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ABSTRACT 

Cortical bone is an osseous tissue forming the cortex in our skeleton that supports 

and protects skeletal functions. Cortical bone segmentation is usually the first step for 

quantitative cortical bone imaging research. Quality of cortical bone segmentation is one 

of the most critical factor in determining effectiveness and usefulness of cortical bone 

measures in a bone imaging study aimed at understanding disease effects, fracture risk 

and or interventional outcomes. Previous methods primarily focus on local image features 

and ignore ad therefore fail to utilize larger geometric and topologic contextual 

knowledge into the segmentation algorithm. Such methods often results in compromised 

performance under in vivo imaging conditions suffering from low signal to noise ratio 

and low spatial resolution leaving significant partial volume effects. This thesis presents a 

new cortical bone segmentation method that utilizes larger contextual and topologic 

knowledge of distal tibia bone through fuzzy distance transform and connectivity 

analyses. The input of the method is one threshold and other steps are automatic. An 

accuracy of 95.1% in terms of percent of volume agreement with gold standard 

segmentation results and a repeat MD-CT scan intra-class correlation of 98.0% were 

observed on a cadaveric study. An in vivo study involving sixteen age and body mass 

index order matched pairs of male and female volunteers has shown that male subjects on 

average have 16.3% thicker cortex and 4.7% increased porosity as compared to females, 

and athletes have 3.9% less porosity as compared to control group. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Cortical Bone Analysis in Clinical Practice 

Cortical bone, which forms the cortex of the bone, is one of the two types of 

osseous tissue that form bones. Adult bone diseases, especially osteoporosis, lead to 

increased risk of fracture associated with substantial morbidity, mortality, and financial 

costs [1][2][3]. Clinically, osteoporosis is defined by low bone mineral density (BMD). 

BMD only explains about 65-75% of the variance in bone strength [4][5], while the 

remaining variance is due to the cumulative and synergistic effects of various factors, 

including bone macro- and micro-architecture, tissue composition, and micro-damage 

[6][7]. For this reason, currently, much interest exists in the study of other factors 

affecting bone strength including cortical and trabecular bone micro- and macro-

architecture [7][8]. Several studies have reported that, along with trabecular bone micro-

architecture, structural changes in cortical bone add information to BMD in assessing 

bone strength and discriminating between healthy individuals and patients with 

osteoporotic fractures [1][9][10][11][12][13][14][15]. Fracture risk, one of the serious 

consequences of osteoporosis, is also influenced by alterations in bone morphology, such 

as the distribution of bone mass between cortical and trabecular bone, cortical thickness 

and porosity [2][3]. Cortical bone loss and periosteal new bone formation are also used 

for therapeutic evaluation of osteoarthritis [4].  

Over the last few decades, several studies have been reported toward 

understanding the role of cortical bone properties in determining the status of bone health 

and treatment effects. Cortical bone properties, such as bone mineral density (BMD) and 

thickness, have been proved to be highly related to bone turnover under bone diseases 

such as osteoporosis [5][6]. There are several studies aiming at alterations of bone 
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morphology including cortical bone in specific groups of people differed by age, gender 

or region [6][8][9] and to determine discriminatory cortical bone data under therapy, 

especially for postmenopausal women who are at high risk of osteoporosis and low 

trauma fractures. Cortical BMD, thickness and microstructure are effective indicators of 

different pharmaceutical intervention, such as Denosumab, Alendronate and Teriparatide 

[10][11]. It has been demonstrated that cortical bone bears the bulk of axial loads in the 

distal radius and tibia [13] and the load distribution is an important factor in the 

determining of bone strength and fracture risk [14][15]. Also, research studies have 

established the relation between cortical bone porosity and bone biomechanical strength 

[16]. These results and observations in a large number of clinical and research studies 

demonstrate the importance of cortical bone parameters in in understanding overall bone 

quality.  

1.2 Bone Imaging and Previous Segmentation Study 

In this paper, we develop a new method for segmenting cortical bone via in vivo 

Multi-Detector Computed Tomography (MD-CT) imaging. MD-CT imaging in clinical 

applications has shown enormous power in clinical diagnose. MD-CT scanners have 

progressively increased the number of detectors and reduced scan acquisition times. 

Micro-CT has almost the most powerful ability for imaging bone structure, since it can 

offer nominal isotropic resolution as low as 10 μm. Although Micro-CT scanners are hard 

scan large object such as part of living human, it can be used for human biopsies [20]. 

Major benefits of HR MD-CT have been widely utilized nowadays, including: (1) short 

MD-CT scan time reduces motion artifacts; (2) better patient comfort with MD-CT 

scanners; (3) large FOV along with model-based registration methods for subject-specific 

region-of-interest (ROI) selection reduces positioning error. Also, MD-CT offers the 

opportunity to assess bone quality at central sites using a higher radiation dose. 
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Previous cortical bone studies are mainly conducted using Micro-CT [21][22] or 

HR-pQCT [5][6][14]. MD-CT cortical bone studies are few. Due to the high resolution, 

Micro-CT structure analysis can also be used as a golden standard. Laib A. et al [23] 

proposed a semi-automated slice-by-slice hand contouring method on 3D-QCT images, 

which is pretty precise that it was once the gold standard for cortical bone segmentation, 

but is very effort-costing. Gelaude F. et al. [25] implemented methods using region 

growing, energy minimizing spline curves, and deformable model to enhance result and 

improve consistency on CT data, but are complex and remain semi-automated. Gomberg 

B. R. [26] et al. developed a method which estimates marrow density range first, then 

uses region growing inside such range followed by opening operation, and applied on 

Magnetic Resonance Images (MRI). Buie H. R. [22]et al. proposed an automatic duel 

threshold method based on threshold and connective filter on Micro-CT data, which can 

get good result. But this algorithm is designed and verified on Micro-CT images, and is 

sensitive to noise so not easy to be applied on low-quality CT images. Valentinitsch A. et 

al. developed a machine learning method on HR-pQCT data, which train a set of bone 

images which is manually labeled cortical structure to generate classier which use the 

local property of each voxel as input [27]. This method can have good segmentation, but 

that highly depends on training process. Treece G. et al. [28] used image’s inplane point 

spread function to calculate femur cortex thickness, and improved his method in [29] by 

assuming a specific, fixed value for the density. But besides calculating cortical measures, 

those methods do not provide complete segment mask, especially considering their use of 

blurred image. 

In this paper, a new cortical bone segmentation method based on fuzzy topology 

is proposed. It uses fuzzy connectivity and fuzzy distance transform to find the 

periosteum of the bone, then uses fuzzy distance transform to find the endosteum. This 

method is fully automated, which only needs a threshold as input. The method will be 

proved to be able to get good result on MD-CT data for getting cortical bone thickness 
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and BMD, where accuracy, reproducibility and effectiveness will be verified. To verify 

accuracy, MD-CT images of 10 cadaveric tibia specimens are processed, and manual 

drawing by independent expert on certain slices of each data will provide ground truth of 

segmentation, which will compare with our segmentation result to compute overlap and 

error of cortical measures. To verify reproducibility, twenty-four cadaveric tibia 

specimens have been scanned for three times with different position, and after processing, 

ICC of cortical measures will be done inside the three scans. To verify the effectiveness, 

cortical measures will be applied on forty-five pairs of height matched male and female 

tibia, 10 pairs of height matched athletes and control group, ten pairs of height matched 

athlete and control group, and pair t-test will be conduct on cortical measures. 

1.3 Outline 

This thesis will show the work about the fuzzy topology based cortical bone 

segmentation method in detail. In Chapter 2, we discuss the theory of fuzzy 

connectedness and fuzzy distance transform. In Chapter 3, we show in detail how the 

method works, and the details how experiments will be conducted. In Chapter 4, we 

present the quantity result of the experiment and analysis consisting of accuracy, 

reproducibility and applicability. 
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CHAPTER TWO 

BACKGROUND THEORY 

In this section, we will introduce basic theories used in this thesis, and give some 

definitions of mathematic notations.  

The method proposed in this thesis is mainly based on fuzzy connectedness and 

fuzzy distance transform. These are both common applications of fuzzy logic. Fuzzy 

logic is a form of probabilistic logic. Images produced by any imaging device are always 

disturbed by noise, uneven illumination, limited spatial resolution, partial occlusions, etc. 

In such images, it is hard to do image analysis based on crisp (or hard-coded) 

relationships between or within the individual regions to be segmented. Fuzzy logic takes 

the uncertainties into consideration, which rather than defining crisp relations, attempts to 

describe the image processing task with fuzzy rules such as if two regions have about the 

same gray-value and if they are relatively close to each other in space, then they likely 

belong to the same object [32]. In contrast with traditional logic which uses binary sets 

where there is only two-value logic, true or false, fuzzy logic variables are usually 

extended to handle the concept of partial truth, which indicates the probability of the truth. 

2.1 Fuzzy Connectedness 

Fuzzy connectedness [28] segmentation is attempting to perform the segmentation 

by considering the likelihood of whether nearby image elements belong together. If they 

seem to belong to the same object based on their image and spatial properties, they are 

assigned to the same region. In other words, it focuses on hanging togetherness property 

which is then described using fuzzy logic.  

MD-CT images are represented in three-dimensional (3-D) rectangular grids 

denoted by 𝑍3  and a digital CT image may be expressed by a function 𝑓CT: 𝑍3 →
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[minCT, maxCT]. Each grid point 𝑝 ∈ 𝑍3 is referred to as a voxel whose size is defined by 

image resolution. Two voxels 𝑝 = (𝑝1, 𝑝2, 𝑝3), 𝑞 = (𝑞1, 𝑞2, 𝑞3) ∈ 𝑍3  are 26-adjacent if 

and only if, ∀𝑖 ∈ {1,2,3}, |𝑝𝑖 − 𝑞𝑖| ≤ 1; 𝑝, 𝑞 are referred to as 6-adjacent if and only if 

max
𝑖

|𝑝𝑖 − 𝑞𝑖| ≤ 1. The set of all 26-adjacent voxels of 𝑝 including itself is denoted as 

𝑁(𝑝). In any sub-region C of Z3, a nonempty path pcd in C from c to d is a sequence {c = 

c1, c2, …, cl = d} of l≥1 voxels in C, in which any successive two voxels are 26-adjacent. 

The set of all paths in C from c to d is denoted by Pcd. The set of all paths in C is denoted 

by PC. 

Let C = (C,f) be any scene over (Z3, α), where f denotes voxel intensity. A fuzzy 

relation α in C is said to make μα(c,d) be a fuzzy adjacency if it is a non-increasing 

function of the distance ||c-d|| between c and d. It is usually assigned 0 when c and d are 

not 26-adjancent. Any fuzzy relation κ in is said to be a fuzzy affinity in C if it is 

reflexive and symmetric, and proportional to fuzzy adjacency. In common practical 

segmentation usage, for any c, d ∈  C, μκ(c,d) is usually μα(c,d) times one of the 

following: 1) one; 2) the homogeneity of the voxel intensities at c and d; 3) the closeness 

of the voxel intensities [31]. For all paths pcd ∈ PC, assign a strength μN assigned to each 

path, as the smallest fuzzy affinity value between any two successive voxels on the path, 

i.e., μN(pcd) = min
1≤i≤lp

[μκ(ci−1, ci)]. 

Fuzzy κ-connectedness μK(c,d)  between c and d in C is defined as the largest path 

strength of all path pcd in Pcd. i.e., for any c, d ∈ C, μK(c,d) = max
p∈Pcd

μN(p), or: 

 μK(c,d) = max
p∈Pcd

[ min
1≤i≤lp

[μκ(ci−1, ci)]] 

where p is the path {c1, c2, … , clp}. 

Using dynamic algorithm can compute the fuzzy connectedness value. Based on 

this definition of connectedness, some derivative new kinds of fuzzy connectedness, such 

as relative fuzzy connectivity [32], scale-based fuzzy connectivity [34] and iterative 

relative fuzzy connectedness [35] are designed. Many applications, such as fuzzy object 
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extraction [28] and fuzzy connectivity segmentation [31], are proposed. Here we will not 

discuss about those. 

2.2 Fuzzy Distance Transform 

Fuzzy Distance Transform (FDT) [36] is a enhancement of distance transform 

(DT) on fuzzy objects. Comparing with DT, FDT usually can get better result in many 

imaging applications especially medical images, since there are often situations with data 

inaccuracies, graded object compositions, or limited image resolution. 

We use same definitions of space, voxel, adjacency, path, etc. as discussed in 

Fuzzy Connectness part. The cortical bone segmentation algorithm presented here utilizes 

the fuzzy distance transform (FDT) [12]. A fuzzy object 𝒪 is a fuzzy subset 

{(𝑝, 𝑓𝑂(𝑝)) | 𝑝 ∈ 𝑍3} where𝑓𝑂 is its membership function. FDT computes the distance of 

a candidate voxel inside the support 𝑂 = {𝑝 | 𝑝 ∈ 𝑍3⋀𝑓𝑂(𝑝) > 0} of a fuzzy object 𝒪 

from its background 𝐵 = 𝑍3 − 𝑂. The first step during FDT computation is an 

initialization with the zero FDT value inside 𝐵 and a large value inside the support 𝑂. 

The second step is an iterative propagation of FDT values using the following equation: 

𝐹𝐷𝑇𝑂(𝑝) = min
𝑞∈𝑁(𝑝) 

𝐹𝐷𝑇(𝑞) +
1

2
(𝑓𝑂(𝑝) + 𝑓𝑂(𝑞))|𝑝 − 𝑞|. 

 It may be noted that the FDT value at any voxel 𝑝 is monotonically non-

increasing during the propagation step. Here, we introduce some simple variations in the 

FDT algorithm and demonstrate its utility in the current application. Specifically, three 

sets are defined – (1) 𝐿: set of voxels initialized with a large value, (2) 𝑈: set of voxels 

initialized with non-large values, and (3) 𝑉: the set of voxels where no path propagation 

is allowed. Also, the value of initialization at each voxel inside 𝑈 may be non-zero as 

well as non-uniform.  
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CHAPTER THREE 

METHODS AND EXPERIMENTAL SETTING 

In this section, we describe the new cortical bone segmentation algorithm for in 

vivo MD-CT imaging of distal tibia along with experimental plans and methods 

evaluating the performance and effectiveness of the algorithm. 

3.1 Bone Alignment and ROI Detection 

 The cortical bone segmentation method is initiated with a preprocessing module 

which produces an axial cylindrical region of interest (ROI) taken from the same 

anatomic location of individual’s bone. This module begins with conversion of CT image 

values into bone mineral density (BMD) values using a calibration phantom which is 

scanned every time a phantom or a human subject is scanned. All subsequent operations 

are performed on BMD images. 

 Here we establish our threshold on BMD at a value of 1180mg/cc. The BMD 

threshold value was set as the average of manually selected thresholds by three users on 

five randomly selected in vivo MD-CT data sets where each user was asked to select a 

threshold to isolate bone from marrow.  

 The next step of cortical bone segmentation algorithm is to separate the tibial 

region from other bones and soft tissues. This step is accomplished firstly by using this 

threshold and then isolating tibial region as the largest 26-component in the thresholded 

image as shown in Figure 1(b).  
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Figure 1 Results of intermediate steps of filling bone process. (a) BMD image. (b) The 
largest component. (c) Compute DT from bone voexls. (d) Compute fuzzy 
connectivity. (e) Threshold the fuzzy connectivity result. (f) Compute DT 
from surrounding region. (g) Filled bone region. (h) Tibia region bounded by 
filled bone. 

 We define the fuzzy affinity as: 

μκ(c, d) = {
min(𝑓(𝑐), 𝑓(𝑑)) ,        𝑖𝑓 𝑐, 𝑑 𝑎𝑟𝑒 26 − 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡

0,                                              otherwise
, 

and a filled-in bone shape is generated using the following steps: 

Step 1: Compute distance transform (DT) at background voxels from bone voxels (Figure 

1(c)). 

Step 2: Compute fuzzy connectivity of the DT map with the eight corner image voxels as 

seeds (Figure 1(d)). Ideally, background voxels inside the tibial cavity should be 

disconnected from the eight corner seed voxels. Even if there are small leaks on 

tibial cortex and fuzzy connectivity paths may sneak through them, the fuzzy 

connectivity at tibial cavity is small due to small size of leaks. So fuzzy 

connectivity values are much lower inside the tibia region. 

Step 3: Apply a DT connectivity threshold 𝑡ℎ𝑟 on fuzzy connectivity image, which will 

isolate the tibial region as well as a surrounding band with width 𝑡ℎ𝑟 (Figure 1(e)). 

Use 𝑆thr to denote this region. 
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Step 4: Compute DT from 𝑆thr (Figure 1(f)) and select the region thresholded at 𝑡ℎ𝑟.  

Then we get a filled tibia bone region on the result binary image, as shown in 

Figure 1(g). This filled bone region can be used to remove the fibula and tissue in future 

steps, as Figure 1(h), in order to limit the region of interest into only the tibia region. 

This filled-in bone (Figure 2(b)) is used to reorient the tibia and to identify the 

distal tibial end plateau defined as the most proximal location on the distal tibial endplate. 

First, a rough estimate of the distal tibial plateau location is performed by analyzing the 

cross sectional images of filled-in bone. The distal tibial plateau is located just above the 

first image slice containing a cavity in the filled-in bone while tracing proximal-to-distal. 

In general, such a 2-D cavity consists of multiple voxels; therefore, the center of gravity 

of the cavity is used as the location of the distal tibial plateau (Figure 2(c)). Image slices 

above 8% of tibial length from the end plateau are used to compute the tibial axis; see 

Figure 2(c). The axis of tibia is computed as the best fit line to the 40% peeled region of 

tibia as shown in Figure 2(c). The bone is reoriented to align its axis with the image z-

axis (Figure 2(d)). At the time of reorientation, the bone is simultaneously interpolated at 

150 micron isotropic voxel and the distal tibial end plateau is relocated. Four adjacent 

axial cylindrical ROIs, each covering 2% of the tibial length, is located at 8%, 10%, 12% 

and 14% proximal to the distal endplate as shown in Figure 2(d). All cortical bone 

segmentation and analyses was applied over this axial cylindrical ROI covering 8% of the 

tibial length. The tibial length was determined by locating distal and proximal tibial 

plateaus in MD-CT scout scans. 
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Figure 2 Illustration of the process of bone filling, alignment, and ROI selection. (a) An 
original MD-CT image slice. (b) Filled-in bone. (c) Initial location of distal 
tibial end plateau (white dot) and the shaded region used for bone alignment. 
(d) Final ROI covering 12-16% of tibia. 

 

Figure 3 Results of intermediate steps of the cortical bone segmentation algorithm. (a) 
ROI volume and an image slice used for illustration. (b) BMD image. (c) 
Marrow space (green), possible cortical pores (blue), and periosteal surface 
(red). (d) FDT from marrow space and possible cortical pores. (e) Same as (d) 
after filling confirmed cortical pores. (f) FDT from periosteal boundary by 
initializing the negative value of local cortical bone thickness; see text for 
explanation. (g) Cortical bone segmented as the region with negative FDT 
values in (f). (h) Segmented trabecular bone region. (i) Overlaid cortical bone 
region on the CT image. 
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3.2 Cortical Bone Segmentation Algorithm 

First, a simple threshold at 1180mg/cc is applied on the BMD image to isolate the 

bone region from marrow, cortical pores, and the space outside the tibia. Let 𝑆tibia denote 

the set of voxels falling inside the filled-in tibia bone within the target axial cylindrical 

ROI (Figure 3 (a)) and let 𝑓BMD denote the BMD map. Also, let 𝑆bone ⊂ 𝑆tibia denote the 

set of bone voxels while 𝑆non bone = 𝑆tibia − 𝑆bone be the set marrow and cortical pore 

voxels (Figure 3 (c)). Let 𝑆periosteum denote the set of voxels 26-adjacent to 𝑆tibia; thus 

the set of voxels 𝑆periosteum (Figure 3 (c)) wraps around the filled-in tibia bone over the 

ROI used for cortical bone analyses. The set of voxels outside 𝑆tibia ∪ 𝑆periosteum, 

denoted by 𝑆background, are excluded. Non-bone voxels 𝑆non bone ⊂ 𝑆tibia inside the tibia 

are further classified into confident marrow (green) and possible cortical pore (blue) 

voxels; let 𝑆marrow and 𝑆pore denote these two sets. The set 𝑆marrow is defined as the 

largest 6-component of 𝑆non bone and 𝑆pore = 𝑆non bone − 𝑆marrow. 

The key idea of the segmentation algorithm is to compute cortical bone thickness 

at every voxel on the periosteal boundary as its distance from the endosteum and then 

delineate the cortex as the set of all voxels whose distance from some periosteal voxel is 

smaller than or equal to its thickness value. A major challenge is the presence of cortical 

pores artificially reducing local thickness at nearby periosteal voxels. Such artifacts are 

detected by identifying sudden recessions in thickness values along periosteum and then 

linking those with possible pores. Initial thickness values at periosteal voxels are 

computed as their FDT values from the set of marrow or possible pore voxels, i.e., 

𝑆marrow ∪ 𝑆pore. For FDT computation during this step, zero value is initialized inside 

𝑆marrow ∪ 𝑆pore while a large value is initialized inside 𝑆bone ∪ 𝑆periosteum; finally, the 

set of voxels 𝑆background is excluded from path propagation. However, as it has already 

been stated, computed thickness values along the periosteal border may contain sudden 

recession points due to the presence of cortical pores. On a given slice, a periosteal 

boundary is a digital 4-closed curve, say, 𝑝0, 𝑝1, . ⋯ , 𝑝𝑖−1, 𝑝𝑖, 𝑝𝑖+1, ⋯ , 𝑝𝑁−1. A given 
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voxel 𝑝𝑖 on the periosteum is a recession voxel if 𝐹𝐷𝑇(𝑝𝑖) is smaller than half of the 

average FDT value of the voxels 𝑝𝑖±𝑗 mod 𝑁, where 𝑗 = 𝐿, 𝐿 + 1, ⋯ , 𝐻. After a recession 

voxel 𝑝𝑖 is detected, the non-bone voxel, say 𝑞, nearest to 𝑝𝑖 is identified. Finally, if 𝑞 is 

a possible pore voxel, i.e., 𝑞 ∈ 𝑆pore, then the 6-component 𝐶𝑞 of 𝑆pore containing 𝑞 is 

conformed as a cortical pore. Finally, 𝑆non bone is reduced to 𝑆non bone − 𝐶𝑞 while 𝑆bone 

is augmented to 𝑆bone ∪ 𝐶𝑞. After all recession voxels are identified and the pores are 

filled, the FDT for periosteal thickness is recomputed and the process continues until no 

new recession voxels are found on periosteum. The iteration will converge in no more 

than three times during all our experiments due to small amount of pores. 

At every voxel 𝑝 ∈ 𝑆periosteum, the FDT value computed as above gives the 

cortical bone thickness at 𝑝; let us denote it as 𝜏(𝑝). The purpose of the current and final 

step of cortical bone segmentation is to delineate the cortical region. The principle of this 

step is to find the cortex as the set of all voxels whose distance from some periosteal 

voxel 𝑝 is less than its cortical thickness 𝜏(𝑝). This step is accomplished using a modified 

FDT computation from the periosteum. Specifically, during this step, at each voxel 𝑝 ∈

𝑆periosteum, the FDT value is initialized as −𝜏(𝑝), the negative of the cortical bone 

thickness at 𝑝. A large value is initialized at each voxel inside 𝑆bone; finally, all voxels 

outside 𝑆bone ∪ 𝑆periosteum are excluded for path propagation. Let 𝜌(𝑝) denote the 

computed FDT value at each voxel inside 𝑆bone. The cortical bone region 𝑆cortex is 

delineated as the set of all bone voxels 𝑝 with a negative FDT value 𝜌(𝑝) as follow: 

𝑆cortex = {𝑝 | 𝑝 ∈ 𝑆bone ∧ 𝜌(𝑝) < 0}. 

Finally, the outer layer on cortex is defined as the set of cortex bone voxels which 

are 6-adjacent to 𝑆periosteum; let 𝑆outer cortex denote the outer layer of cortex. 
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Figure 4 Flow chart indicating major preprocessing tasks and cortical segmentation 
steps. 

3.3 Experimental methods 

The aim of our experiments was – (1) to evaluate the method’s accuracy in terms 

of agreement with a gold standard cortical bone segmentation, (2) to examine the 

method’s repeat MD-CT scan reproducibility, and (3) to assess the method’s ability to 

differentiate cortical bone measures among age and height order matched male and 

female volunteers through in vivo MD-CT imaging, and athletes and common people 

volunteers. All experiments were performed at the distal tibia site. To evaluate the 

method’s accuracy and reproducibility, three repeat scan MD-CT imaging were 

performed on human cadaveric ankle specimens. 

3.3.1 Image processing and analysis 

Each image data set was processed through the following cascade of steps – (1) 

computation of BMD image, (2) bone reorientation, interpolation, and ROI selection, and 

(3) application of cortical segmentation and analyses on the ROI data. For cadaveric 

ankle specimens, INTableTM calibration phantom was used to convert the MD-CT 
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Hounsfield numbers into BMD (mg/cm3) measures while GammaxTM calibration 

phantom was used for in vivo scans. As described in Section 2.1, four axial cylindrical 

sections covering 8-16% of tibia were used. Since difference in cortical measures have 

been found between anterior, posterior, medial and lateral part of bone in previous 

researches [6][38], each cylindrical section was further subdivided into four angular 

sections, each covering an angular space of 90𝑜 as shown in Figure 5. The line joining 

the center of gravities of the tibia and the fibula was used as the reference line and the 

angular space of 360𝑜 was divided into four equal angular compartment. Thus, with each 

of the 4 cylindrical sections being divided into 4 angular regions, altogether 16 ROIs 

were used for computing cortical bone measures. The cortical bone segmentation 

algorithm of Section 2.2 was applied on each MD-CT image and cortical thickness and 

porosity is calculated. 

The cortical thickness is calculated as the ratio of ROI cortex volume and ROI 

cortex surface area, as following:  

𝑐𝑜𝑟𝑡𝑖𝑐𝑎𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
|𝑆𝑐𝑜𝑟𝑡𝑒𝑥|

|𝑆𝑜𝑢𝑡𝑒𝑟 𝑐𝑜𝑟𝑡𝑒𝑥|
 

Since small pores of cortex are heavily blurred in MD-CT images, traditional 

method to calculate porosity by pore volume divided by whole cortex volume is easy to 

fail as giving a result slightly larger than zero. Considering the fact that image voxels are 

blurred by both bone cortex and marrow, we define porosity which satisfies: (1 − 𝑝) ×

𝜌𝐶 + 𝑝 × 𝜌𝑀 = 𝜌𝑎𝑑, where 𝑝 is the porosity, 𝜌𝐶 is the true tissue density of cortex, 𝜌𝑀 is 

the true tissue density of marrow, and 𝜌𝑎𝑑 is apparent density of bone, which can be 

considered as equal to BMD value in MD-CT image. Thus we calculate porosity by:  

𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 −
∑ 𝐵𝑀𝐷(𝑝)𝑝∈𝑆cortex

𝐵𝑀𝐷cortical bone × |𝑆cortex|
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Within the range of ROI, 𝜌𝐶 and 𝜌𝑀 can be treated as constants. From [39], we 

can derive 𝜌𝐶 = 2184𝑔/𝑐𝑚3 by using ash fraction of cortex as 0.6, and 𝜌𝑀 =

900𝑔/𝑐𝑚3. 

 

Figure 5 Illustration of angular ROIs using the reference line joining the center of 
gravity of tibia with that of fibula. Each angular section covers 90o of angular 
space. 

3.3.2 MD-CT Data Acquisition 

Twenty-four fresh-frozen human cadaveric ankle specimens were obtained from 

fourteen body donors (age: 55Y to 91Y). Exclusion criteria for this study were evidence 

of previous fracture or knowledge of bone tumor or bone metastasis. These ankle spec-

imens were collected under the Deeded Bodies Program, The University of Iowa, Iowa 

City and were kept frozen until the performance of MD-CT imaging. Forty-five male (M) 

and fifty-four female (F) volunteers of age between 18 to 23 years were recruited for the 

in vivo study. 

3.3.3 MD-CT Imaging 

High resolution MD-CT scans of the distal tibia were acquired at the University 

of Iowa Comprehensive Lung Imaging Center on a 128 slice SOMATOM Definition 

Flash scanner (Siemens, Munich, Germany) using the following CT parameters: single 

tube spiral acquisition at 120kV, 200 effective mAs, pitch factor: 1.0, scan length of 
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10cm beginning at the distal tibia end-plateau and total effective dose equivalent: 

17mrem ≈ 20 days of environmental radiation. One AP scout scan of the entire tibia was 

acquired to locate the field of view (FOV) and to determine tibial length. After scanning 

each specimen in a helical mode with a 0.4 mm slice thickness, data were reconstructed 

at 0.2 mm slice thickness using a normal cone beam method with a special U70u kernel 

achieving high structural resolution. Three repeat MD-CT scans of each distal tibia 

specimen were acquired after repositioning the specimen on the CT table before each 

scan.  
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1 Results 

4.1.1 Accuracy of cortical bone segmentation 

 The experiment for accuracy evaluation of the method was performed on sixteen 

volunteer tibia in vivo scan images. Half of those images were from male volunteers 

while the other half were from female. To examine the accuracy of MD-CT based 

cortical bone segmentation, a gold standard segmentation of cortical bone was derived by 

manually outlining cortical region on twenty MD-CT image slices, among which five 

consecutive slices were randomly selected from each of the four cylinder ROI sections. 

Since segmentation of periosteum is region growing with no challenge, and manual 

drawing is difficult to work as precise as region growing, it means little to manually draw 

the periosteum. So we only manually drew endosteum and combine it with periosteum to 

generate the ground truth mask. This work is done by an independent expert using ITK-

SNAP software. Let 𝑆cortex
true  be the set of voxels falling inside the true cortical bone 

regions and let 𝑆cortex
MD−CT be computerized segmentation results. Jaccard similarity 

coefficient (also known as Jaccard index) is used to characterize the accuracy, i.e.,  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆cortex

true ∩ 𝑆cortex
MD−CT

𝑆cortex
true ∪ 𝑆cortex

MD−CT
. 

A quantitative comparison between the manual and computerized segmentation of 

cortical bone on ten cadaveric ankle images resulted the average accuracy of the 0.951 

with a standard deviation of 0.010. Considering challenges of cortical bone segmentation 

and relatively low resolution offered by MD-CT imaging, and comparing with linear 
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regression slope of cortical total volume 0.864 reported in [22] (for human data), and dice 

coefficient (DC) 0.904 reported in [27], the observed accuracy results are encouraging. 

4.1.2 Repeat scan reproducibility of cortical bone 

segmentation 

 For this experiment, three repositioned repeat scan MD-CT images of twenty-four 

cadaveric ankle specimens were used. BMD computation, ROIs selection as well as 

cortical bone segmentation and measurements were performed independently on each 

repeat scan data. For quantitative assessment of reproducibility of cortical bone 

segmentation algorithm, repeat scan intra-class correlation (ICC) values were computed 

for each measure over each ROI from three repeat scan data of twenty-four cadaveric 

specimens. The observed ICC values for both cortical thickness and porosity measures 

were high with the average ICC value for cortical thickness over the eight different ROIs 

being 98.0% ± 1.4% (mean ± std.) while that for cortical porosity was 97.9% ± 0.9% 

(mean ± std.). The observed results of for repeat scan reproducibility of cortical bone 

measures were highly satisfactory confirming the repeatability of cortical bone 

segmentation and measures.  

4.1.3 Results of In Vivo Study 

 To evaluate the effectiveness of the method, firstly, in vivo MD-CT data from 

forty-five male and fifty-four female volunteers were acquired. Among all female data, 

forty-five were randomly selected (by MATLAB function randperm) to form age similar 

and height order matched pairs of two genders. The heights of used data are 180.88 ± 

7.89cm (mean ± std.) for male, and 165.56 ± 5.62cm (mean ± std.) for female, and 

𝑅2for two groups of height is 0.972. The cortical bone segmentation and measurement 

were performed on each image data and a paired t-test was performed for both cortical 

thickness and porosity measures derived from each of the sixteen ROIs. Quantitative 

results have shown that male subjects on average have 16.3% thicker cortex and 4.7% 
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increased porosity as compared to females. Results of pair t-test showed the difference 

was statistically significant with p-values less than 0.01 on all sixteen ROIs, for both 

thickness and porosity. 

Secondly, in vivo MD-CT data from ten athlete volunteers (seven male and three 

female) were processed. From previous ninety-nine data, ten data which have same 

gender and the most approximate height were selected to form the control group. The 

heights are 182.71 ± 6.82cm (mean ± std.) for athlete, and 182.62 ± 6.77cm (mean ± 

std.) for control group, and 𝑅2for two groups of height is 0.989. Same processes were 

performed to get cortical thickness and porosity measures on each of the sixteen ROIs. 

No obvious regional difference for cortical bone thickness is found, with only two ROIs 

out of sixteen had found p-value less than 0.05. But for cortical porosity, twelve ROIs 

were found statistically significant with p-values less than 0.05. Quantitative results 

showed that athlete subjects on average have 3.9% less porosity as compared to control 

group. 

4.2 Discussion 

A new automatic method has been developed for cortical bone segmentation. The 

method has been applied on 3D MD-CT image data of tibia bones. Cortical bone has 

been successfully segmented. Reproducibility, accuracy and effectiveness of the method 

have all been well evaluated. 

As one parameter, the selection of threshold is important. We hope the threshold 

will eliminate all marrow while keep all cortical part, and this is usually quite easy to 

realize during our experiment. Part of the trabecular may remain after doing threshold, 

and the most important part of our segmentation method is to find the border between the 

remaining trabecular part and the cortical. Also a suitable threshold can eliminate the 

blurred region near the boundary of solid bone and soft tissue, which is caused by CT 

scanner algorithm. 
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The accuracy of our method is evaluated based on the ground truth generate by 

manual drawing. In fact, MD-CT image itself has limited resolution to fully showing the 

details of material comparing with high quality imaging technique such as Micro-CT. So 

our method on MD-CT may not be as high as segmentation applied methods on Micro-

CT. But based on the info human can acquire from MD-CT images, our method is good 

enough to be applied to get accurate cortical segmentation and measures.  

The effectiveness validation of our method shows its potential to be applied in 

clinical researches. Besides cortical measures in whole cortical region, the longitudinal 

and angular division of cortical in this paper also provides a method of study cortical 

properties in different but meaningful regions. The study of athlete bones may lead many 

new topics about how athletes’ training or living style can improve the bone quality. 
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CHAPTER FIVE 

CONCLUSION 

A new cortical bone segmentation method along with computation of regional 

cortical measures has been developed for in vivo MD-CT imaging at a peripheral site. 

The method is fully automatic and has been successfully applied on cadaveric as well as 

on in vivo MD-CT images of distal tibia. The new cortical bone segmentation method has 

successfully utilized larger contextual and topologic information of the distal tibial bone 

geometry. In this context, a new variation of fuzzy thickness computation has been 

introduced and its application to cortical bone segmentation has been demonstrated. 

Experimental results on twenty-four cadaveric distal tibia MD-CT data have 

demonstrated that the method is highly accurate and reproducible. Also, in vivo data from 

age similar and height order matched male and female volunteers has shown that male 

subjects have thicker and more porous cortex at distal tibia as compared to females, and 

in vivo data from age similar and height order matched athlete volunteers and common 

people has shown that athletes have less porous cortex at distal tibia. 
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