
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2015

Distributed control system for demand response by
servers
Joseph Edward Hall
University of Iowa

Copyright 2015 Joseph Edward Hall

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/1971

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Hall, Joseph Edward. "Distributed control system for demand response by servers." MS (Master of Science) thesis, University of Iowa,
2015.
http://ir.uiowa.edu/etd/1971.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages

DISTRIBUTED CONTROL SYSTEM FOR DEMAND RESPONSE BY SERVERS

by

Joseph Edward Hall

A thesis submitted in partial fulfillment of the
requirements for the Master of Science

degree in Electrical and Computer Engineering
in the Graduate College of
The University of Iowa

December 2015

Thesis Supervisor: Associate Professor Raghuraman Mudumbai

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

Joseph Edward Hall

has been approved by the Examining Committee for the
thesis requirement for the Master of Science degree in
Electrical and Computer Engineering at the December
2015 graduation.

Thesis Committee:

Raghu Mudumbai, Thesis Supervisor

Soura Dasgupta

John Kuhl

ACKNOWLEDGEMENTS

Thanks especially to: Dr Raghu Mudumbai and Dr Soura Dasgupta, for seeing

promise in my abilities and for supporting my research and education professionally

and financially; Josiah McClurg to whom is due most of the credit for the research

presented; Joan Hall, Ann Tudor, and Mama Achieng for their prayers which have

helped me to leap through what has been for me a most terrifying and arduous hoop;

and Jessica Hall for her friendship, criticism, encouragement and love.

ii

ABSTRACT

Within the broad topical designation of smart grid, research in demand re-

sponse, or demand-side management, focuses on investigating possibilities for elec-

trically powered devices to adapt their power consumption patterns to better match

generation and more efficiently integrate intermittent renewable energy sources, es-

pecially wind. Devices such as battery chargers, heating and cooling systems, and

computers can be controlled to change the time, duration, and magnitude of their

power consumption while still meeting workload constraints such as deadlines and

rate of throughput. This thesis presents a system by which a computer server, or

multiple servers in a data center, can estimate the power imbalance on the electrical

grid and use that information to dynamically change the power consumption as a

service to the grid. Implementation on a testbed demonstrates the system with a

hypothetical but realistic usage case scenario of an online video streaming service

in which there are workloads with deadlines (high-priority) and workloads without

deadlines (low-priority). The testbed is implemented with real servers, estimates the

power imbalance from the grid frequency with real-time measurements of the live

outlet, and uses a distributed, real-time algorithm to dynamically adjust the power

consumption of the servers based on the frequency estimate and the throughput of

video transcoder workloads. Analysis of the system explains and justifies multiple de-

sign choices, compares the significance of the system in relation to similar publications

in the literature, and explores the potential impact of the system.

iii

PUBLIC ABSTRACT

Traditionally, in the electrical power grid, generators must change the amount

of power they generate in order to match the amount of power used by consumers

(loads). In such a system, some generators are continually ramping up and down

their output in order to match demand which is not fuel efficient. Moreover, wind

power generators compound the variability of the generation-load imbalance due to

the intermittent nature of wind power. Demand response proposes that electrical

loads can participate in generation-load balancing by changing how much power they

consume in order to allow fuel powered generators to run closer to a more efficient

constant rate. Computer servers in data centers are good candidates as demand re-

sponsive loads due to their ability to quickly change their power consumption and

the fact that many of their computational jobs are deferrable, meaning they can be

processed later. Distributed demand response is an approach that allows each de-

vice in a network to make its own control decisions while at the same time acting in

collaboration with other devices to produce a desired result on the aggregate. This

thesis presents an experimental demonstration of a distributed control algorithm for

servers to participate in demand response.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

1.1 Demand Response . 1
1.2 Methods of Demand Response 3
1.3 Data Center Demand Response 4
1.4 Our Contribution . 7
1.5 Outline for Rest of the Thesis . 9

2 CONTROL OF POWER CONSUMPTION IN COMPUTERS FOR
DEMAND RESPONSE . 10

2.1 Mechanisms of Power Dissipation in Computer Circuits 10
2.2 Methods of Power Control in Computers 11
2.3 Empirical Comparison of Power Control Architectures 13
2.4 Power Consumption Controller Design 23
2.5 Sharing Resources in Multi-Job/Multi-Server Distributed Control 31

3 DEMAND RESPONSE BY SERVERS - DEMO 35

3.1 Problem Formulation . 35
3.2 Hardware, Power Monitoring, & Workload Monitoring 36
3.3 Demand Response Algorithm . 37
3.4 Results & Observations . 40

4 CONCLUSIONS . 43

REFERENCES . 46

v

LIST OF TABLES

Table
2.1 Controller Parameters from the Ziegler-Nichols Step-Response Method 23

vi

LIST OF FIGURES

Figure
1.1 Opportunity for Saving Hundreds of Megawatts 6
2.1 Two Types of Logic Switching Power Dissipation 11
2.2 DVFS Using ACPI-CPUFREQ Driver with Userspace Governor . . . 15
2.3 Intel RAPL Interface . 17
2.4 Hypervisor (Xen) CPU Capping . 18
2.5 Inserting Delays at Kernel Level with Intel Powerclamp Driver 20
2.6 Inserting Delays at Application Level with usleep() 21
2.7 Inserting delays with SIGSTOP and SIGCONT 22
2.8 Inserting Delays with SIGSTOP and SIGCONT 24
2.9 Block Diagram of Control System Model 25
2.10 Calculation of R and L Using Ziegler-Nichols Step Response Method 26
2.11 Block Diagram of Integral Controller 27
2.12 Closed-loop Performance of Integral Controller 29
2.13 Two Servers Tracking Aggregate Setpoint with Individual Controllers 30
2.14 Two Servers Tracking Global Setpoint with Individual Controllers . . 31
2.15 Distributed Controller Block Diagram 33
3.1 Power Target Scaled from Frequency 38
3.2 Controller Bias Function . 38
3.3 Exaggerated Bias Term in Controller for Two Transcoder Jobs 40

vii

1

CHAPTER 1
INTRODUCTION

1.1 Demand Response

The electrical power grid consists of interconnected paths of transmission wires

which connect electrical generators (power plants, solar panels, wind farms, etc.)

and electrical loads (lights, computers, heaters, conveyor belts, etc.). At the most

basic level, the power flow of the transmission wires must be balanced such that the

power generated equals the power consumed by the loads. Traditionally, power in

the grid is supplied by base load generators (typically coal-fired or nuclear) which

are highly economically efficient, but cannot adjust their generations dynamically,

and are therefore supplemented by spinning reserves of peaking generators (typically

based on natural gas or diesel). The latter are much more expensive, but are needed

for the load-following function. In recent years, the increased penetration of wind and

other renewable energy sources has led to increased peaking generation requirement

to keep up with variability in generation as well as in load. This has posed a huge

challenge to grid operators and may limit the amount of renewable generation that

can be economically integrated into the grid. Costs of not meeting this challenge

include: “approximately 25 TWh of wind energy [...] curtailed (idled) in the U.S.

[in 2010] to keep the off-peak grid energy price from frequently going negative. That

is about equal to the energy in 700 million gallons of gasoline just being thrown

away” [1]; and in the UK, the National Grid paid wind farms £32 million in 2013

2

to remain idle and £3 million in a single day on October 26, 2014 [2]. Additionally,

the ramping up and down of the peaking generators is itself less efficient use of fuel

than if those generators would operate at steady-state or with slower ramp rates,

although the costs associated with integration of renewables are extremely difficult

to quantify [3].

Integration costs of utilizing intermittent sources of renewable energy genera-

tion, such as wind and solar, include reduction in thermal generation efficiency due

the need for generators to balance power generation and load. Intermittent sources

both generation and load lead to inefficiencies in the overall grid due to increased

generator cycling and less optimal unit commitment due to prediction errors [3]. De-

mand response (DR) or load-side management (LSM) encompasses diverse proposals

and implementations of how electrical workloads can adjust the magnitude and time

of their power consumption to match set points designed to increase electrical grid

stability and efficiency. The simple proposal is to delay or store-up deferrable demand

in order to utilize intermittent sources of power generation most efficiently.

The promise of demand response is that by adaptively controlling loads in such

a way that it offsets the fluctuations in the uncontrollable load and generation units,

the variability of the aggregate effective load that need to be serviced by conventional

generators can be minimized and thereby also the need for increased peaking reserves.

For example, when the lights turn on at a football stadium, the generators have

to work a little harder to supply the extra power consumed by the lights. When

the lights turn off, the generators have to decrease their output to maintain the

3

balance. Demand response is a concept which invites loads to participate in this power

balancing. In demand response, a group of loads might be able to turn-on/off and

speed-up/slow-down while still performing their jobs adequately on average. These

types of loads can defer some of the work they need to do to a later time, or they can

speed up and do the work early. Such deferrable loads can then consume more or less

power to help balance the total power flow on the grid. While some authors might

choose to differentiate between demand response (DR), load-shedding, demand-side

management, and possibly other terms, the remainder of this document will define

and conflate all with the term, demand response:

the intentional or designed increase or decrease in power consumption of

an electric load in response to some predefined input or control signal

for the purpose of affecting aggregate load-balance on an electrical power

grid.

1.2 Methods of Demand Response

Demand response has been an extremely active area of research in recent

years and many methods for its implementation have been proposed and studied in

the literature. One popular category of previous work in this area is focused on

discovering optimal adaptive algorithms [4], i.e. find a procedure to adjust the power

consumption of flexible loads over time to maximize a suitable performance metric

while satisfying device constraints (typically energy and deadline requirements).

The big problem with this approach is that basically, it is not at all obvious

4

just what to optimize i.e. there is no widely accepted performance metric that is both

physically meaningful for a sufficiently large class of flexible loads, and is amenable

to analytical optimization techniques.

There is another popular class of related work that uses dynamic pricing to

provide incentives for loads to adjust their consumption [5, 6]. This approach is

attractive for its generality, decentralized functioning and the minimal communication

(pricing signals) requirement. However, these methods rely on the assumption that

markets are able to achieve optimal outcomes for practically useful device models and

utility functions, which in turn relies on the ability of profit-maximizing consumers to

figure out how to adapt their power consumption to achieve their goal. In other words,

pricing-based methods may indeed offer an elegant solution to the demand-response

problem from the perspective of the grid operator, but they do so by delegating the

most difficult part of it to end-users.

1.3 Data Center Demand Response

Demand response resources can participate as ancillary services in power sys-

tems depending upon their response time, duration, and capacity. For example, in

the US system, frequency regulation services must be dispatchable in less than 30

seconds and last for seconds to minutes and regulating reserves must respond within

4 seconds to 5 minutes and last for minutes [7]. At the other extremes, The Electric

Reliability Council of Texas (ERCOT)’s emergency demand response program in 2012

required resources to respond within 30 minutes [7]. According to the Midcontinent

5

Independent System Operator (MISO), only a relatively small number of current de-

mand response loads can be used for regulation reserve, due to ramp-rate restrictions

of large loads and the ineffectiveness of small loads; for example demand response

resources with controllable loads must have at least 1 MW capacity to be included

in network model planning [8]. For example, slowing down production at a factory

may have a significant impact on the grid, but it can’t be done in just a few seconds.

By a similar token, it may be possible to rapidly control the power consumption of a

single water heater – but doing so will not have a significant impact on the grid. Data

centers are uniquely positioned as particularly versatile controllable load resources in

that they use a lot of power [9], and that power is controllable at fast time scales –

on the order of seconds. The motivation for demand response at a fast timescale is

shown in Figure 1.1, which is data from the MISO website [10], showing the differ-

ence between scheduled generation and actual generation. Neglecting the effects of

prediction error which would make the effect more pronounced, it is clear that large

power mismatches are common, and vary rapidly in time. If demand response were

implemented on a fast timescale, the average of 250 MW of deficit power could easily

have been avoided by rescheduling loads to draw from the average 500 MW of excess

power. Moreover, there would still be 250 MW of excess power that could be put to

useful work, were there loads which would benefit from it.

Several studies have proposed ways to manage computers and data centers

utilize intermittent renewable energy generation such as wind and solar in data cen-

ter infrastructure. Most of these studies model two types of server workloads: batch

6

-20 0 20 40 60 80 100 120

E
xc

es
s

ge
ne

ra
tio

n
(M

W
)

-500

0

500

1000

1500

Minutes after 7pm

-1000

Excess

(running average)

Deficit

(running average)

MISO Area Control Error for Jul 1, 7pm to 10pm

Figure 1.1: Opportunity for Saving Hundreds of Megawatts

processes which can be deferred on the order of minutes and hours and web-server re-

quests which can only be deferred by milliseconds. Most of these studies utilize highly

particular job-schedulers and optimization techniques to match server or data center

power consumption with renewable energy generation. Some use cost minimization

algorithm with pricing [11] or in a self-sustaining data center model collocated with

a finite supply of renewable generation [12]. Others use collocated batteries as ad-

ditional storage devices in a data center [13, 14]. Still others use day-ahead pricing

signals or other stochastic devices for predicting server workload or load imbalance

7

on the grid [15,16].

1.4 Our Contribution

We propose a radically simpler method of effecting demand-response which

prioritizes matching server power consumption to intermittent load imbalance as an

ancillary service to the grid. We do not include service-level agreements, predictive

analysis, exogenous storage devices, or centralized optimization schedulers in our al-

gorithm. We propose a radically different approach to demand-response. Instead

of looking for a solution that is guaranteed to be optimal for some specific perfor-

mance metric and device model, we take a minimalistic approach. We describe a

simple adaptation scheme that can be intuitively derived from the definition of the

demand response problem. We do not require precise estimates of future loads, or

knowledge of the statistics of load variations. The adaptation scheme is designed

for distributed implementation at the loads without any global coordination, and the

only communication required is knowledge of the aggregate load in the grid in the

previous time period (or more precisely the deviation of the aggregate load from the

desired operating point). We presented this idea in [17] using simulated case study of

electric vehicle battery chargers as deferrable loads for distributed demand response.

This present work adapts the idea to deferrable computational loads in servers with

a hardware based testbed using real servers.

The central proposition of the algorithm is that multiple distributed loads can

contribute to a control loop to track a setpoint as an aggregate. Further, loads are

8

able to jostle their share of the power in small perturbations related to their deadlines

or other constraints in order to readjust their portion of the available resource. The

present work offers no guarantees of optimality or convergence. However, an elegant

proof of the proposition in the case of economic dispatch in a network of power genera-

tors is given in [18]. Development of the demand response algorithm to accommodate

a similar proof is an interesting avenue for future research, however the proposition is

the same in each case. In the generator dispatch case, a generator jostles to generate

its relative share of the load according to its marginal cost of generation. In [17], the

battery chargers jostle to consume their share of the load according to their charge

state and the time remaining until their deadline. In the present work, the compu-

tational jobs jostle to consume their share of the load according to the state of and

constraints on their workload throughput.

The term jostle, used above, conveys a very simple and intuitive process in

which multiple actors, working towards similar goals, push each other around in order

to find a place acceptable to some, most, or all depending upon the relative strength

of each. The algorithm for jostling of jobs in a server or server cluster proposed in the

present work is to add a small bias term to the error as shown in Equation 1.1, where

Pi[k] is the power consumed by the server or cluster on which job i is running, e[k]

is the global error, A is the gain of the plant, and βi(xi[k]) is the bias added by job i

and is a function of variable, xi[k] which describes the state of the job’s throughput

in relation to its constraints.

DR Server Algorithm: Pi[k + 1] = Pi[k] + AKi(e[k] + βi(xi[k])) (1.1)

9

Therefore jobs approaching their deadline or other constraint which requires them to

obtain more share of CPU utilization need only to increase their bias term. Similarly

jobs which are running too fast (e.g. are in danger of overwriting a buffer) need only

to decrease their bias term. Jobs which are comfortably far from any constraints will

leave their bias term equal to zero. This preliminary discussion is intended only as a

simple foretaste of algorithm proposed. Further discussion of this dynamic and how

it is implemented occurs particularly in Sections 3.3 and 3.4.

1.5 Outline for Rest of the Thesis

This thesis presents a description of testing and analysis of the algorithm

proposed above in Equation 1.1. In Chapter 2, Sections 2.1 and 2.2 describe the

physical mechanisms explaining how it is possible to modulate the power consumption

of a server, Section 2.3 compares multiple software interfaces, or ‘control knobs’ from

which to control the power modulation, Section 2.4 describes an integral controller

design for a particular ‘control knob’, and Section 2.5 adapts the integral controller to

implement distributed control. Chapter 3 provides a demonstration of the distributed

control of servers running multiple constrained jobs to track a global setpoint to

minimize the generation-load imbalance. Sections 3.1 and 3.2 describe the demo

problem statement and the methods used for data collection. Section 3.3 describes

the specific implementation of the proposed algorithm in Equation 1.1 in the context

of the demo and Section 3.4 discusses the results. Chapter 4 concludes the thesis by

summarizing results and offering suggestions for future work.

10

CHAPTER 2
CONTROL OF POWER CONSUMPTION IN COMPUTERS FOR

DEMAND RESPONSE

This chapter discusses and compares the methods by which it is possible to

control the power consumption of servers and discusses in detail a simple controller

which is implemented in the demo.

2.1 Mechanisms of Power Dissipation in Computer Circuits

The ability of computers to ramp power consumption depends most heavily

on the proportional relationship between power and the effective frequency of the

system. Equation 2.1 models the overall power consumption of a microprocessor as

the sum of dynamic and static power dissipation [19].

P = ACV 2f + V Ileak (2.1)

Here, A is the fraction of gates actively switching, C is the capacitive load of the gates,

f is the operating frequency, V is the supply voltage, and Ileak is the CMOS leakage

current. Equation (2.1) shows that power consumption can be dynamically affected

by scaling the supply voltage, the frequency, and the fraction of actively switching

gates. The circuits in Figure 2.1 show two mechanisms of dynamic power dissipation

during each occurrence of a logical switch in the input signal. Short-circuit current is

dissipated by transistors due to finite-slope input signals (when transitioning between

High/Low states, transistors are both partially ON and thus allow current to flow from

the supply-rail to ground as shown in Figure 2.1a. Further, as shown in Figure 2.1b,

11

(a) Short-Circuit Power Dissipation (b) Capacitive Power Dissipation

Figure 2.1: Two Types of Logic Switching Power Dissipation [20]

current flows to charge the capacitive load when the logic switches from Low to High.

Thus, each change in the input signal to a logic gate dissipates both capacitive and

short-circuit current. The rate of this dissipation therefore directly depends upon the

operating voltage, V , and frequency, f , and the fraction of actively switching gates,

A.

2.2 Methods of Power Control in Computers

Therefore there are two basic mechanisms by which to dynamically adjust the

power consumption of a computer: dynamic voltage frequency scaling (DVFS) and

idle cycle injection (ICI). The former adjusts V and f in Equation 2.1 and the latter

adjusts A.

2.2.1 Dynamic Voltage Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) adjusts the voltage and fre-

quency together in discrete preset level pairs. Voltage needs to be adjusted with

12

frequency because in order to maintain an adequate rise-time for different switch-

ing frequencies, the supply voltage must also scale in proportion with the frequency.

Methods for DVFS are generally implemented automatically by modern processors

which known as P-states in Intel processor architectures [21]. Recently, Advanced Mi-

cro Devices (AMD) has developed Adaptive Voltage Frequency Scaling (AVFS) which

uses a closed-loop system to adjust the voltage to a level appropriate for the frequency

and temperature states of the processor rather than using fixed “worst-case-scenario”

voltage-frequency pairs as in DVFS [22].

Modern operating-system-level requests to change the operating voltage-frequency

state of modern Intel processors is merely a hint to the on-chip power management

infrastructure which can be overridden by thermal management constraints [23, 24].

P-states are chosen automatically by most power management software according to

CPU utilization [21]. Some papers like [25,26] have successfully applied the userspace

governor of the Linux cpufreq kernel module to implement energy-aware DVFS on

older Intel processors. We reproduce this method in Section 2.3.1.

2.2.2 Idle Cycle Injection

Idle cycle injection (ICI) is fundamentally forcing processor cores and/or pack-

ages into idle states for a variable number of clock cycles [27], also described as

hardware duty cycling (HDC) [23, see 14.5 Vol. 3B]. This involves shutting down

the system clock to different components and/or cores and reducing and/or cutting

power to components and/or cores of the processor for a variable number of clock

13

cycles, different combinations of these states are called C-states in Intel processor

architecture [21,23]. Availability of different C-states and access to controlling them

without a custom OS is platform specific. We implement one such API in Section

2.3.4.

In addition to directly forcing hardware level idle states, ICI can be imple-

mented at the process or OS levels by setting processes to sleep, thus inviting what-

ever lower-level power management (PM) features designed to engage based upon

CPU utilization to do so. This scheme is rather agnostic regarding what power man-

agement features exist, and trusts them to bring the machine into as efficient an

operating state as possible for the given amount of work given to the processors by

injecting variable length sleep states into processes or into the OS itself. Such schemes

are presented in Sections 2.3.3, 2.3.5, and 2.3.6.

2.3 Empirical Comparison of Power Control Architectures

Previous research has used a variety of different software techniques to mod-

ify the power profile (or some function thereof, such as temperature) of computers.

However, there are no previous papers which specifically evaluate the suitability of

different fundamental strategies for modifying the power profile of servers and groups

of servers. It should be noted that while much of the discussion below applies specif-

ically to Intel processors, other manufacturers often include similar technologies on

server-oriented processors. Additionally, Intel has long held the clear majority market

share in server processors (98% in 2014) [28], so the discussion is immediately appli-

14

cable in the majority of existing data centers. In hopes of fostering future research

into this area, this paper presents an empirical evaluation of several software tech-

niques (“control knobs”) that can be utilized to quickly scale the power consumption

of modern servers for data center demand response.

The experimental setup is a Dell PowerEdge R320 server with an Intel Xeon

E5-2400 series processor, running Ubuntu 12.04 with the 3.16.0-41-generic Linux ker-

nel. We’ve instrumented the server with a current sensor for validation of the on-chip

power usage estimate obtained through the software interface. During each test, the

Linux stress program [29] (running repeated square root operations) was used as the

workload, with the exception of Section 2.3.5, which used a simplified version of the

stress program, modified to include custom delays. Each test ran for 15 seconds of

data at each control setpoint, and ran each control setpoint twice for comparison. The

package power was estimated using the RAPL interface, and was sampled once ever

150 milliseconds. The possible power range is 7W (completely idle) - 35W (maximum

CPU utilization).

The plots below are a standard box plot, with the box representing the in-

terquartile range (IQR) for the power at each control input value and the whiskers

representing the minimum and maximum values. The outliers (greater than 10 times

IQR) are shown in red.

15

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

24

26

28

30

32

34

CPU frequency (GHz)

P
ow

er
 (

W
)

CPU frequency vs average power

Figure 2.2: DVFS Using ACPI-CPUFREQ Driver with Userspace Governor

2.3.1 Direct Dynamic Voltage-Frequency Scaling

The acpi-cpufreq driver is the predecessor to the more recent intel pstate driver

used in modern servers. Unlike the more recent driver, which in the default config-

uration offloads the majority of power management to the processor itself, the acpi-

cpufreq driver uses software to suggest different voltage-frequency pairs called power

states (P-states) through the ACPI interface. As mentioned earlier, Intel documenta-

tion states that these requests may be overruled by the internal thermal management

logic of the processor. However, it has been the experience of the authors that the

16

requested P-state is usually entered unless it is thermally unsafe to do so.

The acpi-cpufreq driver provides of power management policies that the op-

erating system uses to determine which P-state to request and when to do so. The

userspace governor allows the user to specify a target frequency, and the driver will

determine the corresponding P-state to request. The benefits and drawbacks of this

method are shown in Figure 2.2. The main advantage is that the variance of the

power is very low (notice how tight the box plot is). The downsides of this technique

are two. First, the range of power levels is relatively small – starting at 24 watts, over

twice the idle power consumption. This is due to the operating system never placing

the processor in a sleep state. Second, the number of unique power levels available

is quite small (only twelve on the processor used in this study). This is due to the

processor having a limited number of P-states available for DVFS.

2.3.2 Proprietary On-chip Power-Limiting

Intel published results from an early version of RAPL in 2010 which was

capable of finely shaping the power consumption of memory by rapidly switching

between adjacent memory bandwidth states [30].

This technique has the advantage of providing very tight control over a wide

range of power values between around 24 watts and the maximum power. The pri-

mary disadvantage, as 2.3 shows, is that similar to the cpufreq method, RAPL does

not allow power to be capped across the full range of server power consumptions.

Moreover, because not all processors (even within the Intel Xeon family) support

17

20 21.2 22.5 23.7 25 26.2 27.5 28.7 30 31.2 32.5 33.7 35 36.2 37.5 38.7 39.7

24

26

28

30

32

34

RAPL package limit (W)

P
ow

er
 (

W
)

RAPL package limit vs average power

Figure 2.3: Intel RAPL Interface

RAPL power limiting features, the technique may not be an option for many server

configurations.

2.3.3 Hypervisor Capping

The hypervisor method of controlling server power consumption was inspired

by [31] who used VMware vSphere 5.1 ESXi hypervisor. The Xen Project hypervi-

sor [32] is a type-1 (also called “baremetal”) hypervisor, which means that it runs

architecturally “beneath” any guest operating systems that it is coordinating. While

VMWare remains the industry de facto standard, Xen has a wide deployment (in

18

0 24 50 74 100 124 150 174 200 224 250 274 300 324 350 374 394

10

15

20

25

30

35

Hypervisor allocation points (percent of one CPU)

P
ow

er
 (

W
)

CPU allocation of VM vs average power

Figure 2.4: Hypervisor (Xen) CPU Capping

2012, it held the second-largest market share of any virtualization technology [33])

and has the advantage of being free and open source software. Xen contains a va-

riety of resource contention management features, including a processor utilization

capping mechanism called sched-credit. The current implementation uses a priority

queue and an accounting thread to ensure that the virtual CPUs assigned to the

virtual machines do not exceed their CPU utilization cap.

Figure 2.4 shows results gathered by cpu capping a paravirtualized Linux guest

VM allocated four virtual CPUs and running four threads of the stress program. One

advantage of this technique is that it offers a full range of power values between idle

19

maximum power. The reason it is able to achieve low power values is that hypervisor

is allowed to transition the processor to a sleep state for a portion of each 30 ms

accounting period (when the guest VM has exceeded its allotted allocation credits).

The primary downside of this technique is that it is difficult to tightly control the

power consumption at power levels corresponding to hypervisor allocation settings

which cause the number of physical cores allocated to the guest operating system

to oscillate. Note, for example, the increased variance at 200 allocation points –

where the guest operating system is alternately being allocated between two and three

physical cores. Similarly, there is another jump in power variance at 300 allocation

points in a highly non-linear transition.

2.3.4 Intel PowerClamp

The Intel PowerClamp driver was developed to force the processor to enter

certain sleep states through synchronized idle injection across all threads [34]. The

driver implements a closed loop control with limits on the amount of idle time that

can be injected.

While the system is indeed entering sleep states during the lower-power por-

tions of Figure 2.5, the fact that idle injection is limited to 50% idle time means

that the power of the fully-loaded system still cannot be reduced below about 17 W.

Moreover, compared to the hypervisor solution, there is a relatively large spread in

power at every control setpoint.

20

50.25 53.25 56.5 59.5 62.75 65.75 69 72 75.25 78.25 81.5 84.5 87.75 90.75 94 97 99.5

20

25

30

35

Duty cycle (percent)

P
ow

er
 (

W
)

CPU duty cycle vs average power

Figure 2.5: Inserting Delays at Kernel Level with Intel Powerclamp Driver

2.3.5 Power-aware Workload

The authors have provided two custom software solutions for comparison with

the aforementioned power-shaping technologies. The first of these is a baseline “best-

case scenario” workload which has been specifically tailored to use a certain per-

centage of each processor. Each of the four threads in the workload uses POSIX

timers and the usleep() command to insert delays between blocks of 50000 square

root operations. The amount of delay was calculated to correspond to a specified

CPU utilization. An ad hoc procedure was used to tune the number of square root

operations and the number of threads to achieve the maximum dynamic range of

21

0 6 12.5 18.5 25 31 37.5 43.5 50 56 62.5 68.5 75 81 87.5 93.5 98.5

10

15

20

25

30

Duty cycle (percent)

P
ow

er
 (

W
)

CPU duty cycle vs average power

Figure 2.6: Inserting Delays at Application Level with usleep()

power.

The benefit of such a workload is clear. Not only is there a roughly linear

correspondence between CPU utilization and power consumption, but the variance

at each setpoint is relatively small, and the full dynamic range of power consumption is

achievable. The downside of this technique is that it is extremely invasive – requiring

a rewrite of all CPU-intensive software on the system.

22

0 10 20 30 40 50

5

10

15

20

25

30

Duty Cycle (Percent)

P
ow

er
 (

W
)

Average Power vs WorkTime Duty Cycle

Figure 2.7: Inserting delays with SIGSTOP and SIGCONT

2.3.6 Custom Userspace Software

To provide a comparison and a more general method for inserting delays in

the user space, the authors designed a tool which modulates the CPU utilization of

processes using the Linux SIGSTOP and SIGCONT signals in a manner inspired by

the cpulimit [35] program. Results are shown in Figure 2.7. Because this program is

running in userspace, it was expected to have significantly increased power variance

compared to the powerclamp driver. However, the power variance of the method is less

than all others excepting RAPL and DVFS. A large range of available power settings

23

is available with fine granularity, by changing the ratio (duty cycle) of sleep times

between each SIGSTOP and SIGCONT signal. A further advantage of such a tool

is that it can be run in the background of any POSIX operating system, without the

need for accessing custom MSRs, modifying hypervisor power management policies,

or kernel drivers.

2.4 Power Consumption Controller Design

2.4.1 Integral Controller Design

PI Parameters K Ti

Equation⋆ 0.9/RL 3L

Exp. Values†
DAQ 0.03 0.51

RAPL 0.05 0.42

Max. Values‡
DAQ 0.013 0.6

RAPL 0.019 0.6

⋆ Equations are from [36].
† R and L as shown in Figure 2.10.
‡ R and L given as maximum possible.

Table 2.1: Controller Parameters from the Ziegler-Nichols Step-Response Method

Figure 2.8 demonstrates that the relationship between the server power con-

sumption less 36 watts and the duty-cycle of the open-loop signal-sleep controller

is approximately linear in the range of 36 - 67 watts and 0.001 - 0.4 duty, s.t.

y − 36W = 80W ∗ Duty, where 36W is the minimum power at idle and y is the

24

0 10 20 30 40 50

40

50

60

70

Duty Cycle (Percent)

P
ow

er
 (

W
)

Average Power vs WorkTime Duty Cycle (DAQ Power Measurements)

Figure 2.8: Inserting Delays with SIGSTOP and SIGCONT

power consumed by the server. Therefore, the minimum idle power can be considered

as the zero-input response, y0, of the incrementally linear system block shown in Fig-

ure 2.9, where the output of the incrementally linear system, y, is the superposition

of the linear plant response, yp with the zero-input response, y0, such that y = yp+y0.

For each job, the actuator which receives the controller output signal, uj(t), is

a program designed to inject idle cycles into the job process, its threads, and its child-

processes by means of Linux SIGSTOP and SIGCONT signals discussed in Section

25

Σ K Σ Actuator Plant

Disturbances

Workloads

Σ

y0

e P v u+uc yp y

K
Ti Σ

Σ
z

z−1

Measurements

1
Tt

−
+

I
−

ym

PI Controller with Anti-windup

Incrementally
Linear System
with Disturbances

Figure 2.9: Block Diagram of Control System Model

2.3.6. The control signal itself, u[k] is a value between (0.001, 0.999) which represents

the duty cycle of the process, defined as
twork[k]

twork[k] + tidle[k]
, where tidle[k] is the time

between SIGSTOP and SIGCONT signals and twork[k] is the time between SIGCONT

and SIGSTOP signals. In the specific implementation, twork[k] = tw is a constant and

tidle[k] = (
1

u[k]
− 1)tw. Note that a duty cycle which requires very long idle times

would then render the job unresponsive on short time scales. Therefore the idle and

work times should be constrained by:

tw <
tmax
idle

1
umin

− 1
(2.2)

where tmax
idle is the maximum desired idle time and umin = Dmin > 0 is the minimum

allowed duty cycle.

The Ziegler-Nichols step-response method produces the PI controller parame-

ters: the feedback gain K, the integration time Ti and the tracking-time Tt; as shown

in Table 2.1. This method is appropriate when the sampling period, h, is within

26

36468.4 36468.6 36468.8 36469

0

20

40

60

Time [sec]

P
ow

er
[W

]

Apparent DeadTime, L, and Steepest Slope, R, of Open-Loop Step-Response

RDAQ = 189.21W
s

RRAPL = 136.03W
s

LDAQ = 0.17s

LRAPL = 0.14s

RAPL PKG

DAQ

start of step input

Figure 2.10: Calculation of R and L Using Ziegler-Nichols Step Response Method

valid range given by
h

Ti

≈ 0.1 to 0.3, following [36, §8.5]. Using a sampling period

of h = 0.1sec and measuring the open-loop step-response through the incrementally

linear system in Figure 2.9 provides the apparent deadtime, L, and the step-response

slope, R, as shown in Figure 2.10. The calculated values, R and L can then be

plugged into the equations in Table 2.1 to obtain the experimental values for the

gain, K, and the integration time, Ti. However, it is more useful to use the maximum

possible values of Rmax =
Pmax − Pmin

h
and Lmax = 2h. These values are given in

the last rows of Table 2.1. Using these values to check that the sample period crite-

27

rion,
h

Ti

≈ 0.1 to 0.3 is met by
h

Ti

=
0.1

0.6
= 0.167 for the both the DAQ and RAPL

power estimates, verifies that the Ziegler-Nichols step-response method has been used

appropriately.

.. Σ. K
Ti

. Σ. z
z−1

. Actuator. Plant.

Disturbances

.

Workloads

. Σ.

y0

. e. v. u. +.
uc.

yp.
y

.

Σ

.

Measurements

.

1
Tt

.

−

.

+

.

−
.

ym

..

Integral Controller with Anti-windup

..

Incrementally
Linear System
with Disturbances

Figure 2.11: Block Diagram of Integral Controller

In practice, the error signal can be quite large from one time instance to the

next due to the fact that disturbances in the plant occur at large magnitudes on

short time scales. Here disturbances are due to independent processes running on the

server over which our algorithm has no control. Therefore the proportional block, K,

in the control loop in Figure 2.9 adds instabilities by responding to these disturbances.

The integral term, on the other hand, responds to disturbances much more slowly

and serves to drive the average error to zero, which is sufficient for our purposes.

Therefore in practice, the proposed design only includes the integrator and the anti-

28

windup blocks in the controller, while the proportional block is omitted, as shown in

Figure 2.11.

A second method for obtaining parameters for a PI controller, known as the

first order plus dead time (FOPDT) model gives good results even without omitting

the proportional term. The FOPDT model uses experimentally obtained parameters:

process gain Kp (linear gain of the plant), process time constant Tp (time between

initial response and 63% of peak response), and process dead time Θp (time between

step input and initial response) [37]. Estimating the gain of the plant in the linear

region shown in Figure 2.8 gives Kp =
△ym[k]

△u[k]
= 80. The maximum dead time,

Θp = 0.2s. The time constant Tp = 0.1. Using these parameters to obtain the

proportional gain, K =
1

Kp

Tp

Θp + Tp

, and integral time, Ti = Tp gives a PI controller

which performs just as well as the integral controller described above.

Implementing the integral controller in Figure 2.12 in a difference equation

while ignoring the anti-windup and linear offset terms for simplicity and using the

plant gain, A, and integral gain K
Ti
, produces Equation 2.3:

ym[k + 1] =
AK

Ti

k−1∑
τ=0

uc[τ]− ym[τ] +
AK

Ti

(uc[k]− ym[k])

= AKi(e[k] +
k−1∑
τ=0

e[τ])

= ym[k] + AKie[k]

(2.3)

Figure 2.12 shows the integral controller track a setpoint over nearly the full power

range of the server. As the setpoint exceeds the capacity of the controlled job to

increase the power consumption, the power consumption saturates at about 67 watts

29

75100 75150 75200 75250

45

50

55

60

65

70

Time [sec]

P
ow

er
[W

]

Mean Power (2 sec window) and Setpoint for Integral Controller

Power Setpoint

mean(DAQ)+/-std(DAQ)

mean(DAQ)

Figure 2.12: Closed-loop Performance of Integral Controller

which is simply the result of the controller reducing the length of the inserted sleep

time to a point at which the job is using up its maximum possible CPU utilization.

This does not cause an instability in the system and the system remains responsive

immediately after the saturation event due to the anti-windup action of the controller.

2.4.2 Multiple Server Extension

The control of multiple servers running multiple jobs is implemented exactly in

the same way as the single server case except that the setpoint, uc, is now the desired

aggregate power consumption of the servers and the measured output, ym, fed back to

create the error signal is the measured aggregate power. Each job on each server can

30

31950 32000 32050 32100 32150 32200

90

100

110

120

Time [sec]

P
ow

er
[W

]

Power Setpoint

mean(DAQ)+/-std(DAQ)

mean(DAQ)

(Mean and standard deviation of power is taken over 2 second windows)

Figure 2.13: Two Servers Tracking Aggregate Setpoint with Individual Controllers

use its own controller with these global input signals. Figure 2.13 shows the ability of

two servers to cooperate to track the aggregate setpoint, each using its own integral

controller, with global setpoint and feedback as just decribed. Figure 2.14 shows the

the power measurements used in the feedback loop of the controller to demonstrate

the raw feedback data stream from which the mean and standard deviation displayed

in 2.13 is derived. The block diagram in Figure 2.15 shows the general architecture of

the multiple server, multiple job controller. However, in the control system described

31

31950 32000 32050 32100 32150 32200

90

100

110

120

130

Time [sec]

P
ow

er
 [W

]

DAQ

Power Setpoint

(Measurements are given as average power every 100ms)

Figure 2.14: Two Servers Tracking Global Setpoint with Individual Controllers

thus far and shown in Figures 2.13 and 2.14, the bias term βi for each controller has

been neglected, such that βi = 0 for all jobs. The significance of the bias term is

described in the next section.

2.5 Sharing Resources in Multi-Job/Multi-Server Distributed Control

Note that the integral controller used in Figure 2.13 and depicted in the block

diagram in Figure 2.11 does not take into account workload throughput. Therefore

32

the control loop presented in Equation 2.3 and 2.11 equates to Equation 1.1 in the

special case where βi = 0. Therefore, in the case of two servers controlling separate

jobs to track an aggregate setpoint, neither server gives preference to the throughput

of its jobs and therefore it is likely that the two servers will not be consuming equal

amounts of power and that the jobs of one server will be processed faster than those

of the other. In fact, the same is true in the single server case in which different

jobs are controlled by different controllers. Each controller will drive the injected

sleep time of its jobs to minimize the error. How multiple controllers minimize the

error has an infinite number of solutions and the question becomes: How can multiple

controllers work together to share resources? E.g. if the setpoint is 120W, how can

multiple controllers divide those 120W among themselves such that they each work

fast enough to meet their required deadlines?

Requirements in answering this question are (1) that the solution must be

decentralized and distributed (i.e. the servers must be able to make their own deci-

sions rather than receiving control signals from a central authority), and (2) that the

solution must be amenable and easily adaptable to multiple different kinds of jobs.

Laxities in the possible solutions include: (a) deadlines should be met most of the

time, but are not guaranteed, and (b) the goal is a workable, rather than optimal,

solution.

The control algorithm was already given in the Introduction in Equation 1.1.

Thus far, in the discussion of the integral controller in this chapter, we have treated

only a special case of the algorithm of Equation 1.1 where βi = 0. By allowing non-

33

... Σ. Σ. Controller w/
Anti-Windup

.

β2(x2)

. Insert Delays
into Job 2

.
y

. +.
uc. e.

e2.
u2.

x2

.

β2

.

β1(x1)

.

Controller w/
Anti-Windup

.

Σ

.

Insert Delays
into Job 1

.

e1

.

u1

.

x1

.

β1

....

Controller w/
Anti-Windup

.

βN (xN)

.

Σ

.

Insert Delays
into Job N

.

eN

.

uN

.

xN

.

βN

.

e

....

Measurements

.

−
.

ym

.

Incrementally Linear
System w/ Disturbances
(one or more servers)

Figure 2.15: Distributed Controller Block Diagram

zero values of βi, the proposed solution is to allow each job i to redefine its value

of the aggregate setpoint in proportion to its own proximity to a deadline violation

by adding a bias term, βi, to the global setpoint uc. This allows each job to change

the error signal, ei[k] = βi(xi[k]) + uc[k] − ym[k] in its own controller by a small

amount thus increasing its effective computational rate and its share of the power

consumption. In turn, other controllers will perceive changes in their error signals,

ej[k] = βj(xj[k]) + uc[k] − ym[k], j ̸= i of the opposite magnitude and thus decrease

their effective computational rate in order to minimize the error. The block diagram

depicting this architecture is depicted in Figure 2.15. Assuming redefinitions of the

34

aggregate setpoint are very small, this scheme has little to no perceptible effect on

the true global error, e[k] = uc[k] − ym[k]. Chapter 3 describes a demonstration of

this effect using realistic workloads and a simple implementation of the bias term.

35

CHAPTER 3
DEMAND RESPONSE BY SERVERS - DEMO

3.1 Problem Formulation

This chapter presents a demonstration of a practical application of demand

response by servers and clusters processing deferrable workloads. The demonstration

is implemented on Dell PowerEdge R320 servers running video transcoding jobs in a

contrived example of an online video streaming service. In the simplest description,

the server(s) attempt to track a power setpoint while streaming data fast enough to

avoid glitches and delays in viewer experience. In the single server case, one server

juggles multiple jobs while tracking the setpoint. In the multiple server case, servers

each juggle multiple jobs while tracking an aggregate setpoint. In the latter case, the

servers know their aggregate error signal (actual power - setpoint).

Specifically, we assume that: N users have submitted video streaming requests;

that these users have frame buffers of limited size, B; and that users are watching

the video at a constant frame rate, R. Thus, the jobs servicing each request must

transcode and transmit the video frames such that for each user, N , the number of

frames sent, F , minus the number of frames watched, telapsed ∗R, does not exceed the

buffer limit, B, or fall below 0, where telapsed is the time-elapsed since the request.

Therefore the job must transcode and transmit video frames to the user under the

following constraint in Figure 3.1 to avoid delays in viewer experience.

0 < F − telapsed ∗R < B (3.1)

36

We further assume that there is a queue of transcoding jobs without frame buffer or

frame rate constraints. Such a queue of jobs could be videos to be downloaded to

client’s harddrives for watching later. A service could keep track of which episodes

of TV series viewers watch and anticipate which episodes viewers are likely to view

next. As part of the service agreement, the online service can send videos to users

at any time, to be written on the users’ hard-drives in anticipation that the user will

wish to watch it. Therefore there is no buffer limit constraint in these anticipatory

transcoding jobs and the server is free to transcode and transmit the video as quickly

as it is able. These jobs therefore will simply use a zero bias term in their controller

as discussed in Equation 1.1.

3.2 Hardware, Power Monitoring, & Workload Monitoring

The demo is implemented on Dell PowerEdge R320 server with an Intel Xeon

E5-2400 series processor, running Ubuntu 12.04 with the 3.16.0-41-generic Linux ker-

nel. Power consumption is monitored using a National Instruments 6323 X Series

DAQ sampling AC voltage and current supplied to the server at 10kSa/s and 16-bit

resolution. Voltage is sampled directly from a voltage divider circuit to differential

inputs in the DAQ. Current is sampled from the output of bi-directional current sen-

sor circuit using the Linear Technology LT1999 High Voltage, Bidirectional Current

Sense Amplifier [38]. Grid frequency used as input for the algorithm is estimated

using a custom device verified to estimate the grid frequency with ±10mHz accu-

racy [39]. Trancoder jobs were implemented using an adaptation of avconv, a video

37

transcoder program from Libav which is an open source set of libraries originating

from the FFmpeg codebase [40]. The avconv.c file is changed to log the number of

frames transcoded. The log file is read by controller in real-time.

3.3 Demand Response Algorithm

Continuing with the notation used in Section 2.5, each transcoding job on a

server has its own control loop which takes as input the frequency of the grid, f [k],

the frames in the client’s buffer xi[k], and the aggregate power of the servers, ym[k].

Here xi[k] = F (kh)− kh ∗R with constraints in Equation 3.1, assuming that kh = 0

when the job begins. The job then uses this information to calculate a setpoint for

the aggregate power, uc[k], as shown in Equation 3.2 and uses an integral controller

to attempt the track the setpoint.

uc[k] = [f [k]− 60Hz][Pmax−Pmin̂fmax−f̂min
] + Pmax+Pmin

2
(3.2)

βi(xi[k]) =



P+
bias(1−

xi[k]
0.3B

), if xi[k] < 0.3B

P−
bias(1−

B−xi[k]
0.3B

), if xi[k] > 0.7B

0, else

(3.3)

Additional parameters in Equation 3.2 include the expected maximum and minimum

frequency f̂min & f̂max estimated from historical data. For example, North American

Electric Reliability Corporation (NERC) reports that frequency deviations greater

than ±0.060Hz occur only 1-day in 10-years, while the frequency deviation is within

±0.04 for all but 0.5% of observations in the Eastern and Western interconnections

[41]. Therefore reasonable values might be f̂max = f̂max = 0.04Hz. The maximum

38

.. f [k] [Hz].

uc[k] [W]

.

f̂min

.

f̂max

.
60

.

Pmin

.

Pmax

.

Pmax + Pmin

2

Figure 3.1: Power Target Scaled from Frequency

..

xi[k]

.

βi(xi[k]) [W]

.

0% Buffer

.

30% Buffer

.

70% Buffer

.

P+
bias

.

P−
bias

.

100% Buffer

.0

Figure 3.2: Controller Bias Function as in Eq. 3.3

39

and minimum operating power of the server(s), Pmax & Pmin is measured directly with

the server(s) running at 100% and 0% CPU utilization, respectively. The meaning of

these parameters is shown graphically in Figures 3.1 and 3.2. Simply put, the power

target is a proportional scaling of the expected maximum and minimum frequency

deviations to the maximum and minimum power consumption limits of the server,

respectively. As our tiny data center cannot hope to balance the frequency deviation,

we therefore simply approximate a scaling of the load imbalance as proportional to

the frequency deviation. We then use the scaled load imbalance off-set by the median

server power as the setpoint, uc[k]. The bias term βi(xi[k]) is then added to the target

power in order to maintain the buffer constraints in Equation 3.1. The exact function

of βi(xi[k]) is described in more detail below.

Because all jobs receive the same global frequency input, f [k], and calculate

the same target power, uc[k], without some knowledge of the progress of the jobs,

some jobs can become stuck in highly idle states. For example, if several jobs are

running and some of them are running fast enough for the server power consumption

to track the setpoint, the remaining jobs could be idling for too long and violating

their frame buffer constraints. Adding the bias term, βi(xi[k]) allows each job to push

its setpoint slightly above or below the target, thus increasing or decreasing its share

of the CPU. If βi(xi[k]) is small (e.g. P+
bias ≈

∣∣P−
bias

∣∣ < 5% Pmax in Equation 3.3) for

each job i ∈ {1, 2, ..., N}, with total number of jobs, N , then each job can vie for more

or less CPU without substantial perturbations from uc[k]. For each job, this means

that if other jobs push the power consumption of the server above its own setpoint,

40

i.e. if uc[k] + βi(xi[k]) < ym[k], the job’s controller will increase the idle cycles of the

job, thus decreasing its CPU utilization. In turn, this will slightly lower ym[k + 1]

and the controllers of any jobs whose setpoints were equal to ym[k] in the last instant,

will now decrease the idle cycles of those jobs, thus increasing their CPU utilization

while driving ym back to uc.

3.4 Results & Observations

20 40 60 80 100 120 140

20

22

24

26

28

30

Time (seconds)

P
ow

er
(W

)

Processor Power

Setpoint Job 1

Setpoint Job 2

Global Target Setpoint

20 40 60 80 100 120 140
1400

1600

1800

2000

2200

2400

Time (seconds)

F
ra
m
es

in
B
u
ff
er

Frames in Buffer of Job 1

Frames in Buffer of Job 2

Figure 3.3: Exaggerated Bias Term in Controller for Two Transcoder Jobs

41

Figure 3.3 shows a test case in which multiple transcoder jobs are runnning

on a single server, each with its own controller. The effective setpoints of two jobs,

uc[k]+β(x1[k]) and uc[k]+β(x2[k]) and frame buffer states, x1[k] and x2[k], are shown

for two of the jobs, along with the global target setpoint uc[k] and the aggregate

power, ym[k]. The bias terms of the two jobs are set with very high gain in Figure

3.3, to make the effect of the bias terms on the jobs’ setpoints easily visible. The

setpoints of the two jobs with deadlines clearly rise to and fall from from the aggregate

setpoint whenever the jobs approach or leave their buffer limits (set at 3000 frames),

respectively. The consequence of a job’s setpoint falling below the global target is

clearly seen in the decrease of frames in that job’s buffer. Due to the overly large

bias gain used for demonstrative effect, the aggregate processor power does oscillate

between times (30, 50) seconds. However, this also shows the stability of the system

even given grossly large perturbations from the bias term. Also note the very steep

increase of frames in Buffer 1 around time 39 seconds, and in Buffer 2 around time

85 seconds. These steep increases are each preceeded by a drop in the setpoint of the

other job. This demonstrates the event in which one job increases its injected idle

times and the other job, if able, makes up for it by decreasing its idle times in order

to keep the global error minimized.

A major advantage to the presented demand response system architecture is

that it can be implemented and deployed easily on current servers and clusters and

that it can be specifically deployed on particular jobs running on the same machine as

other jobs which are not participating in demand response. In the data center man-

42

agement, reliability is paramount. There are many jobs and services which are too

important to be possibly compromised by novel power management schemes which

affect the performance of an entire server. Further, the job scheduling and prioritiza-

tion required to balance the workload throughput of mission critical jobs along with

the power management requirements of demand response become very complex using

a centralized scheduler. The system presented here provides a distributed system in

which each job tracks its own throughput constraints and indirectly, but effectively,

adjusts its share of the CPU utilization in relation to other jobs; indirectly, because

a job does not change its allocated resources, but only the duration of its idle time;

effectively, because by changing its idle time, a job directly changes the power con-

sumption of the server thus causing the other jobs to readjust their idle times in order

to compensate for the change and track the setpoint.

43

CHAPTER 4
CONCLUSIONS

This research is intended as a proof of concept and starting point for research

into distributed demand response by servers. While previous work has been done

in the area of computers as demand response devices, as discussed in Section 1.3,

they had either required specialized on-chip power regulation technology such as In-

tel’s RAPL, used centralized job scheduling, or advanced prediction of workload and

energy resources. The main contribution of this thesis has been to demonstrate a

distributed algorithm for dynamically tracking a global power setpoint using multiple

servers and deferrable jobs without stochastic data and using simple standard com-

mand signals available in every Linux distribution. While are numerous opportunities

for future work in this area, three possibilities for refining the system presented here

are generalizing the bias function for heterogeneous types of workloads, analysis of

scalability, and adapting the system to provide performance guarantees. This paper

concludes with a brief discussion of these three items.

• Generalized Bias Function for Diverse Job Types

The proposed algorithm allows for multiple job types to participate in demand

response, each with different definitions of its deadline constraints so long as

all jobs use the same maximum and minimum bias terms in their algorithm.

For example, a batch job of financial data computations might need to finish

44

N executions each hour. In such a case, a simple adaptation of Equation 3.3

could be given by Equation 4.1, where N(t) is the number of executions in the

last hour, and the criterion is xi[k] = N(kh)− kh ∗ N
3600

> 0.

β(xi[k]) =


[P+

bias][1−
xi[k]
0.3N

], if xi[k] < 0.3N

0, else

(4.1)

Different jobs, one using Bias Equation 3.3 and another using Bias Equation

4.1, would be able to fairly jostle for their required share of CPU utilization to

meet their throughput constraints given equivalent values of P+
bias in each case.

This and similar reformulations of the algorithm adapted to diverse deferrable

jobs is a natural extension to this study.

• Scalability

Prior to an efficiency analysis, the code implementing the demand response ar-

chitecture could be streamlined for better efficiency and scalability. Currently,

every block element of the control loop for each job is handled by a separate

program and these programs are connected where appropriate via Linux pipes.

A more scalable architecture with less overhead might be a client-server topol-

ogy in which there is only one integral controller process which handles the

state-feedback from each job and updates the work-time duty-cycle of each job.

Scalability and real-world applicability could also be improved by creating a

wrapper which integrates the distributed demand response algorithm with dis-

tributed computing utilities such as Hadoop. The present study did not examine

the overall computation/power efficiency of the system. While the system con-

45

straints do provide the effect of a demand response system, it is possible that

the current proposed architecture could result in overall loss in power efficiency.

While controlling for power consumption levels, a comparison of the workload

throughput under standard power management schemes versus throughput un-

der the proposed control architecture would demonstrate the degree to which,

the proposed architecture decreases a server’s throughput capacity.

• Performance Guarantees

While the presented system does perform well in tracking the global setpoint

and operating within job constraints, it does not offer guarantees for either.

Further analysis of the proposed algorithm and research into different possible

bias functions may allow some performance guarantees which would be a sub-

stantial advance on the current proposal. For example an algorithm such as

in [18] might provide a similar scheme for normalization between different job

types, as discussed above, yet could also provide guarantees for convergence to

the global setpoint and minimum throughput for the jobs.

46

REFERENCES

[1] F. D. Doty, “Kicking Oil Addiction With Windfu-
els,” [Online] http://www.greentechmedia.com/articles/read/
guest-post-kicking-oil-addiction-permanently-with-windfuels, Feb 2011, ac-
cessed 2015-10-16.

[2] B. Spencer, “Wind farms paid 43million to stand idle so far this year
because they were producing more power than the National Grid could
handle,” [Online] http://www.dailymail.co.uk/news/article-2827555/
Wind-farms-paid-43million-stand-idle-far-year-producing-power-
National-Grid-handle.html, 2015-06-16, accessed 2015-10-10.

[3] M. Milligan, E. Ela, B.-M. Hodge, B. Kirby, D. Lew, C. Clark, J. DeCesaro, and
K. Lynn, “Cost-Causation and Integration Cost Analysis for Variable Genera-
tion,” pp. 1–37, June 2011.

[4] S.-J. Kim and G. B. Giannakis, “Scalable and robust demand response with
mixed-integer constraints,” Smart Grid, IEEE Transactions on, vol. 4, no. 4, pp.
2089–2099, Dec 2013.

[5] N. Li, L. Chen, and S. Low, “Optimal demand response based on utility maxi-
mization in power networks,” in IEEE Power and Energy Society General Meet-
ing, July 2011, pp. 1–8.

[6] P. Samadi, H. Mohsenian-Rad, V. Wong, and R. Schober, “Tackling the load
uncertainty challenges for energy consumption scheduling in smart grid,” Smart
Grid, IEEE Transactions on, vol. 4, no. 2, pp. 1007–1016, June 2013.

[7] D. Hurley, P. Peterson, and M. Whited, “Demand Response as a Power
System Resource: Program Designs, Performance, and Lessons Learned in
the United States,” [Online] http://www.synapse-energy.com/sites/default/files/
SynapseReport.2013-03.RAP .US-Demand-Response.12-080.pdf, p. 76, 2013.

[8] Midcontinent Independent System Operator. (2014) Level 100 - Demand
Response as a Resource. [Online] https://www.misoenergy.org/Library/
Repository/Meeting%20Material/Stakeholder/Training%20Materials/100%
20Level%20Training/Level%20100%20-%20Demand%20Response%20as%20a%
20Resource.pdf. Midcontinent Independent System Operator. Accessed 2015-
10-29.

http://www.greentechmedia.com/articles/read/guest-post-kicking-oil-addiction-permanently-with-windfuels
http://www.greentechmedia.com/articles/read/guest-post-kicking-oil-addiction-permanently-with-windfuels
http://www.dailymail.co.uk/news/article-2827555/Wind-farms-paid-43million-stand-idle-far-year-producing-power-
http://www.dailymail.co.uk/news/article-2827555/Wind-farms-paid-43million-stand-idle-far-year-producing-power-
National-Grid-handle.html
http://www.synapse-energy.com/sites/default/files/SynapseReport.2013-03.RAP_.US-Demand-Response.12-080.pdf
http://www.synapse-energy.com/sites/default/files/SynapseReport.2013-03.RAP_.US-Demand-Response.12-080.pdf
https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Training%20Materials/100%20Level%20Training/Level%20100%20-%20Demand%20Response%20as%20a%20Resource.pdf
https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Training%20Materials/100%20Level%20Training/Level%20100%20-%20Demand%20Response%20as%20a%20Resource.pdf
https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Training%20Materials/100%20Level%20Training/Level%20100%20-%20Demand%20Response%20as%20a%20Resource.pdf
https://www.misoenergy.org/Library/Repository/Meeting%20Material/Stakeholder/Training%20Materials/100%20Level%20Training/Level%20100%20-%20Demand%20Response%20as%20a%20Resource.pdf

47

[9] J. Koomey, Growth in data center electricity use 2005 to 2010. Oakland, CA:
Analytics Press, August 1, 2011, [Online]. Available: http://www.analyticspress.
com/datacenters.html.

[10] Midcontinent Independent System Operator, “ACE chart,” [On-
line] https://www.misoenergy.org/MARKETSOPERATIONS/
REALTIMEMARKETDATA/Pages/ACEChart.aspx, June 2015, accessed
2015-10-29.

[11] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and
C. Hyser, “Renewable and cooling aware workload management for sustainable
data centers,” ACM SIGMETRICS Performance Evaluation Review, vol. 40, p.
175, 2012.

[12] I. n. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol and
greenswitch: Managing datacenters powered by renewable energy,” SIGARCH
Comput. Archit. News, vol. 41, no. 1, pp. 51–64, Mar. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2490301.2451123

[13] B. Aksanli and T. Rosing, “Providing regulation services and managing data cen-
ter peak power budgets,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, March 2014, pp. 1–4.

[14] S. Li, M. Brocanelli, W. Zhang, and X. Wang, “Integrated power management of
data centers and electric vehicles for energy and regulation market participation,”
Smart Grid, IEEE Transactions on, vol. 5, no. 5, pp. 2283–2294, Sept 2014.

[15] M. Ghasemi-Gol, Y. Wang, and M. Pedram, “An optimization framework for
data centers to minimize electric bill under day-ahead dynamic energy prices
while providing regulation services,” in Green Computing Conference (IGCC),
2014 International, Nov 2014, pp. 1–9.

[16] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing, “Utilizing green energy
prediction to schedule mixed batch and service jobs in data centers,” in
Proceedings of the 4th Workshop on Power-Aware Computing and Systems,
ser. HotPower ’11. New York, NY, USA: ACM, 2011, pp. 5:1–5:5. [Online].
Available: http://doi.acm.org/10.1145/2039252.2039257

[17] S. Goguri, J. Hall, R. Mudumbai, and S. Dasgupta, “A distributed, real-time and
non-parametric approach to demand response in the smart grid,” in Information
Sciences and Systems (CISS), 2015 49th Annual Conference on, March 2015, pp.
1–5.

http://www.analyticspress.com/datacenters.html
http://www.analyticspress.com/datacenters.html
https://www.misoenergy.org/MARKETSOPERATIONS/REALTIMEMARKETDATA/Pages/ACEChart.aspx
https://www.misoenergy.org/MARKETSOPERATIONS/REALTIMEMARKETDATA/Pages/ACEChart.aspx
http://doi.acm.org/10.1145/2490301.2451123
http://doi.acm.org/10.1145/2039252.2039257

48

[18] R. Mudumbai, S. Dasgupta, and B. Cho, “Distributed control for optimal eco-
nomic dispatch of a network of heterogeneous power generators,” Power Systems,
IEEE Transactions on, vol. 27, no. 4, pp. 1750–1760, Nov 2012.

[19] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. Jane
Irwin, M. Kandemir, and V. Narayanan, “Leakage Current: Moore’s Law Meets
Static Power,” Computer, vol. 36, no. 12, pp. 68–75, 2003.

[20] D. Brooks, “Computer Science 246: Advanced Computer Architecture -
Lecture 2,” Course Website [Online] http://www.eecs.harvard.edu/∼dbrooks/
cs246/cs246-lecture2.pdf, 2008, accessed 2015-09-23. [Online]. Available:
http://www.eecs.harvard.edu/∼dbrooks/cs246/cs246-lecture2.pdf

[21] T. K. (Intel), “Power Management States: P-States, C-States, and
Package C-States,” [Online] https://software.intel.com/en-us/articles/
power-management-states-p-states-c-states-and-package-c-states# ednref1,
April 2014, accessed 2015-10-29.

[22] S. Naffziger, “AMDs Commitment to Accelerating Energy Efficiency,” [On-
line] http://www.amd.com/Documents/energy-efficiency-whitepaper.pdf, 2014,
accessed 2015-10-29.

[23] “Intel 64 and IA-32 Architectures Software Developers Manual,
Volume 3B: System Programming Guide, Part 2,” [Online] http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf, 2015,
accessed 2015-06-28.

[24] “Linux Kernel Documentation - Intel P-state driver,” [Online] https://www.
kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt, accessed 2015-06-27.

[25] S. Li, T. Abdelzaher, and M. Yuan, “Tapa: Temperature aware power allocation
in data center with map-reduce,” in Green Computing Conference and Work-
shops (IGCC), 2011 International, July 2011, pp. 1–8.

[26] M. Karpowicz, “On the design of energy-efficient service rate control mecha-
nisms: Cpu frequency control for linux,” in Digital Communications - Green
ICT (TIWDC), 2013 24th Tyrrhenian International Workshop on, Sept 2013,
pp. 1–6.

[27] J. Corbet, “Idle Cycle Injection,” [Online] https://lwn.net/Articles/383368/,
April 2010, accessed 2015-10-30.

http://www.eecs.harvard.edu/~dbrooks/cs246/cs246-lecture2.pdf
http://www.eecs.harvard.edu/~dbrooks/cs246/cs246-lecture2.pdf
http://www.eecs.harvard.edu/~ dbrooks/cs246/cs246-lecture2.pdf
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states#_ednref1
https://software.intel.com/en-us/articles/power-management-states-p-states-c-states-and-package-c-states#_ednref1
http://www.amd.com/Documents/energy-efficiency-whitepaper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://lwn.net/Articles/383368/

49

[28] Trefis Analysts, “Intel (INTC) Detailed Analysis,” [Online] http:
//www.trefis.com/stock/intc/model/trefis?easyAccessToken=PROVIDER
87633ea72bd9dca1d79b8bc41462481e651ee6b5, accessed 2015-07-01.

[29] Amos Waterland, “Stress POSIX Workload Generator,” [Online] http://people.
seas.harvard.edu/∼apw/stress/, 2013-10-24.

[30] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: Memory
power estimation and capping,” in Low-Power Electronics and Design (ISLPED),
2010 ACM/IEEE International Symposium on, Aug 2010, pp. 189–194.

[31] H. Chen, A. Coskun, and M. Caramanis, “Real-time power control of data centers
for providing regulation service,” in Decision and Control (CDC), 2013 IEEE
52nd Annual Conference on, Dec 2013, pp. 4314–4321.

[32] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’03. New York, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[33] Aberdeen Group and D. Csaplar, “Is the Hypervisor Market Expand-
ing or Contracting,” [Online] http://blogs.aberdeen.com/it-infrastructure/
is-the-hypervisor-market-expanding-or-contracting/, 2012-09-25, accessed 2015-
07-03.

[34] Arjan van de Ven and Jacob Pan, “Intel PowerClamp Driver,” [Online] https:
//www.kernel.org/doc/Documentation/thermal/intel powerclamp.txt, accessed
2015-07-03.

[35] Angelo Marletta, “Cpulimit,” [Online] https://github.com/opsengine/cpulimit,
2015-06-16, accessed 2015-07-03.

[36] K. J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and
Design, 3rd Ed. Mineola, New York: Dover Publications, 2011.

[37] controlguru. (2015, March) Process Data, Dynamic Modeling and
a Recipe for Profitable Control. [Online] http://controlguru.com/
process-data-dynamic-modeling-and-a-recipe-for-profitable-control/. Control
Station Inc. Accessed 2015-11-04.

[38] “LT1999-10/20/50 High Voltage, Bidirectional Current Sense Amplifier,” [On-
line] http://cds.linear.com/docs/en/datasheet/1999fd.pdf, 2015, accessed 2015-
10-30.

http://www.trefis.com/stock/intc/model/trefis?easyAccessToken=PROVIDER_87633ea72bd9dca1d79b8bc41462481e651ee6b5
http://www.trefis.com/stock/intc/model/trefis?easyAccessToken=PROVIDER_87633ea72bd9dca1d79b8bc41462481e651ee6b5
http://www.trefis.com/stock/intc/model/trefis?easyAccessToken=PROVIDER_87633ea72bd9dca1d79b8bc41462481e651ee6b5
http://people.seas.harvard.edu/~apw/stress/
http://people.seas.harvard.edu/~apw/stress/
http://doi.acm.org/10.1145/945445.945462
http://blogs.aberdeen.com/it-infrastructure/is-the-hypervisor-market-expanding-or-contracting/
http://blogs.aberdeen.com/it-infrastructure/is-the-hypervisor-market-expanding-or-contracting/
https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt
https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt
https://github.com/opsengine/cpulimit
http://controlguru.com/process-data-dynamic-modeling-and-a-recipe-for-profitable-control/
http://controlguru.com/process-data-dynamic-modeling-and-a-recipe-for-profitable-control/
http://cds.linear.com/docs/en/datasheet/1999fd.pdf

50

[39] C. A. Bryceson, C. and J. Hall, “Frequency Measurement Device,” Unpub-
lished. Shared online https://www.dropbox.com/sh/0gk9ujkkcqzmo0z/AAC
2OonBGIMoUTL34rM yvOa?dl=0, December 2014, submitted by authors in
partial completion of senior design course at the University of Iowa.

[40] “avconv Documentation,” [Online] https://libav.org/avconv.html, 2015.

[41] T. I. S. NERC, “Interconnection Criteria for Frequency Response Requirements,”
[Online] http://www.nerc.com/docs/pc/tis/Agenda Item 5.d Draft TIS IFRO
Criteria%20Rev Final.pdf, August 2011, accessed 2015-10-30.

https://www.dropbox.com/sh/0gk9ujkkcqzmo0z/AAC_2OonBGIMoUTL34rM_yvOa?dl=0
https://www.dropbox.com/sh/0gk9ujkkcqzmo0z/AAC_2OonBGIMoUTL34rM_yvOa?dl=0
https://libav.org/avconv.html
http://www.nerc.com/docs/pc/tis/Agenda_Item_5.d_Draft_TIS_IFRO_Criteria%20Rev_Final.pdf
http://www.nerc.com/docs/pc/tis/Agenda_Item_5.d_Draft_TIS_IFRO_Criteria%20Rev_Final.pdf

	University of Iowa
	Iowa Research Online
	Fall 2015

	Distributed control system for demand response by servers
	Joseph Edward Hall
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Demand Response
	Methods of Demand Response
	Data Center Demand Response
	Our Contribution
	Outline for Rest of the Thesis

	Control of Power Consumption in Computers for Demand Response
	Mechanisms of Power Dissipation in Computer Circuits
	Methods of Power Control in Computers
	Empirical Comparison of Power Control Architectures
	Power Consumption Controller Design
	Sharing Resources in Multi-Job/Multi-Server Distributed Control

	Demand Response by Servers - Demo
	Problem Formulation
	Hardware, Power Monitoring, & Workload Monitoring
	Demand Response Algorithm
	Results & Observations

	Conclusions
	REFERENCES

