
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2010

Diagnosis Of VLSI circuit defects: defects in scan
chain and circuit logic
Xun Tang
University of Iowa

Copyright 2010 Xun Tang

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/894

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Tang, Xun. "Diagnosis Of VLSI circuit defects: defects in scan chain and circuit logic." PhD (Doctor of Philosophy) thesis, University
of Iowa, 2010.
http://ir.uiowa.edu/etd/894.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages

DIAGNOSIS OF VLSI CIRCUIT DEFECTS:

DEFECTS IN SCAN CHAIN AND CIRCUIT LOGIC

by

Xun Tang

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

December 2010

Thesis Supervisor: Professor Sudhakar M. Reddy

 1

ABSTRACT

Given a logic circuit that fails a test, diagnosis is the process of narrowing down

the possible locations of the defects. Diagnosis to locate defects in VLSI circuits has

become very important during the yield ramp up process, especially for 90 nm and below

technologies where physical failure analysis machines become less successful due to

reduced defect visibility by the smaller feature size and larger leakage currents.

Successful defect isolation relies heavily on the guidance from fault diagnosis and will

depend even more for the future technologies.

To assist a designer or a failure analysis engineer, the diagnosis tool tries to

identify the possible locations of the failure effectively and quickly. While many defects

reside in the logic part of a chip, defects in scan chains have become more and more

common recently as typically 30%-50% logic gates impact the operation of scan chains

in a scan design. Logic diagnosis and scan chain diagnosis are the two main fields of

diagnosis research. The quality of diagnosis directly impacts the time-to-market and the

total product cost. Volume diagnosis with statistical learning is important to discover

systematic defects. An accurate diagnosis tool is required to diagnose large numbers of

failing devices to aid statistical yield learning. In this work, we propose techniques to

improve diagnosis accuracy and resolution, techniques to improve run-time performance.

We consider the problem of determining the location of defects in scan chains and

logic. We investigate a method to improve the diagnosability of production compressed

test patterns for multiple scan chain failures. Then a method to generate special

diagnostic patterns for scan chain failures was proposed. The method tries to generate a

complete test pattern set to pinpoint the exact faulty scan cell when flush tests tell which

scan chain is faulty.

Next we studied the problem of diagnosis of multiple faults in the logic of

circuits. First we propose a method to diagnose multiple practical physical defects using

 2

simple logic fault models. At last we propose a method based on fault-tuple equivalence

trees to further improve diagnosis quality.

 Abstract Approved: _______________________
 Thesis Supervisor

 Title and Department

 Date

DIAGNOSIS OF VLSI CIRCUIT DEFECTS:

DEFECTS IN SCAN CHAIN AND CIRCUIT LOGIC

by

Xun Tang

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

December 2010

Thesis Supervisor: Professor Sudhakar M. Reddy

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Xun Tang

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the December 2010
graduation.

Thesis Committee: ___________________________________
 Sudhakar M. Reddy, Thesis Supervisor

 Wu-Tung Cheng

 Soura Dasgupta

 Jon G. Kuhl

 Hantao Zhang

 David R. Andersen

ii

To My Family

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my academic

advisor, Professor Sudhakar M. Reddy, for his excellent guidance and solid management

throughout this research. Without his guidance, this work would not be even possible.

Equal amount of thanks are given to Dr. Wu-Tung Cheng and Dr. Ruifeng Guo for their

constructive advices and knowledgeable explanations. I also want to thank my committee

members Prof. Kuhl, Prof. Dasgupta, Prof. Zhang, and Prof. Andersen for serving on my

committee and giving valuable suggestions.

Many thanks to my friends and co-workers in my research: Huaxing Tang, Yu

Huang, Manish Sharma, Liyang Lai, Elham Moghaddam Chris Schuermyer, Xin Dou.

Finally I would like to thank my parents, family and close friends for their great

support and encouragement along this journey.

 iv

ABSTRACT

Given a logic circuit that fails a test, diagnosis is the process of narrowing down

the possible locations of the defects. Diagnosis to locate defects in VLSI circuits has

become very important during the yield ramp up process, especially for 90 nm and below

technologies where physical failure analysis machines become less successful due to

reduced defect visibility by the smaller feature size and larger leakage currents.

Successful defect isolation relies heavily on the guidance from fault diagnosis and will

depend even more for the future technologies.

To assist a designer or a failure analysis engineer, the diagnosis tool tries to

identify the possible locations of the failure effectively and quickly. While many defects

reside in the logic part of a chip, defects in scan chains have become more and more

common recently as typically 30%-50% logic gates impact the operation of scan chains

in a scan design. Logic diagnosis and scan chain diagnosis are the two main fields of

diagnosis research. The quality of diagnosis directly impacts the time-to-market and the

total product cost. Volume diagnosis with statistical learning is important to discover

systematic defects. An accurate diagnosis tool is required to diagnose large numbers of

failing devices to aid statistical yield learning. In this work, we propose techniques to

improve diagnosis accuracy and resolution, techniques to improve run-time performance.

We consider the problem of determining the location of defects in scan chains and

logic. We investigate a method to improve the diagnosability of production compressed

test patterns for multiple scan chain failures. Then a method to generate special

diagnostic patterns for scan chain failures was proposed. The method tries to generate a

complete test pattern set to pinpoint the exact faulty scan cell when flush tests tell which

scan chain is faulty.

Next we studied the problem of diagnosis of multiple faults in the logic of

circuits. First we propose a method to diagnose multiple practical physical defects using

 v

simple logic fault models. At last we propose a method based on fault-tuple equivalence

trees to further improve diagnosis quality.

vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

CHAPTER 1. INTRODUCTION ...1

CHAPTER 2. REVIEW OF DEFECT DIAGNOSIS ALGORITHMS3

2.1 Review of Scan Chain Diagnosis ...4
2.1.1 Tester-Based Scan Chain Diagnosis ...7
2.1.2 Hardware-Based Scan Chain Diagnosis......................................8
2.1.3 Software-Based Scan Chain Diagnosis10

2.2 Review of Logic Diagnosis ..18
2.2.1 Single Stuck-At Defect Diagnosis Using the Stuck-At
Fault Model ...18
2.2.2 Multiple Fault Diagnosis ...21

CHAPTER 3. IMPROVING COMPRESSED PATTERN GENERATION
FOR MULTIPLE SCAN CHAIN FAILURE DIAGNOSIS38

3.1 Introduction ..38
3.2 Preliminaries ...39

3.2.1 Test response compactors ...39
3.2.2 Problem formulation ...41

3.3 A Method to Improve Diagnostic Resolution of Production
Tests 44

3.3.1 Normal test generation flow ..44
3.3.2 Proposed chain selection procedure ..45

3.4 Experimental Results ..48

CHAPTER 4. IMPROVING DIAGNOSTIC TEST GENERATION FOR
SCAN CHAIN FAILURES USING MULTI-CYCLE SCAN
PATTERNS ..54

4.1 Motivation ..54
4.2 Previous Work ..54
4.3 Preliminaries ...55

4.3.1 Analysis of the test generation algorithm in [Guo 07]57
4.4 Procedures to Improve Diagnostic Resolution60

4.4.1 Differentiate Scan Cells through Data Input Capture61
4.4.2 Sequential Depth for Procedure 1 ...63
4.4.3 Practical Considerations ..65
4.4.4 Extension to Timing Failures ..67

4.5 Improve Runtime Performance of Diagnostic Test Generation68
4.5.1 The Key Idea behind the Speed-up Flow69
4.5.2 The Proposed Diagnostic Flow for Speeding-up71

4.6 Experimental Results ..73

vii

CHAPTER 5. DIAGNOSIS OF MULTIPLE PHYSICAL DEFECTS USING
LOGIC FAULT MODELS ...80

5.1 Introduction ..80
5.2 Diagnosis Method Based On SLAT ...83

5.2.1 Preliminaries ...83
5.2.2 Multiple Physical Defect Diagnosis ..84
5.2.3 Experimental Results for Multiple Physical Defect94

5.3 Diagnosis Method Based on FTET ..99
5.3.1 Analysis of Diagnosis Method in [Ye 10]100
5.3.2 Method to Identify Faulty Locations Based On FTET103
5.3.3 Experimental Results for Multiple Physical Defects108

CHAPTER 6. CONCLUSIONS ...114

6.1 Conclusion of Completed Research ...115
6.2 Future Research ..117

REFERENCES ..119

viii

LIST OF TABLES

Table 1: Two-pattern Flush Tests ..5

Table 2: The Statistics and Pattern Counts of 4 Designs ...49

Table 3: Experimental Results for Stuck-at Faults on 2 Faulty Chains50

Table 4: Experimental Results for Stuck-at Faults on 3 Faulty Chains51

Table 5: Experimental Results for Timing Faults on 2 Faulty Chains51

Table 6: Design Profile ..75

Table 7: Diagnostic Test Generation for Design 1 ..75

Table 8: Diagnostic Test Generation for Design 2 ..76

Table 9: Diagnostic Test Generation for Design 3 ..76

Table 10: Diagnostic Test Generation for Design 4 ..78

Table 11: Diagnostic Test Generation for Design 5 ..78

Table 12: An example of suspect selection (α=0.4)...93

Table 13: Updated table ...94

Table 14: Design Characteristics ...95

Table 15: Experimental Results for Two Physical Defects ...97

Table 16: Experimental Results for Three Physical Defects ...97

Table 17: Faulty Location Identification Using Two Methods112

Table 18: Diagnosis Results Using Three Methods ...113

Table 19: Diagnosis Results Using Three Methods ...114

ix

LIST OF FIGURES

Figure 1: An Example Scan ...4

Figure 2: Identification of upper bound (UB) and low bound (LB)11

Figure 3: Jump Simulation ...12

Figure 4: Dynamic learning and single-excitation ATPG ...13

Figure 5: Fault Detected at SO of Good Chain ..17

Figure 6: Proposed Flow ..22

Figure 7: Site Selection Example ...24

Figure 8: Multiple Fault Pattern Types ..29

Figure 9: Overview of Diagnosis Method in [Ye 10] ..37

Figure 10: A Space Compactor with 3 Output Channels ...39

Figure 11: Scan Chain Selection Logic ...40

Figure 12: Illustrating Multiple Chain Failures ...42

Figure 13: Normal Chain Selection Procedure ..45

Figure 14: The Proposed Chain Selection Procedure ..46

Figure 15: Illustration of Scan Cell N Impacting Cell N-1 ..59

Figure 16: Illustration of Using Multi-Cycle Scan Patterns ..60

Figure 17: An Example with a Stuck-at-0 Fault ..61

Figure 18: Scan Cell Constraints ...69

Figure 19: Diagnostic Test Generation Flow ...72

Figure 20: Failing Patterns Types ..83

Figure 21: Diagnosis Flow Overview ..84

Figure 22: Example of Bit Union...86

Figure 23: Net-open Defects ..88

Figure 24: Illustration of Diagnosis Challenge ..89

Figure 25: Comparison for Two Defects ...95

x

Figure 26: Comparison for Three Defects ...96

Figure 27: A Faulty Circuit under Pattern abc(101) ..100

Figure 28: Diagnosis methodology overview [Ye 10] ...101

Figure 29: Example of FTET Construction [Ye 10] ..102

Figure 30: An example of conflict ...104

Figure 31: Faulty S27 Circuit under Pattern P1 ...105

Figure 32: FTET of Pattern P1 for Faulty S27 Circuit ..106

Figure 33: FTET of Pattern P4 for Faulty S27 Circuit ..107

1

CHAPTER 1. INTRODUCTION

Following the so-called Moore’s Law, the scale of Integrated Circuits (ICs) has

doubled every 18 months. The term “VLSI” originally was used for chips having more

than 100,000 transistors but now is used to refer to chips with hundreds of millions of

transistors. The semiconductor industry goal of shipping out quality devices continues to

become more challenging as the design complexity increases and the feature size of

transistors keeps decreasing. The purpose of fault diagnosis is to determine the cause of

failure in a manufactured defective chip. To assist a designer or a failure analysis

engineer, the diagnosis tool tries to identify the possible locations of the failure

effectively and quickly. While many defects reside in the logic part of a chip, defects in

scan chains have become more and more common recently as typically 30%-50% logic

gates impact the operation of scan chains in a scan design. Logic diagnosis and scan

chain diagnosis are the two main fields of diagnosis research. The quality of diagnosis

directly impacts the time-to-market and the total product cost. In volume diagnosis,

diagnosis is performed on a large number of failing chips to find yield-limiting

systematic defects and design issues. Due to the increasing difficulty of physical

inspection of today’s multi-layer deep sub-micron design and the increasing cost of the

physical analysis process, diagnosis becomes a very important step in the process of

silicon debugging, yield ramp-up and field return analysis.

The following three merits are usually used to evaluate the effectiveness of an

advanced diagnosis tool:

• High diagnosis resolution: The number of reported candidate locations is defined

as diagnosis resolution and it should be as small as possible. If the reported

2

candidate set size is too large, it will make physical failure analysis extremely

difficult. The cost of time and resources for the failure analysis process would be

high.

• High diagnosis accuracy: The set of candidate locations reported should be as

close as possible to the set of real defects. Low accuracy wastes time and

resources in the physical failure analysis process because the reported candidate

set has low correlation with the real defects.

• High runtime efficiency: The speed of performing quality diagnosis should be

high. This is important especially for volume diagnosis. With deep-submicron

processes, especially 65nm design and below, systematic defects have turned to

be dominant. In order to locate systematic defects, a large volume of failed chips

need to be diagnosed and the diagnosis results need to be used for the statistical

analysis. To diagnose a large number of failed chips in a reasonable time, the run

time of the diagnosis must be relatively short.

The objective of our diagnosis research is to develop techniques to improve

diagnosis resolution and accuracy as well as improve diagnosis runtime performance. In

Chapter II, we will briefly review previous works on defect diagnosis and in Chapter III

we propose a technique to improve compressed test pattern generation for multiple scan

chain failures. Chapter IV will discuss new methods to improve diagnostic test generation

for scan chain failures using multi-cycle scan patterns. In Chapter V we propose a

diagnosis method for multiple random physical defects residing in the logic part of a

circuit using logic fault modes and multiple clustered defects. Chapter VI concludes the

research.

3

CHAPTER 2. REVIEW OF DEFECT DIAGNOSIS ALGORITHMS

In this chapter, we review previous research in the area of defect diagnosis. In

Section 2.1 we first review previous works on scan chain diagnosis and in Section 2.2 we

review previous works on logic diagnosis.

Physical defects can behave in many different ways. We use fault models to model

the effect of a defect for diagnosis. Currently, logical fault models are widely used due to

the speed of simulation and simplicity. A logic fault model describes the faulty behavior

of a defect at the logic level. Model-based defect diagnosis is a procedure to identity

defects by using fault model simulations. Classic fault models include: the stuck-at fault

model, the bridge fault model, the open fault model, the gate delay fault model and the

path delay fault model.

• The stuck-at fault model: This is the simplest and most widely used model. The

faulty behavior of a large number of physical defects can be effectively described

using stuck-at fault models. For the stuck-at fault model, a node in the circuit is

stuck at a fixed logic value, either 0 (stuck-at 0) or 1 (stuck-at 1). Stuck-at 0 could

be the result of a short to the ground line. Stuck-at 1 could be the result of a short

to the power supply line.

• The bridge fault model: The bridge fault model is used to describe the logic

behavior of two nodes that are shorted in the circuit. Common bridge fault models

are the wired-AND/OR fault model, the dominate fault model, 4-way bridge fault

model. The wired-AND/OR bridge model assumes that the faulty node of the

bridge always has the logic value 0(1). The dominate bridge model assumes that

one node of the bridge always dominates the other node by imposing its logic

4

value on the other one. The bridge fault model is an important model since

bridging is a common defect in circuits.

• The open fault model: The open fault model attempts to model the open defects,

such as electrical open, break, and disconnected vias in a circuit. Opens can result

in state-holding, intermittent, and pattern-dependent fault effects; thus open

models are more complicated than stuck-at and bridge fault models.

• The delay fault model: To represent timing related defects, the gate delay model

and path delay model are used. The gate delay model assumes the defect-induced

delay is only between a single gate input and output. The path delay model

spreads the total delay along a circuit path from a circuit input to a circuit output.

2.1 Review of Scan Chain Diagnosis

Scan-based designs have been considered a cost-effective method for achieving

good test coverage in digital circuits and are widely adopted in nowadays VLSI designs.

The amount of die area consumed by scan elements, chain connections, and control

circuitry varies with different designs. As 30%-50% of logic gates on a typical chip

impact the operation of scan chains [Kundu 94], scan chain failures are the cause of a

substantial proportion of failing chips. Accurate diagnosis of scan chain failures is

important for physical failure analysis and yield analysis.

Figure 1: An Example Scan

5

We give the following terminologies here since they are used in much of the

research on scan chain diagnosis. Each scan cell in a scan chain is given an index. As

shown in Figure 1, the scan cell connected to the scan chain output has index 0 and the

scan cells are numbered incrementally from scan chain output to scan chain input.

Downstream scan cells of a scan cell N are the scan cells between scan cell N and the

scan chain output. Upstream scan cells of a scan cell N are the scan cells between scan

cell N and the scan chain input. In a list of consecutive scan cells in a scan chain, the scan

cell with the highest index is called the upper bound (UB) and the scan cell with the

lowest index is called the lower bound (LB).

Table 1: Two-pattern Flush Tests

Pattern Pattern 1 Pattern 2

Scan Input (SI) 11110000 00001111

Expected Scan Output (SO) 11110000 00001111

Faulty SO (SA0) 00000000 00000000

Faulty SO (SA1) 11111111 11111111

Faulty SO (STR) 11100000 00001111

Faulty SO (STF) 11110000 00011111

Faulty SO (FTR) 11111000 00001111

Faulty SO (FTF) 11110000 00000111

Faulty SO (HT) 11111000 00000111

A chain pattern (also called a flush pattern) is a pattern consisting of shift-in and

shift-out operations without pulsing capture clocks. The purpose of chain patterns is to

6

test scan chain integrity. A scan pattern is a pattern consisting of a shift-in operation, one

or multiple capture clock cycles, and a shift-out operation. The purpose of a scan patterns

is to test system logic. Classic scan chain fault models include stuck-at faults (stuck-at-0,

stuck-at-1), slow faults (slow-to-rise, slow-to-fall, and slow), and fast faults (fast-to-rise,

fast-to-fall, and fast). Setup-time violations can result in slow faults, and hold-time

violations can result in fast faults. Slow and fast faults are also called timing faults. The

faulty behavior of a physical defect can also behave as a permanent fault, which occurs in

all cycles, or an intermittent fault, which occurs in a subset of cycles.

Usually flush tests are used to detect scan cell defects and to determine the fault type

in a defective scan chain. Two flush test patterns [Chuang 08] shown in the second row

of Table 1 can be used to determine the following fault types: stuck-at-0 (SA0), stuck-at-

1(SA1), slow-to-rise(STR), slow-to-fall(STF), fast-to-rise(FTR), fast-to-fall(FTF), hold-

time(HT).

The flush tests are shifted in and out of scan chains without using capture cycles.

Assuming that there is a single fault in a faulty scan chain, the response to flush tests (the

shifted-out values) for seven types of faults are shown in rows 4 through 10 of Table 1

and the fault free response is shown in row 3. It can be seen that the fault responses

distinguish the fault types. After determining the fault type based on flush tests, the chain

diagnosis is to locate the defective scan cell in the faulty scan chain.

Chain patterns alone are usually sufficient to determine the faulty chain and faulty

type as described above but insufficient to pinpoint the index of a failing scan cell. This is

the fundamental motivation of scan chain diagnosis, which is the process of identifying

one or multiple defective scan cells in one or multiple scan chains or defective scan-

7

enable or clock signals. Diagnosis techniques of scan chain failures have been

investigated in some previous works. These techniques can be classified into three

categories: tester-based techniques, hardware-based techniques and software-based

techniques. Next we review these techniques. We will focus on the software-based

techniques as our research on scan chain diagnosis also falls into this category.

2.1.1 Tester-Based Scan Chain Diagnosis

Tester-based diagnosis techniques use a tester to control scan chain shift

operations and use physical failure analysis (PFA) equipment to observe defective

responses at different locations in order to identify failing scan cells. These techniques

normally provide good diagnosis resolution. However, they require expensive, time-

consuming, and often destructive sample preparation, and they provide visibility only

through a small peephole. Hence, you must know where to look with your PFA

equipment.

In [De 95] the authors propose a tester-based technique in which they apply a

chain pattern of alternating 0s and 1s and use an electron-beam to detect the toggles. A

binary-search scheme is applied to detect a stuck-at fault at a cell where the toggles start

to disappear.

Song et al. propose a diagnostic method based on light emission due to off-state

leakage current (LEOSLC) [Song 04]. They apply two chain patterns: all 0s and all 1s.

They compare two emission images of a cell for both chain patterns. If there is no

difference, a stuck-at fault could be on this cell or its upstream cells. This procedure is

repeated until it reaches the first cell that shows a different emission image for all 0s and

1s. Applying a binary search can speed up the process.

8

If passing or failing conditions for a scan shift operation, such as power supply,

reference voltages, or clock speed can be identified, then passing or failing conditions can

be used to shift in a chain pattern and change the test environment to the opposite

condition for shift out. The location where failures start to appear or disappear is the

defect location. Motika et al. identify the passing or failing shift speed to diagnose slow

faults [Motika 03]. By varying operating parameters, Motika, Nigh, and Song trigger one

or more latches downstream from the fault location to change the state from the stuck-at

fault value [Motika 06].

2.1.2 Hardware-Based Scan Chain Diagnosis

Hardware-based methods use special scan chain and scan cell designs to facilitate

diagnosis. These techniques are effective in isolating scan chain defects. However,

because they typically require extra hardware overhead, they are not acceptable in many

products. In addition defects could occur in the extra control hardware, which makes

diagnosis more complicated.

In [Schafer 92] the authors proposed to connect each scan cell’s output to a scan cell

in another scan chain so that its value could be observed from the other scan chain

(partner chain) in diagnostic mode. For example, assume there is one stuck-at-0 at the

output of cell 2 of scan chain 1, and chain 1 has four scan cells. After shifting in 1111,

chain 1 should have 1100. Then the circuit is turned into diagnostic mode, and the data in

chain 1 is transferred to its partner chain. Assuming the partner chain is a good chain,

1100 is observed from this chain, and it can be deduced that the defect must be in the

middle of chain 1.

9

In [Edirisooriya 95] the authors propose to insert XOR gates between scan cells to

enhance chain diagnosis. The proposed scheme will always identify the fault closest to

the scan output if there are multiple faults. The scheme makes a trade-off between the

number of XOR gates added and the diagnostic resolution.

Narayanan and Das proposed to add simple circuitry to a scan flip-flop to enable its

scan-out port to be either set or reset [Narayanan 97], [Narayanan 99]. They presented a

global strategy based on the set/reset feature to account for disparities in defect

probabilities and controllability and observability attributes of flip-flops in a scan chain.

They also presented an algorithm to optimally modify a subset of the flip-flops to

maximize diagnostic resolution. One solution is that each adjacent pair of flip-flops

consists of a flip-flop whose scan output can be reset to 0, and a flip-flop whose scan

output can be set to 1. Hence, any single stuck-at fault can be diagnosed down to a pair of

flip-flops.

In [Wu 98] a special circuit is proposed to flip, set, or reset scan cells to identify

defective cells. After shifting in a chain pattern, the circuit can invert, set, or reset each

flip-flop’s state. The faulty cell is located via the observed unloading value. Song

proposed a bidirectional scan chain architecture in which the scan chain performs both

forward and backward scan shifts to diagnose scan faults [Song 00].

Tekumulla and Lee propose partitioning scan chains into segments and bypassing

segments that contain hold-time violations [Tekumulla 07]. When a hold-time violation is

located on a scan chain segment, the flip-flop in that segment is bypassed and new test

patterns are created.

10

2.1.3 Software-Based Scan Chain Diagnosis

Software-based techniques use diagnosis algorithms to identify faulty scan cells.

Compared with hardware-based techniques, software-based techniques do not need

modification of the conventional scan design and are more widely adopted in industry for

general designs. Software-based fault diagnosis algorithms include cause-effect and

effect-cause methodologies. Effect-cause diagnosis uses fault injection and simulation.

The simulated responses are compared with the observed tester results to identify the

faulty scan cells. This approach is useful when complex fault models are used. Cause-

effect diagnosis is based on pre-calculated fault signature, which is also called fault

dictionary.

2.1.3.1 Effect-Cause Methods

In [Stanley 01] fault injection and simulation are used to find faulty scan cells. One

fault in a cell is injected for each run. Because all scan cells on a faulty chain are

candidates, the method is time-consuming for a scan chain with many cells. To speed up

the diagnosis procedure, researchers have proposed several techniques.

Guo and Venkataraman proposed an algorithm that identifies an upper bound (UB)

and lower bound (LB) for a faulty cell [Guo 01]. Figure 2 shows an example to explain

the algorithm. Assume there is a single fault in the faulty chain. First, they faulty chain’s

simulated loading values are all changed to Xs. After the capture clock pulses, assume the

simulated captured values on this faulty chain are XX10XXX0XX1X. That means cells 8

and 4 will capture 0s no matter what values were loaded to the faulty chains. Suppose the

observed values on the tester are actually 111111001010. Because the observed value at

scan cell 8 is 1, a stuck-at-1 fault must be downstream of cell 8. Thus cell 8 is an upper

11

bound (UB) of the faulty scan cell. Meanwhile, because the observed value at cell 4

matches the simulated value 0, the stuck-at-1 fault must be upstream of cell 4. Thus cell 4

is a lower bound (LB) of the faulty cell. Ranking the suspect cells within the bounded

range further improves the diagnosis resolution. This method may not provide good-

enough diagnostic resolution for some scan chain failures and it is hard for it to handle

multiple faults in one scan chain.

Figure 2: Identification of upper bound (UB) and low bound (LB)

Figure 3 illustrates another method of speeding up effect-cause scan chain diagnosis.

Kao, Chuang, and Li proposed jump simulation to diagnose a single chain fault [Kao 06].

For each failing pattern, a simulator performs multiple simulations to quickly determine

the UB or LB. After the range is finalized, a detailed simulator performs parallel pattern

simulation for every fault in the final range. Suppose there is a stuck-at-1 fault on a scan

chain and the current UB=27 and the current LB=20. The scan cells from the UB to the

LB are evenly divided into three parts and the boundary scan cells (22, 24, and 26) are

chosen as jump bits. In searching for a new UB, the algorithm assumes the fault is

upstream from the jump bit. It changes all 0s downstream from the jump bit to 1s, and all

12

0s between the jump bit and the UB to Xs. If a simulation mismatch occurs in a jump bit,

say, cell 24, the algorithm deduces that the stuck-at-1 fault is actually downstream from

jump bit 24. It therefore moves the new UB to scan cell 23. It searches for the LB in a

similar way. This method can provide better diagnostic resolution compared with method

proposed in [Guo 01]. However, the diagnostic resolution is still bounded by the

production test set and may not be able to provide good-enough resolution needed for

failure analysis.

Figure 3: Jump Simulation

In [Huang 07] an effect-cause method was proposed using dynamic learning. This

method was based on several learning rules. These rules analyzed the circuit, patterns,

and mismatched bits and backtraced the logic cones to determine which cells should be

simulated in the next iteration. As a result, only a few cells need to be simulated to find

suspects instead of simulating every scan cell within a range. Figure 4 shows an example

13

of a technique that updates the LB. A fault is injected at the current LB at cell 1. If there

is a simulation mismatch on the cell of a good chain, we can backtrace the fault from the

mismatched cell. Assuming this cell is driven by cells 4 and 3 on the faulty chain, we

learn that either cell 4 or cell 3 or both carried wrong loading values in the previous

simulation. Therefore, the new LB is updated to scan cell 3. This process can be iterated

several times until the actual defective scan cell is found.

Faulty Chain

Good
Chain

4 3 2 1 0

New LB Old LB

Mismatch

PI

Figure 4: Dynamic learning and single-excitation ATPG

Huang et al. investigate the diagnosis of intermittent hold-time faults and propose an

algorithm based on X simulation in which intermittent loading and unloading behavior is

modeled with Xs [Huang 03]. Huang, Cheng, and Crowell present case studies to

illustrate the problems of using a fault model to diagnose real chain defects [Huang

14

05_1]. They propose a fault model relaxation flow in which chain fault models are

adaptively selected according to fault model relaxation rules and simulation results.

To reduce test data volume, encoded tests and compacted test responses are now

widely used in industry. Scan chain diagnosis on devices with embedded compression

techniques is a new challenge as the errors in responses due to defects which are captured

in scan cells are not observed directly. Huang, Cheng, and Rajski proposed a

methodology that enables existing chain diagnosis algorithms to be used with compressed

test data [Huang 05_2]. The tester’s storage capacity and test time restrict the total

number of failing bits that can be collected, thus negatively affecting the diagnosis

resolution. Huang et al. proposed three methods of running chain diagnosis with limited

failure information: static pattern reordering, dynamic pattern reordering, and per-pin-

based diagnosis [Huang 06].

2.1.3.2 Cause-Effect (Dictionary-based) Methods

In [Guo 07] a dictionary-based diagnosis technique for scan chain failures is

proposed. In this technique, differential signatures are stored in fault dictionaries to

reduce the fault signature redundancy of adjacent scan cell faults. The differential

signatures serve to diagnose single stuck-at faults, timing faults and some multiple stuck-

at faults in a single scan chain. The cost of large memory and more complicated fault

models could make the method less practical.

2.1.3.3 Diagnostic ATPG for Scan Chain Failures

In software-based diagnosis, usually the production test patterns used to detect

defective chips are used to collect test failures for diagnosis. Since the aim of production

tests is only fault detection, they may not provide sufficient information for diagnosis

15

purpose, leading to poor diagnosis. In [Huang 06], it is reported that for only 23% of

failing dies, diagnosis based on production tests gave less than or equal to three scan cell

suspects, which is regarded as the minimum desirable resolution in our research work.

Methods to generate additional test patterns to improve diagnostic resolution have been

proposed.

Kundu proposed a scan chain diagnosis algorithm that focuses on generating test

patterns for stuck-at faults [Kundu 93] [Kundu 94]. It creates test patterns either to

capture desired values in specific scan cells or to propagate fault effects to good scan

chains for failure observation. The method is summarized as follows:

For each scan cell N in faulty chain (from cell L-1 to cell 0)

1. Add scan cell constraints (N, N-1…0) = (vv...v)

2. Run stuck-at ATPG to generate a test pattern for a stuck-at-v fault at the data input

of scan cell N

3. If the fault is detected, save the test for cell N and continue with next cell at Step 1;

4. Otherwise, generate a test for the stuck-at-v fault on data output of scan cell N:

a. If a fault is detected, save the test for cell N and continue with the next cell at Step

1;

b. Otherwise, continue with the next cell from Step 1

This diagnostic test generation algorithm targets each scan cell one at a time starting

with cell (L-1), which is the scan cell closest to scan chain input. For each target scan cell

N, it constrains scan cell N and its downstream scan cells to value v. These constraints

model the impact of a stuck-at fault on scan cell N during scan load process (i.e., scan

cell N and all its downstream scan cells will get value v during the scan load process due

16

to the stuck-at-v fault on cell N). With all these constraints, the algorithm first tries to

create a test pattern to capture a logic value opposite to the stuck-at fault value into the

target scan cell N. If successful, it moves on to the next scan cell. Otherwise, it tries to

create a test pattern to detect a stuck-at-v fault at the data output of the target scan cell.

However, this algorithm doesn’t constrain the scan cell appropriately to provide sufficient

conditions to guarantee that the scan cell N can be differentiated from scan cell N-1.

In [Yang 05] the authors proposed using functional test patterns for scan chain failure

diagnosis. Their procedure selected patterns to randomize the signal probability of scan

cells. By comparing the observed signal profile on a tester and the expected signal profile

along a faulty scan chain, the faulty scan cell can be identified. Profiling based methods

can quickly identify some faulty scan cells, but it may fail to identify some faulty scan

cells which can be easily pinpointed using other methods.

Some researchers proposed diagnosis algorithms that include two parts [Hsu 06]

[Tzeng 07_1] [Tzeng 07_2]. First, use diagnostic ATPG to obtain scan patterns that don’t

use chain-loading procedures so that the impacts of chain defects come only from chain

unloading procedures. Then, apply heuristics to analyze test failures and identify

defective scan cells. The heuristics include signal profiling, best alignment, delay

insertion, and image recovering.

Li [Li 05_1] [Li 05_2] proposes a single-excitation technique to generate diagnostic

patterns. Single-excitation patterns have one sensitive bit that can be flipped by the fault.

This technique converts the diagnosis problem into a single-stuck-at-fault ATPG

problem, which existing tools can easily solve. Figure 5 [Li 05_1] shows an example.

Suppose that a stuck-at-0 chain fault exists. The single-excitation pattern 00100 shifts

17

into the faulty scan chain, making cell 2 the sensitive bit. Hence, this technique detects a

fault in the same way as it would detect a stuck-at-0 fault in combinational logic.

Figure 5: Fault Detected at SO of Good Chain

In [Crouch 05] it is suggested that fault effects be propagated to as many primary

outputs and good scan chains as possible. He also proposed adding shift cycles between

capture clocks, which can be helpful for diagnosing multiple chain faults. In [Sinanoglu

07] Sinanoglu and Schremmer proposed generating test stimuli, such as 0s and 1s, that

are immune to hold-time violations on the faulty chain and randomly changing stimuli on

the good chains.

Guo, Huang and Cheng proposed a complete test set generation technique for scan

chain fault diagnosis [Guo 07]. This technique attempts to create test patterns that

uniquely identify any faulty scan cell. The authors extended the algorithm to handle

multiple failing scan chains and designs with test compression logic. During test

18

generation, the algorithm carefully analyzed constraints on scan cell controllability and

obsevability if there are logic correlations between scan cells on the same scan chain. If

all the scan cells in the target range can be targeted using the procedure, a complete test

set can be obtained to guarantee each scan cell will have a unique faulty behavior. This

method, however, cannot provide sufficient conditions for multi-cycle scan patterns, and

the test generation flow can be very time consuming when the whole scan chain needs to

be targeted, especially for very large designs.

In [Wang 08], a diagnostic test generation method is proposed to target scan chain

defects in the presence of defects in the logic part of the DUT. It targets a scan cell using

only fault propagation conditions, (i.e., specifically targeting scan cell input is not used).

2.2 Review of Logic Diagnosis

In this section, we give a brief review of diagnosis methods of defects in the logic

part of circuits.

2.2.1 Single Stuck-At Defect Diagnosis Using the Stuck-

At Fault Model

The stuck-at fault model is most widely used to model the faulty behavior of physical

defects, and many defects can be covered using stuck-at fault ATPG patterns. Most

diagnosis is also based on stuck-at fault model. In most cases, we don’t know what model

the defect belongs to before we perform diagnosis. Therefore stuck-at diagnosis is usually

performed first. Based on the stuck-at diagnosis result, we can determine if complex fault

models, such as the bridge fault, the net open fault, or the cell fault etc., can be

constructed to better explain the failures.

19

Logic diagnosis can also be classified into two categories: One is Effect-cause

diagnosis that back traces from erroneous PO/PPO to find candidates and then simulates

the candidates to find the one that best matches the failure responses observed on the

tester. The other is Cause-effect diagnosis, which uses a pre-simulated fault dictionary

and the observed failure response on the tester to determine the defect in a faulty device.

2.2.1.1 Cause-Effect Diagnosis

A fault dictionary is a record of the errors that the modeled faults in the circuit are

expected to cause [Abramovici 90]. It stores a mapping from the modeled fault to a

simulated faulty response. The procedure of fault dictionary diagnosis is to look in the

pre-calculated dictionary to find the suspect that causes the faulty behavior. The fault

candidate whose expected faulty signature matches best with the observed faulty

signature will be chosen as the final fault candidate. If we assume a single stuck-at defect,

there should be an exact match between the expected signature of the fault candidate and

the observed faulty signature.

There are three types of dictionaries: pass-fail dictionaries, complete dictionaries and

compressed signature dictionaries. A pass-fail dictionary only stores a single bit (pass or

fail) of failure information for each fault per test pattern. Since it omits useful

information about where the failing bit is, it renders distinguishing some faults

impossible. A complete dictionary is a full-response dictionary, which stores all circuit

outputs in the presence of each fault for each test pattern. The number of bits required to

store a complete dictionary equals F*V*O, where F is the number of faults, V is the

number of test patterns, and O is the number of primary outputs. The downside of a

complete dictionary is the storage it requires is huge for designs with multi-million gates.

20

A compressed signature dictionary is obtained by feeding the output information through

a 32 or a 64 bit multiple input signature register (MISR) to get a compressed signature.

There is the problem of aliasing: that two different output responses may be compressed

to the same failure signature. But by choosing a MISR with more bits, the chance of

aliasing is slim. Compressed signature dictionaries save storage space and provide about

the same diagnosis resolution as the complete dictionary.

A number of methods were proposed in order to reduce the memory requirement for a

complete dictionary.

2.2.1.2 Effect-Cause Diagnosis

In [Waicukauski 89] Waicukauski and Lindbloom proposed an effect-cause diagnosis

procedure. The procedure can be summarized as following.

1. Use the path-tracing technique to obtain an initial candidate list. Initial fault

candidates must satisfy the requirements below in order to reduce the search space

and improve diagnosis efficiency:

• The fault must reside in the input cone of a failing PO of the given pattern

• There must exist a parity-consistent path from the faulty site to the failing PO

• If a failing pattern affects more than one PO, that candidate fault must reside

in the intersection of all the input cones of those failing POs. This is based on

a single defect assumption: that for a failing pattern, only one defect is

activated and propagated.

2. Simulate each fault on the initial candidate list to see if it perfectly explains any of

the failing patterns. If it does, assign it a weight equal to the number of patterns it

21

explains on the current list. Store the candidate fault with the greatest weight, and

remove the failing pattern explained by it.

3. After explaining the entire failing-pattern list, or when the candidate list has all

been examined, terminate the algorithm, and report the possible candidate sites.

Rank candidates using their weights obtained in Step 2.

2.2.2 Multiple Fault Diagnosis

As design complexity grows and the feature size of transistor decreases, more and

more physical defects cannot be modeled using the classic single fault model. These

defects behave as multiple faults. Much research has been done on multiple fault

diagnosis. Multiple-fault diagnosis mainly has the following difficulties:

If the multiple-fault problem is addressed directly, the error space grows

exponentially. Error space = (# of lines) (# of defects(errors)) [Veneris 99], where # of lines is

the number of signal lines in the circuit. This would be expensive to explore exhaustively.

Assumptions and heuristics are proposed to address this problem. Multiple-faults may be

activated at the same time and interact with each other to create fault masking, which

makes the multiple fault diagnosis difficult.

2.2.2.1 Diagnosis Using SLAT Paradigm [Bartestein 01]

In [Bartestein 01] a diagnosis method based on Single-Location-at-a-Time

(SLAT) was investigated. The single-location-at-a-time paradigm assumes that there exist

many SLAT patterns, in which, only one activated fault is observed. There can be more

than one activated fault, but only one is propagated to the primary output or scan flip-

flops. The algorithm is actually location-based diagnosis. During the first phase, it

performs logic diagnosis with stuck-at faults assumption. It back-traces the failing pins to

22

find candidates and if a candidate explains a pattern, the pairs consisting of the failing

pattern and the locations of the successful faults are stored in a table. It collapses two

faults into one fault if two faults happen at the same location but with opposite faulty

values. If two faults occur at the same location, there is a high possibility that the two

faults are caused by the same defect.

In the second phase, a recursive minimum set covering procedure is called to find

the minimum number of faults which can explain all the failing SLAT patterns. The

failing patterns that are explained by the least number of faults are considered first. The

result is a multiplet, which is a minimal collection of faults such that each SLAT pattern

is explained by at least one fault in the multiplet. A multiplet is the basic unit of a SLAT

diagnosis. It is the simplest explanation of all the SLAT patterns.

2.2.2.2 Diagnosis Methodology Using Error Propagation

Analysis [Yu 08_1] [Yu 08_2]

The proposed flow is shown in Figure 6 [Yu 08_2] below.

Figure 6: Proposed Flow

23

Three definitions:

• For pattern tk, if site fi propagates to observation point outj if all the side inputs of

on-path gates have fault-free values, fi is said to “output-explain” outj for tk.

• For pattern tk, if site fi propagates to outj only if some side inputs of on-path gates

have faulty values, fi is said to “partially output-explain” outj for tk.

• Let fi – Ji be the longest sub-path such that fi can propagate to Ji when all the side

inputs of on-path gates have fault-free values. The remaining sub-path Ji – outj is

called the “under-explained” sub-path

Fault elimination:

Perform conservative implications and eliminate false faults using passing bits.

Site grouping:

• For each failing pattern and each defect site that explains any observed failing

observation points, we find the “out-explained” outj and also the “under-

explained” sub-path for each site.

• Group the sites that have the same “out-explained” observation points and the

same “under-explained” sub-paths together

Site selection:

• Each time, select the site set that output-explains the most observed failing points

that have not been explained

The site selection algorithm is shown in Figure 7 below [Yu 08_2].

24

Figure 7: Site Selection Algorithm

Ranking:

• Rule 1: A site that is an element of a smaller site set is ranked higher

• Rule 2: If rule 1 results in a tie, a site that output-explains more failing points is

ranked higher

• Rule 3: If rule 2 results in a tie, randomly choose one site

This method has its downside. The fault elimination step may not be able to

eliminate many sites, which leaves a large number of sites for the following analysis.

2.2.2.3 Multiple error diagnosis based on Xlists

In [Boppana 99], the authors assume the logical errors are locally bounded. They

use Xlist to mark a region with X (don’t care) and perform a 3-value simulation (0,1,X)

to see if X is propagated to the output. If there is mismatch at the output, this region

cannot contain all the faults. This method has good computation at speed and general

good resolution when the faults are in clusters. However, in real designs, faults may

scatter and are not related. Using this method will not be effective to localize the fault

locations.

25

Xlist: A set of nodes whose actual values would be replaced during simulation by

the value X, and the X-values propagated to subsequent logic levels by 3-valued logic

simulation is called an Xlist.

Two forms of Xlist-Error models are defined. They are topologically bounded

errors and region based error. Let the circuit have n nodes. Let T = (1,2,…,n) be a

topological order of the nodes of the circuit.

Topologically bounded error: If the logic functions at the nodes in set E = {e1, e2,

…, ek} are erroneous and satisfy the following: Exist i, j, (1 <= i <= j <= n) such that

{i<=eq<=j, for any q, 1 <= q <= k}. The integers i, j are the lower and upper bounds

within which the error lies.

Region based error: If the logic functions at the nodes in set E = {e1, e2, …, ek}

are erroneous and satisfy the following: For any q, 1 <= q <= k, Structural Distance (eq,

p)<=r.

When diagnosing topologically bounded errors, if the error is assumed to be

bounded by k topologically, then choosing overlapping Xlists will guarantee that there

exists an Xlist containing all the error nodes: (1,2,…,2k),

(k+1,k+2,…,3k),(2k+1,…,4k),…((roof(n/k)-2)k+1,…,n). The problem is again if the

faults are scattered, then no diagnosis is possible.

When diagnosing region-based errors, if the errors are assumed to be bounded by

a radius r, by choosing a region-based Xlist at each node in the circuit that includes every

node within a radius of r from that node will be guaranteed to contain the fault region.

The Xlists are simulated and compared with observed PO and PPO. If an Xlist

produces a mismatch{(0,1) or (1,0)} (match{(0,0) or (1,1)}, or partial match {(X,0) or

26

(0,X)}, the potential of that Xlist containing the error nodes is reduced (increased,

increased slightly), and the Xlist is scored accordingly. Xlists are ranked according to the

scores.

Symbolic variables can also be used to improve the accuracy of the diagnosis

procedure. Binary decision diagram (BDD) representation of the symbolic function

simulated removes the losses in 3-valued simulation. However, there are circuits for

which efficient BDD representation is hard to obtain.

2.2.2.4 Multiple Fault Diagnosis Using n-Detection Tests

This work [Wang 03_2] investigates the multiple-fault diagnosability of the n-

detection tests.

• For bridge faults, n-detection tests increase the possibility of detecting them.

• If Pa is the test set that detect fault a and Pb is the test set that detect fault b, n-

detection tests decrease the possibility that Pa=Pb or Pa is a subset of Pb, which is

hard for multiple diagnosis.

Two diagnosis methods in [Bartestein 01] and [Wang 06] are used to demonstrate

the improvement of multiple-fault diagnosability using n-detection tests.

2.2.2.5 Curable Vectors and Curable Outputs

In [Huang 01], the author proposed a diagnosis procedure with measures of two

matching mechanisms: curable vectors (vector match) and curable outputs (failing PO

match). Each possible candidate error is ranked according to these two matches. When

single defect diagnosis does not explain the behavior, double defect diagnosis is

considered and a heuristic for multiple (more than two) defect diagnosis is proposed.

27

Curable output: Assume that the response of a primary output Zi is failing with

respect to an input vector v. It is called a curable output of a signal f with respect to test

vector v if v is able to sensitize a discrepancy path from f to Zi. By notation, Zi belongs to

curable output (f,v).

This is essentially a fault injected at f that matches the failing output Zi for vector

v. A curable output based heuristic is outlined as follows: First, the curable outputs of

each signal with respect to each failing input vector are calculated, either by fault

simulation, back propagation [Kuehlmann94], or an observability measure [Veneris97].

The signals are sorted based on their total curable outputs for all the failing vectors. The

signal with a large number of curable outputs is regarded to be a more likely defect

candidate.

Curable vector: An input vector v is curable by a signal f if the output response

can be fixed by replacing f with a new Boolean function (re-synthesize). Partially curable

vector: An input vector is partially curable by a signal f if the response of every failing

output reachable by f can be fixed by re-synthesizing f.

The diagnosis procedure will first assume only a single defect exists. If there are

signals that pass the curable output and curable vector filtering, then the process stops.

Otherwise, double faults are assumed and every signal pair is enumerated to check

against the curable vector based criterion. In [Huang 99] the procedure of double-defect

diagnosis is investigated. If any valid candidate is found, then the process stops.

Otherwise, it moves on to the next stage to apply a heuristic to generate a signal list

sorted by their defect possibilities. The heuristic algorithm uses 2 rules: rule 1 records the

total number of partially curable vectors, while the rule 2 records the total number of

28

curable outputs. The signals are first sorted according to rule 1. If rule 1 results in a tie,

the signals are sorted according to rule 2.

2.2.2.6 Multiple and single fault simulation in diagnosis

[Takahashi02]

The authors use four heuristics to repeatedly add and remove faults into/from the

candidate list. At the beginning, all collapsed stuck-at faults are in the candidate list.

In this work the authors have the following assumptions:

1. Multiple faults do not mask each other.

2. All single stuck-at faults detected by a failing test are candidate faults for

inclusion in the set suspect faults (SF).

3. Faults from SF that cause inconsistency between the simulated value of the

circuit injected with these faults and the observed value in response to a

passing test must be removed from SF.

4. A smaller fault set is more probable than a larger fault set

The following four heuristics are applied in the following order to add faults into

the candidate list and remove faults from the candidate list:

1. If a fault is detected by a passing test, then the fault is removed from SF.

2. A failing pattern tf is simulated on the circuit injected with all the faults in the

candidate list. If there is mismatched output (i.e., the observed value is

different from the simulation) then all single faults detected at any

mismatched output are added into SF.

29

3. A passing pattern is simulated on the circuit injected with all the faults in the

candidate list. All single faults detected by passing patterns at mismatched

outputs are removed from set SF.

4. Try removing any single fault if the reduced SF without this fault still matches

the observed faulty response.

This method requires too many multiple fault simulations and is hard to handle more

complicated fault models that may only excite under certain conditions.

2.2.2.7 Incremental diagnosis and PO partition [Wang03]

[Wang06]

A fault is defined as a hard fault when only one pattern detects it. The only pattern

that detects a hard fault is called the essential pattern of this fault. Suppose n faults can

perfectly explain some failing patterns. These n faults as a group are called the n-perfect

candidate for those explained patterns.

Figure 8: Multiple Fault Pattern Types

Failing pattern types:

• Type-1: SLAT pattern.

30

• Type-2: More than one activated fault is observed. Their fault effects are not

correlated. PO partition techniques can be used to deal with Type-2 failing

patterns.

• Type-3: More than one activated fault is observed and their fault effects have

interactions on some observation points. Type-3 failing patterns are hard to

diagnose.

Functional congestion (FC) of a gate g is defined as above. M is the number of

faults in g’s fan-in cone; N is the total number of patterns in test T. If the fault i under

pattern j can be observed by g, Obij is 1; otherwise 0. Gates with high functional

congestion are often the cause of incomplete or wrong candidate fault sites, since

multiple faults are more likely to interact at functional congestion locations. N-detection

test sets will improve the diagnosis results since more patterns will be Type-1 or Type-2

than in the single detection test set.

The A_single Algorithm [Waicukauski89] is used as the base algorithm:

1) Initialize the fault-candidate list using a path-tracing technique. Initial fault

candidates satisfy the following requirements to reduce the search space and

improve diagnosis efficiency:

a. The fault must reside in the input cone of a failing PO of the given pattern.

b. There must exist a parity-consistent path from the faulty site to the failing

PO.

31

c. If a failing pattern affects more than one PO, that candidate fault must

reside in the intersection of all the input cones of those failing POs (SLAT

assumption).

2) Simulate each fault on the initial candidate list to see if it perfectly explains any of

the failing patterns. If it does, assign it a weight equal to the number of patterns it

explains on the current list. Store the candidate fault with the greatest weight, and

remove the failing pattern explained by it.

3) After explaining the entire failing-pattern list, or when the candidate lists have all

been examined, terminate the algorithm, and report the possible candidate sites.

Sort candidate faults using their weights obtained in Step 2.

 n-perfect Algorithm:

1) Find a 1-perfect fault candidate: n=1. Apply A_single. Eliminate the explained

patterns.

2) Inject each n-perfect candidate into the circuit and perform steps 3 and 4 until all

n-perfect candidates have been tried.

3) For each unexplained failing pattern, initialize the possible fault candidates.

4) Perform A_single on the modified circuit and construct (n+1)-perfect candidates

based on the targeted fault model.

5) Determine the (n+1)-perfect candidates that can further explain some failing

patterns not yet explained by those (1 through n)-perfect candidates.

32

6) Rank and weight the (n+1)-perfect candidates based on failing and passing

information. Eliminate those failing patterns that can be explained by (n+1)-

perfect candidates from the failing pattern list. Increase n by 1.

7) Perform steps 2-6 for the remaining unexplained failing patterns until no fault

candidate can be found, or until all failing patterns have been explained.

8) Post process all possible k-perfect candidates (1<=k<=n) to eliminate the

candidates that cause many passing patterns to fail when multiple-fault candidate

are injected into the circuit. This is to eliminate wrong candidates assumed in the

very beginning, which may imply other wrong candidates.

Not all n-perfect candidates that explain all failing patterns will be found. In

the final step, the algorithm will find the minimum cardinality group of faults as the

fault candidates that can explain the most failure responses.

Failing PO partition algorithm:

1) Back trace from each failing PO. If back tracing from POi finds a possible fault

candidate, we mark it as reachable from POi.

2) For each failing pattern Pi, create failing PO connectivity graph, gPi. Each PO

corresponds to a vertex in gPi. If two failing POs can reach the same fault, there is

an edge between them.

3) Collect gPi to form Gp. Gp has vertices corresponding to POs. There is an edge in

Gp if there is an edge between these vertices in any of the gPi. Assign a weight to

an edge in Gp equal to the number of corresponding gPi’s that contain that edge.

If Gp is a disjoint graph, the heuristic stops. Perform the diagnosis separately on

each sub graph without losing any failing-pattern information.

33

4) Partition Gp by removing low-weight edges.

5) Use each group of failing POs induced by the partition to filter out the original

failure responses, and generate the new failure responses.

6) Diagnose each group of POs separately and obtain the fault candidates.

This method must find the exact fault in the first run to guarantee further

diagnosis, and it may be hard to inject the fault when the fault identified is a defect that

can only be modeled using a complex fault model.

2.2.2.8 Adaptive Diagnostic Test Pattern Generation

In [Lin 07], two methods were proposed to generate diagnostic test patterns to

improve diagnosis resolution. They are called SO-SLAT patterns and multiple-capture

anti-detecting (MC-AD) patterns. The authors assume that the initial diagnosis report

includes all the injected faults.

SO-SLAT patterns:

• For each fault in the candidate list, propagate the fault to one single observation

point while inactivating all the other faults that can propagate to this single

observation point.

• If it’s impossible to generate a test for one fault, apply the test patterns that can be

generated and try generating again. So it’s an iterative process that requires access

to the tester multiple times.

MC-AD patterns:

• For each faulty line in the candidate list, insert a multiplexer (MUX), the select

line of MUX can set the line to faulty value or fault-free value.

34

• Apply MC-AD patterns and use Satisfiability (SAT) solver to decide the values at

these candidate faulty lines to match tester outputs.

• MC property: It has multiple-cycle captures, so it can maximize the number of

activated faults for each pattern.

• AD property: The AD test for fault fi is test patterns that can detect all the other

candidate faults but not fi.

These methods need to access the tester multiple times, which makes them less

practical to use in some environments. It is also difficult for these methods to handle

intermittent faults.

2.2.2.9 Adaptive Debug and Diagnosis without Fault

Dictionaries [Holst 07]

Holst and Wunderlich proposed a method to identify faulty regions based on its

input/output behavior and independent of a fault model.

They define the evidence of a fault f for each test pattern t ϵ T.

 (,) (, , ,)t t t te f t lσ τ γ= Δ Δ Δ Δ

• tσΔ is the number of failing outputs where both the device under diagnosis

(DUD) and the fault machine (FM) match. They are also usually called sftf

(simulation fail tester fail).

• lΔ is the number of outputs which fail in FM but are correct in DUD. They are

also called sftp (simulation fail tester pass).

• tτΔ is the number of outputs which fail in DUD but are correct in FM. They are

also usually called sptf (simulation pass tester fail).

35

• tγΔ is the minimum of tσΔ and lΔ .

So the evidence of a fault f for a test set T is

 (,) (, , ,)t t t te f T lσ τ γ= , with

t t
t T

σ σ
∈

= Δ∑ , t t
t T

l l
∈

= Δ∑ , t t
t T

τ τ
∈

= Δ∑ , t t
t T

γ γ
∈

= Δ∑ .

The collapsed stuck-at faults are ranked using the following criteria:

• First, evidences are ranked by increasing tγ .

• Secondly, evidences with equal tγ are ranked by decreasing tσ .

• Finally evidences with equal tγ and tσ are ranked by increasing tl .

It was proposed in this work that if the diagnostic resolution is not good enough,

more test patterns can be generated based on the analysis of the evidences.

For multiple fault diagnosis, it is difficult for this method to provide sufficient

results for further failure analysis since many false locations could be ranked before some

real faulty locations that only produce few failing bits. It also fails to address the issues in

the diagnosis of more complicated multiple defects, which could be derived from a group

of simple stuck-at faults to better explain the failures.

2.2.2.10 A Diagnosis Algorithm for Extreme Space

Compaction [Holst 09]

Holst and Wunderlich proposed a diagnosis algorithm which is especially suited

for BIST with a test response compaction scheme. The idea is similar to what was

proposed in [Holst 07]. For each fault, a signature in the form of an m-bit parity bit

stream f
mP is produced to compare with observed parity bits Pm. They use the following

definitions:

36

• f
mσ is the number of bit positions faulty both in the response stream Pm as well as

in the syndrome f
mP .

• f
ml is the number of bit positions correct in Pm but faulty in f

mP .

• f
mτ is the number of bit positions faulty in Pm but correct in f

mP .

The faults are ranked using the following criteria:
• First the faults are ranked by decreasing f

mσ .

• Then the faults with equal f
mσ are ranked by increasing f

ml .

For diagnosis of multiple faults, this method has the same deficiencies as pointed

out in the review of [Holst 07].

2.2.2.11 A Method to Diagnose Multiple Arbitrary Faults

[Ye 10]

Ye, Hu and Li proposed a multiple-fault diagnosis method. The method has no

assumption on fault models. To cope with the multiple-fault mask and reinforcement

effect, two key techniques of construction and scoring of fault-tuple equivalence trees

(FTET) are introduced to choose and rank the final candidates. In Figure 9, it show the

overview of the diagnosis method.

For each failing pattern, the method traces from all failing observation point

towards the primary input to construct a FTET. The tracing for each failing patterns starts

from the first fault-tuple, which are all the failing observation points. The tracing starts

from the first tuple. A score is assigned to each node in the tree. After a FTET is

constructed for each failing pattern, the sites are selected based on the score until all the

FTETs are pruned.

37

Figure 9: Overview of Diagnosis Method in [Ye 10]

The method shows good diagnosability and resolution. It has better diagnosis

results compared with the latest diagnosis work [Yu 08_1]. However it is assumed that

multiple faults are randomly present in the faulty circuit and did not investigate the issue

when multiple faults are present in a bounded local region, which makes the diagnosis

more challenging.

38

CHAPTER 3. IMPROVING COMPRESSED PATTERN GENERATION

FOR MULTIPLE SCAN CHAIN FAILURE DIAGNOSIS

3.1 Introduction

The cost of test of manufactured VLSI circuits using scan based structural tests is

determined by test application time and tester memory costs. Several methods to reduce

these costs have been recently developed and are used in industry [Lee 99], [Ham 00],

[Raj 04], [Bar 01], [Who 03]. All these methods divide the scan cells in to a large number

of scan chains and use compressed tests which are decompressed using on-chip

decompression logic. This allows use of a small number of tester channels to load the

tests. Test response data is also compacted typically by a linear circuit and observed

through a small number of tester channels. Compacted test responses negatively impact

fault diagnosis due to reduced observability. Earlier methods to improve fault diagnosis

for circuits using test response compaction include the use of bypass of compaction

circuits, use of additional tests beyond production tests used to only detect defects [Kun

94], [Li 05], [Guo 07]. Bypassing compaction requires additional on-chip circuits and

increased test data volume. Using additional tests to improve diagnosis can be done in

two ways. One is to augment production tests. However since this approach increases test

application time it is typically not used. The other approach is to use production tests first

to detect defects and then use additional tests for diagnosis purpose. Additional tests may

be based on diagnosis using the production tests [Guo 07]. However this method may

require mounting the failing chips on the testers a second time. Use of additional tests to

improve diagnostic resolution may not be applicable in volume diagnosis used for yield

learning and yield ramp up [Chu 08]. Yield learning for very-large-scale integrated

39

circuits (VLSI) designed at current and future technology nodes of 45 nm and below will

require diagnosis of tens to hundreds of thousands of failing chips [Sha 08]. The ideal

solution for improved diagnosis is to improve the diagnosis achieved by production tests

without increasing pattern counts by much. In this work we provide a simple method to

achieve this goal.

3.2 Preliminaries

3.2.1 Test response compactors

Figure 10: A Space Compactor with 3 Output Channels

Typically test responses are compacted either using multiple input signature

registers (MISRs) [Elg 97] or trees of Exclusive ORs (XORs) called space compactors

[Sal 83]. If MISRs are used then one has to prevent unknown values entering the

compactor. Using XOR trees permits unknown values in test responses entering the

40

compactors. In this work we consider circuits using space compactors. Figure 10 shows a

typical space compactor which compacts several scan chains into 3 output channels.

Figure 11: Scan Chain Selection Logic

The test response data in scan chains go through the XOR trees and are scanned out

using the output channels. For space compactors, unknown values are permitted to enter

the compactor. However, an unknown value corrupts all the test response data in the

same scan cycle of the scan chains connected to the same output channel, thus masking

the faults which are propagated to these scan cells. In order to maximize the detection

ability of a test pattern and minimize the effect of unknown values, scan chain selection

logic is usually utilized. Scan chain selection logic includes a mask register and a decoder

as shown in Figure 11 for one output channel. The mask bits, determined separately for

each pattern, are delivered through the test inputs to the mask register and the decoder is

usually a linear logic circuit to decode the mask bits into masking signals. The masking

signals drive inputs to AND gates. Usually the number of mask bits of a mask register is

smaller than the number of masking signals. To reduce test data volume, mask bits are

41

determined for each test pattern and the decoded masking signal for each scan chain

doesn’t change during scan unload. As shown in Figure 11, all the scan cells on chain1

are observed through XOR tree and all the scan cells on the other chains are masked since

the scan chain selection logic sets all except the input to the first AND gate to 0.

3.2.2 Problem formulation

When space compactors are used, internal scan chains are not observed directly at

the output channel. The reduced observability of internal scan chains and the interaction

between them can adversely impact scan-based diagnosis.

Scan chain failures are the cause for a substantial proportion of failing chips. As

30%-50% of logic gates of a typical chip impact the operation of scan chains, it is very

likely that scan chain operations will be impacted by random and/or systematic defects.

Meanwhile failures on multiple scan chains are observed much more frequently than they

were before. [Bas 08] reported that 32% of 529 units with scan chain failures contained

multiple chain failures. Note that with the space compactor, the number of scan chains is

much larger than that of traditional scan designs, thus the probability of having multiple

scan chain failures is even higher in a modern scan compression designs than traditional

scan designs. Multiple scan chain failures can be caused by either independent defects

that land on different scan chains or by defects on a global signal driving multiple scan

chains. For example, a delay fault in a buffer in a clock tree can cause hold-time

violations on multiple chains. Diagnosis of multiple chain failures with space compactors

is challenging when multiple scan chains of the same output channel fail.

42

Figure 12: Illustrating Multiple Chain Failures

Figure 12 shows an example of how a space compactor can mess up the failures at an

output channel when more than one scan chain among those observed through the output

channel are faulty.

From Figure 12, it can be seen that in the failing chain “chain1” there are 4 failing

bits at scan cells 1, 2, 3 and scan cell 5. In the failing chain “chain3” there is 3 failing bit

at scan cells 3, 4, 6. The masking signals from the chain selection logic are shown in the

figure. Failing chain “chain1” and failing chain “chain3” are both observed through the

space compactor with single output. So after the space compactor due to compaction

there are 5 failing bits at scan cells 1, 2, 4, 5 and scan cell 6. For diagnosis purposes,

given the 5 failing bits, it becomes difficult for the diagnosis tool to know which scan

chain is causing which failing bit. If two failing chains have failing bits at the same scan

shift cycle, the two failing bits cancel each other, which also makes the chain diagnosis

difficult. As shown in Figure 12, failing bits at scan cell 3 of “chain1” and scan cell 3 of

“chain3” cancel each other. In the example illustrated in Figure 12, if “chain3” is masked

1

O

Chain 1

Chain 2

Chain 3

Chain n

Cell 6, 5, 4, 3, 2, 1, 0

43

then the failures at the output will be caused only by the errors captured in “chain1” and

this aids diagnosis. This example also illustrates the key idea behind the simple strategy

we are proposing to improve diagnosis by production patterns. The idea is to mask or not

observe at least one selected scan chain among those that are driving a single output of

the compactor. However, in order to keep the pattern counts close to those normally

obtained, we do this only when all the scan chains are selected for observation by the

normal test generation flow. Thus we attempt to minimally disturb the normal test

generation flow. Details of this procedure are given in Section 3.3.

In a regular production test pattern set, in the chain-test step, flush tests are

applied and they include the tests which observe only one chain in each output channel at

one time. Thus, which chains are faulty can be readily identified [Hua 05]. However,

identifying which scan cells are faulty on faulty chains is very challenging. For regular

production test patterns the scan chain selection logic observes all scan chains when no

unknown value is in the scan cells in order to maximize the detection ability and

minimize the pattern count. As discussed above, diagnosis of failing scan cells is made

difficult when more than one chain observed through a single compactor output is faulty.

In [Guo 07], a diagnostic pattern set was proposed for diagnosing failing scan cells in

designs with space compactors. These additional patterns are generated based on the

results of diagnosis using production patterns that detected the failing chip. Since the

approach requires testing the failing chips a second time, it may be too expensive, if not

impossible, to use in some test flows. The optimal solution and our goal in this work is to

improve the diagnostic resolution achievable by production tests without increasing

pattern counts or requiring additional test time.

44

3.3 A Method to Improve Diagnostic Resolution of

Production Tests

We first give definitions of some terms used in this work. These terms define the

nature of tests with respect to how the responses to them are observed through the output

channels of a space compactor. Non-masking pattern denotes the patterns whose

responses in all scan chains are observed through compactor outputs. Partial-masking

pattern denotes the patterns whose responses in more than one chain are observed and

the rest of the chains are masked by the chain selection logic. 1-hot pattern denotes the

patterns whose response in only one scan chain in each output channel is observed and all

the other chains are masked.

3.3.1 Normal test generation flow

In Figure 13, a normal scan chain selection algorithm for a test pattern is shown.

After a test pattern is generated, the procedure enters the chain selection flow.

First the pattern is fault simulated to determine fault propagation sites and

unknown value locations in the scan chains. Based on the results of fault simulation,

masking signals are assigned to one scan chain at a time and the masking signals are

encoded together with the test or in additional bits scanned in after the test. Mask

assignments and encoding is repeated until the encoding capability is reached. The

number of mask bits of a mask register is less than the number of masking signals. So

encoding capability is reached when all the mask bits of the mask register are determined,

at which time the remaining masking signals are determined by the mask bits.

45

Figure 13: Normal Chain Selection Procedure

Detection of undetected faults is the priority for the normal chain selection procedure.

For this reason, for most test patterns the scan chain selection logic selects all chains for

observation when X (unknown values) ratio is not high. However these patterns may not

provide efficient information for diagnosis.

3.3.2 Proposed chain selection procedure

In order to improve the diagnostic resolution by production patterns with minimal

pattern count increase, we propose a new chain selection procedure in the test generation

flow. While the normal chain selection procedure only considers the detection ability of

each pattern and observes all scan chains when there are no unknown values in scan

46

chains that affect fault coverage, the proposed chain selection procedure considers the

diagnosability of each pattern and masks a small number of chains without much loss of

detection ability of a test pattern. This difference is the basic idea for an effective and

simple method to increase the diagnosis capability of production patterns.

Figure 14: The Proposed Chain Selection Procedure

47

The proposed scan chain selection procedure is shown in Figure 14. It is explained

below.After a test pattern is generated, first the normal chain selection flow is performed.

At the exit of the normal flow, only if all the scan chains are observed, the proposed flow

is entered.

If the proposed scan chain selection flow is entered, first the mask bit encoding is

rolled back. In order to keep the detection ability of the pattern, we start assigning the

masking signals as in the normal flow until 5% of all the scan chains are assigned

masking signals. The 5% threshold can be changed. However our experiments suggest

that in general this threshold is good for most circuits.

Next, we go through all the scan chains which have not been assigned masking

signals and find the chain which has been masked the fewest times by the previous test

patterns and we mask this chain. Then we set the mask bits to observe the remaining

chains until the encoding capability is reached. Thus we attempt to mask a single chain

that has been masked the least number of times in earlier generated patterns. It is possible

that the encoded mask may mask additional chains or observe other chains but at least

one scan chain is masked by this procedure. In the last step based on the determined mask

bits, the masking signals of all the scan chains are set by the decoder in the scan selection

logic and the scan chain selection flow is complete for this test pattern.

In the proposed procedure, in order to preserve the fault coverage, for each scan

pattern, several chains which provide the best fault coverage gains are observed as in the

normal flow. The rest of the scan chains are set to be masked or observed based on the

improvement of diagnosis capability for multiple chain failures. The diagnosis capability

of multiple chain failures is measured by the frequency of a scan chain being

48

masked/observed. The most frequently observed scan chains are given higher priority to

be masked while the least frequently observed scan chains are given higher priority to be

observed. By balancing the masking and observation of the scan chains, we improve the

probability that some failing scan chains are observed while other chains are masked for

some scan patterns. The proposed chain selection algorithm masks a small portion of the

scan chains even when there are no X (unknown) states or limited X states for the

generated test pattern. So there are more partial masking patterns and fewer non-masking

patterns in the generated production test pattern set. This enhances the diagnosis

capability of the production test pattern set by improving the possibility of differentiating

multiple faulty chains.

The diagnosis results on several industrial designs in Section 3.4 show the

effectiveness of the proposed technique.

3.4 Experimental Results

We modified an existing commercial ATPG tool that accommodates test response

compactors to derive production tests using the proposed strategy. We injected different

types of defects in multiple scan chains. Diagnosis based on response to the production

tests was done using a commercial fault diagnosis tool.

Experimental results are given for four industrial designs. All the designs used space

compactors as shown in Figure 10. Different types of single faults are injected at random

scan cell locations into 2 or 3 scan chains connected through a space compactor to the

same output channel. As we indicated earlier, the faulty chains are identified by

production tests during the chain-test phase using 1-hot patterns. Thus, the objective of

diagnosis is to determine the faulty scan cells in the defective scan chains.

49

Table 2: The Statistics and Pattern Counts of 4 Designs

 Design 1 Design 2 Design 3 Design 4

of chains 401 160 400 160

output channels 8 4 8 2

of gates 320K 496K 1.1M 1.4M

X ratio* 0.003% 0.04% 0.004% 0.98%

of normal patterns 4755 2065 5561 2847

of rand. patterns* 4761 2081 5639 2875

of proposed patterns 4757 2070 5611 2866

Pattern count increase* 0.04% 0.24% 0.90% 0.67%

* X ratio: the ratio of X bits in test responses in scan cells

* # of rand. patterns: the number of the test patterns generated using the random

method

In addition to the proposed method, we also implemented a random method for

comparison. The two methods differ in only one step. In the proposed method as shown

in Figure 14, in one step we go through all the scan chains which have not been assigned

masking signals and find the chain which has been masked the fewest times by the

previous test patterns and we mask this chain. In the random method, in this step we

randomly select a chain from those which have not been assigned masking signals and

mask this chain.

The statistics of the four designs are shown in Table 2 together with the pattern

counts of the normal production tests and the production tests generated using the random

method and using the proposed method. The pattern count increase from the normal

50

production tests to the tests generated using the proposed method is shown in the last row

of Table 2.

From Table 2, we can see that the pattern count increase varies from 0.04% to

0.90%, the maximum of which is less than 1%. The fault coverage for all the designs are

the same using either the normal production tests or the proposed test patterns. Also we

can see that the numbers of patterns generated using the random method are larger than

the numbers of patterns generated using the proposed method for all the four designs.

In Table 3, the diagnosis results for injected stuck-at faults in 2 scan chains are

given. In Table 4, the diagnosis results for injected stuck-at faults in 3 scan chains are

given. In Table 5, the diagnosis results for injected timing faults in 2 scan chains are

given. The timing faults for each design have the same number of slow-to-rise, slow-to-

fall, fast-to-fall, fast-to-rise and hold-time faults.

Table 3: Experimental Results for Stuck-at Faults on 2 Faulty Chains

Design

Result

Design 1 (64 cases) Design 2 (40 cases) Design 3 (40 cases) Design 4 (40 cases)

Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop.

2 chains 4 33 45 26 35 38 0 21 22 23 26 31

1 chain 21 29 17 12 4 2 7 16 16 15 13 9

0 chain 39 2 2 2 1 0 33 3 2 2 1 0

Ave. Res. 17% 57% 68% 72% 78% 82% 16% 49% 50% 61% 65% 69%

51

Table 4: Experimental Results for Stuck-at Faults on 3 Faulty Chains

Design

Result

Design 1 (24 cases) Design 2 (20 cases) Design 3 (24 cases) Design 4 (20 cases)

Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop.

3 chains 0 9 11 6 12 17 0 5 9 9 10 13

2 chain 1 7 10 4 5 2 2 12 7 6 8 7

1 chain 8 6 3 6 3 1 3 5 6 2 1 0

0 chain 15 2 0 4 0 0 19 2 2 3 1 0

Ave. Res. 10% 47% 56% 47% 69% 84% 10% 40% 51% 53% 58% 64%

Table 5: Experimental Results for Timing Faults on 2 Faulty Chains

 Design

Result

Design 1 (40 cases) Design 2

(40 cases)

Design 3

(40 cases)

Design 4

(30 cases)

Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop. Nor. Rand. Prop.

2 chains 2 24 32 19 27 31 6 21 27 24 27 28

1 chain 13 9 3 11 8 5 4 18 12 0 2 1

0 chain 25 7 5 10 5 4 30 1 1 6 1 1

Ave. Res. 18% 69% 80% 53% 73% 81% 15% 57% 70% 75% 88% 90%

If the number of suspect scan cells reported by the diagnosis tool for a failing chain

is no more than 5 and the defective scan cell is in the reported suspect scan cells, we

52

consider that this chain is diagnosed. Otherwise, we consider that it is not diagnosed

successfully.

In each table, we list the number of scan chains that are successfully diagnosed by

the normal test patterns, by the test patterns that are generated using the random method,

and by the test patterns that are generated using the proposed scan chain masking

selection technique. The rows with “N chains” where N is 0, 1, 2, or 3, show the number

of scan chains that are successfully diagnosed by the commercial diagnosis tool used.

As can be seen from Tables 3-5, the proposed method is very effective in improving

the diagnostic resolution. For example from Table 3, for design 1 with two faulty chains,

using normal scan chain selection flow for only 4 out of 64 cases we have no more than 5

suspect scan cells identified in both the failing chains. However, using the tests by the

proposed method, in 45 out of 64 cases the number of suspect scan cells is within 5 for

both the failing chains. This higher success rate is achieved at the cost of only 0.04%

increase in pattern count.

Meanwhile, we can see that the proposed method is more effective in improving the

diagnostic resolution than the random method. For example from Table 4, for design 3

with three faulty chains, using the random method for only 5 out of 24 cases, we have no

more than 5 suspect scan cells identified in all the three failing chains. However, using

the tests by the proposed method, in 9 out of 24 cases the number of suspect scan cells is

within 5 for all the three failing chains.

We also calculated the average diagnostic resolution for each design. The average

diagnostic resolution is calculated as follows: The diagnostic resolution of a failing chain

is the reciprocal of the number of the suspect scan cells for this chain. For example, if the

53

diagnosis result gives 4 suspect scan cells for a chain including the defective scan cell,

then the diagnostic resolution is 25%. The average resolution, given in the last row of

Tables 3-5, is the average over all the injected faults. From Table 3 we note that the

average resolution for Design 1 is also improved from 17% to 68%. Similar

improvements in average resolution can be observed for the cases of stuck-at faults in 3

scan chains and for timing faults given in Tables 4 and 5, respectively. As can be seen,

for all the cases from Table 3 to Table 5, the random method improves diagnostic

resolution but not as much as the proposed method does.

The proposed method can be readily adapted to any space compactor designs using

any test flow. With minimal increase in test pattern counts and without fault coverage

degradation, diagnostic resolution can be improved effectively. Thus we can potentially

avoid using additional diagnostic test patterns for some diagnosis of multiple scan chain

failures.

54

CHAPTER 4. IMPROVING DIAGNOSTIC TEST GENERATION FOR

SCAN CHAIN FAILURES USING MULTI-CYCLE SCAN

PATTERNS

4.1 Motivation

In software-based diagnosis, usually the production test patterns used to detect

defective chips are used to collect test failures for diagnosis. Since the aim of production

tests is only fault detection, they may not provide sufficient information for diagnosis

purpose, leading to poor diagnosis. In [Huang 06], it is reported that for only 23% of

failing dies, diagnosis based on production tests gave less than or equal to three scan cell

suspects, which is regarded as the minimum desirable resolution. To improve diagnostic

resolution, diagnostic test patterns can be generated either before or after initial diagnosis

using production test patterns. In this work we propose an effective method to generate

test patterns with a higher rate of successful diagnosis to improve the resolution of the

diagnosis.

Previous diagnostic test pattern generation techniques for scan chain failures

target a single scan cell at a time, which could be a time consuming process when there

are hundreds of scan cell to target, especially for very large designs. In this work we

propose a speed-up technique with up to 20X run time improvement.

4.2 Previous Work

Methods to generate additional test patterns to improve diagnostic resolution have

been proposed. In this work we call these patterns diagnostic test patterns.

Several diagnostic test generation techniques for scan chain failures have been

proposed. The test pattern generation method by Kundu [Kundu 94] used a sequential

55

ATPG but, as pointed out in [Guo 07], it did not constrain the tests appropriately to insure

that sufficient conditions for diagnosis are met. Li [Li 05_1] [Li 05_2] and Guo [Guo 07]

proposed test generation algorithms for scan chain stuck-at and timing faults. In [Li 05_1]

[Li 05_2] scan cells are targeted one at a time while the entire faulty scan chain is masked

as unobservable. In [Guo 07], an algorithm to generate diagnostic test patterns with a

single capture cycle was proposed. If a test is generated successfully for each cell, a

complete diagnostic test set can be created to give only one suspect scan cell which is the

faulty one. However, due to the added constraints and masking of scan cells, the

procedures in [Li 05_1] [Li 05_2] [Guo 07] might fail to generate a pattern that meets all

the conditions for some scan cells thus affecting diagnostic resolution. In [Wang 08], a

diagnostic test generation method is proposed to target scan chain defects in the presence

of defects in the logic part of the DUT. It targets a scan cell using only fault propagation

conditions. Specifically, test generation using functional data capture, which is used in

the test generation procedure we propose, is not used by Wang.

4.3 Preliminaries

In this work we propose an effective method to generate test patterns with a

higher rate of successful diagnosis. Even though the proposed method can be extended to

diagnose other fault models and multiple faulty scan cells/chains, in this work we

consider stuck-at faults in a single faulty chain in the experimental data given later.

Additionally we assume that the combinational logic of the circuit under test is fault free.

This assumption can be relaxed by, for example, adopting procedures similar to those in

[Wang 08]. We also assume a faulty scan cell fails during shift and capture cycles. Even

though in this work we assume that a single scan cell in a faulty scan chain is defective

56

and is stuck-at-0 or stuck-at-1, the proposed procedures can be extended to diagnose

other faults. Also, for simplicity, we assume that all the scan cells have no inversions

between a scan cell and the scan chain output.

Given a test set and a fault model, a scan cell N is differentiated from scan cell M

if and only if the response of the faulty circuit with the fault at scan cell N is different

from the response of the faulty circuit with the fault at scan cell M. If a test set

differentiates each scan cell in the range of suspect cells from the other scan cells in the

range, we call the test set a complete diagnostic test set, which produces a unique

response for each faulty scan cell. We can locate the exact faulty scan cell by diagnosis

based on a complete diagnostic test set.

The diagnostic test generation procedures generate a test targeting a single scan

cell in an ordered list of scan cells. The list of scan cells is typically an ordered list of

consecutive scan cells. In this work, by generating a test targeting a scan cell or simply

targeting a scan cell we mean that if a test is successfully generated it can differentiate

the targeted scan cell from all scan cells that appear in the list after the targeted scan cell.

By differentiating a scan cell we mean that the target scan cell among the list of

suspected scan cells is classified correctly as fault-free or faulty.

Flush tests are used to detect scan cell defects and to determine the fault type in a

defective scan chain.

Production test patterns may be used for diagnosis prior to generating diagnostic

patterns. The initial diagnosis using production test patterns can determine a range of

suspect cells with an upper bound (UB) and lower bound (LB).

57

For some large designs, test failures for production patterns may not be collected

due to tester storage limitations since scan failures fail at most all tests and many errors

appear in every test response. In such cases the initial suspect candidates in a scan chain

will be every scan cell in the chain. Earlier proposed scan chain diagnostic test generation

flow takes impractically large run times to complete in these cases as we show in Section

4.6. We also demonstrate that the speed-up flow we propose reduces diagnostic test

generation times by an order of magnitude.

4.3.1 Analysis of the test generation algorithm in [Guo

07]

The methods we are proposing to improve diagnostic resolution and run times

builds on the procedures given in [Guo 07]. For this reason, next we briefly discuss the

basic diagnostic procedure of [Guo 07].

We assume that the type of stuck-at fault, stuck-at-0 or stuck-at-1, is known from

the response to flush tests as discussed above and the range of suspect scan cells is known

from initial diagnosis, for example using production test patterns. If no initial diagnosis

result is available prior to generating diagnostic test patterns, the range of suspect scan

cells is the entire scan chain. Let UB and LB be the upper and lower bound, respectively,

of the scan cells suspects. The procedure given below was proposed in [Guo 07] to create

a complete test set to diagnose scan cells between UB and LB.

Diagnostic_Test_Gen (LB, UB, stuck-at-v)

Step 1: Set N=UB

Step 2: Constrain scan load values of scan cells N, N-1, N-2, … , 0 to value ‘v’

58

Step 3: Generate a test pattern to capture value (1-v) into the data (functional)

input of scan cell N-1.

Step 4: Set N=N-1

Step 5: If (N > LB), go back to Step 2. Otherwise, go to Step 6.

Step6: All the scan cells are targeted, end.

To differentiate scan cell N from cell N-1 by capturing data through the

combinational logic, the scan unload values on scan cell N-1 should be different for the

circuit with the fault on cell N (FN) and the circuit with the fault on scan cell N-1 (FN-1).

During the scan unload process, value (1-v) on cell N-1 can be correctly shifted out in the

faulty circuit FN, while in the faulty circuit FN-1 only value ‘v’ can be shifted out of scan

cell N-1. So in order to differentiate FN and FN-1, value (1-v) is captured into scan cell N-

1 using a scan based test.

As shown in Figure 15, the stuck-at-v fault at scan cell N may propagate to scan

cell N-1, causing the captured value into scan cell N-1 to be ‘v’ instead of (1-v). If this

happens, we cannot determine whether it is scan cell N or scan cell N-1 that caused the

wrong observed value in the unload value of cell N-1. The captured value of scan cell N-

1 must be valid no matter whether the fault location is scan cell N or cell N-1, as we

assume that the combinational logic is fault-free. For this reason scan cell N and all the

cells downstream of it are constrained to value ‘v’ during scan load. This is a sufficient

condition to guarantee that a generated single capture cycle pattern can differentiate scan

cell N from cell N-1. Similarly this procedure can also be used to differentiate scan cell N

from all the cells downstream of it.

59

Figure 15: Illustration of Scan Cell N Impacting Cell N-1

Although a complete test set can be created if the procedure given above can

target each scan cell successfully, there is an issue in this algorithm. The issue is that the

above procedure only provides sufficient conditions for scan patterns with only one

capture cycle.

As shown in Figure 16(a), since the scan load values of the downstream cells of

the target scan cell N are constrained to value ‘v’, for some scan cells it may be very

difficult, if not impossible, to capture a (1-v) value into scan cell N-1 in just one cycle

and hence this procedure may fail to generate an effective pattern for some scan cells.

Multiple capture cycles can be used to capture a desired value into scan cell N-1 when it

is hard to capture the desired value in just one capture cycle. As shown in Figure 16(b),

constraints are placed on scan cell N and all its downstream cells only during scan load.

With the cycle expansion, it may be possible to capture value (1-v) into scan cell N-1

while it’s impossible with one capture cycle.

60

Figure 16: Illustration of Using Multi-Cycle Scan Patterns

Use of tests with multiple capture cycles is the basic idea of the proposed test

generation algorithms to improve diagnostic resolution. However, as we discuss in

Section 4.4, we need to add an appropriate additional constraint to generate the desired

scan patterns with multiple capture cycles.

4.4 Procedures to Improve Diagnostic Resolution

In Section 4.4, a new procedure is proposed to improve diagnostic resolution of

scan chain failures, assumed to be stuck-at faults. The proposed procedure preserves the

sufficient condition which guarantees that a generated pattern can differentiate the target

scan cell and improves the success rate of generating a test pattern to differentiate a scan

cell by using tests with multiple capture cycles. We also discuss how to determine the

number of capture cycles to be used and how to extend the procedure to other fault

models.

61

4.4.1 Differentiate Scan Cells through Data Input

Capture

(a): Scan load values in Faulty Circuits with a Stuck-at-0 Fault

(b): Scan Unload Values in Faulty Circuits with a Stuck-at-0 Fault

Figure 17: An Example with a Stuck-at-0 Fault

Assume that the faulty scan chain has stuck-at-v fault. We try to differentiate scan

cell N from its downstream scan cells through data (functional) input capture from

system logic. In Figure 17, VN is the scan load or scan unload value on scan cell N. As

shown in Figure 17(b), to differentiate scan cell N from scan cell N-1, the unload values

on scan cell N-1 should be different for FN and FN-1. If the fault is at scan cell N, we

want to see an unload value (1-v) on scan cell N-1. If the fault is at scan cell N-1, we

62

want to see an unload value ‘v’ on scan cell N-1. So in order to differentiate scan cell N

from scan cell N-1, we need to capture value (1-v) into scan cell N-1.

For patterns with more than one capture cycle, we propose to use extra constraints

to make sure that a fault on scan cell N doesn’t propagate to scan cell N-1 during capture.

As shown in Figure 15, if no constraints are placed on scan cells after scan load, a stuck-

at-v fault on scan cell N may propagate to scan cell N-1, precluding capturing of (1-v)

into scan cell N-1. So to prevent the fault effect of scan cell N from propagating to scan

cell N-1, the test is generated assuming unknown content of cell N. This extra constraint

will guarantee that the captured value (1-v) on scan cell N-1 is valid even if scan cell N is

faulty and hence the patterns can be used to differentiate scan cell N from its downstream

scan cells. To summarize, the proposed procedure is given below as Procedure 1.

Procedure 1: Test_Gen_for_Target_Cell_Input (N, stuck-at-v)

Step 1: Constrain scan load values of scan cells N, N-1, N-2, …, 0 to value ‘v’

Step 2: Mask scan cell N by setting it to unknown value X for all capture cycles.

Step 3: Generate a test pattern with single and when necessary multiple capture

cycles, to capture value (1-v) on data input of scan cell N-1 with cell N content set to

unknown value X.

Compared with the procedure analyzed in Section 2.1, we add more sequential

constraints on scan cell N in Step 2. The following discussion shows that the conditions

in Steps 1 and 2 are sufficient to differentiate scan cell N from its downstream scan cells.

In order to prove that the generated pattern guarantees to differentiate scan cell N

from cells downstream of it, we prove that the test response of a faulty circuit with a fault

63

at cell N (FN) is different from the test response of a faulty circuit with a fault at scan cell

N-1 (FN-1), or N-2 (FN-2), …, or 0 (F0).

If the fault is at scan cell N, the above constraints in Steps 1 and 2 make sure scan

cell N-1 captures value (1-v) into it. The captured value of (1-v) on scan cell N-1 can be

correctly shifted out and be observed during scan unload, i.e., there is no failure observed

at scan cell N-1 since the fault is at scan cell N.

If the fault is at any scan cell downstream to scan cell N, the unload value of scan

cell N-1 will be the incorrect value ‘v’, because scan cell N-1 is faulty or some other cell

downstream of it is faulty.

As discussed above, the generated test pattern can guarantee to differentiate scan

cell N from cells downstream of it. If all scan cells in the range of suspect cells are

targeted successfully by this procedure, each scan cell will have unique faulty behavior

for the test pattern set and a complete diagnostic test set will be obtained.

4.4.2 Sequential Depth for Procedure 1

To generate a multi-cycle scan test pattern described in Procedure 1, one needs to

determine how many capture cycles are needed, also called the sequential depth of the

tests, to generate the pattern. We can attempt to generate patterns by increasing the

number of sequential depth one at a time. However, it is beneficial to avoid, as much as

possible, sequential depths at which a desired pattern cannot be obtained. Before running

the ATPG, the earlier proposed testability measure sandia controllability and

observability analysis program (SCOAP) [Goldstein 79] can be applied to calculate the

minimal sequential depth at which a pattern may exist. The procedure to use SCOAP

[Goldstein 79] to calculate the smallest sequential depth is described below.

64

C0_depth of a gate denotes the sequential depth needed to control the output of

the gate to value 0, and C1_depth of a gate denotes the sequential depth needed to control

the output of the gate to value 1.

Step 1: Set C0_depth=M and C1_depth=M for all the gates in the design. M is the

maximum sequential depth used by the sequential ATPG.

Step 2: Initialize C0_depth=1 and C1_depth=1 for all the Primary Inputs (PIs) in

the design.

Step 3: Initialize C0_depth=1 and C1_depth=1 for all the scan cells that are not

constrained. If the scan cell is constrained to value 1 during scan load, only set

C1_depth=1 for this scan cell; If the scan cell is constrained to 0 during scan load, only

set C0_depth=1 for this scan cell.

Step 4: Similar to logic simulation, the calculation of C0_depth and C1_depth

based on the initialized values of PI and scan cells is performed based on SCOAP

concept. For example, for an AND gate, the C0_depth is the minimum of the C0_depth

among the input gates. The C1_depth is the maximum of the C1_depth among the input

gates. For an OR gate, the C0_depth is the maximum of the C0_depth among the input

gates. The C1_depth is the minimum of the C1_depth among the input gates. The

SCOAP idea applies to other gates in the same manner.

Step 5: If there is no change of C0_depth or C1_depth in Step 4, stop. Otherwise,

go back to Step 4.

In the proposed test generation procedure, in order to generate a test pattern to

capture a value (1-v) on data input of scan cell N-1, C(1-v)_depth of the gate connected

to the data input of cell N-1 gives the minimum sequential depth needed to generate such

65

a pattern. The diagnostic test generation engine can then generate a test pattern starting

with this calculated sequential depth. Note that if C0_depth (C1_depth) of the gate

connected to cell N-1 is M, it indicates the data input of cell N-1 cannot be set to value

(1-v) within the sequential depth of M. If desired, when the sequential depth given by the

procedure is too high, one can abort generation of the test to save run time.

4.4.3 Practical Considerations

As mentioned in the above Section 4.3, it is possible that the proposed test

generation Procedure 1 fails to generate a test pattern for some scan cells. In [Guo 07],

two additional procedures were used when the basic procedure described earlier does not

generate a test pattern for differentiating a target scan cell. In this work, we propose two

procedures similar to the two additional procedures in [Guo 07]. In the proposed

procedures we use additional sequential constraints on scan cells to guarantee sufficient

conditions for multi-cycle scan patterns.

4.4.3.1 Extension of Procedure 1 to Procedure 2

If Procedure 1 fails to generate a pattern to differentiate scan cell N from all its

downstream scan cells, we try generating a pattern to differentiate cell N from cell N-x,

N-x-1, …, 0, where x is a positive integer larger than 1. The proposed procedure is given

below as Procedure 2:

Procedure 2: Extended_Test_Gen_for_Cell_Input (N, N-x, stuck-at-v)

Step 1: Constrain scan load values of scan cells N, N-1, N-2, …, 0 to value ‘v’

Step 2: Mask scan cell N by setting it to unknown value X for all capture cycles.

Step 3: Generate a test pattern to capture value (1-v) into data (functional) input

of scan cell N-x with cell N content set to unknown value X.

66

The constraints in Steps 1 and 2 prevent a stuck-at-v fault at scan cell N impacting

captured value into cell N-x during scan load and multiple capture cycles. So if scan cell

N is faulty, we will see value (1-v) on cell N-x after unloading. And if scan cell N-x or

any of its downstream cells is faulty, we will see value ‘v’ on cell N-x after unloading.

Thus, the proposed Procedure 2 can differentiate scan cell N from scan cells N-x, N-x-1,

… , 0.

4.4.3.2 Test Generation Using Fault Propagation

We also propose another procedure called Procedure 3 (given below) to

differentiate cell N from N-x by fault propagation. The idea is to propagate the effect of

the fault at the output of scan cell N while not activating a fault at the output of scan cell

N-x. Procedure 3 does not generate tests that insure a sufficient condition to differentiate

scan cell N from all of its downstream scan cells other than scan cell N-x.

The proposed Procedure 3 is described below:

Procedure 3: Pair_Diff_Through_Cell_Output(N, N-x, stuck-at-v)

Step 1: Constrain scan load values of scan cells N-1, N-2, ... , 0 to value ‘v’ .

Step 2: Mask scan cell N-x by setting it to unknown value X for all capture cycles.

Step 3: Constrain upstream scan cells of N-x and scan cell N-x unobservable

during scan unload.

Step 4: Generate a test to detect stuck-at-v fault at data output of scan cell N by

capturing the fault effect in some observable scan cell or primary output with cell N-x

content set to unknown value X.

If the fault location is scan cell N, the generated test pattern propagates the fault

effect to a reliable observation point. So we have specific failures to differentiate scan

67

cell N from scan cell N-x if the fault is at scan cell N. If the fault location is scan cell N-

x, due to the constraints, no faulty value will be observed during scan unload. So the

conditions used are sufficient to guarantee that the generated test pattern can differentiate

scan cell N from cell N-x.

4.4.4 Extension to Timing Failures

The proposed algorithm can be extended to generate diagnostic test patterns for

timing faults. In Section 4.4.4, we briefly explain the extended procedure for fast-to-rise

fault model. Other timing faults can be handled similarly.

When scan cell N has a fast-to-rise fault, a 0 to 1 transition will happen one cycle

earlier. In order to differentiate scan cell N from cell N-1, the generated test pattern

should have a different test response of the faulty circuit with the fault at scan cell N (FN)

and the faulty circuit with the fault at scan cell N-1 (FN-1). The proposed Procedure 4 is

given below:

Procedure 4: Extended_Test_Gen_for_Fast-to-rise (N, fast-to-rise)

Step 1: Constrain scan load values of scan cells N, N-1, N-2, …, 0 to a constant

value ‘1’ or ‘0’.

Step 2: Mask scan cell N by setting it to unknown value X for all capture cycles

but the last cycle.

Step 3: Generate a test pattern with single and, when necessary multiple capture

cycles, to capture value ‘0’ into the data input of scan cell N-1 and value ‘1’ into the data

input of scan cell N.

Similar to the analysis in Section 3.1, the constraints in Steps 1 and 2 make sure

the captured values into scan cell N-1 and cell N are valid even if the fault is at scan cell

68

N. So if scan cell N is faulty, the value ‘0’ on scan cell N-1 can be correctly shifted out

and we will see value ‘0’ on cell N-1 after unloading. If scan cell N-1 or any of its

downstream cells is faulty, the value ‘0’ on scan cell N-1 will be corrupted during scan

unload and we will see value ‘1’ on cell N-1 after unloading. Thus, the proposed

Procedure 4 can differentiate scan cell N from all the downstream cells of it.

4.5 Improve Runtime Performance of Diagnostic Test

Generation

Diagnosis based on production test patterns may contain a large number of

suspect scan cells. Or when no initial diagnosis results are available, for example, when

diagnosis is based on production tests, the range of the suspect scan cells is the entire

faulty scan chain. In such cases, if the range of the scan cell suspects contain hundreds or

more scan cells, run time for test generation and the number of test patterns may become

an issue, especially for very large designs. In Section 4.5, we propose a test generation

flow to speed up the generation of diagnostic tests and also reduce the number of test

patterns.

The test generation flow used in Procedure 1 targets scan cells one at a time with

appropriate constraints on scan cell contents. If the faulty scan chain has 1000 scan cells,

we need to call the test generation procedure 999 times and each time the scan cell

constraints are changed appropriate for the target scan cell.

69

4.5.1 The Key Idea behind the Speed-up Flow

(a): Scan Cell Constraints when Targeting Scan Cell N (SA0)

(b): Scan Cell Constraints when Targeting Scan Cell N-1 (SA0)

Figure 18: Scan Cell Constraints

Suppose the faulty scan chain has a stuck-at-0 (SA0) fault, as shown in Figure

18(a). When we use Procedure 1 to target scan cell N, scan cell N and all the downstream

scan cells to it are constrained to load value ‘0’. Meanwhile during capture cycles, the

scan cell N is masked by setting its content to unknown value X. The test generation

procedure tries to generate a test pattern to capture value ‘1’ into the data input of scan

cell N-1.

In Figure 18(b), we show the scan cell constraints when targeting scan cell N-1.

Scan cell N-1 and all the downstream scan cells to it are constrained to load value ‘0’.

70

Meanwhile during capture cycles, the scan cell N-1 is masked by setting its content to

unknown value X. The test generation procedure tries to generate a test pattern to capture

value ‘1’ into the data input of scan cell N-2. If we use the constraints shown in Figure

18(a) and generate a test pattern to capture value ‘1’ into scan cell N-2 as shown in

Figure 18(b), the pattern may still successfully targets scan cell N-1.

As we discussed in Section 4.3, for single-cycle patterns, it is not necessary to add

the extra constraint that mask cell N by setting its content to unknown value X during

capture cycles. So if the generated pattern has single capture cycle, the constraints for

targeting scan cell N as shown in Figure 18(a) are a superset of the constraints for

targeting scan cell (N-1) as shown in Figure 18(b) or any downstream scan cell of it. So if

we use the scan cell constraints for targeting scan cell N and generate single-cycle test

patterns to capture value ‘1’ into any downstream scan cells to scan cell N at the same

time, the generated patterns can simultaneously target many more scan cells.

If the generated pattern has multiple capture cycles, the constraints for targeting

scan cell N are no longer a superset of the constraints for targeting scan cell N-1 or any

downstream scan cell of it, as can be seen from Figure 18(a) and 18(b). When targeting

scan cell N-1, cell N-1 needs to be masked. So if we use the scan cell constraints as

shown in Figure 18(a) and generate a multi-cycle test pattern to capture value ‘1’ into cell

N-2, this pattern may not successfully target scan cell N-1 since cell N-1 is not masked.

To confirm if this test pattern can target scan cell N-1, we can add the cell constraints as

shown in Figure 18(b) and simulate the generated test pattern to see if we still capture

value ‘1’ into scan cell N-2. If so, we can say that the generated test pattern using

constraints shown in Figure 18(a) also successfully target scan cell N-1. If not, scan cell

71

N-1 is not successfully targeted by this pattern and thus we need to target scan cell N-1

by generating an additional test pattern.

The basic idea of the performance improvement of the flow is to use the same cell

constraints to generate test patterns to capture ‘1’ into as many downstream scan cells as

possible, followed by using fault simulation to determine which scan cells are

successfully targeted by the generated test pattern.

4.5.2 The Proposed Diagnostic Flow for Speeding-up

The proposed faster diagnostic test generation flow is shown in Figure 19.

In Step 0 we add no scan cell constraints on the faulty scan chain and use an

ATPG engine to generate patterns to capture value (1-v) into all the suspect scan cells.

Such patterns detect stuck-at-v faults on the data (functional) inputs of the scan cells. If a

scan cell data input is identified ATPG untestable (AU) for capture value (1-v) due to the

design constraint, we can skip these scan cells in the following steps since it’s impossible

for them to capture value (1-v) after adding additional cell constraints needed for

diagnostic tests.

In Step 1, we find the most upstream scan cell that is not identified as AU in Step

0 and call the scan cell N. In Step 2 we add scan cell constraints as described in

Procedure 1 and generate test patterns to capture value (1-v) into scan cell N-1 and also

into all the scan cells downstream to it except those that have been identified AU in Step

0.

In Step 3, we determine the cells successfully targeted by any single-cycle

patterns generated in Step 2. In Step 4 we determine the cells successfully targeted in

Step 2 by using fault simulation with appropriate constraints as discussed in Section 4.4.

72

In the following iterations, we move on to the next scan cell and set it as scan cell

N. We try to generate a pattern to capture value (1-v) into cell N-1 and also all the scan

cells downstream to N-1 except the scan cells which meet any one of the following 3

conditions: (1) If a scan cell is already identified as AU in Step 0. (2) If in previous

iterations, a multi-cycle pattern captured value (1-v) into the scan cell during the pattern

generation phase, but confirmed by simulation that the scan cell does not capture (1-v)

when appropriate cell constraints are applied. (3) If a scan cell has been earlier identified

as AU in Step 6 two times.

Figure 19: Diagnostic Test Generation Flow

73

If a scan cell meets condition (2) or (3), it is likely that the cell will be identified

as AU even with appropriate constraints on scan cells or the cell can only successfully

capture value (1-v) with appropriate constraints. So by excluding these scan cells in Step

6, we can avoid spending ATPG effort on these scan cells in many iterations to save run

time. These scan cells will be dealt with specifically when they are set to scan cell N with

appropriate constraints.

If a complete test set is desired, after exiting Procedure 1, we call backup

Procedures 2 and 3 (set x=2 for Procedure 2 and set x=1 for Procedure 3) to target the

scan cells that have not been successfully targeted by Procedure 1. If Procedure 1 fails to

generate a test pattern to differentiate scan cell N from all the cells downstream of it,

Procedure 2 with x=2 tries to generate a test to differentiate cell N from N-2, N-3, ..., 0

and Procedure 3 with x=1 tries to generate a test to differentiate cell N from cell N-1. So

the two additional procedures can help to generate a complete test set when Procedure 1

fails to target some scan cells.

4.6 Experimental Results

Given an upper bound (UB) and a lower bound (LB) of candidate suspect scan

cells, we implemented the test generation flow shown in Figure 19. If there are no initial

diagnosis results available, the upper bound (UB) is the input cell and the lower bound

(LB) is the output cell of the faulty scan chain.

We start with scan cell UB using Procedure 1 until we reach scan cell LB. Then

for those scan cells that could not be differentiated by Procedure 1, we call Procedure 3 to

differentiate scan cell N from scan cell N-1 and call Procedure 2 to differentiate scan cell

N from the downstream cells of cell N-1.

74

We evaluated the proposed diagnostic test generation procedures on 5 industrial

circuits. The profiles of these circuits are given in Table 6. The last column of Table 6

shows the longest length of the scan chains in each design. Please note that Design 4 is

configured with test compression logic EDT [Rajski 06].

For the first 3 designs, we first perform diagnosis using production tests. We

injected more than 500 single stuck-at faults into randomly selected scan cells of these

designs and obtained fail logs. For most cases, the diagnosis based on production tests

report no more than 3 suspects. 50 cases have diagnostic resolution of more than 3

suspect scan cells using production test patterns. Based on the upper bound and lower

bound from diagnosis results using production tests, we then applied the proposed test

generation flow and the flow from [Guo 07] to obtain diagnostic patterns. For about 2/3

of the 50 cases, both the diagnostic test generation algorithms were able to achieve

diagnostic resolution of less than or equal to three suspect scan cells. We focus on the

remaining 1/3 of the test cases where the procedures in [Guo 07] failed to achieve

diagnostic resolution of less than or equal to three scan cells. Tables 7-9 show the

experimental results for these cases.

For Designs 4 and 5, we generated test patterns for all cells in 4 longest scan

chains for each design using the proposed test generation flow and the flow in [Guo 07].

For each scan chain, we injected 4 single stuck-at faults into randomly selected scan cells

and performed diagnosis using the diagnostic pattern set generated for the faulty scan

chain. The experimental results for these designs are shown in Tables 10 and 11. It

should be noted that diagnosis using production tests was not done for Designs 4 and 5.

75

Hence the UB and the LB for the diagnostic test generation flow are the input cell and the

output cell of the faulty scan chain.

Table 6: Design Profile

Circuits #gates #chains chain length

Design 1 10K 2 251

Design 2 10K 3 152

Design 3 10M 83 11346

Design 4 15M 323 503

Design 5 2M 32 5200

Table 7: Diagnostic Test Generation for Design 1

Case #OrigSu
s

[Guo 07] Proposed Test Generation

#P #Sus #P #Sus Time Dep

1 18 0 18 17 1 6 4
2 9 0 9 9 1 102 4
3 7 0 7 6 1 10 6
4 5 1 4 2 3 112 7
5 9 0 9 9 1 73 4
6 9 0 9 8 1 19 4
7 31 0 31 30 1 11 4

76

Table 8: Diagnostic Test Generation for Design 2

Case #OrigSu
s

[Guo 07] Proposed Test Generation

#P #Sus #P #Sus Time Dep

1 12 0 12 11 1 7 4

2 7 0 7 6 1 1 2

3 12 0 12 11 1 8 4

4 4 0 4 3 1 1 4

Table 9: Diagnostic Test Generation for Design 3

Case #OrigSus [Guo 07] Proposed Test Generation

#P #Sus #P #Sus Time Dep

1 7 0 7 6 1 822 3

2 5 0 5 4 1 906 4

3 10 0 10 10 1 5878 5

4 11 0 11 10 1 3320 5

5 11 0 11 10 1 1881 5

In Tables 7-9, for each case, under #OrigSus”, we list the number of suspect cells

based on diagnosis using the production test patterns Next we list the number of

diagnostic test patterns (“#P”) and the diagnostic resolution (“#Sus”) for the procedures

in [Guo 07] and for the proposed procedure. The last two columns show the test

generation times (“Time”) in seconds by the proposed test pattern generation procedure

and the maximum sequential depth (“Dep”) of the generated test patterns.

As can be seen from column 3 in Tables 7-9, the procedures in [Guo 07] could

generate in only one case an effective single-cycle pattern to improve the poor diagnostic

77

resolution based on production test patterns. All the sequential depths reported in the

tables are either the same as those calculated by the SCOAP based algorithm given in

Section 3.2 or are at most 2 higher than the SCOAP calculated sequential depth. From the

results we can see that for all the cases where the procedures in [14] failed to improve the

diagnostic resolution to be <= 3 scan cells, the proposed sequential pattern generation

method was able to improve the diagnostic resolution to be <= 3 scan cells and in each

case contained the actual defective cell.

Procedure 1 successfully targeted every scan cell in the suspected range for 3 out

of 7 cases in design 1, for all the cases in design 2 and for 4 out of 5 cases in design 3.

Thus, Procedure 1 improves the success rate of generating a test pattern to differentiate a

target scan cell from all cells downstream to it. In the cases where Procedure 1 can

successfully target each scan cell in the suspected range, Procedure 2 and 3 are not

needed.

Procedures 2 and 3 are applied when Procedure 1 fails to target some scan cell.

For example, in case 2 of design 1 the diagnosis based on the original production patterns

reported 9 suspects. The procedures in [Guo 07] generated no patterns and hence the

number of suspects could not be reduced. The proposed Procedure 1 successfully

generated 7 patterns for 7 scan cells and failed to generate a pattern for one scan cell,

which means Procedure 1 cannot generate a test to differentiate one scan cell, say N,

from all the downstream cells of it. We then call Procedures 2 and 3 to generate 1 pattern

each for this scan cell. The test generated by Procedure 2 can differentiate cell N from

cell N-2, N-1, ..., 0 and the test generated by Procedure 3 can differentiate cell N from

cell N-1. So a complete test set is still obtained. The total number of patterns is 9 and the

78

number of suspects was reduced to one scan cell that was the actual defective cell. The

maximum sequential depth of the 9 patterns is 4 as listed in the last column.

In Tables 10 and 11, for each case, we list the time for test generation for the

entire scan chain, the number of diagnostic test patterns (“#P”) and the average number

of suspect scan cells (“ave sus”) for the procedures in [Guo 07] and for the proposed

procedures. The average number of suspect scan cells is the average over all the injected

faults in the faulty scan chain.

Table 10: Diagnostic Test Generation for Design 4

Scan Chain [Guo 07] Proposed Test Generation

Time #p ave sus Time #p ave sus

1 46.0h 485 1 2.0h 21 1

2 53.7h 518 1 5.1h 46 1

3 47.8h 486 1 4.0h 32 1

4 48.6h 330 1 20.4h 20 1

Table 11: Diagnostic Test Generation for Design 5

Scan Chain [Guo 07] Proposed Test Generation

Time #p ave sus Time #p ave sus

1 14.6h 4233 1.8 2.4h 307 1.8

2 14.2h 4105 1.5 2.6h 243 1.5

3 12.8h 4172 1 2.8h 863 1

4 10.8h 4192 1.5 1.4h 884 1.5

79

As can be seen from Tables 10 and 11, the proposed diagnostic test generation

flow reduces the run times by up to 20X. This makes the diagnostic test generation

method much more practical for very large designs. Since in the proposed flow, one

diagnostic test pattern simultaneously targets many more scan cells instead of targeting

only one scan cell, we can also see the numbers of test patterns reduce dramatically,

which reduces the test cost as well saving test application time. The average numbers of

suspect scan cells for each case are the same for the proposed method and the method of

[Guo 07]. Thus the quality of test patterns generated by the proposed method is not

compromised.

For example, in case 2 of design 4, the run time for generating diagnostic patterns

for the entire scan chain reduces from 53.7 hours to 5.1 hours and the number of test

patterns reduces from 518 to 46. The average diagnostic resolutions are 1 for both the

methods.

80

CHAPTER 5. DIAGNOSIS OF MULTIPLE PHYSICAL DEFECTS

USING LOGIC FAULT MODELS

5.1 Introduction

Successful defect isolation relies heavily on the guidance from logic fault

diagnosis and will depend even more for the future technologies. In this work, physical

defects include interconnect opens, open vias, bridges/shorts, or opens and bridges inside

a design library cell. Each such physical defect may manifest as faults at multiple sites.

For example, an interconnect open defect may present itself as multiple input pin fault of

several gates. Furthermore multiple defects are likely to be present in a CUD [Aitken 97].

 Diagnosis of multiple defects has been investigated by several researchers

[Boppana 99 - Yu 08, Tsai 09]. Prior to these studies it was customary to perform

diagnosis using what are called SLAT patterns [Huisman 04, Bartenstein 01]. SLAT

patterns are tests that fail a CUD on the tester and the observed response is matched by at

least one single stuck-at fault. Methods that use SLAT patterns have been both effective

and efficient when single defects such as opens and bridges that manifest as multiple

faults are present [Huisman 04]. However such methods tend to be less effective as defect

density increases significantly.

With the exception of the work in [Yu 08, Ye 10], the diagnosis procedures

compare the simulated responses of circuits with single or multiple stuck-at faults. These

procedures have been successfully used for defect diagnosis in industrial designs. Such

methods were also shown to permit what has been called direct diagnosis of defects in

circuits using test response compactors [Cheng 04]. Direct diagnosis refers to using the

compacted responses for diagnosis as opposed to using responses obtained from scan

81

chains bypassing the response compactor. Direct diagnosis has the advantage that it does

not require additional logic on the CUD to bypass test response compactors and it also

facilitates volume diagnosis since test flows identical to production test of manufactured

devices can be used. The method in [Yu 08] does not use simulation of faults and hence

its run time can be independent of the number of defects in contrast to that for the

methods such as in [Huang 01-Lin 07] which perform single or multiple fault simulations

todiagnose CUDs with multiple defects. However, the run time it takes to eliminate false

sites using per-pattern X simulation can be long and the effectiveness of X simulation

pruning false sites can be limited [Tsai 09]. Also the effectiveness of the diagnosis

procedure in [Yu 08] for direct diagnosis of designs with test response compactors has

not been studied.

Another recent work that uses simulation of single stuck-at faults but does not

restrict itself to the use of SLAT patterns is by Holst and Wunderlich [Holst 07]. This

method has been shown to yield good diagnostic resolution even when the test responses

are highly compacted [Holst 09]. The effectiveness of this method has been demonstrated

for the case of single but complex defects such as wired AND bridges, cross talk faults

etc. [Holst 07, Holst 09].

One latest method proposed in [Ye 10] does not use fault simulations to identify

faulty locations as most diagnosis methods. The method constructs a fault-tuple

equivalence tree (FTET) for each failing pattern and assigns a score to each fault in the

construction. It only performs fault simulation on fanout branches when necessary, in

order to recover passing bit mismatch.

82

In this work, in the first phase, we proposed a diagnosis method based on SLAT

patterns and bit-union technique. This method achieves better diagnosis compared with

previous diagnosis methods. The method is described in Sections 5.2. Then in the second

phase we proposed a new diagnosis method to further improve the diagnosis quality

using fault-tuple equivalence tree. It is described in Section 5.3.

While most previous works on multiple fault diagnosis focus on identifying the

fault locations, we not only identify the fault locations, but also identify the physical fault

types. The physical fault types considered in this work include interconnect open faults,

bridge faults, and cell internal faults. The physical fault type identification is important in

three aspects: (1) for failure analysis purpose, accurate physical fault type identification

provides better guidance for FA engineers to locate a defect and (2) identifications of

physical fault types can also help locate the faulty locations more accurately. In

[Venkataraman 00] it was shown that using the interconnect models can avoid limitations

due to the stuck-at fault equivalences at gates on resolution of interconnect opens defects.

However, other physical defect types and the presence of multiple physical defects were

not included in [Venkataraman 00]; (3) for yield improvement based on large volume

diagnosis, accurate physical fault type identification provides better source data for root-

cause analysis based on statistical algorithms.

83

5.2 Diagnosis Method Based On SLAT

5.2.1 Preliminaries

5.2.1.1Failing Pattern Types

When multiple faults exist in a circuit, failing patterns can be classified into three

types. For the simplicity of explanation, let’s assume that only two faults are present in a

circuit as shown in Figure 20[Holst 09].

Type 1 (a) Type 2 (b) Type 3 (c)

Figure 20: Failing Patterns Types

Type 1: Type 1 failing patterns only activate one fault and propagate its faulty

effect to observation points (primary outputs or scan cells). Type 1 patterns are also

known as Single-Location-At-a-Time (SLAT) patterns [Huisman 04, Bartenstein 01].

Type 2: Type 2 failing patterns activate multiple faults and propagate their faulty

effects to different observation points. Their effects do not interact.

Type 3: Type 3 failing patterns activate multiple faults and propagate their effects

to observation points. There are interactions between the propagation paths of the

activated faults.

84

5.2.1.2 Diagnostic Metrics

The fault simulation signature is a set of failing bits caused by the simulated fault.

In this paper we use the following diagnosis metrics [Holst 07, Holst 09, Venkataraman

00] to evaluate how good a suspect fault signature matches the test failures:

SFTF: The number of failing observation points (failing bits) that appear in both

the fault simulation (FM) signature and the failures observed on device under diagnosis

(DUD).

SFTP: The number of observation points that fail in the fault simulation signature

but are not observed in tester failures.

SPTF: The number of observation points that appear in the test failures but not in

the fault simulation signature.

For a physical fault, its diagnosis metric calculation is based on the stuck-at faults

that constitute the physical fault. The details on how a physical fault is composed and

how their score is calculated are explained in Section 5.2.2.2.

5.2.2 Multiple Physical Defect Diagnosis

Figure 21 shows the overall flow of the proposed diagnosis procedure.

Design
Netlist

Test
Patterns

Tester
Failure

Initial Stuck-At Fault Identification

Physical Fault Creation

Final Suspect Selection

Figure 21: Diagnosis Flow Overview

85

5.2.2.1 Initial Stuck-At Fault Identification

First the diagnosis procedure processes each failing pattern to find any single

logic location (stuck-at fault) that can explain this failing pattern. For each failing pattern,

the path-tracing procedure [Venkataraman 97] starts from each failing observation point

and traces back in the circuit towards primary inputs and memory element output. Then

each single location in the intersection of all the cones is simulated to compare with the

observed failures for the failing pattern. If any location’s fault simulation signature

matches the failures of this pattern, the location is put on the initial fault list and this

failing pattern is called a SLAT pattern.

After the procedure processes all the failing patterns, the initial fault list, which

includes all the faults that explain all the SLAT patterns, is constructed. The failing

patterns that cannot be explained by a single location are non-SLAT patterns and in the

worst case there may be no SLAT patterns, especially when defect density is large in the

faulty circuit. In the proposed diagnosis procedure, for each non-SLAT pattern we obtain

all the faults in all the traced-back cones of the failing observation points. These faults are

then put on the initial fault list. Thus the initial fault list includes faults obtained by using

SLAT and non-SLAT patterns.

Next we attempt to identify Type 2 (cf. Figure 20 (b)) failing patterns among the

non-SLAT patterns by a procedure called bit union. In the bit union process, for each

non-SLAT pattern we try to find a set of faults from the initial fault list, the union of

whose faulty outputs can explain this failing pattern. For example, in Figure 22, for a

non-SLAT failing pattern, say t, the bit union procedure finds two faults f1 and f2. If the

faulty machine simulation of single faults f1 and f2 finds that each fault explains a subset

86

of the failing observation points and the union of the fault effects of the two faults

matches the observed failure of this pattern, then we say that faults f1 and f2 partially

explain the failing pattern t. As we can see, on failing pattern t, f1 and f2 both have

(SFTF>0, SFTP=0).

C1

C3

C2

C4

C5

C6

f1

f2

Figure 22: Example of Bit Union

 After this step, the diagnostic metrics, i.e. SFTF, SFTP and SPTF, have been

calculated for each fault on this list.

5.2.2.2 Physical Defect Creation

In this subsection, we explain how a group of logic faults are selected to build a

single physical fault. A physical fault is composed of several single stuck-at faults based

on the relation of their locations and the logic simulation values of the stuck-at signals.

The diagnostic metric of a physical fault is calculated based on the diagnostic metrics of

the constituent stuck-at faults.

87

We use the SFTF and SFTP metrics calculated using failing patterns to derive a

single physical fault from a group of logic faults. For example, when an open defect

affects an interconnect, the faulty behavior of the defect could be complex. Figure 23

shows a net-open physical defect. The net has a stem Z and four branches A, B, C and D.

As shown in Figure 23, faulty location A explains failing patterns 1, 3 and 7; location C

explains failing patterns 2 and 6; location D explains failing patterns 4 and 5; Locations B

and Z do not explain any failing patterns. In [Venkataraman 00], the authors proposed to

take the union of all the failing patterns that can be explained by the stem or any branch

connected to the stem to create a superset of possible faulty behaviors of the open defect

on the net. That is, the derived net-open fault at Z will explain the union of all the above

failing patterns. That means net-open fault at Z explains failing patterns 1 through 7. The

idea behind this method [Venkataraman 00] is to roughly predict the faulty behavior of a

real open defect by taking the union of all the explained failures. However, it could be too

aggressive, thus wrong net-open faults could be constructed and reported using this

method in some cases. In this paper we propose to derive a physical fault from a group of

logic locations when multiple defects are present in the circuit. It is worth noting here that

for diagnosis methods that only identify logic locations without trying to identify the

physical fault types, location A could be ranked higher than location Z in the example

above if stuck-at fault at A explains more failures than stuck-at fault at Z. It still pinpoints

the faulty location, however all the gate equivalence faults of logic location A will also be

reported. If we can identify the fault types correctly and build a physical defect at Z, we

will only report a net-open fault. Identifying the physical defect type and predicting the

faulty behavior of the physical defect based on failures explained by constituent logic

88

locations can break the ambiguity introduced due to equivalence of gate faults, thus

helping identifying the faulty locations more accurately.

Figure 23: Net-open Defects

Figure 24 shows an example of multiple interconnect open defects. Assume

interconnect Z is one of the open defects in the faulty circuit and Y doesn’t have an

interconnect open defect. The open defect on Z causes a SA0 fault on D and due to the

equivalence of faults at a gate, SA1 on G is also a faulty location on the initial fault list. If

H and K are on the propagation paths of another defect and are on the initial candidate

list, the union of stem Y and all its branches may explain more observed failures than the

union of stem Z and all its branches. Since location D and G explain the same failures

due to fault equivalence, and if location H explains exactly the same number of failing

patterns as location B, then vector-wise prediction (pattern-level fail match)

[Venkataraman 00] is not able to differentiate composite fault Z and Y, and the union of

the failures explained by logic location Y, G, H and K could be more than the union of

failures explained by logic location Z, A, B, C and D. This will lead to the wrong callout

of net Y instead of calling out the real fault Z. Actually when multiple defects are present,

89

especially when a large number of locations fail, the chance of vector-wise match

decreases and there may be no vector-wise match. Then in the example above it could

also lead to wrong callout.

Figure 24: Illustration of Diagnosis Challenge

From the above example, we can see that while building a physical fault from a

group of logic locations, simple union of all the faults may lead to wrong diagnosis. From

our observation, careful selection of component stuck-at faults and careful analysis of the

diagnostic metrics of the composed physical fault improves diagnosis quality by

removing false locations. As we can see in the example shown in Figure 24, if both or

either one of locations H and K is excluded when deriving the net-open defect Y from

stuck-at faults, the real defect Z could be selected instead of Y.

90

In the following, we will explain how to analyze the relations among logic

locations and diagnostic metrics of each component stuck-at fault during physical fault

creation phase. The selection of component stuck-at fault is motivated by the work done

by Holst and Wunderlich [Holst 07]. In [Holst 07], the authors proposed a metric ơT that

uses min (sftf, sftp) for each failing pattern to rank stuck-at faults. It has been shown to be

very effective to rank stuck-at fault suspects. In this work, we use a modified metric ơ’T

to compute a score for each derived physical fault.

 To derive a physical fault, we check the list of initial faults and try to find faults

that can be grouped together to create physical faults. The faults on the same

interconnect net may compose a net-open fault as shown in Figure 23. The faults on the

input and output nodes of the same gate may compose a logic cell internal fault [Sharma

07]. Bridge faults are derived from two or more logic locations that meet certain

excitation and propagation criteria [Zou 06].

After a physical fault is created, the next step is to calculate its diagnostic metric

values. In [Holst 07] the metric ơT = min(,)
t FP

sftf sftp
∈
∑ was proposed to be used as a ranking

criteria.

We propose to use the metric ơ’T =
1,2

min(,)
t FP

sftf sftp
∈ −
∑ to calculate diagnostic metric

values for the derived physical fault. To get ơ’T , min(sftf, sftp) is added over all the non-

Type-3 (Type-1 and Type-2) failing patterns, which can be explained by a single location

or by bit union of several locations. If ơ’T of a fault is 0, we call such a fault seed fault.

While the previous works consider all the failing patterns explained by each component

stuck-at fault as also explained by a composed physical fault, we only consider the failing

patterns explained by the seed faults as explained by a composed physical fault. That is,

91

if a stuck-at fault, say f, has both SFTF and SFTP on any non-Type-3 failing pattern, thus

leading to ơ’T>0, the SFTF of this fault is not counted in the SFTF of the derived physical

faults composed from f and other faults. The reason for using this heuristics is that a fault

with SFTF>0 and SFTP>0 for one failing pattern cannot explain this failing pattern

unless this pattern is a Type-3 pattern. As this pattern can be explained by a single

location (Type-1 pattern) or by bit union procedure (Type-2 pattern), most likely, this

fault is not a real fault. Including this fault usually leads to a false suspect in many of the

cases that we have studied. ơ’T doesn’t include min(sftf, sftp) over a failing pattern if this

pattern cannot be classified into Type-1 or Type-2 patterns. When multiple faults are

present, a real fault could have both SFTF and SFTP over some failing patterns if the

fault has interactions with other faults on the observation points as shown in Figure 20(c).

The chance of interactions increases as fault density increases. To add min(sftf, sftp) over

all the failing patterns can be too pessimistic for a real fault when multiple faults are

present, and hence we add min(sftf, sftp) over only Type-1 and Type-2 failing patterns.

We use the example shown in Figure 23 to explain how to calculate the diagnostic

metrics for a physical fault. Suppose location D (a stuck-at fault on D) has both SFTF and

SFTP on a failing pattern p.

If the failing pattern p can be explained by a single logic location or by bit union

of a set of locations, then D is not a seed fault (ơ’T>0) and we do not include the failures

explained by location D when computing the SFTF of the derived net-open fault. So the

number of failing patterns that net-open fault on Z explains is 5: failing patterns 1, 3, 7, 2

and 6.

92

If the failing pattern p can neither be explained by a single logic location nor by

bit union, then the pattern is classified as a Type 3 pattern and D is still a seed fault

(ơ’T=0). The SFTF of location D will be counted in the SFTF of the net open fault. So the

number of failing patterns that the net-open fault on Z explains is 7: failing patterns 1-7.

Similarly, for the example shown in Figure 24, if false location H has both SFTF

and SFTP on the same failing pattern, which can be explained by a single location or a set

of locations, then for the derived open fault on interconnect Y, the failures that H

explains won’t be counted in the SFTF of the open fault Y. Then it will not lead to the

wrong call out of open fault Y. This concept applies to other physical faults that are

derived from a group of logic locations, such as bridge faults and cell internal faults in a

similar manner.

5.2.2.3 Final Suspects Selection

In the earlier steps, we have constructed a list of faults that include all the stuck-at

faults and the derived physical faults. We have also determined which failing patterns can

be explained by each of the faults on the list. We define the number of patterns explained

by a fault “#EFP”. Now we choose a subset of these faults to explain the observed

failures of the CUD. We use a greedy set covering algorithm to select the final suspect(s)

iteratively. In order to use the passing pattern information to prune some false suspects

that happen to explain many failing patterns, we calculate the SFTP values for passing

patterns at this step. When a fault has SFTP on a passing pattern, we say that this pattern

is a passing mismatch pattern for this fault. We define the number of passing mismatch

patterns for a fault “#PMP”. Previous works also use passing pattern information to rank

suspects. However, passing mismatch information is only considered when failing match

93

(#EFP or SFTF) is exactly the same. In this procedure, a diagnosis score is calculated and

assigned to each stuck-at and physical fault. The diagnosis score is based on the number

of explained failing patterns (#EFP) and the number of passing mismatch patterns

(#PMP):

 Diagnosis Score = #EFP - α×#PMP (1)

where α, 0≤α≤1, is a parameter.

 So the passing mismatch information is also considered even if two suspects

have different failing matches. During the set covering process, in each iteration we

choose the suspect with the highest diagnosis score. Once a suspect is chosen, the failing

patterns that are explained by the suspect are eliminated from the tester failure set. Table

12 shows an example of the set covering procedure. There are 10 test patterns and 4

candidate suspects. The first 6 patterns are failing patterns and the last 4 patterns are

passing patterns. If a suspect explains a failing pattern, we mark the corresponding entry

with “√” and if a suspect has mismatches on a passing pattern, we mark the entry with

“×”.

Table 12: An example of suspect selection (α=0.4)

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P 10
S1 √ √ √ √ × × ×
S2 √ √ √
S3 √ √ √ ×
S4 √ √

In the first iteration, the diagnosis score for suspect S1 is 2.8 as computed using

equation given above; the diagnosis score for suspect S2 is 3; and the diagnosis scores for

94

suspects S3 and S4 are 2.6 and 2, respectively. So suspect S2 is selected in this iteration.

Since P1, P3 and P4 are explained by S2, these three patterns are dropped from

consideration in future iterations and the table is updated as shown in Table 13.

Table 13: Updated table

 P2 P5 P6 P7 P8 P9 P 10
S1 √ × × ×
S3 √ √ √ ×
S4 √ √

Using similar calculation, in the second iteration, suspect S3 is selected. Now all

the failing patterns have been explained by set {S2, S3}.

5.2.3 Experimental Results for Multiple Physical Defect

To evaluate the effectiveness of the proposed diagnosis technique, we conducted

experiments on simulated test cases of several industrial designs and also on 4 available

silicon test cases. In each simulated test case, we inject two or three physical faults

simultaneously. We then perform fault simulation of the injected physical faults to create

a failure file. This failure file is fed to the diagnosis tool and check whether the injected

fault can be identified.

The faulty behavior of a cell internal and bridge defect is created based on SPICE

simulation of a defect injected at transistor level net list. The faulty behavior is captured

into a truth table. A truth table contains the faulty outputs’ values for all the input value

combinations. We then use logic simulation of the circuit by injecting the truth table

behavior of single or multiple defects to derive the failures. The faulty behavior of a net-

95

open defect is created by injecting stuck-at faults on a subset or all of the branches

connected to the defective stem. For some nets, the number of failing branches can be up

to 10. So for a test case which has three net-open faults, the actual number of faulty logic

locations are up to 30. The characteristics of the four industrial designs are shown in

Table 14. The diagnosis results on the four designs are reported in Table 4 and Table 5.

Designs 1, 3, 4 use on-chip EDT [Rajski 04] test data compression with input

compression and output compaction logic.

Table 14: Design Characteristics

Circuit
s

#gat
es

#chai
ns

chai
n

leng
th

#outp
ut

chann
el

compa
ction
ratio

Desig 9.3K 24 19 3 8X
Desig 2M 32 439 N/A N/A
Desig 2M 32 439 2 16X
Desig 9.8 6012 152 65 92X

Figure 25: Comparison for Two Defects

96

Figure 26: Comparison for Three Defects

Diagnosis accuracy is a measure of how many injected defects are correctly

identified. In tables 15 and 16, the total numbers of test cases for each fault type are

shown under defect types. In Table 15, the row heading of “Both” show the number of

cases for which both the injected defects are reported while the rows headed with “One”

or “None” show the number of cases that one or none of the injected defects are reported.

Similarly in Table 16, the row heading of “All” show the number of cases for which all

the three injected defects are reported while the rows headed with “Two”, “One” or

“None” show the number of cases that two, one or none of the injected defects are

reported. For example, in Table 15, for net-open defects, out of 60 cases for Design 2, we

can report both open defects for 58 cases. The missed diagnosis may be due to the

following. When multiple defects are present, defective global signals such as defects on

scan enable or clock tree can explain the failures with small passing mismatch in few

cases and injected defects are not reported in such case. Also the diagnosis accuracy is

bounded by the production test set used to do diagnosis. For example, under some test

set, one fault could be dominated by other faults and cannot be reported.

97

Table 15: Experimental Results for Two Physical Defects

Design

Result

Design 1 Design 2 Design 3 Design 4

Open

(55)

Cell

(124)

Bridge

(63)

Open

(60)

Cell

(100)

Bridge

(60)

Open

(60)

Cell

(100)

Bridge

(60)

Open

(40)

Cell

(60)

Bridge

(50)

Both 48 116 33 58 95 40 58 93 39 36 49 36
One 5 5 29 1 4 19 1 5 20 4 7 12
None 2 3 1 1 1 1 1 2 1 0 4 2
A.R 30.6% 19.0% 15.4% 32.1% 20.7% 20.3% 31.9% 20.1% 20.0% 28.7% 19.0% 21.1%

Table 16: Experimental Results for Three Physical Defects

Design

Result

Design 1 Design 2 Design 3 Design 4

Open

(50)

Cell

(50)

Bridge

(50)

Open

(50)

Cell

(50)

Bridge

(50)

Open

(50)

Cell

(50)

Bridge

(50)

Open

(50)

Cell

(50)

Bridge

(50)

All 43 40 29 45 41 34 44 41 30 41 41 33

Two 3 5 12 3 3 9 4 2 12 6 4 9

One 3 3 7 2 4 4 2 5 5 3 3 6

None 1 2 2 0 2 3 0 2 3 0 2 2

A. R. 28.7% 17.5% 15.1% 30.6% 19.8% 20.0% 30.9% 18.8% 19.7% 28.0% 17.9% 19.7%

Diagnosis resolution shows how many faults are reported by the diagnosis tool.

The diagnosis resolution for an injected fault is defined as the reciprocal of the number of

the reported faults, whose scores (rankings) are larger (higher) than or equal to the

injected fault, except other injected faults. For example, in a test case injected with two

net-open defects, say F1, F2, the proposed method reported five suspects with scores as

{F1 (100), F3 (100), F4 (95), F2 (95), F5(90)}, then the resolution for F1 will be 50%

and the resolution for F2 will be 33%. Please note that when we calculate diagnosis

resolution, we include all the un-collapsed stuck-at faults. When a logic location is

reported with two fault types, we consider them two suspects. For example the same

location can be identified net-open and cell-internal defects at the same time under a test

98

set. In such cases, we consider them two suspects when calculating diagnosis resolution.

In Tables 15 and 16 we list the average resolution for all types of defects for each design

under columns “AR”.

For the purpose of comparison, we implemented the location based diagnosis

method of [Holst] and we call this method MWF. MWF method ranks all the stuck-at

faults in the circuit and MWF method yields a list of suspects with rankings. In the

example shown above, in a test case injected with two net-open defects, say F1, F2, the

MWF method ranked F1 first with 2 other logic locations, then the resolution for F1 will

be 1/3= 33% and F2 is ranked 26 with 3 other logic locations, the resolution for F2 will

be 1/(28-1)=4%. Figures 25 and 26 give the average diagnosis resolution for both

methods. We can see that for all types of physical defects, the proposed method has better

resolution than the MWF method. This shows that carefully deriving physical faults and

calculating their diagnosis metrics can improve the diagnosis resolution for multiple

physical defect diagnosis.

We also conducted experiments on four available silicon test cases of Design 4.

Physical failure analysis (PFA) has identified one defect for each of the 4 test cases. For 3

cases, the defect type is net-open and for 1 case, the defect type is cell-internal. The

proposed diagnosis method reported that there are multiple faults in each of the four

cases. And the diagnosis results include the identified real defect for all the 4 silicon

cases. The real defects are reported top suspects for all the 4 cases and their defect types

are also correctly identified.

99

5.3 Diagnosis Method Based on FTET

In Section 5.3, we will investigate a method based on fault-tuple equivalence tree

(FTET). When multiple faults are present in faulty circuits, the interactions between them

on observation points complicate the diagnosis. A new method of diagnosis of multiple

arbitrary faults was recently proposed [Ye 10]. This method constructs a fault-tuple

equivalence tree (FETE) for each failing test pattern to store the relation among potential

fault locations to consider the mask and reinforcement effect. If the faulty effect can be

propagated to at least one observation point in the single-fault situation, but be blocked in

the multiple-fault situation, then it is called mask effect. If the fault effect cannot be

propagated to an observation point in the single-fault situation, but can be observed in the

multiple-fault situation, then it is called reinforcement effect. Instead of doing fault

simulations on all potential fault locations, the method only perform fault simulation on

fan-out branches to check passing bit mismatches. The experimental results showed good

diagnosability and resolution compared with the latest work[Yu 08]. During the tracing

back from the failing observation points and the build-up of the FTET, the method tries to

consider masking and reinforcement effect, which is very important for diagnosis of

interacting multiple faults. In Section 5.3, we will investigate a method to diagnose

multiple faults using fault-tuple equivalence tree. We propose to use conflict between

different faults to further improve diagnosis quality and also we do not only identify fault

locations, but also identify fault types as the method proposed above. The overview of the

diagnosis method is shown in Figure 21 above in Section 5.2.2. However, in this method,

we propose a new approach in Step 2 to identify initial stuck-at faults.

100

5.3.1 Analysis of Diagnosis Method in [Ye 10]

In Section 5.3.1, we review the method proposed in [Ye 10] and also give the

terminologies used in this work.

For each failing pattern, the method traces from all failing observation point

towards the primary input to construct a FTET. The tracing for each failing patterns starts

from the first fault-tuple, which are all the failing observation points. For example, in

Figure 27, the circuit under pattern abc(101) has two failing observation points g and h,

so the first fault-tuple is (g/1, h/1), where g/1 represent a fault which causes the line g to

get a faulty value 1. The tracing starts from the first tuple. A score is assigned to each

node in the tree. After a FTET is constructed for each failing pattern, the sites are selected

based on the score until all the FTETs are pruned.

Figure 27: A Faulty Circuit under Pattern abc(101)

In Figure 28, it shows the overview of the diagnosis method.

101

Figure 28: Diagnosis methodology overview [Ye 10]

A simple example in Figure 29 is given next to explain how to construct a fault-

tuple equivalence tree (FTET) for a test pattern abc(110). The first fault-tuple is all the

failing observation points, which are (k/1, l/1). If there are n failing observation points,

each node will be assigned the same 1/n score. In this example, n equals 2. So both k/1

and l/1 has score 0.5. During the process of path-tracing, there are two situations:

(1) The line under trace is an output of a gate and not a fanout branch of a stem. In

this case, they build the equivalent relation between the fault at the output of the gate and

the faults at the inputs of the gate. For example, in Figure 29(1), because faulty-free-

value (FFV) of line a is 1 and FFVb=0, k/1 is equivalent to g/1. The two nodes will have

the same score 0.5. For l/1, because FFVh=0 and FFVi=0, l/1is equivalent to the fault

102

tuple (h/1, l/1). h/1 and l/1 will both have score 0.25. Similarly, a fault of an output could

be equivalent to anyone among several faults of its inputs. For example, when a two-

input AND gate has a faulty value 0 at its output, say c, if FFVs of its inputs, say a and b,

are both 1, c/0 will be equivalent to either a/0 or b/0. a/0 and b/0 will both have the same

score as c/0.

 (1) (2)

Figure 29: Example of FTET Construction [Ye 10]

(2) The line under trace is a fanout branch of a stem. In this case, there are two

situations. If all the other branches of the same stem are traced, a relation can be built at

the stem. For example, in Figure 29(1), when the trace reaches line g, it is found that all

the fanout branches of the same stem are traced. Then (g/1, h/1) is equivalent to f/1. f/1

will have the union of the scores of (g/1, h/1). If not all the other branches of the same

steam are traced, fault simulation will be performed. For example, in Figure 29(1), when

the trace reaches i/1, since line j is not traced, j/1 will be injected to do fault simulation. If

there is mismatch on any passing observation points, i/1 will be equivalent to the fault

103

tuple, which include the fault at the stem and the fault at the mismatching passing

observation points as shown in Figure 29(2).

After construction of FTETs for all the failing patterns, the method will select

sites iteratively to prune all the trees based on the scores. In each iteration, after a site or

several sites are selected, the FTETs will be pruned and the tree will be updated. The site

selection ends when all the FTETs are pruned.

Next we will define conflicts and propose how to use conflicts to further improve

the diagnosis quality for multiple faults.

5.3.2 Method to Identify Faulty Locations Based On

FTET

5.3.2.1 Conflicts in FTET

We will first introduce the concept of conflicts and explain the method to use

conflicts to diagnose multiple clustered faults.

Conflict: a node, say k/v1, is said to have a conflict with a node, say h/v2 if and

only if k/v1’ is on the path from h/v2 to the first fault tuple and h/v2 cannot get the same

score without going through k/v1’. (v1’ is the compliment of v1)

For example, in Figure 30 showing an FTET, the compliment of the blue nodes

are said to have conflicts with the red node. Take GG15/B/1 as an example, it is said to

have a conflict with GG14/0 because GG15/B/0 is on the path from GG14/0 to the first

fault tuple and GG14/0 cannot get score 1 without going through GG15/B/0. GG16/B/0 is

also on the path from GG14/0 to the first fault tuple, but GG14/0 can still get score 1

without going through GG16/B/0, so GG16/B/1 doesn’t have a conflict with GG14/0. If a

104

node A is said to have a conflict with another node B, then node A somehow blocks the

propagation path from node B to the faulty effects on failing observation points.

Figure 30: An example of conflict

5.3.2.2 Site Selection

We propose a method to choose candidate faulty site iteratively after construction

of FTETs. In [Ye 10], the sites are also selected iteratively. In each iteration, the faults

with the highest score in each FTET will be first chosen. Then among these faults, the

line which appears most is chosen as one of the final suspect. The FTETs will be pruned

and updated using the chosen final suspect. The later a suspect is chosen, the lower rank

105

it will get. So the suspect chosen in the first iteration will be the top ranked suspect. In

this work, we identify conflicts after each iteration, then use conflicts to guide the site

selection.

Let’s take an example shown in Figure 31. The example shows a faulty S27

(ISCAS89 benchmark circuit) with 5 stuck-at faults: GG14/0, GG8/B/1, GG15/B/0,

GG16/A/0, GG16/1. 4 out of 8 test patterns failed. So 4 FTETs will be constructed for all

the 4 failing patterns. In Figure 31, it shows the faulty S27 under test pattern P1.

.

Figure 31: Faulty S27 Circuit under Pattern P1

The FTET for P1 is shown in Figure 31. We can see that GG14/0 (GG0/1) has the

highest score in this tree. GG14/0 (GG0/1) has the highest score in 3 FTETs for P1, P2,

P3. According to the site selection method in [Ye 10], they will be selected as one of the

final suspect in the first iteration, i.e. the top suspect. GG14/0 (GG0/1) can explain the 3

FTETs completely so the 3 trees will be pruned completely by GG14/0 (GG0/1). Let’s

take a look the last FTET for failing pattern P4 shown in Figure 33.

106

In the second iteration of site selection, there is only one FTET left, as shown in

Figure 33. 8 faults have the same score and are undistinguishable using the method in [Ye

10]. If we consider the nodes that have conflicts with previously selected final suspect

GG14/0 (GG0/1), we can see that GG11/1, GG9/0 and GG8/1 have conflicts with

GG14/0 (GG0/1). Considering conflicts in this example can distinguish real injected

faults with some other candidate. Next we summarize the site selection method we

propose. After FTETs are constructed for all the failing patterns, the diagnosis method

enters into site selection flow as follows:

Figure 32: FTET of Pattern P1 for Faulty S27 Circuit

107

Figure 33: FTET of Pattern P4 for Faulty S27 Circuit

Step 1: For each fault, sum up the scores over all the FTETs.

Step 2: Select the faults as final suspects with the highest score.

Step 3: Identify the nodes that have conflicts with the selected faults. Then

subtract the scores in the FTETs, in which they have conflicts with the selected faults.

Step 4: Prune FTETs with the selected faults and update FTETs and scores.

Step 5: If all FTETs are pruned, site selection flow ends. Otherwise, go to Step 2.

In the above example, GG14/0, GG8/B/1, GG16/1 will be included in the final

suspect report. We know that GG14/0, GG8/B/1, GG15/B/0, GG16/A/0, GG16/1 are

actually injected in the circuits. The diagnosability (SD/SI) for this case would be 60%,

where SD is the number of actual fault locations identified by diagnosis and SI is the

number of injected faults. However, if we inject GG14/0, GG8/B/1, GG16/1 into the

circuits, the responses will be exactly the same as the faulty circuit with the 5 stuck-at

108

faults. This is called multiple fault equivalence. Diagnosability will be bounded by such

equivalence.

Now we get a list of final suspects. There are the initial stuck-at faults. Next

physical defects will be created in the same way as explained in Section 5.2.2.2. To

derive a physical fault, we check the list of initial faults and try to find faults that can be

grouped together to create physical faults. The faults on the same interconnect net may

compose a net-open fault as shown in Figure 23. The faults on the input and output nodes

of the same gate may compose a logic cell internal fault [Sharma 07]. Bridge faults are

derived from two or more logic locations that meet certain excitation and propagation

criteria [Zou 06].

5.3.3 Experimental Results for Multiple Physical Defects

We conducted experiments on full-scan combinational version of public

benchmarks including ISCAS’89 circuits and ITC’99 circuits.

In Table 17, we first compare the proposed method with the method in [Ye 10].

As the method in [Ye 10] does not identify fault types and only report faulty locations in

the final suspect list, in Table 17 we only report the suspect list we get after Step 2 in

Figure 21, using the proposed method in Section 5.3. Conflicts happen when multiple

faults are logic neighbors. So we inject multiple faults in a locally bounded region instead

of inject random multiple faults. When a large number of faults are present in a locally

bounded region, the diagnosis becomes more challenging as the chance of interactions

between different faults increases. We inject multiple stuck-at, transition, dominant

bridge and net open faults. For each number of injected faults, each fault type and each

109

circuit, we have 50 test cases. The number of failing patterns is 100 for all test cases in

the experiments.

To evaluate the diagnosis quality, we define diagnosability as SD/SI and we also

report the average resolution (A.R.) as defined in Section 5.2.3. SD is the number of actual

fault locations identified by diagnosis and SI is the number of injected faults. The

diagnosis resolution for an injected fault is defined as the reciprocal of the number of the

reported faults, whose scores (rankings) are larger (higher) than or equal to the injected

fault, except other injected faults. For example, in a test case injected with two net-open

defects, say F1, F2, the proposed method reported five suspects with scores as {F1 (100),

F3 (100), F4 (95), F2 (95), F5(90)}, then the resolution for F1 will be 50% and the

resolution for F2 will be 33%. If a fault is not reported by the method, the resolution for

this fault will be 0. For the total number of final suspects, as the diagnosis only reports

faulty locations without fault type, we do not consider gate equivalence faults because

they are undistinguishable. For example, a stuck-at-0 fault at an input of a AND gate will

be equivalent to the stuck-at-0 fault at its output. They will be considered one fault in

Table 17.

In Table 17, the first column is the circuit name, and the number of gates is listed

under the circuit names. The second column is the type of injected faults (S: Stuck-at; T:

transition; B: dominant bridge; O: net open), and the rest columns are the average

diagnosability, the average resolution (A.R.). In Table 17, we can see that both

diagnosability and the resolution get improved for multiple faults. For example, when

there are 19 stuck-at faults in S38584 circuit, the average diagnosability improves from

60% to 62% while the average resolution increases from 14% to 15%. Please note that as

110

shown in the example in Section 5.3.2, the test response of a faulty circuit with 5 faults

could be the same as a faulty circuit with 3 faults. So diagnosability we defined here is

bounded by such multiple-fault equivalence. Also some faults could be undistinguishable

under a test pattern set, this will reduce the resolution.

In Table 18, we report the diagnosis results using the whole diagnosis flow

proposed in Section 5.3. It is under heading “New” in Table 18. The whole flow is shown

in Figure 21 and it identifies fault types after we identify faulty location after Step 2. We

also compare the diagnosis results with the earlier proposed method described in Section

5.2. It is under heading “[Tang 10]” in Table 18.

In each simulated test case, we inject two or three physical faults simultaneously.

We then perform fault simulation of the injected physical faults to create a failure file.

This failure file is fed to the diagnosis tool and check whether the injected fault can be

identified. Please note that one physical defect can cause multiple faulty locations. For

example an open net defect can cause several of its fanout branches to be faulty. So for 2

or 3 physical defects, the number of faulty locations can be more than 10.

In table 18, for each design, each fault type, each number of physical faults, there

are 50 test cases. In the columns of the 2nd row, the heading “3” shows the number of

cases for which 3 injected defects are reported while the headings “2”, “1” or “0” show

the number of cases that 2, 1 or none of the injected defects are reported. In the 2nd

column under “type” it show the defect types: O represent net open defect; C represents

cell internal defect; B represents dominant bridge defects. For example, we can see that in

Table 18, for S38584 circuit, the new proposed method was able to identify all 3 physical

111

defect correctly for 45 cases, and identify 2 out of 3 correctly for 4 cases and identify 1

out of 3 correctly for 1 case.

Diagnosis resolution is defined the same as in Table 17. When a logic location is

reported with two fault types, we consider them two suspects. For example the same

location can be identified net-open and cell-internal defects at the same time under a test

set. In such cases, we consider them two suspects when calculating diagnosis resolution.

In Table 18 we list the average resolution for all types of defects for each design under

columns “AR”. As we can see in Table 18, the new method yielded better accuracy and

resolution.

As we discussed in Section 5.2, the missed diagnosis could be due to the

following. When multiple defects are present, defective global signals such as defects on

scan enable or clock tree can explain the failures with small passing mismatch in few

cases and injected defects are not reported in such case. Also both the diagnosis accuracy

and resolution is bounded by the production test set used to do diagnosis. For example,

under some test set, one fault could be dominated by other faults and cannot be reported.

Or two faults could be undistinguishable under a test pattern set.

112

Table 17: Faulty Location Identification Using Two Methods

design type
7 flts 11 flts 16 flts 19 flts

new [Ye 10] new [Ye 10] new [Ye 10] new [Ye 10]
Diag A.R. Diag A.R. Diag A.R. Diag A.R. Diag A.R. Diag A.R. Diag A.R. Diag A.R.

s13207

(2573)

S. 70% 32% 68% 28% 67% 24% 66% 22% 62% 20% 61% 18% 60% 17% 58% 15%
T. 64% 28% 64% 26% 61% 23% 60% 22% 58% 18% 57% 17% 57% 16% 56% 14%
B. 65% 28% 64% 27% 60% 22% 59% 21% 57% 17% 57% 16% 54% 15% 54% 14%
O. 68% 35% 66% 29% 64% 26% 62% 23% 61% 21% 59% 20% 57% 17% 55% 15%

s15850

(3448)

S. 69% 32% 68% 29% 68% 24% 66% 22% 60% 21% 60% 19% 60% 16% 59% 15%
T. 62% 30% 61% 28% 59% 21% 58% 20% 57% 18% 56% 18% 55% 16% 54% 15%
B. 62% 27% 62% 25% 59% 20% 59% 19% 55% 17% 55% 16% 54% 15% 53% 14%
O. 66% 38% 66% 34% 62% 26% 62% 24% 61% 22% 60% 20% 56% 16% 55% 15%

s35932

(12204)

S. 69% 27% 67% 24% 66% 23% 63% 21% 58% 20% 56% 18% 57% 15% 56% 14%
T. 63% 25% 61% 24% 56% 21% 56% 20% 55% 18% 54% 17% 55% 15% 53% 14%
B. 62% 25% 62% 24% 59% 20% 58% 18% 54% 16% 54% 16% 51% 14% 50% 13%
O. 67% 31% 66% 30% 63% 24% 62% 22% 60% 21% 58% 20% 54% 15% 52% 14%

s38417

(8709)

S. 66% 28% 65% 25% 65% 22% 65% 20% 59% 20% 57% 18% 58% 15% 56% 14%
T. 62% 25% 61% 23% 57% 21% 56% 19% 55% 17% 55% 17% 54% 14% 53% 13%
B. 62% 24% 61% 23% 60% 20% 59% 19% 54% 17% 53% 16% 51% 14% 49% 13%
O. 68% 31% 66% 29% 64% 24% 62% 22% 60% 21% 59% 20% 55% 15% 54% 14%

s38584

(11448)

S. 72% 29% 71% 26% 68% 21% 67% 19% 66% 19% 66% 17% 62% 15% 60% 14%
T. 67% 26% 67% 25% 58% 19% 58% 18% 56% 16% 55% 16% 55% 14% 54% 13%
B. 65% 24% 63% 23% 61% 19% 60% 18% 56% 16% 56% 16% 54% 14% 53% 13%
O. 70% 30% 71% 27% 60% 23% 59% 21% 67% 20% 67% 20% 58% 16% 56% 15%

b17

(22645)

S. 61% 25% 59% 22% 59% 21% 57% 19% 55% 18% 54% 17% 52% 14% 50% 13%
T. 58% 24% 57% 22% 56% 19% 55% 18% 52% 16% 50% 15% 50% 13% 49% 13%
B. 57% 22% 57% 21% 54% 19% 53% 18% 52% 16% 51% 15% 50% 13% 48% 13%
O. 62% 28% 61% 25% 60% 22% 60% 21% 57% 20% 55% 19% 53% 15% 51% 14%

b22
(14282)

S. 62% 24% 60% 23% 57% 21% 56% 19% 54% 18% 52% 17% 52% 14% 50% 13%
T. 57% 22% 57% 21% 55% 20% 55% 19% 51% 16% 50% 16% 50% 13% 49% 13%
B. 57% 21% 56% 21% 55% 19% 53% 18% 52% 16% 51% 16% 49% 13% 48% 13%
O. 61% 27% 60% 25% 59% 23% 58% 21% 56% 20% 56% 18% 53% 15% 52% 14%

113

Table 18: Diagnosis Results Using Three Methods

Circuit Type 2 physical defects

New [Ye 10]+FTI [Tang 10]

2 1 0 A.R. 2 1 0 A.R. 2 1 0 A.R.

s15850 O 48 2 0 33.5% 48 2 0 33.2% 45 4 1 32.2%

C 46 4 0 23.0% 45 4 1 22.6% 43 6 1 21.7%

B 38 11 1 22.3% 35 14 1 21.8% 34 14 2 20.5%

s35932 O 47 3 0 32.3% 46 4 0 31.7% 46 4 0 30.6%

C 47 2 1 25.2% 45 5 0 24.9% 45 4 1 23.8%

B 41 8 1 22.8% 41 7 2 22.5% 39 9 2 21.2%

s38417 O 48 1 1 35.1% 47 2 1 34.7% 46 3 1 33.7%

C 47 3 0 23.5% 45 6 0 23.2% 44 5 1 22.6%

B 40 9 1 21.7% 38 11 1 21.4% 37 10 3 21.3%

s38584 O 47 1 1 32.0% 47 2 1 31.6% 47 2 1 30.7%

C 46 4 0 22.5% 46 4 0 22.3% 45 5 0 21.9%

B 39 10 1 21.0% 37 13 0 20.4% 37 11 2 19.8%

b17 O 47 3 0 34.4% 47 3 0 34.2% 45 5 0 32.3%

C 46 4 0 22.1% 45 5 0 21.8% 45 4 1 21.7%

B 42 7 1 22.0% 40 9 1 21.4% 39 9 2 21.0%

114

Table 19: Diagnosis Results Using Three Methods

Circuit Type 3 physical defects

New [Ye 10]+FTI [Tang 10]

3 2 1 0 A.R. 3 2 1 0 A.R. 3 2 1 0 A.R.

s15850 O 45 4 1 0 28.5% 44 4 2 0 28.2% 41 6 3 0 27.5%

C 44 3 2 1 20.9% 44 2 3 1 20.7% 42 3 4 1 19.3%

B 35 11 4 0 19.1% 33 12 5 0 18.6% 30 12 7 1 17.5%

s35932 O 46 3 1 0 30.2% 46 2 2 0 30.0% 44 3 2 1 29.4%

C 44 5 0 1 19.2% 43 5 1 1 18.8% 41 4 3 2 18.3%

B 36 8 5 1 18.0% 35 7 7 1 17.6% 32 9 7 2 16.6%

s38417 O 46 4 0 0 32.4% 45 3 2 0 31.3% 45 2 3 0 30.7%

C 45 4 1 0 20.3% 43 5 1 1 19.9% 42 5 2 1 19.5%

B 39 9 2 0 17.9% 37 11 2 0 17.7% 34 8 7 1 17.2%

s38584 O 45 4 1 0 31.8% 43 6 1 0 31.4% 43 3 4 0 30.5%

C 46 3 1 0 21.2% 45 3 2 0 21.0% 43 2 4 1 20.4%

B 40 5 4 1 18.0% 38 6 5 1 17.9% 35 8 4 3 17.7%

b17 O 46 3 1 0 31.4% 44 4 2 0 30.9% 42 5 2 1 29.8%

C 45 3 2 0 19.3% 45 2 3 0 19.1% 40 6 4 0 18.0%

B 38 10 1 1 18.4% 35 12 2 1 18.0% 32 11 5 2 17.4%

115

CHAPTER 6. CONCLUSIONS

6.1 Conclusion of Completed Research

Diagnosis becomes very crucial in nowadays yield learning process. Effectively

and accurately locating the source of physical defects in failed chips and identifying the

cause of such failures provide guide for expensive physical failure analysis. It is an

important step toward effective silicon debug and yield improvement. This thesis

describes several methods to improve the accuracy, resolution and also speed of scan

chain and logic diagnosis.

In Chapter 2, we reviewed previous research work on scan chain and logic

diagnosis. We gave a review of fault models: stuck-at fault model, bridge fault model,

open fault model etc. Methods in different categories to diagnose scan chain failures are

reviewed with a focus on software-based method. Then multiple fault diagnosis methods

are also reviewed, including diagnosis method based on SLAT patterns, multiple fault

diagnosis based on Xlists; curable vectors and curable outputs; incremental multiple fault

diagnosis and diagnostic pattern generation techniques for multiple faults.

In Chapter 3, we proposed a method to improve diagnosability of production test

patterns for multiple scan chain failures under the test compaction methodology. As test

compaction becomes more and more popular in industry, diagnosis of scan chain failures

become more challenging as the loss of direct observation. We proposed a simple and

effective method to improve the diagnostic resolution of multiple chain failures with

minimal increase in pattern counts. This method can be easily adopted into any test flow

environment as it does not require any changes to test flows.

116

 In Chapter 4, we proposed new diagnostic test generation procedures to enhance

an earlier diagnostic test generation technique for scan chain failures. A diagnostic test

generation flow to reduce run times for diagnostic test generation was also proposed. The

proposed test generation procedures use multi-cycle scan test patterns with additional

constraints to improve the success rate of generating a pattern to differentiate a scan cell

from all cells downstream to it. To save test generation effort for sequential test pattern

generation with multiple capture cycles, we applied SCOAP concept to calculate the

minimum sequential depth of test patterns for each target scan cell. The proposed speed-

up flow tries to simultaneously target differentiating as many scan cells as possible by a

single test. Experimental results on several industrial designs have demonstrated the

effectiveness of the proposed procedures in improving the diagnostic resolution, reducing

the runtime and the number of test patterns.

In Chapter 5, we first propose a method based on SLAT patterns and bit union

technique to improve diagnosis results when multiple physical defects are presents in

circuits under diagnosis. The method first identifies initial faulty locations and then

identifies physical fault types. To improve diagnosis results when multiple defects are

present in a circuit under diagnosis, the proposed method includes (i) analyzing relations

among locations of logic faults and their diagnostic metrics to carefully derive physical

faults, (ii) a new set covering procedure and (iii) a method to assign scores to faults to

derive candidate sets of faults. Experimental results on several industrial designs and

several cases of silicon defects show the effectiveness of the proposed diagnosis method.

Then we propose a new method based on fault-tuple equivalence tree to identify initial

faulty locations. Then fault types are identified the same as in the first method.

117

Finally in Chapter 6, we concluded this thesis and propose future research

directions.

6.2 Future Research

All of the techniques described in this thesis shares the objective of producing

merrier diagnosis results for different types of defects in VLSI circuit. Here we propose

several future research directions as continuation.

One future research topic is advanced diagnosis method for scan cell internal defects.

As typically 30%-50% of the logic gates in a scan-based design impact the operation of

scan chains, scan chain failures are the cause of substantial portion of failing chips. With

the advancement of manufacturing processes from 90nm to 65nm and beyond, a

significant number of manufacturing defects lie inside design library cells [Cheng 07].

The faulty behavior of these defects that lie inside design library cells may not be

modeled using classic fault models. Recently some research has been published to

address the testing issue of such scan cell internal faults. [Guo 08] also studied the

diagnosis of static scan cell internal defects. The diagnosis of scan cell internal defects is

still very challenging mainly due to the complexity of the faulty behavior.

In Chapter 4, we investigated a method to generate a complete test pattern set for

diagnosis of scan chain failures. When production test pattern set doesn’t have good

enough diagnosability, diagnostic patterns can be generated to further improve diagnosis

results for PFA guidance. The complete test pattern set we proposed is under the

assumption that a single faulty scan cell is present in the scan chain. It is important to do

the research on how to generate diagnostic patterns with good diagnosability when there

are multiple faulty scan cells in the faulty scan chain.

118

Another research direction is on statistical learning of a large number of diagnosis

data to identify the root cause of system defects. Volume diagnosis becomes very

important to find the systematic defects and ramp up yield. In volume diagnosis,

diagnosis is performed on a large number of failing chips to find yield-limiting

systematic defects and design issues. Research on statistical methods of processing a

large number of diagnosis results is necessary, in order to accurately identify the root

cause of system defects.

119

REFERENCES

[Kundu 94] S. Kundu, “Diagnosing Scan Chain Faults," IEEE Trans. On VLSI
Systems, Vol. 2, No. 4, December 1994, pp. 512-516.

[Chuang 08] W.-S. Chuang, W.-C. Liu and J. C-M. Li, “Diagnosis of Multiple Scan

Chain Timing Faults”, IEEE trans. on CAD of Integrated Circuits and Systems,
Vol. 27, No. 6, June 2008, pp1104-1116.

[De 95] K. De and A. Gunda, “Failure Analysis for Full-Scan Circuits,”, Proc. ITC

95, IEEE Press, 1995, pp. 636-645.

[Song 04] P. Song et al., “A Novel Scan Chain Diagnostics Technique Based on

Light Emission from Leakage Current,” Proc. ITC 04, IEEE CS Press, 2004, pp.
140-147.

[Motika 03] F. Motika et al., AC Scan Diagnostic Method, US PATENT 6516432,

Patent and Trademark Office, 2003.

[Motika 06] F. Motika, P.J. Nigh, and P. Song, Stuck-At Fault Scan Chain Diagnostic

Method, US Patent 7010735, Patent and Trademark Office, 2006.

[Schafer 92] J.L. Schafer, F.A. Policastri, and R.J. Mcnulty, “Partner SRLs for

Improved Shift Register Diagnostics,” Proc. 10th IEEE VLSI Test Symp. (VTS
92), IEEE Press, 1992, pp. 198-201.

[Edirisooriya 95] S. Edirisooriya and G. Edirisooriya, “Diagnosis of Scan Path

Failures,” Proc. 13th IEEE VLSI Test Symp. (VTS 95), IEEE Press, 1995, pp.250-
255.

[Narayanan 97] S. Narayanan and A. Das, “An Efficient Scheme to Diagnose Scan

Chains,” Proc. Int’l Test Conf. (ITC 97), IEEE CS Press, 1997, pp. 704-713.

[Narayanan 99] S. Narayanan and A. Das, Flip-Flop Design and Technique for Scan

Chain Diagnosis, US patent 5881067, Patent and Trademark Office, 1999.

[Wu 98] Y. Wu, “Diagnosis of Scan Chain Failures,” Proc. Int’l Symp. Defect and

Fault Tolerance in VLSI Systems (DFT 98), IEEE Press, 1998, pp.217-222.

[Song 00] P. Song, “A New Scan Structure for Improvinig Scan Chain Diagnosis and

Delay Fault Coverage,” Proc. 9th IEEE North Atlantic Test Workshop (NATW
00), 2000, pp. 14-18.

[Tekumulla 07] R.C. Tekumulla and D. Lee, “On Identifying and Bypassing Faulty

Scan Segments,” Proc. 16th IEEE North Atlantic Test Workshop (NATW 07),
2007 pp. 134-143.

120

[Stanley 01] K. Stanley, “High Accuracy Flush-and-Scan Software Diagnostic,” IEEE

Design & Test, vol. 18, no.6, Nov.-Dec. 2001, pp.56-62.

[Guo 01] R. Guo, S. Venkataraman, “A Technique For Fault Diagnosis of Defects in

Scan Chains”, ITC, 2001, pp. 268-277.

[Kao 06] Y.-L. Kao, W.-S. Chuang, and J.C.-M. Li, “Jump Simulation: A Technique

for Fast and Precise Scan Chain Fault Diagnosis,” Proc. Int’l Test Conf. (ITC 06),
IEEE CS Press, 2006, paper 297659.

[Huang 07] Y. Huang, “Dynamic Learning Based Scan Chain Diagnosis,” Proc.

Design, Automation and Test in Europe Conf. (DATE 07), IEEE CS Press, 2007,
pp. 510-515.

[Huang 03] Y. Huang et al., “Efficient Diagnosis for Multiple Intermittent Scan

Chain Hold-Time Faults,” Proc. 12th Asian Test Symp. (ATS 03), 2003, pp.44-49.

[Huang 05_1] Y. Huang, W.-T. Cheng, and G. Crowell, “Using Fault Model

Relaxation to Diagnose Real Scan Chain Defects,” Proc. Asia and South Pacific
Design Automation Conf., IEEE Press, 2005, pp. 1176-1179.

[Huang 05_2] Y. Huang, W.-T. Cheng, and J. Rajski, “Compressed Pattern Diagnosis

for Scan Chain Failures,” Proc. Int’l Test Conf., IEEE CS Press 2005, pp. 751-
759.

[Huang 06] Y. Huang et al., “Diagnosis with Limited Failure Information,” Proc. Int’l

Test Conf., IEEE CS Press, 2006, paper 297660.

[Guo 07] R. Guo, Y. Huang, and W.-T. Cheng, “Fault Dictionary Based Scan Chain

Failure Diagnosis,” Proc. 16th Asian Test Symp., IEEE CS Press, 2007, pp. 45-50.

[Kundu 93] S. Kundu, “On Diagnosis of Faults in a Scan-Chain,” Proc. 11th Ann. Ieee

vlsi Test Symp., IEEE Press, 1993, pp. 303-308.

[Kundu 94] S. Kundu, “Diagnosing Scan Chain Faults,” IEEE Trans. Very Large

Scale Integration Systems, vol. 2, no. 4, Dec. 1994, 512-516.

[Yang 05] J.-S. Yang and S.-Y. Huang, “Quick Scan Chain Diagnosis Using Signal

Profiling,” Proc. Int’l Computer Design, IEEE CS Press, 2005, pp. 157-160.

[Hsu 06] E. Hsu, S.-Y. Huang, and C.-W. Tzeng, “A New Robust Paradigm for

Diagnosing Hold-Time Faults in Scan Chains,” Proc. IEEE Int’l Symp. VLSI
Design, Automation and Test, IEEE Press, 2006, pp. 171-174.

121

[Tzeng 07_1] C.-W. Tzeng and S.-Y. Huang, “Diagnosis by Image Recovery: Finding
Mixed Multiple Timing Faults in a Scan Chain,” IEEE Trans. Circuits and
Systems II, vol. 54, no. 8, Aug. 2007, pp. 690-694.

[Tzeng 07_1] C.-W. Tzeng and S.-Y. Huang, “A Robust Paradigm for Diagnosing

Hold-Time Faults in Scan Chains,” IET Proc. Computers and Digital Techniques,
vol. 1, no 6, 2007, pp. 706-715.

[Li 05_1] J.C.-M. Li, “Diagnosis of Single Stuck-At Faults and Multiple Timing

Faults in Scan Chains,” IEEE Trans. Very Large Scale Integration Systems, vol.
13, no. 6, June 2005, pp. 708-718.

[Li 05_2] J.C.-M. Li, “Diagnosis of Multiple Hold-Time and Setup-Time Faults in

Scan Chains,” IEEE Trans. Computers, vol. 54, no. 11, Nov. 2005, pp. 1467-
1472.

[Couch 05] A. Crouch, “Debugging and Diagnosing Scan Chains,” Electronic Device

Failure Analysis, vol. 7, no. 1, Feb. 2005, pp. 16-24.

[Sinanoglu 07] O. Sinanoglu and P. Schremmer, “Diagnosis, Modeling and Tolerance

of Scan Chain Hold-Time Violations,” Proc. Design, Automation and Test in
Europe Conf., IEEE CS Press, 2007, pp. 516-521.

[Guo 07] R. Guo, Y. Huang, W.-T. Cheng, “A Complete Test Set to Diagnose Scan

Chain Failures”, ITC 2007, paper 7.2.

[Abramovici 90] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital System

Testing and Testable Design, Computer Science Press, New York, 1990.

[Waicukauski 89] J. Waicukauski and E. Lindbloom, "Failure Diagnosis of Structured

Circuits", IEEE Design and Test of Computer, vol. 6, no. 4, 1989, pp.49-60.

[Veneris 99] A. Veneris, S. Venkataraman, I. N. Hajj, and W. K. Fuchs, “Multiple

design error diagnosis and correction in digital VLSI circuits,” VTS 1999, pp. 58-
63.

[Bartestein 01] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Slinwinski,

“Diagnosing combinational logic designs using the single location-at-a-time
(SLAT) paradigm,” Proc. of ITC, 2001, pp. 287-296.

[Boppana 99] B. Boppana, R. Mukherjee, J. Jain, and M. Fujita, “Multiple error

diagnosis based on Xlists”, in Proc. 36th DAC, 1999, pp. 660-665.

[Huang 01] S.-Y. Huang, “On improving the accuracy of multiple defect diagnosis”

in Proc. 19th IEEE VLSI Test Symposium, 2001, pp.34-39.

122

[Kuehlmann 94] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. Lapotin, “Error
Diagnosis for Transistor-level Verification”, Proc. of DAC 94, pp.218-223.

[Venkatraman 97] S. Venkatraman and W. K. Fuchs, "A Deductive Technique for

Diagnosis of Bridge Faults", 1997, ICCAD, pp. 562-567.

[Huang 99] S.-Y. Huang, and K.-T. Cheng, “ErrorTracer: A Fault-Simulation-Based

Approach to Design Error Diagnosis”, IEEE Trans on CAD-ICS, pp. 1341-1352,
Sept. 1999.

[Takahashi 02] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, “On

diagnosing multiple stuck-at faults using multiple and single fault simulation in
combination circuits,” IEEE Trans. CADICS, vol.21, no.3, pp362-368, Mar.
2002.

[Wang 03_1] Z. Wang, K.-H. Tsai, M. Marek-Sadowska, and J. Rajski, “An efficient

and effective methodology on the multiple fault diagnosis,” ITC 2003, pp. 329-
338.

[Wang 03_2] Z. Wang, M Marek-Sadowska, K.-H. Tsai, J. Rajski, “Multiple Fault

Diagnosis Using n-Detection Tests,” Proc. Of the 21st ICCCD 03, pp. 198-201.

[Wang 05] Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Delay-Fault

Diagnosis Using Timing Information”, IEEE transactions on computer-aided
design of integrated circuits and systems, vol.24, no. 9, September 2005, pp. 1315
– 1325.

[Wang 06] Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Analysis and

Methodology for Multiple-Fault Diagnosis,” IEEE CADICS, vol. 25, no. 3,
March 2006.

[Lin 07] Y.-C. Lin, F. Lu, and K.-T. Cheng, “Multiple-Fault Diagnosis Based On

Adaptive Diagnostic Test Pattern Generation,” IEEE Transactions on CAD of
integrated circuits and systems, vol. 26, no. 5, May 2007.

[Yu 08_1] X. Yu and R. D. Blanton, “Effective and Flexibble Multiple Defect

Diagnosis Methodology Using Error Propagation Analysis,” ITC 2008, paper
17.1.

[Yu 08_2] X. Yu and R. D. Blanton, “Multiple Defect Diagnosis Using No

Assumptions On Failing Pattern Characteristics,” Proc. DAC 2008, pp. 361-366.

[Schafer 92] J. Schafer, F. Policastri and R. Mcnulty, “Partner SRLs for Improved

Shift Register Diagnostics", Proc. VSLI Test Symposium, 1992, pp. 198-201.

123

[Edirisooriya 95] S. Edirisooriya, G. Edirisooriya, “Diagnosis of Scan Path Failures,"
Proc. VLSI Test Symposium 1995, pp. 250-255.

[Narayanan 97] S. Narayanan, A. Das, “An Efficient Scheme to Diagnose Scan

Chains," Proc. Int'l Test Conference, 1997, pp. 704-713.

[Wu 98] Y. Wu, "Diagnosis of Scan Chain Failures," Proc. Int'l Symp. on Defect and

Fault Tolerance in VLSI Systems, 1998, pp. 217-222.

[Gunda 95] K. De, A. Gunda, “Failure Analysis for Full-Scan Circuits”, ITC, 1995,

pp. 636-645.

[Song 99] P. Song, F. Motika, D. Knebel, R. Rizzolo, M. Kusko, J. Lee and M.

McManus, “Diagnostic techniques for the IBM S/390 600MHz G5
Microprocessor”, Proc. International Test Conference, 1999, pp. 1073-1082.

[Hirase 99] J. Hirase, N. Shindou and K. Akahori, “Scan Chain Diagnosis using

IDDQ Current Measurement", Proc. Asian Test Symposium, 1999, pp. 153-157.

[Hwang 08] J. Hwang, D. Kim, N. Seo, E. Lee, W. Choi, Y. Jeong, J. Orbon, S.

Cannon, “Deterministic Localization and Analysis of Scan Hold-Time Faults”,
International Symp. On Test and Failure Analysis, Nov. 2008, paper 13.3.

[Crouch 05] A. Crouch, "Debugging and Diagnosing Scan Chains," EDFAS, Vol. 7,

Feb., 2005, pp 16-24.

[Yang 04] J. S. Yang, S. Huang, “Quick Scan Chain Diagnosis Using Signal

Profiling”, ICCD, 2004.

[Wang 08] F. Wang, Y. Hu, H. Li, X. Li, Y. Jing, Y. Huang, “Diagnotic Pattern

Generation for Compound Defects”, ITC 2008, paper 14.1.

[Stanley 00] K. Stanley, “High Accuracy Flush and Scan Software Diagnostic", Proc.

IEEE YOT 2000, Oct. 2000.

[Huang 03] Y. Huang, W.-T. Cheng, S.M. Reddy, C.-J. Hsieh, Y.-T.Hung,

“Statistical Diagnosis for Intermittent Scan Chain Hold-Time Fault”, ITC, 2003,
pp.319-328.

[Huang 05] Y. Huang, W.-T. Cheng and G. Crowell “Using Fault Model Relaxation

to Diagnose Real Scan Chain Defects”, ASP-DAC, 2005, pp. 1176-1179.

[Kong 05] C.L. Kong, M.R. Islam “Diagnosis of Multiple Scan Chain Faults”,

ISTFA, Nov. 2005, pp. 510-516.

124

[Guo 06] R. Guo, S. Venkataraman, “An algorithmic technique for diagnosis of faulty
scan chains”, IEEE Trans. on CAD, Sept. 2006, pp. 1861-1868.

[Huang 06] Y. Huang, W.-T. Cheng, N. Tamarapalli, J. Rajski, R. Klimgerberg, W.

Hsu and Y.-S. Chen, “Diagnosis with Limited Failure Information”, ITC 2006,
paper 22.2.

[Goldstein 79] L. H. Goldstein, “Controllability/observability analysis of digital

circuits”, IEEE Transaction of Circuits and systems, 26:685-693, 1979.

[Chuang 08] W.-S. Chuang, W.-C. Liu and J. C-M. Li, “Diagnosis of Multiple Scan

Chain Timing Faults”, IEEE trans. on CAD of Integrated Circuits and Systems,
Vol. 27, No. 6, June 2008, pp1104-1116.

[Rajski 04] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, “Embedded

Deterministic Test”, IEEE trans. on CAD, VOL. 23, NO. 5, May 2004, pp 776-
792.

[Holst 07] S. Holst and H.-J. Wunderlich, “Adaptive Debug and Diagnosis without

Fault Dictionaries,” in Proceedings European Test Symposium, 2007, pp.7–12.

[Holst 09] S. Holst and H.-J. Wunderlich, “A Diagnosis Algorithm for Extreme Space

Compaction,” DATE, 2009, pp.1355–1360.

 [Aitken 97]. R. C. Aitken, “Modeling the unmodelable: Algorithmic fault diagnosis”,

IEEE Design and Test of Computers, Jul.-Sep.1997, pp. 98-103.

[Boppana 99] B. Boppana, R. Mukherjee, J. Jain, and M. Fujita, “Multiple error

diagnosis based on Xlists,” Proc. of DAC 1999, pp. 660-665.

[Huang 01] S.-Y. Huang, “On improving the accuracy of multiple defect diagnosis,”

Proc. VTS 2001, pp. 34-39.

[Takahashi 02] H. Takahashi, K. O. Boateng, K. K. Saluja, and Y. Takamatsu, “On

diagnosing multiple stuck-at faults using multiple and single fault simulation in
combinational circuits,” IEEE TCAD 2002, pp. 362-368.

[Wang 06] Z. Wang, M. Marek-Sadowska, and J. Rajski, “Analysis and methodology

for multiple-fault diagnosis,” IEEE TCAD Mar. 2006, pp. 558-576.

[Lin 07] Y.-C. Lin, F. Lu, and K.-T. Cheng, “Multiple-fault diagnosis based on

adaptive diagnostic test pattern generation,” IEEE TCAD, May 2007, pp. 932-
942.

[Yu 08] X. Yu and R.D. Blanton, “An effective and flexible multiple defect diagnosis

methodology using error propagation analysis,” Proc. ITC 2008, paper 17.1.

125

[Huisman 04] L. M. Huisman, “Diagnosing arbitrary defects in logic designs using

single location at a time (SLAT)”, IEEE TCAD, Jan. 2004, pp. 91-101.

[Cheng 04] W.-T. Cheng, K.-H. Tsai, Y. Huang, N. Tamarapalli and J. Rajski,

“Compactor independent direct diagnosis”, Proc. ATS 2004, pp. 204-209.

[Zou 06] W. Zou, W.-T. Cheng, S.M. Reddy and H. Tang, “On methods to improve

location based logic diagnosis”, Proc. Inter. Conf. VLSI Design 2006, pp. 181-
187.

[Venkataraman 00] S. Venkataraman and S. B. Drummonds, “ Poirot: a logic fault

diagnosis tool and its applications”, Proc. ITC 2000, pp. 253-262.

[Sharma 07] M. Sharma, W.-T. Cheng, T.-P. Tai, Y.S. Cheng, W. Hsu, C. Liu, S. M.

Reddy and A. Mann, “Fast defect localization in nanometer technology based on
defective cell diagnosis”, Proc. ITC, 2007, paper 15.3.

[Bartenstein 01] T. Bartenstein, D. Heaberlin, L. Huisman and D. Sliwinski,

“Diagnosing Combinational Logic Designs Using the Single Location At-a-Time
(SLAT) Paradigm”, Proc. ITC, 2001, paper 10.4

[Venkataraman 97] S. Venkataraman and W. Fuchs, “A deductive technique for

diagnosis of bridging faults,” Proc. of ICCAD, pp. 562-567, 1997.

[Rajski 04] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, “Embedded

Deterministic Test”, IEEE trans. on CAD, VOL. 23, NO. 5, May 2004, pp 776-
792.

[Tsai 09] M.-J. Tsai, M. C.-T. Chao, J.-Y. Jou and M.-C. Wu, “Multiple-Fault

Diagnosis Using Faulty-Region Identification”, Proc. of IEEE VTS, 2009, pp.
123-128.

[Menon 91] P. R. Menon, Y. Levendel, and M. Abramovici, “SCRIPT: A Critical

Path Tracing Algorithm for Synchronous Sequential Circuits,” IEEE Tran. on
Computer Aided Design, vol. 10, pp. 738–747, June 1991.

[Akers 90] S. B. Akers, B. Krishnamurthy, S. Park, and A. Swaminathan, “Why is

Less Information From Logic Simulation More Useful in Fault Simulation?,” in
Proc. of the IEEE Intl. Test Conf., pp. 786–800, Sept. 1990.

[Ye 10] J. Ye, Y. Hu and X. Li, “Diagnosis of Multiple Arbitrary Faults with Mask

and Reinforcement Effect,” Proc. of IEEE DATE, 2010, pp. 885-890.

126

[Tang 09_1] X. Tang, R. Guo, W.-T. Cheng, and S. M. Reddy, “Improving
Compressed Test Pattern Generation for Multiple Scan Chain Failure Diagnosis,”
DATE 2009, pp. 1000-1005.

[Tang 09_2] X. Tang, R. Guo, W.-T. Cheng, S. M. Reddy, and Y. Huang, “Improving

Diagnostic Test Generation for Scan Chain Failures Using Multi-Cycle Scan
Patterns,” Workshop paper, ETS 2009.

[Tang 09_3] X. Tang, R. Guo, W.-T. Cheng, S. M. Reddy, and Y. Huang, “On

Improving Diagnostic Test Generation for Scan Chain Failures,” ATS 2009.
(Accepted by ATS).

[Tang 10_2] X. Tang, W.-T. Cheng, R. Guo and S.M. Reddy, "Diagnosis of Multiple

Defects Using Logic Fault Models", Workshop paper, European Test Symposium,
2010.

[Tang 10] X. Tang, W.-T. Cheng, R. Guo and S.M. Reddy, "Diagnosis of Multiple

Physical Defects Using Logic Fault Models", ATS2010.

	University of Iowa
	Iowa Research Online
	Fall 2010

	Diagnosis Of VLSI circuit defects: defects in scan chain and circuit logic
	Xun Tang
	Recommended Citation

	Microsoft Word - Xun_Thesis_V5.0.doc

