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ABSTRACT

This dissertation presents a new inverse consistent image registration (ICIR)

method called boundary-constrained inverse consistent image registration (BICIR).

ICIR algorithms jointly estimate the forward and reverse transformations between

two images while minimizing the inverse consistency error (ICE). The ICE at a point

is defined as the distance between the starting and ending location of a point mapped

through the forward transformation and then the reverse transformation. The nov-

elty of the BICIR method is that a region of interest (ROI) in one image is registered

with its corresponding ROI. This is accomplished by first registering the boundaries

of the ROIs and then matching the interiors of the ROIs using intensity registration.

The advantages of this approach include providing better registration at the bound-

ary of the ROI, eliminating registration errors caused by registering regions outside

the ROI, and theoretically minimizing computation time since only the ROIs are

registered. The first step of the BICIR algorithm is to inverse consistently register

the boundaries of the ROIs. The resulting forward and reverse boundary transfor-

mations are extended to the entire ROI domains using the Element Free Galerkin

Method (EFGM). The transformations produced by the EFGM are then made in-

verse consistent by iteratively minimizing the ICE. These transformations are used

as initial conditions for inverse-consistent intensity-based registration of the ROI in-

teriors. Weighted extended B-splines (WEB-splines) are used to parameterize the

transformations. WEB-splines are used instead of B-splines since WEB-splines can be
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defined over an arbitrarily shaped ROI. Results are presented showing that the BICIR

method provides better registration of 2D and 3D anatomical images than the small-

deformation, inverse-consistent, linear-elastic (SICLE) image registration algorithm

which registers entire images. Specifically, the BICIR method produced registration

results with lower similarity cost, reduced boundary matching error, increased ROI

relative overlap, and comparable inverse consistency error than the SICLE algorithm.
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ABSTRACT

This dissertation presents a new inverse consistent image registration (ICIR)

method called boundary-constrained inverse consistent image registration (BICIR).

ICIR algorithms jointly estimate the forward and reverse transformations between

two images while minimizing the inverse consistency error (ICE). The ICE at a point

is defined as the distance between the starting and ending location of a point mapped

through the forward transformation and then the reverse transformation. The nov-

elty of the BICIR method is that a region of interest (ROI) in one image is registered

with its corresponding ROI. This is accomplished by first registering the boundaries

of the ROIs and then matching the interiors of the ROIs using intensity registration.

The advantages of this approach include providing better registration at the bound-

ary of the ROI, eliminating registration errors caused by registering regions outside

the ROI, and theoretically minimizing computation time since only the ROIs are

registered. The first step of the BICIR algorithm is to inverse consistently register

the boundaries of the ROIs. The resulting forward and reverse boundary transfor-

mations are extended to the entire ROI domains using the Element Free Galerkin

Method (EFGM). The transformations produced by the EFGM are then made in-

verse consistent by iteratively minimizing the ICE. These transformations are used

as initial conditions for inverse-consistent intensity-based registration of the ROI in-

teriors. Weighted extended B-splines (WEB-splines) are used to parameterize the

transformations. WEB-splines are used instead of B-splines since WEB-splines can be
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defined over an arbitrarily shaped ROI. Results are presented showing that the BICIR

method provides better registration of 2D and 3D anatomical images than the small-

deformation, inverse-consistent, linear-elastic (SICLE) image registration algorithm

which registers entire images. Specifically, the BICIR method produced registration

results with lower similarity cost, reduced boundary matching error, increased ROI

relative overlap, and comparable inverse consistency error than the SICLE algorithm.
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CHAPTER 1
INTRODUCTION

1.1 Overview

In medical imaging, image registration between two similar anatomical objects

may be described as finding a mapping that defines a point-to-point correspondence

between the objects in the images. This correspondence may be established using set

of known corresponding points, contours, surfaces, difference in intensities, mutual

information or any combination of these. A “perfect” registration, if obtainable would

define such a correspondence uniquely and exactly across the two images and matches

each tissue or structure between the two images perfectly up to infinitesimal detail

in the continuum. In practice however, a perfect registration is not achievable due

to limited information, finite maximum degrees of freedom of the deformation model

and lack of precise description of actual process. Instead, the registration problem

is often posed as an optimization problem with certain constraints thought to be

representative of the actual deformation of the objects. Based on different sets of

constraints, there can theoretically be infinite ways of registering two objects together.

It is therefore necessary for the mapping defining correspondences to have properties

that approximate the desired correspondences.

Splines present an important class of functions and have been very popular

as basis functions for image registration.The advantages of splines include spatial

parametrization, localization, computational ease, smoothness and good approxima-
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tion properties of splines. Most registration methods including popular spline based

methods such as Bookstein’s Thin Plate Spline method [2], Rueckert et al.’s Free

Form Deformation [48], Rohr et al.’s approximating thin plate spline method [46]

either perform a landmark based registration or register images based on intensity or

mutual information based cost functions. The algorithms of Johnson and Christensen

[21] and Kybic et al. [25], [27] combine landmark and intensity information and at-

tempt at finding a registration function that minimizes both. All these methods can

perform relatively better than others under certain conditions depending on the ap-

plication. However, all these methods assume a continuity in deformation across the

image. Continuity is imposed by using transformations constructed from continuous

functions. Such a framework does not allow for discontinuities anywhere in the image,

including outside the region of interest.

The continuity assumption fails to hold when matching anatomical objects.

For example, while matching two instances of human lung from same subject at dif-

ferent points in breathing cycle, the lobes slide or rotate against one another. Sliding

along lung boundaries is an example of a discontinuity that cannot be accommodated

by registration algorithms that use a continuous transformation. This work proposes

a new method that matches the object boundaries exactly while performing registra-

tion only inside the domain of the object instead of entire image. This approach uses

a basis function that is uniformly zero outside the region of interest to parametrize

a transformation. Basis functions defined over entire image such as Fourier and B-

splines fail to meet this criterion. Hollig’s [17] Weighted Extended B-splines (WEB
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splines), which are constructed from B-splines using the geometry of the object, have

non-zero support only over the region of interest of the defined object and are suit-

able for the task. WEB-splines provide the motivation for the presented work aimed

at developing a new consistent intensity based registration algorithm that registers

only region inside object of interest while matching the boundaries exactly. The

presented algorithm will be referred to as Boundary-Constrained Inverse Consistent

Image Registration (BICIR).

1.2 Previous Work

1.2.1 Registration Methods

Broadly, registration techniques may be classified into two approaches based

on the similarity metric: Geometric-Feature based e.g., points or surfaces and Voxel-

Feature based, such as intensity, mutual information, etc.

Landmark-based methods rely on identifying corresponding feature points in

the two images to be registered and then interpolating the correspondences every-

where else in the image. Bookstein’s thin plate spline method [2] offers a closed form

solution for landmark registration based on minimizing the thin plate bending en-

ergy. This approach is extremely popular among point based techniques. Bookstein’s

method assumes absolute correspondence between the landmarks and hence assumes

that the landmark acquisition is error free. However, it is nearly impossible to acquire

perfect landmark locations due to sampling rate of images and a lower limit on errors

remains [47]. The problem of landmark localization has been addressed by various

researchers. In their work, Chui and Rangarajan [14], [7], [6] address this problem
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by finding correspondences between the images using soft-assign and evaluating the

confidence in this correspondence iteratively. Rohr et al. [44], [46], [45] compute the

correspondence using approximating thin-plate splines, which has a modified match-

ing criterion incorporating the variance of landmark localization error. Johnson and

Christensen [21] and Kybic and Unser [25], [27] address this problem by fine tuning

the registration using intensity information.

Surfaces represent another type of geometric feature that has been used for

image registration. Besl’s iterative closest point algorithm [1] matches two point sets

or shapes using a rigid body transformation. Thomson and Toga [59], [58] presented

surface based elastic registration technique and used it to construct a probabilistic

atlas of brain for detection of abnormalities. Finite element methods have also been

used to perform surface registration [11], but suffer from the computational overhead

of creating meshes. Contour and surface registration techniques typically perform

matching based on sampled points along the curves or vertices on the surfaces [13],

[3], [62]. Some recent techniques compute correspondences in a parametric space,

which is mapped back onto the surface [22], [23], [60].

Voxel based methods employ similarity measures involving intensity of the

voxels. Absolute intensity differencemutual information [34], [33], [64], [42], [32] and

normalized cross-correlationare the most popular measures of similarity between the

two images. While intensity difference measure is ideal for images from same modality,

mutual information based measure is more appropriate when comparing images from

different modalities. Based on regularization and parametrization, there are a variety
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of intensity based registration methods [48], [52], [57], [16], [4], [21]. While most

methods are uni-directional, recently there has been emphasis on finding a consistent

and transitive correspondence [13], [55].

In general, the landmark and intensity information have been treated sepa-

rately. Recently, efforts have been made at unifying all the available information

to establish the correspondence [21] [61], [25], [26]. The correspondence of images

at landmarks obtained based on anatomy may not always be well supported by the

surrounding intensity information and vice versa. As a result, the available methods

tend to find a trade-off between matching landmarks and matching intensities. The

presented method is expected to provide an agreeable solution to the above problem.

1.2.2 Applications of Registration Methods

Image registration has numerous applications in medical imaging ranging from

diagnosis, such as registering functional data with structural data, to treatment and

monitoring of diseases such as cancer as well as establishing normality vs. abnormal-

ity. Image registration is also used to evaluate emerging technologies such as dual

energy scans, which is used to enhance contrast in subtraction images of various tis-

sues based on the difference in energy levels of the X-rays. In pulmonary imaging,

image registration is used for a number of applications that include construction of

a normal lung atlas [28], [29], [31], radiation treatment dose planning [15], atlas

based segmentation [65], cancer diagnosis [9], [63], computing regional lung mechan-

ics [41], [53], [12], and modeling of breathing lung [24], [5].

Although there are a wide variety of image registration methods available, reg-
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istration of lungs presents specific problems compared to registration of fixed anatom-

ical objects such as brains. For human brains, standards are available for a standard

space to which brains can be initially aligned in the form of Talairach space [56].

Likewise, it is easy to identify sulci structures on the surface of brain that can be

used as features for surface based registrations. For human lungs, however, there is

no standard way of choosing a standard frame of reference for initial alignment as

the lung surface is quite smooth and no landmarks can be reproducibly and reliably

chosen on it. Likewise, the structure of airway tree differs among individuals. In

addition, the deformation model chosen, in general, does not represent the motion of

lungs with respect to each other and with respect to the chest wall and even within the

lung. The lung lobes have been shown to slide and rotate against each other during

a breathing cycle making it hard to address these issues. Researchers have tried to

address these issues in different ways to suit various applications and the approaches

range from surface/contour based methods to volumetric registration methods.

In their work on computing object shape model for segmentation of human

lung, Li and Reinhardt [31] use a contour based approach, in which 2-D boundary

contours of the object are registered with each other by curvature minimization. The

statistical shape model obtained is used to initialize the lung segmentation through

a modified active shape model approach [8]. Although the algorithm was shown to

produce good results, it remains application specific and can not be used to register

internal structures. The method of segmentation using deformable atlas was also

used by Zhang and Reinhardt [65]. The segmentations were defined over the atlas
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manually and the atlas was registered with the candidate image. The segmentations

defined on the atlas were deformed into the the frame of reference of the candidate

image and used as initialization for finer segmentation. The registration is performed

by dividing the lungs into small cubes and finding best match fields to register the

images based on similarity of cubes. The registration is obtained based on the outer

contour using no information from the interior of the object. Li et al. [10] use a feature-

points and surface-based approach that evaluates correspondence over sample points

on surface along with identifiable feature points to obtain a sparse deformation field.

The sparse fields are interpolated over the lung volume using regularization constraint

and intensity constraint based on optical flow. This approach combines surface and

feature-points correspondence with intensity profile inside the object producing better

results at locations away from surface and landmark points.

A contour based approach developed by Mitsa and Qian [38] combines the

contour correspondence with internal landmarks. Contours are matched iteratively

using Burr’s dynamic model [43] based on discretization of contour and iterative de-

formation of one contour into the shape of a target contour. The landmark points

on contour together with internal landmarks are matched using an inverse distance

weighted function and thin plate spline method based interpolation, respectively.

Woods et al. [63] use feature-points to define “sparse” correspondence at landmark

locations and interpolates the deformation to get dense displacement fields. They as-

sume a divergence free, mass conserving model to interpolate the deformation, which

is not a valid assumption for lungs. These methods provide a perfect correspondence



8

at landmark feature-points and use an a priori model to extend correspondence every-

where else. In feature based registration techniques, lack of sufficient feature points

and inaccurate models may lead to poor correspondence at locations away from land-

marks. While they may be suitable for some applications such as creating a shape

model based only on contour or surface, in general, they do not provide accurate

correspondence at the voxel level.

Among volumetric methods for lung registration, the usage of inter-modality

mutual information based registration has been used for rigid alignment of CT with

PET by Haneishi et al. [15]. Their main purpose is to define the segmentations com-

puted on structural scan in the frame of reference of functional images and analyze

that data. Mattes et al. [36] use a combination of rigid registration and a b-spline

based deformation method to maximize the mutual information between the PET

and CT chest scans. The deformation is however is not regularized and relies on

smoothness of the underlying b-spline basis function used to parametrize the trans-

formation.

Other intensity based methods used for lung registrations include the follow-

ing. Gee et al. [12] use an elastic energy regulated model that registers the serial MRI

data obtained across breathing cycle of an individual. Dougherty et al. [9] use an

unconstrained optical flow method to compute registration between serial CT lung

images. Christensen and Johnson’s inverse consistent linear elastic image registration

method [4] has been used for registering human lungs for quantifying regional lung

mechanics [53] and for computing a normative lung atlas [28], [29]. Johnson and
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Christensen’s consistent intensity and landmark registration method [21] takes ad-

vantage of the landmark correspondence with intensity registration has been used in

registering sheep lungs for computing regional mechanics [41]. The inverse consistency

constraint ensures that the correspondences defined are consistent and ambiguity in

correspondences are minimized.

The methods discussed above perform relatively better than others under cer-

tain conditions and no single method provides a perfect registration. In some cases

such as inter-subject registration, the correspondence problem is ill-posed as the air-

ways across individuals may not correspond. Likewise, the small deformation model

assumed by most volumetric registration methods may not be valid when registering

FRC (Functional Residual Capacity) to TLC (Total Lung Capacity) images. Due

to limitations of the individual methods listed above, it is a good idea to combine

all the available information to improve registration results. As already discussed,

methods of Johnson and Christensen [21] and Kybic and Unser [27] combine land-

mark registration with intensity based registration to get a better registration. An

inverse consistent registration generates confidence in the results obtained, since the

correspondences are consistent regardless of direction of registration, and is therefore

a desirable quality.

As previously stated, most volumetric registration methods assume a continu-

ity in deformation across the image. Such an assumption may not be valid for organs

such as lungs which slide against chest wall during breathing. The lobes of lungs slide

and rotate against each other during breathing making such an assumption invalid.
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Some researchers address this by treating both lung separately by extracting and reg-

istering them separately [30], [65], [54], [41], but in all cases, the images are treated

and registered as a whole. Registration methods tend to register the entire images or

a rectangularly shaped region and implicitly impose unnatural boundary conditions

for registrations. The b-spline based methods [48], [27], [6] require an extension of

boundaries to account for deformation near the image boundaries and methods using

Fourier series parameterizations [4], [21] assume periodic boundary conditions. Based

on the deformation model, the image boundaries act as hard constraints, thus limiting

the deformation of the object of interest through energy regularization constraints.

The problem is often addressed using padding with slices having zero values such that

the object has enough “room” to deform. Padding may also be required for Fourier

series parametrization to obtain appropriate image dimensions to take advantage of

Fast Fourier Transform. While image boundaries present unnatural and unnecessary

boundary constraints on deformation, padding increases the image size and adds to

computation time. Likewise, registration of features outside the region of interest

adds computational costs and may adversely affect the registration inside the object.

The Boundary-constrained Inverse Consistent Image Registration (BICIR)

algorithm described in this work, provides a better correspondence for irregularly

shaped ROIs by registering only region inside the object of interest. The BICIR

method does not require padding and treats everything outside the region of interest

as a “don’t care”. This avoids interference of background with the registration of

object.
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The remainder of the thesis is organized as follows:

Chapter 2 provides the details of algorithm and the methods used in imple-

mentation and characeterization of algorithm and comparison methods used against

Small Deformation Inverse-Consistent Linear Elastic (SICLE) image registration tech-

nique [4], which is similar to the presented technique except the boundary constraints.

Chapter 3 presents the results obtained for the methods described in Chapter

2. Finally, conclusions of the studies are presented in Chapter 4.
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CHAPTER 2
METHODS

This chapter presents the theoretical framework and methods involved in de-

velopment of the boundary-constrained inverse consistent image registration (BICIR)

algorithm. The theoretical framework is discussed along with the characterization and

validation methods as well as computation of average lung shape using the presented

registration technique. The chapter is organized as follows:

Section 2.1 provides the details of theoretical framework and implementation

of the BICIR algorithm. This section describes the three steps of the BICIR algorithm

starting with the boundary matching, extension of boundary match to the interior of

the region and finally, the intensity registration of the interior region.

Section 2.2 provides the details for experimental validation and comparison

with existing small-deformation inverse consistent linear elastic (SICLE) image reg-

istration method [4].

2.1 Boundary-Constrained Inverse Consistent Image Registration

(BICIR) Algorithm

Boundary-constrained inverse consistent image registration (BICIR) assumes that

the boundary correspondence is given as input and kept fixed throughout registra-

tion. The boundary correspondence is interpolated to the interior of the region of

interest using the Element Free Galerkin Method (EFGM). The ROI internal cor-

respondence is then fine-tuned using the intensity information inside the ROI while
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keeping the boundaries fixed. The BICIR framework uses a shape-based basis function

called WEB-splines (Weighted Extended B-splines), which are derived from regular

B-splines to parametrize the correspondence map or transformation between ROIs.

2.1.1 Overall Scheme

Fig. 2.1.1 shows the flowchart describing the steps of the BICIR algorithm.

The algorithm has the following steps:

1. Extraction of the object surface (section 2.1.2): The first step is to extract the

boundaries of ROI from the gray-scale image. The current work does not focus

on the segmentation techniques and uses standard techniques.

2. Consistent boundary matching (section 2.1.3): The extracted boundaries are

registered using transitive, inverse-consistent, boundary matching method (TICMR)

[13] . The boundary correspondences are treated as essential boundary condi-

tions for the Element Free Finite Element Method.

3. Interpolation Using Element Free Galerkin Method (section 2.1.4): The bound-

ary correspondences are extended to the interior of the object using the Element

Free Galerkin approach based on the differential equation describing the energy

functional. The images are subdivided into a uniform rectangular (for 2-D,

and cubic for 3-D) grid. A WEB-spline basis is constructed based on object

boundaries over this grid. The system equations are solved for coefficients of

the basis functions using the essential boundary conditions described in step 2.

The closed form solution interpolates the correspondence over within the entire
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Figure 2.1: The boundaries of the objects to be registered are extracted and registered to compute the boundary correspon-
dence. The element free Galerkin method is used to interpolate the boundary registration to the interior of the object. The
correspondence inside the ROI is further fine-tuned using boundary-constrained intensity based image registration.
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object domain.

4. Boundary-constrained Inverse Consistent Intensity Registration (section 2.1.5):

The correspondence defined by solving the Galerkin system equation is fine-

tuned using intensity information inside the object domain. The construction

of WEB-splines ensures that the intensity based registration does not compete

with boundary matching, as the boundaries are always matched exactly, and

only correspondences in the interior of the object are estimated. The defor-

mation coefficients are updated iteratively using gradient descent optimization

until a preset stopping criterion is reached.

2.1.2 Extraction of the Object Surface

Boundary extraction involves segmenting the object from the gray-scale im-

age data. In our work, the object was segmented using intensity thresholding. Holes

were filled using morphological closing operation followed by manual editing, if nec-

essary. Object pixels (Voxels in 3-D) having background pixels (voxels in 3-D) in

4-neighborhood (6-neighborhood in 3-D) were classified as the boundary pixels that

represent the surface of the object. The surface is assumed to pass through the center

of the boundary pixels.

2.1.3 Consistent Boundary Matching

After extraction of the boundaries of the object in the two images, the cor-

respondence at the boundaries is computed using Geng et al.’s transitive inverse

consistent manifold registration (TICMR) method [13]. This method uses a closest
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distance based similarity measure and a curvature based energy regularization with

inverse-consistency and transitivity constraints. TICMR algorithm is implemented

by minimizing the following cost function:

C = CSIM + CREG + CICC + CTRANS (2.1)

The various cost components are described below.

2.1.3.1 Similarity Cost

In this method, for two surfaces, S1 and S2, a closest distance similarity cost

function is defined over the surfaces, i.e.,

CSIM =
3
∑

i=1

3
∑

j=1

j 6=i

∫

Sj

||DSi
(hij(x))||2dx (2.2)

where DSi
corresponds to the distance map of Si, i.e., DSi

(x) gives the closest dis-

tance from point x to Si. The manifold Si represents a contour for contour-to-contour

matching or a surface for surface-to-surface matching. The distance maps were com-

puted using Voronoi Feature Transform (VFT) presented in Maurer et. al [37].

2.1.3.2 Regularization Cost

The similarity measure alone does not take the neighborhood structure of

the surface Si into account. Curvature based regularization is used to constrain the

registration to produce spatially smooth correspondence. Equation 2.3 represents the

regularization cost term used by Geng et al. for contour-to-contour registration in
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2D.

CREG =
3
∑

i=1

3
∑

j=1

j 6=i

∫

Sj

||dhij(x(s))

ds
− dx(s)

ds
||2ds (2.3)

where, s represents the arc length of the curve and hi,j = x + ui,j(x) represents the

transformation from contour i to contour j. The cost term represented by Eq. 2.3

penalizes the change of tangent vector along the deforming curve. A Eulerian frame

of reference is used for registration.

The regularization used for surface matching is different from contour match-

ing, since the points in a surface are not ordered. The deformation energy function

for the surface deformation is represented by the equation 2.4 [20, 13].

CREG =
3
∑

i=1

3
∑

j=1

j 6=i

∫

Sj

(H(hij(x))−HSj
(x))2a(hij(x))dx (2.4)

where, a(x) represents the area around point x,
∑

x ax represents the total surface

area and H represents the mean curvature of the surface.

2.1.3.3 Inverse Consistency Cost and Projection Error

Eq. 2.5 represents the inverse consistency cost used to regularize the transfor-

mation such that the inverse consistency in correspondence is minimized as part of

the registration cost.

CICC =
3
∑

i=1

3
∑

j=1

j 6=i

∫

Sj

||hij(x)− fij(x)||2dx (2.5)
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where fij(x) = arg min
y∈Si

||hji(y)−x||2. Note that there are two types of errors that con-

tribute to the above cost function; the inverse consistency and the projection error. In

the TICMR method, the correspondence between points is defined through minimum

distance between the points. Using fij instead of hji in equation 2.5 removes contri-

bution of projection error to the inverse consistency cost such that based on closest

neighbor definition of correspondence, only inverse consistency error contributes to

the above cost.

2.1.3.4 Transitivity Cost

Transitivity of transformations is another important property. It implies that

in a group of images, the correspondence between a pair of images will not change

for the set of all composition of transformations in the group that operate on the two

images. For example, in a group of three images, I1, I2 and I3, let hi,j represent the

transformation from image Ii to Ij, where i, j ∈ {1, 2, 3}, then transitivity implies

that hi,k = hj,k ◦ hi,j for k ∈ {1, 2, 3} and k 6= i, j.

In TICMR, the transitivity cost is minimized as part of the registration cost

and represented by equation 2.6.

CTRANS =
3
∑

i=1

3
∑

j=1

j 6=i

3
∑

k=1

k 6=i6=j

∫

Sj

||hik(hkj(x))− hij(x)||2dx. (2.6)

2.1.4 Interpolation Using Element Free Galerkin Method

The surface registration method described in section 2.1.3 provides correspon-

dence only at the boundaries of the ROI. The boundary correspondence is interpo-
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lated over the interior of the object using a finite element technique called element free

Galerkin method (EFGM) [39]. The primary advantage of the element free Galerkin

method over traditional finite element methods is that meshing of the object, which

is a computationally expensive process, is not required. In addition, we use a shape-

based basis function called weighted-extended B-splines (WEB-splines), which can be

constructed over an arbitrary shape such that they are non-zero only over the region

of interest and zero every where else.

2.1.4.1 Problem Overview

The problem of matching boundaries of objects from two different images can

be represented by the boundary value problem represented by Eq. 2.7.

f(ui,j(x)) = 0, x ∈ Ωj

ui,j(x)|∂Ωj
= u∆i,j(x), x ∈ ∂Ωj

(2.7)

where, f is a differential operator representing energy constraints. The equation is

solved in both directions, i.e., for [i, j] = [1, 2] and [i, j] = [2, 1], respectively.

The boundary value problem is described as the combination of a differential

equation governing the displacement over the object domain and the boundary con-

ditions obtained as a result of surface registration. Let Ω1 and Ω2 represent the two

regions of interest to be registered, and ∂Ωi represent the boundary of the object Ωi.

The previous step of surface registration provides displacement field u∆i,j(x), x ∈ ∂Ωj

that maps ∂Ωi onto ∂Ωj. In our boundary-constrained registration method, the

boundaries of the objects remain fixed after initial matching. The boundary corre-
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spondences from the surface registration method provides the value of displacements

u∆i,j(x) as the essential boundary conditions. The boundary value problem repre-

sented by Eq. 2.7 is solved for displacement field ui,j(x), x ∈ Ωj over the entire region

of interest Ωj.

B-Splines provide good approximation, computationally efficient techniques as

well as good localization for smooth functions. However, a B-spline basis can only be

used for a rectangular domain and can not be used to represent arbitrarily shaped

domains. The element free Galerkin method does not require a meshing of the object,

which is usually a computationally expensive step. Instead, a regular grid is used and

the boundary conditions are enforced using weight functions. Although B-splines are

local in the sense that at a point only a limited number of b-splines are non-zero, they

do not fall off to zero at the boundaries. If the b-splines are defined over a regularly

spaced grid, there may be b-spline functions supporting only a small portion of the

object. B-splines that support a small portion of the ROI cause the system to have a

high condition number and may also cause loss of accuracy in approximation. Hollig

et al. [17] addressed this problem by defining a new basis function called Weighted

Extended B-Splines, or simply WEB-splines. The splines having very little support

inside the object boundaries, which Hollig et al. [17] defined as outer splines cause

highly sensitive and unstable Galerkin framework. The WEB-splines are defined only

on knot points excluding the indices for the outer splines. The outer splines are taken

into account using Marsden’s identity. The new function is defined on the object

domain and presents itself as a good basis to represent the deformations inside the
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object domain, once the boundaries are matched. The following subsections will cover

the b-splines and construction of WEB-splines from b-splines.

2.1.4.2 B-Splines

Splines are piecewise polynomial functions used to represent a smooth function

over a domain, and provide a local approximation. A spline of degree m over a grid

with distance between knot points h is (m− 1) times continuously differentiable and

has its support limited to total length of (m + 1)h. Over a uniform grid, the B-spline

βm of degree m is defined by the following recursion property:

βm(x) =

∫ x
h

x
h
−1

βm−1(x)dx (2.8)

with

β0(x) =















1, 0 ≤ x
h

< 1

0, otherwise

(2.9)

In general, cubic b-splines, which have order of 3 and have a support of 4 have been

found to provide a good approximation without being computationally expensive [25],

[48]. Based on the above definition, cubic b-spline starting at a grid knot point, or

index i, can be written as:

β3
i (x) =































2/3− (1− |x
h
− i− 2|/2)(x

h
− i− 2)2 if 0 < |x

h
− i− 2| ≤ 1

(2− |x
h
− i− 2|)3/6 if 1 < |x

h
− i− 2| ≤ 2

0 otherwise

(2.10)
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where, h is the knot spacing. Any one-dimensional smooth function f(x) over a

domain Ω having n equally spaced knot-points xi’s can be approximated using the

cubic b-splines as follows:

f(x) =
3
∑

k=0

µi+kβ
3
i+k(x) ∀x ∈ (ih, (i + 3)h) (2.11)

where the parameters µi’s define the relative weights of the contributing b-splines

over the interval and xi+1 = xi + h.

For a multidimensional case, we define splines as

b3
i (x) =

n
∏

d=1

β3
id
(xd) (2.12)

where i = {i1, i2, . . . , in} ∈ Zn and x = {x1, x2, . . . xn} ∈ Ω ⊂ Rn for an n-

dimensional space. In such a space, a function can be parameterized using multi-

dimensional splines as follows:

f(x) =
3
∑

kn=0

. . .

3
∑

k1=0

µi1+k1,...in+kn
β3

i1+k1
(x1) . . . β3

in+kn
(xn) (2.13)

where µi,j represent the control point, or coefficient for parameterization on for knot

located at index i, j.

2.1.4.3 Weighted Extended B-Splines

B-spline functions are not particularly well suited for use in element free

Galerkin method, since it causes a very high conditioning number due to splines
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supporting only part of a boundary cell. The term “cell” in this text will refer to

an element described by knot points as its end points in all directions, i.e., for a

1-dimensional case, a cell will consist of the part of the real line between two con-

secutive knot points. Likewise, for a 2-dimensional case, for knot points defined on

rectangular grid, it will be defined as a rectangle (or square, if x- and y- knot spacings

are same) with knot points at its four corners as shown in Fig. 2.2 and so on for higher

dimensions. Based on this definition of a cell, an image can be divided into a number

of cells.

Given an object of interest contained in the image I(x), the cells can be par-

titioned into three basic categories:

1. Interior Cells: These are the cells that are contained inside the object domains,

and do not contain any point that lies on the boundary of the object or outside

it.

2. Boundary Cells : The cells that contain at least one point from the boundary

of the object are called boundary cells.

3. Exterior Cells : This category consists of the cells that are neither interior nor

boundary cells, i.e., cells that do not contain any point that lies inside or on

boundary of the object of interest.

Fig. 2.2 shows the three different type of the cells for an object defined on a

2-D domain using an equal horizontal and vertical knot spacing.

Based on these definitions, we define inner, outer and exterior splines as shown



24

Figure 2.2: Partitioning of grid into inner, outer and interior cells. The thick black
closed curve represents the region of interest and the exterior, interior and boundary
cells are represented by the white cells, cells marked with crosses and hatched cells,
respectively.

in Fig. 2.3. The inner splines are defined as the splines that have support of at least

one interior cell. The outer splines are defined as the splines that have only boundary

cells or exterior cells in their support. The exterior splines are the splines that do not

have any support over the object of interest. It is easy to see that any method for

directly updating the coefficients of outer splines will cause a very sensitive response

due to very limited support. In element free Galerkin method, this presents a problem

since it causes Galerkin matrix to become very ill-conditioned and renders it unusable
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for this usage. Hollig [18], [17], [19] addressed this problem by defining a new basis

function called Weighted Extended B (WEB) -splines. The outer splines are taken

into account using Marsden’s identity [17]: and the WEB spline coefficients are

evaluated only on the knot locations of the inner splines.

WEB Splines are defined such that they are non-zero only over the object

domain and are zero everywhere else. Let Bi(x) be the basis function representing

the WEB-Splines. It can be computed using the inner and outer b-splines over the

object domain. Let, the set of inner indices, i.e., indices of knot point locations

where inner splines start be denoted by I and the set of outer indices be denoted

by J , respectively. The web splines are then constructed using Marsden identity for

approximating polynomials using b-splines. By construction, WEB splines combine

the support of outer splines with the inner splines and are computed at the inner

spline indices. This is done using Eq. 2.14.

Bi(x) =
w(x)

w(xi)
[bi(x) +

∑

j∈J(i)

ei,jbj], i ∈ I (2.14)

where, bi and bj’s are the ordinary b-spline function values at location x starting at

inner spline index i and outer spline indices j’s, respectively and w(xi) represents the

value of weight function at the center of interior cell in the support of inner spline

starting at index i. The set J(i) represents the set of all outer spline indices, which

are closest to inner index i using the following rule:

J(i) = {j ∈ J |i ∈ I(j)} (2.15)
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Inner Spline

i

Outer Spline

j

Figure 2.3: The first panel shows the support of an inner spline, starting at index i
which contains (at least) one interior cell, marked by x. The second panel shows the
support of an outer spline, starting at index j which does not contain any interior
cells, but contain one (or more) boundary cells. The starting knot location of splines
are marked by circles. The support is shown for splines of the order 3, i.e., of cubic
order, hence the support is over [0, 4]2 cells.

where I(j) is the array of inner spline indices closest to the outer index j according

to Hausdorff metric. Such an array always exists provided that the grid spacing is

small enough and may be given by following equation:

I(j) = l + {0, 1, . . . ,m}n ⊂ I (2.16)

Hollig et al. proposed a closed form for the co-efficients ei,j based on Marsden

identity as given by the following equation.
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ei,j =
n
∏

ν=1

m
∏

µ=1,µ 6=(iν−lν)

jν − lν − µ

iν − lν − µ
(2.17)

In order to limit the support of WEB-splines to the object domain, the weight-

ing function w(x) in Eq. 2.14 is defined such that it is non-zero only over the object

domain and is a function of distance from the object boundaries. The weight function

w(x) is similar to a distance function from the boundaries, and can be defined in a

number of ways. The necessary properties of weight function include smoothness and

non-zero support over the region of interest and a zero value at boundaries of object

and everywhere outside it. There are a number of ways to construct it automatically

[17], [50], [49]. In the absence of a parametric representation of object shape, the

construction of weight function will be done using a distance function, e.g., function

represented by Eq. 2.18 is valid weight functions.

w(x) = 1−max(0, 1− dist(x, ∂D)/δ)γ, (2.18)

where, the parameter δ controls the width of the strip D − Dδ and γ controls the

smoothness of the function. Caution is required in choice of width of the strip, as too

narrow width can cause large derivatives of weight function.

2.1.4.4 Parameterization of Displacement Field

The boundary value problem described in Eq. 2.7 is solved for displacement

field ui,j(x), x ∈ Ωj. The solution is decomposed into two components: u∗
i,j(x) and

u∂i,j(x). The component u∗
i,j(x) is parameterized using WEB-splines constructed
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using the shape of Ωj. Due to properties of WEB-splines, u∗
i,j(x) is zero at the

boundaries and hence, u∂i,j(x) is used to explicitly approximate the boundary cor-

respondence provided by the surface registration. u∂i,j(x) is a smooth function that

approximates the boundary conditions, and gradually decreases to zero away from

boundaries. The main purpose of the extension function u∂i,j(x) is to approximate

and extend the boundary conditions to a region with non-zero measure. The so-

lution ui,j(x) is represented as the sum of two functions u∗
i,j(x) and u∂i,j(x), i.e.,

ui,j(x) = u∗
i,j(x) + u∂i,j(x)

The boundary extension function u∂i,j(x) can be an arbitrary smooth function

and any deviations from following the constraints inside the object are taken into

account through u∗
i,j(x). In other words, only the solution ui,j(x) = u∗

i,j(x) + u∂i,j(x)

needs to satisfy the governing differential equation, while individual components

u∗
i,j(x) and u∂i,j(x) may be arbitrary smooth functions.

In the presented work, u∂i,j(x) is initialized as a delta function with u∂i,j(x) =

u∆i,j(x) for x ∈ ∂Ωj and u∂i,j(x) = 0 for x /∈ ∂Ωj, and a Laplacian convolution filter

is applied to the image a number of times till a smooth function is obtained. The

function u∗
i,j(x) is parameterized as a sum of WEB-spline basis functions, i.e.,

u∗
i,j(x) =

∑

n

µi,jn
Bn(x) (2.19)

where, Bn represents the WEB-spline basis as described in the section 2.1.4.3.
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2.1.4.5 Weak Form Formulation

The system in equation 2.7 has the following weak form for f = ∇2 = ∂2

∂x2

1

+

∂2

∂x2

2

+ ∂2

∂x2

3

:
∫ ∫ ∫

φ(x)

[

∂2ui,j

∂x2
1

+
∂2ui,j

∂x2
2

+
∂2ui,j

∂x2
3

]

dx1dx2dx3 = 0 (2.20)

where, φ(x) is any smooth weighting function, which is non-zero inside the region of

integration. In the Galerkin procedure, it is chosen to be same as the shape function,

i.e., WEB splines in our case. φ(x) = Bn(x), where Bn(x) is the web spline at index

element n = n1, n2, n3
t and is defined in equation 2.14.

2.1.4.6 Derivation of the Governing Differential Equation

We consider the linear elasticity operator for the transformation u(x), i.e., we

seek to minimize the following cost function:

CLE(ux)) =

∫

Ω

||Lu(x)||2dx (2.21)

where h(x) = x + u(x) is the transformation that defines a correspondence mapping.

The linear elasticity operator L has the form

Lu(x) = ∇u(x) and ∇ =
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]

for the 3-dimensional case. This leads

to the following governing differential equation derived using variational methods:

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x3

= 0 (2.22)

where, the solution u(x) = [u1(x), u2(x), u3(x)] and x = [x1, x2, x3].
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2.1.4.7 Weak Form

The weak form for the equation 2.20 can be written as:

∫ ∫
(

∂B

∂x1

,
∂B

∂x2

,
∂B

∂x3

)(

∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

)

dx1dx2dx3 =

−
∫ ∫

(

∂B

∂x1

,
∂B

∂x2

,
∂B

∂x3

)(

∂u∂

∂x1

,
∂u∂

∂x2

,
∂u∂

∂x3

)

dx1dx2dx3

(2.23)

where, u∂ is the function representing extended boundary conditions. The boundary

extension function may be computed in a number of ways. We shall investigate

two techniques: approximation using b-spline basis and iteratively smoothing the

boundary matching delta functions using Laplacian filter. The two techniques shall

be compared in Chapter 3. For approximation using b-splines, the b-spline coefficients

ci,j,k are computed such that the boundary extension function satisfies the boundary

conditions in a least square sense.

u∂ = (u∂,1, u∂,2, u∂,3) =
n+3
∑

k=n

m+3
∑

j=m

l+3
∑

i=l

ci,j,kbi,j,k(x). (2.24)

Using the basis function representation for u∗(x) and u∂(x) from equations

2.19 and 2.24, the weak form in equation 2.23 for an element can be written as the

following matrix equation:

Ae µe = −Be ce (2.25)

Matrices for all the grid points can then be assembled together to form a global matrix

equation:

A µ = −B c (2.26)
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The construction of global matrices A, B and c can be done using the following

method:

ai,j = ai,j + aek,l
(2.27)

where k and l are the local indexes of the local stiffness matrix Ae and i, j are the

corresponding global indexes of the global system matrix A. ai,j represents (i, j)-th

element of the strain matrix A. The same can be done for computing global B matrix

and a global c matrix. With A and b available as a result of evaluation of weak form

integrals over each rectangular element on the grid, and C also known in advance as

a result of boundary matching using b-splines, the equation 2.26 can be solved for µ.

2.1.5 Boundary Constrained Inverse Consistent Intensity Registration

The intensity based image registration between two images can be stated as the

problem of finding a transformation between the images such that the intensity differ-

ence between the images is minimized as a result of the transformation. It is assumed

that a good correspondence is achieved when difference between image intensities of

the two images is minimized. For physical as well as mathematical reasons, we seek

such a transformation , denoted as h(x) in the space of smooth and inverse-consistent

transformations. Inverse consistency means that the transformation obtained in one

direction is inverse of the transformation obtained in the opposite direction. For ex-

ample, if we are matching one image Ti(x) with another image Tj(x) and let us denote

by hi,j(x), the transformation from image Ti(x) to image Tj(x) in Eulerian co-ordinate

system and denote by hj,i(x) the transformation from image Tj(x) to Ti(x), then the
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transformation is said to be inverse-consistent if hi,j(x) = h−1
j,i (x). In their work,

Christensen and Johnson [4] minimize the inverse consistency constraint by adding

a cost term for deviation from inverse consistency. Smoothness of transformation is

achieved by adding an inverse consistent cost term. Let u(x) denote the displacement

at the voxel location x giving the transformation h(x) = x + u(x). The total cost

function to be minimized is shown in equation 2.32.

2.1.6 Registration as Optimization Problem

The intensity based image registration problem can be stated as a minimization

problem of finding optimal transformations ĥi,j and ĥj,i that minimize the following

cost function:

C = σCSim + ρCReg + χCICC (2.28)

where the three components of cost represent the similarity cost, regularization cost

and inverse consistency cost, respectively. These components are discussed in details

as follows:

2.1.6.1 Similarity Cost

Similarity cost, denoted by CSim in Eq. 2.28 represents the driving function

of the registration and is minimized when the image intensities match each other.

The similarity cost may be computed as the difference between the intensities of de-

formed reference image and the target image. This similarity cost function assumes

that the intensity profiles of the images to be registered are same and therefore, a

matching will result from minimization of intensity differences. Such an assumption
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is not always valid due to different protocols, different scanning machines, different

individuals having different tissue characteristics, etc. Even if these things remain

constant, the intensities for images acquired from same individual might be differ-

ent, for example, due to different air contents in chest scans. Alternatively, mutual

information can also be used as the similarity metric. Mutual information does not

assume the constant tissue intensities, but it comes with an overhead of computa-

tion of histogram and histogram smoothing to allow usage of a robust optimization

technique such as gradient descent method.

In this work, we choose the intensity difference as the similarity cost function

as has generally been the case for elastic registrations as shown in Eq. 2.29.

CSIM =

∫

Ωj∩Ωi
′

|Ti(hi,j(x))− Tj(x)|2dx +

∫

Ωi∩Ωj
′

|Tj(hj,i(x))− Ti(x)|2dx) (2.29)

Where, Ωi and Ωj represent the ROI’s corresponding to the subjects i and j. hi,j(x) =

x + ui,j(x) represents the transformation from subject i to subject j in Eulerian

frame of reference such that hi,j : x ∈ Ωj ← y ∈ Ωi, Ωi
′ = hj,i(Ωi) and Ωj

′ =

hi,j(Omegaj). T (x) represents the intensity at voxel location x. Then, as shown in

figure 2.1.6.2, since, y = Ti(hi,j(x)) is defined in Ωi, the inverse image x is defined for

x ∈ Ωi
′. Likewise, Tj(x) is defined inside the ROI Ωj. So, the first term in eq. 2.29

|Ti(hi,j(x))−Tj(x)|2 is defined over Ωj∩Ωi
′. Likewise, the second term under integral

|Tj(hj,i(x))− Ti(x)|2 is defined over Ωi ∩ Ωj
′.

A symmetric similarity cost is chosen so that the value of the cost term remains
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same regardless of the direction chosen for the registration.

2.1.6.2 Energy Regularization

While matching real world objects, it makes sense to use a registration model

that mimics deformation of the objects in physical world. In general, the minimum

total potential energy principle is used for modeling the deformation, e.g., Book-

stein’s thin plate splines minimize the bending energy of the deformation. In iterative

schemes, it is common to use a differential operator that operates on the deformation

and is used as an additive cost in the objective function [21, 25, 27, 13, 62, 3, 48, 52].

This work uses such a model and we compute the energy cost term as follows:

CReg = (

∫

Ωj∩Ωi
′

||Lui,j(x)||2dx +

∫

Ωi∩Ωj
′

||Luj,i(x)||2dx (2.30)

where, L is a differential operator and operates on the displacement vector ui,j. In

general, L can be an arbitrary differential operator, and is chosen as L = −α▽2−β▽

(▽) + γ for small deformation linear elastic model. ▽ denotes the gradient operator,

i.e ▽ = ∂/∂x1 + ∂/∂x2 + . . .. In this work, the value of α has been taken as 1.0

and values for β and γ have been taken as 0, i.e., L = ▽2 and denotes a Laplacian

operator. ui,j represents the displacement vector that defines the correspondence

between image i and image j in the frame of reference of the image j. We use the

Euclidean norm to define length of the vector, i.e., ||û|| =
√

u1
2 + u2

2 + . . . for a

vector û = {u1, u2, . . .}.

The region over which the cost function is computed needs some attention if
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Figure 2.4: Region of Interest for Image Registration. The ROIs in forward and
reverse directions are deformed based on boundary conditions and the registration is
performed in a window defined by intersection of ROI in one direction and deformed
ROI in opposite direction. Ωi and Ωj represent the ROIs in template and target
images, respectively. The transformation hi,j and hj,i map the ROIs in forward and
reverse directions from Ωi to Ω′

i and from Ωj to Ω′
j, respectively.

the boundary registration does not provide exact correspondence, which is generally

the case. In such cases, ui,j(x) is defined for x ∈ Ωj as shown in figure 2.1.6.2.

However, the mapping back to Ωi might cause some region to lie outside Ωi. Hence,

Ωj ∩ Ωi
′ was used as the region of integration for the first integral term such that

both, the forward and reverse mapping exist over this region. Likewise, Ωi ∩ Ωj
′ was

chosen as the region of integration for the second integral.



36

2.1.6.3 Inverse Consistency Cost

The inverse consistency cost binds the forward and reverse transformations

together and forces them to be close to inverses of each other. The inverse consistency

cost function is represented by following equation:

CICC = (

∫

Ωj∩Ωi
′

||hi,j(x)− h−1
j,i (x)||2dx +

∫

Ωi∩Ωj
′

||hj,i(x)− h−1
i,j (x)||2dx (2.31)

As shown in figure 2.1.6.2, hi,j(x) exists only for x ∈ Ωj and h−1
j,i (x) is defined

only for x ∈ Ωi
′, so the first integral is computed over Ωj ∩ Ωi

′. Likewise, the second

integral is computed over the region Ωi ∩ Ωj
′.

It is to be noted that inverse consistency does not guarantee a better registra-

tion on its own. Theoretically, an infinite number of inverse consistent transformations

exist between a pair of images. The goal of our optimization is to find a transforma-

tion that minimizes the driving objective criterion while being close to the set of all

consistent transformations.



37

Thus, equation 2.28 may be written as:

C = σ(

∫

Ωj∩Ωi
′

|Ti(hi,j(x))− Tj(x)|2dx+

∫

Ωi∩Ωj
′

|Tj(hj,i(x))− Ti(x)|2dx)

+ρ(

∫

Ωj∩Ωi
′

||Lui,j(x)||2dx +

∫

Ωi∩Ωj
′

||Luj,i(x)||2dx)

+χ(

∫

Ωj∩Ωi
′

||hi,j(x)− h−1
j,i (x)||2dx+

∫

Ωi∩Ωj
′

||hj,i(x)− h−1
i,j (x)||2dx)

(2.32)

where, Ωi
′ represents the domain of object Ωi deformed into the shape of object Ωj

using the boundary matching function hi,j(x). Note that the integration is performed

over the intersection of the two shapes Ωi
′ and Ωj instead of the whole image domain.

The first integral represents the total squared difference in intensities of the deformed

objects and target objects over entire object domain and therefore represents the

similarity cost function. The second integral represents the regularization cost and

penalizes the derivatives of the transformation providing a smooth transformation.

The last integral represents the inverse consistency cost and binds the forward trans-

formation with the reverse transformation by penalizing their deviation from being

inverses of each other.

2.1.6.4 Parameterization Using WEB-Splines

To find a solution minimizing the above equation 2.28, we can use the same

parameterization as the section 2.1.4, i.e., for a 3-dimensional case:
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u(x1) =
3
∑

n=0

3
∑

m=0

3
∑

l=0

µ1
i+l,j+m,k+nBi+l,j+m,k+n(x)

u(x2) =
3
∑

n=0

3
∑

m=0

3
∑

l=0

µ2
i+l,j+m,k+nBi+l,j+m,k+n(x)

u(x3) =
3
∑

n=0

3
∑

m=0

3
∑

l=0

µ3
i+l,j+m,k+nBi+l,j+m,k+n(x)

(2.33)

where, Bi,j(x) is the WEB-spline basis defined in section 2.1.4.3, u(x) = [u(x1), u(x2), u(x3)]

and x = [x1, x2, x3]. This parameterization allows the boundary conditions to remain

unchanged throughout the transformation while matching the intensities inside the

object domain.

2.1.6.5 Explicit Derivatives for Gradient Descent Optimization

Using the parameterization described above, we can find a solution to the

problem of equation 2.32 by solving for the parameters Ci,j,k’s such that the total cost

is minimized. This can be done using the gradient descent approach with the update

rule:

C(t+1)
i,j,k = C(t)

i,j,k − η
∂C

∂Ct
i,j,k

(2.34)

for the (t + 1)-th iteration. Where, η is a weighting factor and may be a constant.

From equation 2.28, we have

∂C

∂C(t)
i,j,k

= σ
∂CSim

∂C(t)
i,j,k

+ ρ
∂CReg

∂C(t)
i,j,k

+ χ
∂CICC

∂C(t)
i,j,k

(2.35)
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The framework defined by equations 2.32, 2.33 and 2.35 leads to the following:

∂CSim

∂Ci,j,k
=

∫

Ω

(Tr(hr,s(x))− Ts(x))
∂Tr(hr,s(x))

∂hr,s(x)

∂hr,s(x)

∂Ci,j,k
dx (2.36)

where, the component (Tr(hr,s(x))− Ts(x)) is the difference in intensity of deformed

Tr and Ts(x), ∂Tr(hr,s(x))

∂hr,s(x)
represents the derivative of deformed Tr(hr,s(x)) w.r.t. the

deformed co-ordinate system hr,s(x) at location x. This can be approximated by

computing discrete partial derivative in the discrete image at the voxel location x,

e.g., for a 2-dimensional case and for the x1 component of the transformation T (x),

we have:

∂T (y)

∂y1

=
[T (y1 + [1, 0])− T (y1 − [1, 0])]

2
(2.37)

∂T (y)

∂y2

=
[T (y1 + [0, 1])− T (y1 − [0, 1])]

2
(2.38)

where, y = [y1, y2, y3] = hr,s(x) and the component ∂hr,s(x)

∂Ci,j,k
can be computed as follows:

∂h(x)

∂Ci,j,k
=

∂

∂Ci,j,k

(

x +
3
∑

n=0

3
∑

m=0

3
∑

l=0

Ci+l,j+m,k+nBi+l,j+m,k+n(x)

)

= Bi,j,k(x) (2.39)
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The component for the regularization cost can be computed as following for a differ-

ential operator L(u(x)) =
[

∂u(x)
∂x1

, ∂u(x)
∂x2

, ∂u(x)
∂x3

]

for a 3-dimensional case:

∂CReg

∂Ci,j,k
=

∫

Ω

2 (Lui,j,k(x))
∂

∂Ci,j,k

(

∂

∂x1

ui,j,k(x) +
∂

∂x2

ui,j,k(x) +
∂

∂x3

ui,j,k(x)

)

dx

=

∫

Ω

2 (Lui,j,k(x))

(

∂Bi,j,k(x)

∂x1

+
∂Bi,j,k(x)

∂x2

+
∂Bi,j,k(x)

∂x3

)

dx

(2.40)

Here, the term Lui,j(x) can be computed using discrete derivatives and
∂Bi,j(x)

∂x
can

be pre-computed and used for computation of the cost function.

The component for the inverse consistency cost adds the following cost for the

gradient estimation for each direction:

∂CICC

∂Cr,si,j,k

=

∫

Ω

(

hr,s(x)− h−1
r,s (x)

)

Bi,j,k(x)dx (2.41)

The effect of each component of cost can be varied by variation in the weighting

factors for each term, i.e., σ, ρ and χ. In general, one factor can be kept as 1 and

other two weighting factors can be varied to adjust the relative importance of the

different cost functions.

2.1.6.6 Algorithm

Algorithm 2.1 shows shows the various steps taken for matching intensities

only inside the region of interest, i.e., boundary constrained image registration based

on the above.
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Compute Boundaries of Objects ∂Ω1 and ∂Ω2 in the two images using morphological
operations
Compute inverse-consistent point wise correspondence at the object boundaries us-
ing transitive consistent manifold registration [13]. Set displacements at boundaries
as boundary conditions, u∂Ω1

and u∂Ω2

Based on chosen knot spacing, divide the image into regular grids and set b-spline
coefficients on all knots ci = 0. Also compute WEB-splines based on the object
boundaries and set coefficients µi = 0
Using a least square technique, compute the b-spline coefficients ci’s that approxi-
mate the boundary conditions and defines a function u∂(x) =

∑

ciβi(x)
Construct the Galerkin matrix using Eq. 2.23 and solve for WEB-spline coefficients
µi’s. Define u∗(x) =

∑

µiBi(x).
repeat

Compute ∆µi
t = − ∂C

∂µi
|t for each WEB-spline coefficient.

µi
t+1 = µi

t + ǫ∆µi
t.

u∗(x) =
∑

µi
tBi(x).

until convergence.
h(x) = x + u∗(x) + u∂(x).

Algorithm 2.1: Algorithm for parameter estimation for boundary constrained image
registration

2.2 Analysis, Comparison and Validation of BICIR Registration

Algorithm

The methods for comparison with intensity based inverse-consistent linear

elastic method will be presented in this section. The next section 2.2.1 provides

an overview of the various metrics used for validating and comparing registration

algorithms. Section 2.2.2 outlines the method used for characterizing the BICIR

technique based on various weights and parameters used in the cost functions and

construction of the basis elements. Section 2.2.3 provides the methods used for vali-

dation of BICIR method. Section 2.2.4 provides the details of comparison of BICIR

algorithm with the small-deformation inverse consistent linear elastic (SICLE) image

registration method. SICLE uses intensity information like BICIR, but does not have
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boundary constraints.

2.2.1 Validation Metrics

Following list explains various metrics used for checking the quality of regis-

tration results.

1. Landmark Error

The landmark error is a point based metric, in which a number of points of cor-

respondence, called landmark points are identified from the two images to be

registered together. Although it is not trivial to identify corresponding points

in two 3-dimensional image volumes, automaticand manual landmark identifi-

cation is possible for human lung as the object of interest. Once the points

of correspondences are known, then landmark mismatch error after the regis-

tration is computed. Let S1(x) and S2(y) represent the two images registered

together through the transformations h12 : S1 → S2 and h21 : S2 → S1 and

xi, i = 1, 2, . . . , n and yi, i = 1, 2, . . . , n be n corresponding points in the im-

ages S1 and S2 respectively. The transformation h12 maps each point from the

set {xi}, i = 1, . . . , n into set of points {y′
i}, i = 1, . . . , n where, y′

i = h12(xi).

Likewise, the transformation h21 maps each point from the set {yi}, i = 1, . . . , n

into set of points x′
i, i = 1, . . . , n, where x′

i = h21(yi). Then, average landmark

matching error ǫlmk in either direction is computed as:

ǫlmk12 = 1
n

∑n

i=1 |yi − y′
i|

ǫlmk21 = 1
n

∑n

i=1 |xi − x′
i|

(2.42)
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2. Relative Overlap

Relative overlap is another popular metric used for validation of a registration

algorithm. For two sets A and B, the relative overlap is defined as

RO =
A ∩B

A ∪B
(2.43)

Relative overlap is a measure for the accuracy of registration in matching overall

volume of corresponding objects. For objects A ∈ S1 and B ∈ S2 representing

the objects of interest in the images S1 and S2 respectively, the relative overlap

is unity if and only if they fully overlap. It is desirable to get a value close to

unity.

3. Similarity Cost

Similarity cost is the driving function for the BICIR algorithm and will be

minimized as part of the objective function. It is an important metric when

comparing two different methods that minimize the same objective function.

The BICIR method is intensity based method with the objective of minimizing

the intensity differences between two images. For the two images S1 and S2

with the transformations h12 and h21 that deform S1 into S2 and S2 into S1

respectively, let Si(x) represent the intensity of image Si at co-ordinate location

x. The similarity cost is then defined as

Csimi,j =

∫

Ωi
′∩Ωj

|Sj(x)− Si(hi,j(x))|2dx (2.44)
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where, the intersection of Ω′
i = hj,i(Ωi) and Ωj represents the region of interest,

over which the registration is performed.

The above mentioned three metrics are used in validation of the BICIR algo-

rithm as well as for comparison with existing technique (SICLE).

2.2.2 Characterization of BICIR w.r.t Algorithm Parameters

In the BICIR framework, the registration is posed as an optimization problem

that minimizes a scalar cost term. The similarity cost i.e., intensity difference between

the two images is used as the driving function for computing the correspondence. The

constraints of energy regularization and inverse consistency are included as additional

costs. The overall objective function of the BICIR algorithm consists of linear sums

of these three costs. The scalar objective function C is described by Eq. 2.32 in

section 2.1, and is minimized w.r.t. the transformations hi,j and hj,i defining the

correspondences between images Ti and Tj.

The method of using a weighted sum objective function is one of the simplest

and most popular method for optimization of multi-objective functions. When all

the weights are positive, the cost function is always convex, which is a sufficient

condition for minimizer of cost described in 2.32 to be Pareto optimal [51]. Pareto

optimality implies that no improvement from the Pareto optimal can be achieved

that minimizes one cost term without affecting the other costs [35], [40]. However,

sufficiency of weighted sum objective function to have Pareto optimal for all values of

weights implies that instead of one solution, we have a large set of Pareto optimals.

This set is called Pareto set and minimizers for all positive values of various weights
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always lie in this set. Hence, the choice of weights remains a problem as there is no

standard way of choosing weights. The choice of weight is largely determined by the

preference of the decision maker and although there are some proposed methods such

as Saaty’s eigenvalue method [51], all these techniques require the decision-maker

to rank the various cost functions in order of importance. In other words, setting of

weights depends upon the preferences of the decision-maker and is generally performed

heuristically.

In view of the above, the strategy of Johnson [21] for choosing weights for a

similar cost function is followed here and is briefly described as follows:

1. Similarity Cost Parameter σ is always chosen as 1.0. This does not have any

effect on the registration, since relative weight of other cost terms can still be

changed using other parameters.

2. Inverse Consistency Cost Parameter χ and Linear Elasticity Cost Parameter ρ

are varied over a range of values, respectively by keeping one parameter con-

stant for all range of values for the other parameter and repeating this for next

constant value of the first parameter. The BICIR registrations are performed

using these set of values one at a time, and the total cost is calculated. Param-

eters corresponding to the minimum total cost are chosen as the recommended

parameters for that type of image data.

3. The step size and number of iterations are similarly chosen for the recommended

parameter values by changing step size and observing the number of iterations
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required to get convergence within a specified range.

2.2.3 Analysis of BICIR Registration Method

The BICIR method was analyzed over a range of 2D and 3D images and impact

of change in various parameters was studied. The images ranged from parametric

shapes to shapes of anatomical objects. The 2D phantom objects included ellipses

containing smaller ellipses such that there are intensity differences at the boundaries

as well as in the interior of the object. The 3D objects included parametric shapes of

hollow ellipsoids with different thicknesses and shapes, and brain images.

The correspondence between shapes was computed analytically. For The

boundary correspondences for the phantom images were computed analytically using

parameters for the outer shape description. Let X and Y represent the set of all

pixels lying on the boundaries of ellipses EX and EY . The ellipses were constructed

such that their major and minor axis lay along the X- or Y-directions. Let d1j and d2j

represent the diameters of ellipse j, j ∈ X,Y in X- and Y-direction, and c1j and c2j

represent the centers of the ellipses using same terminology. Let (x1i, x2i) represent

i− th element of set X with corresponding element (x1i
′, x2i

′) and (y1j, y2j) represent

j − th element of set Y with corresponding element (y1j
′, y2j

′) the sets X,X ′ and

Y, Y ′ represent the forward and reverse boundary conditions where X ′ and Y ′ can be

computed using equations 2.45 and 2.46.

x1i
′ =

d1y

d1x
(x1i − c1x) + c1y

x2i
′ =

d2y

d2x
(x2i − c2x) + c2y

(2.45)
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y1j
′ = d1x

d1y
(y1i − c1y) + c1x

y2j
′ = d2x

d2y
(y2i − c2y) + c2x

(2.46)

Likewise, the boundary correspondence for 3D ellipsoids was analytically com-

puted with the difference being that there are three diameters and center point has

3D coordinate location. In this case, (x1i, x2i, x3i) represents i − th element of set

X with corresponding element (x1i
′, x2i

′, x3i
′) and (y1j, y2j, y3j) represent j − th el-

ement of set Y with corresponding element (y1j
′, y2j

′, y3j
′) and the sets X,X ′ and

Y, Y ′ represent the forward and reverse boundary conditions where X ′ and Y ′ can be

computed using equations 2.47 and 2.48.

x1i
′ =

d1y

d1x
(x1i − c1x) + c1y

x2i
′ =

d2y

d2x
(x2i − c2x) + c2y

x3i
′ =

d3y

d3x
(x3i − c3x) + c3y

(2.47)

y1j
′ = d1x

d1y
(y1i − c1y) + c1x

y2j
′ = d2x

d2y
(y2i − c2y) + c2x

y3j
′ = d3x

d3y
(y3i − c3y) + c3x

(2.48)

For brain images, three different approaches were used. In first approach, bi-

nary masks were obtained by dilating the brain segmentations by 5 voxels. This was

done such that the ROI obtained after intersection of Ωi and Ωj
′ still contained the

entire brain. The binary masks thus obtained were registered using SICLE registra-

tion method. The registration results were applied only to boundary voxels to get
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the input boundary conditions for BICIR. Let h0i,j denote the transformation from

ROI Ωi to Ωj and let h0j,i represent the transformation in the opposite direction.

Let X represent the boundary voxels for the template image and let Y represent the

boundary voxels for the target image such that the transformation h0j,i maps each

point x ∈ X to a point x′. Let X ′ be a collection of all such transformed points

in forward direction and Y ′ represent a collection of all such transformed boundary

points in reverse direction. This results in a collection of points X,X ′ and Y, Y ′ that

describe initial boundary condition.

In second approach, a region of interest inside brain images was chosen. This

ROI represented an expert-segmented anatomical region. BICIR method was updated

to automatically compute a spherical envelope that enclosed the entire ROI in both,

template and target images. The region inside this envelope was used to register the

images together. The registrations were performed over 16 NIREP datasets using one

image as a template. The results were compared against results from SICLE for the

same ROI.

In third approach, ellipsoid envelope was computed for the same ROI and the

process repeated for validation and comparison.

2.2.4 Comparison with Small Deformation Inverse Consistent Elastic Registration

BICIR follows similar constraints for its intensity phase and includes the ad-

ditional step of boundary matching, which is necessary to provide the boundary con-

straints. The performance of BICIR method was evaluated using 2D phantom images

and 2D images from sheep lungs. The phantom images contained simple shapes to
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illustrate the various steps of BICIR. On the other hand, the sheep lung images were

complex and were used to evaluate how well the new algorithm could register real

data. The comparison with Small Deformation Inverse Consistent Elastic Registra-

tion (SICLE) was made over a total of 20 2D registrations of CT images of sheep

lungs. The 2D slices were extracted from 3D CT images of sheep lungs at different

phases of the breathing cycle across different subjects. The 2-D template image was

extracted from a 3-D CT image collected from sheep. The images were selected to

have as many correspnding features as possible. Note that some of the regions in

these images do not have corresponding regions in the other image due to motion in

and out of the image plane. This problem does not exist for 3-D registration. For the

comparison of registrations in 2-D, it was assumed that the motion in and out of the

plane was minimal.

In the SICLE method, the template and the target images were registered

together using intensity differences while minimizing the inverse consistency and linear

elastic energy regularization constraint. In BICIR method, the lung boundaries were

extracted and matched using inverse consistent boundary matching. The registration

was initialized using the boundary conditions through Element Free Galerkin Method

(EFGM). The EFGM solution was then made consistent through inverse consistency

minimization before initializing the intensity phase. The consistent EFGM solution

was then used to initialize the intensity based registration, during which only region

inside the ROI gets registered.
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2.2.4.1 Preprocessing

The same preprocessing steps were applied to the input images for both the

methods. The sheep lung was extracted from the 3-D sheep chest CT images using

intensity threshold based segmentation followed by manual edit. After the segmen-

tation, the corresponding 2-D slices were identified between different scans and a

collection of 2-D slices was generated. This collection of 2-D slices was then used

for the registrations comparison. In addition, the image intensities were normalized

from [−1000, 0] to [0, 255] such that entire range of intensities of the sheep lungs is

captured and stored in 8-bit data format.

The two algorithms were run and tested for a sample size of 20 2-D lung images

extracted from the 3-D sheep lung images.

The following comparisons were made:

1. Average Landmark Correspondence Error

2. Maximum Landmark Correspondence Error

3. Relative Overlap

4. Average Intensity Difference (Similarity Cost)

5. Average Inverse Consistency Error

6. Maximum Inverse Consistency Error

7. Total Time Taken
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CHAPTER 3
RESULTS

This chapter presents the results for characterization, analysis and valida-

tion of Boundary-Constrained Inverse Consistent Image Registration (BICIR) method

and its comparison against the Small-deformation Inverse Consistent Linear Elastic

(SICLE) Image Registration.

Section 3.1 provides the results for analysis and evaluation of the BICIR

method using 2D images. The section demonstrates various stages of the BICIR reg-

istration method and effect of parameters such as knot spacings and relative weights

of different cost functions. The section also provides results for comparison of BICIR

method against SICLE method using a number of 2D sheep lung images. The 2D

images corresponded to 2D slices from CT sheep lung images such that the slices

being registered contained similar anatomical regions.

Section 3.2 presents registration results for 3D phantom images and compar-

ison with Small-deformation Inverse Consistent Linear Elastic (SICLE) registration

method using 3D brain MRI datasets. The 3D image registrations were performed on

segmentations defined on MRI brain images from NIREP database using parametric

as well as non-parametric region of interest. Results show that the BICIR method

was significantly better than SICLE method.
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3.1 Registration of 2D images using BICIR

This section provides results for 2D image registration using BICIR method.

The section is divided as follows: Section 3.1.1 presents analysis of registration be-

tween pairs of simple 2D phantom images. Section 3.1.2 presents the comparison

between SICLE and BICIR over a small population of 2D sheep lung images. Sim-

ple phantom shapes were considered first since the boundary correspondences can be

computed analytically and the ground truths are easier to determine while the shapes

can be altered to create different kind of tests for the registration method. For exam-

ple, in ellipsoidal phantom shapes used in this section, all points at boundaries have

corresponding unique displacement vectors to the point they map to in the target

elliptical object. The interiors of these phantoms were designed such that there are

intensity differences before the registration and the intensity differences remain even

after boundary matching. As a result, even affine registration that matches bound-

aries in general, will not match the interiors for the examples used. After establishing

results for 2D phantom images, the method was put to test using 2D medical im-

ages representing slices from CT scan on sheep lungs. The slices had to be carefully

extracted so that they pertain to roughly the same anatomical plane and contained

similar internal structures. BICIR method was compared to SICLE method, which

is also a consistent registration method and the results are presented in section 3.1.2.
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3.1.1 Registration of 2D Phantom Images

This section analyzes the performance of the BICIR algorithm using 2D phan-

tom images. The phantom image data set consisted of simple shapes to illustrate

the various steps of the BICIR. The collection of 2D phantom images consisted of an

outer elliptical shape containing an interior elliptical shape as shown in Figure 3.1.

The intensities of the outer ellipse shape were kept at 255 and the intensity of the

inner ellipse were chosen to be 128, with the background having an intensity value

of 0. A sample size of eight datasets was generated using different sizes of the two

ellipses. The two elliptical objects combined together represent the object shape

and the boundaries of the outer ellipse were treated as the object boundaries. This

construction, although simple, allows for two different type of feature sets: the outer

boundaries correspondence representing the boundary conditions for the EFGM based

boundary matching and the interior ellipse, which represents the intensity differences

between the two images.

Figures 3.2 and 3.3 show results for one sample 2-D phantom image registra-

tion. In Figure 3.2, the top row represents the results for the forward direction and

the bottom row represents the results for the reverse direction. The first and second

images in the top row represent the template and the target images to be registered.

It may be noted that the role of template and target images gets switched during

the registration in the reverse direction. The third image represents the deformed

template following only EFGM based interpolation of the boundary conditions and

the fourth image shows the deformed template after EFGM based interpolation fol-
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Figure 3.1: 2D Ellipsoid Phantom Image Dataset. The figure shows the 2D ellipsoid
images registered for characterizing performance of BICIR. The phantoms consisted of
background value of 0 and an outer ellipsoid image with intensity value of 255. The
ellipsoidal foreground object contained an internal ellipsoidal object with intensity
values of 128.

lowed by the boundary constrained intensity registration. The fifth, sixth and seventh

images show the intensity difference between the deformed template and the target

before the registration, after EFGM based interpolation and after EFGM based in-

terpolation followed by the boundary constrained intensity registration, respectively.

The second row shows the similar images for the reverse direction. The figure shows

that initially, there are large differences between the boundaries as well as the interiors

of the two objects being registered together. The boundary condition interpolation

using EFGM matches the boundaries exactly, but differences still remain in the in-

terior of the objects. These differences are minimized during the intensity phase and

finally, the images are matched together, both at the boundaries as well as in the

interior of the object. The same can be seen in the bottom row for the registration
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in the reverse direction.

Figure 3.3 shows deformed grid and the displacement fields at various stages of

the registration for the purpose of illustration of behavior of the registration method.

The figure contains three rows, corresponding to the boundary extension function,

which represents an arbitrary extension of boundary correspondences to the interior

of the object, the results after the interpolation of these boundary conditions using

EFGM and the results of boundary constrained intensity registration after boundary

conditions are interpolated using EFGM. The first three columns represent the re-

sults in forward direction and the last three columns represent the results in reverse

direction, where the forward and reverse directions are same as in Figure 3.2.

The figure shows the deformed grid and x- and y- displacements at each of

these three stages for both directions. The results are presented in Eulerian frame of

reference. It can be seen from the deformed grid that the deformation is limited only

to the domain of the object and also that the boundary extension function, although

smooth, has very limited and localized deformation. The images corresponding to x-

and y- displacements provide the same information. The second row of the images

show the results after the boundary displacements are interpolated over entire object

domain using the Element Free Galerkin Method. The deformed grid and x- and y-

displacements are much smoother and less localized than the first row, as the defor-

mation is evenly distributed according to the governing partial differential equation.

Finally. the third row shows the displacements after intensity based registration. The

figure shows that the boundaries of the object remain unchanged, but the differences



56

in intensity cause the deformation inside the object. The same observations can be

made in the images representing the registration in the reverse direction.

Figures 3.2 and 3.3 provide simplistic but strong illustration of the BICIR

registration method. Table 3.1 shows the performance metrics for the 2-D phantom

registrations.

Ave. Int. Diff. Ave. ICE Max. ICE Total Relative
Overlap (%)

Initial Average 59.81 - - 81.96
Std. Dev. 23.19 - - 6.35

Registration w/o Average 2.86 0.381 2.025 99.994
Inv. Consistency Std. Dev. 3.505 0.1706 1.123 0.0149
Registration with Average 3.08 0.063 0.512 99.994

Inv. Cons. Std. Dev. 3.054 0.0165 0.0995 0.0149

Table 3.1: Summary Performance Statistics for Eight 2D Phantom Experiments.

The table shows various performance parameters for evaluation of the BICIR

registration method over a total of 8 2D phantom images. The first row in table show

the value of intensity differences and relative overlap before the registration. The

second and third row represent the values of different metrics for different constraints

of no inverse consistency and with inverse consistency, respectively. The results show

that the intensity differences were minimized while also minimizing the inverse con-

sistency cost from an average of 0.381 to 0.063. The total relative overlap was almost

100% since the boundaries were matched explicitly and remained unchanged during

the intensity registration.
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3.1.2 Registration of 2D Sheep Lung Images

This section provides comparison of the BICIR method with SICLE image

registration [4] method. SICLE registration method was chosen since BICIR follows

constraints similar to SICLE with the added constraint of boundary matching. SICLE

method registers entire images with entire images regardless of object boundaries, but

uses similar regularization constraints as the BICIR method follows in intensity phase.

BICIR includes additional step of boundary matching, which is necessary to provide

the boundary constrained image registration. The comparison was done over a total

of 20 2-D registrations of CT images of sheep lungs at different phases of breathing

cycle across different subjects. The 2-D images were extracted from 3D CT images

collected from sheep. The image pairs to be registered were selected such that they

include as many corresponding features as possible. It may be noted that some of

the regions in these images do not have corresponding regions in the other images

due to motions in and out of the image plane. This problem does not exist for 3D

registration. For the current study, it is assumed that the motion in and out of the

plane is minimal and the images correspond in 2-D.

In the SICLE method, the template and the target images were registered

together using intensity differences while minimizing the inverse consistency under

linear energy regularization constraint. In BICIR method, the lung boundaries were

extracted and matched using inverse consistent boundary matching. The registration

was initialized using the boundary conditions through EFGM. The EFGM solution

was then made consistent through inverse consistency minimization before initializing
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the intensity phase. The consistent EFGM solution was then used to initialize the

intensity based registration, during which, only region inside the ROI gets registered.

Figure 3.4 shows the registration results for a pair of 2-D sheep lung images

for the BICIR registration method. The first two panels show the images of the two

objects to be registered together. The boundaries of the ROIs for the two objects have

been overlaid on the object. The arrows in the first two panels show the corresponding

points given as input to the inverse-consistent boundary matching program to help

it avoid the local minima. The correspondence defined by these points is kept fixed

and correspondences along the boundaries are updated while minimizing the total

boundary registration cost. The boundary correspondence was used as input to BICIR

and the deformed images in both directions are shown in third and fourth panels,

respectively.

Figure 3.4 also shows that the BICIR method matches boundaries exactly

and minimizes the intensity differences interior to the ROIs. This can also be seen in

Figure 3.5, which shows the absolute intensity differences between the deformed Image

1 and Image 2 before registration and after SICLE, after only boundary matching

using EFGM and after BICIR.

The difference images in Figure 3.5 display the absolute value of difference

between the gray scale values of the two images computed at each pixel of the image.

The first panel shows the absolute intensity differences between the two images before

the registration. The second panel shows the difference image between the deformed

image 1 and image 2 after SICLE registration. The difference image shows that while
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the SICLE method matches the airways denoted by small arrows, it performs poorly

in matching outer boundaries of the lung as shown by the large arrows. The third

and fourth panels show the absolute intensity differences between the deformed image

1 and image 2 after boundary matching using EFGM and after BICIR, respectively.

The large arrows show that after EFGM, there is no matching error at the boundaries

and the boundary matching remains unchanged during the intensity phase. The

small arrows show that while there are mismatches at the airways after EFGM, the

differences are minimized after the intensity phase. Comparing the SICLE and BICIR

results, it can be seen that both do a good job of matching the main airways, however,

the BICIR algorithm clearly outperforms the SICLE algorithm while matching the

outer boundary of the lung.

Figure 3.6 shows the registration results for the SICLE method and for the

BICIR method after various processing stages. The first row represents the results

for SICLE method. The other rows represent results from BICIR method: the second

row shows the results after the EFGM phase, the third row shows the inverse error

minimization of EFGM solution and the last row shows the result after fine-tuning

of the consistent EFGM solution using the intensity information inside the ROI.

The first column shows the deformed grids using the deformation fields obtained

from registration method corresponding to that row. The second column represents

the inverse consistency cost. The third- and fourth- columns represent the x- and

y-displacement vectors shown as the intensity images. The last column shows the

log-Jacobian image of the transformation, which represents relative local contraction
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and expansion of the template object, when deformed into the frame of reference of

the target image.

The first row in Fig. 3.6 shows that for the SICLE registration method, the

deformation is taking place over entire image and is not restricted to the ROI as a

results of regularization across the objects. The second row shows the results after

EFGM phase, during which the boundary correspondences are interpolated over the

region of interest using an energy regularization constraints. The smooth transition

in displacement and a very smooth Jacobian image shows that the transformation

inside the ROI is a results of only boundary matching during this phase, as there is

no local deformation taking place in the ROI. The second panel in second row shows

the inverse consistency error image, which has an average of 0.27 over the region

of interest. The third panel shows that after inverse consistency minimization, the

inverse consistency error reduces to almost zero everywhere inside the ROI except

near the boundaries. This results from WEB-splines vanishing at the boundaries,

leaving the inverse consistency error at the boundaries remains unchanged. The last

row shows the results after the intensity phase, where local intensity information is

used to update the transformation and the local transformation can be seen in the

deformed grid, log-Jacobian and the displacement images. The inverse consistency

error increases slightly inside the ROI as a result of local deformation, but the average

value over the ROI is still very low (0.08 pixels). As shown later in this section, BI-

CIR provides overall improvement in relative overlap along with decrease in intensity

differences and lower inverse consistency error.
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The SICLE and BICIR methods were compared using the following metrics:

• Relative Overlap: For two sets A and B, the relative overlap is defined as the

ratio of their intersection to their union, i.e.

R.O. =
A
⋂

B

A
⋃

B
(3.1)

For comparison, we compared the R.O. for the registered regions of interest.

• S imilarity Cost: For the two images Ti and Tj to be registered, the absolute

intensity difference between the two images is computed at each pixel. The

average value of the differences was computed over the entire image, since a

common region of interest could not be established in the space of deformed

template when comparing the two different methods.

• Inverse Consistency Error: The inverse consistency error at each pixel is de-

fined as the difference between the transformation in one direction and inverse

of transformation in the opposite direction. Let hi,j and hj,i represent the trans-

formation from image i to image j and transformation from image j to image

i, respectively. Then, the inverse consistency error is computed at each pixel

location x as |hi,j(x) − h−1
j,i (x)| and |hj,i(x) − h−1

i,j (x)| in forward and reverse

direction, respectively. A perfectly inverse consistent image registration will

have zero inverse consistency error and therefore contains no correspondence

ambiguity. Although it should be noted that inverse consistency error can be

very low for even very poor correspondences.
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• Average Boundary Error: The average boundary error is defined as the average

distance between the boundaries of the deformed template object and the target

object and vice versa in reverse direction, respectively. For each boundary

pixel in the deformed image, the distance with closest target boundary pixel is

computed as the boundary matching error.

Table 3.2 shows the metrics for the two registration methods for the 20 2D

sheep lung registrations. The table shows that the average intensity differences were

minimized from an initial average value of 15.4 to an average value of 8.52 by SICLE

registration and to an average value of 7.99 by the BICIR method. SICLE reduced the

average boundary error from 6.63 before registration to an average of 2.08 pixels, while

BICIR method matched the boundaries exactly. Likewise, the average relative overlap

for SICLE method is 89.9%, which is much lower than the BICIR method (100%).

Maximum inverse consistency error was consistently higher in BICIR method owing

to initial inverse consistency error at boundaries of the object and the inability of

method to update the boundary conditions. However, the average inverse consistency

error over the region of interest was lower for BICIR, when compared with SICLE.

The results in Table 3.2 show that BICIR method provided better registra-

tion of the 2D sheep lung images than SICLE by explicitly matching boundaries and

performing intensity based registration over only region of interest. While the BICIR

method provides perfect boundary matching and a 100% relative overlap, the im-

provement can be seen in other performance metrics such as the intensity differences

and the inverse consistency error.
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This section discussed the application of BICIR registration method for 2D

phantom shapes where a consistent analytical boundary correspondence could be

computed. The BICIR method was shown to retain boundary correspondence while

matching the interior regions well and keeping the inverse consistency error to a very

small value. The method was extended to anatomical images where 2D sheep lung

images were registered using BICIR and SICLE and comparison was made. BICIR

registration method was shown to provide much better results compared to SICLE

method. The validation of 2D sheep lung images is limited by the fact that the 2D

slices had to be assumed to correspond to same anatomical region without any out of

plane deformation. In general, this assumption does not hold true and 3D registration

is required to register 3D images together.

Section 3.2 extends the results for 3D images by analyzing the registration for

3D phantom images and MRI brain scans.
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Template Target Deformed Deformed Int. Diff. Int. Diff Int.Diff.
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Figure 3.2: Top row (From Left to Right): Template, Target, Deformed Template After Boundary Matching using EFGM,
Deformed Template after BICIR, Absolute Intensity Difference image before registration, Absolute Intensity Difference image
after EFGM and Absolute Intensity Difference image after BICIR registration, respectively. Bottom row shows the same
results for the reverse direction.
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Figure 3.3: Top row (From Left to Right): Deformed grid in forward direction, x-component of transformation in forward
direction, y-component of transformation in forward direction, Deformed grid in reverse direction, x-component of transfor-
mation in reverse direction and y-component of transformation in reverse direction, respectively. The top row corresponds to
only the boundary extension function g̃, the middle row corresponds to the results obtained using boundary matching through
EFGM using WEB splines, and the bottom row corresponds to results obtained after BICIR registration, where WEB spline
based intensity registration algorithm is initialized using results from EFGM, respectively. It may be noted that the forward
and reverse registrations are performed simultaneously, while minimizing inverse consistency in every iteration.
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Figure 3.4: The first two panels show the two images that were registered. The contours used for boundary matching are
shown superimposed on these images. The arrows show corresponding landmarks in the images that were forced to align
during the boundary matching step. The last two panels show the registration results obtained using the BICIR algorithm.
The third panel shows Image 1 deformed into the shape of Image 2 and the fourth panel shows Image 2 deformed into the
shape of Image 1.
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Intensity Difference Intensity Difference Intensity Difference Intensity Difference
Before Reg. After SICLE After EFGM After BICIR

Figure 3.5: From left to right: Initial pixel-wise absolute difference between intensities
of Image 1 and 2, absolute intensity difference between Image 1 and target images
after SICLE, inverse consistent EFGM and BICIR. The results correspond to the
forward direction of figure 3.4. The SICLE and BICIR methods did a similar job in
matching the 4 large airways shown by the 4 small arrows in each panel. However,
the SICLE algorithm did a poor job of matching the outer boundary of the lung as
shown by the 2 large arrows in each panel. Note that the EFGM method matched
the boundaries well, but not the airways which are matched well during the intensity
matching phase of BICIR.
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Figure 3.6: From left to right: Deformed grid using the registration deformation fields,
Inverse consistency error image, x-displacement image, y-displacement image and the
log-Jacobian image. The top row represents results for SICLE registration, the second
row represents results after EFGM, the third row represents results after EFGM with
inverse consistency and the last row represents the results after BICIR registration,
respectively. The average ICE for SICLE, EFGM, EFGM+ICC and BICIR are 0.1,
0.27, 0.04 and 0.08 respectively for the example shown.
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Performance Metric
Before Registration SICLE BICIR

Ave. / Max / Std. Dev. Ave. / Max / Std. Dev. Ave. / Max / Std. Dev.
Average Intensity Difference 15.4/ 21.24/ 3.62 8.52/ 14.49/ 2.97 7.99/ 13.71/ 2.96

(Gray Scale)
Average Boundary Error 6.63/ 10.44/ 1.95 2.08/ 3.05/ 0.58 0.0/ 0.0/ 0.0

(Pixels)
Maximum Boundary Error 19.89/ 31.4/ 5.99 18.71/ 30.61/ 9.04 0.0/ 0.0/ 0.0

(Pixels)
ROI Relative Overlap (%) 66.7/ 74.32/ 9.6 89.9/ 93.48/ 3.54 100.0/ 100.0/ 0.0

Average ICE (pixels) -/ -/ - 0.14/ 0.26/ 0.06 0.08/ 0.11/ 0.01
Maximum ICE (pixels) -/ -/ - 0.87/ 1.8/ 0.41 1.49/ 2.62/ 0.62

Table 3.2: Summary Performance Statistics for 20 2D sheep lung registrations.
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3.2 3D Image Registration Results

This section provides image registration results for 3D images including phan-

tom and 3D brain MRI datasets while using parametric as well as arbitrary shaped

regions of interest (ROI).

First, simple phantom shapes were studied in Section 3.2.1. The results ob-

tained were compared with SICLE registration method for the simple shapes of el-

lipsoids that have intensity differences at the boundaries as well as at the interior of

the object. The phantom shapes provide easy analysis of the method as the bound-

ary conditions can be analytically and accurately computed and thus inaccuracy in

boundary estimation does not affect overall image registration.

The BICIR method was applied to 3D brain MR scans using a variety of in-

puts. The primary challenge in progressing from 2D image registration to 3D image

registration for non-parametric surfaces was difficulty in finding boundary correspon-

dences. Consistent contour based image registration methods in 2D are not as com-

plex as consistent surface based methods in 3D. BICIR method requires a very dense

boundary correspondence, which dictates a surface representation that has a very

large number of polygons. This leads to a variety of overheads: finding surface cor-

respondence using existing methods is very time consuming. BICIR method requires

a distance map from the ROI and if ROI is defined in the real domain using a mesh

representation, computation of distance map became using prohibitively expensive for

large 3D image volumes. Projection of surfaces onto voxels and assigning boundary

correspondence yielded large correspondence and consistency errors at the boundaries
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which affect the overall image registration. As a result, this work used either para-

metric methods or only voxel based methods. Output from a good and consistent

surface based registration method is expected to provide even better results.

Section 3.2.2 presents the case studies for registering entire brain images while

using a known boundary correspondence for an arbitrarily shaped non-parametric

region. The input boundary conditions were computed using binary image registra-

tion method performed using SICLE. This correspondence was provided as input to

BICIR registration method. The comparison was made between BICIR method using

this input with SICLE registration method performed over the image. The BICIR

method may suffer from the input boundary conditions in this test. However, the

evaluation of method for arbitrarily defined region of interest can be made.

Dependence of BICIR method on input boundary points was addressed using

integrated boundary correspondence computation within BICIR registration frame-

work. The regions of interest to be registered were provided as binary images along

with the images to be registered. A new region of interest was computed around the

original segmentation using spherical or elliptical envelope. These parametric shapes

were used to compute boundary correspondences parametrically. Section 3.2.3.1 pro-

vides the results for using spherical envelope defining the object boundaries for a given

region in brain images from the datasets. Section 3.2.3.2 provides the results for using

elliptical envelope defining the object boundaries for a given region in brain images

from the datasets. Finally, the results are compared between different initializations

and with SICLE method.
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3.2.1 3D Phantom Studies

The phantom dataset was constructed using simple shapes of ellipsoids. The

phantoms were designed such that there were differences at the boundaries as well as

in the interior of the phantom shapes. All the phantom image dimensions were kept

at 128× 128× 128 with only two intensity values of 0 and 255.

3.2.1.1 3D Ellipsoid Phantom Studies

The phantom images consisted of a number of ellipsoids containing interior

ellipsoidal shapes as described in Table 3.3. The ellipsoids provide a more complex

shape than cuboids and every point on boundaries may be treated as a special case

since different points move by a different displacement and displacement vector at

each boundary voxel is unique.

External External External Internal Internal Internal
x-Size y-Size z-Size x-Size y-Size z-Size

01 40 32 28 15 10 10
02 40 32 28 15 15 10
03 40 32 28 15 20 10
04 40 40 30 10 10 10
05 40 40 30 15 10 10
06 32 40 28 15 15 15

Table 3.3: Construction of 3D Ellipsoid Phantoms

The background intensities were kept at 0, the intensity of the ellipsoids was

kept at 255 and the intensity of the interior shape was kept at 0. A sample size of six
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different shapes was generated using ellipsoids of different sizes as well as containing

shapes of different sizes inside the ellipsoids. All the ellipsoids were registered together

to provide a total of 15 registrations. As with 2-D phantoms, this construction allows

exterior boundary matching as well as provides features inside the object of interest,

which could be used to drive the intensity-based image registration. Pairwise image

registrations were performed between two images from the sample set using BICIR

method.

Figures 3.7 and 3.8 represent results from one of the registrations performed

between a pair of ellipsoids. Figure 3.7 displays the template ellipsoid image, target

ellipsoid image, deformed template ellipsoid image after EFGM phase, deformed tem-

plate ellipsoid image after the intensity phase and the intensity difference between

template and target images before registration, after EFGM phase and after intensity

phase, respectively. The top row in Fig. 3.7 shows these results in forward direc-

tion and the bottom row shows the same results in reverse direction. The deformed

template images at various stages show that after the EFGM phase, the boundaries

are registered but the interior of the object looks very different. The interior ob-

ject is matched after the intensity phase while the exterior boundary correspondence

remains unchanged. The difference images show the same pattern as the intensity

differences can be seen inside the object as well as at the boundaries. The inten-

sity difference remains only at the interior of the object after EFGM phase and is

minimized after the intensity phase. Note that the boundary differences exist only

in y- and z-directions for this example. As a result, the initial boundary extension
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function and EFGM output contains only zero values in their x-components. The

x-displacement column in the last row represents the displacement in x-direction in

order to minimize the intensity differences. In the example, sagittal slices are shown

for z-displacement fields whereas transverse slices are shown for all other images.

Figure 3.8 shows the deformed grid and displacement fields at different stages

of the registration. The first row in the image displays the deformed grid after com-

putation and application of the boundary extension function g̃ and x-, y- and z-

displacements in both, forward and reverse directions. The second row shows the

corresponding images after the EFGM phase and the third row displays the same

images after the intensity phase. The images show that the deformation is local-

ized close to the boundaries of the object after application of only the boundary

extension function g̃. The figure shows that the EFGM phase makes the deformation

smoother and interpolates the boundary extension function over entire ROI uniformly

as per the governing differential equation. This effect can be observed in all the im-

ages shown in second row. The third row shows the corresponding images after the

EFGM+intensity phase and it can be seen that the deformation has been updated

inside the region of interest as a result of intensity difference minimization. Table

3.4 shows the performance metrics for 15 registrations using 3D ellipsoidal phantom

images.

3.2.2 Registration of 3D Brain Images

This section presents the results for BICIR method applied to brain images to evaluate

the method for arbitrarily shaped regions of interest and comparison to SICLE image
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Ave.Int. Diff. Ave. ICE Max. ICE Total Relative Overlap (%)
Initial Average 65.155 - - 75.47

Std. Dev. 28.81 - - 12.61
After Average 17.91 - - 100

EFGM Std. Dev. 9.31 - - 0
After Average 4.11 0.068 0.8213 100
BICIR Std. Dev. 1.7 0.034 0.41 0

Table 3.4: Summary Performance Statistics for 15 3D Phantom Experiments.

registration method. The following steps were followed to perform registration on 3D

brain scans:

1. Computing binary masks The binary masks were computed by dilating the

segmentation mask representing the brain segmentation. This was done to

reduce the effect of inverse consistency error in matching boundaries. A dilation

of 5 voxels was used for these studies. The WEB-spline basis functions were

defined over the dilated binary masks.

2. Computing boundary correspondence The dilated binary mask images

were registered using small-deformation inverse consistent linear-elastic (SICLE)

image registration. It may be noted that any method may be used to compute

boundary correspondence. The boundary correspondence defined by the chosen

method shall remain unchanged during BICIR registration.

3. Computing EFGM based interpolation The boundary condition obtained

from the SICLE registration was used as an input for EFGM based interpolation

to interior of the object.
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4. Intensity-based image registration The boundary-constrained intensity-

based image registration was performed to refine the correspondence in the

interior of the object as the final phase.

Figures 3.9 to 3.14 show various stages of an example of image registration

between a pair of brain images using irregular shapes describing the region of interest

(ROI). The brain images and brain segmentations from NIREP project were used

for the brain registrations. BICIR registration utilizes boundary correspondence of

input ROIs as the essential boundary condition. For the purpose of these studies,

the input boundary correspondences were computed using Small-deformation Inverse

Consistent Linear Elastic (SICLE) registration between the binary masks. SICLE

method does not guarantee exact boundary match which can result in the brain

images containing inside the segmentation to not match with the boundaries of each

other, thus providing a relatively poor input. Note that any boundary registration

method may be used to find correspondence at boundaries. However, the results will

be limited by these boundary correspondences.

The problem associated with inaccurate boundary matching was addressed

by using “dilated” segmentation masks thus reducing reliance on the precision of

boundary matching. Figure 3.9 shows the dilated segmentation masks and the original

brain images used for registration. For these experiments, a value of 5 voxels was used

such that the value was larger than the maximum distance between registered pair of

mask images in either direction. The figure shows the original brain images and the

dilated mask overlaid on the negative of original brain images. As seen in the figure,
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the mask extends the boundaries of the object in all directions. The mask images were

registered together using SICLE registration and the boundary correspondence at the

boundaries was used as an input for the EFGM method. The correspondence obtained

using EFGM were further refined using boundary-constrained intensity registration.

Figures 3.10 to 3.14 show the images generated at various stages of image registration.

Figure 3.10 shows the slices extracted from various registration stages in for-

ward direction in Transverse, Sagittal and Coronal orientations from top panel to

bottom panel, respectively. The first two columns represent the original template

and the target images, respectively. Following registration, the deformed template

will be expected to resemble the target image and the results from the figure show

that the template image gets incrementally closer to the target image. The third col-

umn represents the deformed template image after EFGM registration. At this stage,

the boundary matching is good while the matching inside interior of the object and

the sulci folds improves further after the intensity registration phase as shown in the

fourth column. This can be seen even more clearly in the color overlay images in the

last three columns with intensity value from template image represented in red color

and intensity values from the target image represented in green color. A mismatch

will show as a predominantly green or red region while shades of yellow represent a

good match. The fifth column shows that the images have large regions of mismatch

before registration, which are reduced at the boundaries following the EFGM step as

seen in sixth panel. The seventh panel shows the final results after intensity phase

and further improves the internal correspondence considerably.
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The results are similar for the registration in the opposite direction, as seen in

Figure 3.11. The boundaries are matched well after EFGM phase and the intensity

information further improves the correspondence during the intensity phase.

Figures 3.12 to 3.14 show the x-, y- and z-displacements for image registration

of brain images shown in Figures 3.9 to 3.11. The figures show the displacements as

images at various stages of registration, i.e., after extending boundary conditions,

after EFGM and after BICIR. Transverse, Sagittal and Coronal slices of the displace-

ment fields are also displayed. The figures show that while the boundary extension

function is limited to a small band around boundary, the EFGM extends the bound-

ary correspondence uniformly to interior of he object. Finally, intensity registration

updates the dislacement fields. The figures clearly show that the boundary extension

function and EFGM outputs do not contain any structural information about interior

of object, but the displacement fields after intensity registration phase clearly show

the various structures inside the object that the intensity registration phase matched.
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Template Target Deformed Deformed Int. Diff. Int. Diff Int.Diff.
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Figure 3.7: Top row (From Left to Right): Transverse slices of Template, Target, Deformed Template After Boundary
Matching using EFGM, Deformed Template after BICIR, Absolute Intensity Difference image before registration, Absolute
Intensity Difference image after EFGM and Absolute Intensity Difference image after BICIR registration, respectively. Bottom
row shows the same results for the reverse direction.
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Figure 3.8: 3D Ellipsoid Shaped Phantom Registration Results. Top row (From Left to Right): x-component of transformation
in forward direction, y-component of transformation in forward direction, z-component of transformation in forward direction,
x-component of transformation in reverse direction, y-component of transformation in reverse direction, and z-component of
transformation in reverse direction, respectively. The top row corresponds to only the boundary extension function g̃, the
middle row corresponds to the results obtained using boundary matching through EFGM using WEB splines, and the bottom
row corresponds to results obtained after BICIR registration, where WEB spline based intensity registration algorithm is
initialized using results from EFGM, respectively. It may be noted that the forward and reverse registrations are performed
simultaneously, while minimizing inverse consistency in every iteration.
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Figure 3.9: Input ROIs for Brain Image Registrations Top row (From Left to Right):
Template, template ROI overlaid on template image, target, and target ROI overlaid
on the target image, respectively. The top, middle and bottom rows represent center
slices in transverse, sagittal and coronal directions, respectively.
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Figure 3.10: Registration results for 3-D Brain Images in Forward Direction. (From Left to Right): Template Image, Target
Image, Deformed Template After Boundary Matching using EFGM, Deformed Template after BICIR, Fused Template and
Target Images before Registration, Fused Deformed Template and Target Images after Boundary Matching using EFGM and
Deformed Template using BICIR Fused with Target Image, respectively. The top, middle and bottom rows represent the
slices in transverse, sagittal and coronal directions, respectively. The fused images use image intensity values from template
as red and image intensity values from target image as green channel.
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Figure 3.11: Registration results for 3-D Brain Images in Reverse Direction. (From Left to Right): Target Image, Template
Image, Deformed Target After Boundary Matching using EFGM, Deformed Target after BICIR, Fused Target and Template
Images before Registration, Fused Deformed Target and Template Images after Boundary Matching using EFGM and De-
formed Target using BICIR Fused with Template Image, respectively. The top, middle and bottom rows represent the slices
in transverse, sagittal and coronal directions, respectively. The fused images use image intensity values from target as red
and image intensity values from template image as green channel.
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Figure 3.12: Displacement Fields for 3-D Brain Image Registration in x-Direction. (From Left to Right): x-Component
of Boundary Extension Function in Forward Direction, x-Component of Displacement in Forward Direction after EFGM,
x-Component of Displacement in Forward Direction after BICIR, x-Component of Boundary Extension Function in Reverse
Direction, x-Component of Displacement in Reverse Direction after EFGM, x-Component of Displacement in Reverse Di-
rection after BICIR, The top, middle and bottom rows represent the slices in transverse, sagittal and coronal directions,
respectively.
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Figure 3.13: Displacement Fields for 3-D Brain Image Registration in y-Direction. (From Left to Right): y-Component
of Boundary Extension Function in Forward Direction, y-Component of Displacement in Forward Direction after EFGM,
y-Component of Displacement in Forward Direction after BICIR, y-Component of Boundary Extension Function in Reverse
Direction, x-Component of Displacement in Reverse Direction after EFGM, y-Component of Displacement in Reverse Di-
rection after BICIR, The top, middle and bottom rows represent the slices in transverse, sagittal and coronal directions,
respectively.
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Figure 3.14: Displacement Fields for 3-D Brain Image Registration in z-Direction. (From Left to Right): z-Component
of Boundary Extension Function in Forward Direction, z-Component of Displacement in Forward Direction after EFGM,
z-Component of Displacement in Forward Direction after BICIR, z-Component of Boundary Extension Function in Reverse
Direction, z-Component of Displacement in Reverse Direction after EFGM, z-Component of Displacement in Reverse Direction
after BICIR, The top, middle and bottom rows represent the slices in transverse, sagittal and coronal directions, respectively.
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Figures 3.15 to Figure 3.17 show the cost profiles with respect to the number of

iterations during the intensity phase. At beginning of intensity phase, the forward and

reverse registration is computed between outputs of EFGM phase and corresponding

target image in that direction, respectively. As a result, the initial similarity cost

is not equal between forward and reverse directions, as can be seen in Figure 3.15.

The figure further shows that after the convergence of intensity cost at a larger knot

spacing, the increase in resolution by changing knot spacing from 8 voxels to 4 voxels

at iteration no. 200 results in a sharper slope and thus faster refinement of local

correspondence.

Figure 3.16 shows the cost profile for the image registration. The inverse

consistency cost initially decreases as the output of EFGM is not necessarily inverse

consistent and initial intensity based refinement may improve inverse consistency. As

the iterations progress, however, the deformation gets larger and inverse consistency

error increases. Upon introduction of larger number of splines as a result of increased

resolution, the increased degree of freedom at iteration no. 200 results in a sudden

drop in inverse consistency. For the example shown, the average inverse consistency

error was computed to be 0.019 and 0.015 inside the region of interest.

Figure 3.17 shows the cost profile for regularization energy cost and the figure

shows that the total deformation energy increases with number of iterations.

The same datasets were registered using SICLE registration method and com-

pared against results from BICIR method. Table 3.5 shows the comparison between

SICLE and BICIR method for brain registrations over 15 registrations.
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Ave. Int. Diff. Ave. ICE Max. ICE Overall Relative
Overlap (%)

Initial Average - - - 83.59
Std. Dev. - - - 3.09

BICIR Average 16.33 0.0078 1.211 96.65
Std. Dev. 0.959 0.003 0.954 0.27

SICLE Average 17.81 0.0324 0.42 96.07
Std. Dev. 0.89 0.0039 0.11 0.26

Table 3.5: Comparison between BICIR and SICLE over 15 Brain Registrations.

Figure 3.15: Similarity Cost Profile During Intensity Phase. The similarity costs
in forward and reverse directions are shown in solid and dotted lines, respectively.
The intensity phase consisted of 200 iterations with grid spacing of 8 voxels and 100
iterations with grid spacing of 4 voxels.
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Figure 3.16: Inverse Consistency Cost Profile During Intensity Phase. The inverse
consistency costs in forward and reverse directions are shown in solid and dotted lines,
respectively. The intensity phase consisted of 200 iterations with grid spacing of 8
voxels and 100 iterations with grid spacing of 4 voxels.
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Figure 3.17: Regularization Cost Profile During Intensity Phase. The similarity costs
in forward and reverse directions are shown in solid and dotted lines, respectively.
The intensity phase consisted of 200 iterations with grid spacing of 8 voxels and 100
iterations with grid spacing of 4 voxels.
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The results show that overall, the BICIR method performed better than SICLE

registration method using square of intensity difference, inverse consistency error and

relative overlaps. The maximum inverse consistency error was found to be higher

in the BICIR method. This is primarily due to the BICIR method’s inability to

update boundary conditions and any consistency error or boundary mismatch remains

unchanged through intensity registration. However, the method performs better than

SICLE registration method using the metrics discussed above. We believe that the

results will be even more in favor of BICIR method if a better method for boundary

registration is employed. The next section studies the registration results for spherical

envelope describing the ROI.

3.2.3 Registration of objects inside 3D Brain Images

This section discusses evaluation of BICIR registration method using inte-

grated boundary correspondence computation methods and comparison of various

boundary correspondence computation methods with each other and with SICLE.

The registrations were carried out on brain MR scans. The brain MR scans and the

segmentations were taken from the NIREP database. For this validation, only one of

the segmentations was used. A total of 16 datasets were used for registering image

data. The raw images corresponded to image size of 256 × 300 × 256 in sagittal,

coronal and transverse directions, respectively. Due to implementation constraints

specific to the way algorithm has been implemented, a padding of 10 slices was used

on either side in coronal direction. This yields an image volume of 256× 320× 256,

which meets the requirement of image dimensions being integer multiples of knot
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spacing. It may be noted that this constraint comes from the specific implementation

and is not a limitation of BICIR registration method.

NIREP database includes 33 different segmentations per brain scan such that

each segmentation corresponds to an anatomical region as identified by experts. For

the purpose of validation of BICIR method, only one of the segmentations was used.

The input to BICIR method consisted of entire brain MR scan and a binary image

defining the object. Figures 3.18 to Figure 3.20 show the images for all the brains

and the segmentation defining the object of interest. The brighter region in the

images corresponds to region in brain hand segmented by expert to create a validation

database.

As seen in previous section, the boundary correspondence computation dic-

tates overall performance of the method. Computing surfaces from the segmented

objects and performing surface based image registration presents one option. How-

ever, this work assumes the surface registration as an input and only investigational

but consistent boundary matching methods will be addressed. Two different meth-

ods were used for computing boundary correspondences: using a spherical envelope

and ellipsoidal envelope. 3.2.3.1 presents the results where initial ROI was defined

to be a spherical envelope fitting snugly over the segmented object. We analytically

computed correspondence between two spherical ROIs in template and target images,

respectively, and used it as the input to the BICIR registration. 3.2.3.2 presents the

BICIR registration results where ellipsoidal envelopes defined the ROIs to be regis-

tered. Analytical solution to the ellipsoidal boundary matching provides the boundary
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correspondence to BICIR method. Section 3.2.4 presents the comparison between the

two methods and with SICLE.

3.2.3.1 Registration using Spherical Envelopes

This section discusses results for BICIR registration using an integrated spher-

ical envelope based boundary computation method. One of the images was taken as a

template and registered with all the other images. The inputs to the BICIR method

comprised the two grayscale 3D Brain MR scans and corresponding anatomical object

as shown in Figures 3.18 to 3.20. The following steps were followed to compute the

spherical ROI and boundary correspondence:

• The boundary points are extracted from the input segmentations for template

and target, respectively.

• Spherical envelope is computed for the set of boundary points in each direction.

The following rule was used to compute centers and radii of the spheres:

Let X = {x1, x2, ..., xn} represent the sets of boundary points in an image in

voxel coordinates, and let {C, r} represent the center and radius for the spherical

envelope, then

C =
1

n

n
∑

i=1

xir = max(xi − C) (3.2)

• Binary mask is computed within the registration framework with dilated sphere

computed above. The dilation is necessary to allow some “room” for deforma-

tion and was achieved by just increasing computed radius by a factor of 10%.
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• Registration framework computes the boundary correspondence such that the

spheres correspondence. Let {C1, r1} and {C2, r2} represent the two spheres 1

and 2 in template and target images, respectively, then a point x1 on boundary

of sphere 1 will be mapped to point x1
′ on the boundary of the sphere 2 as

follows:

x1
′ = (x1 − C1) ∗

r2

r1

+ C2 (3.3)

Following these steps, BICIR framework computes the boundary extension

function and performs EFGM and boundary constrained intensity registration. Fig-

ures 3.21 to 3.24 show results for registration between one NIREP dataset (na01) and

the remaining 15 datasets. Figure 3.21 shows the deformed images in both directions

fused with the target images. In the color images, the red and green colors corre-

spond to deformed images and target images, respectively. The overlay will ideally be

yellow where the images match perfectly and any hint of green or red color represents

difference in intensities. The images show that the intensity matching is good in the

interior of the object while there are more differences towards the boundaries. The

images also show that using spherical envelopes, the EFGM method does not provide

perfect boundary match. The boundaries match better after the intensity phase.

The spherical envelope shows the feasibility of this method to provide good

results while being fast. However, the ROI will be quite large compared to more

complicated envelopes. In addition, spherical correspondences are insensitive to ori-

entation of the region contained. Next section attempts at solving these issues by

using ellipsoidal envelope. Unlike irregular shapes, it is straightforward to compute
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correspondence between two ellipsoids with known axes and radii.

3.2.3.2 Registration of objects inside 3D Brain Images using Ellipsoid Envelopes

Given a set of points, the ellipsoid containing these points in a 3D space

needs to be computed by minimizing the distance from each point to the ellipsoid

while updating ellipsoid parameters accordingly. The parameters for ellipsoids are:

diameter of the three axes, location of center and the orientation. The orientation

of ellipsoid was taken to align with the three coordinate axes. Let r1, r2, r3 and

C = (C1, C2, C3) represent the half length along the coordinate axes and center of the

ellipsoid providing a tight envelope for the segmentation. Let P = {P1, P2, . . . , Pn}

represent set of points representing the segmented object boundaries such that Pi =

[x1,i, x2,i, x3,i]. Then, for a point lying on the ellipsoid, the following will be true:

(x1,i − C1)
2

r1
2

+
(x2,i − C2)

2

r2
2

+
(x3,i − C3)

2

r3
2

= 1 (3.4)

When this equation is applied to the point set P , the following set of linear

equations is achieved:

Ay = b (3.5)

Where, Ai,j = (xj,i − Cj)
2, b = [1, 1, 1]t and y = [1/r1

2, 1/r2
2, 1/r3

2]
t
. C

was computed as the centroid of the points. This equation is solved for y and the

positive roots of the solution represent the least square fit of an ellipsoid at centroid

of the point set and aligned with the coordinate axes. The radii of the ellipsoid were

then iteratively and proportionately increased till all the points lie inside the ellipsoid.
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This is done by iteratively increasing radii and checking for signed pseudo distance

described in Eq. 3.6 to be less than zero for all points.

d(x,E) =
(x1 − C1)

2

r1
2

+
(x2 − C2)

2

r2
2

+
(x3 − C3)

2

r3
2

− 1.0 (3.6)

Only solutions for which all the signed distances are negative were considered

since that guarantees the ellipsoid containing all the points. Let the solution for

template and target boundary points be ES(CS, rS) and ET (CT , rT ) respectively after

appropriate buffer adjustment in the half lengths to allow cushion for deformation

during registration. The BICIR framework projects these ellipsoids on the voxelized

image to obtain two sets of boundary points, X and Y , respectively. Then, analytical

correspondence between the boundary points is defined as follows:

x′
i,j =

rj,T

rj,S

(xi,j − Cj,S) + Cj,T (3.7)

The analytically computed points provide a consistent mapping at boundaries

since the projected points from ES on ET always map back to same points on E1 and

vice versa. The integrated registration framework computes these points and uses as

input to the EFGM phase. Following EFGM, an inverse consistency minimization is

performed followed by a boundary constrained consistent intensity registration during

the intensity registration phase.

Figures 3.25 to 3.28 show the registration results for the image registration be-

tween one image from NIREP database to the other images using ellipsoid envelopes.
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Figure 3.25 shows the template and target images fused with the the corresponding

objects of interest overlaid on them, respectively. The figure shows the deformed im-

ages in forward and reverse directions after EFGM and BICIR phase. The region of

image used for registration is ellipsoidal and envelopes the original object of interest.

The deformed images are fused with the target brain image. The registration using

ellipsoidal uses only information inside ellipsoidal ROI to register the two images to-

gether. Images in different orientations show that the intensity matching is better

towards interior of object whereas the boundaries are not that well matched due to

initial boundary conditions.

Figures 3.25 to 3.28 show all the registered images in frame of reference of

one image chosen as a reference image. If the images look similar inside the ROI,

it represents a good and consistent registration across the entire set of images. The

figure shows that the intensity match is good around the original region of interest

while the regions closer to boundaries do not match very well.

3.2.4 Comparison of Various Methods

Table 3.6 provides the results for image registrations carried out using NIREP

database. NIREP database image na01 was used as the template and registered

with all other images in the database. The registrations were performed on a multi-

processor computer with 24 Intel Xeon X5670, 2.93 GHz CPUs. The programs were

not written to utilize the parallel processing. This yielded a total of 15 bi-directional

registrations. Region indexed as 22 was used as the input anatomical object to be

registered. The determination on which region to choose was performed based on
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the various parameters such as quality of segmentation, intensity profile inside the

segmented object and the relative proximity of the ROIs. Relative proximity of ROIs

does not affect the integrated BICIR registration method. However, it may affect

other registration methods that register the entire images.

The table shows that using the relative overlap and similarity metrics, both

BICIR based registration methods performed better than SICLE registration method.

Within integrated registration methods, the ellipsoid performed slightly better than

the spherical envelope. Using the time as a comparison metric, the BICIR based inte-

grated methods were significantly faster than SICLE for complete image registration.

Within the BICIR framework, the methods were close to each other. This may be

explained as follows: the spherical and elliptical boundaries are easiest to compute

but they also contain much larger volume inside ROI when compared to a convex

hull, however, the volume contained is much smaller than the volume of entire image.

Moreover, the difference in computational times between SICLE and BICIR methods

is not linear with respect to the volume contained due to overheads in computation

of basis function for BICIR. In addition, there is a scope for optimization of BICIR

method which may reduce the computation time further.
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Figure 3.18: Transverse Slices of Brain Image Registration Datasets with ROIs Over-
laid. The figure shows the transverse slices of 16 datasets from NIREP project with
ROI highlighted.



100

Figure 3.19: Sagittal Slices of Brain Image Registration Datasets with ROIs Overlaid.
The figure shows the sagittal slices of 16 datasets from NIREP project with ROI
highlighted.
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Figure 3.20: Coronal Slices of Brain Image Registration Datasets with ROIs Overlaid.
The figure shows the coronal slices of 16 datasets from NIREP project with ROI
highlighted.
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Figure 3.21: Results for a Pair of Image Registration between Two NIREP Brain Datasets. The figure shows the forward and
reverse image registration results for a pair of NIREP datasets. The first three columns show the original template image,
deformed image after EFGM and deformed image after BICIR registration, respectively. The next three columns show the
same results in reverse direction. The rows show from top to bottom: transverse, sagittal and coronal images.
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Figure 3.22: Transverse Slices of Registered Brain Image Registration Datasets using
Spherical Envelope. The figure shows the same transverse slices (slice no. 147) for all
datasets registered to dataset na01 using spherical envelope. The spherical envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the sphere, the region closer to
object boundaries does not match that well due to boundary conditions.
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Figure 3.23: Sagittal Slices of Registered Brain Image Registration Datasets using
Spherical Envelope. The figure shows the same sagittal slices (slice no. 63) for all
datasets registered to dataset na01 using spherical envelope. The spherical envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the sphere, the region closer to
object boundaries does not match that well due to boundary conditions.
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Figure 3.24: Coronal Slices of Registered Brain Image Registration Datasets using
Spherical Envelope. The figure shows the same coronal slices (slice no. 214) for all
datasets registered to dataset na01 using spherical envelope. The spherical envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the sphere, the region closer to
object boundaries does not match that well due to boundary conditions.
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Figure 3.25: Results for a Pair of Image Registration between Two NIREP Brain Datasets using Ellipsoidal Envelope. The
figure shows the forward and reverse image registration results for a pair of NIREP datasets. The first three columns show
the original template image, deformed image after EFGM and deformed image after BICIR registration, respectively. The
next three columns show the same results in reverse direction. The rows show from top to bottom: transverse, sagittal and
coronal images.
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Figure 3.26: Transverse Slices of Registered Brain Image Registration Datasets using
Ellipsoid Envelope. The figure shows the same transverse slices (slice no. 151) for all
datasets registered to dataset na01 using spherical envelope. The spherical envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the sphere, the region closer to
object boundaries does not match that well due to boundary conditions.
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Figure 3.27: Coronal Slices of Registered Brain Image Registration Datasets using
Ellipsoid Envelope. The figure shows the same coronal slices (slice no. 217) for all
datasets registered to dataset na01 using spherical envelope. The ellipsoid envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the ellipsoid, the region closer to
object boundaries does not match that well due to boundary conditions.
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Figure 3.28: Sagittal Slices of Registered Brain Image Registration Datasets using
Ellipsoid Envelope. The figure shows the same sagittal slices (slice no. 69) for all
datasets registered to dataset na01 using spherical envelope. The ellipsoid envelope
is computed dynamically using the segmentation boundary. The figure shows that
while intensity matching is good towards interior of the sphere, the region closer to
object boundaries does not match that well due to boundary conditions.
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Performance Metric
Before Registration SICLE BICIR w/ Spherical Env BICIR w/ Ellipsoid Env

Ave. / Max / Std. Dev. Ave. / Max / Std. Dev. Ave. / Max / Std. Dev. Ave. / Max / Std. Dev.
Ave. Int. Diff. 38.05/ 75.53/ 11.57 25.94/ 29.98/ 2.39 18.21/ 21.78/ 1.45 19.75/ 22.03/1.74
(Gray Scale)
Ave. Relative 24.63/ 31.0/ 4.9 32.91/ 37.8/ 2.24 35.139 / 38.74 / 2.3395 35.90/39.34/2.64
Overlap (%)
Average ICE -/ -/ - 0.039/0.048/0.005 0.049/ 0.086/ 0.01 0.06/0.084/0.009

(voxels)
Time Taken -/ -/ - 21.73/ 22.87/0.558 16.93/ 19.05/ 1.45 17.22/19.66/1.2
(seconds)

Table 3.6: Summary Performance Statistics for 15 3D brain ROI registrations.
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3.2.5 Sensitivity Analysis

The quality of BICIR registration depends on the quality of the region of in-

terest segmentation that the registration is performed over. The BICIR method is

initialized by the correspondence of the boundary of the ROI. The boundary corre-

spondence may be poor due to poor segmentation, poorly defined boundary conditions

or a combination of these factors. The 3D anatomical data experiments attempted

to address this problem by dilating the ROI segmentation. This section studies the

sensitivity of the BICIR algorithm to segmentation error and poor boundary con-

ditions. All experiments used a spherical ROI like the experiments presented in

Section 3.2.3.1. The sensitivity of BICIR to segmentation error was measured by reg-

istering images repeatably using spherical ROIs with different radii. The sensitivity

of BICIR to boundary correspondence error was measured by registering images in

which the spherical ROI was translated in the x, y and z directions.

3.2.5.1 Sensitivity to ROI Size

To test the sensitivity of BICIR to the ROI size, we selected a corresponding

region of brain cortex for a pair of brain images. The tightest fit sphere that contained

the ROI was computed for both, template and target images, respectively. The

radii value for the template and target images were 35.17 voxels and 44.15 voxels,

respectively. The spheres defined the ROI in which the registration was performed.

The radius of template image was varied from 0.5 to 1.5 times the radius of the

tightest fit sphere in increments of 0.1 while the radius of target ROI was kept fixed.

The experiment was repeated by keeping radius of template ROI fixed while radius
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for the target ROI was varied from 0.5 to 1.5 times the radius of sphere of tightest

fit in target image. This set up studies the sensitivity to ROI size and difference in

scale between the template and target regions. Figure 3.29 shows the results of these

experiments. The three charts show similarity cost, average inverse consistency error

and relative overlap as a function of magnitude of the radius. The results for forward

and reverse transformations are represented together for each radius value.

This figure shows that the minimum similarity cost and average ICE were

centered about the scaling factor of 1.1. However the maximum relative overlap was

achieved with the scale factor of 1.0 The results within 10% of this scaling factor,

i.e., results from 0.9 to 1.1 provide comparable registration results within 5% of the

cost. However, as we move away from these values, the errors become very high and

registration results become poor.

The next experiment was designed to evaluate the sensitivity of BICIR to the

dilation of ROI. Dilating the ROI provides the BICIR algorithm a larger volume for

intensity registration and reduces the impact of correspondence errors at the boundary

of the registration ROI. For this experiment, the spheres corresponding to template

and target ROIs were scaled using the same factor simultaneously. The scaling factor

was changed from 0.5 to 1.5 in intervals of 0.1, respectively. A total of 11 registrations

were performed and forward and reverse results were combined together. Figure 3.30

shows the results for these registrations.

Figure 3.30 shows that if ROI is reduced from the tightest fit sphere, all the

costs increase. As we dilate, the costs reduce and better registration is achieved. The
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method provides very small inverse consistency errors for all values of dilation factors.

We see a saturation in registration quality as we increase the radius of sphere. The

registration continues to improve significantly with increase in dilation factor from

1.0 to 1.2 as the average intensity differences, average inverse consistency error and

relative overlap continue to improve by more than 5%. After dilation factor of 1.2, the

results improve only slightly and from 1.2 to 1.5, the average intensity difference and

average relative overlap stay within 5% of the cost at dilation factor of 1.2. The inverse

consistency error stays under 0.05 for these cases. While marginal improvement in

registration quality may continue, the last chart in figure shows that this comes at the

cost of increased time needed for registration owing to larger ROI for larger dilation

factors.

3.2.5.2 Sensitivity to Boundary Correspondence Error

The BICIR method assumes that the boundary correspondences are defined

perfectly and does not update the boundary correspondence. In this section, we ana-

lyze the impact of poor boundary conditions. The boundary correspondence error was

simulated using translation of the sphere in x, y and z directions, respectively. Trans-

lation was applied as a fraction of the radius of the tights fit sphere in template and

target images. The sensitivity was studied by applying translations to the template

ROI, which had a radius of 35.75 voxels. The entire sphere was translated by 0.1, 0.2

and 0.5 times the radius of the tightest fit sphere. Registration was performed for

translations in in all three directions in both, positive and negative directions, which

resulted in a total of 18 registrations.
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Figrure 3.31 shows the results for sensitivity of registration w.r.t. the magni-

tude of translational error in boundary correspondences. The figure shows that the

costs are lower and relative overlap is higher for small translation errors with central

value of zero translation providing smallest cost and largest relative overlap. The

average intensity difference, relative overlap and average ICE stayed within 5% of the

central value for translation of 0.1 in positive direction and within 10% for translation

of 0.1 in negative direction, respectively. As we apply translation of 0.2 times the

radius, the average intensity difference and average ICE increase by more than 15%

while the relative overlap reduces by more than 15% in both, positive and negative

directions, respectively. For larger translation of 0.5 times the radius, the average

intensity difference and average ICE become very high and relative overlap drops to

50% of the highest value. The plot shows that for translations larger than 0.2 times

the radius, the overall registration suffers and is unusable.
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Figure 3.29: Sensitivity with respect to the size of ROI when the radius of ROI is
changed in one image. Top row (from Left to Right): Plot showing sensitivity of
similarity cost w.r.t. scaling factor used to scale either template or target image,
respectively, plot showing sensitivity of average ICE w.r.t. scaling factor. Bottom
row: Plot showing sensitivity of relative overlap of the segmentation w.r.t to the
scaling factor in boundary correspondence. The scaling was applied only to one
image at a time. This provided a total of 21 registrations. The forward and reverse
registration results were combined together to provide the above plots. The cross at
the center at each sample value represents the average and the upper and lower bars
at each vertical line represent one standard deviation from the average.
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Figure 3.30: Sensitivity with respect to the size of ROI when the radius of ROI is
changed in both image. Top row (from Left to Right): Plot showing sensitivity of
similarity cost w.r.t. dilation factor used to scale both, template and target images,
respectively, plot showing sensitivity of average ICE w.r.t. dilation factor. Bottom
row (from left to right): Plot showing sensitivity of relative overlap of the segmenta-
tion w.r.t to dilation factor in boundary correspondence, plot showing time plotted
against the dilation factor. The dilation factor is expressed as a fraction of the ra-
dius of the corresponding ROI. The results represent a total of 11 registrations. The
forward and reverse registration results were averaged to get a single point at each
dilation value. The cross at the center at each sample value represents the average
and the upper and lower bars at each vertical line represent one standard deviation
from the average.
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Figure 3.31: Sensitivity to Boundary Correspondence Error. Top row (from Left to
Right): Plot showing sensitivity of similarity cost w.r.t. magnitude of translation
error in boundary correspondences, plot showing sensitivity of average ICE w.r.t.
magnitude of translation error in boundary correspondence. Bottom row: Plot show-
ing sensitivity of relative overlap of the segmentation w.r.t to magnitude of translation
error in boundary correspondence. The translation error is expressed as a fraction of
the radius of the corresponding ROI. The results represent averages over a total of 18
registrations with various combinations of perturbations in x, y and z directions. The
cross at the center at each sample value represents the average and the upper and
lower bars at each vertical line represent one standard deviation from the average.
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This chapter showed the analysis and application of BICIR registration method

under various scenarios. First, phantom 2D images were used to analyze the method

and then anatomical 2D images were registered and compared against SICLE registra-

tion method. The comparison showed that the BICIR registration method provided

improved results. We proceeded with phantom 3D images to test extension of BICIR

registration method to 3D. 3D anatomical images were subsequently used. First, an

inverse consistent method was used to get a boundary correspondence as an input

to BICIR method. This was done to test response of BICIR method to a consistent

boundary input in absence of a suitable 3D surface or boundary registration method.

Finally, the algorithm was demonstrated over arbitrarily shaped regions, which were

kept parametric for ease in computing boundary correspondence for ROIs. This

shows that the BICIR method is flexible and can be used to perform registration over

a small object inside an image using boundary input, while it performs well under an

integrated framework using parametric shapes as well.
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CHAPTER 4
DISCUSSIONS AND CONCLUSIONS

4.1 Discussions

The dissertation presents a novel technique called Boundary-constrained In-

verse Consistent Image Registration (BICIR) to register a pair of images while keeping

correspondence at boundaries of a region of interest (ROI) containing an object of

interest fixed. The method was studied and evaluated for 2-D phantom images, 3-D

phantom images and 3-D brain images. The experimental setup included a variety of

input shape types, from 2D parametric shapes to 3D parameteric shape and 3D non-

parametric shapes with non-parametric irregular boundaries. Finally, an integrated

framework with a parametric envelope was presented.

The BICIR method uses boundary correspondence as an input and thus the

boundaries of the two ROIs need to be registered prior to using BICIR. For the exam-

ples studied in this work, different methods were used for computing the boundary

correspondence. For paramteric 2D and 3D ROIs, the boundaries were computed

analytically and a perfect boundary match that is also inverse consistent can thus

be provided as an input. For irregular 2D (lungs) and 3D (brains) shapes, however,

boundary correspondence were estimated using inverse consistent contour registra-

tion method for 2D lungs and using SICLE registration method for registering mask

images for 3D brain shapes, respectively.

The results were presented for analysis and characterization of Boundary con-
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strained inverse consistent image registration (BICIR). The method was shown to

match object boundaries based on the input correspondence, which are kept fixed

while registering the region inside the object using intensity information. The method

performance was demonstrated over a range of input shapes such as parametric ellip-

soids and cuboids as well as non-parametric shapes such as brain images.

Comparison was made against existing small deformation inverse consistent

linear elastic image registration method and BICIR was shown to improve boundary

correspondences and overall intensity based similarity, while maintaining a compara-

ble inverse consistency error.

Although the BICIR method was shown to be superior to SICLE for the pre-

sented cases, BICIR suffers from sensitivity to poorly defined boundary correspon-

dences as it does not evaluate or update the boundary correspondence provided as

input. Once the boundary correspondence is established, BICIR keeps it fixed re-

gardless of the intensity information inside the region of interest.

Figure 4.1 provides an example of limitation of BICIR when the boundary

condition is not specified accurately at the input. The figure shows an example

for registration between a pair of circles of same size and at same location. Each

circle is divided into two semi-circles with corresponding intensities of 255 and 128,

respectively. The template image contains the semicircles such that the dividing line

is vertical while the target image has the dividing line at an angle of 15 degrees

counterclockwise from vertical. As a result, the boundaries of the ROIs representing

the two circles overlap exactly with each other but the boundary correspondence
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should take the rotation into account. For this example, the boundary conditions

were specified as identity such that while the ROIs bounded by boundary of the

circle overlap exactly, the interior does not match and the correspondence is wrong

at the boundaries. The results seen in third and fourth columns of the top row

illustrate that even though BICIR minimizes intensity difference inside the object,

the boundaries stay unchanged. As a result, the interior of the template deforms

while following regularization constraints and the boundaries remain locked at the

initial position. This results in an apparent swirl in the image as the correspondence

improves as we move into the object and away from the boundaries. This leads to

the conjecture that if the interior intensity values are allowed to alter the boundary

correspondence along the boundaries, the overall registration can improve.

The second row presents similar results for the registration in opposite direc-

tion, i.e. from target to template image. The findings are consistent with the results

in forward direction. The third and fourth row represent the x- and y-displacement

fields, inverse consistency error and jocobian in forward and reverse directions, re-

spectively. The images show that the deformation is limited to a small region inside

the object and largest deformation occurs at the location of intensity difference be-

tween the two images away from boundaries. Figure also shows that the forward

and reverse transformations appear to be inverses of each other with larger Jacobian

values (brighter intensities) in one direction corresponding to smaller Jacobian values

(darker intensities) in the opposite direction and vice versa. The same effect can be

seen in the x-displacement and y-displacement images.
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The example shows an important limitation of method and solution to this

problem lies in using intensity information from the intensity registration phase to

update boundary correspondence, thus using feedback from intensity inside ROI. As a

result, BICIR’s results can be expected to improve by incorporating intensity feedback

for updating the boundary correpondences.

Another important addition that could improve results further is inclusion

of internal landmark or region correspondences. Without this information, BICIR

method equates to SICLE registration method with the advantage of regions already

matched such that registration can be performed inside any arbitrarily defined ”win-

dow”. The correspondence at boundaries of this window stays unchanged while the

interior deforms to match the image intensities following the regularization constraints

inside this ”window”. To achieve further refinement at the interior, if some correspon-

dences inside is known, it may be possible to improve BICIR method further.

The WEB-splines are defined in the image space. Therefore any landmark

correspondence can directly be taken into account by adding a cost term correspond-

ing to landmark matching error to the overall cost function. BICIR method can then

simultaneously minimize the intensity differences as well as landmark matching error.

The landmark correspondence may further be extended to matching of corresponding

regions. This will require corresponding regions and their boundary correspondences

to be identified between a pair of images such that these regions are contained inside

an outer region representing the entire object to be registered. One of the approaches

that may be taken could be that initial boundaries include all the correspondences,
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i.e., outer object boundaries as well as boundaries or locations of all the matched

regions or landmarks inside the ROI. This will result in a WEB-spline basis function

such that the basis function values drop to zero at these locations. There is, however,

limitation on how close these boundaries can be allowed to be. If the support of basis

function is too narrow, it could result in over-sensitive and unstable behavior. Such a

problem may be solved by adjusting the knot spacing accordingly such that the basis

function is always well defined on a fine grid for the updated ROI.
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Template Target Deformed Template Difference

Target Template Deformed Target Difference

Fwd. X-disp. Fwd. Y-disp Fwd. ICE Fwd. Jacobian

Rev. X-disp. Rev. Y-disp Rev. ICE Rev. Jacobian

Figure 4.1: Example of Boundary Problem involving rotation. The first panel shows
the template image and the second panel shows the target image. The target image
has exactly same boundaries as the template image, but the interior is different. The
figure shows that the web-spline basis can not incorporate rotation as their support
falls to zero on boundaries. The Maximum Inverse Consistency Error in the ICE
image was 0.25 of the size of a pixel.
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4.2 Conclusions

A new image registration method called Boundary-constrained Inverse Consis-

tent Image Registration (BICIR) was presented. The method was shown to minimize

residual intensity differences between two images being registered together after the

shape differences have been minimized. The method uses boundary correspondences

to first interpolate the correspondence inside the object/ region of interest (ROI). The

correspondence inside the ROI is then updated using the intensity information. Lin-

ear elastic and inverse-consistent regularization constraints were applied to constrain

the registration. The method was tested and evaluated over a variety of test images

and ROI shapes. The test images included parametric and non-parametric 2D and

3D objects. The ROI shapes included parametric and non-parametric shapes. The

parametric objects and ROIs included ellipses and lungs (2D) and ellipsoids, cuboids

and brains (3D). The method was characterized with respect to weight of different

components in multi-variate cost function and with respect to resolution of basis func-

tion. The method was shown to match boundaries exactly and match intensities well

inside a given ROI well while maintaining very low inverse consistency errors within

ROI (of the order of 0.01 to 0.1 voxels). The progressive refinement of the grid was

shown to improve registration results as addition of more degrees of freedom resulted

in decrease in inverse consistency error and improved registration locally.

The presented work in this thesis ends with an integrated framework where

boundary correspondence was computed during the registration and was not required

at the input. Three different methods for establishing boundary correspondence were
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studied and compared against each other as well as against small-deformation in-

verse consistent linear elastic (SICLE) image registration method. The methods were

shown to be superior to and faster than SICLE registration method using various

error metrics for a small ROI defined inside the 3D MR image. We feel that the

method can be further improved by incorporating the intensity feedback for updating

or confirming the boundary correspondences. In addition, the method may be easily

extended to include internal correspondences as boundary conditions.
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