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CHAPTER 1 

INTRODUCTION 

With the recent advancements in computer processing power, 3D graphics, and 

animations, virtual humans are becoming more and more popular. New generations of 

virtual humans are highly realistic with respect to appearance, movement, and feedback. 

In fact, research concerning digital humans has grown to become a multidisciplinary area 

that involves computer graphics, biomechanics, anatomy, physiology, artificial 

intelligence, animation, optimization, and speech recognition, to name a few. 

Digital humans have had a great impact on the field of ergonomics. An increasing 

number of organizations are now using digital humans in the design and testing of 

complex systems. Instead of classical prototyping approaches used for testing and 

evaluation of new designs, these organizations are relying more on simulations in virtual 

environments to get feedback about their designs. For example, in the automotive, 

aerospace, and heavy equipment industries, building a prototype of a product, testing it 

on human subjects, and then reformulating and adjusting the original design is costly and 

time consuming. It can have a devastating impact on quality, safety, and time to market. 

A better approach is to incorporate the human factor into the design cycle from the 

beginning of the design process. This can help the designer answer questions about the 

product that involve positioning and comfort, reaching, grasping, visibility, fatigue, and 

strength assessment. This can lead to a faster time to market, reduced development costs, 

and most importantly, improved designs that are exactly tailored to the user’s need. 

Since the main goal of using digital humans is to study the interaction between the 

human and the product in a virtual world, digital humans must have sufficient capabilities 

to allow them to manipulate and grasp virtual objects. Grasping has proved to be a very 

challenging problem in the field of robotics and human simulation. This stems from the 

anatomical complexity of the human hands, as well as the cognitive abilities required to 
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grasp objects depending on the task and the purpose of using the object. Grasping 

involves correctly positioning the arm and wrist with respect to the object while avoiding 

obstacles present in the environment. It also entails choosing a realistic and human-like 

hand shape that allows the virtual human to firmly hold the grasped object in place. 

For this purpose, we present in this work a new interactive grasping system that 

helps realize such capabilities for a digital human called SantosTM that is being developed 

at the Virtual Soldier Research Laboratory at The University of Iowa. Our system is 

modular in the sense that it is composed of different subsystems that can each be used 

independently to solve a part of the grasping problem, but when combined, provide an 

invaluable tool for simulating and evaluating human grasping in the virtual world. 

Problem Definition 

In the most general sense, the grasping problem in the virtual world can be 

defined as follows:  

Given an object and a model of a human, find a suitable grasp for that object. 

It is clear from the above definition that there are many terms that should be defined more 

precisely. What information is known about the object? How accurate is the model of the 

human? Is it just a kinematic model, or is it physics based? How is a grasp defined? What 

is a “suitable” grasp? There are many different ways we can answer these questions, and 

each answer creates a different instance of the grasping problem. For this reason, we have 

made several assumptions that would help us define our instance of the grasping problem 

that we are trying to solve. These are stated and justified below: 

1. Only information about the shape of the object is provided. This means that 

no physical or dynamic properties are included, such as temperature, weight, or 

texture. This is a reasonable assumption for grasping simulations using computer 

graphics since the object models come with complete information about the shape 

in the form of a polygonal mesh. If we wish to complicate the problem and 
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manually define physical properties for each object we import into the virtual 

environment, we might as well define how each object is to be grasped and save 

this information with the properties of the object and be done with the grasping 

problem. 

2. The hand model is a 25-degrees-of-freedom kinematic model with an outer 

skin layer. This model was previously developed at the Virtual Soldier Research 

program and is one of the most realistic and anatomically correct hand models in 

the field. The hand model is discussed in more detail in Chapter 2 of this thesis. 

3. The grasp should be realistic and natural, meaning that it resembles grasps 

used by humans. This assumption stems from the fact that we are doing human 

simulations and it is only reasonable to reject postures or motions that do not 

resemble those that a normal human would perform. 

4. No information is provided about the task. Our system is capable of producing 

more than one way of grasping the object, and it is up to the user to select the 

desired grasp. Again, this avoids burdening the user with defining task 

requirements for every object model to be used and allows the system to work 

with completely unknown objects for which only shape information is provided. 

5. A suitable grasp is one that is mechanically stable and realizable given the 

kinematic constraints of the hand and the limbs. We propose a single quality 

measure for rating grasps and demonstrate that other quality metrics can be easily 

developed to evaluate a grasp. 

Considering the above assumptions, we define the grasping problem as follows: 

Given: 

• A 3-D CAD model of the object (polygonal mesh) to be grasped. 

• The kinematic model of the hand and body of the virtual human with 

information about joint limits and link lengths 
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Find: 

• Finger joint angles 

• Hand position and orientation 

• Upper-body posture 

• The quality of the grasp 

Literature Review 

Although the concept of a digital human is relatively new, the problem of grasp 

synthesis is not. This is because researchers in the field of robotics are interested in 

creating robots that are able to manipulate objects in the physical world. Many of the 

techniques used to solve the robotic grasping problem can be readily transferred to the 

virtual world with only slight modifications. Other algorithms are specifically tailored to 

virtual humans. In the following subsections, we classify previous work in the literature 

according to the method used to achieve a grasp. 

Rule-Based Methods 

Rule-based techniques try to classify the part of the object to be grasped as one of 

several previously stored shape primitives, such as a sphere, pyramid, cube, or cylinder. 

The system contains rules for grasping each of these primitives. For example, Mas and 

Thalmann (1994) develop a method whereby the user selects the type of primitive that 

best describes the object to be grasped, and then depending on the geometrical attributes 

of the primitive, the system chooses one of the general hand shapes suggested by 

Cutkosky and Howe (1990). Similarly, Tomovic et al. (1987) postulate that a vision 

system is needed to describe the object as a composition of geometrical primitives 

according to the intended task to be performed using the object. Miller et al. (2003) 

conducted experiments on automatic grasping using their grasp simulator, but they 

assumed that an approximation of the object as a set of geometric primitives already 

exists, and they defined a corresponding approach vector and hand shape for each 



5 
 

primitive. Similar work was presented by Rijpkema and Girard (1991), while Carenzi et 

al. (2005) incorporated learning into their rule-based system through the use of neutral 

networks. 

The major shortcoming of all these approaches is that they are not suitable for 

automatic grasping of novel objects because the decision about which primitive to use is 

either left to the user or embedded in the object model during the design stage. One can 

argue that any of the systems described by Carenzi et al. (2005), Lien and Amato (2006), 

Zhang et al. (2003), and Pirrone and Chella (2003) can perform the task of segmenting 

the object automatically. However, the operation of automatically segmenting the object 

is by itself a complex problem, and when coupled with the grasping problem, one cannot 

expect real-time performance of the system. 

 Even if we assume that the segmentation problem has been solved, there are still 

many objects that cannot be intuitively classified as one of the few geometrical 

primitives. This will produce inaccurate or unnatural-looking grasps. 

Grasp Learning Methods 

Researchers have attempted to produce intelligent grasping systems that can learn 

from previous successful grasps and adapt them to novel objects. For example, Moussa 

(2004) uses a mixture of expert systems to learn primitive grasping behaviors for a library 

of 28 arbitrary objects. However, for input, the system requires the size, position, 

orientation, and class for each object. Similarly, the neural-network-based module of 

Gorce and Rezzoug (2005) requires information about the fingertip location of each 

finger and the bounds of a 6D palm search space to learn the fingers and wrist 

configurations. With this amount of input information, the problem has been solved in 

real time using optimization (Borst et al., 2002). Other examples of the use of neural 

networks for grasping include, but are not limited to, those presented by Taha and Wright 

(1997) and Jagannathan and Galan (2004). Many of these approaches attempt to learn and 
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control low-level grasping behaviors, such as finger joint angles or wrist orientation. 

These actions can be more efficiently calculated using inverse kinematics. Another 

drawback is that most of this work has been theoretical and applied only to specific types 

of objects with well-known geometry. We do not know of any neural-network-based 

system that has been successfully employed to learn higher-level, task-related grasping 

behaviors and decisions. 

Interesting work on supervised grasp learning for grasping is described by 

Pelossof et al. (2004). The authors use support vector machines (SVM) to associate a 

successful grasp with a given object. The objects are modeled as superquadrics (a family 

of three-dimensional shapes), which are not general enough to describe any arbitrary 

object. In addition, this work focuses on robotic grippers and is not easily adapted to 

humanoid grasps. 

The greatest difficulty with applying learning methods to grasping is describing 

the shape of the object to be grasped so we can learn the mapping between different 

shape parameters and grasp parameters. The parameters describing the shape must be 

general enough to describe a broad range of objects, but at the same time, we wish to 

minimize the number of parameters used. There is no shape description technique that 

possesses the aforementioned qualities.  

Optimizing a Quality Function 

A large part of the grasping literature is concerned with optimization-based 

methods for finding grasps. Most of these techniques use the quality metric proposed by 

Farrari and Canny (1992), or variations of it, as an objective function in an optimization 

problem. Some of these optimization algorithms assume the availability of a closed-form 

description of the object surface and then attempt to analytically calculate points on that 

surface that maximize the grasp quality (Katada et al., 2001; Kim et al., 2004; Liu et al., 

2004). Other grasping systems work by first calculating a large number of grasps from 
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random starting positions and configurations or based on simple heuristics, then rank 

these grasps by their quality and choose the best among them. This was done by Wang et 

al. (2005), Borst et al. (1999), and Toth (1999) on a robotic arm and by Miller et al. 

(2003) using a simulation engine. Hester et al. (1999) approximate the surface of the 

object as a grid of points, conduct an exhaustive search for grid points that are suitable 

for grasping, and then analyze these point combinations based on a quality metric. 

Some researchers have focused their efforts on using genetic algorithms for grasp 

synthesis. Globisch (2005) has experimented with different quality functions to achieve 

automatic grasping for multi-fingered hands in a simulation environment. Fernandez and 

Walker (1998) apply the same concept to robotic grippers. However, these algorithms 

assumed that the object was already placed at the center of the hand workspace, and they 

ran too slow to be suitable for real-time applications. Also, an objective function that was 

efficient for a certain class of objects (e.g., cylindrical objects) was not necessarily 

effective for other classes. 

In summary, the methods that rely on optimizing a grasp quality function are not 

suitable for virtual-human grasping for the following reasons: 

1. These approaches approximate the grasp as a collection of contact points on 

the object. This is only applicable to precision grasps, where only the 

fingertips touch the object, and cannot be applied to power grasps, which 

involve the palm and inner surfaces of the fingers.  In such cases, there is a 

large number of contact points, and the number of these contacts is not known 

before the grasp is executed. 

2. Most of these approaches separate the problem of finding optimal contact 

points on the object surface from the problem of finding a hand posture that 

can touch these points. This results in unreachable grip points due to the 

constraints imposed by the gripper kinematics. 
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3. Most of the quality measures in the literature are computationally expensive. 

A system that attempts to evaluate a quality measure for a large number of 

grasps will not be useful for real-time applications and thus will not be useful 

with digital humans. 

4. Objects in a virtual environment are modeled as a “polygon soup,” for which 

no closed-form expression is available. This prevents the use of any gradient-

based optimization techniques to maximize the quality of the grasp. 

Quality metrics should be used to provide feedback to a user who is experimenting 

with a few different ways of grasping the same object, or for pruning low-quality 

grasps after a small number of candidate grasps have been generated. 

Data-Driven Grasping Methods 

Data-driven grasping techniques exploit the idea that data obtained offline about 

grasps can be used to synthesize similar grasps online. For example, ElKoura and Singh 

(2003) use a database of human grasps to enhance results obtained from an inverse 

kinematics algorithm. Ehrenmann et al. (2001) utilize a dataglove to record grasping 

actions that are later used to teach a robot manipulation tasks in similar environments. Li 

and Pollard (2005) use a database of grasps obtained through motion capture data and try 

to adapt these grasps to novel objects through the use of shape-matching algorithms. 

Similarly, Miyata et al. (2006) rely on motion capture data to select starting hand poses 

for grasp posture generation. Aleotti and Caselli (2006) use virtual reality to program 

their system to grasp by demonstration. These systems generally do not yield unnatural 

grasps because the database itself will contain precise grasps that were carefully 

generated from actual human postures. However, the challenge is to adapt the grasps in 

the database to new objects and situations in a virtual environment. 
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Calculating Hand Postures Given Contact Points 

Methods that involve using contact points to calculate hand postures are most 

applicable to what typically constitutes the final stage in the grasping process. It is 

assumed that contact points on the surface of an object have either been generated by an 

automatic grasp planner using one of the methods mentioned above, or selected 

interactively by the user. The usual approach in solving this problem is inverse 

kinematics (Sanso and Thalmann, 1994; Kallman et al., 2003). Most of these algorithms 

focus on how to solve the redundancy in the inverse kinematics problem. One interesting 

approach was to optimize an objective function. Borst et al. (2002) provide a precise 

formulation for solving this problem by casting it as an optimization problem, with the 

objective function being a sum of penalty terms that guarantee that the optimal solution 

will obey the constraints set forth by the joint limits and target positions. Similar work 

was done on a virtual human (Yang et al., 2006), but the authors used deviation from the 

joint neutral position as an objective function to be minimized. These methods are 

generally fast and suitable for online grasping, especially if the problem is formulated as 

a continuous optimization problem with known analytical gradients. However, there is no 

way to check that the target points are reachable or physically realizable by the hand 

model before attempting to solve the optimization problem.  

Motivation and Proposed Solution 

Although the literature presents a wide spectrum of clever grasping techniques, 

there are several issues that prevent us from adapting any one of these techniques for our 

application: 

1. None of the methods mentioned above consider the effect of the upper body on 

the feasibility of the grasp. They consider the grasp as finished when the positions 

and orientations of the fingers and wrist have been calculated. 
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2. Most of the research in the literature is concerned with robotic grasping, which 

does not necessarily apply to humans because the human hand is unique in its 

anatomy and complexity. 

3. Very few previous methods were able to address the problem of grasping novel 

objects that are arbitrarily shaped. 

We propose a method that can handle new objects in a simulation environment, requires 

minimal user input, and takes into consideration the effect of the upper body on the 

grasping posture. This constitutes a system for planning and evaluating grasps for a 

digital human, which can be invaluable in the assessment of products and engineering 

designs during the prototyping stage.  

Keeping in mind the variety of applications in which a virtual human with 

grasping capabilities can be used, we provide the user with tools that accommodate 

different levels of interactivity, ranging from semi-automatic tools that rely on minimal 

user input to more user-dependent tools that achieve more customization and precision. 

Specifically, we aim to develop and test the following array of grasping modules: 

1. A posture-prediction module for calculating angles for the joints of the 

fingers, which dictate the optimum hand posture that allows the digital human 

to touch a set of point targets assigned to the fingertips of each finger. The 

posture-prediction procedure involves minimizing an objective function and 

satisfying a set of constraints, and it results in human-like grasps. 

2. A shape matching and alignment module that uses a database of prerecorded 

grasps to produce grasps for new objects. This module relies on minimal input 

from the user and is specialized for grasps in which the palm and the inner 

surfaces of the fingers come into contact with the object. 

3. An evaluation module that can provide feedback for the user about the quality 

of the produced grasp. This allows the user to compare different grasps and to 

reject unstable grasps in which a slight external disturbance might cause the 
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object to slip away from the hand. This module analyzes the space of forces 

and torques that the given grasp can exert on the object and produces a 

numeric quality metric. 

Overview of Thesis 

Chapter 2 provides an overview of the digital human SantosTM.  It focuses on the 

hand and describes its kinematic model and its relationship to the actual human hand. It 

will also introduce the basic grasping capabilities that are already implemented in 

SantosTM. Chapter 3 provides an overview of our grasping system and briefly describes 

its constituent parts. It also outlines how the different segments tie in together to form the 

complete system. It presents several scenarios of how the system might be used for 

planning and evaluating grasps. Chapter 4 describes the first part of the system, which 

uses a data-driven technique. It describes the process of building a database of grasps, 

developing a function to discriminate between shapes, and finding the best orientation of 

the hand for a given object and grasp type. It also describes a new method for evaluating 

grasps using the upper-body posture required to achieve the grasp. Chapter 5 presents a 

new formulation for optimization-based grasping. It discusses the design variables, the 

constraints, and the objective function, and presents the results obtained by solving this 

problem and simulating the solution in the virtual world. Chapter 6 discusses the 

importance of a quality metric for grasping and presents the details of the formulation and 

implementation of one quality metric. Finally, Chapter 7 summarizes our contributions 

and presents potential future work. 



12 
 

CHAPTER 2 

THE SANTOSTM HAND 

In this chapter, we present the details of the hand model for SantosTM, the virtual 

human developed at the Virtual Soldier Research program at The University of Iowa. We 

begin by providing an overview of the model of SantosTM as a whole, explaining which 

measures were taken to ensure that it is anatomically correct and highly realistic in both 

functionality and appearance. We then focus on the current hand model, explaining its 

kinematics and the number of degrees of freedom (DOF) it uses. Next, we give an 

overview of the simulation environment in which SantosTM resides and show a typical 

scenario of a user interacting with SantosTM in that environment. Finally, we present the 

current hand capabilities that are implemented in SantosTM, which allow for basic 

manipulation and grasping actions. 

Overview of SantosTM the Digital Human 

The 3D model of SantosTM can be thought of as a “skin” laid over a skeleton. The 

skin is obtained from a scan of an actual human being, and it defines the overall avatar’s 

shape (Figure 2.1). The skin is made deformable using a well-known animation technique 

called skin weighting. This prevents breaking or tearing of the skin when the body parts 

are moved. 

Underneath the skin, there is a skeleton that allows the avatar to be controlled and 

moved around. This skeleton is modeled as a kinematic system, a series of links with 

single-DOF joints connecting each pair of links. Each joint in the skeletal model is 

represented by one, two, or three revolute joints. Using the Denavit-Hartenberg method 

(Denavit and Hartenberg, 1955), the position of different points on the body of the avatar 

can be related to the joint angles using a series of transformation matrices. Details of this 

approach are discussed by Marler (2004). When the outer skin of the avatar is attached to 

the skeleton, the result is a complete virtual human (Figure 2.2). 
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Figure 2.1: Scanning and skinning of an avatar. 

 

Figure 2.2: An outer mesh and a skeleton constitute a complete virtual human model. 

An optimization-based approach to posture and motion prediction allows 

SantosTM to operate autonomously without relying on stored animations and data or being 

restricted by inverse kinematics. The method incorporates a mixture of human 

performance measures that produces motions and postures that greatly mimic those of 

actual humans. For a more detailed discussion of this approach, refer to work by Marler 

(2004), Marler et al. (2005-a), Marler et al. (2005-b), and Yang et al.(2004). 

Work is in progress to add a musculoskeletal model based on actual human 

anatomy (Figure 2.3). It simulates realistic muscle wrapping and can be used for 



14 
 

predicting the muscle forces needed to create joint torques and muscle stress in SantosTM. 

See the paper by Abdel-Malek et al. (2006) for details about muscle modeling, 

physiological modeling, reach envelopes for the limbs, and workspace zone 

differentiation.  

 

Figure 2.3: Musculoskeletal modeling for SantosTM  

The Hand Model 

The SantosTM hand model has 25 degrees of freedom in each hand. It is based on 

anatomical data from the human hand. Figure 2.4 shows the skeleton of a human hand 

and the kinematic model for the SantosTM hand.  

Due to the presence of joints in the palm (the carpometacarpal joints for the pinky 

and ring fingers), this hand model is considered more advanced than other models that 

consider the whole palm as a rigid body because it allows for arching of the palm. Due to 

the important role that the shape of the palm plays in grasping, this model is considered 

more suitable for grasping simulation. 
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Figure 2.4: A human hand model (left) and the SantosTM hand model (right).  
 

Data obtained from Tubiana (1981) and Tubiana et al. (1996) specifies the limits 

for the joints of the human hand. This was implemented in our model. Table 2.1 below 

summarizes these limits in degrees. 

The hand link lengths are a function of the size of the hand. However, there are 

equations that describe the relationships between the hand breadth and length and the 

length of the metacarpal bones. The hand model is built according to these relations 

(Petarch et al., 2005). In cases where the user needs to model humans of different sizes 

and percentiles, the anthropometric hand interface shown in Figure 2.6 insures that all the 

proportions between the link lengths are conserved and allows the user to input specific 

anthropometric data concerning joint limits and individual link lengths.  

Forward and Inverse Kinematics for the Hand 

In order to study the forward and inverse kinematics for the hand, the D-H 

method from the robotics field (Denavit and Hartenberg, 1955) was adapted to define the 
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Table 2. 1: Joint limits in degrees for the SantosTM hand. 

Finger Joint Minimum Maximum 

Thumb 
Q1 0 60 
Q2 -25 35 
Q3 0 60 
Q4 -10 55 
Q5 -15 80 

Index 
Q6 -13 42 
Q7 0 80 
Q8 0 100 
Q9 -10 90 

Middle 
Q10 -8 35 
Q11 0 80 
Q12 0 100 
Q13 -10 90 

Ring 
Q14 0 10 
Q15 0 10 
Q16 -14 20 
Q17 0 80 
Q18 0 100 
Q19 -20 90 

Pinky 
Q20 0 20 
Q21 0 20 
Q22 -19 33 
Q23 0 80 
Q24 0 100 
Q25 -30 90 

 

 

Figure 2.5: The default link lengths for the SantosTM hand. 
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Figure 2.6: Anthropometric hand interface for SantosTM. 

positions of the fingertips with respect to each local coordinate system. The D-H method 

provides an efficient and systematic way of representing the transformations between 

joints in terms of only four parameters, which are: 

• the angle iθ  between the (i-1)th and ith x-axis about the (i-1)th z-axis 

• the distance di from the (i-1)th to the ith x-axis along the (i-1)th z-axis 

• the angle αi between the (i-1)th and ith z-axis about the ith x-axis 

• the distance ai from the (i-1)th to the ith x-axis along the ith x-axis 

After we define these parameters for the (i-1)th and ith frames (Figure 2.7), we can 

calculate a transformation matrix between these two frames according to the following 

equation: 

i-1Ti = 

cos cos sin sin sin cos
sin cos cos sin cos sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i i

i i i

a
a

d

θ α θ α θ θ
θ α θ α θ θ

α α

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.1) 
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Now we can define the position vector expressed in the ith coordinate frame 

( )iX q with respect to the jth coordinate frame using: 

1
( ) ( )

1 1
k

k ij i
k

k j

X q X q
T−

=

=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∏   (2.2) 

Now for the forward kinematics problem, if the vector of joint angles q = 

[q1,q2,…,q25] is known for the right hand, then we can calculate the position of the 

fingertips by directly using Equations (2.1) and (2.2). The left hand is treated similarly 

for the joint angles [q26,q27,…,q50]. 

The inverse kinematics problem is not as straightforward. Here, the positions of 

end effectors in a global coordinate system are specified, and the problem is to find joint 

angles that, when applied to the individual joints, allow the end effectors reach their 

positions. The difficulty of this problem lies in the fact that there is usually more than one 

solution q for a given set of end effector positions. In older versions of SantosTM, this 

difficulty was overcome by imposing constraints on the range of angles of the joints in 

order to minimize the feasible space of the solution. In Chapter 5 of this thesis, we will 

discuss the details of an optimization-based method for inverse kinematics and show its 

implementation for the SantosTM hand. 

Grasp Selection and Interactive Joint Manipulation 

Cutkosky (1989) classified hand shapes that workers use in manufacturing tasks 

into precision grasps that emphasize sensitivity and dexterity, and power grasps that 

emphasize stability and security. He also specified 16 hand shapes that are most 

commonly used by humans in practice. 

This grasp taxonomy has become a standard in applications dealing with 5-

fingered hands. This grasp taxonomy was adopted into SantosTM by carefully calculating 

the joint angles for each grasp using inverse kinematics. 
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Figure 2.7: Parameters for the D-H method. 

A library of grasps was created that allows the user to interactively choose a hand 

shape that best fits his or her needs (Figure 2.8). 

 

Figure 2.8: Interactive grasp selection for SantosTM. 
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Another useful capability that was implemented in SantosTM is the ability to 

interactively manipulate any joint in the virtual human’s body. The user can click on a 

desired joint and then choose which specific degree of freedom he wants to manipulate 

through an intuitive user-friendly interface (Figure 2.9). 

 

Figure 2.9: Interactive manipulation of joints in the pinky finger. 
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CHAPTER 3 

GENERAL GRASPING STRATEGY FOR SANTOSTM 

Introduction 

The main goal of this research is to develop a framework that can be used for 

simulating grasping and manipulation actions for a digital human in the virtual world. 

Since this could be an extremely complex problem depending on the level of autonomy 

of the virtual human (the most autonomous grasping functions are the most complex to 

model), we have broken down the problem of reaching and grasping into several simpler 

sub-problems. For each of these smaller problems, we have developed a module that is 

focused on solving that problem.  

Although each of these modules is useful on its own, the true power of the system 

is when these modules are combined. Our grasping system can cater to varying levels of 

user input. It produces grasping postures that include the joints in the hand and wrist and 

also extend to the whole upper body. It is capable of producing both power grasps 

suitable for heavy objects and precision grasps required to finely manipulate objects with 

the fingertips. Once a grasp is produced, the system is also capable of providing feedback 

on the mechanical stability of the grasp.  

In this chapter, we present a typical scenario in which a user would employ all of 

our developed modules to interactively grasp an object, refine the grasp, and finally 

obtain feedback on the quality of the grasp. We will begin by presenting a typical 

example of planning grasping and reaching actions for a virtual object using our system. 

We will then proceed by summarizing the functionality provided by each component of 

the system. Full details about each component can be found in the remaining chapters of 

this thesis. Finally, we discuss the effect of the level of user intervention on grasp 

planning and present alternative scenarios that can be used when more user input is 

provided.  
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Proposed Grasping Framework 

Figure 3.1 below shows our proposed framework for virtual human grasping. The 

whole process is summarized visually in the flowchart in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, information about the object shape is read from the object model in the 

virtual world. This information describes the polygonal composition of the object mesh. 

The first step is to analyze the shape of the object and pick a corresponding hand shape 

from the database. The database contains hand shapes that are frequently used in 

Shape Matching and Grasp 
Alignment Grasp Database

Upper Body Posture Prediction

Done ?

Grasp Quality Computation

Finger Posture Prediction

Modified hand posture

Yes

Hand Shape
Hand Position

Hand Orientation

Upper Body Posture

Object 
Model

User Assigns 
Target Points

Fingertip Locations

The Quality of the Grasp

No

Figure 3.1: Our proposed grasping method. 
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grasping. Given the hand model and the hand shape, the grasp alignment module 

calculates several possible hand alignments. Each of these alignments are input to an 

upper-body posture prediction module that calculates the proper joint angles for the upper 

body that result in the hand being in the given position and orientation subject to the joint 

limit constraints. The user picks one of the alignments presented to him. At this point, the 

user either proceeds to evaluate the stability of the grasp or requests further refinement. 

Assuming that the user wishes to refine the grasp, he is allowed to pick target points that 

correspond to the desired positions of the fingertips. This invokes a finger posture 

prediction module that calculates a hand posture with the fingertips touching the target 

points. Finally, the grasp quality module computes the quality of the resulting grasp. 

 

Figure 3.2: Grasp alignment (upper left), selection of target points (upper right), 
finger posture prediction (lower left), and grasp quality (lower right). 
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Figure 3.3: Overall system operation. 

Shape Matching and Grasp Alignment 

In this stage, the object is first sampled, and a mathematical description of its 

shape is extracted from the samples. This description is called a “shape function.” We 

have a database of hand shapes that is populated offline with the shape functions and 

joint angles corresponding to each hand shape. The shape function of the object is 

compared to each and every hand shape function in the database, and the one that 

matches best is selected. Next, all the possible hand orientations are calculated and tested 

to see whether they result in valid grasps. All the valid grasps are clustered into n groups 

(n is a number set by the user), and the mean of each group is presented to the user. This 

module is explained in more detail in Chapter 4 of this thesis.  

Upper-Body Posture Prediction 

For each of the n grasps resulting from the shape matching and grasp alignment 

stage, an upper-body posture is calculated. This is done using an existing upper-body 
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posture prediction module; see for example the one presented by Farrel (2005). This 

module takes as input the position of the end effector, which in this case is the wrist 

position, and the end effector orientation, which is the wrist orientation given as two 

orientation vectors defining the up and right directions of the palm. Using an 

optimization-based inverse kinematics algorithm, this module calculates the required 

joint angles of the upper body (excluding the fingers) that result in the given wrist 

position and orientation, subject to joint limit constraints. 

Finger Posture Prediction 

Assuming that the user is not completely satisfied with the resulting grasp and 

wishes to have more control over the position of the fingers, he is allowed to do so using 

a finger-posture prediction module. For example, while grasping a joystick, the user 

might wish to press a button. For this purpose, the user is asked to click on points on the 

object surface where he wants to position each finger tip. This invokes the finger posture 

prediction module, which uses the same ideas as the upper-body posture prediction but is 

specialized for the hands. More details are provided in Chapter 5 of this work. 

Grasp Quality 

After the final grasping posture is realized, the user is provided with feedback on 

the mechanical quality of the grasp via the grasp quality module. This module analyzes 

the number of contact points between the hand and the object, the normals at each of 

these contacts, and their distances from the center of mass of the object. Based on this 

information, the wrench space of the grasp is computed and used to extract the quality 

measure. This measure describes how well the grasp restrains the object and counteracts 

external disturbances. This topic is treated in depth in Chapter 6 of this thesis. 
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Alternative Scenarios 

The scenario described above is just one of many possible scenarios in which the 

individual modules can be used to simulate grasping. Depending on how much user 

intervention is desired, there could be many possibilities. The scenario presented in the 

previous section is the most automatic that we can currently come up with: all the user 

has to do is to click on the object to be grasped and later assign the target points for the 

fingertips. Table 3.1 below shows other possible scenarios sorted according to increasing 

levels of user intervention. 

Table 3.1: Grasping scenarios for different levels of user input. 

 Level 1 
(Automatic) 

Level 2 
(Semi-Automatic) 

Level 3 
(Manual) 

Finger Joint 
Angles 

The best matching hand 
shape is automatically 
chosen from the database  

The user chooses a 
desired hand shape from 
the database 

The user manipulates 
each joint to achieve the 
desired hand shape 

Wrist 
Position and 
Orientation 

The system chooses one of 
the possible alignments 
suggested by the grasp 
alignment module 

The system presents n 
possible alignments, and 
the user chooses one of 
them 

The user manually 
manipulates the joints of 
the wrist, elbow, and 
shoulder 

Fingertip 
Location 
Refinement 

The system chooses targets 
for the fingertips and 
invokes finger posture 
prediction 

The user picks the target 
points and invokes finger 
posture prediction. 

The user refines the grasp 
through manual 
manipulation of the joints 
of each finger 

Grasp Quality Quality is calculated at the 
end of the refinement 

N/A The user signals the start 
of quality computation 

Notice that there are distinct advantages and disadvantages for each level of user 

intervention. While Level 3 in Table 3.1 is the most tedious for the user because he is 

expected to guide the grasping actions at every step, it provides the highest level of 

control and accuracy. Grasps produced according to the Level 3 scenario are the most 

natural and are hence used to populate the database in Figure 3.1. On the other hand, 

Level 1 represents autonomous virtual human behavior. This uses minimal user input but 
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is not guaranteed to result in the same grasp that the user intended. For example, a grasp 

for a mug might result in the mug being held upside down, causing the contents to be 

spilled. This is due to the fact that grasps are task dependent, and we have not developed 

a cognitive model to make decisions about which grasps are suitable for which tasks.  
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CHAPTER 4 

SHAPE MATCHING AND HAND ALIGNMENT 

Introduction 

Among the basic requirements in a virtual-human grasp planner is the ability to 

produce natural-looking grasps with minimal user intervention. If these requirements are 

satisfied, such a grasp planner would be a useful tool for interaction and product 

evaluation in the virtual world. This chapter presents a method that satisfies these 

requirements by planning a grasp based on the shape of the object to be grasped. This 

method is based on the observation that the shape of the hand during power grasps 

(grasps that involve the palm and inner surfaces of the fingers) follows the shape of the 

object quite closely. Our method builds on the work by Li and Pollard (2005), who 

reduced the grasping problem into a shape-matching problem. We couple our grasping-

prediction process with whole-body posture prediction and incorporate it into the 

SantosTM simulation environment.  

The main idea behind this approach is to use a database of hand shapes that are 

frequently used in grasping. Then, when a new object is to be grasped, its shape is 

analyzed and compared to the grasps in the database. The hand shape that matches best is 

chosen as the grasp. Then, an alignment phase determines the hand position and 

orientation to guarantee maximum contact with the object (this method is most suitable 

for power grasps). Finally, the output of the alignment stage, which is the hand position 

and orientation, is passed to an upper-body posture-prediction module that determines a 

suitable posture for the upper body, including the torso and the arms. 

This chapter begins with a review of the related work in the literature. We then 

outline the overall module for grasping using shape matching before explaining the 

details of each component in the system. Then, we present results and finally conclude 

with a discussion section and future work. 
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Related Work 

Shape matching is a well-studied problem that has numerous applications in 

computer graphics and image processing. There are many techniques for describing the 

similarity between shapes in three dimensions, and a review of all of them is beyond the 

scope of this work. However, of particular relevance to our application is the work of 

Osada and his colleagues on shape distributions (Osada et al., 2001; Osada et al., 2002). 

The authors also introduced the notion of shape functions, which we make use of in our 

work. Ohbuchi et al. (2003) introduced two enhanced shape functions for matching three-

dimensional polygonal models. 

Li and Pollard (2005) were the first to reduce the grasping problem to a shape-

matching problem. They have built a database of grasps generated using motion capture 

data, and their shape-matching algorithm chooses the most suitable grasp from this 

database. They have also used an alignment algorithm to calculate a suitable hand 

position and orientation for a given object and hand pose. This is based on the Random 

Sample Consensus algorithm (Fischler and Bolles, 1981; Chen et al., 1997). We use a 

similar algorithm for our alignment stage.  

The Shape-Matching and Hand-Alignment Module 

Overall system 

Figure 4.1 shows the overall system that we have developed to solve the grasping 

problem for SantosTM. The major component is a grasp database that contains 

preprocessed hand shapes that are frequently used when SantosTM grasps virtual objects. 

For each entry, the database contains the joint angles of the fingers, the hand samples, 

and a shape function that describes the shape of the hand. The database is constructed 

offline, while the rest of the operations in the figure are done online. The idea is to match 

the shape of the object to be grasped to the most similar hand shape in the database. The 

first step is to sample the surface of the object. These samples are used to analyze the 
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shape of the object and to extract a “shape function” that mathematically describes this 

object’s shape. The heart of the system is a shape-matching module that compares the 

shape of the object against each and every entry in the database. After the best matching 

hand shape is automatically picked from the database, the grasp alignment stage 

calculates all the possible hand positions and orientations to insure maximum contact 

between the hand and the object. Since there are many possible hand orientations, and 

many of these could be similar, the clustering stage groups similar grasps together and 

presents the user with a fixed number of grasps (four in our experiments).  

 
Figure 4.1: Overall system for grasping by shape matching. 
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After the grasps are grouped, the mean of every group is passed on to an 

optimization-based posture-prediction module that calculates the whole upper-body 

posture required to achieve the calculated grasps. We will now explain each of the 

components in Figure 4.1 in more detail.  

Sampling 

We define a sample as a Cartesian point in 3D (x,y,z) on the surface of the object. 

We have used the sampling algorithm presented by Osada et al. (2002), which allows the 

user to specify the number of samples to be taken. The algorithm chooses a triangle to be 

sampled at random with probability proportional to its area, so there is a higher chance of 

sampling a large triangle than a small one. After a triangle is chosen for sampling, the 

location of the sample on the triangle is randomly chosen. This algorithm is suitable for 

our application for the following reasons: 

a) The samples are independent of the polygonal composition of the model 

of the object to be grasped. For example, in Figure 4.2, the rectangle on 

the left is composed of two triangles, yet we were able to get 1024 

randomly distributed samples on its surface. The same thing was 

possible for the model of a rocket with 100 faces.  

b) The samples are distributed evenly on the surface of the object, even on 

flat areas where there are not many faces, or areas that are represented 

by many faces, such as pointed or sharp edges. 

 
Figure 4.2: Sampling of different objects with 1024 samples: A rocket model composed 

of 2 faces (left), and a model composed of 100 faces (right). 



32 
 

Feature Set Extraction 

Once the samples are obtained, we use them to construct a mathematical 

description of the shape of the object, or a “shape function,” For this purpose, we use the 

same shape function as that proposed by Li and Pollard (2005). For each pair of samples 

on the object, we construct one three-dimensional feature value. This is done for all 

possible pairs of samples on the object. Figure 4.3 shows the feature value that we have 

used in our experiments. 

 
Figure 4.3: The three-dimensional feature set. 

For each pair of samples, we calculate the distance between the points, the angles 

between the normals, and the vector joining the two samples. Hence, a feature is 

represented as follows: 

f = [d  θ1  θ2]  (4.1) 

This three-dimensional value is calculated for each pair of samples, and it is 

stored in a Feature Matrix of dimensions 3 by (N)(N-1)/2, where N is the total number of 

samples. N is set by the user in an options file once and does not change during 

execution. We refer to the set of feature values for a given hand shape as the “feature set” 

of that hand shape. 
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Database Population 

The sampling and feature extraction processes described above are used to create 

a database of grasps to be used in our data-driven grasping system. The database is 

populated offline. We manually manipulate the joints of the virtual human in order to 

create a realistic hand posture that can be used in grasping. Once an appropriate hand 

shape is reached, the joint angles are saved into the database, and then the hand is 

sampled (Figure 4.4) and its feature set is extracted. The hand samples and the feature 

matrix are saved.  

 

 
Figure 4.4: The hand samples. 

The hand samples are simply Cartesian points on the surface of the hand that were 

chosen manually. When assigning the samples, we empirically chose the locations in a 

way that captures the shape of the palm and fingers as precisely as possible. We paid 

special consideration to the deformable parts of the palm, which play a prominent role in 

power grasping. We used 24 samples for the hand in our experiments. 
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Shape Matching 

As can be seen in Figure 4.1, the input to the shape-matching stage is the object 

feature set and the feature sets for all the grasps in the database. The role of this shape-

matching stage is to compare the object feature set to all the feature sets in the grasp 

database, and to rank the grasps in order according to their similarity to the object, 

starting with the most similar. Assuming that Foj denotes feature j on the object and that 

Fij denotes the jth feature in the feature set of the ith grasp in the database, then the 

difference between Foj and Fij can be calculated as: 

2 2 2( , ) ( ) ( 1 1 ) ( 2 2 )oj ij oj ij oj ij oj jE F F d d iθ θ θ θ= − + − + −  (4.2) 

It is important to note that in order for an object and a hand shape to match 

perfectly, all features on the hand must be present on the object, but the inverse is not 

true. For this reason, we compare each feature on the hand with each and every feature on 

the object and pick the minimum difference value E from Equation (4.2). This means that 

we compare each feature on the hand with its most similar counterpart on the object 

surface. This is referred to as a “nearest neighbor” approach in the pattern classification 

literature.  

Since we wish to sort the grasps according to the similarity between the hand 

shape and the object shape, we need a metric to describe the similarity between a given 

hand shape and object. From Equation (4.2) and the above discussion, we can sum all the 

E values between the features on the hand shape and the corresponding nearest neighbors 

on the object and use this to quantify the dissimilarity between the two: 

Dissimilarity(graspi,Object) = 
1

( , ( , ))
n

oj ij

j

E F NN F Object
=
∑  (4.3) 

Dissimilarity(graspi,object) is the amount of dissimilarity between the hand shape in the 

ith grasp and the object to be grasped. 
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( , )ijNN F Object  is the nearest neighbor of feature j in the ith grasp from among the 

features of the object. 

The calculation in Equation (4.3) is carried out for all grasps in the database. The 

best matching hand shape is the one with least dissimilarity value. This is used to rank the 

grasps from the best matching to the least matching.  

Grasp Alignment 

Once the system has presented the best matching hand shapes, the user either 

chooses one or allows the system to pick the hand shape with the least dissimilarity 

measure. This is because the system might not always pick the grasp that the user has in 

mind because it only compares the shape of the object and the hand and does not take the 

task into consideration. It is then crucial to calculate the hand position and orientation to 

achieve the intended grasp. We do this with a Random Sample Consensus algorithm 

(Fischler and Bolles, 1981; Chen et al., 1997; Li and Pollard, 2005). A triplet of points on 

the hand are picked and designated as the control frame (Figure 4.5).  

 

 
Figure 4.5: The control frame on the hand and partial frames on a joystick, shown in 

yellow. 
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We then search the samples on the surface of the objects for triangles that are 

similar to the control frame. For a triangle to be considered similar, we require that the 

lengths of the corresponding sides are within a user-specified threshold εd. For each 

triangle that matches the control frame, we calculate a 4x4 transformation matrix that 

transforms the control frame to the partial frame. The algorithm we use to calculate this 

transformation matrix is discussed in detail in the appendix. Next, the samples on the 

hand are transformed by this matrix and tested to see if they are within a user-specified 

threshold from the object surface. We measure the distance from each transformed 

sample to its nearest neighbor on the object surface and reject transformations that result 

in samples violating the distance threshold.  

All the transformation matrices that obey the distance threshold are passed to the 

next stage. Every matrix represents a plausible hand position and orientation. 

Clustering 

Since the algorithm used in the previous section performs an exhaustive search on 

the samples of the object to find plausible grasps, we might end up with a large number 

of grasps alignments, most of which are similar. For this reason, we wish to sort the 

grasps into groups, where similar grasps are placed in the same group. This is done by 

employing a clustering algorithm on the transformation matrices resulting from the grasp 

alignment stage. We do the clustering in the 16-dimensional space of the 4x4 

transformation matrices, where we have rearranged the elements of the matrix into a 16-

dimensional vector. We have used a C++ implementation of the K-means clustering 

algorithm (Mount, 2005). In our experiments, we have used a fixed number of clusters 

(typically four) to be presented to the user.  

Connecting to the Upper Body 

The final stage of our process integrates the whole body with the grasping task. 

Specifying a hand position and orientation is not enough when we want the virtual human 
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to perform the grasping task in a natural-looking manner. The avatar must use his or her 

elbow, shoulder, trunk, and other body parts to reach for the object and grasp it. For this 

reason, we use the upper-body posture-prediction module that was developed for 

SantosTM at the Virtual Soldier Research (VSR) group at The University of Iowa (Abdel-

Malek et al., 2006). We supply this module with the position of the wrist and the 

orientation of the hand given as two vectors. These two vectors define two of the local 

coordinate axes of the wrist. In our case, one vector is perpendicular to the plane of the 

palm, and the other originates at the wrist and points in the direction of the fingers. More 

details are provided by Marler (2004). These vectors are extracted directly from the 

transformation matrices output by the clustering stage. In response, the posture-prediction 

module calculates the joint angles for the rest of the body by solving an underdetermined 

inverse kinematics problem using optimization. The result is an upper-body posture that 

insures that the virtual human’s hand is in the desired position and orientation to perform 

the grasp. Figure 4.6 below shows the effect of using the posture-prediction module.  

 
Figure 4. 6: Grasping involving the upper body: grasping without the upper body 

connected (left) and grasping the same object with the upper-body posture-
prediction module active (right). 
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In the left part of the figure, we have placed the hand in the desired position and 

orientation without any regard to the rest of the body. The hand is detached from the rest 

of the body, and the posture looks odd. On the contrary, the right side of the figure shows 

the avatar grasping the cylinder with the posture-prediction module active. Notice how he 

is looking at the object and how his elbow, shoulder, and clavicle are all involved in 

producing a body posture that allows him to properly reach for the object.  

Implementation Details 

We have used Virtools as our simulation and visualization environment. We read 

the object mesh information and send it into our C++ code. Our code in turn uses the 

following external libraries: 

ANN: Approximate Nearest Neighbor (Mount and Arya, 2006) to perform nearest-

neighbor queries. 

KMlocal (Mount, 2005): To perform k-mean clustering. 

MTrand: For random number generation.  

The code allows the user to control the behavior of the algorithm through an Options file. 

The file contains options for the number of samples per unit area, the threshold εd on the 

side lengths of similar triangles, and the maximum allowable distance between a point on 

the hand and its nearest neighbor on the object surface. The output of the code is the 

mean of each cluster obtained from the clustering stage. We are currently using four 

clusters in our experiments. We used a database of eight grasps as a proof of concept, but 

our implementation can easily be extended to include more grasps.  

Results 

Figures 4.7 and 4.8 show some of the simulation results we obtained from an 

initial database of grasps. We cluster the grasps into four groups, and we have noticed 

that we usually get two or three meaningful grasps and that one of the groups contains 

bad grasps or grasps in which the hand is not touching the object.  
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Figure 4.7: Two ways of grasping a sphere using the same hand shape. 

 
Figure 4.8: Three different ways of grasping a cylinder using the same hand shape. 

Figure 4.9 below is a plot of the running time of the shape-matching stage versus 

the number of samples per unit area on the surface of the object. These results were 

obtained for a spherical object being matched to a grasp in a database consisting of eight 

grasps, each with 24 samples. We noticed that the relative ordering of the grasps did not 

change when the number of samples per unit area was increased. Hence, in the remainder 

of our experiments we used around 10 samples per unit area. 
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Figure 4.9: The running time of the shape-matching stage versus the number of samples 

per unit area on the surface of a sphere. 

 
Figure 4.10: The running time for the grasp-alignment stage versus the number of 

samples per unit area on the surface of a sphere. 

Figure 4.10 above shows the relationship between the running time of the grasp-

alignment stage and the number of samples per unit area. The data points in the plot were 
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generated by aligning a grasp with a spherical object of radius 8.2 composed of 24 faces. 

All the user-specified thresholds in the options file were set to a value of 1.5. Note that all 

the experiments were performed on an Intel Pentium 4 dual core 2.13 GHz machine with 

2 GB of RAM. 

 
Figure 4.11: The number of possible grasp alignments versus the samples per unit area 

for a sphere. 

We noticed that as the samples per unit area were increased, the system found 

more possible alignments between the hand and the object. For example, in Figure 4.11, 

we have plotted the number of alignments (before clustering) against the number of 

samples per unit area for a spherical object. Another factor that had a significant impact 

on the number of produced grasps was the threshold on the distance between the hand 

and the object in order to consider a grasp as valid. This is shown in Figure 4.12. 
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Figure 4.12: The relationship between the number of alignments found by the system and 

the nearest-neighbor threshold for a spherical object. 

Discussion and Conclusions 

The results shown in Figures 4.7 and 4.8 are not refined in any way. They look 

natural, and at least one of the produced grasps (the output of the clustering algorithm) 

corresponds to a grasping posture that an actual human would perform. However, we 

noticed that the results and the running time were sensitive to the number of samples 

taken per unit area. The more samples we took, the more time it took to complete the 

calculations. However, more samples also produced more possible grasps, increasing the 

quality of the end results. There should be a tradeoff between the number of desired 

grasps and the running time of the algorithm. In many cases, we needed to experiment a 

few times with the user-specified options before we obtained satisfying results within a 

reasonable amount of time. This process can be automated by allowing the algorithm to 

run several times, each time adjusting the options until the desired number of grasps is 

obtained. 



43 
 

Currently, we are using a database of eight grasps. Our code can perform for an 

arbitrary database size. However, that would increase the running time for the shape-

matching stage because each grasp would be compared to the object. Our database 

currently contains generic hand shapes that are applicable to arbitrary objects; however, 

we plan to build a specialized database to handle a specific family of objects.  

An interesting observation is that not all grasps that made sense from a grasping 

point of view resulted in natural upper-body posture. For example, the grasp shown in the 

right part of Figure 4.7 looks efficient when considering only the hand in relationship to 

the object, but it can be easily noted that the elbow and the shoulder are in a very 

awkward and uncomfortable position. This has inspired us to consider developing an 

upper-body grasp-quality metric that can filter out uncomfortable grasps.  

One area that deserves special attention is the relationship between the clustering 

algorithm used and the results. Using a dynamic number of clusters instead of a fixed 

number might yield better results. Also, our algorithm has the same weaknesses that most 

clustering algorithms suffer from: one poisoned point in the dataset will surely affect the 

cluster means and hence the final results. Another point to consider is the space in which 

clustering is performed. Clustering in spaces other than the 16-dimensional 

transformation matrix space might be an idea worth pursuing in the future.  

Although our work in this chapter is similar to that of Li and Pollard (2005), we 

believe that we have made significant contributions to this area of research. We have not 

relied on motion capture data from human hands in order to construct the database. When 

mapping the grasping data from a human hand to the SantosTM hand, errors and 

inaccuracies would be introduced no matter how accurate the mapping process is. Also, 

when modeling real objects in the virtual world, it is very hard to create perfect replicas. 

For this reason, we used the SantosTM framework itself to create the database. The most 

important contribution of this work is the coupling of the whole body with the hand to 

produce a complete reaching and grasping posture. The resulting upper-body posture was 
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used to judge the feasibility of the produced grasps. We decided that grasps that resulted 

in awkward or uncomfortable body postures should not be considered valid.  

For our future work, we wish to pursue the following topics: 

• Develop an upper-body grasp-comfort measure than can prune grasps that 

result in uncomfortable upper-body postures. 

• Add collision detection to our system to prune grasps that result in the 

hand penetrating the object. 

• Use the existing finger-posture-prediction module to automatically refine 

the resulting grasps or to allow the user to interactively enhance the 

grasps. 
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CHAPTER 5 

FINGER POSTURE PREDICTION 

Introduction 

In the previous chapters, we introduced the hand model and proposed methods for 

grasping objects using power grasps. In this chapter, we address the problem of 

predicting hand postures that correspond to specified fingertip locations. We present an 

optimization-based inverse kinematics method that will calculate the joint angles 

corresponding to a set of fingertip locations. 

Many times when objects are being grasped and manipulated, whether in a real or 

a virtual environment, the need arises for placing a given finger at a given location. For 

example, the user might want to press the button of a joystick or a computer mouse. Also, 

when humans grasp small and light objects, they often use only their fingertips to touch 

and manipulate the object, resulting in what is termed “precision grasps.” This can be 

clearly observed when a person grasps a pencil in order to write, uses a pair of tweezers, 

or grasps a hot cup of coffee. 

Our work in this chapter leverages the work presented by Farrell (2005), Marler et 

al. (2005-a), and Marler et al. (2005-b) for the upper body and extends it to the hand. It is 

similar to the work of Borst and his colleagues on robotic hands (Borst et al., 2002), 

which we mentioned in Chapter 1. We begin by formally defining the finger posture-

prediction problem and formulating it as a standard optimization problem. Then, we 

explain how this procedure is implemented in SantosTM and simulated in a virtual 

environment. We then present some of the results we obtain from this implementation. 

Finally, a discussion of the pros and cons of this method is presented, along with an 

outline of future research.  
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Formulation 

We can define the finger posture prediction problem as follows: given the current 

hand posture and orientation, and a set of points that contains a target point for each 

fingertip, what is the best way to configure the joints of the fingers in order for the 

fingertips to touch the target points? 

If we can mathematically describe the hand position and orientation, and the 

posture of the fingers, then the only ambiguity that remains in the aforementioned 

problem definition is defining the “best” way of achieving the posture. We postulate that 

there could be more than one way of rotating the joints of the fingers in order to touch a 

given set of targets. Furthermore, we assume that there is one optimal way of touching 

the target points that is most comfortable for humans and tends to result in natural-

looking hand postures. Thus, we require that the optimal hand posture minimizes the 

value of a cost function that is dependent on the values of the individual joint angles. In 

our work, we propose a simple cost function that describes the deviation of the joints 

from their neutral positions. This is shown in Equation (5.1) below. 

Based on the above argument, the problem can be cast as an optimization problem 

as follows: 

 

Given: 

Joint neutral angles, qN 

Desired target point for each fingertip, XT 

Find: 

The joint angles, q 

To Minimize: 

f(q) = 2
( )

1

n

i i Ni
i

w q q
=

−∑   (5.1) 
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Subject to: 

Joint limits, qi
L≤qi≤qi

U  (5.2) 

||Xfingertip-XT|| ≤ ε  (5.3) 

where Xfingertip is the vector of fingertip positions, and ε is a number that approximates 

zero to avoid floating point numerical errors. Xfingertip is calculated using Equations (2.1) 

and (2.2) in Chapter 2. The norm used in Equation (5.3) above is an L2 norm. The neutral 

angles and the joint limits were adopted from the work by Tubiana (1981). As mentioned 

in Chapter 2, we have 25 degrees of freedom in each hand, so the dimension of our 

design variable vector for both hands is 50. The optimization problem is solved using the 

SNOPT software library (Gill et al., 2002), which uses a sequential quadratic 

programming algorithm  

Implementation in the Virtual Environment 

Figure 5.1 below shows the interconnection between the different components of 

the posture-prediction user interface. All the calculations are performed using the 

optimization solver SNOPT, which receives as input from the simulation environment 

(Virtools) the initial hand posture and the set of target points that are selected by the user. 

The final posture consists of the 50-dimensional vector of joint angles (design variables). 

The joint limits are the constraints of Equation (5.2) above. The link lengths and joint 

limits used in our experiments are shown in Chapter 2, in Table 2.1 and Figure 2.5.  

A variable anthropometry interface allows the user to choose different hand sizes 

according to pre-calculated percentiles, or to individually customize the length of each 

bone in the hand model and the range of motion of the associated joints. The link length 

and joint limits are sent as input to the optimization solver. If there is a feasible solution 

(a solution to the problem that satisfies Equations (5.2) and (5.3) above) to the problem, 

the joint angles corresponding to this solution are sent to the simulation environment and 

the fingers are rotated accordingly. 
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Figure 5.1: The hand posture prediction interface. 

 Sometimes no feasible solution to the problem exists, due to the selection of target points 

that are unreachable by the fingers. In this case, the solver will output a set of angles that 

minimizes the violation of the constraints in Equations (5.2) and (5.3) above.  

Results 

The initial posture-prediction results are promising. The time taken to solve the 

optimization problem was less than 1 second on an Intel Pentium 4 dual core 2.13 GHz 

machine with 2 GB of RAM. Figure (5.2) below shows the hand posture before and after 

grasping a small sphere. The red balls represent the target points for the thumb, index, 

and middle fingers, as specified manually by the user. Note that the two targets for the 

ring and pinky fingers are not visible in the figure because they are on the palm. The 

resulting posture is shown in the right-hand portion of the figure. Note that in this figure, 

Simulation Environment

Variable 
Anthropometry 

Module

Optimization 
Solver

Link Lengths

Joint Limits

Initial Posture Target Points

Final Posture
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the starting posture is the neutral posture defined for the hand, and it is the same posture 

that we use in Equation (5.1) throughout the experiments. 

Figure (5.3) shows the hand grasping a joystick. The left part of the figure is the 

starting configuration, and the right side shows the hand after the thumb is positioned to 

press the button on the hand of the joystick. 

 

 

 

 

 

 

 

 

Figure 5.2: Santos performing a precision grasp on a spherical object. (Left) starting 
posture, (Right) final posture. 

 

 

 

 

 

 

 

 

Figure 5.3: Santos pressing a button on a joystick. (Left) starting posture, (Right) final 
posture. 
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Although we have not performed rigorous validation on our results, it is evident that the 

resulting postures look natural and follow the posture that a real human would perform to 

touch the target points. Validation of our simulated results and experimentation with 

different cost functions remain areas of future research. 

Discussion and Conclusions 

In this chapter, we have formulated the precision grasp problem with known 

target points as a constrained optimization problem. We have demonstrated the soundness 

of this approach by providing simulation results on a virtual human. The virtual avatar 

was able to form a hand posture that corresponded to a set of user-specified contact 

points in real time. 

The amount of redundancy in the joint angles of the fingers that satisfy a given set 

of target points seems to be limited. This becomes obvious when we compare posture 

prediction for the hand with upper body posture prediction: There are many ways to 

touch a target point when the arms and trunk are involved in the posture. This minimizes 

the role of the objective function and optimization formulation. However, this method has 

been shown to be faster and more flexible than other inverse kinematics methods, and it 

has served our purpose well in predicting posture for the fingers. 

Although the proposed system is useful, there are issues that need to be addressed 

before the system can be a part of a reliable and automatic grasp planner for virtual 

environments. Some of these issues are summarized below: 

1. We have assumed that the user will select the locations of the fingertips 

that will guarantee a stable grasp. This makes the system semi-automatic. 

If a more autonomous grasping behavior is desired, then it would be more 

appropriate to calculate the contact points on the object surface using an 

automatic algorithm. This has proven to be a difficult problem and is 
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outside the scope of this text. An in-depth treatment of this subject can be 

found in the robotic grasping literature.  

2. Many times, the user might pick points that are unreachable by the hand. 

This causes the fingers to move into an unnatural posture in order to 

minimize the distance between the fingertips and the target points (Figure 

5.4). A better approach would be to check whether the target points are 

within the reach envelope of the hand before attempting to solve the 

optimization problem. The work of Abdel-Malek and his colleagues 

(Abdel-Malek et al., 2006) or a similar approach can be used to achieve 

this goal. 

 

 

 

 

 

 

 

 

Figure 5.4: A bad choice of target points (red spheres) can result in unnatural postures 
while trying to minimize the distance to the target points. 

3. Oftentimes, we noticed that the fingers might go inside the object in order 

to reach the targets via the easiest possible path. Obstacle avoidance can 

be readily incorporated into the formulation of the optimization problem 

by filling the object and the hand with spheres and using additional 
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constraints to prevent the spheres in the hand from touching those of the 

object. 

4. The cost function that we have used (deviation from the neutral position) 

is just one of many possible cost functions. Further experimentation is 

needed to come up with a function that best approximates the behavior of 

humans when performing precision grasps. For example, we can use the 

sum of joint torques as a cost function that needs to be minimized. 

5. It was observed that when humans move their fingers, the motion of one 

finger affects the motion of others to some extent. These inter-finger 

coupling relationships can be modeled through additional constraints in 

the optimization problem and will help produce postures that are more 

natural. 
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CHAPTER 6 

GRASP QUALITY 

Introduction 

We have focused so far on the synthesis of grasps: How to find the hand position, 

hand orientation and joint angles for a given object geometry. Another important aspect 

of grasping in the virtual world is grasp analysis. Specifically, we are interested in finding 

whether a given grasp is good enough for our application. To achieve this, we need a 

quality criterion that can help us determine how well a given grasp restrains an object, 

and to compare between several possible grasps for the same object in order to pick the 

best one. For this purpose, we have implemented a grasp quality measure for SantosTM. 

This measure is quite popular in the robotics literature, where it has been used to plan 

grasps for robotic grippers. 

We begin with a brief review of the related literature, and then we present a 

precise formulation for the grasp quality problem. We provide a simple example in 2-D 

to clarify the process of calculating the quality of a grasp. After that, we explain the 

details of the implementation of the quality metric for a virtual human in a simulation 

environment. Finally, we include actual results for the application of this quality metric 

on the virtual human SantosTM. We compare different grasps of the same object and show 

that the quality measure is intuitive and consistent with the human common sense.  

Related Work 

There has been a great deal of research concerning grasp quality measures. Here, 

we outline some of the publications that are particularly relevant to our work. Salisbury 

(1982) introduced the notion of form closure grasps in which a grasp completely restrains 

an object. Kirkpatrick and his colleagues (1990) proposed a general measure of grasp 

quality for an n-contact grasp which is independent of task. They defined the grasp 

quality as the radius of the largest sphere that can fit within the unit grasp wrench space. 
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Ferrari and Canny (1992) developed this measure further and visualized the wrench space 

using the convex hull of the contact wrenches given that the maximum contact force has 

an upper bound of unity. Pollard (1994) proposed to scale the torques by the maximum 

moment arm in order to make the quality measure independent of the object scale. All 

these formulations assumed that the task wrench space is unknown. 

Other authors attempted to relate the task wrench space to the quality of the grasp. 

Li and Sastry (1988) state that a good grasp should be task oriented, and model the tasks 

as six dimensional ellipsoids in the wrench space of the object. Borst et al. (2004) present 

a method for calculating the task wrench space from the object wrench space.  

Miller and Allen (1999) present a robotic grasp simulator that is capable of 

calculating the quality of grasp generated on different objects using different hand 

models. Our work is most similar to this, but is adapted for the SantosTM simulation 

environment. We use a task independent quality measure because of the difficulty of 

modeling tasks associated with every graspable object in the virtual environment. 

Formulation 

We assume that the grasp consists of n contact points with a coulomb model of 

friction. Thus, a grasp can be represented as a set of point contacts G = {C1,C2,…Cn}. In 

order to ensure non-slippage of the fingers, the contact force fi at point Ci is constrained 

to lie within the friction cone at that point specified by the friction coefficient μ, the 

contact point Ci, the cone’s half angle φ, and the contact normal ni. (figure 6.1). 

The friction cone constraint can be written as: 

t nf fμ≤   (6.1) 

where ft is the tangential component of the force vector and fn is its normal component. 

Next, we approximate the friction cone by an m-sided friction pyramid. Hence, 

any valid force vector that satisfies equation (6.1) can be expressed as a convex 
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Figure 6. 1: Friction cone with half angle φ. 

 

 

 

 

 

combination of force vectors lying on the side of the friction pyramid(Figure 6.2), as 

follows: 
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where fij represents the jth force vector around the ith friction pyramid, and αij are 

nonnegative convex coefficients.  

We normalize the j force vectors lying on the boundary of each convex pyramid so that 

the following condition is satisfied: 

Figure 6. 2: Approximating a friction 
cone by an m-sided pyramid
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fij.ni = 1   (6.3) 

Referring to equation (6.3),       , which represents the amplitude of the normal 

component of the force, is restricted to be equal to 1.  

Using a coordinate system at the object center of mass, the wrench wi produced by grasp 

force fi is given by: 

 

  (6.4) 

where ri is the vector pointing from the object center of mass to the contact point ci. The 

wrench is 3 dimensional when considering grasps in 2D and 6 dimensional for grasps in 

3D .Consideration of the force and moment components together in wrench space 

requires scaling of the components for compatibility. In this work, we use the torque 

multiplier suggested by Pollard (1994) which is the maximum moment arm: 

max

1
| |r

λ =   (6.5) 

We redefine equation (6.4) by replacing ri with λri: 

 

  (6.6) 

 

this will insure that the quality formulation is independent of object scale. 

The wrench applied by the hand on the grasped object is given by: 

wgrasp =   (6.7) 

Note that equation (6.7) defines a convex cone in the wrench space which specifies the 

feasible external wrenches that the grasp can produce by applying valid contact forces fi, 

i=1,…,n. 

If we use an L1 norm and bound the sum of magnitudes of the contact normal forces as 

follows (Ferrari and Canny 1992): 
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where fn
i is the normal component of the ith force vector, then the external wrench 

produced by the grasp becomes equivalent to the convex hull of the wrenches: 

1 1

1

( { ,..., })
n

L i im

i

W ConvexHull w w
=

= U   (6.9) 

If the convex hull contains the wrench space origin, and there is no external force on the 

object, then the grasp can achieve equilibrium, and the grasp is said to be force closure. 

However, when an external force or moment is applied, the convex hull of the given 

grasp must enclose the wrench caused by this external disturbance to achieve 

equilibrium. 

 One quality measure that is often proposed in the literature is the radius of the largest 6D 

ball, centered at the origin, which can be enclosed within the hull. This represents the 

smallest maximum wrench over all directions that can be applied by the grasp to resist 

any external disturbance applied to the object. This quality measure assumes that no 

information about the task wrench space is known and that the disturbance wrenches 

could come from any direction (Ferrari and Canny, 1992 and Kirkpatrick et al. 1990). 

An Example of Grasp Quality Computation 

To clarify the procedure of calculating the grasp quality, we present a simple 

example in 2D. The resulting wrench space will be 3-dimensional and can be easily 

visualized (as opposed to the 6D wrench space that results from a problem in 3D). Figure 

6.3 shows an object in the plane that is being grasped at 4 contact points. Each contact 

force is directed along the normal to the surface at that point. 

We assume forces of unit magnitude and calculate the wrenches at each contact 

point according to the equations presented in the previous section. Finally we construct 

the convex hull of the contact wrenches and use that to calculate the grasp quality. 
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We begin by calculating the projection of the force at each point along the two 

vectors delimiting the friction cone. We assume a friction coefficient of 0.577, which 

corresponds to a friction cone with a half angle of 30 degrees. 

 

 

 

 

 

 

Figure 6. 3: Example grasp in 2D (left). The friction cone at each contact point (right). 

In the following, ax,ay, and az denote unit vectors in the direction of the x,y and z 

axes respectively. For each force fi at point Ci, we calculate two values fi1 and fi2 which 

are the projections of fi along the boundary of the friction cone (Figure 6.2). Since all 

force vectors fij will be normalized according to Equation (6.3), we assume that they have 

unit magnitude. 

For C1, we have: 

f11 = [-sin(30)ax,-cos(30)ay] = [-0.5 ax,-0.866 ay] 

f12 = [sin(30) ax,-cos(30) ay] = [0.5 ax,-0.866 ay] 

 

We now normalize fi1 and fi2 according to Equation (6.3). That equation requires 

that |fij|.|ni|.cos(θ) = 1. Since we assume a unit normal, we need to scale the forces by a 
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factor of 1/cos(θ) = 1/cos(30) = 1.155. This yields the following normalized values of f11 

and f12: 

f11
’ = [-0.577 ax,-1 ay] 

f12
’ = [0.577 ax,-1 ay] 

Next, we calculate the torque using Equations (6.4) and (6.5) as follows: 

 

where |rmax| in this case is equal to 2 21 1.5+ . This yields the following: 

 

 

Finally we use Equation (6.6) to find out the wrench w11. This whole procedure is 

repeated for all the contact points and we end up with the following three-dimensional 

wrenches: 

w11 = [-0.577 ax, -1 ay, -0.512 az] 

w12 = [0.577 ax, -1 ay, -1.15 az] 

w21 = [-0.577 ax, -1 ay, 1.15 az] 

w22 = [0.577 ax, -1 ay, 0.512 az] 

w31 = [0.577 ax, 1 ay, -0.512 az] 

w32 = [-0.577 ax, 1 ay, -1.15 az] 

w41 = [0.577 ax, 1 ay, 1.15 az] 

w42 = [-0.577 ax, 1 ay, 0.512 az] 

Next, we calculate the convex hull of these wrenches using the software package QHull  

(Barber et al. 1996). We set the output options to display the hull as a list of normals to 

each facet with an associated offset. The minimum offset is the grasp quality.  

Figure 6.3 shows the results for different contact points. In part (a), the convex hull is 

plotted using MATLAB, along with the grasp quality represented by the largest 
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Figure 6. 4: The convex hull and grasp quality for different contact points on the same 
object. (a) All the contact points shown in Figure 6.2, the quality is 0.5(b) 
after contact points C1 is removed, the quality is 0.22 and (c) after both 
contacts C1 and C3 are removed. The quality in this case is 0.04. 

sphere, centered at the origin, that can fit inside the hull. In part (b), we removed the 

contact point C1. Notice how the size of the hull and the quality ball are both reduced. 

However, both cases show the center of the wrench space contained within the hull. This 

means that both grasps can resist arbitrary external disturbances in any direction. 

However, in part (c), we removed both points C1 and C3 from the grasp. The quality is 

0.04, which is conceptually zero if we neglect floating point errors in the computation. 

This result can be intuitively explained by the fact that when these points are removed, 

the grasp cannot resist forces that cause clockwise rotation of the object. Note also that 

the origin of the wrench space is on the boundary of the convex hull.  

Integration into the SantosTM Environment 

We have implemented grasp quality calculation for SantosTM using Virtools, C++ 

and QHull. Figure 6.5 below shows the interconnections between the different 

components of our system. 

After the hand of SantosTM grasps an object in the virtual environment, collision 

between the hand and the object is detected and the contact points are recorded. 
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Figure 6. 5: Grasp quality implementation for SantosTM. 

After the hand of SantosTM grasps an object in the virtual environment, collision 

between the hand and the object is detected and the contact points are recorded. Since the 

hand is covered with a layer of deformable skin, we facilitate the collision detection 

process by inserting virtual spheres at each joint in the hand and at certain locations in the 

palm, and we perform collision detection between the spheres and the object. For each 

contact point, we have an associated contact normal perpendicular to the object surface at 

that point. The contact points and normals along with the object center of mass are passed 

to the next stage of the system. We assume that the object is composed of a single 

material of uniform density, which allows us to use the geometric center of the object as 

the center of mass.  

Next, we calculate 8 force vectors lying on the boundary of the friction cone for 

each contact point. We thus approximate the friction cone by a “friction pyramid”. Using 

these force vectors, we compute the resulting torques and form 8 six-dimensional 

wrenches for each contact point. This collection of wrenches is then passed to QHull, 

which in turn calculates the convex hull for these wrenches. The output of QHull is a list 

of facet normals and facet offsets from the origin. This list is passed to a C++ module 

which goes through the individual offsets and chooses the minimum one as the grasp 
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quality. Finally, the result is passed back to the simulation environment and displayed for 

the user.  

Results 

Figures 6.6 and 6.7 below show some of the grasp quality results. The grasp 

quality module was able to calculate the quality in approximately 3 seconds on an Intel 

Pentium 4 dual core 2.13 GHz machine with 2 GB of RAM. Figure (6.6) shows a 

comparison between grasping a long cylinder and a shorter one. The module output a 

higher quality index for the shorter cylinder. This makes sense because in the case of 

grasping the shorter cylinder, the hand is closer to the center of mass of the object and the 

fingers wrap around the cylinder, thus providing more control and extra resistance to 

external disturbances. 

 

 

 

 

 

 

 

 

Figure (6.7) below shows SantosTM grasping a long cylinder. It also shows the 

virtual spheres that we placed inside the hand to act as collision detection sensors.  

Figure 6. 6: Grasp quality results for 2 cylinders. The quality is higher for the shorter object
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Discussion 

Discussion and Conclusions 

In this chapter, we have presented a real-time grasp quality module that can be 

used to assess the quality of produced grasps. We have successfully used this module 

with posture prediction and shape matching modules to assess the quality of our results.  

It is important to note that although this module is useful as it is, it does not take 

into consideration the task or the function of the object. It is useful to judge how well the 

hand can mechanically restrain the object. For example, this quality measure will not be 

able to penalize a grasp of a joystick in which the hand is faraway from the buttons, or if 

it is grasping a mug upside down. This can be handled by specialized quality measures 

that use the concept of a “Task Wrench Space”, see (Borst et al 2004) for example. The 

reason we decide to use a task independent quality measure is because we want a quality 

metric that is applicable to novel unknown objects. We do not wish to build a database of 

objects that stores the task associated with each one, because that would limit our 

grasping system to only the objects in the database. If we decide to have additional object 

Figure 6. 7: Spherical sensors for collision detection (red 
spheres). 
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information embedded inside the object, then we might as well store information on how 

to grasp the object and not bother with developing a sophisticated automatic grasp 

planner. 

An interesting extension to the existing quality measure would be to incorporate 

the upper body posture and comfort into the grasp quality. This would enable us to 

describe as bad a grasp that involves the wrist rotating close to its joint limits, or one that 

has the shoulder twisted into an uncomfortable angle. 
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CHAPTER 7 

CONCLUSION 

Summary of Contributions 

In this work we have presented a new and complete interactive system for 

simulating human grasping and interaction. We have presented several examples of the 

use of this system for solving the grasping problem defined in Chapter 1. Although we 

have used several concepts from the fields of robotics and human simulation and built 

upon existing work, we have enhanced some of the previous grasping algorithms and 

presented many novel ideas. These new ideas are summarized as follows: 

1. We have extended the posture prediction capabilities of the upper body to 

include all 50 degrees of freedom of the hands. This was demonstrated 

using an intuitive user interface for selection of target points. This module 

was used independently to create precision grasps and also was part of a 

complete grasping system, where it was used to refine power grasps 

generated by the shape-matching and grasp-alignment module. 

2. We have enhanced previous algorithms for shape matching and pose 

alignment. Specifically, we have created an application for synthesizing 

grasps in an interactive manner and saving them into a database of grasps, 

thus eliminating the use of motion capture and the issues associated with 

mapping the motion capture data to the hand model. We have also 

enhanced the performance of shape-matching and pose-alignment 

algorithms by using data structures specialized for nearest-neighbor 

calculations and modifying the pose-alignment algorithm to require fewer 

samples on the object. 

3. We have laid the groundwork for studying the connection between the 

required hand posture for grasping and the kinematic limitations of the 
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upper body. By including the whole body in the grasp execution, we have 

identified cases in which planned grasps resulted in unnatural or awkward 

upper-body postures (the shoulder had to be twisted to its maximum joint 

limit, for example). 

4. By using a grasp-quality measure from the robotics literature and applying 

it to a digital human environment, we have created a module for the 

assessment of simulated grasps in terms of mechanical stability. This was 

used to provide feedback on the grasps and to help the user choose 

between many ways of grasping a given object. 

5. We have combined all the previously mentioned modules into one 

complete interactive grasping simulator, thus creating an environment for 

planning and evaluating grasps using digital humans. 

Conclusions 

Human grasping simulation has proved to be a complicated subject. We have proposed an 

interactive system to plan and assess human grasps and have obtained promising results 

using this system. During the process of design and implementation, we have drawn a 

few key insights, which we summarize as follows:  

• The upper body is an integral part of the grasp. It can be used as a filter to reject 

hand alignments that result in awkward and unnatural arm postures. 

• The proposed system can be used for product design and assessment because it 

gives the user the chance to independently guide the system toward the intended 

grasp with minimal effort. It does not force the user to accept one way of grasping 

the object, as a completely automatic system would, and at the same time does not 

require joint-by-joint manipulation to achieve the grasp. 

• We have validated our work visually and subjectively by comparing the results 

with our observations of human grasping and manipulation actions. This of course 
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is not enough, and more thorough analysis is needed. We suggest using motion 

capture data to acquire actual human grasps and comparing them with the grasps 

obtained from our system. 

• The grasping problem is extremely complex, mainly because it depends on the 

task and functionality that the object being grasped is intended for. The biggest 

obstacle facing people who develop automatic grasping simulators is designing a 

system that can judge the task requirements given the object’s shape and physical 

properties. The first step toward automating grasp simulation is an advanced 

cognitive module that uses artificial intelligence algorithms to infer task 

requirements from shape information and previous successful grasping attempts. 

Future Work  

This work has achieved the objectives that were laid out in Chapter 1. 

Nonetheless, there is potential for improvement, and this work has shed light on exciting 

areas of future research. Areas for future work are summarized as follows: 

• Developing a grasp comfort measure that includes the upper body. 

This can be used to filter grasps that make sense from a grasping point of 

view but are impossible to realize due to the joint limit and reachability 

constraints of the upper body. This would also help reject uncomfortable 

grasping postures. 

• Developing more objective functions for the finger posture prediction 

problem and experimenting to determine the objective function (or 

combination of functions) that gives the most human-like postures. For 

example, we can use an objective function that measures the sum of joint 

torques.  

• Validation of the finger posture prediction results by comparing them 

to results obtained from motion capture data.  
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• Formulating grasp-quality measures specialized for human hands. 

Such quality measures will take into consideration the unique structure of 

the human hand and how it is different from conventional robotic 

grippers. This measure would favor grasps that are more comfortable for 

humans.  

• Incorporating workspace analysis in finger posture prediction. A 

major pitfall of the current finger posture prediction module is that the 

user can easily choose points that cannot be realized by the hand due to 

kinematic constraints (such as joint limits). It would be very helpful to use 

workspace analysis to check whether the chosen target points lie within 

the workspace of the hand before attempting to solve the optimization 

problem. 

• Adding collision detection and avoidance. Since grasping always 

involves contact between the hand and the grasped objects, adding 

collision-detection capabilities would prove invaluable to this work. This 

can be used in posture prediction to avoid situations in which the fingers 

go through the object, or in grasp alignment to discard hand orientations 

that result in the fingers or the palm being inside the object. This can also 

be useful in the simple case where the user wishes to manually construct a 

grasp by direct joint manipulation.  
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APPENDIX 

Given 2 congruent triangles in 3-dimensional space: 

T1: A1B1C1 

T2: A2B2C2 

We wish to calculate a 4-by-4 transformation matrix M that, when applied to T1, 

will result in T2. 

M is composed of a 3x3 rotational part, R, and a 3x1 translational part t: 

   (A.1)
  

The steps we follow are as follows: 

1) Define local axes for each triangle. 

• For each triangle, the local x-axis is defined as the normalized vector AB. 

• The local y-axis is the normal to the plane of the triangle. This is obtained by 

performing the cross product AC X AB then normalizing the resulting vector. 

• The local z-axis is the cross product of the local x and the local y axes for 

each triangle. 

The local x,y and z axes for T1 are x1,y1, and z1 respectively. 

The local x,y and z axes for T2 are x2,y2, and z2 respectively. 

2) Calculate the rotational part, R,  of the transformation matrix using the following 

relationship: 

 

  (A.2) 

 

where the “.” denotes the dot product of two vectors. 

3) Calculate C1, the centroid of T1, and C2, the centroid of T2. The centroid is 

calculated by averaging the three vertices of a triangle. 
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4) Calculate t using the following relationship: 

t = M2-RM1 

5) Construct M by substituting the values of t and R in equation (A.1). 
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