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CHAPTER 1

INTRODUCTION

The purpose of this master’s work is to provide a method to obtain measurable

information from graphed searched magnetic resonance images (MRI). By providing

this information one’s intention is to show that through the use of both three dimen-

sional and four dimensional measurements, one can identify the differences in patients

with Marfan Syndrome and those who do not have the disease. Marfan Syndrome is

a connective tissue disorder that can affect the aorta. The aorta is the largest blood

vessel in the human body, that supplies blood throughout the body. If Marfan Syn-

drome is not diagnosis the aorta can tear; if this tear is not fixed immediately death

will occur. Prior to obtaining this information one must show that the extraction

process can accurately take a given dataset and produce a set of contour points that

represents a given segmented volume. From these points one would like to produce

and store these measurements. Prior to storing and creating these measures one has

to show that these points accurately measure a given data set. In certain cases, either

due to local inaccuracies in the segmentation or misaligned planes in the extraction

process a verification and editing tool needs to be created to fix these errors.

1.1 Aims of the Research Work

1. Extract a set of contour points that accurately represent a given aortic volume

2. Create a set of measures based on the above contour points

3. Verify that the given non-modal indexes are correct

4. Provide a program to modify the extracted contour points, if needed

1.2 Multiple Languages

In order to achieve these aims multiple programming languages were utilized. To

obtain the data, Perl Scripts were created to search a location on a server and then
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download data from this server. Next the C++ programming language was used to

load, process and save the contour points. In conjunction with the standard C++

library, the Visual Toolkit (VTK) and the Insight Toolkit (ITK) were used. After

the points were extracted they were processed using Perl Scripts and from these

scripts a previously developed program was executed to create the measures. After

the measures were made they were stored in a Structured Query Language (SQL)

database using the Perl Database Interface (DBI) and SQLite as database interface.
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CHAPTER 2

MEDICAL BACKGROUND

2.1 Anatomy of the Aorta

The aorta is a large blood vessel that begins at the aortic valve located at the end

of the left ventricular outflow track. On average this vessel has a diameter of three

centimeters when it leaves the ventricle and decreases to an average size of one and

three-fourth centimeters at the junction of the left and right iliac arteries located in

the pelvic region. For this master’s work the region of interest goes from the aortic

value to a location near the diaphragm. This area of study includes the aortic sinus,

the ascending aorta, the arch of the aorta and a small portion of the descending aorta

2.1 [3]. Of particular interest to this work is the aortic root, aortic sinus, and the

sino-tubular junction. The aortic root is located at the junction of the aorta and

aortic valve. The aortic sinus is an area of dilation that is located between the aortic

root and sino-tubular junction. This location is a common area of aortic dilation in

Marfan Syndrome. The sino-tubular junction is located at the junction of the the

sinus and the ascending aorta.

2.2 Introduction to Marfan Syndrome

Marfan syndrome (MFS) is a systemic disorder of the connective tissue that affects

multiple body systems. Connective tissue is tissue in the body that strengthens

structures. For example, MFS patients typically have long arms, legs, and fingers

which gives a lanky appearance. MFS is caused by a mutation in gene FBN1 which

is located on the chromosome 15. This gene is responsible for the encoding of the

protein fibrillin-1 [2]. Fibrillin helps build elastic fibers which are important for the

function of flexible structures such as the blood vessels [6]. MFS affects about in 1 in

5000 people. The defect caused by MFS is inherited from the patients parents, but

this does not mean that the patient will have the symptoms related to the disorder.[2].
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Figure 2.1: Anatomy of the Aorta [3]

2.3 Effects on the Aorta

One of the aims of this master’s work was to study the effects of MFS on the

aorta. One of the major problems of MFS it that it causes the aorta to stretch which

can then lead to an aortic dissection. Figure 2.2 demonstrates the different types

of aortic dissection based on DaBakey and Stanford method [4]. Aortic dissection

occurs when the wall of the aorta begins to tear, creating two areas for blood to flow.

The first area is the normal lumen and allows blood to continue through the aorta.

The second area is abnormal and allows for blood to pool is this area thus creating

an enlargement of the aorta, or an aneurysm. Figure 2.3 shows the different types of

aneurysms that can occur near the root. If not treated the aneurysm can cause the

aorta to rupture. The death rate is one percent per hour in the first forty-eight hours

or approximately fifty percent. Less then fifty percent of patients with a raptured

aorta will survive [8].

MFS can also cause mitral valve prolapse which is when this valve does not open
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Figure 2.2: Aortic Dissection [4]

Figure 2.3: Aortic Aneurysms [4]



6

or close properly and sometimes leads to regurgitation. Regurgitation occurs when

blood is allowed to flow backwards into the left atium. One reason that the mitral

valve fails to close or open is due to the enlarged aorta.

2.4 Diagnosis and Treatment

In order to prevent the above complications of MFS, one needs to have regular

echocardiograms (an ultrasound of the aorta) to diagnose the current progression of

the syndrome. Using an echocardiogram, doctors can approximately measure the

current size of the aorta at distinct locations. If the aorta has reached a certain size,

surgery is needed to replace the dilated part of the aorta (typically the root) or the

aortic valve or both. Although the current method of diagnosis is the gold standard,

it only uses one two dimensional slice to determine whether surgery is warranted.

The purpose of this work is to provide a method that uses both three dimensional

and four dimensional measures to chart the progression of MFS.
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CHAPTER 3

PRIOR WORK

3.1 Segmentation

Prior to performing the extraction and calculation of the measures a model of the

aorta needs to be generated. These volume were created using the algorithm found

in [10], a brief summary of this method follows. To start the process a Left Ventricle

Outflow Track (LVOT), figure 3.1(a) and Candy Cane view, figure 3.1(b) are acquired

from either a General Electric (GE) or Siemens MR scanner.

(a) Candy Cane View (b) LVOT View

Figure 3.1: Views used in the creation of the aorta model

In order to benefit from the information of both views are merged together and

recreated using a B-Spline interpolation and geometric information acquired a scan

time. The average isotropic voxel size for these sets are 1.5 mm4 for GE scanners
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and 1.9 mm3 for Siemens scanners. After merging a graph searched is applied to the

merged LVOT data set to produce a better approximation of the aorta from the root

to sino-tubular junction. This result was then mapped back to the CC data set and

then registered across all sixteen phases. Using this initial surface estimation a level

set algorithm is applied to the CC data set and an approximate surface representing

the entire aorta from the root to the diaphragm. A centerline is then generated from

this surface and used to re-sample the CC data set producing a volume perpendicular

to the centerline. A four dimensional graph search is then performed on this data set

producing a model of the given aorta. This model is then saved in a three dimensional

data set and used during the extraction process.
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CHAPTER 4

DATA EXTRACTION PIPELINE

4.1 Goals of Pipeline

The primary goal of the extraction pipeline was to create surface points located on

the segmented volume. The secondary goal was to create a set of transforms that when

applied to a given volume produced a volume perpendicular to the centerline. This

perpendicular volume allows for validation of both this method and the segmentation

results. These two goals are accomplished using the Insight Toolkit and Kitware’s

Visualization Toolkit. A general overview of the pipeline is given in figure 4.1.

C R E A T E
C E N T E R L I N E

G E N E R A T E
T R A N S F O R M S

R E S A M P L E
G E N E R A T E
S U R F A C E  

P O I N T S

Figure 4.1: Extraction Pipeline

4.2 Input into the Pipeline

In order to perform an analysis on a given segmented data set, the user needs to

identify a root and diaphragm point. These points was used to start and end the

centerline extraction. It was also used to prevent the centerline from going beyond

the segmentation results. Another use of these points was to adjust the direction

of the centerline so it remained in the middle of the vessel. Figure 4.2(a) illustrates

what happened when the diaphragm point was not set. If this centerline was used

it would generate planes shown as green lines in the figure. These planes produce

inaccurate contours at those locations. Figure 4.2(b) demonstrated the output when

a the diaphragm point was set.



10

(a) No diaphragm point (b) Diaphragm point

Figure 4.2: Inaccurate centerline

The final set of input parameters was used to define the dimensions of the per-

pendicular volume. The first parameter that was needed was the re-sampling window

size or the dimension of the perpendicular images in the xy-plane. The default value

for this parameter was fifty voxels by fifty voxels. This value typically captures the

entire aorta in cross section at a given centerline location. The user also specidied the

number of cross sectional slices to create in the re-sampled volume and the number of

control points to generate on each cross sectional slice. By increasing these values one

could generate a denser representation of the surface. However if the number of cross

sectional slices is too large intersection will occur between slices, which will create

artifacts in the final results. If the number of control points was too large then local

noise will appear in the results, but given the correct number of points this noise can

be removed using a spline. The default value for these parameters was one hundred

slices and one hundred control points.

4.3 Centerline Generation

The centerline was created using the algorithm found in 4.3(a) and an example

is seen in figure 4.3. As it can be seen the generated centerline had a ”‘stair-step”’

effect. If no smoothing filter was applied the probability of incorrect transformed is
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increased. An example of the smooth centerline is shown in figure 4.3(b). In order to

calculate a smooth centerline a window size was chosen to average a centerline point.

Then the gradient in the x-direction, y-direction and z-direction were calculated from

the current centerline point to the end of the window. An average centerline point was

calculated in the direction perpendicular to the gradient with the greatest magnitude.

When the average was calculated in a perpendicular direction to the greatest gradient

one did not loose the directional information of the centerline [10]. The generated

centerline was then up sampled by a factor of two using the midpoint formula. The

up sampled version of the centerline guarantees that number of centerline points is

greater then the number of slices specified by the user.

(a) Un-smooth centerline (b) Smoothed centerline

Figure 4.3: Centerline
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4.4 Rolling Sphere Algorithm

In order to determine an approximate normal at a given centerline point an itera-

tive rolling spheres algorithm was used. The first step in the rolling spheres algorithm

was to choose an initial radius for each sphere at a given centerline point (CP). Next

an initial normal direction (N) is calculated using CP to the next point on the center-

line. Starting from CP to the previous point(A), a distance is calculated, normalized,

and added to N, figure 4.4. This process was repeated using the previous point A

and A’s previous point(B). This process was continued to the end of the centerline or

the euclidean distance from the current B to CP was greater than the radius of the

sphere. This process was known as backwards averaging [9].

Figure 4.4: Backward Averaging

After the backwards averaging is utilized, a forward average was applied. This

was started two points forward from the centerline point(CP), an euclidean distance

is calculated from this initial point(A) to its previous point (B) it is then normalized,

and added to N. This process was repeated using A as the new B and A’s next

point(C) as the new A, figure 4.5. This process terminated if it reached the end of

the centerline or the euclidean distance from the current C to CP was greater then

the radius of sphere.
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Figure 4.5: Forward Averaging

4.5 Radius Estimation

The above rolling sphere algorithm, was applied to the centerline; this gave an

initial normal direction for each centerline point. The initial radius for each sphere

at a given centerline point was three voxels. A vtkImageMarchingCubes filter [5] was

applied to the segmented binary volume, thus outputting a single iso-surface 4.6(a).

This surface was inputed into a vtkWindowedSincPolyDataFilter filter [5] to remove

any noise from inputed the volume 4.6(b). The results of this filter were inputted into

a vtkDecimatePro filter to reduce the number of triangles produced by the marching

cubes algorithm 4.6(c). This decimation did not effect the topology of the iso-surface

but allows for an decrease in compution time.
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(a) Original Iso-Surface (b) After smoothing (c) After decimation

Figure 4.6: Steps in the creation of iso-surface

Using a given centerline point and its respective normal a vtkPlane source is

created and inputted into a vtkCutter filter [5] 4.7(a). This filter was then applied to

the isosurface, and its output is connected to a vtkStripper filter [5] thus producing

one or more connected isolines 4.7(b). The above images are similar because the filters

worked on the structure and ordering of the points and not the lines. By manipulating

the points, one prevented the distortion of the surface and thus preserved information

needed for the analysis. These lines were connected to a vtkSplineFilter filter [5]

outputting a spline containing N equally distant points representing a contour at the

given centerline point 4.7(c). In certain locations the created results contained two

splines due to a infinite plane being used in the vtkCutter filter. In order to correct for

this, an euclidean distance was calculated from each point to the current centerline

point. These distances were sorted in order from smallest to largest and N/2 closest

points were kept. In order to prevent distortion of the contours the original location on

the spline were stored prior to sorting the distances. After the removal of N/2 points
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the kept points were reordered according to their original location 4.7(d). Using the

previously calculated distances the maximum distances were found and used as the

new radius in rolling sphere iteration at the current centerline point. This process

was repeated for each centerline point thus producing a set of contour points.

It was likely that this initial set of contours would have some intersection with

each other. This error is caused by the use of the same radius at each centerline

point during the rolling sphere algorithm. In order to correct for this error, the

estimated radius found for a given centerline point in above method was used in a

second iteration of the rolling sphere algorithm. By using a unique radius for each

centerline point one could limit the effect that an outlying normal had on the current

centerline point.

The process of calculating normals, slicing the surface, and estimating new set of

the radii was performed three times. The first iteration determined a unique set of

radii, the second and third iteration created the best estimation of each centerline

point’s normal. If the number of iteration was larger then three, the radii typically

fluctuated between two values, meaning that a better estimation of the radii was

between these points. However to decrease computation time the set of radii found

during the third iteration was used to calculate a set of transforms.

4.6 Calculation of the orthogonal vectors of a

plane perpendicular to the centerline

Using an initial direction of (0,0,1) in the original candy cane space or (x,y,z) space

and the direction of the first normal, a cross product was computed, that produced

a perpendicular vector ~U . A second cross product was performed on ~U and the first

normal, which produced a second perpendicular vector ~V . Vectors ~U and ~V orientated

the first slice in the new (u,v,w) space such that the normal was (0,0,1). Using the

current ~U , ~V , and the normal at the next centerline point, a plane perpendicular to

the centerline was defined as follows. By computing a cross product with the current
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(a) After cutter

(b) After stripper

(c) After spline

(d) Contour Points

(e) Contour Points on
the Surface

Figure 4.7: Radius Estimation
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~U , from the above process, and the current normal at the next centerline location a

third perpendicular vector ~V was created. A second cross product was performed on

the current normal and the new ~V ; this result was stored in vector ~U . These two

vectors and the current centerline point were stored in a file for later use. This process

was repeated for each centerline point. When completed, each centerline point had a

~U and ~V that defined a plane perpendicular to that point.

4.7 Re-sampling

A signed distance map of the input binary volume is calculated using the ITK

SignedMaurerDistanceMapImageFilter [7]. Using the transforms calculated in section

4.6 and equations 4.1 - 4.3 the distance map is trilinearly interpolated such that the

output volume contains slices perpendicular to the centerline.

Ox = Cx − Ux(x −

Wx

2
) − Vx(y −

Wy

2
) (4.1)

Oy = Cy − Uy(x −

Wx

2
) − Vy(y −

Wy

2
) (4.2)

Oz = Cz − Uz(x −

Wx

2
) − Vz(y −

Wy

2
) (4.3)

Figure 4.8: Transform Equation

Equations equations 4.1 - 4.3 can be represented in vector form as given in equation

4.4. In equation 4.4 ~O represents a voxel in the distance map, ~U and ~V are the vectors

calculated in section 4.6,~C is the current centerline point and (x,y) is the pixel of

interested in the straighten volume. Wx and Wy are the dimensions in the xy-plane.

The z dimension of the straighten volume is equal to the number of slices determined

by the user.
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~O = ~C −
~U(x −

Wx

2
) − ~V (y −

Wy

2
) (4.4)

Figure 4.9: Transform Equations in Vector Notation

4.8 Contour Creation

An iso-surface was created using the vtkMarchingCubes filter [5]. The iso-surface

was then cut using vtkCutter and a vtkPlane source [5], such that the plane had a

normal of (0,0,1) and an origin at the center of the xy-plane. For every z-slice in

the iso-surface a plane was created, splined and stored for later use. Figure 4.10(a)

shows the iso-surface created from the vtkMarchingCubes filter. The extra surfaces

located above and below the vessel were caused by the use of larger then needed

sample window, Wx and Wy in equation 4.4. However these extra surfaces did not

affect the generated contours as seen in 4.10(b).

(a) Straighten Iso-Surface (b) Contour Points

Figure 4.10: Contour Creation
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CHAPTER 5

DATA ANALYSIS PIPELINE

5.1 Goals of the Pipeline

Given a set of contours from a given binary volume, one created a set of mea-

sures. Some examples of these measures are diameter, distance, cross section area,

and centroid displacement. After reorganizing the contours with the Perl Script-

ing language the non-modal indexes were calculated using the Coronary Vessel and

Plaque Morphology Analysis with 3-D Visualization Tool (CVPA3D)[1]. The output

of this program was modified again with Perl Scripts and stored in an Standard Query

Language (SQL) database for later use.

5.2 Reorder of Contour Points

In order to create the non-modal indexes, the generated contour points were trans-

lated back to the original Candy Cane (CC) space. Through the use of equation 4.4

and a Perl Script these points were mapped from the perpendicular space back to CC

space. When the points were outputted from the above process they were unordered

in the sense the point P on slice N is not located near point P on N+1 or N-1, thus

producing twisted or misaligned triangular meshed surface. These twisted surfaces

caused inaccurate results when entered into the CVPA3D. To correct this error, slice

zero’s contours were stored in the final output array and point zero on slice zero was

used as a reference to straighten the surface. An euclidean distance was measured

from point one on slice one to the zero point on the previous slice. This distance

was then compared to current minimum and if it is was found to be less then the

current minimum, the current minimum was set equal to this distance and location

of this point was stored for later use. This process was repeated for each point on

the current slice. Starting from the minimum point to the last point each point was

stored in the final array. This process was repeated starting from the first point up

to, but not including, the minimum location. This processes was then repeated on
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each slice thus producing non-twisted contours.

5.3 Construction and Loading of Database

By implementing a database of the given output of CVPA3D tool one would be

able to access an endless amount of data in a matter of seconds. Not only would the

data be quickly accessible, but with a few Perl scripts, the data could be modified and

stored in an Microsoft Excel file. The first step in the creation of the database was the

design of the tables. A database table describes how the data should be stored. Figure

5.1 shows the Entity Relationship(ER) diagram of the database. The ER diagram is

a convenient way of showing each table or entity (shown by rectangles), attributes

(shown by circles) and how the tables relate to each other (shown as diamonds). The

double rectangle around the data table indicates that in order to find a certain value

is this table one needs to use both the table and the studies table, this is a called a

weak entity set.

Studies

hospid

date

time

notes

diagnosis

surgery

bsa

gene

studytype

phase

slice

center (x,y,z) centroid (x,y,z)

csa

curvature (x,y,z)

volume

eccentricity

length
lengthpct

data
Contains

Figure 5.1: Entity Relationship Figure

Using these two tables, further tables can be created using pure SQL syntax, or

through a Perl script. As an example, of one such table that was the maximum

and minimum cross sectional area(CSA) across phases at a given centerline point. To
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construct this table a query was made to obtain all the hospids, time, and date. Using

these results, a query was made on the data to obtain a maximum and minimum CSA

across all sixteen phases for a given slice. To account for any movement in a slice

across phases an average and standard deviation was calculated for each slice located

on the centerline. All the results are stored in another table in the database for later

use.

5.4 Example Perl Script

Figure 5.1 shows a example of a Perl Script to load data into the database. The

first step in loading the data was to create the SQL query statement to be executed

at a latter time (line 7). The next step was to read a result file, modify one line

at time so it can be stored in the database and then execute the SQL query (lines

19-33). In order to increase the speed of insertion but guarantee that the results are

being stored, a commit to the database occurs after one thousand lines (line 35).

5.5 Root and Diaphragm Adjustment

Due to local noise in the segmentation or a faulty centerline generation an outlying

CSA measure could occur at the root or diaphragm slice. To fix this error a linear

interpolated value was calculated using the two nearest neighbors on the centerline.

If the absolute percent difference between the interpolated value and true measure

was above a percentage difference threshold the interpolated value was chosen as the

new CSA measure. In order to determine the optimal threshold, an experiment was

done using a set of thresholds ranging from five to fifty percentage. Using the above

method, the threshold was applied to the current set of data and the number of

root and diaphragm points that were changed as well as the total number of points

was stored. Figure 5.2 shows that as the threshold increased the percentage change

decreases exponential, based on this evidence, a threshold of twenty-five percent was

chosen.



22

Listing 5.1: ’Example Perl Code’
1 my $sth = $ s e l f −>{ ’ dbh ’}−>prepare ($command) or die $ s e l f −>{ ’ dbh ’ } ;
2 $sth−>execute ( $hospid , $date ) or die $sth−>e r r s t r ; #add the data

3
4 open(FILE , $ f i l e ) or die $ ! ;
5 my $ques = ” ? , ”x17 ;
6 chop( $ques ) ; #remove th e l a s t , from the above s t r i n g

7 $command = qq{ REPLACE INTO orgdata (
8 hospid , date , time , phase , s l i c e ,
9 centerx , centery , centerz ,

10 centro idx , centro idy , cent ro idz ,
11 csa , curvx , curvy , curvz ,
12 volumepolytope , e c c e n t r i c t y )
13 VALUES( $ques ) ;
14 } ;
15
16 $sth = $ s e l f −>{ ’ dbh ’}−>prepare ($command) or die $ s e l f −>{ ’ dbh ’ } ;
17
18 my $ j = 0 ;
19 foreach my $ l i n e (<FILE>)
20 {
21 #remove th e end l i n e c ha r a c t e r

22 chomp( $ l i n e ) ;
23 #s p l i t t h e l i n e u s ing more then one s t r i n g as t h e p a t t e r n

24 my @para = sp l i t (/\ s+/, $ l i n e ) ;
25 #inc r e a s e t h e phase so t h e phases s t a r t a t 1 and not 0

26 ++$para [ 0 ] ;
27 #add the hosp id , da t e and t ime to t h e b e g i nn in g o f t h e l i s t

28 unshift (@para , ( $hospid , $date , $time ) ) ;
29 #add the data

30 $sth−>execute (@para ) or die $sth−>e r r s t r ;
31 ++$j ;
32 #commit eve ry 1000 r e co rd s

33 i f ( $ j%1000 == 1)
34 {
35 $ s e l f −>{ ’ dbh ’}−>commit ( ) ;
36 }
37 }
38 close (FILE ) ;

Figure 5.2: Threshold Graph
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CHAPTER 6

EXPERIMENTAL METHOD

6.1 Phantom Generation

In order to verify the accuracy of the extraction and creation process a set of

computerized phantoms were created. These phantoms were constructed using the

Cartesian equation of a torus and a cylinder. Phantom radii were designed in mil-

limeters and then mapped to voxel space using a predetermined voxel size. Radius

sizes ranged from 20 mm up to 60 mm and voxel sizes of 1.1, 1.4, 1.7 and 2.0 mm3.

Figure 6.1 is an example of one the phantoms used in verification.

Figure 6.1: Example of a Phantom

6.2 Distance Error For Each Phantom

A signed difference between the known radius and the extracted radius was cal-

culated for each slice. These values were averaged together to give an error for a

phantom with known radius and voxel size. A signed difference was calculated to
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determine if the chosen threshold was underestimating or overestimating. Had an

unsigned difference been used the direction of the error would be unknown.

Figure 6.2: Signed error of the phantom test

Figure 6.2 demonstrates how the method performed for a given voxel size and

radius size. As it can be seen on average this method can correctly measure a given

diameter. One free parameter that was set during this analysis was the location of

the edge for the (u,v,w) distance map. When one calculated a distance map in (x,y,z)

space the edge was given a voxel intensity of zero. The following method was used

to determine if the transformation distorted the edge location and if this information

was lost were on the aorta did it occur. First, a range of threshold were used to set

the (u,v,w) edge location on each slice of the re-sampled volume, this result was used

as input into the normal pipeline. The resulting contours were mapped back and the

resulting diameter was measured, figure 6.3 shows how the method performed for the

curved section of the aorta versus the straighten parts. As it can be see the edge

location of zero was preserved during the transform irregardless of the location on
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the aorta.

Figure 6.3: Threshold based on location

6.3 Extraction of True Segmented Volumes

The extraction process was applied to a set of one hundred sixty-three segmented

volumes. This set consisted of eighty-six normals and seventy-seven patients. The

root and diaphragm points were taken from a set of files made during the creation

of segmented volume. A rigid affine registration with linear interpolation was used

to mapped a single root and diaphragm point across all sixteen phases. Table 6.1

provides a detailed description of the extraction process on the given segmented vol-

umes. In all, the extraction process was able to extract one hundred forty-one data

sets.

In order for an extraction to be marked as incorrect it must meet one or more of

the following criteria:

1. The process failed to complete
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Result Segmented Extracted Percentage Correct
Patient 77 61 79.22
Normal 86 69 80.23

Table 6.1: Summarization of Extractions from Segmented Data

2. The root or end cross sectional area (CSA) measure is approximately zero

3. In the middle of graph comparing CSA versus distance from the root there is a

sudden spike.

The reason that an extraction processed failed to complete was due to a root or

end point being located outside the given segmented volume. As stated before, these

points were based on a rigid registration which can fail in cases were the aorta moves

in fashion that was beyond the parameters of this type of registration. One possible

solution was to use non-rigid or a deformable registration method, such as Demons

Registration. When the CSA versus distance graph had a spike in the middle of it, it

typically implies a poor segmentation in that region. The root and diaphragm errors

are fixed using the method found in section 5.5. These errors occurred when the

registration points fell near the edge of the segmented volume.
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CHAPTER 7

VERIFICATION AND EDITING TOOL

7.1 Verfication Tool

A verification tool was created using C++ and wxWidgets to provide a user with

the possibility to verify both the contours created in this work and the segmentation

results discussed in [10]. This tool has the ability to view the Candy Cane (CC) vol-

ume in the xy-plane, xz-plane, and yz-plane. It can display slices of the perpendicular

volume and overlaid contour points. There is a third view of an oblique plane through

the perpendicular volume producing a longitudinal view of the aorta. Mouse clicks in

the perpendicular slices are mapped back to the correspong CC slice. Mouse clicks in

the longitudinal view are mapped to the corresponding perpendicular slice, CC slice,

and a CSA versus length from the root graph. By using these three views, a user

can determine if the extraction was performed correctly. If it was not, the user can

further investigate the source of error and if possible, modify the results as needed.

Figure 7.1 illustrates the layout of this tool when loaded with data.

7.1.1 Design

In order to correctly implement the design of the given tool, the codes needs

to be reliable, reusable, and understandable; in computer science this is called high

cohesion. With high cohesion comes low coupling or code that is in separatable into

modules that can be changed with little or no affect on the rest of the code. In order

to accomplish this task an object was chosen as the hub to handle all events and data

in the code and each view as its own object or window. This way if the code of one

of the windows is modified then it does not affect another window. In figure 7.2 the

hub is the Visual Results Panel and each view is its own module. The double arrow

headed lines show that events and data flow in a bidirectional manner.

By using this design one can easily disable windows, add other windows, or add

more editing or verification tools. One major design flaw with this layout is code
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Figure 7.1: Verfication Tool

Figure 7.2: Verfication Tool Design
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bloat that can occur in Visual Results Panel. Code bloat occurs when there is an

excessive amount of code in one location. One possible solution to this is to use

interfaces between new windows or tools and the Visual Results Panel. Interfaces

would provide methods for a window or tool to communicate with the Visual Results

Panel 7.3 while placing the code outside the Visual Results Panel.

Figure 7.3: Verfication Tool with an Interface
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CHAPTER 8

CONCLUSION

8.1 Restatement of the Aims

1. Extract a set of contour points that represent a given aortic volume

2. Create a set of non-modal indexes based on the above contour points

3. Verify that the given non-modal indexes are correct

4. Provide a program to modify the extract contour points,if needed

8.2 Aim 1

As seen in chapter 4 Aim 1 was met. Using a binary volume and a set of C++

programming libraries a successful set of contour points was created. From a set of

root and diaphragm root points a centerline was created and used to generate a set

of transforms to generate a volume perpendicular to the centerline.

8.3 Aim 2

In chapter 5 Aim 2 was successfully accomplished. Using the set of contour points

generated in Aim 1, a set of measures were created using a previously developed

software package and Perl scripts. In order to maintain and access this large set of

data a Standard Query Language (SQL) database was setup and accessed via Perl

Scripts and Perl Database Interface. This database removed the amount of overhead

needed to access each result separately and in the future could be used in an on-line

database to allow multiple users to perform their own analysis.

8.4 Aim 3

By constructing a set of phantoms with a known radius, it was soon realized that

this method produced similar results irregardless of the voxel size and diameter. It

was also shown that the typically edge location in a distance map is changed during

the construction of a perpendicular volume.
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8.5 Aim 4

After the data was extracted and processed the resulting data may have errors.

These errors can be caused by local inaccuracies in the segmentation data or by mis-

aligned plane in the extraction process. To fix these errors a verification and mod-

ification tool was created using the wxWidgets library. This tool has high cohesion

making it reliable, reusable, and understandable. Due to fact that this verification

tool has high cohesion further tools could added. For example the segmentation pro-

cess, a manual tracing tool for those data sets that could not be segmented and way

to access the data in the database.
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Morphological analysis. source code.

[2] The National Marfan Foundation. Marfan syndrome facts.
http://www.marfan.org. Day Accessed: February 28,2008.

[3] H. Gray. Anatomy of the human body. Philadelphia: Lea and Febiger, 1918.
Bartleby.com 2000 www.bartleby.com/107.

[4] Massachusetts General Hospital. Aortic dissection.
http://www.massgeneral.org/, May 2008. Day Accessed: May 7,2008.

[5] Kitware Incorporated. Visualization toolkit (vtk). http://www.vtk.org, 2008.

[6] MedicineNet. Definition of fbn1. http://www.medterms.com. Day Accessed:
February 28,2008.

[7] National Library of Medicine. Insight segmentation and registration toolkit (itk).
http://itk.org/, 2008.

[8] Medline Plus. Aortic dissection. http://www.nlm.nih.gov, May 2006. Day Ac-
cessed: February 29,2008.

[9] A. Wahle, E. Wellnhofer, I. Mugaragu, H. U. Sauer, H. Oswald, and E. Fleck.
Assessment of diffuse coronary artery disease by quantitative analysis of coronary
morphology based upon 3-D reconstruction from biplane angiograms. IEEE

Transactions on Medical Imaging, 14(2):230–241, June 1995.

[10] F. Zhao. Congenital Aortic Disease: 4D Magnetic Resonance Segmentation and

Quantitative Analysis. PhD thesis, University of Iowa, December 2007.


	University of Iowa
	Iowa Research Online
	2008

	Extraction of quantitative measures of the aorta from four dimensional segmented MR data
	Matthew T. Thomas
	Recommended Citation


	C:/thesis/ms_thesis_spring08.dvi

