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CHAPTER 1 

INTRODUCTION 

 

The use of shadows for establishing visual cues in imagery dates as far back as 

Leonardo Da Vinci’s era when he invented ‘Chiaroscuro’ [1]. Chiaroscuro is a shading 

style that relates light, color and form in a way that approximates their scientific behavior 

by allowing depth and intensity to blend harmoniously. Leonardo elegantly used it in the 

famous painting of Mona Lisa. This style has since been used to ‘bring images to life’ by 

various artists and has found its way into computer generated imagery. 

Much research has gone into the study of shadows and the role shadows play in 

the perception of three-dimensional world. Hubona et al [2] investigated the effect of 

object shadows in promoting 3D visualization. Their findings conclude that shadows aid 

in understanding not only the position but also the size of the occluder. 

Kersten et al [3] conducted a psychophysical investigation that culminated in the 

following conclusions; 

• The motion of an object’s shadow overrides other perceptual biases such as a 

constant object size assumption. 

 

I would remind you O Painter! To dress your figures in the lightest colors you 

can, since, if you put them in dark colors, they will be in too slight relief and 

inconspicuous from a distance. And this is because the shadows of all objects are 

dark. And if you make a dress dark there is little variety between the lights and 

shadows, while in light colors there will be greater variety. 

 

Leonardo Da Vinci ca 1470 
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•  While a moving image patch can be easily identified as a shadow by the shadow 

darkness, in certain conditions, even unnatural shadow darkness can induce 

apparent motion in depth of an object. 

• Interestingly, when shadow motion is caused by a moving light source, our visual 

system interprets this shadow motion as consistent with a moving object rather 

than a moving light source. 

In the investigation on spatial relationship perception as it relates to shadow 

quality, Wanger [4] echoes the second point above. He shows that it is usually better to 

have an inaccurate shadow than none at all as the eye is fairly forgiving about the shape 

of a shadow. These findings suggest that in the quest for visual realism in computer-

generated imagery, shadows should be included as much as is possible.  

The last decade has seen a proliferation of shadow generation techniques, 

particularly soft shadows. This is largely due to the advances in graphics processing units 

(GPU’s), which have made possible the implementation of all sorts of algorithms that 

were not feasible previously. These graphics cards have increased their computational 

power and therefore allowed more compute intensive algorithms to see the light of day. 

In 1990, Woo et al [5] provided a comprehensive survey of shadow generation techniques 

that were at the time, considered state of the art. The technology advancement that has 

since happened has made possible the generation of real-time 3D imagery that was 

unfathomable then. Chief among the beneficiaries of this advancement is the dynamic 

creation of soft-shadows in real-time. The concept of real-time and a further explication 

of soft-shadows will be detailed in subsequent chapters in this work. 
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A parallel development within the last decade has been a development of 

techniques intended to reduce power consumption in electronics. Aggressive measures 

have been developed to reduce power consumption and prolong battery life in hand-held 

electronics, resulting in devices that can run for a long time before being re-charged. The 

ideal situation would be an extremely efficient, low-power high performance system 

capable of meeting its intended design goal using the least amount of power. These two 

quests (low-power and high performance) seem to be at odds with each other and as is 

often the case in problem solving, a compromise solution is generally necessary. 

This work investigates the feasibility of shadow generation on a memory and 

power constrained graphics card such as would be found on a low-end mobile device. In 

essence, the question is posed whether it is possible to generate ‘good-looking’ shadows 

on a device that has severe constraints in comparison to the commodity graphics cards on 

desktop computers. While ‘good-looking’ is a subjective criterion, for the purposes of 

this work, it is defined as both aesthetically pleasing and immersive. For instance, a 

shadow that has the right intensity but is misplaced may be aesthetically pleasing but not 

immersive. However, a shadow with an unnaturally dark intensity but correct placement 

is considered ‘good-looking’. This paper is organized as follows: 

A condensed view of the graphics pipeline is presented in chapter two. This is 

intended to provide the necessary background for the terms and concepts used in the rest 

of the paper. Readers already familiar with graphics pipelines can safely skip this chapter. 

Chapter three defines shadows and the difference between hard and soft shadows. 

This is also where the state of the art algorithms for shadow generation are presented. 

Emphasis is placed on the algorithms that work in real-time so lengthy discussions of 
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global illumination schemes such as ray tracing and radiosity based algorithms are 

omitted. 

Chapter four details the problem statement. Here, the graphics card that was used 

in this study is presented and any assumptions made about the nature of this investigation 

are outlined. A detailed look at the various shadow generation techniques chosen is given 

in this chapter and the conditions under which the tests were conducted are also 

presented. Both the quantitative and qualitative findings of the chosen algorithms are 

explained, followed by suggestions/recommendations of which algorithm to use based on 

both context and the reported results. 

Chapter five concludes this study with a summary of the study and discusses 

suggestions for future research. 
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CHAPTER 2 

BRIEF REVIEW OF THE GRAPHICS PIPELINE 

 

Webster’s dictionary defines a pipeline as a route, channel or process along which 

something passes or is provided at a steady rate. As we shall see, the graphics pipeline is 

no exception. It has but one main function: to map a three-dimensional scene description 

into a two dimensional projection on the screen or viewing media. The scene description 

represents the geometry of the said objects in a mathematical form with which the 

pipeline can work. While most commodity graphics cards support quadrilateral polygons 

(quads), graphics units on handhelds restrict polygonal models to triangles. 

Normally, other agents are needed to produce the final image, which is displayed 

on the viewing media. Such agents include, but are not limited to, a virtual camera, light 

sources, textures and shading equations. Perhaps rather surprising is the fact that complex 

realistic scenes can be generated using triangles with each triangle being oblivious to its 

immediate neighbor i.e. a triangle has no global spatial knowledge of its location relative 

to its neighbors. 

It is henceforth assumed that the viewing media is the screen even though any 

output media may be used. 

2.1 Fixed Function Graphics Pipeline 

 

Here a simplified model of the fixed-function pipeline is introduced, so called 

because the various pipeline stages are not programmable/customizable This model 

preceded the architectures that are commonplace today but allows us to see the flow of 

data much more clearly. Figure 1 depicts this simplified pipeline as it applies to the Open 
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Graphics Library (OpenGL). OpenGL is a 3D application-programming interface (API) 

that provides the necessary abstraction to the actual graphics hardware1. What follows 

next is a brief discussion of the responsibilities of the depicted stages of the pipeline. 

 

 

 

Figure 1 A basic fixed-function rendering pipeline. 

                                                
1 Direct3D is a 3D API from Microsoft ™. These two libraries are the most common in use today 
and while they may have slight differences in the sequence of operations to data and/or the 
representation of the coordinate systems used to represent the 3D world, the end result is the 
same. 
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2.1.1 Application 

 

This section is the responsibility of the developer as it is executed on the CPU. 

Here, a developer organizes the data to be rendered as a collection of polygons (which in 

turn are composed of vertices in a virtual 3D world), chooses the various algorithms with 

which to manipulate this data, collects and processes any external events that relate to the 

application (e.g. keyboard presses and mouse clicks) and ultimately ensures that the 

outputs of this stage are valid rendering primitives i.e. points, lines and triangles. These 

primitives could eventually end up on the screen. 

2.1.2 Model View Transform 

 

Here, the rendering primitives undergo a series of transformations that change the 

underlying coordinate frame in which they are defined. Since individual objects are 

defined in their local coordinate spaces (object space), it is necessary to place them in the 

global world frame (object positioning). It is important to note that simply placing the 

objects in the world frame does not make them visible. It is often necessary to orient the 

models relative to the camera before we can see them. The camera, which is also placed 

and oriented in the world space, establishes a view volume within which all objects are 

seen (assuming they are not occluded). This view volume has the shape of a truncated 

pyramid with a rectangular base. The orientations needed to position the objects relative 

to the camera are elegantly carried out using matrix operations. OpenGL combines the 

object-to-world and world-to-camera transforms under a single matrix called the model-

view matrix. In Direct3D, these two matrices are separate and are individually applied to 

the model. The following figure shows the transformations that take place in this section 

of the pipeline. 
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Figure 2 The transformations a model undergoes under the vertex stage. 

Lighting is typically performed in view/camera space after the view matrix has 

multiplied all entities in the world.  

2.1.3 Projection 

 

This section performs a projection on the output of the previous section. 

Projection has the effect of transforming the view volume into a unit cube bounded by [-

1, -1, -1] and [1,1,1]2 often referred to as the canonical view volume. There are many 

different kinds of projections but two commonly used ones are orthographic/parallel and 

perspective projections. The figure below shows an orthographic projection. Note how 

parallel lines remain parallel after projection. 

                                                
2 Direct3D maps the z values to [0, 1] instead of [-1, 1] as OpenGL does. 
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Figure 3 Orthographic projection projects parallel lines to parallel lines. Image courtesy 
of Burke [6] 

Perspective projection mimics the way we perceive objects; the further out they 

are, the smaller is their projected size. Parallel lines in perspective projections seem to 

converge at the horizon. Figure 4 shows a perspective projection. Note that both 

projections project models from three dimensions to two dimensions. 
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Figure 4 Perspective projection. Image courtesy of Burke [6] 

2.1.4 Clipping 

 

After the projection is performed, the vertices are said to be in clip space. 

Primitives that partially lie within the view volume require clipping to avoid possible 

division by zero (when the polygon lies on either side of the view plane and a vertex has 

a z coordinate of 0) or negative inversions. Clipping in this space is easier as polygons 

are trivially clipped against the unit cube.  

2.1.5 Viewport mapping 

After the primitives have been clipped, this stage maps the primitives to the 

screen coordinates (screen space) by translating and scaling the polygons by an 

appropriate matrix. The output of this stage is fed into the rasterizer, which is responsible 

for converting from two-dimensional vertices in screen space into the pixels on the 

screen. 
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Note that this simplified rendering pipeline has a lot more going on than has been 

described here. The next section briefly highlights the changes that have been made to the 

fixed-function pipeline. 

2.2 Vertex and Fragment Processors 

The above pipeline, while common to many rendering systems, became harder to 

use consistently especially as features multiplied in commodity graphics hardware. This 

is because these features were accessible only via a limited set of settings and switches, 

which also had to increase in complexity in tandem with the hardware complexity. The 

result was a complex API that was unable to fully represent the full flexibility of the new 

hardware at best and at worst, a complex interplay of the said settings and switches, 

which often interacted in confusing ways [7]. 

This led to the creation of ‘shaders’; application provided code that runs on the 

graphics card, which replaced several of the most important fixed-function stages. Vertex 

and fragment (pixel) shaders, the subject of the next sections, afford developers the most 

flexibility in using the provided feature set and in directly controlling the operations that 

are applied in various stages throughout the rendering pipeline. 

2.2.1 Vertex shader processor 

This stage manipulates vertex data such as position, color and texture coordinates 

and cannot create new vertices. It is used to add special effects to objects in a 3D 

environment. Its output feeds right into the rasterizer. This corresponds to the 

combination of the model view, projection, clipping and viewport mapping in the fixed 

function pipeline. Note that since it replaces the model view fixed function stage, this 

processor is invoked on application-supplied vertices. 
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2.2.2 Fragment shader processor 

This stage computes color and other pixel attributes. It is invoked on dynamically 

generated fragments and thus has no concept of application provided per-fragment 

attributes. Since this manipulates pixel attributes, a lot of image space algorithms are 

implemented using fragment shaders. Bump mapping, specular highlights, shadows and 

translucency are some of the things that can be easily implemented by a fragment shader. 
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CHAPTER 3 

CURRENT SHADOW ALGORITHMS 

 

Visible surface algorithms (VSA), as their name implies, are concerned with 

determining what geometric objects are visible from the camera’s viewpoint. If an object 

A is in front of another object B along the line of sight of the camera, A is said to occlude 

B. and B is occluded by A. Shadow algorithms determine which faces can be “seen” 

from the light source. Thus shadow algorithms and visible surface algorithms are 

essentially the same [8]. Surfaces that can be seen from the light source are not in shadow 

while those that are occluded from the light are in shadow. The significance of the two 

algorithms being similar is that we can employ some algorithms from VSA in 

determining shadowed regions. In fact, one of the algorithms reviewed here does just that 

with successful results. 

This investigation only considers shadow algorithms for point-light sources. Point 

light sources are sources without an areal extent and whose light irradiance emanates in 

all directions from a single point. Even though they do not exist in practice, they are easy 

to approximate and compute their effects in real time. We shall adopt the definition used 

by Moller et al and define real time as being 15 frames per second [9] or more. 

What follows is a distinction between hard and soft shadows, after which we 

delve into the currently used shadow generation algorithms.  

3.1 Hard shadows vs. soft shadows  

As point light sources are implemented as points in space, objects either have a 

direct line of sight to the point light or they are occluded and no line of sight exists 

between the two. This results in a point being in shadow or being lit. This bivalent 

distinction naturally gives rise to hard shadows as depicted in the figure below. 
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Figure 5 Hard shadows caused by point lights. 

As can be seen from this figure, the receiver, which is defined as an object upon 

which a shadow is cast, is either fully lit or fully shadowed. Contrast this with soft-

shadows, which more closely resemble the way shadows are cast in real life. Real light 

sources have a finite area from which irradiance is emitted. This extent has a perceptible 

influence on the geometry of the shadow projection as each point on the area light source 

contributes to the overall ‘sum’ of shadows on a receiver. In fact, this view of an area 

light source as a collection of point light sources has been used to generate soft shadows 

with much success.  

The region of the shadow that is completely blocked from the area light source is 

referred to as the umbra. Partially illuminated areas on the receiver are called 

penumbrae. The following figure shows the same lighting setup with the point light 

replaced by an area light source. 
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Figure 6 Area light source. Note the distinct shadow regions on the planar receiver. The 
dark region is the umbra while the grey region the penumbra. 

Notice how the lighter shaded region encompasses the umbra. This is a direct 

result of the finite extent of the light source as the image shows. Area light sources are 

more challenging to model and the effects achievable by them are also a lot more 

compute intensive as compared to point light sources. For this reason, when real-time 

performance is expected, most applications use point lights instead and employ tricks to 

simulate area light sources. 

Since soft shadows are generated after hard shadows have been generated, this 

study focuses on algorithms that produce hard shadows. Hasenfratz et al [10] provide an 

excellent survey of real time soft shadow generation algorithms for commodity graphics 

hardware. 

We now proceed to look at the various shadow generation techniques that are 

currently in use. The first algorithm is simple to implement and has therefore been widely 
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used. The remaining ones require special hardware features to implement but are also 

widely adopted. 

3.2 Projection/Planar Shadows 

Blinn [11] proposed a simple way to generate ‘fake’ shadows from a point or 

directional light. In his approach, an object’s vertices are projected on a plane. Figure 7 

below shows this method. 

 

Figure 7 The projection of vertex i is analytically determined to obtain a shadow image 
on the ground plane. 

In the above figure, the light source is located at position  and casts a 

shadow onto the plane . The similar triangles method is used to analytically solve 

for the point of projection as follows; 

Let p be the projected point of vertex v (on the  plane). Then from similar 

triangles, 

                                                           (1) 
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                                                     (2) 

                                                   (3) 

                                                            (4) 

The z coordinate is obtained in a similar way. With the three projected vertex 

positions ( ), we get a new shadow vertex. This is done for all the vertices of the 

object and for all the lights in the scene. This process can be generalized to a matrix 

multiply which acts as a projection matrix M. The benefit of using a matrix is that 

graphics cards are highly optimized for matrix multiplication. Thus, the penalty 

associated with this shadow planar projection turns out to be minimal. Assuming a left 

handed system, this matrix M generalizes to 

 

                       (5) 

 

To project to any plane, we simply solve for matrix M that projects a vertex v 

down to p. Note that the above matrix requires a division by w (homogeneous division) to 

yield the correct vertices. 

In most cases, we want to project shadows on the ground plane since lights are 

normally situated above objects in most scenes. However, we can use this projective idea 

to cast a shadow on any plane given by the normal-point form plane equation. 

To render the shadow, we simply select the shadow casters and apply the above 

matrix on them. The resultant shadow object is then drawn with a dark color and no 

illumination. To avoid rendering the shadow below the plane, we draw the ground plane 
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first, and then the shadow polygons with depth buffering turned off. This way, no depth 

comparisons are made and the shadow rests neatly on the surface of the receiver. 

Note that we can also use this method to generate shadows from directional 

lights3 The above derivation assumed a position for the light and for each vertex of the 

shadow caster, we determined the projected shadow vertex using similar triangles. For 

directional lights, we simply substitute the position for the direction of the light’s rays as 

shown below. 

Given a point (vertex) on the object  and a directional light 

, the point will cast a shadow at . The projected point is 

derived using the implicit equation of a line . Since , we can solve for the 

unknown alpha and use it to derive the other projected positions. 

                                                            (6) 

                                                          (7) 

                                                             (8) 

                                                 (9) 

                                                  (10) 

Again, we can generalize this construction into a matrix M given by 

                         (11) 

                                                
3 Directional lights are located at infinity and thus have no position per se. They are characterized 
by the direction of illumination and their rays are assumed to be parallel. The sun is a perfect 
example of a directional light. 
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This construction assumes a left-handed coordinate system as well. Note that the 

projected shadow from a directional light does not extend out as far as that from a point 

light. The following figure shows this concept. 

 

Figure 8 Planar shadow from a directional light. Image courtesy of Chris Bentley [12] 

The figure below shows the shadow generated from a point light source. Notice 

the extent of the shadow on the ground plane. 
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Figure 9 Planar shadow from a point light source. Image courtesy of Chris Bentley [12] 

3.2.1 Pros and Cons 

The planar shadow algorithm has been a favorite amongst developers for many 

years as it is easy to implement and results in shadows that are realistically cast on the 

planes. The disadvantage with this method is that shadows can only be cast on planes. 

This has the effect of limiting the realism in the scene as shadows in real life are cast on 

arbitrary geometry. 

It is worth mentioning that further processing of the cast shadows can be done to 

blend them in with the environment. It is indeed possible to generate soft shadows by 

using planar projections as Heckbert and Herf [13] demonstrated. Gooch et al [14] also 

use a variant of planar shadows to obtain soft shadows. Both methods require multiple 

projections per object, which necessarily reduces the frame rate. 
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3.3 Shadow Mapping 

This algorithm, proposed by Williams [15] in 1978, is a direct extension of the 

visible surface determination method applied to a light source. It is also known as the Z-

Buffer shadow algorithm for reasons that will be clear shortly. It works as follows: 

From the light’s point of view, what is ‘seen’ is illuminated while the areas that 

are not seen (occluded areas) are in shadow. The technique requires two passes; the first 

pass renders the scene from the light’s perspective and stores the visible areas depths in 

the z-buffer. This depth corresponds to the distance to the light source for those visible 

regions and is stored as a texture (also called a shadow map). Texture coordinates for the 

objects in the scene are then computed and associated with the object’s vertices. 

The second pass involves rendering the scene from the viewer’s point of view and 

for each pixel, comparing the interpolated texture coordinate depth with the depth stored 

in the texture map from the first pass. If the former is greater, then this means that 

something occluded this fragment from the light and so it must be in shadow. Fragments 

that do not index the texture map (those that fall outside the depth map) are also treated 

as illuminated. 

Note that the depth/shadow map must be updated any time there are changes to 

either the light or the objects in the scene, otherwise the application would obtain an 

incorrect depth value. Since shadows are not view-dependent, the viewer can move about 

without necessitating an update of the shadow map. 

In practice, first the shadow map is obtained as described above. Then the scene is 

rendered from the viewer using ambient lighting4 only. This ensures that even the 

shadowed areas have ambient lighting5 A shadow testing step is then performed, which 

                                                
4  Ambient lighting is lighting that comes from all directions. In graphics, it is an attempt to 
model the light that is still available even when light sources are turned off. Our ability to still 
perceive light on an overcast day provides an example of ambient lighting.  

5  This is normally the case as shadows are never really purely black regions. Ambient lighting 
therefore enhances the realism of the scene. 
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compares the z-value in the Z-buffer with the shadow maps z-value (The shadow map’s 

z-value is transformed from the light’s coordinate system to the viewer’s coordinate 

system). For each pixel, a degree of occlusion is stored that is later used when the scene 

is re-rendered with the full lighting equation. This value spans the range [0,1] and dictates 

the blending factor used in blending the pre-lit (ambient lit only) and the fully lit 

fragment (after the full lighting equation). Note that in most commodity graphics cards, 

enabling bilinear filtering enables hardware interpolation on this value resulting in a 

much softer transition from dark to light. This also reduces edge aliasing 

(jaggedness)[16]. 

As the shadow map only stores depth values, lighting, texture fetches and updates 

to the color-buffer can all be turned off to speed things up in the first pass. Figure 10 

below shows two methods of implementing shadow maps: the top row shows a standard 

map constructed in world coordinates and the bottom row shows a perspective shadow 

map, constructed in clip-space. 

3.3.1 Pros and Cons 

This method has a few advantages, which makes it quite popular. For starters, it 

can be implemented entirely using general-purpose graphics hardware. It is guaranteed to 

work on most if not all graphics cards. Secondly, creating the shadow maps is relatively 

fast. In fact, the cost of building the shadow map is linear in the number of rendered 

primitives and the texture access time is constant [17]. 
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Figure 10 Perspective shadow mapping. On the left is the view of the scene from the 
light’s perspective. The white areas are closest to the light. On the right is the 
scene rendered with these shadow maps. Top row shows a standard shadow 
map while the bottom row shows a perspective shadow map. 
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This method also handles self-shadowing6. Since the scene and all the objects 

therein are shaded from the point of view of the light source, self-shadowing comes at no 

extra cost. 

Despite these advantages, this method also has some drawbacks. First, even 

though most graphics cards support it, the quality of the shadows depends not only on the 

pixel resolution but also on the numerical precision of the Z-buffer. Therefore, it is 

subject to many sampling and aliasing problems, especially close to shadow edges. Recall 

that the shadow map is sampled per pixel during the depth comparison. This point 

sampling method is inherently imprecise and creates self-shadow aliasing in which a 

polygon is incorrectly considered to shadow itself [17]. The comparison fails because the 

light’s stored depth value may be slightly lower than the surfaces depth value resulting in 

the classic under-sampling phenomenon known as moiré patterns. See figure 11 below. 

 

Figure 11 Moire patterns caused by depth inconsistencies between the stored light’s value 
and the surfaces depth value. 

                                                
6  Self-shadowing allows non-static objects in a scene to cast shadows on themselves. This 
greatly enhances scene realism. 
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There are many suggestions for improving the aliasing problems discussed above. 

One idea as proposed by Hourcade et al [19] consists of storing object ID’ in a priority 

buffer. Comparisons are then done against the stored ID’s, lighting if they match and 

shading otherwise. They claim that this eliminates the self-shadowing problem. 

Stamminger and Drettakis presented a different solution to reduce perspective 

aliasing on the generated output. Their method, perspective shadow maps [stammingger] 

performs the shadow map computation and the shadow test in normalized device 

coordinates after perspective transformation. After the perspective projection, the 

generated image is an orthogonal view onto the unit cube; therefore perspective aliasing 

due to the distance to the eye is avoided. Figure 10 shows the perspective shadow maps. 

The top row shows a standard shadow map generated in world coordinates from the 

light’s viewpoint. The bottom row shows the perspective shadow map generated in clip 

space (post-perspective transform). 

Percentage closer filtering as initially proposed by Reeves et al [20] has been used 

to demonstrate significant improvements on the generated output. This method has since 

been incorporated into commodity graphics cards. 

Other ideas range from simply adding a bias to the light’s stored value to setting 

the view frustums near plane as far away from the light source and the far plane as close 

to the light as possible (thereby increasing the precision of the Z-buffer). 

A second disadvantage of this method is that shadow mapping cannot handle 

omni-directional lights. Since shadow mapping is built upon the premise of light ‘looking 

at’ a particular direction and then shadowing what is not visible, lights that ‘look’ at all 

directions would be infeasible to model with this technique. 

Lastly, it requires at least two rendering passes (one from the light source and the 

other from the viewpoint).  
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3.4.Shadow Volumes 

Heidmann [21] first implemented Crow’s [22] original shadow volume idea in 

1991 by using graphics hardware. This multi-pass algorithm can be thought of as being 

purely geometrical as it works by first determining the silhouette of the occluder as 

viewed from the light source, and then extending the pyramid formed by the light (apex) 

and the polygons edges to infinity. This extrusion of the polygon’s silhouette along the 

light direction essentially forms a shadow volume. The basic premise is that all objects 

inside the shadow volume are considered to be in shadow and objects outside the shadow 

volume are lit. The figure below shows how the extrusions are performed starting from 

the light source and extending to infinity. The rectangle in this image is partially within 

the shadow volume formed from the silhouette of the sphere.  

It should be noted that the shadow volume extrusion differs for different light 

sources. For point light sources, as the image below suggests, the extrusion diverges 

along the tangent of the silhouette edge in the lights ‘view’ direction. For directional 

lights, the extrusion converges to a point at infinity (recall that directional light sources 

have no position, simply a direction of illumination)  

 

Figure 12 Shadow volume extrusion. Note that the receiver is partially occluded by the 
sphere upstream. Image courtesy Kwoon [23] 
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After the shadow volume has been generated, we can use the stencil buffer to 

keep track of whether an object is in shadow or not. To see how this works, consider 

viewing a scene and following a ray fired from the viewpoint to the object of interest 

(which should be displayed on the screen). While the ray is on its way to the object, we 

increment a counter each time it crosses a shadow volume face whose normal points to 

the viewer (front-facing face). This corresponds to incrementing a counter each time the 

ray goes into shadow. Similarly, we decrement a counter every time the ray crosses a 

back-facing shadow volume face. When we are done tracing the ray, the counter may 

have one of two values, zero or greater than zero7. If the counter is zero, the object is not 

in shadow whereas if it is greater than zero, it is considered occluded. The stencil buffer 

keeps track of the count and provides a simple way to check for occlusion. The figure 

below depicts this process. 

 

Figure 13 Stencil buffer counts. The fragments with a stencil count of zero are lit while 
those with a non-zero (but positive) count are considered in shadow. Image 
courtesy Kwoon [23] 

                                                
7  This is best-case scenario. If the viewer is located within a shadow volume, this does not work. 
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Note that the counting scheme works even there is more than one polygon that 

casts shadows. The actual shadow volumes are not rendered in the color buffer but rather 

in the stencil buffer and as previously mentioned, this happens in two passes. In the first 

pass, the front faces are rendered in the stencil buffer incrementing the count. In a second 

pass, the back faces are rendered decrementing it. Pixels in shadow are ‘captured’ 

between the front and back faces of the shadow volume, and have a positive value in the 

stencil buffer. This is also known as the z-pass method. 

To render a scene using this technique, the following steps are followed: 

• The scene is rendered with only ambient/emissive lighting8. 

• Then the shadow volumes are determined and rendered in the stencil buffer. 

• The scene is then rendered illuminated with the stencil test enabled. Pixels with a 

stencil value of zero are updated while those with a positive non-zero value are 

left unmodified, keeping their ambient color. 

The method just described works well for scenes in which the viewer is outside 

any shadow volume. As the figure 14 below suggests, the counts don’t work if the viewer 

is inside a shadow volume. In this case, both rays end up with the wrong count. After 

exiting and entering a shadow volume, the left ray has an incorrect value of zero when it 

hits the object. This is because the stencil buffer was initially cleared to zero and 

therefore subsequent changes to the stencil buffer propagated this ‘erroneous state’. In 

principle, the stencil buffer should be cleared to the number of shadow volumes the view 

starts inside (in this case, 1).  

There is a far more elegant solution to this problem that was independently 

discovered by Bilodeau and Songy and by Carmack. This method reverses the counting 

order and starts by rendering the back faces and only incrementing the stencil buffer 

                                                
8  Emissive lighting is the self-illumination, which equally radiates from a surface in all 
directions. It is not dependent on the amount of ambient light in an environment. 
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should the depth test fail. The front faces are then rendered with the stencil buffer being 

decremented if the depth test fails. Tracing the ray backwards and using this approach 

indeed works as advertised. As an example on the ray from the left, after rendering the 

back face first, we find that the depth test fails (the ray is occluded by the object which 

has a smaller z-value) so the stencil buffer is incremented. The next two faces leave the 

count unchanged as the depth test passes for both, resulting in a stencil buffer count of 1. 

 

Figure 14 The z-fail method, also known as ‘Carmacks reverse’, works even when the 
viewer is insider a shadow volume. Image courtesy Kwoon [23] 
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3.4.1 Pros and Cons 

This method has many advantages: First, it works for omni-directional lights. As 

it depends on extruded geometry to track whether a fragment is shaded or not, the light 

direction is of no consequence. This is an improvement over the shadow mapping method 

reviewed previously. 

Secondly, it renders eye-view pixel precision shadows. It is not subject to the 

aliasing problems that plague the shadow-mapping method. This is a direct consequence 

of its construction. Lastly, it handles self-shadowing. All pixels on an object whose 

silhouette edges are being extruded and that fall within this shadow volume are not 

illuminated, resulting in proper self-shadowing. 

While this method has garnered quite a following, it has its drawbacks as well. 

Most important of these is the fact that the computation time is highly dependent on the 

complexity of the occluders. Arbitrarily shaped objects take more time to extrude the 

edges for proper operation of the algorithm. 

Perhaps tied to the first disadvantage is the pre-computation of the silhouettes 

required for the occluders. Note that this happens every time the geometry changes or the 

light changes. This determination of the object’s silhouette edges is compute-intensive 

and takes place on the CPU. The effect of this is a reduced frame rate.  

Also, like the shadow mapping algorithm, this method requires at least two 

rendering passes, which again reduce the achievable frame rate. 

On the hardware, rendering the shadow volume in the stencil buffer consumes the 

fillrate9 of the graphics card. This necessarily also reduces the achievable frame rates. 

                                                
9  Fillrate refers to the number of pixels a video card can render and write to video memory in a 
second. Source Wikipedia. 
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3.5 Alternative methods 

While the afore-mentioned algorithms are widely used, they are not the only way 

to generate shadows in a scene. Ray tracing determines the visibility of surfaces by 

tracing imaginary rays of light from the viewer’s eye to the objects in the scene [8]. First 

developed by Appel [24], this method can be used to generate impressive pictures of 

shadows in complex environments. It has been used to generate shadows from point light 

sources to extended light sources with stunning results albeit at much slower frame rates. 

Radiosity methods model light sources as light emitting surfaces without any constraints 

on their geometry. These methods also support extended light sources (area light sources) 

and have also been used to produce visually stunning shaded scenes. These methods are 

collectively referred to as ‘global illumination’ methods as they take into account the 

indirect reflection and transmission of light at a point in determining the point’s color [8]. 

Such methods fall outside the purview of this work and are not further investigated. For 

the interested reader, some excellent resources on this topic include [8], [25], and [26.] 
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CHAPTER 4 

SHADOWS ON THE TEST GRAPHICS CARD 

4.1 Problem Statement 

4.1.1 The what 

This thesis asks whether it is feasible to generate good-looking shadows cheaply 

(using the least amount of energy), in real-time and on a constrained graphics card as 

would be found on a low-end mobile device. As explained before, real-time frame rates 

are 15 frames/sec or more. For this study, good-looking shadows satisfy the following 

criteria, in the order specified: 

1. The correct shadow placement on the scene. 

2. The correct intensity. 

3. The correct shape of the shadow 

The correct placement of shadows means that an object should cast a shadow at or 

around the expected position relative to the caster and receiver. A shadow with the 

correct intensity and whose shape matches that of the caster would not be considered 

good-looking if it was well positioned on the receiver but several feet away from a caster 

that sits on a ground plane. In fact this would be confusing as the shadow could be 

misinterpreted for a separate object in the scene. 

 The correct intensity is ranked second provided the said intensity is sufficiently 

darker than the receiver or caster. A bright white spot that is correctly placed under a 

caster and on a receiver is neither immersive nor aesthetically pleasing and therefore does 

not meet the ‘good-looking’ objective. 

As discussed earlier, Wanger [4] has demonstrated that the eye tends to overlook 

the shape of the shadow as long as a shadow exists. Having the correct shape of the 

object last in the above criteria allows for instance, a black circle that is correctly placed 

under a rectangular object in the scene to meet the ‘good-looking’ objective. 
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In this investigation, cheap refers to using the least amount of memory accesses 

to external memory. As Fromm et al demonstrates, external memory accesses are often 

the operation in a computer system that uses the most energy [29]. In low power 

processes, an off-chip memory access consumes more than an order of magnitude more 

energy than access to a small on-chip SRAM memory. As part of the objective is to 

minimize power consumption, algorithms that make heavy use of external memory are 

not considered cheap and therefore rank lower than those that minimize such accesses. 

To get a sense for how constrained the test graphics card used in this study is, it 

is instructive to compare it to a typical desktop graphics card. The table below shows a 

comparison of the sections of a graphics card that would be useful in implementing image 

space effects e.g. generating shadows.  

 

Test Card ATi Card 

1 Stream Processing Unit. 1600 Stream Processing Units. 

1 Texture Unit. 80 Texture Units. 

1 Stencil Pipeline. 128 Z/Stencil Pipelines. 

1 Color Pipeline  32 Color Pipelines. 

16 bit fixed point rendering. 128-bit floating point HDR 

rendering. 

104700 Polygons/sec throughput. 850 M Polygons/sec throughput. 

  

Table 1 Comparison of the test card with a typical graphics card (ATI Radeon™ HD 
5870) [30]. 
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The test card on the left is the card used in this study. The card on the right is a 

typical graphics card that would be found on a desktop computer. 

As this table shows, the test card used does not have the resources that are 

typically available to developers for implementing complex shadow algorithms that 

require multiple passes. This limits the types of algorithms that can be employed to 

generate shadows. For instance, shadow mapping requires multiple passes to ‘cleanup’ 

the generated image and to reduce aliasing. While this works well on desktop graphics 

cards, these repeated passes may not meet the real time criterion outlined in the objective. 

The lack of resources forces a compromise between quality and quantity. The 

quality of shadows generated on the test card will undoubtedly be inferior to those that 

can be generated on a desktop card. The idea is to trade this quality for increased 

performance, the latter of which is defined quantitatively. For purposes of this study, 

quantity has a two-fold definition: 

1. Measured frame rates averaged over multiple runs (the higher the better). 

2. Memory accesses to external memory (the lower the better). 

While quality is a subjective term and therefore hard to quantify, the quality of the 

generated images is judged based on how well they meet the ‘good-looking’ criteria. 

4.1.2 Methodology 

To answer the question this thesis poses, the various shadow generation 

algorithms are run on a scene composed of a truck and a forklift, both of which are 

resting on a wooden platform. For all the tests, the scene is rendered from four different 

angles for two reasons: first, this showcases the algorithm’s qualitative results better 

(from all angles) and second, to get a better average cost per frame, the four runs are in 

turn averaged yielding a single rate that can be used for comparison to other algorithms. 

For each algorithm, the sustained frame rates as well as the total accesses to 

external memory are recorded. Multiple runs are done per scene yielding high and low 
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frame rate counts that in turn are averaged and it is this average that is recorded for 

analysis later. The same thing is done for memory accesses. The difference in frame rates 

and external memory accesses (high vs. low) is due to camera placement. 

The conditions and assumptions for each run are given and finally the results are 

outlined, along with a brief summary of the pros and cons of the method. Finally, the 

individual results are merged for a tabular comparison of the various algorithms. It should 

also be noted that all the algorithms were tested on the same scene without employing 

back face removal10.  

What follows first is a formal introduction to the test graphics card that is used in 

the investigation. 

4.2 The test graphics card 

The card used is actually an emulation of the hardware in software. It has all the 

modules that the hardware should have and has been written to resemble the hardware 

exactly. This means that even in areas where software would have produced an efficient 

implementation, the design follows the hardware specification, which is outlined below. 

• The use of fixed-point11 arithmetic for all real-values. 

•  Two 16-bit depth-buffers (0.5 MB total). 

•  Two color buffers (24 bit color buffer with 8 bits left over for application use) 

• A 2MB texture memory (external) 

•  Single rendering pipeline 

•  Hardware transform and lighting. 

                                                
10 Back face removal is the removal of polygons that are not ‘facing’ the viewer. These polygons 
will not be seen and therefore can be eliminated to speed up the rendering process. 

11  Fixed-point math like floating point math allows us to represent fractional values. However, 
in fixed-point, the underlying machinery is purely integer math! 
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The clock speed is not as important since the emulator is not cycle accurate. The 

depth buffer and color buffers are internal while the texture memory is external. The 

card also has access to video ram but like the texture memory, this is also external to the 

rendering core. 

The planar projection method is the first algorithm tested. Its details are discussed 

below. 

4.3 Planar projection on the test card 

4.3.1 Planar projection test method. 

First, all the object’s colors are turned off (set to black) and the projective matrix 

applied to their vertices in world coordinates. These generated vertices are saved and 

await final rendering with the rest of the lit geometry. After rendering the receiver plane 

on which the caster rests, the depth buffer is turned off and the shadows are rendered. 

This eliminates z fighting and ensures the shadows are always resting on the receiver. 

Then the rest of the lit geometry is rendered after enabling the depth buffer. 

The light used in this test is situated at  and revolves 

around the objects at  

4.3.2 Planar projection qualitative results 

The first image below shows the scene rendered from the front, henceforth called 

the front face. 
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Figure 15 Planar projection 1. Front face screen-shot. Notice the overflow of the shadows 
on the ground plane. 

In this scene, the light is positioned behind the objects and the shadows projected 

on the ground plane accordingly. Notice the overflow of the shadow on the ground plane. 

This shadow meets the ‘good-looking requirement as it is placed correctly and has both 

the tolerable intensity and the correct shape of the casters. While the overflow is a 

nuisance, it does not disqualify this shadow from consideration. This is an example of the 

compromise that was mentioned previously between quality and quantity.  

The next image shows the same scene but the camera is now placed to the right of 

the objects (right face). 
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Figure 16 Planar projection 2. Right face of the scene. 

The light is located above and to the left of the truck in this scene. Once again, we 

see proper placement of shadows and tolerable shadow intensity. The shape also looks 

correct even though it is hard to tell from the shadows position.  

The next image shows the ‘back face’ of the scene. Here, the light is positioned 

above and to the right of the truck. In this image, the shadow overflow is more 

pronounced. 
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Figure 17 Planar projection (3). Back face of the scene. The light is to the right. 

 

Figure 18 Planar projection (4). The left face of the scene. The light is behind the objects 
in the scene. 
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Figure 18 above shows the scene from the left side (relative to the front face). The 

light in this scene is above and behind the objects.  

This next section discusses the quantitative results of running this algorithm. The 

number of polygons in the scenes shown is 3940. 

4.3.3 Planar projection quantitative results 

The table below shows the sustained frame rates, the external memory access 

count for all four views and their total averages for the scene. Since the planar method 

only accesses texture memory for the objects when the object color is being determined, 

it exhibits the least amount of texture fetches and should serve as the base case for the 

other algorithms. This also implies that it should run the fastest since accessing memory 

has some associated latency, and this method minimizes such accesses. 

 

Planar 
Method 

Polygon 
Count 

Highest 
Frame Rate 

Lowest 
Frame Rate 

Highest 

Memory 
Access 
Count 

Lowest 

Memory 
Access 
Count 

Front Face 3490 30 28 33000 31985 

Right Face 3490 33 31 31000 30670 

Back Face 3490 33 30 32300 32000 

Left Face 3490 32 31.5 32000 32460 

      

Averages   32 30.125 32075 31779 

      

   Scene 
Frame Rate 
Average 

 Scene 
Memory 
Access 
Average 

   31.06  31927 

Table 2 Planar projection statistics. 



 41 

The table above shows that on average, there are roughly 32,000 texture access 

calls for this scene. The average sustained frame rate is about 31 frames/sec. The 

different scene faces show similar statistics with minor differences resulting from the 

inexact positioning of the camera. 

4.3.4 Planar projection summary 

This method non-discriminately projects all the objects onto a receiver plane. It 

does this using the least amount of resources and therefore runs fast. As mentioned 

before, the above results should be used as a base case with which the other algorithms 

are compared. It is also easy to implement, as it only requires a projection matrix, and the 

shadows it generates meet the established objective. 

A drawback to this method is the restriction that shadows are cast on planes. This 

means that self-shadowing is not possible with this method, as the caster cannot cast a 

shadow on itself. Also the overflow of the shadows on the receiver can give the illusion 

that another plane exists outside the main receiver even when that is not the case. 

Another drawback to this method is that the shadow has to be rendered for each 

frame, even though the shadow may not change (shadows are view-independent so their 

shapes do not change with different viewpoints). 

4.4 The shadow mapping approach 

4.4.1 Shadow mapping test method 

First, the color buffer is disabled (writes to the buffer are disabled), and then the 

scene is rendered from the light’s viewpoint. The depth buffer resulting from this is saved 

as a texture in texture memory. Then texture coordinates are generated for all the objects 

in the scene and the scene is rendered normally. For every pixel, two texture fetches are 

done to resolve the color and the shade. A fudge factor (alpha) is used to ‘raise’ the 

light’s z-value (offset’s the stored z-value in the shadow map) to avoid aliasing. In these 
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runs, it is set to . This user-programmable value provides the best-looking 

results and was arrived at iteratively. 

The light used in this test is also situated at  and 

revolves around the objects at  

4.4.2 Shadow mapping qualitative results 

Since the shadow mapping algorithm works by shading what is not visible to the 

light, it should generate the most accurate shadows of all the algorithms. This suggests 

that from a qualitative standpoint, its results should serve as the base case. 

This first image shows the front-face with the light situated at the back of the 

scene.  

 

Figure 19 Shadow mapping front face (1). In this scene, the light is behind the objects 
and to the right. Notice the intricate shadows on the receiver plane. 
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Notice the correct self-shadowing of the objects in the above figure. This is one of 

the reasons this algorithm is widely used. The random dark spots seen on the truck show 

the inaccuracies associated with point sampling.  

 

Figure 20 Shadow mapping front face (2). Notice the self-shadowing of the plane at the 
edges. 

Figure 20 above shows a different front-face view with the camera slightly less 

elevated. In this figure, the light is in front of the objects and to the right. Notice that 

there is no overflow of the shadows on the receiver plane. This is a consequence of its 

construction; for all objects in the scene, only what the light does not ‘see’ is shaded. 

The image below shows the right face scene. Here the light is positioned to the 

left of the scene and further back (to the right of the truck). This demonstrates correct 
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shadow placement, correct intensity and the correct shadow shape. Also visible in this 

image is the jagged outline on the edge of the receiver plane, due to aliasing. 

 

Figure 21 The right face scene. All three criteria are met as seen in this image. 

The next two images show the back face view of the scene. Figure 22 shows a 

problem that is inherent in using shadow maps; shadow continuity glitches. The 

continuity problem occurs mainly when the shadow map quality changes significantly 

from frame to frame due to the motion of the eye or light. In this case, it is due to the 

light, which moves counterclockwise and is in front of the objects. Figure 23 shows the 

correct shadow placement and self-shadowing.  
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Figure 22 Back face scene (1) Notice the shadow continuity from the forklift shadow.  

 

Figure 23 Back face scene (2). Proper shadow placement on both the receiver and 
shadow-casting object. 
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The next image shows the left scene screenshot. The left side of the truck is 

shadowed since the light is situated above and to the left of the truck.  

 

Figure 24 The left face scene. This image also shows proper placement and self-
shadowing. 

Despite the fudge factor, this next image shows that aliasing is still unavoidable. 

Notice the alternating dark bands on the side of the truck. There is also quite a bit of 

shadow continuity by the forklift. 
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Figure 25 Shadow mapping . Notice the moiré patterns caused by aliasing. 

4.4.3 Shadow mapping quantitative results 

 

Shadow 
Mapping 

Polygon 
Count 

Highest 
Frame Rate 

Lowest 
Frame Rate 

Highest 
Memory 
Access 
Count 

Lowest 
Memory 
Access 
Count 

Front Face 3940 26 23.7 117288 107234 

Right Face 3940 26 23 114185 109123 

Back Face 3940 25.6 23.4 109370 103897 

Left Face 3940 26.7 24 111985 103123 

Averages  26.07 23.53 113207 105844 

   Scene 
Frame Rate 
Average 

 Scene 
Memory 
Access 
Average 

   24.8  109526 

Table 3 Shadow mapping quantitative results. 
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This table shows that almost 110,000 texture fetches are made per frame. This is 

an increase by almost 3.5 times over the planar projection method. The frame rate has 

also dropped at 24.8 frames/sec compared to 31 frames/sec from the planar projection 

method. 

Once again, the discrepancies in statistics collected between the different scenes 

may be explained by relative camera positioning. However, there does not appear to be a 

significant difference that would affect the reported results. 

4.4.4 Shadow mapping summary 

Shadow mapping generates shadows that easily meet the established criteria. In 

addition to that, self-shadowing, which enhances the visual realism of the scene, comes 

for free with this method. The fact that it can be implemented on this test card is perhaps 

a testament to its algorithmic complexity. While the frame rate dropped compared to the 

planar method, 24.8 frames/sec still meets the real-time criterion and is thus encouraging 

considering the objects were not back-face culled. 

Having said that, it has a few drawbacks; First, this method is very expensive 

from an external memory access perspective. As the table shows, it makes 3.5 times as 

many texture calls as the planar projection method. This makes this method unattractive 

for any useful work on a graphics card that has the kinds of constraints that were 

presented earlier. Secondly, from a qualitative standpoint, the shadow continuity problem 

and the aliasing problem may be distracting in an interactive environment. A simple 

solution to the shadow continuity problem is to increase the shadow map size (texture 

memory), which may not always be feasible. The aliasing problem, which is caused by 

under sampling, has a natural solution of increasing the sampling per pixel. Again, this 

may not be a viable solution given the constraints of a limited mobile graphics card. The 

last major drawback is its multi-pass nature. Rendering the scene from two vantage points 

necessarily impacts the achievable frame rates.  
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4.5 The shadow volume approach 

Shadow volumes require the creation of shadow geometry (object silhouette 

edges), which is CPU intensive. Even after such extrusions, the shadow volumes can be 

quite large in screen space requiring significant fill time. This makes this approach 

infeasible on the test card if we stick to the real-time requirement established earlier. For 

this reason, this method was not implemented. 

4.6 The Hybrid approach 

4.6.1 The hybrid test method 

This next method combines some features from the two algorithms thus covered. 

The shadow from a preselected caster is generated from the light point but rather than 

indexing the stored depth, the actual shadow is stored as a texture and is indexed using 

the current pixel index. The resulting color is then used to modulate the scene. The free 8 

bits of the color buffer are used as a stencil buffer to prevent the overflow of the 

projected shadow on the receiver. This method necessarily takes two passes: one to 

generate the shadows from the light point (simple projection) and the second pass to 

modulate the fully lit scene. In the first pass, writes to the color buffer and the depth 

buffer are turned off. The stencil buffer is cleared and the stencil test is enabled and set to 

increment when the receiver is rendered. Then the shadows are projected and the stencil 

buffer is used to stencil the projection only where the count is greater than zero. In this 

way, the projected shadows are kept within the confines of the receiver. The second pass 

simply fetches the texture value (‘shadow map’) and blends it with the calculated color in 

the color buffer.  

This test is run under the same conditions as the other tests, with the same light 

positioning. 
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4.6.2 The hybrid approach qualitative results 

Figure 26 below shows the use of the stencil buffer to restrict the shadows to the 

receiver plane. The shadow from the truck would normally overflow the receiver plane 

but is here restricted as explained above. 

 

Figure 26 Hybrid approach. Notice the stenciled shadows on the receiver plane. 

The front face scene is shown below. The light’s position can be gauged by 

inspecting the correct shadow placement. Since the shadows satisfy all three criteria 

outlined in the objective, this method shows that it meets the ‘good-looking’ requirement. 
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Figure 27 Hybrid approach front face scene. The shadows are placed correctly on the 
receiver. 

 

Figure 28 Hybrid approach right face scene. 
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The next screenshots show the back and left faces. The shadows on these images 

meet the established requirement as well. 

 

Figure 29 Hybrid approach back face. 

 

Figure 30 Hybrid approach left face. 
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The statistics from this test are discussed below. 

4.6.3 Hybrid approach quantitative results 

 

Hybrid 
Approach 

Polygon 
Count 

Highest 
Frame 
Rate 

Lowest 
Frame 
Rate 

Highest 
Memory 
Access 
Count 

Lowest 
Memory 
Access 
Count 

Front Face 3490 29 27 51273 49113 

Right Face 3490 30 28 51864 48761 

Back Face 3490 28.7 26 54114 51547 

Left Face 3490 30.4 29.3 49541 47864 

      

Averages  29.53 27.6 51698 49321.3 

      

   Scene 

Frame 
Rate 
Average 

 Scene 

Memory 
Access 
Average 

   28.55  50509.7 

Table 4 Hybrid approach statistics. 

Even though both the shadow mapping and hybrid approaches index texture 

memory for shading, table 4 above shows that this method makes less than half as many 

texture access calls compared to the shadow mapping approach. This large difference can 

be explained as follows; shadow maps are applied to the entire scene i.e. all the objects in 

the scene have texture coordinates that are used to index the shadow map to determine 

the degree of occlusion. The hybrid approach however, only accesses the texture for the 

preselected receivers. For the scenes shown, only the ground plane was the receiver and 
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therefore only when shading the plane was an extra texture fetch made. The difference 

this makes in frame rates is noticeable at 28.55 frames/sec compared to 24.8 frames/sec 

from the shadow mapping algorithm.  

Compared to the planar projection, this method makes slightly more than 1.5 

times as many texture fetches and runs slower (approx 9% slower). However, the quality 

of the shadows is much better. 

4.6.4 Hybrid approach summary 

This method inherits some good traits from the other two algorithms; it is easy to 

implement and uses existing functionality on the test card. The shadows it generates are 

stenciled to prevent overflowing the receivers thereby making it more attractive 

compared to the planar projection. At 28.5 frames/sec, the performance from this method, 

though lower than that from the planar algorithm, is still relatively fast. The shadows 

generated from this method are also of good quality and are not plagued by the aliasing 

problems inherent in shadow mapping. As table 4 shows, the texture access count is 

considerably less than that of shadow mapping. This is a major plus as reducing external 

memory accesses sits well with the objective of reducing power consumption. Also, since 

this method is based on the planar projection, it can support multiple lights using the 

same texture. Contrast this to shadow mapping where each light generally requires a 

different shadow map. Lastly, this method avoids rendering the same shadows every 

frame when lights are stationary (which is mostly the case in games) since the shadows 

are stored in a texture. 

It has the same drawback as the planar algorithm; it is restricted to casting 

shadows on planes therefore self-shadowing is not a possibility. A second drawback is 

that it requires the developer to choose/preselect shadow casters and receivers prior to 

rendering. 
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4.7 Summary 

The algorithms investigated thus far generate shadows that meet the qualitative 

(good looking) requirement that was established in the beginning of this chapter. Their 

respective frame rates are well above the 15 frames/sec real-time criterion but they differ 

significantly when it comes to external memory accesses. From a texture access 

perspective, the planar projection is superior to the rest of the algorithms as it only 

fetches a texel12 during the color determination stage of rendering. It also has the highest 

frame rate at 31 frames/sec, which makes it very attractive for implementation on the test 

card.  

The hybrid algorithm ranks second from a quantitative perspective. Its texture 

access pattern is about 1.5 times that of the planar projection and has a reduced frame rate 

of 28.5 frames/sec compared to 31 frames/sec for the planar algorithm. However, the 

quality of shadows produced from this method is superior compared to the planar 

algorithm. It avoids multiple renderings of the same shadow objects by storing the 

shadows in a texture and indexing the said texture when shading. It also uses a stencil 

buffer to prevent shadow overflow on the receiver, making the shadows more realistic.  

Shadow mapping performs the poorest of all the algorithms quantitatively. At 

about 25 frames/sec (24.8), this method lags the group and displays the most expensive 

texture access pattern. At about 110,000 texture accesses per frame, this method ranks 

highest from a power consumption standpoint. The shadows it generates are also prone to 

aliasing and shadow continuity, which may have a distracting effect in an interactive 

environment. However, it does generate shadows that exhibit the self-shadowing 

phenomenon, which makes it attractive. Considering the real-time criterion of 15 

frames/sec or higher, it might be concluded that there is enough leeway to ‘cleanup’ the 

generated shadows (perhaps by employing percentage closer filtering), given the 

                                                
12 Texel is short for texture element. 
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recorded 25 frames/sec frame rate. The table below consolidates the average statistics 

from all the algorithms. 

 

Method Highest 
Frame 
Rate 
Avg. 

Lowest 
Frame 
Rate 
Avg. 

Scene 
Frame 
Rate 
Avg. 

 Highest 
Memory 
Access 
Avg. 

Lowest 
Memory 
Access 
Avg. 

Scene 
Memory 
Access 
Avg. 

        

Planar 
Approach 

32 30.125 31.06  32075 31779 31927 

Hybrid 
Approach 

29.53 27.6 28.55  51698 49321.3 50509.7 

Shadow 
Mapping 

26.07 23.53 24.8  113207 105844 109526 

Table 5 Average frame rates and memory access counts from all the algorithms. 

The type of algorithm selected is highly dependent on the context. For example, if 

most objects hover in the air with the ground being the only receiver, then planar 

projection would be ideal since it is fast and has the least amount of external memory 

accesses. However, for games with highly complex scenes composed of many 

hierarchical receivers, the shadow algorithm requires the least amount of intervention and 

would therefore be the best solution. Its shadows would need to be post-processed to be 

useful if there is enough bandwidth to allow this to be done in real time. The hybrid 

algorithm would be the preferred solution for scenes between the two extremes 

mentioned. Caching the shadows as a texture avoids the unnecessary work of re-

projecting the object’s vertices on the receiver planes if the lights are stationary. Its 

shadows do not need post-processing and in fact look good. This method is preferable 

over the planar projection if a scene has multiple lights due to the reuse of shadows. 

These are merely suggestions and not rules and the algorithm used may perhaps 

depend more on power consumption limitations rather than shadow quality. 
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CHAPTER 5 

CONCLUSION 

Shadows enhance visual realism in a 3D scene. Their inclusion in a scene goes a 

long way in giving the viewer the sense of immersion. Much research has gone into the 

generation of shadow algorithms and graphic cards are now able to render realistic-

looking shadows in real time. As has been shown, this is also feasible on a low-end 

mobile graphics card. As always, there is a trade-off between quality and quantity. More 

so than their desktop counterparts, mobile graphic cards can exploit the dynamic nature 

of their applications to hide the inconsistencies associated with a low quality shadow 

algorithm in favor of increasing battery life.  

We have seen a few shadowing techniques, discussed their pros and cons and 

analyzed their run-time performance on a constrained graphics card. No-one shadow 

generation technique fits all sizes/situations but the knowledge gained from the findings 

of this investigation can allow a developer to choose which technique suits their needs.  

Reducing power consumption in mobile graphic cards does not necessarily mean 

reducing the quality of shadows. The shadow mapping technique fairs quite well 

compared to the hybrid approach and its output can be ‘cleaned up’ to produce stunning 

shadows.  

5.1 Future research 

More efficient shadowing techniques from a standpoint of memory access are still 

needed but it appears we are headed in the right direction. Implementing the graphics 

card used in this test in hardware would provide for more tangible results and shed some 

more light on the actual power dissipation when running the tests.  
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