 

zero, those calculations are not performed.  From this, it is evident that the filter returns 

the armor system that covers the maximum area of the Santos avatar. 
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Figure 11:  Armor System Optimization Filter metric results with optimal armor system 
for maximum coverage 

 
 

For the third example (Figure 12), weighting factors for range of motion, restriction, 

bulk, performance, balance, and torque were set to zero, while the weighting factors for 

armor weight and coverage were set to 1. This implies that the armor system optimization 

filter should return the armor with the optimal balance of weight and coverage. Since the 

example entails setting the weights of coverage, range of motion, restriction, bulk, 

performance, balance, and torque to zero, those calculations are not performed.  This 

result can only be subjectively validated, but the results fall within a plausible realm. 
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Figure 12: Armor System Optimization Filter metric results with optimal armor system 
for minimum weight, maximum coverage 

 
 

For the final example (Figure 13), weighting factors for performance, balance, and torque 

were set to zero, while the weighting factors for armor weight, coverage, and bulk were 

set to 1. The restriction and range of motion weighting factors were set to 0.5. This means 

that weight and bulk are twice as important as range of motion and restriction. Since the 

example entails setting the weights of performance, balance, and torque to zero, those 

calculations are not performed. These results too can only be validated subjectively, as it 

is a more complex problem. 
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Figure 13: Armor System Optimization Filter metric results with optimal armor system of 
a balanced system 

The results in each example provide an overview of the armor system selected, as well as 

the returned metric values.  Due to the nature of some of the more complex problems, 

validation can only be performed subjectively. With that in mind, the results for the 

example do fall in line with what one would expect.  This armor system had a lighter 

material than the user-created armor component designs, as well as a fair balance of 

coverage and light weight. As the types of problems become more difficult, the solutions 

become less intuitive and more difficult to validate.  It is also of note that in the examples 

shown, the user-created armor component designs were not selected.  This is due to the 

characteristics of the designs used in the library and the tests run, as they were neither 

light enough, nor covered enough of the avatar to be selected for the chosen examples. 
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ARMOR SYSTEM DESIGN OPTIMIZATION 

 

Chapter 3 detailed a method for selecting optimal armor based on metrics derived 

from digital human modeling software. Chapter 4 will expand upon these capabilities and 

provide the next step in the suite of armor system design tools by detailing a method for 

automatically designing optimal armor systems using continuous optimization. The armor 

system design optimization process detailed below can be used to create a series of armor 

systems that are optimally designed using third-party data. These new armor systems can 

then be used to create the type of armor system library that is described in Chapter 3. 

4.1	Introduction	

 

As material design continues to progress in terms of metrics such as weight, 

flexibility, bullet penetration, and blast impact, the technique for implementing wearable 

designs with regard to human factors has not been proportionately considered or 

advanced.  It is important to acknowledge the human aspect of any designed material 

interaction, but especially so in the case of wearable PPE, as these materials are intended 

to be worn for long periods of time without hindering performance, burdening the user, or 

becoming uncomfortable.  In order to properly account for all of the factors involved with 

wearable PPE, a human-centric design approach has been taken. This approach allows for 

quick, accurate, and exhaustive design of optimal armor systems based on real armor 
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metrics such as performance, range of motion, balance, torque, and coverage.  It is a 

hypothesis of this thesis that, with this new approach, it is possible to design armor that 

offers both more protection and an over-all better experience for the user.  

 

This chapter provides details of all of the development of all of the approaches taken 

throughout the duration of this project, including initial approaches for the coverage 

objective function.  All approaches are detailed as to why they were taken, and their 

benefits and shortcomings are described.  The chapter concludes with a set of results 

using the most current methods. 

 

4.2	Approach	

 

The armor optimization is completed in two phases: creation of an objective function, 

followed by location/existence optimization of individual armor components.  An 

overview of the optimization over a single segment can be visualized in Figure 14. 
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Figure 14: Overview of Armor System Design Optimization 

 

For the first phase of the process, third-party data is used to create an objective function 

using regression analysis. This objective function can be formed by any kind of data, 

external or internal to the Santos software. For instance, it can be used to quantify the 

coverage at a given location on Santos. The user supplies point cloud data, which can 

represent organ location, blast pressure, or any other data that would be meaningful to 

optimize over. This point cloud data is composed of three-dimensional location data and 

a value at each location. The data is then used alongside a previously created, default 

point cloud that covers the entirety of the Santos avatar. This default point cloud ensures 

that an objective function can be formed even without the use of external data. An 

example of this default point cloud gradient is shown in Figure 15, where lighter colors 

ultimately reflect increasing importance. There are two reasons external data may not be 



 

 

 

55

used directly to create the objective function. First, there is no guarantee that the point 

cloud data is dense enough to ensure a data point at every location. Secondly, there is no 

guarantee that, even if the data is dense enough, it encompasses the entire body. Trying to 

optimize over either of these scenarios leads to discontinuities and, therefore, failed 

results. In order to circumvent these problems, regression analysis is performed using 

both the user-supplied data and the default gradient, guaranteeing a single smooth, 

continuous function.  Details of why and how the regression analysis is performed are 

provided later in Section 4.2.3.2. This process is repeated, and an objective function is 

formulated for each of the five segments. 

 

 

Figure 15: Example default point cloud 
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Once regression analysis has been performed and the objective function has been created, 

optimization is run for the location and existence of each armor component. The 

objective function, gradients, bounds, and constraints must all be defined prior to running 

the optimization, and the results are then returned and enforced in Santos. The 

optimization process is done using the SNOPT optimization software discussed in 

Section 2.3  

 

 Design Variables 

 

The initial challenge with this approach was formulating the problem in such a way that 

the design variables would be continuous as well as bounded to the surface of the Santos 

avatar. This difficulty is due to the avatar’s surface being defined in three dimensions but 

without any way to define the three-dimensional design variables that bind the armor 

component’s location to that surface. Due to this complication, new methods were 

developed. Note that it was decided that a gradient-based optimization algorithm would 

be used, rather than a multi-start approach, for the sake of computational speed. As an 

initial step, the goal was to maximize a coverage score that was weighted with respect to 

the importance of the body segment being covered. However, the textures for Santos’s 

skin are not continuous; they have seams (Figure 16). These seams indicate that if the u-v 

coordinates were used as design variables, there would be discontinuity in the data 

wherever a u-v coordinate did not map to the three-dimensional Santos mesh. Thus, it is 
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not possible to use traditional u-v coordinates (relative to the mesh) as design variables. 

In order to overcome this, the problem was translated from a three-dimensional mesh into 

a continuous two-dimensional problem. This was done by having two design variables, ߠ௜ 

and	ݖ௜, for each armor-piece	݅. These design variables represent movement of an origin 

ray along the surface of a cylinder (Figure 17), with one cylinder for each body segment.  

The position on the cylinder acts as an origin point, from which a ray is projected towards 

Santos in order to determine a corresponding point on Santos’s body mesh. This 

alleviates the problems of discontinuity in the design variables and provides a much 

easier way to formulate the problem. There is also a design variable for each armor 

component that is introduced for the weight objective function; it is known as the 

existence variable and is denoted as ݁௜ for each armor piece	݅.  This design variable is 

used to affect the weight of the armor piece, as well as allow for an armor component’s 

removal if it is set to zero.  

It should also be noted that using a Non-uniform rational basis spline (NURBS) was 

considered in order to provide a continuous function while also allowing for analytical 

gradients.  NURBS is a mathematical model that is often used in computer graphics for 

generating and representing curves and surfaces.  While a NURBS surface would be 

useful, it unfortunately is not feasible using the Santos avatar that exists in the DHM 

software used.  The Santos avatar uses a polygonal mesh and was modeled in such a way 

that although the mesh could be converted into a NURBS surface, the surface would be 

segmented into a large number of fragmented sub-surfaces, which would not allow for 

whole body optimization.  Another issue is the size of the NURBS surface that would be 

created.  In order to create a detailed surface of the Santos avatar, the NURBS surface 



 

 

 

58

would be a series of tremendously large files, which would require large processing 

times. With these considerations in mind, it is apparent that using a NURBS model is not 

a valid solution for this particular problem. 

 

 

Figure 16: The UV mapping of the Santos avatar 

 

 Constraints 

 

One of the many difficulties associated with the problem of armor system design is the 

prevention of overlapping of the different armor pieces.  When a local optimum is found 
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for the objective function, all armor pieces will tend towards that value unless a 

constraint is placed that enforces a minimum distance between pieces.  As the armor 

system design problem grows in the number of pieces, it also grows in complexity.  At its 

core, the overlap problem is analogous to a common problem in three-dimensional 

modeling, which is collision detection. In collision detecting, a series of objects must be 

checked to see if an overlap occurs, a process which can be computationally expensive.  

This is a topic that has been well documented, and there are a variety of approaches 

(Jiménez, Thomas, & Torras, 2001), (Kockara, Halic, Iqbal, Bayrak, & Rowe, 2007), 

(Lin & Gottschalk, 1998).  The initial methods for collision detection here are simplistic, 

but this is a topic that could be expanded on in future work in order to provide faster and 

more accurate optimal solutions.  In order to overcome this, two different overlap 

constraints were formulated and tested.  

 

The initial constraint formulation uses a distance approximation method to ensure that 

any two components, ݅ and	݆, are separated by length	ݎ. This is done by considering a 

normalized approximation of the distance between the two points of origin for the rays 

that are drawn from the segment cylinder to the avatar mesh. An empirically found value 

to represent the distance of two armor component’s radii is used as the lower limit for the 

constraint. The values are normalized in order to account for the different sizes of each 

cylinder segment’s radius. Also, because this constraint acts as only a general 

approximation of the armor component’s final position, the empirically determined lower 

limit for the constraint is sufficient for the purpose, and the actual value of the armor 

component’s radius is not needed. Therefore, the constraint function is written as: 
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ܿ௞ ൒ ௜ݎ ൅  ௝ݎ

where: 

ܿ௞ ൌ
ሺ௦∗ఏೕି	௦∗ఏ೔ሻ

గమ

ଶ	
൅

ሺ௭ೕି	௭೔ሻమ

ሺ௭೘ೌೣି	௭೘೔೙ሻమ
 =	ሺ∆ఏ∗௦

గ
ሻଶ	 ൅ ሺ ∆௓

௭೘ೌೣି	௭೘೔೙
ሻଶ  

k = Index of constraint C 

௜ݖ ൌ  ݅ position of the origin ray on the cylinder for component ݖ

 ݆ position of the origin ray on the cylinder for component ݖ = ௝ݖ

 ݅ position of the origin ray on the cylinder for component ߠ  = ௜ߠ

 ݆ position of the origin ray on the cylinder for component ߠ  = ௝ߠ

	ݏ ൌ	radius of the armor cylinder for a given segment 

 value of the cylinder ݖ ௠௔௫ = maximumݖ

 value of the cylinder ݖ ௠௜௡ = minimumݖ

 ݅ ௜ = Empirically found normalized distance corresponding to radius of componentݎ

 ݆ ௝ = Empirically found normalized distance corresponding to radius of componentݎ

݅ = Index of an armor component 

݆ = Index of an armor component 

Equation 11: First attempt of overlap constraint and its gradients. 
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Figure 17: The components of the constraint function. The variables ∆ܼ	and ∆ߠ 

determine the difference approximation of the location of the origin point for the collision 

ray and have a lower bound to prevent overlap 

 

A visual representation of this constraint can be seen in Figure 17. This constraint is then 

placed between every possible combination of armor components, as shown in Figure 18. 

In this picture, each line represents the distance constraint between the two armor 

components.  Using this approach, the number of overlap constraints is as follows: 
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݉ ൌ ௡ሺ௡ିଵሻ

ଶ
      

  

where:  

݉ = number of constraints 

݊ = number of armor components 

Equation 12: The number of constraints using the first overlap formulation 

 

 

Figure 18: An example of the three constraints that are associated with a three-armor-
piece problem 

 

An example of this formulation with three armor pieces and therefore three constraints 

(Equation 12) can be seen in Figure 18. While this approach is guaranteed to prevent 

overlap, it also has its downside. Due to the need to check between every possible 

combination of armor components, the number of possible constraints grows as ܱሺ݊ଶሻ.  

This becomes extremely computationally intensive when the armor pieces grow to 
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numbers that begin to cover whole segments of the body. After testing this problem on a 

larger scale, SNOPT began to fail and abort the program.  This was due to SNOPT’s 

implementation in a section of unmanaged memory within the computer.  When the 

problem grew to a large size, the memory that needed to be allocated in order to store the 

constraint variables was so large that it would cause the program to crash.   This issue 

began to happen, although somewhat inconsistently, at approximately 80 armor 

components, which would equate to 3,160 constraints (Equation 12).  As the number of 

components grew larger, to over 100 (4,950 constraints), the program would crash 

consistently.  

 

In order to overcome this limitation, an alternative approach was devised in order to 

reduce the number of constraints to be equal to the number of armor pieces.  This was 

done by formulating a step function that acted as a single constraint for all armor pieces.  

This formulation is then: 

 

ܿ ൒ ሺ2ݎሻ ∗  ݌

where:  

ܿ ൌ 	෍ ෍

ە
۔

ሺ	ۓ
ߠ∆ ∗ ݏ
ߨ

ሻଶ	 ൅ ሺ
∆ܼ

௠௔௫ݖ െ	ݖ௠௜௡
ሻଶ , 	ሺ

ߠ∆ ∗ ݏ
ߨ

ሻଶ	 ൅ ሺ
∆ܼ

௠௔௫ݖ െ	ݖ௠௜௡
ሻଶ ൏ ݎ2

0, 	ሺ
ߠ∆ ∗ ݏ
ߨ

ሻଶ	 ൅ ሺ
∆ܼ

௠௔௫ݖ െ	ݖ௠௜௡
ሻଶ ൒ ݎ2

௡

௝ୀ௜ାଵ

௡

௜ୀ଴

 

 Number of sets armor pieces that are within 2 radiuses = ݌

Equation 13: The updated armor overlap constraint function 
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This formulation prevents overlap of all of the armor pieces that are within a given area 

of that piece by creating a single constraint as illustrated in Figure 19.  

 

 

Figure 19: Representation of the overlap constraint, where there are three sets of armor 
pieces that are within	2ݎ and therefore  3 = ݌ 

 

In this example there are three armor pieces that are all within 2ݎ of each other, giving ݌ = 

3. This means that the lower bound for the constraint is now 2ݎ ∗ 3 or	6ݎ.  From this, you can 

see that ܿ ൌ  and therefore the constraint is active, and any decrease in distance would ݎ6

mean that the constraint would be violated as the summation of distances between pieces 

would be less than 6ݎ.  The step function was chosen in order to allow armor pieces to move 

further away; it is shown in Figure 20. 
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Figure 20: Representation of the overlap constraint, where there is only one set of armor 
pieces within	2ݎ and therefore  1 = ݌ 

 

In this example, the step function eliminates the summation of the two distances that are 

greater than 2ݎ from other pieces, giving ݌ ൌ 1 and therefore a lower bound of the constraint 

of 2ݎ ∗ 1 or 2ݎ. Again, it can be seen that the constraint ܿ ൌ  and therefore is active; the ݎ2

pieces cannot move any closer together without the constraint being violated. 

 

 Objective Functions 

 

In order to design an armor system using the aforementioned constraints and design 

variables, an objective function needs to be properly formulated.  The goal was to be able 

to use the types of data and metrics available in the Santos software as the source as 

described in Section 2.2.2. In order to use this data, it needed to be transformed in such a 

way that a value could be associated with each location on the Santos avatar. To do this, a 
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method for transforming point cloud data to meaningful objective functions data was 

developed. This method can be applied to any user-supplied point cloud and can be 

executed on the fly. This allows for refinement of optimization gradients, in order to see 

how they would affect the overall armor system. For example, the user can quickly create 

a new objective function where coverage of the liver is a priority and the heart is a second 

or lesser priority. An objective function is calculated for each of the five segments of the 

body (i.e., torso, right leg, left leg, right arm, and left arm). 

 

The point cloud that is supplied is a collection of three-dimensional points, each with an 

associated value. The associated values act as the objective function values, where the 

higher the number is, the more important that location is (e.g., an important coverage 

location). If multiple three-dimensional points map to a single two-dimensional point, the 

highest value is taken, as the objective function’s goal is to maximize. In order to create a 

single gradient, a ray detection test is carried out to determine the location on the Santos 

mesh that is closest to the supplied point. This translates the three-dimensional point 

cloud data into two-dimensional UV coordinates. Regression analysis is then run on the 

UV coordinates and their corresponding values in order to provide a smooth and 

continuous objective function. Once the regression analysis has provided a function, it is 

used to create an image gradient for every available Santos UV coordinate. 
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4.2.3.1	Initial	Approaches	

 

For the initial approach to automated armor system design optimization, a modified 

version of coverage was chosen as the objective function. For the original coverage 

metric in Santos, all areas of the body were treated as the same value of coverage. If this 

was used as the objective function, the optimization process would simply fill the entire 

body with armor pieces, with no regard to the importance of the location being covered. 

In order to introduce meaningful coverage, it is necessary to differentiate between 

important parts of the body so that, for example, the heart could be valued higher than the 

elbow. In order to have an objective that varies depending on position relative to the 

avatar, a weighted coverage system has been implemented that allows one to give priority 

to the vital areas of the human body based on third-party data.  

 

4.2.3.1.1	Joint	Parenting	

 

An initial attempt to obtain a value of the coverage score of an armor component entailed 

leveraging the existing capability in Santos to determine which joint the armor piece was 

parented to (as discussed in Section 3.2.2).  In the Santos software, the armor pieces are 

parented to their nearest joint in order to simulate motion of the armor piece with the 

body (Figure 21).  This approach was used as a proof of concept in order to determine if 

the design variables set in place could be used to move the armor pieces along the surface 

of the Santos avatar. While this initial attempt was able to serve its purpose of proving 
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the feasibility of the concept for armor design, there were severe limitations. The 

approach was tested by applying coverage score values along that spine that increased 

from the base of the spine until the neck. Although joint parenting has very little to do 

with actual coverage, this test allowed for quick and accurate validity of the optimization 

following a fairly straightforward objective function.  This approach would ignore the 

lateral location of the armor component, as the true determining factor would be its 

latitudinal placement due to the changing of the spine joints.   This approach had 

difficulty due to the gradient approach that is used by SNOPT.  As can be seen in Figure 

22, the coverage value remains constant over large ranges of Z. These areas where the 

coverage scores remain constant are locations at which the increase in Z value does not 

change the joint that the armor component is parented to. These constant ranges do not 

allow for SNOPT to calculate gradients, and therefore this problem could not be run 

unless the initial guess was close to a location that would change the parent joint.  
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Figure 21: For the initial approach of determining a cover score value, the armor 
component found its nearest joint, with each joint having a pre-determined value 

 

 

Figure 22: Coverage score with respect to Z variable. As the armor component moved 
higher up the spine, the coverage value increased 

 



 

 

 

70

4.2.3.1.2	UV	Gradient	Mapping	

 

In order to give the coverage function more practical meaning and usability within 

optimization, organ data provided as three-dimensional point clouds was used. A point 

cloud is a series of points that has a specific value associated with a three-dimensional 

position.  An example of a point cloud would be blast pressure data of organs within 

Santos. By using these three-dimensional point clouds, coverage as an objective function 

implies a coverage of a specifically vital area.  In order to use these point clouds, the data 

needed to be processed in order to create a continuous image gradient. This image 

gradient is mapped from a three-dimensional position on the body to a two-dimensional 

position on a texture map.  This is done by shooting a collision ray normal to the front 

and back of the Santos avatar, originating from the three-dimensional position of a point 

in the cloud. This collision gives the three-dimensional location on the avatar that 

corresponds to the point in the cloud, and from this location, the two-dimensional mesh 

location can be computed. The value of the point is then represented as a color, with a 

higher color value indicating a more valuable location.  There is now an associated 

objective function value for all two-dimensional points of the Santos avatar. 
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Figure 23: An example of the default gradient once it has been transformed into UV 
coordinates 

 

4.2.3.1.3	Using	a	Default	Mesh	Gradient	

 

In order to ensure that SNOPT can find changes in the objective function value, 

regardless of starting position, an underlying gradient is necessary. This default gradient 

(Figure 23) has point cloud data for the entire body and also has an increase in value as 

the design variables move from the extremities towards the center of the chest. This was 

used as a simple way to give direction to the optimization problem by implementing a 

constant change in values. The chest was chosen for the highest values as it is typically 

 ݑ

 ݒ
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considered to be of most importance.  By implementing this underlying gradient in such a 

way, there are two major benefits. First, optimization will always be able to be 

performed, as there will never be a lack of data.  This prevents the user from having to 

provide third-party data (e.g., coverage function values, such as organs, in order to run 

coverage optimization).  The second benefit is the filling in of gaps between third-party 

data.  If the situation in which we have three-dimensional point cloud data for only the 

heart is considered, then there would be the problem of optimizing over any area outside 

of the provided data, as well as creating a function that guarantees to provide smooth, 

continuous values that have at least a local maximum where the heart data is provided.  

 

4.2.3.1.4	Creating	a	Mesh	Gradient	from	a	Point	Cloud	

 

One of the technical problems associated with this optimization formulation is to 

transform the external third-party data into a form that can be used as an objective 

function.  The difficulty lies in creating a two-dimensional gradient function from a three-

dimensional gradient function.  This must be done in order to provide solutions that 

remain on the surface of the Santos avatar. 
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Figure 24: Flow chart of the process of transforming the design variables for the objective 
function 

 

Creating a two-dimensional gradient from the three-dimensional point cloud data must be 

done in several steps, with an overview of the process shown in Figure 24.  The first step 

is to locate the three-dimensional position of the avatar’s surface that relates to the point 

cloud point. The three-dimensional surface points directly to the front and back of the 

avatar, corresponding to the location of a cloud’s point. For example, if there is a point 

cloud for the heart, any individual point in the cloud would map directly to the chest and 

back of the avatar corresponding to that location. The avatar’s three-dimensional surface 

point is determined by shooting a collision ray in the direction normal to the front as well 

as a collision ray normal to the back of the avatar.  Each three-dimensional point on the 

avatar is then mapped to a 2D texture map and given the value originally associated to 

that point from the point cloud data structure.  An ongoing list is maintained so that if a 

value is already associated with the texture map at a given location, only the highest 

value will be taken.  By taking only the highest value, the system takes into account the 
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important coverage points without being diluted by the underlying default gradient.  The 

process of creating a two-dimensional point and value from the associated three-

dimensional point cloud is then performed for all of the data points available. This 

process will give a texture map as shown in Figure 25. 

 

 

Figure 25: Shooting collision rays from the three-dimensional point position and mapping 
them to UV space 

 

 

After the image gradient has been created, optimization can be performed using the 

design variables and constraints discussed earlier in the chapter.  An overview of this 

process can be seen in Figure 24.  First, initial positions are determined and transformed 

for each armor component ݅ into their corresponding  ߠ௜ and	ݖ௜ design variables. These 

variables are then used as initial positions for the SNOPT optimization process. SNOPT 

then performs optimization by systematically varying these design variables in order to 
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determine a maximum value. The value of the objective function here is determined by 

the texture mapping values that correspond to each UV position. 

 

4.2.3.2	Regression	Analysis	

 

An inherent problem with the data that is being used to generate the objective function in 

Section 4.2.3.1.4 is that it is not only discrete, it is also likely to have gaps of information 

missing. This is especially true when the data goes through its necessary transformation 

into two-dimensional space.  An example of this can be seen in Figure 26, where external 

three-dimensional point cloud data from the heart is transformed into two-dimensional 

space. The black pixels represent data points from the pressure data of the heart.  Not 

only is the image littered with gaps, but the pixels represent the discrete nature of the 

problem.  In order to overcome this problem, regression analysis was performed on the 

data.  This is done by formulating a separate optimization problem and performing a least 

squares fit operation with regularization. 
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Figure 26: A visual representation of the point cloud data in two-dimensional UV space.  
When using an image gradient, the problem can no longer be considered continuous due 

to the discrete nature of the pixels. This also causes gaps where there is no valid 
information 

 

In order to determine which formula would work best as a least squares approximation, 

the software package TableCurve3D by Systat Software Inc. was utilized. TableCurve3D 

can perform both linear and non-linear surface fitting and can be used to automate the 

surface fitting into a single processing step. The software fits and ranks 36,000 out of 

over 450 million built-in commonly used equations, allowing for the ideal model for the 

three-dimensional data that needed to be fit. Running the software on several different 

data sets in order to find the ideal equation to surface fit our data, the Order 10 Cosine 

Bivariate Series was chosen.  The equation takes into consideration the range of any data 

set used and therefore is generalized enough to be used for the use of any third-party data, 

regardless of range. In order to use the surface fitting equation in the objective functions, 

it needs to be transformed into the two-dimensional space of the design variables.  This 
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process requires taking the origin point ߠ and	ݖ, obtaining the corresponding ݑ and ݒ 

coordinate, and running a surface fit with the corresponding score at this location. This 

process can be visualized in Figure 27. Where the first picture shows the collision ray that 

is shot from the location of a given point in the cloud, towards Santos to get a three-

dimensional position on the surface of the avatar. From this location, the corresponding ݑ 

and ݒ is known and mapped (shown in the second picture).  The third picture shows this 

information being represented as a surface over which regression analysis is performed 

and a new objective function is formed. After all of the points have been iterated through, 

the list is then down-sampled based on a number defined by the user.  The option to 

down-sample the points is to prevent the model from trying to over-fit the number of 

points in a small space, which leads to a poor regression model, and therefore poor 

optimization. 

 

 

Figure 27: The three-step process of obtaining the objective function from the design 
variables. The arrow in the first picture indicates the collision ray that is shot towards 

Santos in order to determine the corresponding UV coordinate 
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,ݑሺܵܤܥ ሻݒ 		ൌ 	ܽ ൅ bሺcosሺuሻ 	൅ ܿሺcosሺvሻሻ ൅ ݀ሺcosሺ2uሻሻ ൅ ݁ሺcosሺuሻcosሺvሻሻ ൅ ݂ሺcosሺ2vሻሻ

൅ ݃ሺcosሺ3uሻሻ ൅ ݄ሺcosሺ2uሻcosሺvሻሻ ൅ ݅ሺcosሺuሻcosሺ2vሻሻ ൅ ݆ሺcosሺ3vሻሻ

൅ ݇ሺcosሺ4uሻሻ ൅ ݈ሺcosሺ3uሻcosሺvሻሻ ൅ ݉ሺcosሺ2uሻcosሺ2vሻሻ

൅ ݊ሺcosሺuሻcosሺ3vሻሻ ൅ ሺcosሺ4vሻሻ݋ ൅ ሺcosሺ5uሻሻ݌ ൅ ሺcosሺ4uሻcosሺvሻሻݍ

൅ ሺcosሺ3uሻcosሺ2vሻሻݎ ൅ ሺcosሺ2uሻcosሺ3vሻሻݏ ൅ ሺcosሺuሻcosሺ4vሻሻݐ

൅ ሺcosሺ5vሻሻݒ ൅ ሺcosሺ6uሻሻݓ ൅ ܽܽሺcosሺ5uሻcosሺvሻሻ ൅ ܾܽሺcosሺ4uሻcosሺ2vሻሻ

൅ ܽܿሺcosሺ3uሻcosሺ3vሻሻ ൅ ܽ݀ሺcosሺ2uሻcosሺ4vሻሻ ൅ ܽ݁ሺcosሺuሻcosሺ5vሻሻ

൅ ݂ܽሺcosሺ6vሻሻ ൅ ܽ݃ሺcosሺ7uሻሻ ൅ ݄ܽሺcosሺ6uሻcosሺvሻሻ

൅ ܽ݅ሺcosሺ5uሻcosሺ2vሻሻ ൅ ݆ܽሺcosሺ4uሻcosሺ3vሻሻ ൅ ܽ݇ሺcosሺ3uሻcosሺ4vሻሻ

൅ ݈ܽሺcosሺ2uሻcosሺ5vሻሻ ൅ ܽ݉ሺcosሺuሻcosሺ6vሻሻ ൅ ܽ݊ሺcosሺ7vሻሻ

൅ ሺcosሺ8uሻሻ݋ܽ ൅ ሺcosሺ7uሻcosሺvሻሻ݌ܽ ൅ ሺcosሺ6uሻcosሺv2ሻሻݍܽ

൅ ሺcosሺ5uሻcosሺ3vሻሻݎܽ ൅ ሺcosሺ4uሻcosሺ4vሻሻݏܽ ൅ ሺcosሺ3uሻcosሺ5vሻሻݐܽ

൅ ሺcosሺ2uሻcosሺ6vሻሻݒܽ ൅ ሺcosሺuሻcosሺ7vሻሻݓܽ ൅ ܾܽሺcosሺ8vሻሻ

൅ ܾܾሺcosሺ9uሻሻ ൅ ܾܿሺcosሺ8uሻcosሺvሻሻ ൅ ܾ݀ሺcosሺ7uሻcosሺ2vሻሻ

൅ ܾ݁ሺcosሺ6uሻcosሺ3vሻሻ ൅ ܾ݂ሺcosሺ5uሻcosሺ4vሻሻ ൅ ܾ݃ሺcosሺ4uሻcosሺ5vሻሻ

൅ ܾ݄ሺcosሺ3uሻcosሺ6vሻሻ ൅ ܾ݅ሺcosሺ2uሻcosሺ7vሻሻ ൅ ܾ݆ሺcosሺuሻcosሺ8vሻሻ

൅ ܾ݇ሺcosሺ9vሻሻ ൅ ܾ݈ሺcosሺ10uሻሻ ൅ ܾ݉ሺcosሺ9uሻcosሺvሻሻ

൅ ܾ݊ሺcosሺ8uሻcosሺ2vሻሻ ൅ ሺcosሺ7uሻcosሺ3vሻሻ݋ܾ ൅ ሺcosሺ6uሻcosሺ4vሻሻ݌ܾ

൅ ሺcosሺ5uሻcosሺ5vሻሻݍܾ ൅ ሺcosሺ4uሻcosሺ6vሻሻݎܾ ൅ ሺcosሺ3uሻcosሺ7vሻሻݏܾ

൅ ሺcosሺ2uሻcosሺ8vሻሻݐܾ ൅ ሺcosሺuሻcosሺ9vሻሻݒܾ ൅  ሺcosሺ10vሻሻݓܾ

Equation 14: Order 10 Cosine Bivariate series used in regression analysis 
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The Order 10 Cosine Bivariate Series (CBS) in Equation 14 is set into a least squares fit 

shown in Equation 15. This equation becomes a sub-problem to the overall optimization 

problem that must be solved in order to properly formulate the main objective function.  

In this problem, we are trying minimize the relative error between the known value at a 

given ݒ-ݑ point and the result of the formula at that same ݒ-ݑ	point. This is done by 

using a vector of the coefficients ࢝ (i.e., ܽ, ܾ, ܿ, ݀,  ሻ in Equation 14 as the designݓܾ …

variables in Equation 15.  

 

Find: ࢝           

to minimize: ߝ 

where:     

ߝ ൌ ඩ෍ሺܵܤܥሺݑ௡, ௡ሻݒ െ	݈ܽݒ௡ሻଶ
ே

௡ୀଵ

 

 Equation 14 = ܵܤܥ

࢝	= A vector of coefficients used in the CBS function 

ܰ = Number of data points over which to fit 

 ݊ coordinate value of point	ݑ = 	௡ݑ

 ݊ coordinate value of point	ݒ =		௡ݒ

 ݊ = Score value of point		௡݈ܽݒ

Equation 15: Regression Analysis formula 
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Initially, there was a problem with over-fitting of the function, which resulted in poor 

optimal solutions, so regularization was necessary.  Regularization is a technique used to 

control over-fitting by adding a penalty term in order to discourage coefficients from 

growing too large.  This is a technique that is discussed extensively in the book Pattern 

Recognition and Machine Learning Vol. 1 (Bishop, 2006).  The simplest of such 

techniques is performed by summing the squares of all coefficients, leading to the 

generalized regression formula in Equation 16.  

      

෍ሺ݂ሺݔ௡, ሻݓ െ	ݐ௡ሻଶ െ ߣ	 ∗ ࢝ଶ

ே

௡ୀଵ

 

where: 

 ݊ ௡ = a data pointݔ

࢝ = a vector of adjustable parameters 

 ݊ ௡ = value at a given pointݐ

 regularization coefficient = ߣ

Equation 16: Least squares with regularization in order to prevent over-fitting 

 

The coefficient ߣ is used to define the relative importance of the regularization term 

compared to the sum-of-squares term.  Substituting Equation 15 into Equation 16, we get 

Equation 17. 
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Find:	࢝          

to minimize: ߝ 

where:    

݂ሺݑ௡, ௡ሻݒ ൌ ඩ෍ሺܵܤܥሺݑ௡, ௡ሻݒ െ	݈ܽݒ௡ሻଶ
ே

௡ୀଵ

	– ߣ	 ∗ ࢝ଶ	 

࢝	= a vector of coefficients used in the CBS function 

ܰ = number of data points over which to fit 

 ݊ coordinate value of point	ݑ = 	௡ݑ

 ݊ coordinate value of point	ݒ =		௡ݒ

 ݊ = score value of point		௡݈ܽݒ

 regularization coefficient = ߣ

Equation 17: Regression Analysis performed with regularization 

 

In this equation, ߣ is set to a default of 0.5 but can be changed in the software. This sub-

problem is solved using SNOPT, with the design variables being the coefficients of 

Equation 14.  The optimization runs very quickly, as analytical gradients are available for 

the problem, with an example shown in Equation 18. 
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݂݀
݀ܿ

ൌ
cosሺݒሻ 	ට∑

ሺܵܤܥሺݑ௜, ௜ሻݒ െ ሻଶ݈ܽݒ
݊

௡
௜ୀ଴

∑ ሺܵܤܥሺݑ௜, ௜ሻݒ െ ሻଶ݈ܽݒ
݊

௡
௜ୀ଴

 

where: 

݂ ൌ the function in Equation 17 

ܿ ൌ a coefficient in Equation 14, designated above as the vector ࢝  

Equation 18: Example gradient for the coefficient ܿ in the regression analysis formulation 

 

4.2.3.3	Coverage	Objective	Function	

 

After finalizing which approach would be taken for the optimization process, the final 

objective function was formed for coverage.  The final formulation takes the form: 

 

Find: 	z୬, 	θ୬   

to maximize:	ܸ݈ܽ ൌ 	݂ሺ݅ߠ, ሻ݅ݖ ൌ ∑ ሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥሺݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁ܦሺ݅ߠ, ሻሻ݅ݖ
݊
݅ൌ0  

subject to: 

0 ൑ ௜ݖ ൑ 	݈௜ 

0 ൑ ௜ߠ	 ൑  ߨ2

ܿ௜ ൒ ൫ݎ௜ ൅ ௝൯ݎ ∗  ݌

where:  

ܿ௜ ൌ 	෍ ෍ ൝
௜ߠ) െ ሻ	௝ߠ

ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ
ଶ , ௜ߠ) െ ሻ	௝ߠ

ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ
ଶ ൏ ݎ ∗ 6

0, ௜ߠ) െ ሻ	௝ߠ
ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ

ଶ ൒ ݎ ∗ 6

௡

௝ୀ௜ାଵ

௡

௜ୀ଴
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,	௜ߠሺ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݅ܪ ,௜ݑ = ௜ሻݖ  ௜ݒ

,௜ݑሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ ௜ሻݒ ൌ ,௜ݑሺݏ݁݅ݎ݁ܵ	10	ݎ݁݀ݎܱ	݁ݐܽ݅ݎܽݒ݅ܤ	݁݊݅ݏ݋ܥ  (௜ݒ

l୧	ൌ the length of the cylinder around Santos 

n = the number of armor components 

z୧ = the height of the origin location of the ray 

θ୧ = the angle that determines the lateral location of the origin ray 

r ൌ the radius of an armor component 

Equation 19: Armor coverage objective function 

 

In this formulation the function known as ݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁݀ is the ray collision that is 

performed using the initial ߠ and ݖ position to obtain the corresponding ݑ and ݒ values 

on the Santos mesh. 

 

4.2.3.4	Weight	Function	

 

In order to provide a method with which to remove pieces and thus yields 1) a method for 

integrating weight criteria and 2) more accurate design results, an existence variable was 

created.  The variable was added in conjunction with the weight function, as it is a metric 

that can be validated subjectively. If the existence variable were used with only the 

coverage function, the optimization process would attempt to add as many armor 

components as possible until the body was covered, as this would maximize the objective 

function value. By adding the existence variable along with the weight objective function, 
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there is now a system in place that will minimize the number of armor pieces.  This is 

done by placing a maximum limit of the total weight of the armor system, and allowing 

the optimization process to determine the weight of each armor component in order to 

satisfy this constraint. This new existence variable was added to the original coverage 

function value, as the weight of an armor piece will directly affect the coverage of a 

given armor component.  This gives the formulation: 

 

Find: 	z୬, 	θ୬, ݁௡  

to maximize:	ܸ݈ܽ ൌ 	݂ሺ݅ߠ, ሻ݅ݖ ൌ ∑ ሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥሺݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁݀	ሺݖ
݅
, ሻሻ݅ߠ	

݊
݅ൌ0 ∗ ݁݅ 

subject to: 

0 ൑ ௜ݖ ൑ 	݈௜ 

0 ൑ ௜ߠ	 ൑  ߨ2

ܿ௜ ൒ ൫ݎ௜ ൅ ௝൯ݎ ∗  ݌

0 ൑ ݁௜ ൑ 1.5 

෍݁௜	∗	௪೔
൑ ௠௔௫ݓ

௡

௜ୀ଴

 

where: 

,௜ݖሺ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݅ܪ ,௜ݑ = ௜ሻߠ	  ௜ݒ

,௜ݑሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ ௜ሻݒ ൌ ,௜ݑሺݏ݁݅ݎ݁ܵ	10	ݎ݁݀ݎܱ	݁ݐܽ݅ݎܽݒ݅ܤ	݁݊݅ݏ݋ܥ  (௜ݒ

l୧: the length of the cylinder around Santos 

n: the number of armor components 

z୧: the height of the origin location of the ray 
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θ୧: the angle that determines the lateral location of the origin ray 

r : the radius of an armor component 

ܿ௜ ൌ 	෍ ෍ ൝
௜ߠ) െ ሻ	௝ߠ

ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ
ଶ , ௜ߠ) െ ሻ	௝ߠ

ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ
ଶ ൏ ݎ ∗ 6

0, ௜ߠ) െ ሻ	௝ߠ
ଶ ൅ 	௜ݖ) െ ሻ	௝ݖ

ଶ ൒ ݎ ∗ 6

௡

௝ୀ௜ାଵ

௡

௜ୀ଴

 

݁௜: the existence variable of an armor component 

 ௜: the weight of an armor componentݓ

 ௠௔௫: the maximum weight as defined by the userݓ

Equation 20: Coverage/weight objective function 

 

The existence variable ݁௜ has a subjectively determined upper bound of 1.5, allowing the 

objective function to determine if the armor piece should be increased in weight. Various 

other numbers were tested, but if the number was too large, armor pieces would become 

unreasonably heavy at the optimal point, and all other armor pieces would be removed. 

Thus, the number 1.5 was chosen to allow the pieces to increase in size, but cap their 

growth in order to ensure the existence of other armor pieces. This would occur in the 

situation where increasing the weight would not exceed the overall maximum weight, and 

also if the specific armor component’s particular coverage score is high enough to 

warrant the trade-off.  The final value of each armor component’s existence variable 

multiplied by its initial weight is returned to Santos, and the new weight is applied. If the 

existence variable of any armor component reaches zero, that armor piece is removed 

from the system. 
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4.2.3.5	Mobility	Function	

 

One of the benefits, and therefore the reason for choosing the point-cloud method, is that 

it allows for different data types to be incorporated into a single objective function.  This 

can be done by following the same process that was performed for the coverage objective 

function (i.e., transforming the point cloud into the design variables and running 

regression analysis to create a surface fit equation from the data) and including the new 

surface fitted objective function in addition to any other previously computed objective 

functions.  This method was tested using a simplistic form of the mobility metric.  The 

mobility metric can be thought of as how much the armor inhibits the motion of a task 

that Santos is attempting to perform. These motion restrictions are most often caused by 

armor pieces being too near joints that need to move in a certain direction.  In order to 

simulate this, a point cloud was created for the arms that focused on the mobility of the 

elbow.  The point cloud was intended to recreate the fact that if range of motion was to be 

maximized while trying to add armor components to the arm, it would be optimal to 

restrict pieces of armor from interfering with the elbow motion.  The equation then for 

the mobility objective function can be found by substituting the range of motion function 

for the coverage function in Equation 19, giving: 

Find: 	z୬, 	θ୬, ݁௡ 

To maximize:  

݂ሺߠ௜, ௜ሻݖ 	ൌ 	෍ ,௜ݖሺ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݅ܪ൫݁ݑ݈ܸܽܯܱܴ			 ௜ሻ൯ߠ	

௡

௜ୀ଴

 

Equation 21: Mobility objective function 
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In order to use this objective function alongside the coverage function, all that needs to be 

done is to include the additional surface fit to any other objective functions that exist. 

Using the example of combining the coverage function, the weight function, and the 

newly formed mobility function, we can expand  

Equation 20 to be: 

  

Find: 	z୬, 	θ୬, ݁௡ 

to maximize:  

݂ሺߠ௜, ௜ሻݖ 	ൌ 	෍ቂቀ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ൫ݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁݀	ሺݖ௜, ௜ሻ൯ቁߠ	 ∗ ݁௜ቃ 	

௡

௜ୀ଴

൅ ,௜ݖሺ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݅ܪ൫݁ݑ݈ܸܽܯܱܴ			  ௜ሻ൯ߠ	

Equation 22: Objective function that takes into consideration coverage, weight, and 

mobility 

 

This formulation requires no new additional design variables and is subject to all of the 

previous bounds and constraints. The new function ܴܱ݁ݑ݈ܸܽܯ൫ݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁݀	ሺݖ௜,   ௜ሻ൯ߠ	

is the newly formulated surface fit of the point cloud data representing the range-of-

motion results. Both ܴܱ݁ݑ݈ܸܽܯ and ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ functions are determined through 

the regression analysis performed with their respective data sets and using the 

formulation in Equation 17. In the data that was used throughout the testing process, the 

magnitude of the data was consistent. However, in the future it may be necessary to 
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normalize data sets in order to prevent high-magnitude data sets dominating the objective 

function. 

 Whole-Body Optimization 

The optimization process detailed above is for a single-segment optimization. Due to the 

nature of the cylinder approach being used, five cylinders must be created for the torso, 

right leg, left leg, right arm, and left arm. In order to perform whole-body optimization, 

the single-segment optimization is applied to each of the five different body segments. 

These results are then optimized in order to obtain the overall optimal whole-body armor 

solution. This is done by finding the ݊ maximum objective function values and locations 

regardless of the segment, where ݊ is the number of armor components.  For example, if 

there are four armor components, and the maximum four possible objective function 

values of each component are a combination of three being on the chest and one being on 

the arm, this will be the resulting armor design. Thus, the whole-body armor optimization 

process is the result of running each segment individually and then selecting the optimal 

combination of their results.  An overview of the psuedocode that was implemented is as 

follows: 

 

1. Run optimization on all ݊ components on a single segment and return an 

array of scores 

2. Run all ݊ components on any other segments, again returning each 

individual score 
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3. Find the highest ݊ scores of all arrays (e.g., if there are four components, 

and the highest score on the right arm segment is higher than the fourth-

highest score on the torso segment, that component is added to the list) 

4. Return the components to their highest possible positions 

 

This method allows for little modification of the original segment optimization in order to 

provide whole-body optimization.  This method does, however, have the con of requiring 

five separate optimization problems to be performed in order to obtain a solution.  This 

could be addressed in the future by using parallel processing to perform these 

optimizations concurrently, which would greatly reduce computational time.  The other 

major drawback of this method is that it provides for very poor initial guesses. For 

example, when an optimization process is performed on the arm, and all of the armor 

pieces originated on the torso, the initial guess will essentially be random. 

 Sensitivity Analysis 

 

The method put forth in this chapter is also useful to supply the user with information that 

may allow for specific design decisions and trade-off analysis.  For this reason, the added 

capability of sensitivity analysis was implemented and can be used to increase the 

understanding of relationships between the input and output variables of the system or 

model (Prannel, 1996).  For this thesis, the following three types of sensitivity analysis 

are extracted and discussed: 
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1. Objective function value 

2. Lagrange multipliers 

3. Derivative values of the design variables with respect to the objective 

function 

 

4.2.5.1	Armor	Component	Objective	Function	Value	

 

By determining which pieces contributed least to the objective function score, one can 

decide which pieces to remove if such a case were necessary. With respect to the highest 

objective function score, it is possible to identify which pieces are the most critical to the 

design.  In order to make use of this information, each individual armor piece’s 

component of the overall objective function must be maintained and returned to the user.  

The individual objective function score for a given armor component can be derived from 

Equation 19 by examining a component’s score from the summation of the overall 

objective function and would be defined as: 

 

ܸ݈ܽ ൌ 	݂ሺߠ, ሻݖ ൌ ሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥሺݐ݅ܪ	݊݋݅ݐܿ݁ݐ݁ܦሺߠ,  ሻሻݖ

Equation 23: An individual armor component’s score that contributes to the overall 
objective function 

 

where the ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ function can be replaced by any of the other metrics’ 

objective function (e.g., mobility objective function formulated in Equation 21).  
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Initial results of the sensitivity analysis were positive and useful.  To showcase this, 

Figure 28 shows the data set used to create the coverage objective function (Equation 19) 

that was used for an example.  This point cloud was transformed into an objective 

function using the approach and methodology laid out in the previous sections of the 

chapter. The values of the points in the cloud are highest for the white points and lowest 

for the black.  The points here are meant to represent a blast pressure value at a given 

point.  This data is an example of the type that could be supplied by the user. 

 

 

Figure 28:  The point cloud of the heart was used as the basis for the objective function 

 

Coverage optimization was then performed, and the software was used to highlight the 

three pieces with the highest objective function value. These results can be seen in Figure 

29, with the numerical results found in Table 1.  Although the objective function values 

were derived from example data and therefore have no specified units, the results would 

be similar for data that the user provided.  Table 1 shows a range of 299 to 385 for the 
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objective function value scores.  The range here reported to the designer would indicate 

how important it is to maintain all of the armor components in the system.  This 

information also tells the designer how much each component contributes to the overall 

design of the armor system. For example, the armor component of index 0 can be 

considered 28% more important to coverage than the component of index 11. 

 

Comparing the returned and highlighted pieces in Figure 29 to the basis for the objective 

function in Figure 28, one can see that the pieces line up nicely with the section of the 

point cloud with the highest area of white points, which you will recall indicate the 

highest objective function values.  These results indicate to the designer that the three 

armor pieces highlighted are of the highest importance to the design.   

 

 

Figure 29: The sensitivity analysis with the highest three armor component objective 
score values being highlighted 
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Armor ID Coverage Score 

[0] 385.0281982 

[1] 369.5085144 

[2] 354.5787354 

[3] 350.3672485 

[4] 326.8458557 

[5] 322.7375183 

[6] 316.9371643 

[7] 313.1019287 

[8] 312.1017456 

[9] 305.940155 

[10] 304.3232422 

[11] 299.6908264 

 
Table 1: Numerical results for each armor component’s averaged  

derivative score 

 

4.2.5.2	Derivative	of	Objective	Function	with	Respect	to	Design	Variables	

 

The other piece of information that is useful to a designer is the pieces with the highest 

sensitivity values.  The higher value of the derivative implies that being able to change 

the position of the piece even slightly would result in the highest variation in the 
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objective function score. This could either mean an increase or a decrease (indicated by 

the sign of the score) in the objective function score, which can indicate how one might 

want to move components. In order to give this information simplicity and still retain its 

meaning, the two design variables were combined into a single value.  This is important 

for indicating which armor components we could move to get the greatest effect.  Since 

the location of the armor component is determined by both design variables, we can 

combine them and simplify the information to indicate which piece needs to be moved.  

Although the design variables are continuous and smooth, the objective function does not 

have analytical gradients due to the process of transforming the variables from three-

dimensional space into two-dimensional space. The gradients of each design variable 

must be obtained from SNOPT, which uses a finite difference approximation.  The 

average of the derivatives of the objective function with respect to each design variable 

would come from the objective function in Equation 23 and would be: 

     

݁ݎ݋ܿܵ	݁ݒ݅ݐܽݒ݅ݎ݁ܦ	݀݁݃ܽݎ݁ݒܣ ൌ 	

݈ܽݒ߲
ߠ߲ ൅	߲ݖ߲݈ܽݒ

2
 

where: 

ܸ݈ܽ ൌ ,ߠሺ݊݋݅ݐܿ݁ݐ݁ܦ	ݐ݅ܪሺ݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ	  ሻݖ

݈ܽݒ߲
ߠ߲

ൌ 	
݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ߲

,ߠሺ݊݋݅ݐܿ݁ݐ݁ܦ	ݐ݅ܪ߲ ሻݖ
,ߠሺ݊݋݅ݐܿ݁ݐ݁ܦݐ݅ܪ߲ ሻݖ

ߠ߲
 

݈ܽݒ߲
ݖ߲

ൌ 	
݁ݑ݈ܸܽ݁݃ܽݎ݁ݒ݋ܥ߲

,ߠሺ݊݋݅ݐܿ݁ݐ݁ܦ	ݐ݅ܪ߲ ሻݖ
,ߠሺ݊݋݅ݐܿ݁ݐ݁ܦݐ݅ܪ߲ ሻݖ

ݖ߲
 

 

Equation 24: The averaged derivative score used for sensitivity analysis 
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A similar process was performed as in the two previous sections in order to highlight the 

armor pieces that correspond to the highest design variable derivatives with respect to the 

coverage objective function (Equation 19) and is illustrated in Figure 30. Comparing 

Figure 30 and Figure 28, one can see that the pieces with the highest derivative values lay 

on the edge of the point cloud values.  This is due to the sharp decrease in values from the 

edge of the point cloud to the surrounding defaulting point cloud gradient. The reasons 

that these components specifically had the highest gradients can be explained by looking 

at the results of Figure 29. In this figure, the highest objective function values are located 

on the left side (looking at it from the picture’s perspective).  This would mean that the 

armor pieces would be going from the highest values of the heart point cloud pressure 

data to the lower values of the default gradient values. This indicates to the designer that 

if they were able to move these armor pieces (this may be done by changing the amount 

of overlap allowed), you would see the highest change in your overall objective function 

score. The armor pieces and their corresponding scores are also shown below in Table 2.  

In this table, the sign of the value indicates the direction of the change in the objective 

function due to the change in the design variables. This means that by modifying a given 

design variable, you can note the magnitude and direction of its effect on the objective 

function value. This would allow a designer to know the significance of a change in 

design variable (e.g., an armor component moved slightly vertically) on the objective 

function value. 
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Figure 30: The sensitivity analysis with the highest three armor component derivative 
values being highlighted 
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Armor ID Averaged Derivative Value 

[0] 14.59407139 

[1] 35.23088074 

[2] -60.46815109 

[3] -30.32169724 

[4] 84.32984924 

[5] -27.18102074 

[6] 35.0343399 

[7] 51.26932144 

[8] 37.26494217 

[9] 188.4612885 

[10] 20.94153976 

[11] -8.592450142 

Table 2: Numerical results for each armor component’s averaged  
derivative score 

 

4.2.5.3	Lagrange	Multipliers	

 

Another valuable piece of information that is typically considered in sensitivity analysis 

is the Lagrange multiplier for each constraint.  There is a single Lagrange multiplier for 

each of the constraints in the problem.  The value of the Lagrange multiplier at the 

solution is equal to the rate of change in the optimal value of the objective function as the 

constraint is relaxed.  Lagrange multipliers in the case at hand would tell the designer 
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which constraints to relax in order to see the largest increase in the objective function 

value.  SNOPT is able to output the Lagrange multipliers for every problem that it runs. 

An output from a problem again using the coverage objective function (Equation 19) with 

12 armor pieces can be seen in Figure 31. 

 

 

Figure 31: Example output from SNOPT output file with the Lagrange multiplier for each 
constraint being highlighted 

 

From this output, it can be seen that both constraint 2 and constraint 9 are active.  This 

means that this armor overlap constraint (as defined in Section 4.2.2) is being enforced 

and that no armor components involved in this constraint can be moved any closer 

together. Here, the larger the Lagrange multiplier, the larger that constraint’s effect on the 

overall objective function value, and in this case, the coverage and survivability of the 

armor system.  Specifically, in the example above, constraint 2 has a larger effect on the 

system than constraint 9.  Since the constraints being shown here are with regards to 

overlap (i.e., the distance between armor components and therefore their location in the 

final solution), what the high value of the Lagrange multiplier for constraint 2 means is 

that by allowing for more overlap along this constraint, a greater objective function could 
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be achieved. Another way to interpret this result is to say that if the designer were to add 

more material over a certain spot (i.e., by either allowing for more overlap or by 

increasing the material density at this location), the greatest positive increase of the 

optimal value would occur. 

 

 Graphical User Interface (GUI) 

 

In order for a user to import point cloud data to use as an objective function, manipulate 

data, select optimization settings, and perform the optimization, a visualizer was created 

within the Santos software and can be seen in Figure 32.  
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Figure 32: The GUI used to formulate the objective functions from the point-cloud data, 
as well as to run the system design optimization 

 

The user can then use a series of numerical sliders in order to add/remove emphasis to 

certain parts of the point cloud.  If the user increases the value of the slider, the values of 

the points in the cloud associated with that section are increased. When regression 

analysis is performed, any changes made to the point cloud values will be considered, 

with a greater value implying greater importance.  These weights are then part of the 

equation that is used for the objective function. From this, the value for any point in a 

cloud is defined as: 
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௪ݒ 	ൌ ௜ݒ ∗  ௖ݓ

where: 

ܿ = A point cloud group (e.g., heart, lungs, liver, etc.) 

 ܿ ௪ = weighted value of a point in a point cloudݒ

 ܿ ௜ = initial value of a point in a point cloudݒ

 ܿ ௖ = weight of the point cloudݓ

Equation 25: Equation to determine the weighted value of a point in a point cloud using 
the GUI 

 

The GUI has buttons to load or clear point cloud data on the Santos avatar, along with 

checkboxes to enable/disable the visibility of the clouds.  The visibility for individual 

organs can also be toggled by setting their respective weights to zero, as this would imply 

that they are not used in the objective function. 

 

In the example shown below, the user is able to increase/decrease the weight of a series 

of organs for which blast pressure point cloud was available.  The user can also select 

over which body segments the design optimization should take place (i.e., torso, right 

arm, left arm, right leg, and left leg).  The final element of the GUI is the numerical slider 

that can be used by the user in order set a maximum weight of the overall armor system. 

A suggested maximum weight for a whole-body system of 15 KG was discussed in 

Section 2.2.2.  This weight is then set as the upper boundary constraint for the weight 

objective function.  
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4.3	Results	

 

This section lays out select results from the three objective functions (i.e., coverage, 

weight, and mobility) that were discussed earlier in this chapter. These results provide the 

proof of concept and highlight the limitations of the current approach 

. 

 Coverage 

 

The first objective function that was formulated and therefore tested was the coverage 

objective function discussed in Section 4.2.3.1. Referring back to the GUI (Figure 32) 

that was implemented and discussed in Section 4.2.6, one can recall that the user has the 

ability to add emphasis to certain organs by applying a weighting factor during the pre-

processing stage of the regression analysis step (Equation 25).  This allows for any 

desired variation of an objective function using a single data set.  A set of examples that 

use the formulation in Equation 19 as the objective function can be seen below. 
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Figure 33: The liver (red) is set as a higher priority than the heart (yellow), and the armor 
pieces are optimized to cover the maximum score 

 

 

Figure 34: Adding additional armor components to the design allows for coverage of the  
heart after the liver has been covered 
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  In Figure 33, the point clouds of the organs were colored in order to clarify the different 

organs.  For this example, the heart and liver were the only two organs that were 

considered.  The weightings were set such that the liver was of more significance.  The 

figure shows an initial guess, with the resultant optimization solution.  Since there were 

not enough armor components to cover both organs, they clustered at the more important 

liver. Adding additional armor components (shown in Figure 34) allows for the 

components to move to the heart after fully covering the liver.  

 

There is also an example using the same number of components with two differently 

weighted objective functions. For this example, four organs were weighted differently for 

two different test cases.  The organ point clouds for the heart, liver, stomach, and kidneys 

can be seen in Figure 35.  For each example, the weights were set, regression analysis 

performed to create an objective function, and the armor components’ locations used as 

design variables in order to optimize that objective function.  The results of these two 

examples, along with the weights used for the objective function, can be seen in Figure 

36 and Figure 37.  Both examples consist of 28 armor components, which equates to 56 

design variables and the single overlap constraint (Equation 13). 
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Figure 35: The organ point clouds that were used and weighted for the results in Figure 
36 and Figure 37 
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Figure 36: Examples of the coverage objective function with point cloud data being more 
heavily weighted on the stomach and kidney than the heart and liver 
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Figure 37: Example of the coverage objective function with point cloud data being more 
heavily weighted on stomach and kidney than the heart and liver 

 

In Figure 36, the weightings for the heart and liver were set to almost twice the 

weightings of the stomach and kidney. This was done in order to emphasize protection of 

the heart and liver, while still formulating the objective function such that armor 

components would trend towards the stomach and kidneys.  The results show that the 
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armor system is focused mainly over the two primary organs, with pieces continuing to 

the secondary organs. 

 

In Figure 37, the same number of pieces was used, but the weighing factors were varied 

to emphasize the importance of the stomach and kidneys over the heart and lungs.  From 

this, it can be seen that the armor system stays intact, but the armor components obtain a 

higher objective function value by covering the higher weighted stomach and kidney 

organs. 

 

In both examples, notice that the armors touch, but no overlap of any concern occurs. 

This overlap prevention remains enforced and consistent in all examples. 

 

 Existence 

 

As was discussed in Section 4.2.3.4, the weight function and constraint are implemented 

in addition to the coverage function.  This is due to the fact that without a competing 

objective function, to optimize weight would be to remove all armor pieces from the 

system. Since this result would provide no new information, it is performed in 

conjunction with the coverage function. These two competing functions attempt to have 

as many armor components as possible in order to maximize coverage, while at the same 

time minimizing weight in order to satisfy any weight.  An example of armor coverage 
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and weight optimization can be seen in Figure 38. This example has 70 armor 

components and, with the new design variable along with the two location design 

variables, the problem now has 210 design variables. There is now an additional 

constraint for the weight, along with the single overlap constraint, which equates to 2 

constraints. All of the examples shown below use the formulation in  

Equation 20. 

 

 

Figure 38: Example of the weight constraint being applied during optimization.  The 
coverage function in this function was focused around the heart 

 

In this example, the armor coverage function was focused around the heart.  In order to 

satisfy the weight constraint, the 2.78 KG of armor were reduced to 0.7 KG, with the 

remaining armor components being placed on the heart. Additionally, an example using 
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whole-body optimization is shown in Figure 39.  As noted in Section 3.2.4.6, an average 

weight for a whole-body armor system is approximately 15 KG. 

 

 

Figure 39: Full-body coverage with the picture on the right showing a decreased weight 
constraint and therefore armor components on the shoulders 

 

In this example, the same initial guess was used, but the weight constraint was changed 

just slightly (from 7 KG to 6.5 KG), such that only a small portion of the armor 

components were removed.  For the case shown, the arms had the lowest coverage value, 

and therefore the components were removed only from there, keeping the rest of the 
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design intact.  Coverage optimization still occurs when the weight constraint is reduced, 

but the armor components tend to stay in their previous positions due to SNOPT having 

found a local maximum in the previous solution. The problem consisted of 100 armor 

components, which equates to 300 design variables and 2 constraints (overlap and 

weight).  This formulation, which has 2 constraints, is using the new constraint 

formulation in Equation 13; when using the previous formulation of Equation 11, it 

equates to 4,951 constraints using Equation 12. 

 

 Mobility 

 

This set of examples showcases the addition of the range-of-motion objective function 

discussed in Section 4.2.3.5. For this example, a point cloud was created in such a way as 

to provide an academic example of the results that could be produced by a range-of-

motion metric calculation.  The point cloud was created to maximize the mobility over 

the arms. This was done by giving the points around the shoulder, elbow, and wrist the 

lowest objective function values.  The reasoning behind this is that armor pieces around 

the joints can cause the biggest restriction in motion.  The initial point cloud and results 

are shown below in Figure 40. Equation 21 is the objective function for this example. 
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Figure 40: Initial point cloud and results of mobility of arms as an objective function 

 

The initial point cloud from which the objective function is created is shown, with the 

lighter color points indicating a higher objective score.  For this example, only the arm 

segments were considered due to the primary concern being the ability to place armor 

pieces on the arms, but in such a way as to minimize the restriction of mobility.  The 

results shown place the armor pieces in such a way as to cover all available areas of the 

arm, while still avoiding placement over the mobility restriction areas of the joints.  

Although the weight constraint is set to the default 15 KG and therefore has no effect on 

the solution shown, it is still a constraint, and the existence variables are still included. 

With the 44 armor pieces used in this problem, there are 132 design variables and 2 

constraints (again using the second constraint formulation of Equation 13). 

. 
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 Multi-Objective Optimization (MOO) 

 

The final set of examples showcases the use of both coverage and mobility as objective 

functions as discussed in Equation 22. By including the mobility in addition to the 

coverage function, these results showcase an academic use of multi-objective 

optimization. For this, an example point cloud was created to mimic the type of data that 

could be representative of future work that would automatically generate point clouds 

from armor system metrics.  These clouds would allow for less intuitive design problems 

to be addressed (e.g., more complex data of range of motion, balance, torque, etc.). The 

cloud that was created was done so in order to represent the decrease in range of motion 

that would occur when armor components were located too close to either the elbows or 

the shoulders.  This mobility objective function was combined with the coverage function 

that focused on the heart, as well as covering the upper areas of the arms. 

 
 

 

Figure 41: Initial result with only coverage of the heart as the objective function 
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Figure 42: Whole-body results with coverage as an objective function. The armor 
components move to the arms 

 

 

Figure 43: Including the range-of-motion objective function in addition to the coverage 
function pushes the armor components away from the elbow and further down the 

shoulder 

 

For initial results, armor components were optimized solely over the torso, with the 

solution placing the components over the heart, as expected (Figure 41). In this example, 

there were 14 armor components, 42 design variables, and 2 constraints.  More armor 

components were then added, and the arms were included in the objective function, but 

range of motion is still not being considered (Figure 42). This example now has 28 armor 

pieces, 84 design variables, and 2 constraints.   
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This example also showcases that, once the arms are included, some of the armor 

components leave the torso and move to the shoulders.  This is due to the high values 

being set for the arm coverage; after the heart has been covered, the optimal placement 

for components is on the arm.    

 

Finally, the range-of-motion objective function was included (Figure 43).  In this result, 

you can see the armor pieces being pushed away from the elbow and shoulder, in order to 

maximize the range of motion of these joints. The final example adds no additional armor 

pieces, so the number of design variables and constraints remains 84 and 2, respectively. 

  



 

 

 

116

 

CONCLUSION 

5.1	Summary	

 

The work and approaches discussed and shown in this thesis address a gap that 

exists in the way that armor systems are evaluated, chosen, and designed. The primary 

goal was to leverage existing digital human modeling capabilities within Santos in order 

to provide a systematic, efficient, and measurably improved way to design, as well as to 

compare, armor systems. 

 

It should be noted that the continuous optimization approach focused on method 

development, and the examples provided are meant to be academic. It is intended to 

provide one piece of the puzzle in order to perform more intensive, whole-body armor 

system design. Besides the usefulness of the tools used, there are two significant 

contributions.  The first contribution was an approach for taking the three-dimensional 

surface of Santos and transforming it into a two-dimensional, bounded, continuous space 

over which the surface could be optimized.  When this problem was originally 

formulated, there were no methods for formulating a problem where the variables would 

only allow for placement on a location along Santos’s body.  This method of 

transforming variables alleviates this problem in a non-intuitive, yet simple and effective 

way.  The main problem that existed with using this approach was the lack of analytical 
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gradients for the gradient-based optimization.  Although using the cylinder approach 

allows for continuous and smooth design variables, there is still no mathematical function 

for this transformation due to the nature of the hit detection method. This is a problem 

that is discussed further in Section 5.3 with possible solutions. 

 

Another novel contribution was an alternative approach to topology optimization, as 

mentioned in Section 1.2.5. In a typical topology optimization problem, the design 

variables directly affect the existence of a number of finite pieces of materials in order to 

create a structural design and abide by load and space constraints.  This leads to the 

problem of checkerboarding whereby enough pieces remain to satisfy the formulated 

problems constraints, but the design is either infeasible from a manufacturing standpoint 

or provides results that are observably not optimal. This problem is caused by errors in 

the finite element formulation.  The similarity to this problem that can be drawn to the 

armor system design optimization would be an area of extremely small armor 

components that are meant to cover an area of interest (e.g., the heart), but has a 

significant amount of pieces that were removed, creating an armor component system 

that is not truly optimal for coverage and may not even be possible from a manufacturing 

and materials standpoint. In order to overcome this, the addition of location was included 

to the design variables in the form of ߠ and	ݖ, which allowed for the armor pieces to be 

located strictly on the surface of the avatar.  By allowing the finite number of materials to 

both determine existence and change location, optimal design tends to relocate the pieces 

into areas of local optima.  
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5.2	Discussion	

 

This work presented progress in all areas intended to be addressed at the onset of the 

work.  Nonetheless, there were several challenges, especially with regards to the system 

design optimization.  There is a clear gap in the current state of the art for optimal armor 

design with respect to human factors, and there is room for improvement in this area. 

 

The work of the armor system optimization filter provided a tool that could be used to 

make decisions more effectively. This tool allows for a wide variety of armor systems to 

be designed and selected as needed, based on situational criteria, instead of a single, all-

purpose design. The tool is easy to use and is effective for its intended purpose.  In order 

for the system to be as effective as possible, it is important that the armor system library 

is thoroughly populated.  If the system is able to select from a very large number of 

options, it will increase the chances of finding a globally optimal solution.  The approach 

was also coded in such a way as to allow for the easy insertion of newly developed 

metrics.  This allows the Santos software either to improve the computational time of the 

existing metrics or possibly to implement any newly devised metrics that may be useful.  

The length and complexity of tasks that are rendered on the avatar also increases the 

computational time.  As the software continues to develop and these times decrease, so 

will the time for the armor system optimization filter. 
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Although the armor system design optimization was shown to be feasible, advances still 

must be made in order to provide full functionality and usefulness.  The biggest challenge 

in this area was formulation of the design variables.  It was clear that defining the 

problem in such a way that it would be a continuous, differentiable, smooth problem that 

was also bounded to the Santos avatar was not going to be a simple task.  While the 

approach taken did allow for the necessary transformation from three-dimensional space 

into two-dimensional space, there is still room for improvement in the method that was 

discussed in this thesis. The design variables were able to be formulated in such a way 

that they were continuous but no longer differentiable due to the hit detection 

transformation not being able to be formulated. 

 

One of the main problems is that the transformation through hit detection does not allow 

for analytical gradients.  The lack of analytical gradients causes two problems. The first 

problem is that this requires SNOPT to perform finite difference approximation after each 

iteration, in order to determine the gradient of the objective function.  With each armor 

component having three design variables, as the number of armor pieces grows, this 

process becomes computationally expensive.  This causes the run-time for optimization 

to become unreasonably long, in the magnitude of hours, for large problems. A large 

problem here would be defined as whole-body optimization starting around 

approximately 100 armor components.  

 

The other issue that stems from the lack of analytical gradients is that, as problems grow 

large, there are situations where SNOPT fails to find an optimal solution, especially with 
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poor initial guesses. In these cases, SNOPT exits and gives an error message describing 

that “the current point cannot be improved.” Presently, initial guesses are determined by 

the current location of the armor components on the Santos avatar.  This can lead to a 

very poor initial guess for the torso segment if all armor components were previously 

placed on, for example, the leg segment. There may be benefits from attempting a 

method for improved initial guesses, which would help alleviate both the time issue and 

the failed solutions.  An example of improving the initial guess would be to move the 

armor pieces to cover a segment without overlapping and then begin the optimization. 

However, both of these problems could be greatly improved by the use of analytical 

gradients.  The analytical gradients would be able to be obtained from further research 

into a smooth, continuously differentiable two-dimensional representation of the three-

dimensional points along the surface of the Santos avatar.   

 

The first hypothesis was that it was possible for existing armor systems to be down-

selected based on performance during task simulation; this was proven true. The results 

were positive, and the tool that was created has immediate potential to be used for 

optimal armor selection.  The method is especially useful due to its generalized nature.  

Since any task that can be rendered can be considered, the armor selection has the 

potential to be used to determine the optimal armor for either a specific task or a very 

wide range of tasks.  The armor systems library can also be continually populated, which 

allows for future expansion. The tool is most useful if the library is to serve as an ever-

expanding database of successful armor designs. By providing more potential solutions, 

there is a greater chance of finding a globally optimal solution.  However, even with a 



 

 

 

121

smaller library size, it was easy to see the potential usefulness of this tool, and it worked 

as was predicted. 

 

The second hypothesis was that new armor systems can be automatically designed based 

on user-specified criteria and third-party objectives.  This hypothesis, although being 

more technically challenging to prove than initially anticipated, was also found to be true.  

The difficulties were not in the process of optimization of the objective function formed 

from the data, as a method for this was successfully developed. Rather, the difficulty was 

in formulating the design variables and objective function in a way that would be 

continuous along the Santos avatar.  This complication led to an increase in both 

complexity and computational time.  That being said, the hypothesis was proven true, and 

the concept was executed and found to be usable.  The results showcased real potential 

for the use of this tool and also provided informative and accurate results.  While the 

original hypothesis was proven true, the method that was used in the approach could be 

revisited.  Possible new approaches will be discussed in Section 5.3. 

 

The third hypothesis was that predictive DHM capabilities and product performance 

could be integrated and embedded within an overarching optimization process.  Stating 

the hypothesis in another way, it is possible to use the Santos software to perform 

continuous optimization of a human systems integration design problem. This hypothesis 

was proven true, as a method for performing continuous optimization was formulated and 

tested with initial results.  
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Currently, HSI processes that use DHM capabilities focus on optimizing over a discrete 

set of options. The armor system optimization design filter is an example of this process.  

When discrete optimization is used, the quality of the solutions depends primarily on the 

available solutions that can be selected.  While increasing the number of choices will 

increase the possibility for a globally optimal solution, continuous optimization is the 

preferred approach. In continuous optimization, the number of possible solutions no 

longer matters because solutions can now be determined on the fly.  Instead of optimizing 

an HSI process using a discrete number of choices, this thesis has shown that is possible 

to leverage DHM software not just to determine between a finite set of options, but to 

design options within the realm of the human factors measured in the software.  This idea 

can be extended to not just determining, for example, the optimal placement of a drive 

shaft in a car between three different predetermined choices, but also to use DHM 

capabilities to design the exact placement and height of a drive shaft through continuous 

optimal design.  By leveraging the DHM capabilities within an overarching optimization 

loop, it has been shown that designs can be improved into the scope of globally optimal 

as opposed to locally optimal. 

  

5.3	Future	Work	

 

One of the primary goals that would be addressed in future work is to re-evaluate the 

transformation of design variables in the objective function for design optimization.  The 
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method discussed in this paper provided a different approach to the discontinuity of 

variables problem, and this approach can still be leveraged and approved. While some 

sort of transformation is necessary in order to provide a continuously bounded function, it 

may be possible to formulate the problem such that analytical gradients of the design 

variables can be used. This would be done by creating a UV mapping of a texture in such 

a way that all UV coordinates map to a location on an avatar.  In the current method of 

UV mapping, there are many holes and seams where a given UV coordinate does not map 

to any location on the avatar.  This current discontinuity prevents the UV coordinates 

from being used as design variables.  

 

One of the biggest factors in the high computational time is the lack of analytical 

gradients, as SNOPT is forced to perform finite difference approximation with respect to 

each design variable.  As the number of armor pieces approaches a large amount, this 

becomes extremely time intensive.  Analytical gradients could not be used with the two-

dimensional UV coordinate mapping, as there were “seams” in the function, causing 

discontinuity.  It may be possible to use a different three-dimensional to two-dimensional 

mapping system that allows the two-dimensional space version of the problem to be 

entirely continuous and differentiable. If this were possible, the problem could be 

formulated such that the design variables are within the two-dimensional space, and 

analytical gradients could be used.  This would allow for much faster optimization times.   

 

Another area of work would be to automate the process of transforming the armor system 

metrics into usable point cloud data.  An example of this would be to have Santos 
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perform a task and record the areas that go through range of motion throughout the task.  

This data would then be formulated into a point-cloud and that point-cloud used as the 

objective function.  This process could be used for all of the available armor metrics, 

allowing for quick and meaningful objective functions. 

 

A last area of potential work would be to use real-time armor optimization.  A recent 

addition to Santos performs a series of hit detections with a detailed penetration model.  

This hit detection is done in real time and maintains information as to whether a hit 

collides with an armor piece, an organ, or the body. An example of this can be seen in 

Figure 44.  If this data could be transformed quickly enough, it would be possible to try 

to optimize the armor pieces in time with the data that is being provided from hit 

detection. 
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Figure 44: Real time hit-detection and damage score in Santos with each color of the ray 
indicating a hit of a different body part 
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