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ABSTRACT  

Vehicular crashes are the leading cause of death for young adult drivers, however, 

very little life course research focuses on drivers in their 20s. Moreover, most data 

analyses of crash data are limited to simple correlation and regression analysis. This 

thesis proposes a data-driven approach and usage of machine-learning techniques to 

further enhance the quality of analysis.  

We examine over 10 years of data from the Iowa Department of  

Transportation by transforming all the data into a format suitable for data analysis. From 

there, the ages of drivers present in the crash are discretized depending on the ages of 

drivers present for better analysis. In doing this, we hope to better discover the 

relationship between driver age and factors present in a given crash.  

We use machine learning algorithms to determine important attributes for each 

age group with the goal of improving predictivity of individual methods. The general 

format of this thesis follows a Knowledge Discovery workflow, preprocessing and 

transforming the data into a usable state, from which we perform data mining to discover 

results and produce knowledge.   

We hope to use this knowledge to improve the predictivity of different age groups 

of drivers with around 60 variables for most sets as well as 10 variables for some. We 

also explore future directions this data could be analyzed in. 
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PUBLIC ABSTRACT  

This thesis proposes a data-driven approach and usage of machine-learning 

techniques to further enhance the quality of analysis of car crash data analysis.  

This thesis examines car crash data by looking at the different aspects of each 

crash. We divide the crashes into 6 different groups depending on the ages of drivers 

involved and attempt to determine important features of each group as a result of this. In 

doing this, we hope to make clear what factors lead to crashes in different age groups and 

work to avoid them.  

This data could then be potentially used for the benefit of automakers, insurance 

companies, the trucking industry, and individual consumers. Perhaps having more insight 

might allow travel to become safer for everyone.  
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INTRODUCTION  

  Vehicular crashes are the leading cause of death for young adult drivers, however, very 

little life course research focuses on drivers in their 20s. Moreover, most data analyses of crash 

data are limited to simple correlation and regression analysis [15-17]. Working in collaboration 

with the University of Iowa Injury Prevention Research Center (IPCR), we propose a data-driven 

approach and the use of machine learning techniques to further improve the quality of the 

analysis.  

The data used in this thesis belongs to the Iowa Department of Transportation. These data 

are collected in police-reported crashes and include information about the environment, roadway, 

vehicles, and people involved in the accident. These relational data are organized into three 

levels: crash, person, and vehicle. All data are tabulated and attributes correspond to numeric or 

categorical features (with the exception of narrative text that are stored as natural language). Over 

ten years (2001-2012) of data is currently available for research.   

This work focuses on processing these data in order to generate feature vectors that are 

amenable to data mining and then apply machine learning algorithms to identify the most relevant 

set of features given an age-group. With this, we hope to be able to better serve different age 

groups by methods such as tailoring safety information in crashes to demographics who are more 

likely to deal with crashes affected by those factors. The results of these analyses could then be 

potentially used for the benefit of automakers, insurance companies, the trucking industry, and 

individual consumers. Perhaps having more insight might allow travel to become safer for 

everyone.   

The rest of this thesis is organized as follows. Chapter 1 presents an overview of the 

methodology followed in this project. Chapter 2 describes the state of the data and how we 

process and transform it into a state ideal for machine learning processing. In Chapter 3, we will 

discuss the methods we used in order to extract variables and methods used for classification. 
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Chapter 4 will detail the results of these methods and some preliminary conclusions. Lastly, we 

conclude in Chapter 5 and provide directions for future work.  
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CHAPTER 1 PROJECT OVERVIEW  

This project follows the general workflow of a Knowledge Discovery Process depicted in 

Figure 1.1. As shown in the figure below, the flow of such a problem begins with selection of 

data to form our target data, followed by preprocessing and transforming the data into a usable 

state. Then begins the data mining process, from which we extract patterns. Finally, these patterns 

are interpreted and evaluated, resulting in knowledge.  

Figure 1.1: Figure Demonstrating the Knowledge Discovery Process [1]  

  

The data is originally in a state that is not conducive to performing of machine learning 

algorithms, each bit of data either belonging to the Crash, Person, or Vehicle Levels. To alleviate 

this problem, we flatten the data onto the Crash Level, as detailed in Chapter 2. 

From there, we proceed to use machine learning algorithms to determine important 

features. These features are classified along a class label (fatality, injury, or no injury), which we 

derived from the crash severity reported. All algorithms used in this thesis are provided by Weka 

[12]. Weka is an open source program containing many machine learning algorithms to be used in 

data analysis. It has its own format, ARFF, which can specify whether the data is nominal, 

numeric, or the spread of it within the header of the file. One thing to note with this method of 
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calculation, however, was that often the larger amounts of data, such as with the Age Group 

containing drivers aged 21-64, would not run the algorithms properly on the 4 GB laptop most 

data processing was done on. To this end, we moved the data to a university computer with a 

larger, 16 GB RAM and used it with accessing a remote desktop to compute further results.  

Using Weka, we create classification trees for the different driver age groups using all the 

collected and transformed features from the accident involving the vehicles, the drivers, and the 

crash characteristics.  

Features/values appear in all classification trees indicate common factors that do not 

differentiate between different age groups. Features/values that appear in few of the trees are 

candidate factors that deserve further evaluation. Additionally, to evaluate the relevance of the 

extracted features we applied different metrics such as information gain and chi-square.  

In order to determine the accuracy of our training methods, we have set the data from 2012 

apart for testing while using the rest of the data to train classifiers. This is important because testing 

on a different data set than you trained on makes sure that the data has not been overfitted. If it 

were, it would predict only the training set well and not classify new data as well as it could. As 

such, we merge the data from 2001 to 2011 into one set. 

For our machine learning methods, we decided to use FMeasure as an evaluation metric 

rather than accuracy. Accuracy and FMeasure are calculated via the following formulas.  

Figure 1.2: Formula for Accuracy  

Accuracy = (TP+TN)/(TP+TN+FP+FN)  

Figure 1.3: Formula for FMeasure  

FMeasure = 2*(precision*recall)/(precision+recall)  
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In the accuracy formula, TP stands for True Positive, TN for True Negative, FP for False 

Positive, and FN for False Negative. True Positive is the number of values that have a certain 

attribute value and were classified as having that value for that attribute. True Negative are 

records that don’t have this attribute value and are classified as such. False Positive are classified 

as having the value when they do not and False Negatives are the inverse, being classified as not 

having a certain value when they do in reality. Essentially, accuracy measures the number of 

correct predictions over the number of total predictions. As well, Precision is equivalent to 

TP/(TP+FP), or the number of positive predictions that were correctly predicted as positive. 

Recall is equal to TP/(TP+FN), or the number of positive values that were correctly predicted as 

positive.  

The FMeasure was selected in order to account for both false positives and false 

negatives better rather than just positive predictive accuracy. This was especially important as 

approximately 70% of crashes in the data involve no injuries and less than 1% involve fatalities. 

By weighting fatalities as more important, we hope to be able to predict them better. 

As we describe these methods further in detail, we hope to show how they can be used to 

analyze the data better. 
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CHAPTER 2 DATA PROCESSING  

  This chapter will go into why we decided to look at the data in the way we did and how 

we originally modified the data to accommodate the one to many problem with the data structure 

and how this made things difficult. We will also describe how we determined which age groups 

to split the data into. First, we will talk about how we restructured the data and why we did this 

and then we will discuss how we split the data based on age groups. First, we will discuss the 

overall state of the data. This will be followed by how we appropriately transformed the data 

from its original state to one more suited for analysis, then we will discuss how we divided the 

data into different groups to analyze the values based on ages.  

2.1 Data Overview  

Altogether, there are a bit over 625,000 crashes accounted for in the Iowa Department of 

Transportation data set. This data is organized into several tables, each of which falls into one of 

three levels. The first level, the Crash Level, focuses on variables related to the overall crash. All 

these entries are related to each other through a Crash ID. The second level, the Person Level, 

focuses on the state of people after the crash. These entries are related to each other with a Crash 

and a Person ID. The third level, the Vehicle Level, focuses on data with the vehicles. These 

entries are related to each other with Crash and Vehicle IDs. This data is also organized into 

separate years from 2001 to 2012. Each year has the same overall structure of data, they are 

merely split for ease of keeping years isolated. Altogether, there are 39 features that we were able 

to use for data analysis among these. 
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Figure 2.1: Organization of the Crash Data  

   

The original state of the data is quite good for organizing it, but it is not the best for 

analyzing it with data mining. This is because the Person and Vehicle Levels of the crash both 

have a one to many relationship with the Crash Level, as depicted in Figure 2.1. This means that 

for each crash ID and its related data, there could be any number of Vehicle IDs or Person IDs 

with their related data connected with it as well. The way that normal machine learning 

algorithms work requires the same number of variables for all entries, which could not be done 

with a variable amount of vehicle and passenger info related to each crash. To achieve a data 

structure that we could apply normal algorithms upon, we ultimately decided to aggregate the 

records of the Vehicle and Person levels to collapse everything onto one level of data.   
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2.2 Feature Generation  

  As stated previously, the data is organized into multiple tables, each of which falls under 

one of three overall levels that the data is organized into. The first level, Crash Level, covers data 

on the crash as a whole. This includes factors such as the overall severity of the crash, time of the 

crash, weather and road conditions, and whether the road the crash occurred on was in a Rural or 

Urban area. The second level, Person Level, features data on each of the individual people involved 

in the crash. This includes information such as where the people were seated, how old they were, 

and whether they were wearing seatbelts. The third set, Vehicle Level, includes data on the vehicles 

involved. This includes factors such as type of vehicle, where the vehicle incurred the most damage, 

and whether the driver of a vehicle was distracted in some way.    

We decided that, given the structure, the best way of transform the data was to relate 

everything on the Crash Level. Given the Crash Level is the highest Level, this would allow us to 

avoid duplicating information unnecessarily while still keeping the overall information intact. As 

well, the overall severity of the crash, CSeverity, was what we decided we wanted to predict, so it 

was a better idea to transform the data from the other two levels to the Crash Level. As a result, 

each feature that was originally at the person or vehicle level was given a different variable for 

each potential option for it and each of these variables was then assigned the value equal to the 

number of occurrences of that type in a given crash. To illustrate this, we will take an example 

involving VConfig.   
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Figure 2.2: Transformation of VConfig  

  

   

The above figure demonstrates the transformation of the data. In this, each instance of 

VConfig is tallied by its value, then counts of the same value are counted to form the values of 

new variables. For example, a crash involving 3 vehicles: two passenger cars, indicated by 

VConfig1, and a train, indicated by VConfig22, would have a VConfig1 value of 2 and a 

VConfig22 value of 1, all other values being 0. Those crashes which did not have any person or 

vehicle level information in the dataset were set to 0 by default. In addition, due to the data 

originally in zinj and zuni only differing in zinj containing injured people and zuni containing 

non-injured, one query was made to sum their results together to be in the same fields. 

Altogether, we had 250 features extracted via these methods. A list of the approximately features 

we generated can be found in Appendix A. The list of queries we applied in order to get these 

variables can be found in Appendix B.   

2.3 Age-Based Splitting  

We theorize that each age group will have different variables that predict how severe 

crashes among it are than other ones. As such, when organizing our data, we split it into different 

files, one for each Age Group.  

To determine which ages would be the best to split by, we asked experts from the IPCR 

who had worked with this data previously, Dr. Corinne Peek-Asa and Tracy Young. From their 

advice, we have divided the data into 5 age groups. Group A contains crashes with drivers of ages 
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15 or younger, before they would have a driver's license. Group B contains crashes with drivers 

aged 16-20, young drivers who cannot legally purchase alcohol. Group C contains crashes with 

drivers aged 21-64, the largest data set and the biggest group of drivers. Group D contains drivers 

aged 65-74, for drivers who are older than Group C, but not as old as Group E. Group E contains 

crashes with drivers aged above 75, the oldest age group. We also maintained a final, where none 

of the drivers' ages were known. We decided to group these crashes under Group U and analyze 

them as we do the others.  

As we looked at the splits in these values, we discovered various interesting things. For 

example, despite its low range of ages, over 26.42% of the crashes fall in the group containing 

drivers aged 16-20. For further comparison, the drivers aged 65-74 make up 8.07% of crashes 

while the drivers aged 75 and older make up 6.74%. This backs up previous papers' assertions 

that younger drivers are more likely to be in accidents [13-14]. In terms of comparing injury 

severity, we also determined that both age groups containing drivers aged 65 and up had an 

increased number of fatalities in them when compared to the overall average. To compare, .66% 

of the overall crashes contained a fatal accident while 1.22% of the ones containing a driver aged 

75 or older did. This tells us that, while said group might be less likely to have crashes, if they do 

get into one, it is more likely to be fatal.   
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CHAPTER 3 ATTRIBUTE SELECTION  

After getting our data ready for analysis, we then went through various methods to try 

and determine the best methods to determine the features most important for each of the six 

groups. We did this by first determining what measure of a good model we would use. From 

there, we used various methods such as GainRatioAttributeEval and, later, extracting variables 

from J48 trees calculated using different methods.  

3.1 Variable Selection Across Methods  

Originally, we attempted to determine the important features by using multiple methods, 

finding commonalities between the variables they selected and using that to determine each set of 

variables. We use a mix of Supervised and Unsupervised Methods for this. Supervised Methods 

are aware of the Sample Class while Unsupervised Methods do not use class information [10].  

The first method we tested was Weka's CFSSubsetEval. This method, as first elaborated 

on in the paper by M. A. Hall, creates a subset of features that maximizes correlation with each 

feature to the class variable while minimizing the intercorrelation of the features to each other. [2]  

Another method we used was Weka's GainRatioAttributeEval. This method, implemented by M. 

A. Hall, evaluates an attribute's worth by comparing the gain ratio of adding that attribute to the 

class. This is calculated via the function GainR(Class, Attribute) = (H(Class) - H(Class | 

Attribute)) / H(Attribute). [3] In this formula, H(Class) is a measure of the information entropy of 

the class, which is the expected value of the amount of information in the class. H(Class |  

Attribute), in turn, means the information entropy of the class given the attributes.  

A third method we used was Weka's ChiSquaredAttributeEval.This method, implemented by E. 

Frank, evaluates the worth of an attribute by computing its Chi Squared Value relative to the 

class. A Chi Squared Value is a value used to determine if the correlation or difference between 

two values is significant or not [4].   
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The Chi Squared Value can be calculated by the formula D = ((O - E)2 / E) [5]. In this 

formula, O stands for Observed: The number of values that fit in a given format, such as a given 

variable being 1 during a crash with a fatality. E stands for Expected, which is the expected value 

if the values were all evenly distributed. In the above example, would be calculated by 

multiplying the number of instances of the variable being 1 by the number of fatal crashes and 

dividing that by the total number of entries. For this method, the resulting D will be calculated 

for all potential combinations, resulting in the end value.  

3.2 Combining of 3 Methods  

Once we ran these three methods in Weka for each of our 6 Age Groups with CSeverity 

as the class, we saved their results and compared them to each other. However, the results are 

slightly different in that CFSSubsetEval gives a portion of the attributes that fit most while  

GainRatioAttributeEval and ChiSqaredAttributeEval both give all the attributes ranked by their 

Gain Ratio or Chi Squared Value, respectively. For these two methods, we considered the top 20 

and the top 50 attributes and then combined the three methods by using a voting majority.  
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Figure 3.1: Selected Attributes when k=20  

 
Whole A (<=15) B (16-20) C (21-64) D (65-74) E (>=75) U (?) 

CauseAnimal X 
  

X 
   

CauseOversizedLoad 
  

X 
    

MinorPassengers 
      

X 

18-70Passengers X 
  

X 
  

X 

FSeat X X X X X X X 

BSeat X X X X X 
 

X 

FPassenger X X X X X X X 

Pedestrian X 
 

X X X X X 

Pedacyclist X 
 

X X X X X 

OccProcNone X X X X X X X 

OccProcOth 
      

X 

EjectNot X 
 

X X X X 
 

EjectFull X X X X 
  

X 

FrontEjected 
      

X 

SideEjected X X X X X 
 

X 

FrontAirbagDeploy X 
 

X X X X 
 

TrapNonMech 
    

X X 
 

TrapMech X X X X X X 
 

TrapNot 
      

X 

DriverGenderUnknown 
      

X 

Motorcycle X 
  

X 
   

Moped/ATV 
 

X 
     

Totaled X X X X X X 
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Figure 3.2: Set 2 Selected Values  

 
Whole A (<=15) B (16-20) C (21-64) D (65-74) E (>=75) U (?) 

Vehicles 
      

X 

Drug X X X X X X 
 

DANone X 
 

X X 
   

NonColl 
 

X X 
    

CauseAnimal X 
  

X X 
  

CauseOversizeLoad 
  

X 
    

CauseCargoLoss 
 

X 
     

CauseROWPedestrian 
      

X 

CauseFatigued 
      

X 

Rural 
 

X 
     

Urban 
 

X 
     

UnpavedRoad 
 

X 
     

WeatherOth X 
  

X X 
  

LightOth X 
  

X X 
  

WaterOnRoad 
 

X 
     

CSurfCondOth X 
  

X X 
  

MinorPassengers 
 

X 
 

X X 
 

X 

18-70Passengers X 
  

X 
 

X X 

SeniorPassengers 
     

X X 

FSeat X X X X X X X 

BSeat X X X X X X X 

FDriver 
 

X 
   

X X 

FPassenger X X X X X X X 

RDriverSide X X X X X X X 

RPassengerSide 
 

X X 
    

3MiddleSeat 
      

X 

3PassengerSide 
 

X X X 
  

X 

Pedestrian X X X X X X X 

Pedacyclist X X X X X X X 

SeatingOth 
      

X 

OccProcNone X X X X X X X 
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Figure 3.2 cont: Set 2 Selected Values  

 
Whole A (<=15) B (16-20) C (21-64) D (65-74) E (>=75) U (?) 

ShoulderLapBelt 
  

X 
 

X X 
 

Helmet 
 

X X 
    

OccProcOth 
      

X 

EjectNot X X X X X X X 

EjectFull X X X X X X X 

FrontEjected X 
 

X X X X X 

SideEjected X X X X X X X 

FrontAirbagDeploy X X X X X X X 

FrontSideAirbagDeploy     
X X 

 

AirbagNotDep 
      

X 

AirDepOth 
      

X 

TrapNot X X X X X X X 

TrapNonMech X X X X X X 
 

TrapMech X X X X X X X 

EmerOth 
      

X 

CargoOth X 
      

AtStoplight 
      

X 

DAgeBin3 
      

X 

DriverGenderUnknown 
      

X 

MobileHome 
    

X 
  

Motorcycle X X X X X X 
 

Moped/ATV 
 

X 
     

MostDamageTop X 
 

X 
 

X 
  

NoDamage 
    

X 
  

DisablingDamage 
    

X X 
 

Totaled X X X X X X 
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3.3 Classifiers  

The First Classifier we use is Naive Bayes. This Classifier analyzes the training data and 

generates probabilities for whether a certain value of a variable is associated with a class or not. It 

then compares probability given the test point and assigns the value to a class based on that.  

The second classifier we used was J48, a Weka Method which attempts to create a tree to 

split based on values and predict the class from this. J48 works via a C4.5 Algorithm, which is an 

extenstion of the ID3, or Iterative Dichotomizer 3, Algorithm. This algorithm works via a method 

known as information gain. Namely, it iterates through each potential variable split and 

determines which split results in the most information gain. It then splits by this variable and 

repeats the process until it has reached a point where it can classify. [11]   

Another important feature of J48 is pruning. Once the tree has been built, it iterates 

through the branches and determine how confident it is with each one. If its confidence in the 

branch is lower than the confidence factor, then the branch is pruned. This is used to improve 

generalization of the classification and avoid overfitting. An example of how this would work is 

shown in the figure below.  

Figure 3.3: Pruning Example [15]  
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3.4 SevGroup  

To reduce the sparsity of the samples, our collaborators from IPCR, Dr. Corinne Peek-

Asa and Tracy Young, usually lump CSeverity possibilities together to have fewer classes. Our 

original class variable, CSeverity, has 5 different options, Fatality (1), Major Injury (2), Minor 

Injury (3), Possible Injury (4), and No Injury (5). There were two ways we thought to do this. The 

first was to have it grouped by Fatality (1), Non-Fatal Injury (2,3,4), and No Injury (5). The 

second was to have it grouped by Major Injury (1,2), Minor Injury (3, 4) and No Injury (5). To 

determine accuracy, we recompiled the data with two additional classes,  

SevGroup1 and SevGroup2, representing the first and second option of grouping, respectively. 

We tried using them as the class variable with J48 and compared the FMeasures resulting with 

the original CSeverity.    

3.5 Fatality Groups  

Another method we experimented with to offset the low number of fatalities was to 

oversample the fatalities. We merged all the data from 2011, with the fatalities from the years 

2001 to 2010 to use as our training data. We labeled this data as 'Fatality'.  

We then compared the results of this method to that with methods trained using the data from 

2001 to 2011, labeled as 'Full', as shown below.  

  



18   
  

Table 3.1: Full vs Fatality Group, No Cost Matrix, SevGroup1, FMeasure  

  

  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U(?)  

  Full  Fatality  Full  Fatality  Full  Fatality  Full  Fatality  Full  Fatality  Full  Fatality  

Fatal  0.25  0.067  0.286  0.198  0.339  0.3  0.222  0.255  0.192  0.159  0  0 

Injury  0.761  0.639  0.652  0.584  0.647  0.587  0.638  0.58  0.667  0.573  0.963  0.935 

No Injury  0.88  0.871  0.857  0.853  0.877  0.873  0.872  0.865  0.871  0.865  0.996  0.996 

Weighted  0.834  0.784  0.791  0.767  0.809  0.789  0.8  0.779  0.802  0.769  0.99  0.987 

Average 0.63  0.525  0.598  0.545  0.621  0.587  0.577  0.567  0.577  0.532  0.653  0.644 

  

In order to get a better picture of the FMeasure across age groups, we used two methods 

of average: Weighted Average and Average. Weighted Average is the result automatically 

calculated by Weka, which averages each of the 3 FMeasures weighted by the percentage of 

entries that actually are that class. This gives a good measurement of how well this predicts for 

the set overall. Average, however, calculates the average of the three using equal weights. This 

method is better for determining how much differences between specific classes affected things, 

as approximately 70% of the crashes did not involve an injury. Together, these can both paint a 

better picture of how good the different methods are for prediction, ultimately aiming for a higher 

Weighted Average while keeping Average high as well.  
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Table 3.2: Full vs Fatality Weighted and Average  

  Weighted  Average 

  Full  Fatality  Full  Fatality  

A (<=15)  0.834  0.784  0.63  0.525  

B (16-20)  0.791  0.767  0.598  0.545  

C (21-64)  0.809  0.789  0.621  0.587  

D (65-74  0.8  0.779  0.577  0.567  

E (>=75)  0.802  0.769  0.577  0.532  

U (?)  0.99  0.987  0.653  0.644  

Average  0.838  0.813  0.609  0.567  

  

Unfortunately, as we can see from the results, this method did not pan out like we hoped 

it had. The oversampling of fatalities and lack of other points led to more points getting classified 

incorrectly overall.   

3.6 Variable Extraction from Trees  

Another supervised variable extraction method we used was by extracting the values 

from the trees generated by J48. We started by running this method for all 6 Age Groups with 

Severity as the class and storing the trees as text files. From there we wrote a Java Program to 

parse the tree and determine the important values. The code for this program can be found in 

Appendix C. This code works by keeping track of the variables in each branch as it iterates 

through the text.  

Our first measure of 'importance' for variables were ones that appeared earlier in the tree. 

We decided to do 10 to see how well it did. In the end, our results varied a fair deal. The Method 

did work well for the groups containing drivers younger than 15 and of unknown ages, but the 
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others all had a decrease in how well it predicted Fatalities. We reasoned that the aforementioned 

groups had improved results because their trees were both heights less than 10.  

For a better option, we then rewrote the program to determine whether each branch of a 

tree ended up being used to predict a Fatality or not. This was due to fatalities not being properly 

classified. In focusing on fatalities, we hoped to give them more weight and, thus, classify them 

better. If so, all the attributes contained in the branch would be considered important attributes. 

This method was better as it allowed us to reduce the number of total attributes while still 

predicting fatalities rather well. It did, however result in different sizes for the attributes that were 

considered important. For instance, the Age Groups with drivers 15 and younger and the 

unknown age drivers had fewer than 10 splits while the group containing drivers aged 21-64 had 

a bit over 200. The other 3 age groups, however, typically were between 40 and 70 splits.  

3.7 Cost Matrices  

While using J48 to measure variables, we considered whether having a weighted cost 

matrix would help us boost the classification accuracy for fatalities. Cost Matrices are a technique 

by which different classification errors are weighted more heavily than others. These are often 

done in situations where the classifier needs to take into account that one type of error is less 

desired than another, such as in our current situation. We decided that FMeasure would be the 

best measurement of accuracy to count all the classes, using both the individual FMeasures and 

the weighted FMeasure. We compared the following 3 Cost Matrices  
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Figure 3.4: Original Cost Matrix  

0  1  1  

1  0  1  

1  1  0  

  

  

Figure 3.5: ‘10’ Cost Matrix  

-10  10  20  

10  -1  5  

20  5  0  

  

Figure 3.6: ‘789’ Cost Matrix  

-78.9  78.9  175.2  

78.9  -1  2.22  

175.2  2.22  0  

  

  

The 10 Cost Matrix was the result of weighting the correct predictions of Crashes with 

Injuries as more important than correct predictions of Crashes without Injuries by making them 

negative and giving correct Fatality predictions a stronger weighting than correct non-fatal injury 

Predictions. In addition, to try and maximize predictivity of fatalities while hopefully keeping a 

high overall FMeasure, we weighted a fatality predicted as no injury as worse than a fatality 

predicted as a non-fatal injury, which in turn was weighted as worse than a non-fatal injury 
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predicted as a injury-free crash. This matrix was originally conceived as an example for how to 

weight a cost matrix, which is why most of its values are divisible by 5. There is unfortunately no 

clear method to predict good cost matrices, which is why we picked numbers such as these. The 

789 Cost Matrix was made using a similar pattern to the 10 Matrix, but by choosing the numbers 

by ratio of sizes of each group, making sure it has either 3 significant figures or at least one 

decimal value. We hope this will result in better predictions as a result.  

Table 3.3: Ages 21-64, Cost Matrix Comparison  

  1   10  789  

Fatal   0.339  0.379  0.361 

Injury   0.647  0.644  0.641 

None   0.877  0.888  0.891 

Weighted   0.809  0.816  0.818 

Unweighted   0.621  0.637  0.631 

  

Table 3.4: Ages 65-74, Cost Matrix Comparison   

  

  1   10  789  

Fatal   0.222  0.333  0.3  

Injury   0.638  0.634  0.631  

None   0.872  0.881  0.884  

Weighted   0.8  0.806  0.807  

Unweighted   0.577  0.616  0.605  

  

We ran J48 with each of these cost matrices on the full tree, comparing the FMeasures of 

each. We thought 10 was the best Cost Matrix from a quick glance and went with it for some 

earlier results, but we decided to average all the results after this to be certain.  
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 Table 3.5: Cost Matrix Comparison, Weighted Averages  

  1   10  789  

A (<=15)   0.834  0.82  0.82  

B (16-20)   0.791  0.795  0.796  

C (21-64)   0.809  0.816  0.818  

D (65-74)   0.8  0.806  0.807  

E (>=75)   0.802  0.802  0.804  

U (?)   0.99  0.988  0.991  

Average   0.838  0.838  0.839  

  

Table 3.6: Cost Matrix Comparison, Averages  

  1   10  789  

A (<=15)   0.630  0.609  0.682 

B (16-20)   0.598  0.585  0.589 

C (21-64)   0.621  0.637  0.631 

D (65-74)   0.577  0.616  0.605 

E (>=75)   0.577  0.625  0.615 

U (?)   0.653  0.649  0.654 

Average   0.609  0.620  0.629 

  

  

This could be altered by the deceptively high value for 789's predictions of fatalities for 

ages 15 and under, but it looks like, overall, 789 outperforms 10 by a bit in both categories after 

all. So, to that end, future results will be using the 789 Cost Matrix in future attempts.  
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3.8 minNumObj  

For further refining, we looked at the minNumObj Attribute of the J48 Tree. This counts 

the minimum number of instances that need to be in a potential leaf of a branch for it to split. The 

default value for this is 2. Given that we ended up deciding a severity set with 3 different 

possibilities, this would not guarantee that a branch has a majority of one class as opposed to a 2 

or 3-way split in a branch. We decided to increase the minNumObj to 4 to avoid 3-way ties at the 

leaf nodes.   
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CHAPTER 4 EVALUTION  

  In this chapter, we will evaluate the various methods that we outlined previously.  

4.1 SevGroup Evaluation  

Due to the large amount of data and general similarity between them, we have only 

presented a few of the tables here. The additional tables can be found in Appendix D. One 

important thing to state is how well crashes without injuries are predicted in comparison to the 

other categories. This is because the majority of the crashes, around 70% for most Age Groups 

and 80% for the Unknown Age Group, did not involve an injury. As a result, these results are 

predicted much better than the others. One thing to note about these results is that the values 1 

through 5 generally mean different things across each set, so the best comparison of values come 

in the Average and Weighted Average.   

Table 4.1: Severity Group Evaluation for Ages 21-64, J48, no Cost Matrix  

   
All Severities  Fatal, Injury, None  Major, Minor, None  

 1  0.317  0.339  0.393 

 2  0.222  0.647  0.561 

 3  0.293  0.877  0.875 

 4  0.330      

 
5  0.883  

    

Weighted   0.718  0.809  0.779 

Unweighted   0.409  0.621  0.610 
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Table 4.2: Severity Group Evaluation for Ages >= 75, J48, no Cost Matrix  

  

  
 

All Severities  Fatal, Injury, None  Major, Minor, None  

 
1  0.149  0.192  0.283 

 
2  0.183  0.667  0.565 

 
3  0.303  0.871  0.866 

 
4  0.344      

 
5  0.874      

Weighted  
 

0.265  0.802  0.760 

Unweighted  
 

0.371  0.577  0.572 

 

Looking at these, there is a definite improvement in reducing the number of variables from 

5 to 3. However, it is less clear which compression of 3 variables yields the better result. To solve 

this, we will examine the weighted and Averages below.  

  

Table 4.3: Severity Group Evaluation, Weighted Average  

 

 
All Severities Fatal, Injury, None 

Major, Minor, None 

A (<=15) 0.35 0.834 0.78 

B (16-20) 0.694 0.791 0.761 

C (21-64) 0.718 0.809 0.779 

D (65-74) 0.708 0.8 0.774 

E (>=75) 0.265 0.802 0.76 

U (?) 0.938 0.99 0.705 

Average 0.612 0.838 0.76 
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As shown using the above chart, reducing the number of options for the class variable 

improved FMeasure. As well, while SevGroup2 usually did increase Group 1's FMeasure, this 

was often at the cost of overall FMeasure. As a result, we decided to use SevGroup1 as our class 

variable going forward. Around this time we also decided to merge some Crash Level variables 

that had initially been split, such as the MajorCause X variables, back into a single value  

4.2 Comparison of Values  

  From here, we will attempt evaluate each set of values on each of the 6 sets along with all 

the values to see whether the variable set generated by a given age group best predicts its own age 

group.  

Table 4.4: minNumObj 5, Cost Matrix 789, Diff Values, A (<=15)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0.5  0.571  0.333  0.571  0.444  0.400  0.000 

Injury  0.76  0.716  0.716  0.747  0.734  0.760  0.444 

None  0.896  0.893  0.888  0.892  0.892  0.893  0.870 

Weighted  0.846  0.828  0.824  0.839  0.834  0.843  0.742 

Unweighted  0.719  0.727  0.646  0.737  0.690  0.685  0.438 

  

  As we can see, we get a much better picture by comparing the FMeasures with all the 

values as we can easily tell which of the variable sets performed the best. Similar to the original 

set, the only values that improved FMeasure were those of its own and the drivers aged 21-64, 

with the latter performing the best overall.  
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Table 4.5: minNumObj 5, Cost Matrix 789, Diff Values, B (16-20)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0.289  0.226  0.242  0.286  0.314  0.314  0.000 

Injury  0.63  0.491  0.592  0.633  0.632  0.632  0.081 

None  0.878  0.866  0.877  0.878  0.878  0.878  0.821 

Weighted  0.799  0.748  0.787  0.800  0.800  0.800  0.589 

Unweighted  0.599  0.528  0.571  0.599  0.608  0.608  0.301 

  

Here we seem to see a different pattern, however. While the values from drivers aged 

2164 performs about the same as the original and its own values perform worse, we get a better 

result for the values from the older 2 age groups.  

Table 4.6: minNumObj 5, Cost Matrix 789, Diff Values, C (21-64)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0.358  0.160  0.408  0.382  0.357  0.371  0.000 

Injury  0.637  0.449  0.604  0.641  0.615  0.634  0.113 

None  0.896  0.876  0.894  0.895  0.895  0.895  0.842 

Weighted  0.82  0.751  0.809  0.821  0.813  0.818  0.632 

Unweighted  0.63  0.495  0.635  0.639  0.623  0.633  0.318 

  

 The Values perform on their own about as well as expected, with Group C’s Values predicting 

itself the best. The Drivers from 16to 20 and 75 and older also improved our results.  
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Table 4.7: minNumObj 5, Cost Matrix 789, Diff Values, D (65-74)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0.327  0.125  0.340  0.275  0.370  0.292  0.000 

Injury  0.614  0.444  0.608  0.631  0.620  0.619  0.090 

None  0.888  0.870  0.888  0.890  0.888  0.887  0.834 

Weighted  0.805  0.742  0.804  0.812  0.808  0.806  0.614 

Unweighted  0.61  0.480  0.612  0.599  0.626  0.599  0.308 

  

  Unlike the others, this group isn’t improved by the values from the group with drivers 

aged 21-64. It seems to have been predicted the best by its own values, with the values from 

drivers aged 16-20 also performing well.  

Table 4.8: minNumObj 5, Cost Matrix 789, Diff Values, E (>=75)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0.298  0.136  0.204  0.259  0.091  0.213  0.000 

Injury  0.654  0.464  0.627  0.656  0.638  0.669  0.082 

None  0.887  0.865  0.884  0.889  0.885  0.891  0.821 

Weighted  0.81  0.736  0.799  0.812  0.802  0.816  0.589 

Unweighted  0.613  0.488  0.572  0.601  0.538  0.591  0.301 

  

  We didn't seem to have much luck with this group on reducing values. Every group that 

we attempted this for performed worse than the original. However, Age Group 21-64's values 

performed the best of each of the values.  
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Table 4.9: minNumObj 5, Cost Matrix 789, Diff Values, U (?)  

  All  A (<=15)  B (16-20)  C (21-64)  D (65-74)  E (>=75)  U (?)  

Fatal  0  0.000  0.000  0.000  0.000  0.000  0.000 

Injury  0.972  0.642  0.972  0.975  0.928  0.914  0.879 

None  0.998  0.967  0.997  0.997  0.992  0.991  0.988 

Weighted  0.993  0.928  0.992  0.993  0.982  0.980  0.973 

Unweighted  0.657  0.536  0.656  0.657  0.640  0.635  0.622 

  

  For this one, none of the values improved on the FMeasure, but the Values from Age 

Group 21-64 performed as well as the full values.  

  Altogether, we can determine that the largest age group’s values performed the best on 

most of the sets. It does this for itself, drivers aged 15 and younger, and drivers of unknown ages. 

Interestingly, though, the values from drivers aged 65-74 also performed well on some groups, its 

own and drivers aged 16-20, indicating that the best group of values isn't necessarily the largest 

encompassing one. The drivers aged 75 and older were a bit strange compared to all this, 

however, only losing precision from the decrease in values, even with their own set.  

4.3 Variable Set Comparison  

  Now we will compare the variables generated by the trees calculated by integrating all of 

our methods. These variables will likewise have more clear names than before. One thing of note, 

however, is that this variable set will not include the variables generated from the largest data set, 

C. This is because it covers almost all the variables and there are many values that apply only to 

it, making it difficult to say anything about the other classes compared to it. The full table, with 

the values generated by C as well, can be found in Appendix E with the other additional tables.  
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Figure 4.1: Variable Set without C (21-64), minNumObj 5, Cost Matrix 789  
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Figure 4.1 cont: Variable Set without C (21-64), minNumObj 5, Cost Matrix 789 
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Figure 4.1 cont: Variable Set without C (21-64), minNumObj 5, Cost Matrix 789 
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Without the largest age group, we can get a better picture of the others. It 

seems like there are a decent mix of variables that seem important to all of the 

groups as well as some that only seem significant to certain groups. For ease of 

reading, we will outline the overlap or lack thereof of variables below.  

Figure 4.2: Variables in 3 or More Groups  
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  From these variables, we can tell that the number of pedestrians involved in a crash as 

well as whether someone is fully ejected from a car seem to be important in determining the 

severity of a crash across the board. These definitely make sense as pedestrians don’t have the 

protectiveness of a car to help them. Drugs, Seating, Occupant Protection, the degree of damage, 

and presence of vehicles like mopeds and Motorcycles also seem to be of general importance in 

several categories.  

Figure 4.3: Variables in 2 Groups  

B & D  

A & E  (16-20,  B & E   

 (<=15,>=75)  65-74)  (16-20, >=75)  D & E (>=65)  
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There are fewer variables common among only two of the groups, but they do tell us 

important info. From this it seems that the oldest and youngest drivers seem to both be impacted 

by alcohol, hits to the side of the vehicle, and the driver being male. The older drivers also seem 

to be impacted by whether airbags deploy and speed limits between 30 and 40 MPH.  
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Figure 4.4: Variables in 1 Group  
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EjectPart  EmerVehNA  SUV  

EjectPathNone  NoTrafficControls  Tractor/SemiTrailer  

EmerVehOth  InitImpactDriverRear  TrailerCargoOth  

DefectOther  MostDamageDriverRear  NoDefects  

SpeedLess25  MostDamageDriverFront  MostDamageFront  

TrafContNoPassZone  DCCFTYROWStopSign  MostDamagePassMid  

MinAge  
  

  

  

  

  

  

  

DamageMinor  

DAge16To20  DriverApparentlyNormal  

DCCSpeeding  
  

  

  

  

  

DCCCenterline  

DCCOth  

VisionNotObscured  

DriverDUI  

  

 Lastly, we have the variables only found in one of the groups, which seem to be somewhat 

differentiated. One thing that seems to affect all groups, however, is the number of passengers, as 

PassAge18To70, TOccupants, and AvgPassCount all seem to indicate this. There might be some 

factor differentiating these that might lead them to have been selected differently, however.  

  For the drivers aged 16-20, their factors seem to be focused on urban driving, drugs and 

alcohol, and traffic violations, which seem to particularly involve speeding, crossing the 

centerline, and no passing zones. Wearing the shoulder belt seems to be another important factor, 

as does driving in areas with a speed limit less than 25.  
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  Drivers aged 65-74 seem to have a more rural focus, with Rural appearing for them, as 

well as Farm Equipment being involved in crashes, a lack of traffic controls, as well as failing to 

yield right of way at a stop sign.  

  Drivers aged 75 and up seem to be more affected by the weather, the type of vehicles 

involved in the crash, with Passenger Car, Van, SUV, and Tractor/Semi Trailer being listed. 

Shoulder and lap belt seems to be important as well, along with where the car is most damaged 

and whether the driver is in normal condition.  

   Some limitations of this method are due to the variables that were selected. As some of 

the variables were more directly tied to severity rather than factors occurring beforehand, such as 

the MostDamageX set of variables. For future work, these variables should be removed for future 

analyses. 

  The only factor unique to drivers of unknown ages seems to be the Unpaved Road. This 

could be due to something like accidents on unpaved roads being more likely to not check the  

ages of drivers or something like this.     
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CHAPTER 5 CONCLUSION  

Looking at our results overall, it seems that our choice to analyze the groups by age was 

overall a positive one. We were able to predict most of the groups better with our variable 

selection and the classes we were unable to do this for can still gain benefits from being analyzed 

separately from the others.  

Group A, featuring drivers aged below 16, was the smallest group, and predictably so, as 

these drivers are legally only able to drive with a permit in the state of Iowa. It was interesting 

how we were able to predict this class fairly well with only around 10 variables.  

Group U was an interesting class as well, featuring only incidents where none of the 

drivers ages are known. We were able to reduce it to only 4 variables, though we are unsure how 

well this succeeds when it is unable to predict any of the fatalities among the class and results in 

an overall low percentage. That said, none of the classifiers we attempted were able to predict the 

fatalities among Group U, so it is fairly functional.  

Group E, containing drivers older than 75 was another interesting class. It had around as 

many variables as B and D, being most similar in composition to D, though, like U, any attempts 

to classify it based on fewer variables just hindered the overall results. Perhaps there is an 

element of unpredictability to this class we could not properly analyze with fewer variables, 

thought we are unable to determine this effectively in the current study.  

Group C was the largest Age Group overall and also had the greatest number of variables 

associated with it. This large number of variables unfortunately made us unable to properly 

contrast the different classes as almost every variable was in one class was also in C. Whether this 

is due to the size of C or there are potential subdivisions in C that could be classified more 

similarly to B and D would likewise be an interesting direction of further study. Regardless, 
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however, removing it from consideration in the final section did greatly help yield clearer trends 

in the data.  

Future Work  

As we were documenting our results, we discovered that the Unknown Age Group 

predicted crashes without injuries rather well, even if it did not predict any fatalities correctly. We 

reasoned from there it might be possible to combine it with another tree that was generated in 

order to improve classification for all three classes. It seems like the drivers aged 15 and younger 

performed the best for prediction of the injury classes, so this seems like a good candidate for 

combination.  

As well, while our data leads us in a promising direction and shows that this might be a 

good area for future study, more information will have to be examined from it in order to have a 

breakthrough. Integration with other data sources such as traffic volume, population 

characteristics, or more specific weather conditions would be good future directions to take this 

research in. Analyses involving other segregating attributes such as rural and urban crashes would 

also be a good direction, as it is unclear whether the propensity for younger drivers to be involved 

in more urban crashes and older drivers to be involved in more rural is solely a matter of 

demographics or not.  
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