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ABSTRACT

Standard structural methods for the assessment of glaucoma, such as the planime-

try of stereo color photographs of the optic disc, involve a subjective component either

by the patient or examiner and suffer from poor reproducibility. Spectral-domain op-

tical coherence tomography (SD-OCT) provides a 3-D, cross-sectional, microscale

depiction of biological tissues. Given the wealth of volumetric information at mi-

croscale resolution available with SD-OCT volumes of the back of the eye, it is likely

that better parameters can be obtained for measuring glaucoma changes that move

beyond what is possible using fundus photography.

The neural canal opening (NCO) is a 3-D single anatomic structure in SD-OCT

volumes. It is proposed as a basis for a stable reference plane from which various

optic nerve morphometric parameters can be derived. The overall aim of this Ph.D.

project is to develop a framework to segment the 3-D NCO and retinal vessels using

information from SD-OCT volumes and fundus photographs to aid in the management

of glaucoma.

Based on the mutual positional relationship of the NCO and vessels, a multi-

modal 3-D scale-learning-based framework is developed to iteratively identify these

structures in SD-OCT volumes by incorporating each other’s pre-identified positional

information. The algorithm first applies a 3-D wavelet-transform-learning-based layer

segmentation and pre-segments the NCO using a graph-theoretic approach. To im-

prove the NCO segmentation, the vessels are identified either using an OCT vessel

segmentation approach by incorporating the pre-segmented NCO positional informa-
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tion to the vessel classification or a multimodal concurrent classification approach

by combining the complementary features from SD-OCT volumes and fundus pho-

tographs (or a registered-fundus approach based on the original fundus vessel segmen-

tation). The obtained vessel positional information is then used to help enhance the

NCO segmentation by incorporating this information in the cost function of graph

search.

The major contributions of this work include: 1) extending the 3-D graph-based

segmentation to the use of 3-D scale-learning-based cost function, 2) developing a

graph theoretic approach for segmenting the NCO in SD-OCT volumes, 3) develop-

ing a 3-D wavelet-transform-learning-based graph theoretic approach for segmenting

the NCO in SD-OCT volumes by iteratively utilizing the pre-identified NCO and ves-

sel positional information, 4) developing a vessel classification approach in SD-OCT

volumes by incorporating the pre-segmented NCO positional information to the ves-

sel classification to suppress the NCO false positives, and 5) developing a multimodal

concurrent classification and a registered-fundus approach for better identifying ves-

sels in SD-OCT volumes using additional fundus information.
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ABSTRACT

Standard structural methods for the assessment of glaucoma, such as the planime-

try of stereo color photographs of the optic disc, involve a subjective component either

by the patient or examiner and suffer from poor reproducibility. Spectral-domain op-

tical coherence tomography (SD-OCT) provides a 3-D, cross-sectional, microscale

depiction of biological tissues. Given the wealth of volumetric information at mi-

croscale resolution available with SD-OCT volumes of the back of the eye, it is likely

that better parameters can be obtained for measuring glaucoma changes that move

beyond what is possible using fundus photography.

The neural canal opening (NCO) is a 3-D single anatomic structure in SD-OCT

volumes. It is proposed as a basis for a stable reference plane from which various

optic nerve morphometric parameters can be derived. The overall aim of this Ph.D.

project is to develop a framework to segment the 3-D NCO and retinal vessels using

information from SD-OCT volumes and fundus photographs to aid in the management

of glaucoma.

Based on the mutual positional relationship of the NCO and vessels, a multi-

modal 3-D scale-learning-based framework is developed to iteratively identify these

structures in SD-OCT volumes by incorporating each other’s pre-identified positional

information. The algorithm first applies a 3-D wavelet-transform-learning-based layer

segmentation and pre-segments the NCO using a graph-theoretic approach. To im-

prove the NCO segmentation, the vessels are identified either using an OCT vessel

segmentation approach by incorporating the pre-segmented NCO positional informa-

tion to the vessel classification or a multimodal concurrent classification approach
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by combining the complementary features from SD-OCT volumes and fundus pho-

tographs (or a registered-fundus approach based on the original fundus vessel segmen-

tation). The obtained vessel positional information is then used to help enhance the

NCO segmentation by incorporating this information in the cost function of graph

search.

The major contributions of this work include: 1) extending the 3-D graph-based

segmentation to the use of 3-D scale-learning-based cost function, 2) developing a

graph theoretic approach for segmenting the NCO in SD-OCT volumes, 3) develop-

ing a 3-D wavelet-transform-learning-based graph theoretic approach for segmenting

the NCO in SD-OCT volumes by iteratively utilizing the pre-identified NCO and ves-

sel positional information, 4) developing a vessel classification approach in SD-OCT

volumes by incorporating the pre-segmented NCO positional information to the ves-

sel classification to suppress the NCO false positives, and 5) developing a multimodal

concurrent classification and a registered-fundus approach for better identifying ves-

sels in SD-OCT volumes using additional fundus information.
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CHAPTER 1

INTRODUCTION

Glaucoma is the second most common cause of blindness worldwide [1]. It is

historically accepted that the glaucomatous change of the clinically visible optic disc

margin, i.e. the clinical optic cupping, results from the degeneration of the retinal

ganglion cell axons [2,3] in the optic nerve head (ONH) and may result in increasing

visual field (VF) loss and eventual irreversible blindness.

The risk of visual loss due to glaucoma can be minimized by early diagnosis and

careful monitoring of disease progression in the ONH. However, the latter requires a

reproducible measurement of the disease state. Currently available methods such as

the planimetry based on stereo disc photographs, on one hand, involve a subjective

component either by the patient or examiner and on the other hand, a few anatomic

structures might overlap together on the essential 2-D images. For instance, we

and others [4, 5] recently found that the clinical optic disc margin seen on fundus

photographs may consist of a few anatomic structures, i.e. the neural canal opening

(NCO), border tissue, and/or the anterior scleral canal opening, which can decrease

reproducibility [6, 7].

Spectral-domain optical coherence tomography (SD-OCT) is a noncontact, non-

invasive imaging technique used to obtain high resolution 3-D images of the retina or

ONH [8]. It is a powerful modality to qualitatively assess retinal and ONH features

and pathologies. Given the wealth of volumetric information at microscale resolution

available with SD-OCT, it is likely that better parameters can be obtained for mea-

suring glaucomatous change that move beyond what is possible using stereo fundus
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photography alone. However, it is currently unclear which ONH parameters derived

from SD-OCT can be best used to quantify glaucomatous changes.

Thus, the overall aim of this Ph.D. project is to develop novel algorithms using

the information from SD-OCT volumes and color fundus photographs to help detect

and analyze multiple 3-D structures with mutual positional relationship in SD-OCT

volumes to help the management of glaucoma progression.

A central requirement for the detection of the ONH structural change is a longi-

tudinally stable zero reference plane [4]. The NCO is a three-dimensional anatomic

structure in the ONH and is discernible and delineable in SD-OCT volumes. It is

assumed stable during glaucoma progression and could be used as a basis for a stable

reference plane [4,5], from which various optic nerve morphometric parameters can be

derived. Thus, the core hypothesis motivating this study is that the segmentation of

the 3-D NCO will enable more reproducible and objective glaucomatous parameters

than what is currently possible from manual planimetry alone (even using a consensus

of glaucoma experts).

Due to the crossing of the retinal vessels with the NCO in the ONH, it causes

the NCO segmentation difficulty in some cases. We thus segment vessels to aid a

better NCO segmentation. In addition, the segmentation of retinal vessels in SD-

OCT volumes could lead to a more objective diagnosis of diseases and could be used

for other applications such as OCT-to-OCT and OCT-to-fundus registration.

Based on the mutual positional relationship of the NCO and retinal vessels, a

multimodal 3-D scale-learning-based framework is developed to iteratively identify

these structures by incorporating the pre-identified NCO positional information in the
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vessel classification and incorporating the pre-identified vessel positional information

to the cost function of the final segmentation of the NCO. Fig. 1.1 is an overview of

this framework.

Figure 1.1: Overall framework of this Ph.D. project.

More specifically, a graph theoretic approach is applied to segment the 3-D reti-

nal layers using the 3-D lifting-scheme-wavelet-transform-learning-based cost func-

tion. The NCO is then pre-segmented using a graph search approach. To help refine

the NCO segmentation, we present three novel options for segmenting the retinal

vessels: 1) a single modal OCT vessel segmentation approach by incorporating the

pre-segmented NCO positional information to the vessel classification to suppress the

NCO false positives, 2) a NCO-false-positive-suppression-based multimodal vessel

segmentation approach based on the complementary features from SD-OCT volumes
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and color fundus photographs, and 3) a registered-fundus vessel segmentation ap-

proach based on the original fundus vessel segmentation being registered to the OCT

space. The obtained vessel positional information is then used to help enhance the

NCO segmentation by incorporating this information in the cost function design for

segmenting the NCO.

Note that the 3-D wavelet transform via lifting scheme has been recently reported

by Quellec et al. [9] with the strong motivation to help remove high frequency noise

and extract texture properties. The graph search approach aiming to find the optimal

solution of single surface was initially reported by Wu and Chen [10]. Li et al. [11]

extended it for finding the optimal solution of multiple surfaces in a low-polynomial

time using edge information, and Garvin et al. [12] extended it using additionally

regional information. In this work, the use of the 3-D wavelet-transform-learning-

based cost function for the graph search reflects an extension in cost function design.

Thus in this work, in addition to the significance of the detection and analysis

of the NCO and vessels to the ophthalmic community, the general image processing

community will be interested in 1) the use of the scale-learning-based cost function for

the graph-based 3-D layer segmentation, 2) the incorporation of the pre-segmented

structures’ positional information in the classification process (such as the positional

information from the pre-segmented NCO) and in the cost function for use in the

graph-based segmentation (such as the positional information from pre-segmented

vessels), and 3) the multimodal concurrent classification by combining the comple-

mentary information from different modalities (such as SD-OCT volumes and color

fundus photographs).
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1.1 Specific aims

In particular, this work includes the following specific aims:

• Aim 1: Develop and validate a NCO segmentation approach using a graph

theoretic approach with the application in SD-OCT volumes of human eyes.

• Aim 2: Develop and validate a 3-D wavelet-transform-learning-based graph

theoretic approach for segmenting the NCO by iteratively using the pre-identified

NCO and vessel positional information (from aim 3 or 4) with the application

in SD-OCT volumes of non-human primate eyes.

• Aim 3: Develop and validate a single modal classification approach for iden-

tifying vessels in SD-OCT volumes by incorporating the pre-segmented NCO

positional information to the vessel classification to suppress the NCO false

positives.

• Aim 4: Develop and validate a NCO-false-positive-suppression-based multi-

modal concurrent classification and a registered-fundus approach for better

identifying retinal vessels in SD-OCT volumes using additional fundus infor-

mation.

1.2 Thesis overview

This dissertation is divided into 8 chapters including a general introduction in this

chapter. An overview of each of the remaining chapters is as follows:

• Chapter 2 provides the overall clinical background and significance of this

project, including an introduction of the stereo color photography and opti-
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cal coherence tomography, glaucoma and glaucomatous structures, clinical op-

tic disc margin and neural canal opening, and current clinical management of

glaucoma.

• Chapter 3 provides an overview of the prior techniques related to the NCO/clinical

optic disc margin and retinal vessel segmentation in SD-OCT volumes and color

fundus photographs. A brief introduction of our initial graph-theoretic and 3-D

wavelet-transform-learning-based NCO segmentation approaches and our single

modal OCT, registered-fundus, and multimodal vessel segmentation approaches

are also provided.

• Chapter 4 presents the algorithm details and results of our initial graph-theoretic

NCO segmentation with the application in SD-OCT volumes of human eyes.

• Chapter 5 presents the algorithm details and results of our 3-D wavelet-transform-

learning-based NCO segmentation with the application in SD-OCT volumes of

non-human primate eyes.

• Chapter 6 presents the algorithm details and results of our single modal vessel

segmentation in SD-OCT volumes.

• Chapter 7 presents the algorithm details, results of our registered-fundus and

multimodal vessel segmentation in color fundus photographs and/or SD-OCT

volumes and the comparison with two closest previous OCT vessel segmentation

approaches (including our single modal OCT approach).

• Chapter 8 concludes this Ph.D. project and discusses some potential future

directions.
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CHAPTER 2

CLINICAL BACKGROUND AND SIGNIFICANCE

This chapter provides an overall introduction of the clinical background of this

Ph.D. project. Section 2.1 introduces the anatomy of eye and optic nerve; Section 2.2

is an introduction of the stereo color photography and optical coherence tomography;

Section 2.3 introduces the glaucoma and glaucomatous structures; Section 2.4 is an

introduction of clinical optic disc margin and neural canal opening; and Section 2.5

briefly introduces the current clinical management of glaucoma.

2.1 Anatomy of eye and optic nerve

The eye is like a camera. Light enters the eye through a small hole, i.e. the pupil

and is focused on the retina by the lens of the eye. The retina is the light-sensitive

tissue consisting of several layers at the back of the eye. The layer of photoreceptors

(rods and cones) of the retina absorbs the light and converts the light signal into the

neural signal and the neural signal is transmitted to retinal ganglion cells (axons).

The more than 1 million ganglion cell axons converge at the optic nerve head (ONH)

and exit the eye through the neural canal opening, anterior (inner), and posterior

(outer) scleral canal openings [13].

The ONH is a 3-D structure characterized by a peripheral “neuroretinal rim”

formed by the nerve fibers and astrocytes and a central depression without nerve

fibers called the “optic cup” or “excavation” consisting of supporting tissue [14].

There are no photoreceptors in the ONH and it cannot respond to light stimulation.

The ONH is also known as the blind spot.
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Figure 2.1: Schematic illustration of the cross sectional view of the right
human eye with a highlight of retina. Copied with permission from
http://www.astrosurf.com/re/eyepieces.html.

Within the scleral portion of the canal, the bundled axons (the nerve fibers) pass

through the poles of the lamina cribrosa, a 3-D mesh-like structure in the ONH, and

eventually connect to the visual cortex, the visual center of the brain where the brain

processes and interprets the visual information. The lamina cribrosa is also a passage

of the blood vessels. Fig. 2.1 and 2.2 are the schematic illustrations of the anatomy

of human eye and optic nerve head respectively.

2.2 Stereo color photography and optical

coherence tomography

Stereo color photography is a photographic technique to acquire stereo color pho-

tographs of the ONH. It is essentially a 2-D imaging technique and remains the most

widely used approach for the ONH imaging due to the relatively less expensive price.
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Figure 2.2: Illustration of the optic nerve head. Images courtesy of pharmainfo.net.

Optical coherence tomography (OCT) is a relatively new modality which provides

a 3-D, cross-sectional, microscale depiction of the optical reflectance properties of

biological tissues [8]. It is a powerful modality to qualitatively assess retinal and

ONH features and pathologies.

OCT is an interference-based imaging technique. There are in general two types

of OCT, time-domain (TD) and spectral-domain OCT (SD-OCT) [15]. Both of them

utilize the low-coherence broadband light sources with the central wavelength range

of 800 nm to 1100 nm approximately. It is the broadband light sources that result in

the high resolution of the OCT volumes that makes the OCT attractive.

Recall that the axial spatial resolution of the SD-OCT can be defined as [15]:

∆z =
λ20

2n∆λ
(2.1)

where n is the refractive index of the tissue sample, λ0 is the central wavelength of

the light source, and ∆λ is the bandwidth at full width half maximum (FWHM).



10

Figure 2.3: Typical region of the ONH in color fundus photograph and SD-OCT vol-
ume. Left image: color fundus photograph with a bounding box (green) of the ONH.
Right image: the corresponding schematic SD-OCT volume (size 6 × 6 × 2 mm3)
centered at the ONH of the human eye.

Thus, the broader and/or shorter the wavelength of light source, the higher the axial

spatial resolution.

The SD-OCT is of special interest over TD-OCT in that it can directly access

the spectrum and does not need the mechanical scanning. It hence provides a fast

acquisition of the three-dimensional images of interest. Currently, the SD-OCT at

the central wavelength of 800 nm range is commonly used in ophthalmology to image

and visualize the three-dimensional ONH structure. Fig. 2.3 shows the typical region

of the ONH in color fundus photographs and the corresponding schematic SD-OCT

volume using a SD-OCT at the central wavelength of 800 nm range. A few example

slices of the SD-OCT volume from a human eye are provided in Fig. 2.4.

However, the central wavelengths around 800nm are not the most suitable light

source range for opthalmic imaging. This is due to the fact of the highly scattering and

absorption of the retinal pigment epithelium (RPE) at shorter wavelengths, reducing

the penetration depth. The selection of the central wavelength must be accorded

with the application, where scattering and absorption losses should be considered,
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(a) Slice 0 (b) Slice 55 (c) Slice 88 (d) Slice 99 (e) Slice 110 (f) Slice 165 (g) Slice 198

Figure 2.4: Example slices from ONH-centered SD-OCT volume of human eye.

especially when the axial penetration depth is of importance. It has been reported

that the central wavelengths in the 1-1.1 µm range demonstrate a deeper penetration

into the choroid below the RPE [16], making the SD-OCT more attractive for looking

into the deeper structure of the intraocular and further help the detection and follow-

up treatment of the retinal and optic nerve pathologies.

2.3 Glaucoma and glaucomatous structures

Glaucoma is a chronic optic neurodegenerative disease of the optic nerve that,

if left untreated, may result in increasing visual field (VF) loss and blindness. It

is characterized by the progressive damage of retinal nerve cells, nerve fibers, and

astrocytes [14]. The clinical optic cup enlarging (optic cupping) and neuroretinal rim

thinning resulted from the degeneration of the retinal ganglion cell axons [2, 3] are

typical indication of glaucoma progression. Fig. 2.5 is a schematic illustration of the

optic cupping in the color fundus photographs. A schematic illustration of the view

of the glaucoma patient at different glaucoma stages is shown in Fig. 2.6.

However, glaucomatous cupping in the ONH is a complex phenomenon. It does
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Figure 2.5: Schematic illustration of optic cupping. Left: normal eye, middle: mod-
erate glaucoma, and right: advanced glaucoma. Images courtesy of Macula Center
(http://www.maculacenter.com).

(a) (b) (c)

Figure 2.6: View of glaucoma patient with (a) normal eye, (b) moder-
ate glaucoma, and (c) advanced glaucoma. Images courtesy of Eye Scan
(http://www.eyescan.com.au).

not just involve axonal damage but also connective-tissue damage, although the ax-

onal damage is likely the central factor of the vision loss of glaucoma. Yang et al. [17]

has recently proposed that the glaucomatous cupping is resulted from two principal

pathophysiologic phenomena: 1) prelaminar thinning, which results in a clinically

shallow cupping from the loss of all forms of ganglion cell axons (corresponding to

clinical optic cupping) and 2) laminar deformation, which results in a clinically deeper
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cupping from the damage of the lamina cribrosa (LC), scleral flange, and peripapillary

scleral connective tissues.

It is reported that the glaucomatous change is also involved in the blood vessels’

changes [18]. With the diminishing visibility of the retinal nerve fiber layer, the

decrease of the rim area, and the increase of the visual field defects in the glaucoma

subjects, the diameters of the blood vessels have the tendency of narrowing and

present larger variations over those of the normal subjects [18].

2.4 Clinical optic disc margin and neural canal

opening

The clinical optic disc margin commonly refers to the clinically visible boundary

of neural tissue within the optic nerve head on color fundus photographs. The change

of the clinically visible optic disc margin has been historically utilized to help diagnose

the presence and progression of glaucoma. However, as mentioned in Chapter 1, we

recently found that the optic disc margin does not overlap with a single constant

anatomic structure in volumetric SD-OCT, consistent with the recent comparison of

clinical and SD-OCT optic disc margin anatomy by Strouthidis et al. [4, 5].

The neural canal opening (NCO) is a 3-D anatomic structure, through which and

the scleral canal openings, the ganglion cell axons exit the eye. It is defined as the

termination of the RPE/Bruch’s membrane (BM) complex and the entrance to the

neural canal at the level of the RPE and BM [4,5]. The NCO partially corresponds to

the clinical optic disc margin and is indiscernible or only partially discernible in color

fundus photographs. However, Strouthidis et al. [4] proposed that there is always a

discernible NCO in SD-OCT volumes. The NCO is assumed a stable structure and
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is not likely to change substantially with glaucomatous progression.

2.5 Current clinical management of glaucoma

Currently available methods to aid in the management of glaucoma include vi-

sual field tests, optic nerve planimetry based on stereo disc photographs, optic nerve

head tomography using the Heidelberg Retina Tomograph (HRT), and peripapillary

nerve fiber layer thickness analysis (using polarimetry or OCT) [6, 7, 19, 20]. Many

of these modalities involve a subjective component either by the patient or exam-

iner, which can decrease reproducibility. The optic nerve planimetry based on stereo

disc photographs is the gold standard for diagnosis and treatment follow-up of glau-

coma [19]. However, we and others have previously shown that manual planimetry is

time-consuming and introduces substantial inter-observer variability due to the need

for human interpretation [6, 7].

(a) (b)

Figure 2.7: Illustration of the NCO and retinal vessels. (a) Central SD-OCT slice
and (b) SD-OCT projection image from glaucoma subject with the highlight of NCO
(yellow arrows) and blood vessels (pink arrows) respectively.

Since the stability of the NCO during the glaucomatous progression, the identi-
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fication of the NCO-based structures are expected to enable more reproducible and

objective glaucomatous parameters. Note that the retinal vessels typically cross over

with the NCO boundary in the SD-OCT projection images, causing the difficulty of

the NCO detection in some cases. To help better identify the NCO, we also identify

retinal vessels. Fig. 2.7 is an example illustration of the NCO and blood vessels in the

central slice of a SD-OCT volume from a glaucoma subject. A brief overview of the

technical background of the prior NCO and vessel segmentation and our developed

approaches are provided in the next chapter.



16

CHAPTER 3

TECHNICAL BACKGROUND

Motivated by the clinical significance and the mutual positional relationship of the

neural canal opening (NCO) and retinal vessels, in this Ph.D. project, we segment 1)

the NCO to help provide a stable reference plane for the evaluation of other glaucoma-

tous structural changes and 2) the retinal vessels with a focus on the region near and

inside the NCO to help better identify the NCO and other anatomic structures, and

potentially help the diagnosis of glaucoma. In addition, the segmentation of retinal

vessels could also aid the registration between intra- and inter-modality images.

As the spectral-domain optical coherence tomography (SD-OCT) is relatively new,

the automated detection of the NCO and retinal vessels has not yet been intensively

investigated. However, many algorithms in the detection of the clinical optic disc mar-

gin (partially corresponding to the NCO) and retinal vessels on fundus photographs

have been developed. This chapter provides an overall introduction of the technical

background related to the NCO/clinical optic disc margin and retinal vessel segmen-

tation in both SD-OCT volumes and color fundus photographs. Section 3.1 is a

general overview of the prior and our NCO/clinical optic disc margin segmentation

approaches and 3.2 is a general overview of the prior and our vessel segmentation

approaches.

3.1 NCO segmentation in SD-OCT volumes

This section provides an overview of the prior and our NCO/clinical optic disc

margin segmentation approaches in SD-OCT volumes and fundus photographs. More
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specifically, Section 3.1.1 and 3.1.2 introduce the prior approaches of clinical disc mar-

gin segmentation on fundus photographs and in SD-OCT volumes respectively; Sec-

tion 3.1.3 provides the prior approaches of the NCO segmentation. Section 3.1.4 is an

introduction of the optimal graph search and our graph-theoretic NCO segmentation

approach with the application in SD-OCT volumes of human eyes; and an introduc-

tion of our 3-D wavelet-transform-learning-based NCO segmentation approach with

the application in SD-OCT volumes of non-human primate eyes is provided in Section

3.1.5.

3.1.1 Prior approaches of clinical disc margin
segmentation on fundus photographs

Although the segmentation of the NCO in SD-OCT volumes has not yet been

extensively investigated, the segmentation of the clinical disc margin on fundus pho-

tographs including the manual and automated approaches has been widely reported.

For the manual approaches, it is known that they are time-consuming and introduce

substantial inter-observer variability [6, 7]. For the automated approaches, several

reported algorithms restrict the optic disc margin to a particular shape. For exam-

ple, Zhu et al. [21] presented an automated approach to segment the clinical optic

disc margin using Hough transform by imposing a circular shape. Wong et al. [22]

reported a variational level-set based approach with the post-processing of elliptical

fitting. Li et al. [23, 24] demonstrated an approach by utilizing the principal compo-

nent analysis (PCA) to approximately locate the optic disc margin and then applying

a parametrically deformable model - active shape model (ASM) - to refine the optic

disc boundary. But the clinical visible optic disc margin in fundus photographs is a
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complex of a few anatomic structures, rather than a single constant anatomic struc-

ture. Several shape models are not sufficient to represent the real changes of the optic

disc margin due to various pathologies.

A few other algorithms allowed a higher variability of the shape of the optic

disc margin. For example, Xu et al. [25] presented a free-form deformable (active

contour) model - a variational snake - to detect the optic disc margin. However, the

performance of the deformable model based approaches strongly relies on a proper

initialization of the detected boundary. In addition, they involve converging to a local

minimum and do not guarantee finding a globally optimal solution.

Abràmoff et al. [26] recently proposed a supervised pixel-classification-based ap-

proach to detect the optic disc margin. However, in some cases, such approach yielded

fuzzy disjoint regions. Merickel et al. [27] presented an approach upon the combina-

tion of the graph search and pixel classification algorithms. Specifically, they utilized

a soft pixel classification method to generate a probability map of the optic disc and

segmented the disc margin using a graph search method applied on the probability

map by maximizing the probability of the disc margin. As the optic disc margin

segmentation strongly depends on the quality of the classification, the fuzzy disjoint

region presented in some cases from the classification approach could cause the seg-

mentation errors.

3.1.2 Prior approaches of clinical disc margin
segmentation in SD-OCT volumes

With the increasing availability of SD-OCT volumes, the interest of identifying

the optic disc margin in SD-OCT volumes is increasing. We [28, 29] have recently
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described a voxel classification approach for automatically segmenting the clinically

familiar glaucomatous parameters - the optic nerve head (ONH) rim and cup - di-

rectly from the SD-OCT volumes by extending our prior approach for automated

planimetry on stereo fundus photographs [26,27]. However, this approach has the ul-

timate limitation that the algorithm essentially mimics the subjective assessment of

2-D parameters by human experts. It is not based on objective, anatomical landmarks

within the 3-D volumes. As mentioned in previous chapters, we and others [4,5] have

found that the optic disc margin does not overlap with a single constant anatomic

structure in volumetric OCT. The varying combinations of the termination of Bruch’s

membrane, border tissue, or the anterior scleral canal opening may manifest as the

2-D disc margin seen on photographs, depending upon the border tissue architecture

and anatomy.

3.1.3 Prior approaches of NCO segmentation in
SD-OCT volumes

To the best of our knowledge, we are not aware of an automated algorithm to de-

tect the NCO in SD-OCT volumes. Strouthidis et al. [4] recently developed a manual

system for the detection of NCO and its characteristics within 3-D histomorphomet-

ric and 3-D SD-OCT reconstructions of the ONH from monkey eyes. The NCO was

delineated within every section of each histomorphometric and 3-D spectral domain

optical coherence tomography reconstruction. However, with the increasing avail-

ability of SD-OCT volumes, automatically identifying NCO is becoming increasingly

relevant.
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3.1.4 Optimal graph search and our NCO
segmentation in SD-OCT volumes of human eyes

Graph-based automated surface/boundary segmentation approaches have been

widely reported. The graph-based approaches, such as the “graph cut” approach for

finding a single surface by Boykov et al. [30], the graph search approach for finding

a single surface by Wu and Chen [10], the extension of the graph search approach

for finding multiple surfaces by Li et al. [11] using edge information, the extension

of graph search approach for finding multiple surfaces using additionally regional

information by Garvin et al. [12, 31], etc. [32, 33], have been very attractive due to

the ability of finding the globally optimal solution.

Based on Li’s original graph search approach [11] [34], we develop a graph-theoretic

algorithm for the identification of the NCO in SD-OCT volumes with the application

on human eyes [35, 36]. The central advantage of the graph-theoretic approach over

the above clinical optic disc margin segmentation approaches is that it guarantees

finding a globally optimal solution with respect to the designed cost function. Chapter

4 provides the details of this approach.

3.1.5 Our 3-D wavelet-transform-learning-based NCO
segmentation in SD-OCT volumes of non-human

primate eyes

It is known that the globally optimal solution of the graph search is highly de-

pendent on the designed cost function. As can be seen in Chapter 4, our prior

graph-theoretic NCO segmentation approach in SD-OCT volumes of human eyes in

general performs well. However, the cost function is simply a signed edge-based term

in the original image space for both the involved retinal layer and NCO boundary



21

segmentation. The segmentation errors exist in some cases for both the surfaces and

NCO when high frequency noise exists, interrupted objects such as large blood vessels

are present, and/or strong edge information is missing.

Multiscale or multiresolution image analysis has been widely applied on various

image modalities due to the ability to capture both the coarse and fine level details

of the images [37, 38]. Various wavelet transforms have been used for the multiscale

image processing due to the desirable properties such as the scale and frequency

selectivity [37, 39].

Quellec et al. [40] reported a content-based approach to retrieve the similar 2-D

images from different image databases based on the image signature derived from an

adaptive nonseparable 2-D wavelet transform via a lifting scheme. Recently, they

have extended their 2-D wavelet transform to 3-D version with the strong motivation

to help remove the speckling and other high frequency noise and help extract texture

properties in SD-OCT volumes [9].

Thus, we develop a 3-D wavelet-transform-learning-based NCO segmentation ap-

proach with the application in SD-OCT volumes of non-human primate eyes for the

aim to enhance our prior NCO segmentation by a particular focus on the enhance-

ment of the cost function design from the following aspects: 1) Enhance the NCO and

layer segmentation using the 3-D wavelet-transform-learning-based cost function for

the graph searching. The wavelet transform is performed based on Quellec’s previ-

ous 3-D lifting-scheme-based wavelet transform [9,40] approach tuned by the genetic

algorithm. 2) Enhance the NCO segmentation by incorporating the pre-identified

vessel positional information into the cost function design of the graph searching.
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The further details of the 3-D wavelet-transform-learning-based NCO segmentation

are presented in Chapter 5.

3.2 Retinal vessel segmentation

This section provides an overview of the prior and our retinal vessel segmentation

approaches in SD-OCT volumes and fundus photographs. More specifically, the prior

approaches of vessel segmentation on fundus photographs is provided in Section 3.2.1;

Section 3.2.2 is an introduction of the classifiers and k-Nearest Neighbor (k-NN)

classifier; Section 3.2.3 is an overview of prior vessel segmentation approaches in

SD-OCT volumes; Section 3.2.4 introduces our single modal vessel segmentation in

SD-OCT volumes; and an introduction of our registered-fundus and multimodal vessel

segmentation in SD-OCT volumes and color fundus images using additional fundus

image information is provided in Section 3.2.5.

3.2.1 Prior approaches of vessel segmentation on
fundus photographs

Since the wide availability of the fundus photographs, many approaches have

been developed to segment the blood vessels in fundus photographs. For instance,

Chaudhuri et al. [41] reported a matched filter based approach using the oriented

Gaussian filter and then thresholding the resulting image. Mart́ınez-Pérez et al. [42]

developed a posterior statistical region growing approach incorporating multiscale

features. Zana et al. [43] provided a mathematical morphological approach which

defined the vessel-like patterns by morphological properties and then used a cross-

curvature evaluation to differentiate the vessels from analogous background patterns.
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Jiang et al. [44] reported an adaptive thresholding approach by utilizing a verification-

based multithreshold probing scheme. Niemeijer et al. [45] described a supervised

pixel classification based method which extracted the pixel features using a Gaussian

filter bank and then applied a k-NN classifier to classify the unseen pixel into either

“vessel” or “non-vessel”. Tolias et al. [46] presented a vessel tracking based approach

with the tracking of a blood vessel driven by a fuzzy model of a 1-D vessel profile.

To investigate the performance of the above typical vessel segmentation approaches,

Niemeijer et al. [45] compared the first five approaches based on a large database of

retinal images using the criterion of the maximum average accuracy. Among them, the

pixel classification based method provided a best segmentation accuracy. Although

not been compared, the vessel tracking approach is known to have its limitations. 1)

It requires human intervention to find each vessel. 2) It has the tendency to terminate

at branching and crossover points.

3.2.2 Classifiers and k-NN classifier

Machine learning has been a very active research area recently with the increasing

availability of various classifiers, such as the Support Vector Machine (SVM), k-

NN, Neural Networks (NNs), Quadratic Discriminant Classifier (QDC), and Linear

Discriminant Classifier (LDC), etc. The choice of the classifiers is not a trivial task.

Niemeijer et al. [47] has recently compared a few classifiers, i.e., the SVM, k-NN,

QDC, and LDC, based on investigation of the image structure clustering for image

quality verification of color retina images in diabetic retinopathy screening. The

results showed that the performance of the SVM and k-NN were similar and better
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than the QDC and LDC. However, SVM was relative slow in the training stage and

required a lot of tuning of multiple parameters. It is known that the NNs have

even more parameters and are more difficult to tune. The k-NN classifier has been

an attractive classifier due to the the ease of tuning. Arya et al. [48] developed an

Approximate Nearest Neighbor (ANN) searching approach which allows a tolerance

of a small amount of error when searching the nearest neighbor training samples

for each query (test) sample, which can reduce the running time. In addition, as

mentioned above, Niemeijer et al. [47] has shown the good performance of k-NN

classifier on vessel segmentation. Thus in this work we use the k-NN classifier with

the real implementation of using the ANN approach to classify the vessels.

3.2.3 Prior vessel segmentation in SD-OCT volumes

Due to the fact that the retinal blood vessels absorb the wavelengths of light used

in SD-OCT, the vessels in these volumes are mostly not directly visible. However,

vessel silhouettes appear below the position of the vessels. As reported by Wehbe

et al. [49], the retinal vessels are located right above the vessel silhouettes in the z-

direction of the OCT volumes and these silhouettes can be used to detect the location

of the vessels.

The blood vessel segmentation in SD-OCT volumes of the ONH is not a trivial

problem for a number of reasons. 1) The vessel silhouettes have a weak visibility in

OCT due to the 3-D structure of the ONH. 2) Many vessels can overlap in regions,

especially the region inside the neural canal opening, where the individual vessels

cannot be discerned. 3) The presence of the NCO boundary, which crosses with the
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vessels, causes false positives for the vessel segmentation. 4) The vessel silhouettes

have a decreased contrast with the background within the NCO, due to more variable

tissue properties in the ONH.

With the increasing interest of the high resolution, three-dimensional SD-OCT

volumes, a few retinal blood vessel segmentation algorithms performed in SD-OCT

volumes of ONH were recently presented [50, 51]. For example, Niemeijer et al. [50]

recently applied their pixel-classification-based approach on fundus photographs to

the vessel segmentation in ONH-centered SD-OCT volumes. However, typical vessel

segmentation approaches for SD-OCT volumes of the ONH, such as the one from

Niemeijer, focus on the region outside the NCO due to the difficulties associated with

the relatively low visibility in the ONH center and the similar projective appearance

of the NCO contour to the vessels, which causes false positives near the NCO as

indicated by the red arrow in Fig. 3.1.c.

3.2.4 Our single modal OCT vessel classification
approach in SD-OCT volumes

To suppress the above mentioned false positive tendency in the vessel segmentation

due to the presence of the NCO contour, we develop a single modal supervised,

pixel-classification-based retinal vessel segmentation approach performed in SD-OCT

volumes [52], which pre-segments the NCO in SD-OCT volumes using the method

presented in Chapter 4 and then incorporates the pre-segmented NCO positional

information into the vessel classification process to suppress the false positives near

the NCO boundary. The further details of this approach are presented in Chapter 6.
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(a) (b) (c)

Figure 3.1: Illustration of the NCO false positives from Niemeijer’s [50] previous vessel
segmentation approach in SD-OCT volumes of ONH. (a) Central slice of raw SD-OCT
volume with the highlight of NCO location (yellow arrows). (b) OCT projection
image used for Niemeijer’s vessel segmentation with the highlight of NCO location
(yellow arrow). (c) Vessel segmentation from Niemeijer’s previous approach in SD-
OCT volumes of ONH. Note the typical false positives near the NCO boundary (red
arrow).

3.2.5 Our vessel classification approaches in SD-OCT
volumes using additional fundus image

information

As shown in Chapter 6, our single modal vessel classification approach in SD-OCT

volumes provides an obvious improvement over Niemeijer’s [50] previous approach.

However, the relative low visibility of the ONH center in SD-OCT volumes remains

a problem for the vessel identification in some scans. Color fundus images, however,

provide a high vessel visibility in the ONH center. We thus develop a registered-fundus

vessel segmentation approach which first segments the vessels on fundus images [45]

and then registers the segmented vessels to OCT [53]. Such approach also has some

limitations, such as the similar false positives around the optic disc margin on fundus

images.

With the fast development of advanced technology and new modalities, developing
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image analysis techniques to utilize the rich and complementary information from

multiple image sets of the same modality, such as the brain imaging sequences of

magnetic resonance imaging (MRI) [54], or from multiple modalities, such the lung

images of positron emission tomography (PET) and computed tomography (CT) and

the prostate images of CT and MRI [55], is becoming more attractive.

Recently, a few algorithms of the multimodal image segmentation on the retinal

images have been reported [56, 57]. For example, Li et al. [57] presented a ridge-

branch-based blood vessel detection algorithm in multimodal retinal images such as

color fundus photographs, fluorescein angiograms, fundus autofluorescence images,

and scanning laser ophthalmoscopy (SLO) fundus images. To the best of our knowl-

edge, there is no such a multimodal blood vessel segmentation approach applied on

multimodal images of SD-OCT volumes and color fundus photographs and particu-

larly focused on the region near and inside the NCO.

The SD-OCT volumes and color fundus photographs provide some complementary

features that could help better identify the blood vessels near and inside the NCO.

Simultaneously segmenting the vessels in both modalities could take advantage of

their complementary features such as the 3-D retinal layer and NCO information

from SD-OCT volumes [36] and the better vessel visibility in the ONH center from

fundus photographs.

Thus, we further develop a multimodal concurrent classification approach [58] with

a focus on the ability to better segment the blood vessels near and inside the NCO

in SD-OCT volumes by simultaneously using the information from SD-OCT volumes

and color fundus photographs. Chapter 7 provides the details of the registered-fundus
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and multimodal vessel segmentation approaches.
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CHAPTER 4

GRAPH-BASED NEURAL CANAL OPENING SEGMENTATION IN

SD-OCT VOLUMES OF HUMAN EYES

4.1 Chapter abstract

The neural canal opening (NCO) is of interest due to its use for the help of de-

tecting and managing glaucoma. In this work, we develop a method for segmenting

the NCO of the optic nerve head (ONH) in spectral-domain optical coherence tomog-

raphy (SD-OCT) volumes using a graph-theoretic approach with the application in

human eyes. More specifically, four 3-D intraretinal surfaces are first segmented in

SD-OCT volumes and a small number of slices surrounding the NCO plane is taken

and used for creating planar NCO-aimed OCT projection images. An edge-based

cost function - a signed edge-based term favoring a dark-to-bright transition in the

vertical direction of polar projection images (corresponding to the radial direction in

Cartesian coordinates) - is obtained. A graph-theoretic approach is used to simulta-

neously identify the NCO and optic cup at the retinal pigment epithelium/Bruch’s

membrane (RPE/BM) plane. Two datasets are used in this study. First, 68 SD-OCT

volumes (Cirrus TM HD-OCT) and corresponding stereo fundus photographs (Nidek

3Dx) of the ONH are obtained from 68 eyes of 34 patients with glaucoma or glaucoma

suspicion. Manual planimetry is performed by three glaucoma experts to delineate

a reference standard (RS) for cup and disc margins from 3Dx images. In addition,

232 SD-OCT volumes from 58 subjects with glaucoma or glaucoma suspicion on two

separate visits are also obtained. The algorithm segmentation is first validated by

comparing the performance to that of the clinical disc margin defined from the man-
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ual planimetry from 34 subjects. The mean unsigned and signed border positioning

differences of the algorithm with the RS are 2.81 ± 1.48 pixels (84.3 ± 44.4 µm) and

-0.99 ± 2.02 pixels (-29.7 ± 60.6 µm) respectively. The correlations of the linear cup-

to-disc (NCO) area ratio, disc (NCO) area, rim area, and cup area of the algorithm

with the RS are 0.85, 0.77, 0.69, and 0.83, respectively. In most eyes, the NCO-based

2-D metrics correlate well with RS. However, a small discrepancy exists in the NCO-

based anatomic structures and the clinical disc margin of the RS in some eyes. The

algorithm is further validated based on the repeatability analysis from additional 58

subjects. The mean unsigned and signed border positioning differences between visits

are 1.21 ± 0.57 pixels (36.41 ± 17.06 µm) and 0.02 ± 0.81 pixels (0.58 ± 24.21 µm)

respectively. The correlation of the NCO area between visits is 0.95 (0.93-0.97). The

area and border positioning measurements of the NCO are robust across repeated

visits. The NCO may serve as a stable reference landmark for describing structural

changes that occur in glaucoma.

4.2 Introduction

As mentioned previously (Chapter 1), the core hypothesis motivating this overall

Ph.D. study is that the segmentation of a stable three-dimensional structure - the

NCO - from SD-OCT will enable more reproducible and objective glaucomatous pa-

rameters than that which is currently possible from manual planimetry alone (even

using a consensus of glaucoma experts). This is fundamentally different from our

prior voxel classification method (Chapter 3.1.2) [29] which, by construction (using

training data), attempts to obtain parameters as close as possible to that which would
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be obtained using manual planimetry of stereo fundus photographs.

The purpose of this specific study is to describe a graph-theoretic algorithm for

automatic delineation of the NCO from SD-OCT volumes and optic disc metrics

derived from the NCO (and cup boundaries) and to compare these with the reference

standard (disc and cup margins) obtained from human expert planimetry of stereo

photographs of the same eye [35,36,59].

While the present study does not directly test our hypothesis, it sets the necessary

underlying framework for being able to automatically detect the NCO and better

understand its relationship with the widely accepted optic disc margin from manual

planimetry.

4.3 Patients

Two datasets with the first one of 34 consecutive patients [29] and the other one

of 58 consecutive patients with the diagnosis of glaucoma suspect, open-angle glau-

coma, angle closure glaucoma, or combined mechanism glaucoma from the Glaucoma

Clinic at the University of Iowa are included in this study. Non-glaucomatous optic

neuropathy is excluded. The patient cohort has been described in detail in a previous

report [29]. The diagnoses are made by the treating glaucoma specialist. The study

is approved by the Institutional Review Board of the University of Iowa, and adheres

to the tenets of the Declaration of Helsinki, and all subjects give written informed

consent.
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4.4 Image acquisition

4.4.1 Image acquisition of 34 consecutive patients

Sixty eight ONH-centered SD-OCT scans of 34 consecutive study subjects are

acquired using a CirrusTM HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA, USA)

device. The OCT scans are exported in an uncompressed raw format (40Mb per

scan), preserving the voxel intensities. Each SD-OCT scan consists of 200 × 200 ×

1024 voxels and the physical dimensions are 6 × 6 × 2 mm3. Thus the voxel resolution

is 30 × 30 × 2 µm [29]. The voxel depth is 8 bits in grayscale. 68 corresponding

stereo color fundus photographs of the optic disc are also acquired on the same day

using a Nidek 3Dx stereo retinal camera with a fixed stereo base with a digital camera

back (Nidek, Newark, NJ). The size of the stereo color fundus disc photographs is

4096 × 4096 pixels and the pixel depth is 3 × 8-bit in red, green, and blue channels.

4.4.2 Image acquisition of 58 consecutive patients

Two hundred and thirty two more ONH-centered SD-OCT scans of 58 consecutive

study subjects with glaucoma or glaucoma suspicion are further acquired from the

same SD-OCT machine as that for the 34 patients for the measurement of repeata-

bility. Each subject has OCT scans for both eyes done on 2 separate visits within a

3 month period. Multiple images are taken during each visit.

4.5 Methods

Overall, we approach the automatic segmentation of the NCO in SD-OCT volumes

by first segmenting four 3-D intraretinal surfaces in the raw SD-OCT volumes and

the raw OCT volumes are flattened [12, 28, 31]. This allows that a small number of



33

slices surrounding the NCO plane are taken and used for creating a planar NCO-

aimed OCT projection image. The projection image is then transformed to polar

coordinates. The optimal graph search is performed in the polar cost images to find

two boundaries simultaneously [35, 36]. Fig. 4.1 is the flowchart of the major steps

of our graph-based NCO segmentation in SD-OCT volumes of human eyes.

Figure 4.1: Flowchart of major steps of the graph-based NCO segmentation in SD-
OCT volumes of human eyes.

4.5.1 OCT volume flattening

Because of the shape of the globe, the scanner position relative to the patients’

pupil, and the eye movement, the original raw OCT image is deformed elastically.

Thus four intraretinal surfaces are segmented in 3-D and the raw OCT volume is

flattened [12,31] based on the second segmented surface as described previously [28].



34

The four segmented surfaces are also translated by applying the same transformation.

From the top to bottom (Fig. 4.2.b and Fig. 4.2.e), surface 1 corresponds to the

internal limiting membrane (ILM). Surface 2 is located between the inner and outer

segments of the photoreceptors. Surface 3 is the inner boundary of the RPE/BM

complex and surface 4 is the outer boundary of the RPE/BM complex. Surface

2 is chosen as the flattening surface (in this stage) for consistency with our prior

work [28]; however, surface 3 would have worked equally well in this flattening stage

as one of its major purposes is only to remove the motion artifacts across B-scans to

make the NCO and cup segmentation easier. As shown in Fig. 4.2.c and Fig. 4.2.f,

the geometrical distortion across B-scans is improved after the flattening, though

not perfect. The flattening also provides a possibility to create an OCT projection

image from a thin layer at the RPE/BM complex for correspondingly comparing the

NCO-based parameters to those of fundus photographs.

4.5.2 NCO-aimed OCT projection image creation

Due to the large variations in the surface of the ONH, intraretinal layer segmenta-

tion differences could occur and cause a non-optimal flattening problem, i.e., the NCO

points do not lie on a plane after flattening. Therefore we first establish an estimated

NCO region, a circular region centered on the geometric center of the OCT volume

with a radius certain to be larger than the estimated NCO boundary (Fig. 4.3.a). A

projection image is formed by taking the thin layer between surface 2 (orange) and

surface 4 (yellow), by extrapolating the average position outside the estimated NCO

region for surface 2, 3, and 4 to the inside region radially (Fig. 4.3.b). Thus the 3-D
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Illustration of SD-OCT volume flattening. (a,d) Central slice of the
original and flattened SD-OCT volume respectively. (b,e) Four surface segmentation
of original and flattened SD-OCT volume respectively. (c,f) 3-D rendering of the
surface segmentation of the original and flattened SD-OCT volume respectively by
mapping the OCT projection image texture onto the top surface.

NCO segmentation problem is converted to a 2-D problem. The projection image is

referred to as the “NCO-aimed” OCT projection image (Fig. 4.3.c).

4.5.3 NCO and optic cup segmentation at the
RPE/BM plane

In NCO-aimed OCT projection images, the outer boundary corresponds to the

NCO and the inner boundary corresponds to the cup at the level of the NCO refer-

ence plane (Fig. 4.3.c). A two-dimensional graph search is applied to simultaneously

segment the optimal NCO and cup boundaries [35].

More specifically, in order to perform the two-boundary graph search, the NCO-

aimed OCT projection image in the Cartesian coordinates is transformed to polar
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(a) (b) (c)

Figure 4.3: Illustration of NCO-aimed projection image creation. (a) Estimated NCO
region indicated by the red lines. (b) Planar surfaces near RPE/BM complex obtained
by extrapolating the average position outside the estimated NCO region for surface
2, 3, and 4 to the inside region radially. (c) NCO-aimed OCT projection image.

coordinates and is sampled from the center point radially outward with certain rays

(corresponding to the angles) and certain samples per ray (corresponding to the radii).

The center point must be within the optic cup for the transformation to be valid.

The cost function is a signed edge-based term favoring a dark-to-bright transition

in the vertical direction (corresponding to the radial direction in Cartesian coordi-

nates) in the transformed NCO-aimed OCT projection image. In our case, the cost

image in polar coordinates is modeled as a weighted, directed graph similar to the one

described by Li et al. [11] but reduced to a two-dimensional problem. More specifi-

cally, the unwrapped cost image is treated as a graph G = (V,E) with a collection of

vertices V and edges E. In the 2-D unwrapped cost image of I(x, z) of size X × Z,

the boundary segmentation problem is transformed to a multi-column graph search

problem with X × Z vertices (corresponding to X × Z pixels). For simplicity, any

boundary in I is considered to intersect with exactly one pixel (vertex) in each column

of pixels (vertices) parallel to the z-axis. Each column associated with x also has two
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adjacent neighbor columns associated with x+1 and x− 1. We also add a circularity

neighbor relationship for the two edge columns in the x direction, i.e., the column

associated with x = 0 is considered to be a neighbor to the column associated with

x = X − 1.

To segment the two boundaries simultaneously, the graphG consists of two disjoint

subgraph {G = (Vi, Ei|i = 1, 2)}. Each subgraph contains X × Z vertices.

Two kinds of feasibility constraints - intraboundary (smoothness) constraints

and interboundary (interaction) constraints - are enforced on the constructed multi-

column graph. The two boundaries are considered feasible if each individual boundary

in the subgraph satisfies the given smoothness constraints and the two boundaries sat-

isfy the boundary interaction constraints. More specifically, for each single boundary

z = f(x), the smoothness feasibility constraint ∆x is enforced to define the allowed

change in the boundary height when moving from one neighboring boundary point

to the next in the x-direction, i.e. if (x1, f(x1)) and (x2, f(x2)) are two neighboring

vertices on a feasible boundary, the smoothness feasibility constraint requires that

|f(x1)−f(x2)| ≤ ∆x. For two boundaries of z1 = f1(x) and z2 = f2(x), the boundary

interaction constraints δl and δu are enforced to define the allowed minimum and

maximum changes in boundary height between the surface pair, i.e. if (x, f1(x)) and

(x, f2(x)) are two vertices on two feasible boundaries, the interaction constraints re-

quire that δl ≤ |f1(x) − f2(x)| ≤ δu. Both δl and δu are positive in our case as the

two boundaries do not intersect or overlap. The actual values of ∆x, δl, and δu are

chosen based on the observation and the prior knowledge. Fig. 4.4 is an illustrative

example of the intra-boundary and inter-boundary feasibility constraints.
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Figure 4.4: Graph representation of feasibility constraints. (a) Intra-boundary
smoothness constraint with ∆x = 2. (b) Inter-boundary interaction constraints with
δl = 1 and δu = 3.

The two-boundary segmentation problem is an optimization problem with the

goal being to find the two boundaries with the minimum cost. Finding two optimal

boundaries is transformed to find a minimum-cost closed set. The minimum-cost

closed set is found by computing a minimum s− t cut in a closely-related graph [11].

(a) (b) (c) (d)

Figure 4.5: Illustration of the NCO and optic cup segmentation overlapping with
different images. (a-c) Segmented NCO and cup overlapping with (a) unwrapped
cost image, (b) projection image, (c) a cross-sectional slice of OCT volume, and (d)
3-D rendering of the NCO and cup segmentation overlapping with the mapping of
the projection image texture onto the top surface.
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The (optimal) NCO and cup boundaries are thus simultaneously segmented by

the graph search approach. In shallow cups (or if the cup is absent), the deepest point

of the top surface does not extend below the level of the RPE/BM plane (the green

line indicated surface in Fig. 4.3.b). When this occurs, the algorithm automatically

switches from using a two-boundary graph search to using a one-boundary graph

search so that the NCO is determined using the single-boundary graph search method.

The NCO and cup boundaries are finally smoothed using a B-spline. Fig. 4.5 shows

an example of the segmented NCO and optic cup overlapping with the cost function,

OCT projection image, and OCT image respectively.

4.6 Validation

4.6.1 Comparison of algorithm to expert planimetry
stereo color photographs

Computer-aided planimetry is performed by three fellowship-trained glaucoma

experts on stereo color photographs of the optic disc, as described previously [29].

A reference standard (RS) is obtained from three expert segmentations on the color

fundus images in a “majority-win” manner, i.e., each pixel is assigned a class that

receives the majority of votes. For example, if two votes are for a pixel to be rim

and one vote for a pixel to be cup, the pixel is assigned to rim [28, 29]. The linear

cup-to-disc area ratio, or LCDR, is defined as the square root of the cup area over

disc area.

In order to determine the transformation necessary to convert the expert segmen-

tations on the stereo color fundus images to the SD-OCT space, manual registration

is performed as described previously [29]. More specifically, a projection image is cre-
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ated by averaging the voxels between the second and fourth intraretinal surfaces (i.e.

the surfaces indicated by the orange and yellow lines in (Fig. 4.3.a). Note that this

projection image is different from the NCO-aimed OCT projection images created

for finding the NCO. The goal of creating this projection image is to obtain the RS

for OCT scans and so the projection image is referred to as “RS-aimed projection

image”. The manual registration is performed by matching blood vessels between

the stereo retinal fundus images and the corresponding RS-aimed projection images.

The RS and the three expert segmentations from the stereo fundus images are also

converted to the SD-OCT space by applying the same transformation [28,29].

The segmented NCO boundary is compared to the RS disc margin, using mean

unsigned and signed border positioning differences, i.e., the closest Euclidean dis-

tances between the segmented NCO points from our algorithm and those from the

RS and vice versa. The signed difference is measured in terms of the disc center of

the RS. If the distance of the NCO points to the disc center of the RS is greater than

that of the optic disc margin of the RS to its center, the signed difference is positive,

and vice versa.

The algorithm is also compared to the RS in terms of the correlations of linear

cup-to-NCO/cup-to-disc area ratio, cup area, rim area and also NCO/disc area. The

inter-observer correlations of the same parameters are investigated.

4.6.2 Repeatability study

The repeatability [59] is first measured using mean unsigned and signed border

positioning differences based on the aligned NCO centers between the first and second
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visits. If the distance of the NCO points of the first visit to the aligned NCO center is

greater than that of the second visit, the signed difference is positive, and vice versa.

The repeatability is also measured in terms of the difference and correlation of the

NCO area between the two visits. If the NCO area of the first visit is greater than

that of the second visit, the signed difference is positive, and vice versa.

4.7 Results

4.7.1 Segmented NCO vs. reference standard

Table 4.1 shows the mean border positioning differences of the NCO with the

optic disc from the reference standard for the 68 eyes of the 34 patients. The mean

unsigned and signed difference of the algorithm with the RS for 68 eyes are 2.81 ±

1.48 pixels (84.3 ± 44.4 µm) and -0.99 ± 2.02 pixels (-29.7 ± 60.6 µm) respectively.

Table 4.1: NCO border positioning differences from the 68 eyes

Difference Algo. vs. RS Exp. 1 vs. 2 Exp. 1 vs. 3 Exp. 2 vs. 3

Mean unsigned, pixel 2.81 ± 1.48 3.82 ± 1.48 3.39 ± 1.65 2.06 ± 0.95
Mean unsigned, µm 84.3 ± 44.4 114.6 ± 44.4 101.7 ± 49.5 61.8 ± 28.5
Mean signed, pixel -0.99 ± 2.02 -2.52 ± 1.40 -1.18 ± 1.14 1.36 ± 1.42
Mean signed, µm -29.7 ± 60.6 -75.6 ± 42 -35.4 ± 34.2 40.8 ± 42.6

Col 1: mean unsigned and signed border positioning differences between the automated
NCO segmentation and the optic disc segmentation of the RS.

Col 2, 3, and 4: interobserver variability.

Table 4.2 compares the segmentation results of the 68 eyes with the RS in terms

of the correlations with the confidence intervals (CIs) for the linear cup-to-NCO/cup-
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to-disc area ratio, NCO/disc area, rim area, and cup area. The correlations of the

linear cup-to-NCO/cup-to-disc area ratio, NCO/disc area, rim area, and cup area of

the algorithm with the RS for the 68 eyes are 0.85, 0.77, 0.69, and 0.83 respectively.

Table 4.2: Correlations of algorithm with expert segmentation from the 68 scans

Correlation Algo. vs. RS Exp. 1 vs. 2 Exp. 1 vs. 3 Exp. 2 vs. 3

LCDR 0.85 (0.76-0.90) 0.88 (0.82-0.93) 0.92 (0.87-0.95) 0.88 (0.81-0.93)
Disc area 0.77 (0.64-0.85) 0.86 (0.79-0.92) 0.91 (0.87-0.95) 0.88 (0.81-0.92)
Rim area 0.69 (0.55-0.80) 0.78 (0.66-0.86) 0.84 (0.75-0.90) 0.80 (0.69-0.87)
Cup area 0.83 (0.73-0.89) 0.93 (0.88-0.95) 0.95 (0.91-0.97) 0.90 (0.85-0.94)

Col 1: correlations of segmented NCO, rim, and cup at RPE/BM plane with disc, rim,
and cup from RS (values in parentheses are 95% confidence intervals).

Col 2, 3, and 4: correlations between different expert segmentations (values in paren-
theses are 95% confidence intervals).

The scatter-plots of the NCO/disc area, rim area, and cup area are illustrated

in Fig. 4.6. The scatter-plots of the LCDR and the inter-observer variability are

illustrated in Fig. 4.7, with the perfect correlation line indicated as a reference. From

Fig. 4.6, the algorithm NCO area is similar to the disc area of the RS, the rim tends

to run slightly greater than that of the RS, and the cup tends to run slightly smaller

than the RS cup. Correspondingly the algorithm LCDR is slightly smaller than that

of the RS (Fig. 4.7).

While the 68-eye analysis are performed to obtain additional statistical power, we

also computed the border positioning differences and the correlations of the measured

metrics by randomly choosing one eye from each of the 34 patients. The mean border
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Figure 4.6: Scatterplots of the NCO, rim, and cup area at RPE/BM plane from the
algorithm to disc, rim, and cup area from RS for the 68 eyes. The diagonal line
indicates a perfect correlation of 1.0.

positioning differences are 2.68 ± 1.14 pixels (80.4 ± 34.2 µm) and -0.74 ± 1.76

pixels (-22.2 ± 52.8 µm), which are similar to the 68-eye results. The correlations of

measured metrics for the 34 eyes are also similar to those of the 68 eyes.

Fig. 4.8 shows the algorithm segmentation from 7 right eyes of 7 randomly chosen

patients. The right eye is chosen simply for ease of display (the left eye shows similar

results). Each row corresponds to an eye. Fig. 4.9, Fig. 4.10, and Fig. 4.11 visu-

ally demonstrate three example segmentation comparisons of our present algorithm,

previous algorithm [29], and the RS overlapping with the transformed fundus image

and the SD-OCT volume. More specifically, Fig. 4.9 is an example demonstrating a
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Figure 4.7: Scatterplots of linear cup-to-NCO (Section 4.6.1) of algorithm to LCDR
of RS for 68 eyes. The diagonal line indicates a perfect correlation of 1.0.

good match between the three approaches. Fig. 4.10 and Fig. 4.11 are two examples

demonstrating a discrepancy between the present algorithm and the RS, as well as the

previous algorithm. The previous algorithm and the RS segment the clinically appre-

ciable defined optic disc margin. The present algorithm instead segments the “true”

SD-OCT-based anatomic structures - NCO and optic cup at the RPE/BM complex.

From these examples, one can clearly see the sources of the small discrepancies of

the NCO and the clinical optic disc, although in most scans, the NCO demonstrates

a good match with the clinically appreciable defined optic disc margin obtained by

planimetry.
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(a)

Figure 4.8: Random selection of example NCO segmentations. (A) NCO-aimed
OCT projection image. (B) Corresponding fundus image. (C, D) NCO and cup
at RPE/BM plane from present algorithm and disc and cup from RS transposed to
NCO-aimed OCT projection image, respectively. (E, F) NCO and cup at RPE/BM
plane from present algorithm and disc and cup from RS transposed to fundus image,
respectively.
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(a)

Figure 4.9: Comparison of present algorithm, expert, and previous algorithm segmen-
tations with a good match. Raw SD-OCT and corresponding fundus image (row 1),
present algorithm (row 2), RS (row 3), and previous algorithm (row 4) segmentations
overlapping with raw SD-OCT and corresponding fundus image. SD-OCT central
B-scan (left). Fundus image (right). Yellow arrows: position of the NCO from the
algorithm (dashed yellow line indicates the projected NCO position). Blue arrows:
clinical disc from the RS. Green, red: each method’s projected rim and cup regions,
respectively.
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(a)

Figure 4.10: Comparison of present algorithm, expert, and previous algorithm seg-
mentations with discrepancy. Raw SD-OCT and corresponding fundus image (row 1),
present algorithm (row 2), RS (row 3), and previous algorithm (row 4) segmentations
overlapping with raw SD-OCT and corresponding fundus image. SD-OCT central
B-scan (left). Fundus image (right). Yellow arrows: position of the NCO from the
algorithm (dashed yellow line indicates the projected NCO position). Blue arrows:
clinical disc from the RS. Green, red: each method’s projected rim and cup regions,
respectively.
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(a)

Figure 4.11: Comparison of present algorithm, expert, and previous algorithm seg-
mentations with discrepancy. Raw SD-OCT and corresponding fundus image (row 1),
present algorithm (row 2), RS (row 3), and previous algorithm (row 4) segmentations
overlapping with raw SD-OCT and corresponding fundus image. SD-OCT central
B-scan (left). Fundus image (right). Yellow arrows: position of the NCO from the
algorithm (dashed yellow line indicates the projected NCO position). Blue arrows:
clinical disc from the RS. Green, red: each method’s projected rim and cup regions,
respectively.
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4.7.2 Repeatability

Table 4.3: NCO border positioning differences between visits from the 232 scans

Differences Mean unsigned Mean signed

(pixels) 1.21 ± 0.57 0.02 ± 0.81
(µm) 36.41 ± 17.06 0.58 ± 24.21

Note: the border positioning differences are measured based on the aligned NCO centers
between the two visits.

Table 4.4: NCO area comparison between visits from the 232 scans

Mean areas Correlation

1st visit 2nd visit Mean signed diff. Mean unsigned diff. r

(pixels) 2135 ± 441 2132 ± 433 3.67 ± 134 96.97 ± 92 0.95
(mm2) 1.92 ± 0.04 1.92 ± 0.39 0.003 ± 0.12 0.087 ± 0.08 (0.93-0.97)

r: Pearson correlation coefficient of the area between the first and second visit (values
in parentheses are 95% confidence intervals).

Table 4.3 shows the mean border positioning differences of the NCO between

the first and second visits (Section 4.4.2) for the 232 eyes of the 58 patients. The

mean unsigned and signed differences are 1.21 ± 0.57 pixels (36.41 ± 17.06 µm) and

0.02 ± 0.81 pixels (0.58 ± 24.21 µm) respectively. Table 4.4 compares the area of

the segmented NCO between the two visits. The mean unsigned and signed area

differences are 96.97 ± 92 pixels (0.087 ± 0.08 mm2) and 3.67 ± 134 pixels (0.003 ±

0.12 mm2) respectively. The area correlation is 0.95 (0.93-0.97).

The scatter and Bland-Altman plots of the NCO area between the two visits are
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(a) (b)

Figure 4.12: Scatter and Bland-Altman plots of NCO area between visits. (a) Scatter-
plot with the linear fitted line (red). (b) Bland-Altman plot. Note: the CR is 262
(1.96*SD) pixels.

illustrated in Fig. 4.12, where the Coefficient of Repeatability (CR) is 262, calculated

as 1.96 times the standard deviations (SD) of the differences of the two visits.

4.8 Discussion and conclusions

In this study, 1) we present an algorithm to automatically segment the NCO

and optic cup at the RPE/BM plane in SD-OCT volumes. 2) Using human expert

planimetry on the stereo photographs as reference standard, we show that the NCO

border positioning differences (Table 4.1) between the algorithm and RS for the 68

eyes are as good as inter-observer differences. The linear cup-to-NCO area ratio

(Table 4.2) for the 68 eyes correlates reasonably well with the LCDR of the RS (r =

0.85). Other objectively derived 2-D SD-OCTmetrics (Table 4.2) correlate reasonably

well with those of the RS (r = 0.69-0.83). In addition, we qualitatively (Fig. 4.8 and

Fig. 4.9) demonstrate the good match of the present algorithm and RS. We conclude
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that in most eyes the NCO in SD-OCT is consistent with the clinically appreciable

defined optic disc margin obtained by planimetry. 3) From the repeatability analysis

(Table 4.4), a NCO area correlation of 0.95 between visits is obtained. Area and

border positioning measurements (Table 4.3 and 4.4) of the NCO are robust across

repeated visits and indicate that the NCO may serve as a stable reference landmark

for describing structural changes that occur in glaucoma.

However, even though the NCO boundary and clinical disc margin correspond

reasonably well in most eyes, it is interesting to note the example discrepancies as well

(Fig. 4.10 and Fig. 4.11). These example discrepancies are consistent with the findings

reported by Strouthidis et al. [4, 5]. In particular, we also find that the clinical disc

margin may sometimes correspond to the varying combinations of different structures

other than the NCO, such as the border tissue of Elschnig. For instance, in the

example SD-OCT B-scan shown in Fig. 4.10, the RS defines the innermost termination

of the border tissue as the temporal optic disc margin (blue arrow) and in Fig. 4.11,

the RS defines the border tissue as the temporal optic disc margin (blue arrow), which

are obviously different from the NCO (yellow arrow) of the algorithm.

Because of such underlying differences, compared with the parameter correlations

by planimetry between different experts, the relatively smaller correlations of the

NCO-based metrics with those of the RS (Table 4.2) are not surprising. However, the

fact that the algorithm demonstrates smaller unsigned border positioning differences

than that between the experts (Table 4.1), yet has lower correlations (Table 4.2) is

perhaps surprising. This may in part be due to the fact that correlation (measuring

the direction and noisiness of linear relationships) does not take into account any bias
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(e.g., a consistent over- or under-estimation of a parameter), while the unsigned border

positioning errors are influenced by any bias between the measurements. Because

the experts tend to have a larger bias than that between the algorithm and RS (as

indicated by the signed errors in Table 4.1), this may have contributed to the larger

unsigned errors as well. In addition, it is important to note that the definition of the

algorithm’s “cup boundary” is different from the traditional clinical definition of cup

margin. The algorithm simply defines cup as the crossing point of the reference plane

with the retinal surface, while the human experts tend to delineate the cup margin at

the inflection point of the surface slope of the cup as seen in stereo photographs [60].

This may also explain our observation the cup area at the level of the RPE/BM plane

are often smaller than the clinically visible cup area on stereo fundus photographs as

seen by human experts (Fig. 4.6).

There are several advantages of the current automated segmentation approach

over manual planimetry. 1) Although planimetry is the current gold standard for

quantifying glaucoma progression, it introduces a great inter-observer variability [7].

Its subjective nature is one of the potential sources of the inter-observer variability.

However, the present automatic algorithm based on SD-OCT is completely objective

and therefore, should be more reproducible (assuming the NCO is relatively stable

landmark), compared to subjective, manual segmentation by human experts, though

this has yet to be rigorously demonstrated. 2) As reported [7], manual segmentation

by planimetry is cumbersome and time-consuming and remains as a research tool.

However, the algorithm when properly implemented should take just a few minutes

to produce the analysis and would be compatible with routine clinical use. 3) As found
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by our automated and others’ [4, 5, 61] manual studies, the clinical optic disc margin

seems to be the projection of a number of different recognizable anatomic landmarks,

introducing a greater variability between experts depending on the landmarks they

appreciate to define “their” rim, and thus a great variability for the quantification of

glaucoma progression. The landmarks of the NCO will remain the same and therefore

are expected to be relatively stable throughout the course of the glaucoma. An

ideal reference plane based on a stable structure is critical in longitudinal imaging,

glaucomatous and neuropathy analysis of the optic nerve head. The NCO-based

reference plane has the potential to more sensitively detect specific glaucomatous

ONH changes - such as the alterations in the anterior laminar surface and prelaminar

neural tissue internal limiting membrane [4,5]. Although NCO-based metrics cannot

replace the clinically appreciated optic disc margin, because the NCO is expected to be

stable, it has the potential to provide a basis for other 2-D and/or 3-D ONH parameter

quantification and this would aid clinicians to more easily and better interpret the

progression of glaucoma. Thus, one of the major advantages of our present approach

over our previous voxel classification approach [29] is that the present approach is able

to segment natural ONH anatomic structures of NCO and optic cup at the RPE/BM

complex to enable all of the advantages such structures may provide (such as the

ability to compute 3-D parameters based on a reference plane). In the previous

approach, the RS from fundus photographs was used as the ground truth in the

training phase for the voxel classification and this resulted in mimicking the subjective

assessment of the clinical defined optic disc margin and optic cup seen on photographs.

As shown in the examples of Fig. 4.10 and Fig. 4.11, although the segmentation of the
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previous approach closely corresponds to that of the RS, it does not overlap with a

single constant structure in SD-OCT volumes. However, our core hypothesis, i.e., that

segmentation of NCO will allow a better estimation of glaucoma progression, than

the voxel-classification based approach needs to be tested and this is only possible in

a prospective study of sufficient duration.

There are several limitations in this study. 1) Close-to-isotropic SD-OCT volumes

are used in this study. Potentially, a fully isotropic SD-OCT can lead to more accurate

segmentation and corresponding parameter measurements. The 2-D measurements of

this work are not substantially influenced because they are computed on an isotropic

XY plane. However, for future volumetric measurements, if applicable, it may be

desirable to compute the volumetric parameters in the isotropic OCT space. 2)

The flattening of the raw SD-OCT greatly improves the motion artifacts and also

provides an ability to correspondingly compare the NCO-based 2-D metrics to those

2-D metrics of the clinical optic disc margin. However due to the layer segmentation

errors, it is not perfect as shown in Fig. 4.2. For the 2-D measurements on the

NCO-aimed OCT projection image, we correct the non-optimal flattening problem

by extrapolating the average radial positions outside the estimated NCO to those

of inside NCO (Section 4.5.2). But for the volumetric measurements, it might be

necessary to transform the NCO-based reference plane back to the original raw SD-

OCT space and compute the volumetric parameters in the non-flattened isotropic

space. 3) As reported [17], with the glaucomatous damage of the lamina cribrosa

and peripheral scleral connective tissue, the cup enlarges and the NCO position may

change relative to the peripheral sclera. Strouthidis et al. has suggested an alternative
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reference plane that is further away from the “center” of the NCO boundary [4]. This

alternative reference plane can be obtained in a fixed distance from the segmented

NCO and is less likely to deform posteriorly. Such change in reference plane position

can be readily implemented in our algorithm, if desired. 4) The large vessels crossing

the NCO boundary could cause the NCO segmentation errors.

In summary, in this work, we develop a novel automated graph-search-based ma-

chine algorithm to segment the NCO and optic cup at the level of RPE/BM complex

in 3-D OCT volumes of the ONH. In most eyes, the algorithm parameters correlate

well with the RS parameters from manual planimetry. However, a small discrepancy

exists between the NCO and the clinical disc margin in some eyes. Based on the

reproducibility analysis, the algorithm segmentation is robust across repeated visits.

Because of the relative stability of the NCO reference plane and objective nature

of the automated algorithm, we predict that the measurements of the NCO-based

2-D and/or 3-D glaucomatous parameters in volumetric OCT would be more repro-

ducible than those of the RS parameters based on fundus photographs or even the

OCT parameters of the previous generation time-domain OCT.

However, as mentioned above, our NCO segmentation approach is not perfect. To

further improve our algorithm, we develop a 3-D wavelet-transform-learning-based

NCO segmentation approach by focusing on the enhancement of the cost function

design for graph searching of the intraretinal layers and NCO as presented in the

next chapter (Chapter 5) and extend our algorithm to the application on the non-

human primate eyes.



56

CHAPTER 5

3-D WAVELET-TRANSFORM-LEARNING-BASED NEURAL CANAL

OPENING SEGMENTATION IN SD-OCT VOLUMES OF

NON-HUMAN PRIMATE EYES

5.1 Chapter abstract

The neural canal opening (NCO) is a three-dimensional anatomic structure mark-

ing the end of the retinal pigment epithelium/Bruch’s membrane (RPE/BM) com-

plex of the optic nerve head (ONH) in spectral-domain optical coherence tomography

(SD-OCT) volumes. Prior automated NCO segmentation approaches have only been

validated via comparison with manual tracings of the clinical disc margin from fun-

dus photographs rather than via direct comparison of the structure within SD-OCT

volumes. Furthermore, the algorithms have only been applied to human eyes, but it

is important that segmentation approaches are developed for use within non-human

primate eyes as well. In addition, because of the dependence of NCO segmentation

algorithms upon the ability to accurately segment the layers of the RPE/BM com-

plex near the NCO, existing approaches will sometimes fail if these layers are not

segmented accurately. The retinal vessels crossing the NCO can also cause NCO seg-

mentation errors. Thus, in this work, we develop a 3-D graph-theoretic approach for

segmenting the NCO in SD-OCT volumes of non-human primate eyes based on the

3-D wavelet-transform-learning-based layer segmentation. More specifically, a lifting

scheme wavelet transform is applied on the SD-OCT volumes and the wavelet trans-

form is learned using a genetic algorithm based on three segmented surfaces around

the RPE/BM complex. Based on the learned layer segmentation, an OCT projection

image around the RPE/BM complex is created and the 2-D NCO is pre-segmented
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using a graph theoretic approach. A supervised pixel-classification-based approach is

applied to segment the vessels by incorporating the pre-segmented NCO locational

information. The pre-segmented vessel information is iteratively incorporated to the

cost function of the graph searching of the NCO to obtain a better NCO segmenta-

tion. The segmented 2-D NCO is projected to a surface at the RPE/BM complex

to obtain the 3-D NCO points. The developed algorithm is tested on two types of

SD-OCT volumes by comparing the segmented 3-D NCO points with the manual

delineation directly from the SD-OCT volumes. The 3-D mean unsigned and signed

border positioning differences for the 9 test scans of the first type SD-OCT volumes

are 5.30 ± 1.42 voxels (60.74 ± 11.52 µm) and 1.17 ± 0.97 voxels (19.25 ± 14.61 µm)

respectively and that of 2-D are 3.33 ± 0.51 pixels (57.10 ± 11.88 µm) and 1.02 ±

0.58 pixels (19.24 ± 14.25 µm) respectively; for the 8 test scans of the second type

SD-OCT volumes, the 3-D mean unsigned and signed border positioning differences

are 5.38 ± 1.91 voxels (43.11 ± 15.60 µm) and 2.69 ± 1.68 voxels (24.51 ± 17.61 µm)

respectively and that of 2-D are 3.68 ± 1.21 pixels (39.00 ± 14.68 µm) and 2.19 ±

1.41 pixels (23.42 ± 17.37 µm) respectively. Both the quantitative and visual results

demonstrate a great agreement between the automated segmentation and the manual

delineation.

5.2 Introduction

In Chapter 4, we presented an automated 3-D NCO segmentation approach in SD-

OCT volumes of human eyes [35, 36], in which we found that the clinical optic disc

margin on fundus images may correspond to a few anatomic structures, consistent
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with the findings of Strouthidis et al. [4]. The NCO, however, was a single constant

anatomic structure and is detectable in SD-OCT volumes.

However, due to the limitation of availability of the ground truth directly from

the volumetric SD-OCT scans of human eyes, in the previous NCO segmentation, the

algorithm was validated by comparing the automated segmentation with the expert

tracings of the clinical disc margin from the manual planimetry. Ideally, a direct

comparison of the automated NCO segmentation with the manual delineation of the

NCO directly from SD-OCT volumes is desirable because of the discrepancy of the

NCO and the clinical optic disc margin.

In addition, our previous NCO segmentation utilized a graph search approach

finding the optimal solution for the multiple retinal surface and NCO segmentation

in a low-polynomial time [11]. It in general performed well. However, it is known

that the optimal solution of the graph search is highly dependent on the designed cost

function. The cost function was simply a signed edge-based term in the original image

space for both the involved 3-D retinal layer and NCO boundary segmentation. The

surface and NCO segmentation errors occurred in some scans when high frequency

noise exists, interrupted objects (such as large vessels) are present, and/or strong

edge information is missing.

This work is a subsequent study of the previous NCO segmentation with a few

aims as follows: 1) to compare our automated algorithm to the manual delineation

directly from SD-OCT volumes, 2) to adapt it to work with non-human primate

eyes, 3) to enhance the algorithm to more robustly deal with potential retinal layer

segmentation issues, and 4) to further verify the constant anatomic nature of the
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NCO structure.

As mentioned in Chapter 3, the wavelet transform provides a great ability to

selectively utilize the desired coarse or fine image features. Quellec et al. [40] reported

an adaptive nonseparable 2-D lifting-scheme-based wavelet transform and recently,

they extended their 2-D wavelet transform to 3-D [9].

Thus, in this specific work, we propose to use the 3-D lifting-scheme-based wavelet

transform to select the desired frequency subbands by an optimization approach of

genetic algorithm [62, 63] to improve the 3-D retinal layer segmentation and hence

to improve the 3-D NCO segmentation because the NCO segmentation is highly

dependent on the layer segmentation.

In addition, the NCO segmentation errors could occur in the cases that the large

vessels cross over with it. We thus pre-segment the retinal vessels using our sin-

gle modal OCT vessel segmentation approach (Chapter 6) [52] and incorporate the

pre-identified vessel positional information to the cost function design of the graph

searching of the NCO to remedy the NCO segmentation difficulty due to the presence

of large vessels [64].

5.3 Data

23 optic nerve head centered non-human primate normal eyes are used in this

study. All animals were treated in accordance with the ARVO statement for the use

of animals in ophthalmic and vision research. All eyes were imaged in vivo using

a raster pattern from Heidelberg Spectralis 3-D SD-OCT at Devers Eye Institute

(Legacy Health System, Portland, Oregon). Among the 23 SD-OCT scans, 12 of
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them consist of 768 (A-scans) × 145 (B-scans) × 469 voxels (referred to as the first

type SD-OCT volumes) from 12 non-human primates with 11 left and one right eyes.

11 of them consist of 768 (A-scans) × 290 (B-scans) × 469 voxels (referred to as the

second type SD-OCT volumes) from 11 non-human primates with 6 left and 5 right

eyes. The data of each type is further split into the training set and test set. For each

type, three of them with two left eyes and one right eye are utilized for the training

of the retinal layer segmentation and the remaining scans are used as the test set.

Thus the first type has 9 and the second type has 8 test scans.

5.4 Methods

Figure 5.1: Flowchart of the major steps of the 3-D wavelet-transform-learning-based
NCO segmentation.

As illustrated in Fig. 5.1, the algorithm starts from the 3-D retinal layer segmen-

tation in the volumetric SD-OCT scans using a graph search approach. To obtain



61

a better retinal layer segmentation at the RPE/BM complex, we learn the wavelet

transform tuned by the genetic algorithm (Section 5.4.1). Based on the segmented

layers around the RPE/BM complex, an OCT projection image is created and the

2-D NCO is pre-segmented on the OCT projection image using a graph theoretic

approach. To suppress the segmentation errors due to the presence of the large blood

vessels on the OCT projection image, we segment them using our single modal OCT

vessel segmentation approach (Chapter 6) [52]. The 2-D NCO is then obtained based

on the vessel-suppressed cost function [64] and projected to a segmented surface at

the RPE/BM complex to obtain the 3-D NCO points (Section 5.4.2). Fig. 5.1 illus-

trates the major processing steps of the developed approach with the further details

provided in the following paragraphs.

5.4.1 3-D wavelet-transform-learning-based layer
segmentation

The NCO segmentation is highly dependent on the accurate layer segmentation

at the RPE/BM complex as the NCO is located at the end of the RPE/BM com-

plex. To obtain a better solution of the 3-D layer segmentation at the RPE/BM

complex, we iteratively learn the wavelet transform to minimize the distance between

the segmented and manually traced retinal layers as illustrated in Fig. 5.2.

More specifically, the learning process starts from applying a set of randomly

assigned wavelet transform coefficients on the original SD-OCT volume. An edge cost

function is obtained from the wavelet transformed image using a Sobel operator. The

graph search is applied for multiple layer segmentation. By optimizing (minimizing)

the fitness criterion based on the layers around the RPE/BM complex using a genetic
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Figure 5.2: Major steps of the wavelet transform learning process.

algorithm, in the next generation, the wavelet transform coefficients are updated

and continuously applied on the original SD-OCT volume to obtain a new wavelet

transformed image for the multiple layer segmentation. Iteratively, a better layer

segmentation is obtained.

To make the whole process clearer, the major steps of the layer segmentation are

separately described in Section 5.4.1.1. The details of the wavelet transform learning

are provided in Section 5.4.1.2.

5.4.1.1 Major steps of layer segmentation

For computational efficiency, the 3-D retinal layer segmentation is performed by

the graph searching based on a multi-stage approach.

1) The wavelet-transformed SD-OCT volumes (the wavelet transform optimized

as described in Section 5.4.1.2) are downsampled by two in x-direction for the first

type scans and by two in both x- and y-direction for the second type scans. 2) To

find the layers of interest around the RPE/BM complex, the SD-OCT volumes are
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(a) (b)

(c) (d)

Figure 5.3: Illustration of 3-D retinal layer segmentation. (a) Original raw SD-OCT
volume. (b) two segmented surfaces on the downsampled SD-OCT volume in z-
direction (also in x direction) overlapping with the central slice of the SD-OCT vol-
ume. Four surfaces segmentation at the RPE/BM complex with c) two segmented
surfaces with the edge cost function favoring the black to white transition, and d)
two segmented surfaces with the edge cost function favoring white to black transition,
overlapping with the central slice of the SD-OCT ROI subvolume, respectively.

further downsampled in z-direction. Two surfaces, i.e. the internal limiting membrane

(green line indicated surface in Fig. 5.3.b) and the surface between the inner and

outer segments of the photoreceptors (red line indicated surface in Fig. 5.3.b), are

simultaneously segmented using the edge cost function favoring a black to white

transition. A region of interest (ROI) of the RPE/BM complex is then defined in the

x- and/or y-downsampled SD-OCT volumes but with the full z resolution (referred as

the full-z-resolution-downsampled SD-OCT volumes) based on the segmented second

surface. More specifically, the ROI is defined as that from a horizontal flat surface with

a few voxels above the highest point of the second surface to a horizontal flat surface
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with 80 voxels below the upper surface in the full-z-resolution-downsampled SD-OCT

volumes. Note that when computing the highest point, an estimated central region

is excluded due to the large variation of the layer segmentation. 3) In the extracted

ROI subvolume around the RPE/BM complex, two surfaces, i.e. the surface between

the inner and outer segments of the photoreceptors (red line indicated surface in

Fig. 5.3.c) and the inner boundary of the RPE/BM complex (green line indicated

surface in Fig. 5.3.c) with the edge cost function favoring a black to white transition,

and two surfaces, i.e. the outer segments of the photoreceptors (blue line indicated

surface in Fig. 5.3.d) and the outer boundary of the RPE/BM complex (purple line

indicated surface in Fig. 5.3.d) with the edge cost function favoring a white to black

transition are further simultaneously segmented. 4) The segmented four surfaces at

the RPE/BM complex are then interpolated to the original SD-OCT space using the

thin plate spline [12]. Fig. 5.3 is an example illustration of the 3-D retinal layer

segmentation.

5.4.1.2 Learning of wavelet transform

The 3-D wavelet transform provides a 3-D multi-resolution analysis which de-

composes the input signal x (volumetric SD-OCT image I(x, y, z)) into L (L = 4 in

this work) levels. The wavelet transform used in this work is based on the lifting

scheme [9, 40]. More specifically, the filter bank consists of a set of linear prediction

(Pi) and update (Ui) filters with i = 1...M . In each level, the wavelet transform

involves downsampling the signal by a three-dimensional dilation matrix D with

M = |det(D)|. The input lattice Z
3 is mapped to M sub-lattices Ti = D · Z3 + ti,



65

ti ∈ Z
3, t0 = 0, i = 0...M − 1, where T0 contains the approximation a of the signal

and Ti, i = 1...M − 1, contain its details di along direction ti. For the aim of com-

putational efficiency, the diagonal matrix D = 2 · I (M = 23) is used to generate the

separable lattices of T0, ..., TM−1.

Figure 5.4: Illustration of M -band lifting scheme filter bank with t0 = 0. Adapted
from [9,40].

For the recursive signal analysis, the approximation a is further decomposed using

the same filter bank until the desired scale L is reached. More specifically, the initial

wavelet transform coefficients at level L = 1 with the resolution of M j (j = 0) lie

in the lattice T
(0)
0 = Z

3. The coefficients of the approximation at the resolution of

M j lie in the lattice T
(j)
0 = Dj · Z3. The coefficients of the approximation at the

resolution ofM j+1 lie in the lattice T
(j+1)
0 = Dj+1 ·Z3 and the details lie in the lattice

T
(j+1)
i = Dj+1 · Z3 + Dj · ti, i = 0...M − 1. The left side of Fig. 5.4 illustrates the

decomposition of the wavelet transform via the lifting scheme.

Three surfaces around the RPE/BM plane are utilized for the learning of the
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wavelet transform. More specifically, the surface between the inner and outer segment

of the photoreceptors, the inner, and outer boundary of the RPE/BM complex, are

manually traced by the author (Z. Hu) from three randomly chosen SD-OCT volumes

of each image type and are used as the reference. The region inside the estimated NCO

is excluded to the learning process due to the large variation of the layer segmentation

in that region (Fig. 5.5.a).

(a) (b) (c)

Figure 5.5: Illustration of the learning of wavelet-transform-based layer segmentation.
(a) Learning region around the RPE/BM complex as indicated by the blue arrows.
Note that the central estimated NCO region (inside the red line) is excluded from the
computation of the fitness criterion due to the large variation of layer segmentation.
(b-c) The full-z-resolution-downsampled SD-OCT volume without and with applying
the learned wavelet transform respectively.

The genetic algorithm is utilized because it is a quick and popular optimization

approach for finding the rough estimations of the best solutions. Jones et al. [62]

have proposed to use the genetic algorithm to find the predict and update filters

of the lifting-scheme-based wavelet transform. The major advantage of the genetic

algorithm over the descent optimization algorithm is that it does not need an initial
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solution.

The fitness criterion is the summation of the Euclidean distance between the

segmented and manually traced surfaces along z-direction for all the three surfaces.

The genetic algorithm optimizes (minimizes) the Euclidean distance summation by

thresholding the undesirable high frequency content (e.g. the speckle noise) and

low frequency information (e.g. small details) of the input signal based on tuned

wavelet coefficients. In each of the decomposed level, each transformed coefficient

c that is smaller than the learned threshold t is set to 0, the others are updated

as follows: c = c − t. After removing the undesirable frequency content, the output

signal x′ (volumetric SD-OCT image I ′(x, y, z)) is reconstructed using the thresholded

coefficients as illustrated in the right side of Fig. 5.4. The learning-based edge cost

function is obtained from the reconstructed image and the graph-based multilayer

segmentation is applied. Iteratively a better layer segmentation is obtained.

After the learning process, the obtained wavelet transform for each type of SD-

OCT volumes is then applied on the remaining test scans. Fig. 5.5.a illustrates the

learning region of the wavelet-transform-based layer segmentation and Fig. 5.5.b and

c provide an example of a SD-OCT volume and its reconstructed image after applying

the wavelet transform.

5.4.1.3 OCT projection image creation

Based on the wavelet-transform-learned retinal layer segmentation, a small num-

ber of slices around the inner boundary of the RPE/BM complex (light green line

indicated surface in Fig. 5.6.a and d) with three voxels above and seven voxels be-
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Example illustration of the wavelet-transform-learning-based layer seg-
mentation and OCT projection image. (a,d) Three segmented surfaces at the
RPE/BM complex without and with applying the wavelet transform overlapping with
the original full resolution SD-OCT volume respectively. (b,e) Isotropic SD-OCT pro-
jection images without and with applying the wavelet transform respectively. (c,f)
3-D rendering of the surface segmentation without and with applying the wavelet
transform by mapping the OCT projection image texture onto the top surfaces. Es-
pecially note the layer segmentation errors at the highlighted region in a, the fuzzy
region at the upper side of the OCT projection image in b, and the layer segmenta-
tion errors illustrated by the 3-D surface rendering at the right side of c (rotating the
projection image about 90 degree clockwise) without applying the wavelet-transform-
learning-based edge cost function and the improvement in the corresponding figures
of d, e, and f with applying the wavelet-transform-learning-based edge cost function.

low it are taken to create the OCT projection images. The OCT projection images

are used for the 2-D NCO segmentation. Thus the wavelet-transform-learning-based

OCT projection images provide an ability to better define the NCO. Note that the

OCT projection images are anisotropic for both the first type and second type SD-

OCT volumes. To perform the graph searching of the NCO boundary, the anisotropic

images are rescaled to isotropic images. An example comparison of the layer segmen-
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tation and consequent OCT projection images without and with applying the wavelet

transform is shown in Fig. 5.6.

5.4.2 3-D NCO segmentation

The 3-D NCO is segmented as follows. First, the 2-D NCO is pre-segmented on

the OCT projection images using a graph theoretic approach. The retinal vessels

are segmented using the vessel segmentation approach with the incorporation of the

pre-segmented NCO positional information as presented in Chapter 6 [52]. Based on

the segmented vessel profiles, a vessel-suppressed edge cost function is then utilized

to improve the 2-D NCO segmentation. The segmented 2-D NCO points are then

projected to a surface at the RPE/BM complex to obtain the 3-D NCO position.

More specifically, to perform the 2-D NCO segmentation, the isotropic OCT pro-

jection images are first transformed from Cartesian coordinates to polar coordinates.

The edge-based cost function favoring a dark-to-bright transition in the vertical di-

rection (corresponding to the radial direction in Cartesian coordinates) is obtained

from the transformed polar projection images. The 2-D NCO is pre-segmented from

the polar cost function using a single boundary graph search approach.

The vessel distribution near the NCO causes difficulties for the segmentation of the

NCO. To remedy this problem, a pixel-classification-based segmentation method as

described in Chapter 6 is used to segment the vessels on the isotropic OCT projection

images in Cartesian coordinates by incorporating the pre-segmented NCO positional

information into the classification process. The segmented vessel images are then

transformed to polar coordinates. The polar edge cost function is modified according
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(a) (b)

(c) (d)

Figure 5.7: Illustration of the NCO segmentation. (a) Isotropic wavelet-transform-
learning-based OCT projection image. (b) Vessel segmentation. (c) 2-D NCO seg-
mentation (border of the green color ellipse) overlapping with the OCT projection
image. (d) 3-D NCO segmentation (projected green strip) and manual delineation
(orange circles indicated by the red arrows) overlapping with the central slice of the
SD-OCT volume.

to the vessel location information, i.e. the costs of vessel locations in the polar OCT

projection images are interpolated by the mean value of the surrounding non-vessel

costs in the horizontal direction. The more accurate 2-D NCO is identified based on

the modified polar edge cost function using the graph search and transformed back

to the Cartesian coordinates and rescaled to anisotropic space. The 3-D NCO are

obtained by projecting the transformed 2-D NCO points to a surface at the RPE/BM

complex by averaging the z values of the segmented inner and outer boundary at the

RPE/BM complex. Fig. 5.7 is an example illustration of the segmented retinal vessels,
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2-D NCO, and 3-D NCO boundary.

5.5 Validation

The manual delineation of the 3-D NCO points were performed at Devers Eye

Institute using the radially interpolated B-scans at 4.5 degree intervals generated

from “grid” B-scan acquisitions of the SD-OCT volumes [4]. Within each radial

section, the delineator marked the NCO on either side of the neural canal. Totally

80 3-D NCO points were delineated for each volume and the Cartesian coordinates

for each delineated point were saved.

The segmented 3-D NCO boundary is compared to the manual delineation using

three measures: 1) 3-D mean unsigned and signed border positioning differences, i.e.

the 3-D closest Euclidean distances between the manually delineated and segmented

3-D NCO points. The 3-D signed difference is measured with respect of the center of

the manually delineated points in the x- and y-direction. If the Euclidean distance

of the segmented NCO points in x- and y-direction to the center of the manually

delineated points is greater than that of the manually delineated point to its center,

the 3-D signed difference is positive, and vice versa; 2) 2-D mean unsigned and signed

border positioning differences, i.e. the 2-D Euclidean distance in x- and y-direction

between the manually delineated and segmented 3-D NCO points with the closest 3-D

Euclidean distances. The 2-D signed difference is defined in the same way as the 3-D

signed difference, i.e. if the 2-D Euclidean distance of the segmented NCO points in

x- and y-direction to the center of the manually delineated points is greater than that

of the manually delineated point to its center, the 2-D signed difference is positive,



72

and vice versa; and 3) mean unsigned and signed border positioning differences in

z-direction, i.e. the distance of z-direction between the manually delineated and the

segmented NCO points with the closest 3-D Euclidean distances. For the signed

difference, if the z-value of the segmented NCO point is greater than the z-value of

the center of the manually delineated points, i.e. the segmented NCO point is below

the center of the manually delineated points, the signed difference is positive, and

vice versa.

5.6 Results

Table 5.1: Mean border positioning differences of the wavelet-transform-learning-
based 3-D NCO segmentation and manual delineation for all the test SD-OCT scans

Mean unsigned Mean signed Mean unsigned Mean signed
3-D (voxels) (voxels) (µm) (µm)

2-D, z (pixels) (pixels) (µm) (µm)
3-D 5.30 ± 1.42 1.17 ± 0.97 60.74 ± 11.52 19.25 ± 14.61

First type 2-D 3.33 ± 0.51 1.02 ± 0.58 57.10 ± 11.88 19.24 ± 14.25
(9 scans) z-direction 3.49 ± 1.49 -2.12 ± 2.26 13.51 ± 5.77 -8.19 ± 8.75

3-D 5.38 ± 1.91 2.69 ± 1.68 43.11 ± 15.60 24.51 ± 17.61
Second type 2-D 3.68 ± 1.21 2.19 ± 1.41 39.00 ± 14.68 23.42 ± 17.37
(8 scans) z-direction 3.23 ± 1.63 -0.67 ± 2.37 12.49 ± 6.31 -2.61 ± 9.18

3-D: 3-D NCO border positioning differences.

2-D: 2-D NCO border positioning differences in x- and y-direction.

z-direction: NCO border positioning differences in z-direction.

Table 5.1 shows the 3-D and 2-D mean border positioning differences and mean

border positioning differences in z-direction between the wavelet-transform-learning-

based NCO segmentation and the manual delineation for both the first type and
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second type SD-OCT volumes.

(a) (b) (c) (d)

(e) (f)

Figure 5.8: Comparison of the 3-D NCO segmentation without and with apply-
ing wavelet transform. (a-b) Isotropic OCT projection image obtained from the
segmented layers without and with wavelet transform respectively. (c-d) 2-D non-
wavelet-transform-based NCO segmentation (border of the red color ellipse) and
wavelet-transform-learning-based NCO segmentation (border of the green color el-
lipse) overlapping with their OCT projection images respectively. (e-f) 3-D non-
wavelet-transform-based NCO segmentation (red strip), wavelet-transform-learning-
based NCO segmentation (green strip), and manually delineated NCO points (orange
circles indicated by the red arrows) overlapping with an OCT slice located at the
position indicated by the green lines in c and d. Especially note the segmentation
errors of the non-wavelet-transform-based NCO segmentation as shown in c and e,
for instance, at the position indicated by the blue arrows and the improvement by
the wavelet-transform-learning-based NCO segmentation in d and f.

Fig. 5.8 is a visual example comparison of the algorithm segmentation of the

NCO without and with application of the wavelet transform. Especially note the

NCO segmentation errors as shown in Fig. 5.8.c and e without applying the wavelet
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transform and the improvement with applying the learning-based wavelet transform

as shown in Fig. 5.8.d and f.

Figure 5.9: 3-D wavelet-transform-learning-based NCO segmentation for the 9 test
scans of the first type SD-OCT volumes. (A,C) Original SD-OCT scans. (B,D)
Comparison of 3-D wavelet-transform-learning-based NCO segmentation (projected
green strip) and manual delineation points (orange circles indicated by the red ar-
rows). Note that the 3-D green box for the overall figure is to address that the NCO
segmentation is a 3-D segmentation performed in each volumetric SD-OCT scan.
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Figure 5.10: 3-D wavelet-transform-learning-based NCO segmentation for the 8 test
scans from the second type SD-OCT volumes. (A,C) Original SD-OCT scans. (B,D)
Comparison of 3-D wavelet-transform-learning-based NCO segmentation (projected
green strip) and manual delineation points (orange circles indicated by the red ar-
rows). Note that the 3-D green box for the overall figure is to address that the NCO
segmentation is a 3-D segmentation performed in each volumetric SD-OCT scan.

Fig. 5.9 is a visual comparison of the wavelet-transform-learning-based NCO seg-

mentation (projected green strip in column B and D) with the manual delineation

(orange circles in column B and D indicated by the red arrows) of the 9 test scans

from the first type SD-OCT volumes and Fig. 5.10 is that of the 8 test scans from

the second type SD-OCT volumes.
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5.7 Discussion and conclusions

In this study, we present an automated 3-D wavelet-transform-learning-based

graph theoretic approach to segment the NCO in SD-OCT volumes with the applica-

tion on non-human primate eyes. To our knowledge, this is the first such algorithm

to utilize the scale-learning-based edge cost function for obtaining a better 3-D layer

segmentation and hence a better OCT projection image for the segmentation of the

3-D NCO boundary in SD-OCT volumes. In addition, the pre-segmented vessel loca-

tion information is incorporated in the edge cost function of the NCO segmentation

to remedy the segmentation difficulties due to the presence of large vessels.

The advantages of the current 3-D wavelet-transform-learning-based NCO seg-

mentation over the non-wavelet-transform-based NCO segmentation can be seen in

Fig. 5.8. As shown in Fig. 5.8.c and e, the NCO segmentation without applying the

wavelet transform presents some segmentation errors. This is mainly due to the layer

segmentation errors (Fig. 5.6.a) which causes the “non-optimal” OCT projection

image creation (Fig. 5.6.b). With the wavelet-transform-learning-based edge cost

function, a better layer segmentation (Fig. 5.6.d) and hence a better OCT projection

image is obtained (Fig. 5.6.e). As can be seen in Fig. 5.8.d and f, thus the NCO

segmentation is greatly improved.

Table 5.1 provides the quantitative results of the 3-D and 2-D mean border po-

sitioning differences and mean border positioning differences in z-direction between

the wavelet-transform-learning-based NCO segmentation and the 3-D manual delin-

eation. Overall, the automated segmentation performs well when compared to the
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manual delineation.

Fig. 5.9 and Fig. 5.10 show the comparison of the 3-D NCO segmentation and the

manual delineation for the 9 test scans of the first type and 8 test scans of the second

type respectively. The green strips are the projected segmented NCO location and the

orange circles indicated by the red arrows are the manually delineated NCO points.

As can be seen, the visual comparison demonstrates a great agreement between the

wavelet-transform-learning-based NCO segmentation and the manual delineation.

In the previous study in human SD-OCT scans, due to the limitation of the

availability of the manual delineation from 3-D SD-OCT volumes, we evaluated the

robustness of our algorithm based on the inter-visit repeatability which presented a

good correlation (r = 0.95) in terms of the NCO area. In this subsequent study, we are

capable to compare our improved 3-D NCO segmentation with the 3-D NCO manual

delineation directly performed on the SD-OCT volumes of non-human primate eyes.

As can be seen, both the quantitative and visual comparison demonstrate a good

agreement between them.

Note that as mentioned in Chapter 3, the graph search approach for finding the

optimal solution of single surface was initially reported by Wu and Chen [10]. Li

et al. [11] extended it for finding the optimal solution of multiple surfaces in a low-

polynomial time using edge information, and Garvin et al. [12] extended it to use

additional regional information. This work extends an ability to design the scale-

learning-based cost function for use in the graph-theoretic approach.

Thus the major contributions of our current study can be concluded as: 1) This

study further enhances the retinal layer and NCO segmentation using the learned
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wavelet transform by specifically minimizing the distance between the segmented lay-

ers and manual tracings at the RPE/BM complex. 2) This study further extends

the 3-D graph-based multiple layer segmentation with the use of scale-learning-based

edge cost function. 3) This study further verifies our ability to automatically detect

the 3-D NCO in SD-OCT volumes with the further enhancement and application of

our automated NCO segmentation algorithm on non-human primate SD-OCT vol-

umes. 4) The good agreement of our automated NCO segmentation with the manual

delineation directly from 3-D SD-OCT scans shows the robustness of our algorithm.

5) This study further implies that the NCO is a single constant anatomic structure

and is detectable in SD-OCT volumes, which, to a certain extent, verifies our hypoth-

esis in our previous study that due to the stability of the NCO structure during the

glaucoma progression, it may enable more reproducible and objective glaucomatous

parameters than that which is currently possible from manual planimetry alone.

The developed algorithm in general performs well, however, some limitations exist.

1) For computational efficiency, when performed the layer segmentation, the original

SD-OCT volumes are downsampled by two in x- and/or y-direction depending on

the image type. Ideally, the layer segmentation performs on the full resolution SD-

OCT volumes would be desirable. Although the “perfect” layer segmentation is not a

necessary requirement for this work as the layer segmentation only serves the creation

of the OCT projection images, a better layer segmentation will result in a better OCT

projection image and hence a better NCO segmentation. 2) The vessel segmentation

utilizes the training set from the previous NCO segmentation based on the Cirrus

SO-OCT scans (Cirrus TM HD-OCT) from human subjects. Ideally, a training based
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on the current data of non-human primate subjects would be expected having better

performance.

In conclusion, we present an automated 3-D wavelet-transform-learning-based

NCO segmentation approach with the application in volumetric SD-OCT scans of

non-human primate eyes Compared to the 3-D manual delineation directly performed

on the SD-OCT volumes, the automated approach demonstrates a good performance

both quantitatively and visually. Because of the constant landmark nature of the

NCO structure and the objective nature of the automated algorithm, along with our

previous study, we expect that 2-D and/or 3-D glaucomatous parameters in volu-

metric SD-OCT would be more reproducible than those derived from the manual

planimetry on fundus photographs or even on the time-domain OCT. Additional

work will be necessary to further test our core hypothesis and explore novel, objec-

tive, reproducible NCO-based parameters that correlate well with disease stage and

progression.
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CHAPTER 6

SINGLE MODAL RETINAL VESSEL SEGMENTATION IN SD-OCT

VOLUMES

6.1 Chapter abstract

We present a method for automatically segmenting the blood vessels in spectral-

domain optical coherence tomography (SD-OCT) volumes, with a particular focus on

the suppression of the false positives near the neural canal opening (NCO) bound-

ary. The algorithm first pre-segments the NCO using a graph-theoretic approach in

SD-OCT volumes. The pre-identified NCO positional information is incorporated to

the pixel classification process of the blood vessels. More specifically, oriented Gabor

wavelets rotated around the center of the NCO are applied to extract features in 2-D

vessel-aimed OCT projection images. Corresponding oriented NCO-based templates

are utilized to help suppress the false positive tendency near the NCO boundary.

The vessels are classified using a k-nearest neighbor (k-NN) classifier on the 2-D

vessel-aimed OCT projection images. Based on the 2-D vessel profiles, 3-D vessel

segmentation is performed by a triangular-mesh-based graph search approach in SD-

OCT volumes. The segmentation method is trained on 5 and tested on 10 randomly

chosen independent optic nerve head (ONH) centered SD-OCT volumes from 15 sub-

jects with glaucoma. Using receiver operating characteristic (ROC) curve analysis,

for the 2-D vessel segmentation, we demonstrate an improvement over the closest

previous work with an area under the curve (AUC) of 0.81 (0.72 for a previously

reported approach) for the region around the NCO and 0.84 for the region outside

the NCO (0.81 for a previously reported approach).
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6.2 Introduction

As mentioned in the previous chapters, the large retinal vessels crossing over

with the NCO in the ONH center of SD-OCT volumes cause the NCO segmentation

difficulty in some scans. Segmenting vessels in SD-OCT volumes could aid a better

NCO segmentation. In addition, the identification of vessels could lead to a more

objective diagnosis of diseases, could be used for OCT-to-OCT and OCT-to-fundus

registration, and could help remove the influence of vessels (when desirable).

However, typical vessel segmentation approaches, such as the one by Niemeijer et

al. [50], mainly segmented the vessels in the region outside the NCO and the vessels

inside the NCO were excluded from the analysis due to the similar high contrast

projective appearance of the NCO contour to the vessels, causing false positives as

presented in Fig. 3.1.c of Chapter 3.

Thus in this specific work, we present a 2-D pixel classification algorithm to seg-

ment the retinal vessels in the ONH-centered SD-OCT volumes, with a special focus

on better identifying the retinal vessels near the NCO by incorporating the pre-

identified NCO positional information to the vessel classification process [52]. Based

on the segmented 2-D vessel profiles, the 3-D vessels in the SD-OCT volumes are

obtained by a triangular-mesh-based graph search approach.

6.3 Methods

Overall, we approach the 2-D automatic segmentation of the blood vessels using a

pixel classification algorithm (Section 6.3.2.2) by incorporating pre-segmented NCO

location (Section 6.3.1) information into the classification process to suppress the false
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positives near the NCO. We then utilize these 2-D vessel profiles to segment the 3-D

vessels in the SD-OCT volumes [65] (Section 6.3.2.3). Fig. 6.1 is the flowchart of the

major steps of our OCT vessel segmentation approach.

Figure 6.1: Flowchart of major steps of our OCT vessel segmentation approach.

6.3.1 Neural canal opening pre-segmentation

In order to incorporate the NCO information into the 2-D vessel classification

process, the NCO is pre-segmented using the approach as described in Chapter 4

[35,36]. In this work, the NCO is the boundary of interest. However, the optic cup is

also detected. Simultaneously segmenting two boundaries can take advantage of the

interaction constraints between them to help better segment the NCO. Having the

NCO segmentation enables the projected position of this 3-D structure to be utilized

in the computation of features for the classification. Fig. 6.2 is an example illustration

of NCO pre-segmentation.
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(a) (b) (c)

Figure 6.2: Illustration of the NCO segmentation. (a) 3-D four surface segmentation
with the interpolation of the radial average positions outside the estimated NCO
to inside the NCO for surface 2 (orange), 3 (green), and 4 (yellow). (b) NCO-
aimed projection image from the layer between the interpolated surface 2 and 4.
(c) Segmented NCO and cup overlapping with the projection image.

6.3.2 Retinal vessel segmentation

For the 2-D vessel segmentation, oriented Gabor wavelets around the center of the

NCO are utilized to extract features in a 2-D vessel-aimed OCT projection image.

The corresponding oriented NCO-based templates are utilized along with the Gabor

wavelets to suppress the false positive tendency near the NCO boundary. A supervised

pixel classification algorithm is applied to automatically segment the blood vessels in

the vessel-aimed OCT projection image. Based on the 2-D vessel location information,

the 3-D vessels are detected by applying a triangular-mesh-based graph search to the

isotropic SD-OCT volume [65]. These steps are described in more detail below.

6.3.2.1 Vessel-aimed OCT projection image creation

The main difficulty of vessel segmentation within SD-OCT volumes is the weak

visibility of the vessel pattern. In Niemeijer’s previous approach [50], they proposed

to use a 2-D projection of the vessel pattern from the 3-D volume to segment ves-



84

sels. They compared two different projection images: the “naive” projection image

computed by averaging the whole OCT volume which decreased the contrast between

the vessels and background and the “smart” projection image computed by averag-

ing the layer between surface 2 and 4 which provided a good contrast. However, the

“smart” projection image also had some disadvantages. For example, near and inside

the NCO, the layer between surface 2 and 4 would frequently become very thin (and

be subject to layer segmentation errors) and thus the projection image would not

necessarily demonstrate an optimal contrast between vessels and background in this

region.

(a) (b)

Figure 6.3: Illustration of the vessel-aimed OCT projection image creation. (a) The
bounding surfaces used for the creation of three potential projection images: “naive”
(bounding surfaces of whole volume as indicated with green arrows), “smart” (orange
surface 2 and yellow surface 4 as indicated by yellow arrows), and vessel-aimed OCT
projection image (orange surface 2 and dashed red surface where possible as indi-
cated with red arrows; same as “smart” where the red dashed surface is above the
interpolated surface 4). (b) Vessel-aimed OCT projection image as used in this work.

In this work, we create a new type of projection image by averaging the layer

between surface 2 and an under planar surface defined by the deepest position of
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the top surface. In columns for which the deepest position is above the interpolated

surface 4, the projection image is created as that used for the “smart” projection

image . The created new projection image is referred to as the “vessel-aimed” OCT

projection image. Compared with the “naive” and “smart” projection images [50],

the vessel-aimed OCT projection image relies less on the surface segmentation and

can take advantage of the vessel information inside the NCO. An illustration of the

bounding surfaces for the three different projection images and a resulted vessel-aimed

OCT projection image is provided in Fig. 6.3.

6.3.2.2 2-D vessel segmentation

In the vessel-aimed OCT projection image, the blood vessels generally radially

distribute around the NCO center. Gabor wavelets demonstrate some desirable char-

acteristics: spatial frequency, spatial locality, and orientation selectivity. The nature

of the Gabor wavelets makes them well suitable for the feature generation of the blood

vessel detection. Recall that a Gabor wavelet ψµ,ν(z) [39] can be defined as:

ψµ,ν(z) =
||kµ,ν ||2
σ2

e−
||kµ,ν ||2||z||2

2σ2

[

eikµ,νz − e−
σ2

2

]

, (6.1)

where z = (x, y), || · || is the norm operator, µ and ν define the orientation and spatial

frequency scale of the Gabor kernel, and σ is related to the standard derivation of

the Gaussian window in the kernel and determines the ratio of the Gaussian window

width to the wavelength. The wave vector kµ,ν is defined as

kµ,ν = kνe
iφµ , (6.2)
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where kν = kmax

fν in which kmax is the maximum frequency and f ν is the spatial

frequency between kernels in the frequency domain. φµ = πµ

n
in which n is the total

number of orientations. Based on the vessel profiles, in our application, we choose

kmax = π
2
, σ ∈ {1, 2, 3}, f=

√
2, ν ∈ {1, 2, 3}, n=18, and µ ∈ {0, ..., 17}.

Additionally, to increase the signal and decrease the noise, three spatial frequency

scale additions are applied between ν=2 and ν=3 in σ ∈ {1, 2, 3}. Together a Gabor

wavelet family with 3 Gaussian scales, 3 spatial frequency scales, 3 spatial frequency

scale additions, and 18 orientations is generated.

In order to suppress the false positive tendency near the NCO, the oriented tem-

plates are utilized along with the corresponding Gabor wavelets in the feature space.

Specifically a pair of pre-defined templates is first created based on the previously

segmented NCO location information and so-called NCO-based templates. The cen-

ter of the template pair is that of the NCO and the center of each of them lies on the

NCO boundary. The shapes of the templates are defined as:

{x1 − xc − r1}2
W 2

+
{y1 − yc}2

H2
= 1, (6.3)

and

{x2 − xc + r2}2
W 2

+
{y2 − yc}2

H2
= 1, (6.4)

where (xc, yc) is the NCO center, r1 and r2 are the distances of the center of each

template to the center of NCO, and W and H are the maximum width and height of

the templates which are defined based on prior knowledge of NCO profiles. Fig. 6.4.b
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provides a schematic illustration of the Gabor wavelet responses and the NCO-based

templates.

(a) (b) (c) (d)

Figure 6.4: Illustration of the OCT vessel segmentation. (a) Vessel-aimed OCT
projection image. (b) A schematic illustration of the Gabor wavelet responses and the
NCO-based templates oriented at 160 degrees. Blue arrow = NCO contour. Purple
arrows = template pair centered on the NCO boundary. (c) 2-D vessel segmentation.
(d) 3-D vessel segmentation.

The NCO-based templates rotate in the same orientations as the Gabor wavelets.

Wherever they rotate, the average pixel value of the Gabor wavelet response in that

orientation is assigned to those regions. The NCO-based templates could help sup-

press the false positive tendency from the NCO and at the same time does not affect

the true positives of the blood vessels, based on the assumption that the blood vessels

are not parallel with the NCO. In addition to the Gabor wavelet response, the pixel

gray value from the vessel-aimed OCT projection image is also included in the feature

space.

After the feature extraction, each feature is normalized to zero mean and unit

variance. We then apply a supervised pixel-classification-based approach to identify
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the blood vessels. More specifically, the method utilizes a one-time training phase.

The training set includes 5 vessel-aimed OCT projection images. It has 200×200×5 =

200000 training samples and each sample is labeled “vessel” or “non-vessel” with the

help of experts as described in Section 6.4.

In the testing phase, each pixel in the test image is treated as a query sample

and is classified by the trained k-NN classifier with k = 31. To save the running

time, in this work, the searching of the nearest neighbor training samples for each

query sample is implemented by searching the approximate nearest neighbor training

samples with a tolerance of a small amount of error [48]. Based on the obtained

k nearest neighbor training samples, each query sample (pixel) in the test image is

assigned to a soft label, i.e. a posterior probability defined as pvessel = n/k, where n is

the number of the training samples labeled as “vessel” among the k nearest neighbor

training samples. An example of the segmented 2-D OCT vesselness map is provided

in Fig. 6.4.c.

6.3.2.3 3-D vessel segmentation

In order to perform the 3-D vessel segmentation [65], the flattened SD-OCT is

first transformed to an isotropic volume. Surface 1 and 2 are also correspondingly

transformed. As mentioned above, the blood vessels themselves in the SD-OCT

volume of the ONH are not visible. What we measure in the 2-D vessel-aimed OCT

projection image are the vessel silhouettes. The “true” vessels are located right above

the vessel silhouettes [49]. We assume the vessels are approximately the three middle

voxels between surface 1 and 2 in the z-axis of the SD-OCT volume. An initial binary
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3-D vessel model is created by projecting the segmented 2-D vessel locations to the

layer of the three middle voxels. A marching cube algorithm is applied to the initial

model to construct a triangular mesh. The magnitude of the Gaussian derivative of

the volumetric SD-OCT is combined with that of the vessel-aimed OCT projection

image to create the cost image. The globally optimal surfaces of the 3-D vessels are

achieved by solving a maximum flow problem on the constructed triangular-mesh-

based graph from the combined cost image. An example of the 3-D OCT vessel

segmentation result is shown in Fig. 6.4.d.

6.4 Experimental methods and results

Fifteen ONH-centered SD-OCT volumes from 15 subjects with glaucoma are ac-

quired using a CirrusTM HD-OCT (Carl Zeiss Meditec) device. Each volume has the

size of 200 × 200 × 1024 voxels corresponding to 6 × 6 × 2 mm3. Of the 15 volumes,

5 of them are randomly selected as the training set and 10 of them the test set. Each

pixel in the vessel-aimed OCT projection image is manually labeled as “vessel” or

“non-vessel” with the help of experts. The small vessels by observation are excluded

from the “vessel” category and labeled as “non-vessel”.

The performance of the 2-D vessel segmentation is evaluated using ROC curves.

Our present approach of the 2-D vessel segmentation is compared with Niemeijer’s

approach [50] in terms of AUC for the regions around the NCO (±15 pixels from the

NCO boundary) and outside the NCO boundary.

Table 6.1 demonstrates the 2-D quantitative segmentation results by comparing

the AUC of the region outside the NCO and the region around the NCO (±15 pixels
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Table 6.1: AUC comparison of Niemeijer’s previous and our present 2-D OCT vessel
segmentation

AUC of the region around NCO AUC of the region outside NCO

Niemeijer’s algor. Our algor. Niemeijer’s algor. Our algor.

0.72 0.81 0.81 0.84

from the NCO boundary) of the two algorithms. Our present algorithm gives a greater

AUC in both regions, especially in the region around the NCO.

(a) (b) (c)

(d) (e)

Figure 6.5: Comparison of Niemeijer’s previous and our present OCT vessel segmen-
tation. (a) Vessel-aimed OCT projection image. (b and c) Niemeijer’s previous and
our present 2-D OCT vessel segmentation. (d and e) Niemeijer’s previous and our
present 3-D OCT vessel segmentation. Especially note the improvement from our
present approach around the NCO.
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An example visual comparison of the 2-D and 3-D vessel segmentation between

Niemeijer’s previous and our present approach is illustrated in Fig. 6.5. Fig. 6.5.b

and d show the results of the 2-D and 3-D segmentation from Niemeijer’s previous

approach and Fig. 6.5.c and e show that from our present approach, respectively. As

can be seen, the clear false positives near the NCO exist in the previous approach.

However, in the present approach, it is greatly suppressed and the vessels around the

NCO are detected.

6.5 Discussion and conclusions

We developed an approach for automatically segmenting the retinal blood vessels

by focusing on the region around the NCO in ONH-centered SD-OCT volumes. To

our knowledge, this is the first such algorithm to segment the blood vessels by utiliz-

ing a-priori NCO segmentation information, along with rotated Gabor wavelets and

corresponding rotated NCO-based templates to suppress the false positive tendency

near the NCO. The result is promising considering the difficulty of the vessel seg-

mentation in ONH-centered SD-OCT volumes. Compared with the closest previous

work [50], the 2-D vessel segmentation results are greatly improved both visually and

quantitatively, especially for the region around the NCO.

However, the accuracy of the 2-D vessel segmentation is still not perfect. Some

of the potential error sources include the following. 1) As described above, when the

large variations in the surfaces are present, intraretinal layer segmentation errors can

occur. As the NCO-aimed OCT projection image are dependent on the layer seg-

mentation, the errors can cause the “non-optimal” OCT projection image problem,
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which can cause the NCO segmentation errors. 2) The NCO is simultaneously seg-

mented with the optic cup on the NCO-aimed OCT projection image. Currently the

unwrapped center from Cartesian coordinates to polar coordinates is simply taken

as the center of the NCO-aimed OCT projection image. The center point must be

within the optic cup for the transformation to be valid. However, in some images, that

could be not true and thus there exists a “non-optimal” unwrapped center problem.

Hence the NCO pre-segmentation errors can occur, which could cause the incorrect

positions of the NCO templates and thus may not be able to efficiently suppress the

false positives near the NCO. 3) The expert may not have always traced very small

vessels they deemed “incomplete”, whereas the algorithm would have found portions

of these vessels, thus (incorrectly) causing the identification of these regions as false

positives. 4) The relatively low visibility in the ONH center of SD-OCT volumes

causes the difficulty of the vessel identification.

In summary, in this work, we develop a 2-D pixel-classification-based method for

segmenting the vessels in SD-OCT volumes with a focus on the ability to better

indicate the vessels in the region near the neural canal opening by incorporating

the pre-identified NCO positional information to the vessel classification. Based on

the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-

based graph search approach in SD-OCT volumes. Using ROC analysis, the 2-D

vessel segmentation demonstrates an obvious improvement over the closest previous

work [50].

However, as mentioned above, our OCT vessel segmentation is not perfect. To

further enhance the performance, we develop a registered-fundus and a multimodal
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vessel segmentation approach using additional information from fundus photographs

to obtain better vessel profiles in SD-OCT volumes as presented in the next chapter

(Chapter 7).
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CHAPTER 7

MULTIMODAL AND REGISTERED-FUNDUS VESSEL

SEGMENTATION IN SD-OCT VOLUMES AND COLOR FUNDUS

IMAGES

7.1 Chapter abstract

Segmenting retinal vessels in optic nerve head (ONH) centered spectral-domain

optical coherence tomography (SD-OCT) volumes is particularly challenging due to

the projected neural canal opening (NCO) and relatively low visibility in the ONH

center. Fundus photographs provide a relatively high vessel contrast in the region in-

side the NCO. We thus first develop an approach to obtain better vessel profiles from

fundus images for the use in SD-OCT volumes by segmenting retinal vessels on orig-

inal fundus images and registering the segmented vessel images to SD-OCT images

(referred to as registered-fundus vessel segmentation approach). However, such ap-

proach has its limitations such as the segmentation difficulty from the projected NCO

contour. We thus further develop a multimodal vessel segmentation approach utiliz-

ing the complementary information from both modalities, such as the 3-D retinal

layer information, better NCO contrast from the 3-D SD-OCT modality, and bet-

ter vessel contrast inside the NCO from fundus photographs, to help better segment

vessels in SD-OCT images. In particular, in each SD-OCT volume, the algorithm pre-

segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets with

oriented NCO-based templates are applied to generate OCT image features. After

fundus-to-OCT registration, the fundus image features are computed using oriented

Gabor wavelets with oriented NCO-based templates and additional Gaussian filter

banks. The two feature spaces are then combined. A k-Nearest Neighbor (k-NN)
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classifier is trained on 15 and tested on 19 randomly chosen independent image pairs

of SD-OCT volumes and fundus images from 34 subjects with glaucoma. Based on

the receiver operating characteristic (ROC) curve analysis, for all the 19 test images,

the area under the curve (AUC) of two previous closest OCT-based vessel segmen-

tation approaches (Niemeijer’s and our OCT single modal approach), our present

registered-fundus and multimodal approaches in the region inside the NCO are 0.64,

0.67, 0.85, and 0.86 respectively; in the region outside the NCO, are 0.84, 0.87, 0.90,

and 0.92 respectively. The present registered-fundus and multimodal vessel segmen-

tation approaches both perform significantly better than the two previous OCT-based

approaches. The multimodal approach overall performs better than the other three

single modal approaches.

7.2 Introduction

In Chapter 6, we presented a single modal approach for segmenting retinal ves-

sels in ONH-centered SD-OCT volumes by incorporating the pre-segmented NCO

positional information in the vessel classification process to help suppress the false

positive tendency near the NCO boundary [52]. The performance of the algorithm

demonstrated an obvious improvement over Niemeijer’s previous OCT vessel segmen-

tation approach [50]. However, the relatively low visibility in the ONH center remains

a problem for vessel identification in some scans.

While only a few approaches have been reported for the segmentation of vessels in

SD-OCT volumes [50,51], many vessel segmentation approaches performed on fundus

photographs have been reported [43–45]. The blood vessels on fundus photographs
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present a relatively high contrast in the region near and inside the NCO over SD-OCT

images (Fig. 7.1). We thus first develop an approach to obtain vessel profiles from

fundus images for the use in SD-OCT volumes by segmenting retinal vessels on original

fundus images [45], registering the segmented fundus images to SD-OCT images [53],

and using the transformed fundus vessels as OCT vessels. This approach is referred to

as registered-fundus vessel segmentation approach. However, such approach presents

some problems in some cases, for instance, the false positives or breaks near the region

of the optic disc margin (partially corresponding to the NCO in SD-OCT scans).

Figure 7.1: Illustration of the high visibility of the NCO in SD-OCT image and
that of vessels on fundus image. Left column: vessel-oriented OCT projection image
(bottom) (Section 7.3.2.1) with the zoomed ONH center (upper). Note that the high
NCO contrast as indicated by the yellow arrows. Right column: fundus photograph
(bottom) with the zoomed ONH center (upper). Note that the high vessel contrast
as indicated by the purple arrows.

Note that the two modality images of SD-OCT volumes and color fundus pho-
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tographs provide some complementary features, such as the 3-D retinal layer informa-

tion and relatively high contrast of the NCO boundary in SD-OCT images and that

of the blood vessels in the region near and inside the NCO on fundus photographs.

Simultaneously segmenting the blood vessels in both modalities could take advantage

of their complementary information. Thus, we further develop a multimodal pixel

classification approach [58] simultaneously using the information from SD-OCT vol-

umes and color fundus photographs to aid a better vessel segmentation for use in

SD-OCT images.

7.3 Methods

An overview of our registered-fundus and multimodal vessel segmentation ap-

proaches is presented in Fig. 7.2.

In both approaches, we first segment the retinal vessels on original fundus pho-

tographs using a pixel-classification-based approach (Section 7.3.1). Once we have the

vessel profiles on the original fundus photographs, we register the images in fundus

modality to the OCT modality using a feature-point-based registration approach [53].

More specifically, in our first approach, we register the segmented fundus vessel im-

age to the OCT modality and use the registered fundus vessels as the OCT vessels

(Section 7.3.2.2). In our second approach, we register the original fundus images

to the OCT modality using the same transformation and apply a multimodal vessel

segmentation (Section 7.3.3) by incorporating the complementary information from

SD-OCT volumes (e.g. the NCO positional information) and fundus photographs

(e.g. better vessel contrast in the region inside the NCO). Fig. 7.3 provides a more
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Figure 7.2: Overview of registered-fundus and multimodal vessel segmentation, where
the dashed-blue-line and light-gray-background blocks indicate the registered-fundus
vessel segmentation and the dashed-red-line and light-gray-background blocks indi-
cate the multimodal vessel segmentation.

Figure 7.3: Flowchart of major steps of registered-fundus and multimodal vessel
segmentation, where the dashed-blue-line and light-gray-background blocks indicate
the registered-fundus vessel segmentation and the dashed-red-line and light-gray-
background blocks indicate the multimodal vessel segmentation.
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detailed overview of the major steps of both approaches.

7.3.1 Vessel segmentation in original fundus
photographs

(a) (b)

Figure 7.4: Illustration of original fundus vessel segmentation. (a) Original color
fundus image. (b) Segmented vesselness map of the original fundus image.

A supervised pixel-classification-based segmentation method is used to segment

the blood vessels in the original fundus photographs [45]. The pixel features are

extracted using Gaussian derivative filters. Each image L consists of Gaussian filter

derivatives up to and including order 2 (i.e. L, Lx, Ly, Lxx, Lxy, Lyy) at scales σ

equal to 1, 2, 4, 8, and 16 pixels. A k-NN classifier (k=31) is applied and each pixel in

the projection image is assigned a soft label. Together they form a vesselness image.

An example illustration of the original fundus photograph segmentation is shown in

Fig. 7.4.
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7.3.2 Registered-fundus vessel segmentation

7.3.2.1 Vessel-oriented OCT projection image creation

The fundus-to-OCT registration needs a reference image in the SD-OCT modality.

Thus we create an OCT projection image at the NCO plane in the SD-OCT volume.

More specifically, four intraretinal 3-D surfaces are simultaneously identified in the

3-D raw SD-OCT volumes using an optimal graph-theoretic multilayer segmentation

algorithm. Based on a segmented surface, we then flatten the raw SD-OCT volumes

(Fig. 7.5.b) [12, 28]. The four segmented surfaces are also flattened by applying the

same transformation.

(a) (b) (c) (d)

Figure 7.5: Illustration of vessel-oriented OCT projection image creation. (a) Central
slice of the raw SD-OCT volume. (b) Central slice of the flattened SD-OCT volume
with four segmented retinal surfaces indicated. (c) 3-D visualization of segmented
surfaces. (d) Vessel-oriented OCT projection image obtained from the layer indicated
by the yellow arrows in (b).

After the flattening of the original 3-D SD-OCT volume, the projection image

is obtained by computing the mean intensity values from a small number of slices

surrounding the NCO plane, i.e., the thin layer between the segmented surface 2



101

(orange) and 4 (yellow) in the flattened OCT image, as indicated by the yellow

arrows in Fig. 7.5.b and is referred to as the “vessel-oriented” OCT projection image

as it is also used for the OCT vessel feature extraction. Fig. 7.5.d is an example of

the resulted vessel-oriented OCT projection image.

7.3.2.2 Registered-fundus vessel segmentation

To register the segmented original fundus vessels to the vessel-oriented OCT pro-

jection image, we also segment the vessels on the vessel-oriented OCT projection

image using Niemeijer’s previous OCT vessel segmentation approach [50]. Note that

although this preliminary approach presents some false positives around the NCO

boundary in some images as described previously, it is good enough to provide feature

points such as the vessel bifurcations in the region outside NCO for the registration.

The Random Sample Consensus (RANSAC) algorithm [66] is then applied to re-

move the outliers of the initial matching points finding by the Scale Invariant Feature

Transformation (SIFT) detector [67]. An exhaustive search is utilized to find the

best set of matching points. The original fundus vesselness map is registered to the

vessel-oriented OCT projection image using an affine transformation and cropped to

the same size as the vessel-oriented OCT projection image. Fig. 7.6 is an illustration

of the registered-fundus vessel segmentation.

7.3.3 Multimodal retinal vessel segmentation

7.3.3.1 Overview

The multimodal approach utilizes features from both modalities of SD-OCT vol-

umes and color fundus photographs for pixel classification to segment the vessels. In
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(a) (b)

(c) (d) (e)

Figure 7.6: Illustration of registered-fundus vessel segmentation. (a) Original color
fundus image. (b) Segmented vesselness map of the original fundus image. (c) Vessel-
oriented OCT projection image. (d) Preliminary OCT vessel segmentation [50]. (e)
Cropped fundus-to-OCT registered vessel image.

SD-OCT modality, to suppress the false positives near the NCO boundary, the algo-

rithm first pre-segments the NCO using the approach presented in Chapter 4 [35,36].

Oriented Gabor wavelets rotated around the center of the NCO along with the cor-

responding oriented NCO-based templates are applied to extract OCT features (Sec-

tion 7.3.3.3) [52] . To extract the fundus features, the fundus images are first regis-

tered to the vessel-oriented OCT projection images (using vessel information) in the

same manner as registering the segmented fundus vessel images to the OCT modality

(Section 7.3.2.2) and cropped to the same size as the vessel-oriented OCT projection

images. Gabor wavelets with oriented NCO-based templates and an additional Gaus-
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sian filter family with different Gaussian derivatives and scales are applied on the

registered fundus images to extract the fundus features. A k-NN classifier is utilized

to detect the retinal vessels by combining the complementary feature spaces of the

two modalities as described in Section 7.3.3.5 [58]. The major steps of the multimodal

vessel segmentation can be found in Fig. 7.3 and the further details are provided in

the paragraphs below.

7.3.3.2 NCO pre-segmentation in SD-OCT volumes

(a) (b) (c) (d)

Figure 7.7: Illustration of NCO segmentation. (a) Central slice of the raw SD-OCT
volume. (b) Central slice of the flattened SD-OCT volume with three radially in-
terpolated surfaces. (c) NCO-aimed OCT projection image obtained from the layer
indicated by the yellow arrows in b. (d) NCO (outer boundary) and optic cup (inner
boundary) segmentation overlapping with the NCO-aimed projection image.

To incorporate the NCO information into the vessel classification process, the

NCO is pre-segmented from a NCO-aimed OCT projection image using the approach

as described in (Chapter 4) [35, 36]. Fig. 7.7 is an example illustration of the NCO

segmentation. Having the NCO segmentation enables the projected position of this

3-D structure to be utilized in the computation of features for the classification.
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7.3.3.3 Feature extraction in SD-OCT volumes

The pixel features in the SD-OCT image modality are generated from the vessel-

oriented OCT projection images (Fig. 7.8.b) using a similar Gabor wavelet filter

family as used in our single modal OCT vessel segmentation approach [52] (Chapter

6).

The Gabor wavelet parameters are chosen as follows: the Gaussian scale σ ∈

{1, 2}, spatial frequency scale ν ∈ {1, ..., 6}, and orientation µ ∈ {0, ..., 8}. Together,

a Gabor wavelet family with 2 Gaussian scales, 6 spatial frequency scales, and 9

orientations is generated. To suppress the NCO false positive tendency, the NCO-

based templates as described in Section 6.3.2.2 of Chapter 6 are also applied. The

intensity value from the vessel-oriented OCT projection image is also included in the

SD-OCT modality feature space.

7.3.3.4 Feature extraction on fundus photographs

The pixel features in the color fundus image modality are generated from the

green channel of the registered fundus image as shown in Fig. 7.8.a because the green

channel provides a relatively high vessel contrast. Oriented Gabor wavelets with

NCO-based templates and additional Gaussian filter banks in x- and y-direction are

applied for the feature extraction.

More specifically, oriented Gabor wavelets with NCO-templates at Gaussian scale

of σ = 2, spatial frequency scales ν ∈ {1, ..., 5}, and orientation µ ∈ {0, ..., 8} are

created. Together, they come to a Gabor wavelet family with 1 Gaussian scale, 5

spatial frequency scales, and 9 orientations [52]. In addition, a Gaussian filter family
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with the Gaussian derivatives with the orders of N ∈ {1, 2} and 5 Gaussian scales at

σ ∈ {1, 2, 4, 8, 16} is also generated. The Gaussian derivatives are applied only in the

x- and y-direction. The intensity value from the green channel of the transformed

color fundus photograph is also included in the fundus modality feature space.

Table 7.1 is a summary of the pixel features from the SD-OCT and fundus images.

Table 7.1: Pixel features from the SD-OCT and fundus images

OCT features Fundus features

Frequency ν ∈ {1, ..., 6} ν ∈ {1, ..., 5}
Oriented Gabor wavelets Gaussian scale σ ∈ {1, 2} σ = 2
with NCO-templates Orientation µ ∈ {0, ..., 8} µ ∈ {0, ..., 8}

Gaussian scale None σ ∈ {1, 2, 4, 8, 16}
Gaussian derivative filters Order None N ∈ {1, 2}
Original intensity Included Included

7.3.3.5 k-NN classification

After separately extracting the pixel features from the vessel-oriented OCT pro-

jection and registered fundus images, the feature spaces of the two modalities are

combined. In other words, for each sample in the multimodal image space, the mul-

timodal feature vectors include the features from both modalities and each feature

vector is normalized to zero mean and unit variance.

We then apply a supervised pixel-classification-based approach to identify the

blood vessels. More specifically, the method utilizes a one-time training phase. The

training set includes 15 image pairs of vessel-oriented OCT projection images and

corresponding registered fundus images. Totally 200 × 200 × 15 = 600000 training
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(a) (b) (c) (d)

Figure 7.8: Illustration of multimodal retinal vessel segmentation. (a) Registered
fundus to OCT image. (b) Vessel-oriented OCT projection image. (c) A schematic
illustration of the Gabor wavelet responses and the NCO-based templates oriented at
20 degrees. Blue arrow = NCO contour. Purple arrows = template pair centered on
the NCO boundary. (d) Vessel segmentation from the multimodal approach.

samples are obtained and each sample is labeled “vessel” or “non-vessel” with the help

of experts as described in Section 7.4. The random sampling is utilized to decrease

the training samples and thus enhance the training speed.

In the testing phase, each pixel pair in the test image pair of the vessel-oriented

OCT projection images and corresponding cropped fundus registered images is treated

as a query sample and is classified by the trained k-NN classifier with k = 31. Each

query sample (pixel pair) in the test image pair is assigned to a soft label, i.e. a

posterior probability as described in Chapter 6. Fig. 7.8 is an example illustration of

the multimodal blood vessel segmentation.

7.4 Data and experimental methods

The data is based on the dataset for the NCO segmentation used in Chapter 4 [36],

which includes 34 independent deidentified ONH-centered SD-OCT scans (CirrusTM

HD-OCT) and corresponding stereo color fundus photographs (Nidek 3Dx) image
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pairs from 34 subjects with glaucoma. Fifteen image pairs are randomly chosen as

the training set and the remaining nineteen pairs are used as the test set.

Each SD-OCT scan consists of 200 × 200 × 1024 voxels, corresponding to 6

× 6 × 2 mm3. Each stereo color fundus photograph has 4096 × 4096 pixels. The

NCO-aimed, vessel-oriented OCT projection images, and the cropped color fundus

registered images have a size of 200 × 200 pixels. The pixel depth of the color fundus

photograph is 3 × 8-bit in red, green, and blue channels.

Expert-assisted manual tracings with each pixel labeled as “vessel” or “non-vessel”

are obtained based on the vessel-oriented OCT projection and cropped fundus reg-

istered images. When mis-alignments between the two images exist, the manual

tracings favor the vessel information from the vessel-oriented OCT projection images

in the region outside the NCO. In the region inside the NCO, the vessel tracings are

the union of the vessel information from both images. The manual tracings are used

as the reference standard for the validation of the vessel segmentation approaches.

The performance of the vessel segmentation approaches is evaluated based on the

AUC of the ROC curves. The AUC comparison is performed based on non-parametric

approach proposed by DeLong et al. [68] using the pROC package [69] for R and p-

values less than 0.05 are considered significant.

7.5 Results

Table 7.2 and 7.3 demonstrate the quantitative results by comparing our two

current approaches, i.e. the registered-fundus and multimodal approaches, with two

closest previous approaches, i.e. Niemeijer’s previous OCT [50] and our previous
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Table 7.2: AUC comparison among Niemeijer’s previous OCT, our previous single
modal OCT, registered-fundus, and multimodal algorithms for the 16 automated-
registration-based test eyes

Region Inside NCO
Modality Single modal Multimodal

Niemeijer’s Our Registered- Multi-
Algorithm OCT OCT [3] fundus modality
AUC 0.65 0.68 0.87 0.87
(Pairwise AUC test) [1] (p < 0.05) (p < 0.05) (p > 0.05)
(Pairwise AUC test) [2] (p < 0.05) (p < 0.05)

Region Outside NCO
Modality Single modal Multimodal

Niemeijer’s Our Registered- Multi-
Algorithm OCT OCT [3] fundus Modality
AUC 0.85 0.87 0.92 0.94
(Pairwise AUC test) [1] (p < 0.05) (p < 0.05) (p < 0.05)
(Pairwise AUC test) [2] (p < 0.05) (p < 0.05)

[1]: pairwise AUC test [68] performed between the multimodal and the three indicated single
modal vessel segmentation approaches, respectively.

[2]: pairwise AUC test [68] performed between the registered-fundus and the two indicated OCT-
based vessel segmentation approaches, respectively.

[3]: our OCT refers to our single modal OCT vessel segmentation approach (Chapter 6) [52].

single modal OCT (Chapter 6) [52] approaches. Note that in Table 7.2, three of

the 19 test eyes are excluded to the statistical analysis because of the relative large

automated registration errors due to the low vessel visibility and/or “non-optimal”

OCT projection images such as from the motion artifact. However, Table 7.3 provides

the AUC analysis results for all the 19 test eyes. In the three cases that the automated

registration presents relative large errors, a manual registration is applied.

From Table 7.3, for the region inside the NCO, the AUC of Niemeijer’s previous

OCT, our previous single modal OCT, our current registered-fundus and multimodal

approaches for the 19 test eyes are 0.64, 0.67, 0.85, and 0.86 respectively; for the
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Table 7.3: AUC comparison among Niemeijer’s previous OCT, our previous single
modal OCT, registered-fundus, and multimodal algorithms for all the 19 test eyes

Region Inside NCO
Modality Single modal Multimodal

Niemeijer’s Our Registered- Multi-
Algorithm OCT OCT [3] fundus modality
AUC 0.64 0.67 0.85 0.86
(Pairwise AUC test) [1] (p < 0.05) (p < 0.05) (p > 0.05)
(Pairwise AUC test) [2] (p < 0.05) (p < 0.05)

Region Outside NCO
Modality Single modal Multimodal

Niemeijer’s Our Registered- Multi-
Algorithm OCT OCT [3] fundus Modality
AUC 0.84 0.87 0.90 0.92
(Pairwise AUC test) [1] (p < 0.05) (p < 0.05) (p < 0.05)
(Pairwise AUC test) [2] (p < 0.05) (p < 0.05)

[1]: pairwise AUC test [68] performed between the multimodal and the three indicated single
modal vessel segmentation approaches, respectively.

[2]: pairwise AUC test [68] performed between the registered-fundus and the two indicated OCT-
based vessel segmentation approaches, respectively.

[3]: our OCT refers to our single modal OCT vessel segmentation approach (Chapter 6) [52].

(a) (b)

Figure 7.9: ROC curves of four different vessel segmentation approaches for all the
19 test eyes. ROC curves in the region (a) inside the NCO and (b) outside the NCO.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7.10: Example comparison of the four different vessel segmentation algorithms.
(a) Cropped fundus registered image. (b) Vessel-oriented OCT projection image.
(c) Ground truth. (d-g) Vessel segmentation from Niemeijer’s previous OCT, our
previous single modal OCT, registered-fundus, and multimodal approach respectively.
The red arrows indicate the false positives or vessel breaks due to the presence of the
optic disc/NCO boundary.

region outside the NCO, are 0.84, 0.87, 0.90, and 0.92 respectively. Based on the

p-values of the AUC comparison, the two present fundus-related vessel segmenta-

tion approaches perform significantly better than the two previous OCT-based single

modal approaches in both the region inside and outside the NCO. In the region

outside the NCO, the multimodal approach performs significantly better than the

registered-fundus approach and in the region inside the NCO, it presents a similar

performance to the registered-fundus approach. The plots of ROC curves for the 19

test eyes are presented in Fig. 7.9.

Two sets of example visual comparison of the four different vessel segmentation
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7.11: Example comparison of the four different vessel segmentation algorithms.
(a) Cropped fundus registered image. (b) Vessel-oriented OCT projection image.
(c) Ground truth. (d-g) Vessel segmentation from Niemeijer’s previous OCT, our
previous single modal OCT, registered-fundus, and multimodal approach respectively.
The red arrows indicate the false positives or vessel breaks due to the presence of the
optic disc/NCO boundary. The green arrow indicates the false positive from the
choroidal vessels.

approaches are provided in Fig. 7.10 and 7.11 respectively. As can be seen, both

the quantitative and qualitative results of the two present fundus-related approaches

demonstrate a great improvement over the two previous single modal OCT-based

approaches.

7.6 Discussion and conclusions

We present two novel retinal vessel segmentation approaches, i.e. the registered-

fundus and the NCO false-positive-suppression-based multimodal vessel segmentation

approach by utilizing the vessel information from fundus photographs with the aim to
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obtain a better vessel identification in the SD-OCT volumes. The registered-fundus

vessel segmentation segments the vessels from the original fundus photographs and

then registers the segmented vessel images to the SD-OCT modality. The multimodal

approach simultaneously segments retinal vessels using the complementary informa-

tion from both SD-OCT volumes and color fundus images. The two fundus-related

vessel segmentation approaches perform significantly better than two previous OCT-

based single modal approaches in the regions both inside and outside the NCO.

The registered-fundus approach in general provides an accurate vessel segmenta-

tion due to the high vessel contrast on fundus photographs. However, it has certain

typical limitations, for instance, the typical vessel breaks near the optic disc/NCO as

indicated by the red arrows in Fig. 7.10.f and similar optic disc/NCO false positives

to Niemeijer’s OCT vessel segmentation approach as indicated by the red arrow in

Fig. 7.11.f. In addition, it also presents typical false positives from choroidal ves-

sels as indicated by the green arrow in Fig. 7.11.f. Such limitations are overcome

by the multimodal approach for the following reasons. 1) The incorporation of the

pre-segmented NCO positional information to both the OCT and fundus pixel fea-

tures allows the suppression of the false positives near the NCO/optic disc. 2) As the

fundus photographs are the projection of the structures in the ONH, the choroidal

vessels may present on fundus photographs, although the visibility is relative low

compared to the retinal vessels on fundus photographs. However, the vessel-oriented

OCT projection images are taken from the layer around the RPE/BM plane in SD-

OCT volumes, where the choroidal vessels are not visible. The incorporation of the

OCT features could “relatively” suppress the responses from the choroidal vessels. In
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addition, the choroidal vessels do not have the same tendency of radially distributed

around the center of the NCO as the retinal vessels. The oriented Gabor wavelets

could thus suppress their responses.

The presented multimodal algorithm overall performs better than the other three

algorithms. However, this approach still has limitations. 1) As can be seen, some

segmented vessels present breaks and some small vessels are missing. In this work,

for computational efficiency, we only take 9 orientations for the Gabor wavelets. Use

of more orientations may result in a higher accuracy. 2) The registration errors of

the fundus-to-OCT could mis-guide the classification. For instance, when large mis-

alignment of the two modality images occurs, the classifier may treat a non-overlapped

vessel as two vessels. 3) The expert may not have always traced very small vessels

they deemed “incomplete”, whereas the algorithm would have found portions of these

vessels, thus (incorrectly) causing the identification of these regions as false positives.

In conclusion, we present a novel registered-fundus and a novel multimodal vessel

segmentation approach to help obtain better vessel profiles in the SD-OCT volumes.

Overall, the two present fundus-related approaches perform better than two clos-

est previous OCT-based vessel segmentation approaches. The multimodal approach

performs better than all the three single modal vessel segmentation approaches of

the registered-fundus and the two OCT-based approaches quantitatively and quali-

tatively.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Discussion and conclusions

In this Ph.D. project, overall, a multimodal 3-D scale-learning-based framework is

developed to iteratively identify the neural canal opening (NCO) and retinal vessels in

spectral-domain optical coherence tomography (SD-OCT) volumes by incorporating

the pre-identified NCO locational information to the vessel classification and vessel

positional information to the cost function of graph searching of the NCO based

on their mutual positional relationship. Recall that four specific aims are included

this project and we conclude this project based on the four aims in the following

paragraphs.

Aim 1: In aim 1, a NCO segmentation approach using a graph theoretic approach

with the application in SD-OCT volumes of human eyes is developed and validated.

In most eyes, the algorithm parameters correlate well with the RS parameters from

manual planimetry. However, a small discrepancy exists between the NCO and the

clinical disc margin in some eyes, as expected. Based on the reproducibility analysis,

the algorithm segmentation is robust across repeated visits.

Aim 2: In aim 2, a 3-D wavelet-transform-learning-based graph theoretic ap-

proach for segmenting the NCO by iteratively using the pre-identified NCO and vessel

positional information (from aim 3 or 4) with the application in SD-OCT volumes

of non-human primate eyes is developed and validated. The developed algorithm

is validated by comparing the segmented 3-D NCO points with the manual delin-

eation directly from the SD-OCT volumes. Both the quantitative and visual results
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demonstrate a great agreement between the automated segmentation and the manual

delineation.

Aim 3: In aim 3, a single modal classification approach for identifying retinal

vessels in SD-OCT volumes by incorporating the pre-segmented NCO positional in-

formation to the vessel classification to suppress the NCO false positives is developed

and validated. Compared to a closest previous work of OCT vessel segmentation ap-

proach without the incorporation of the NCO positional information, the algorithm

presents an obvious improvement.

Aim 4: In aim 4, a NCO-false-positive-suppression-based multimodal concurrent

classification and a registered-fundus approach for better identifying retinal vessels in

SD-OCT volumes using additional fundus information are developed and validated.

The multimodal approach classifies the vessels utilizing the combined complementary

features from SD-OCT volumes and color fundus photographs, such as the 3-D retinal

layer information, better NCO contrast from the 3-D SD-OCT modality, and better

vessel contrast inside the NCO from fundus photographs. The registered-fundus ap-

proach segments vessels on original fundus images and registers the segmented vessels

to SD-OCT modality. Based on the ROC analysis, the present registered-fundus and

multimodal vessel segmentation approaches both perform significantly better than

two previous closest OCT-based vessel segmentation approaches (including that from

aim 3). The multimodal approach overall performs better than the registered-fundus

and the other two OCT-based approaches.

Note that aim 1 presents an initial NCO segmentation using a graph theoretic

approach based on the edge cost function. While aim 2 presents an enhanced 3-D
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retinal layer and NCO segmentation approach using the lifting-scheme-based wavelet

transform tuned by the genetic algorithm by specifically minimizing the distance of

the segmented multiple layers and manual tracings at the RPE/BM complex and

further extends the 3-D graph-based multiple layer segmentation with the use of

scale-learning-based cost function.

Aim 3 presents a NCO false-positive-suppression-based single modal OCT vessel

classification approach by incorporating the pre-segmented NCO positional informa-

tion to the vessel classification. In aim 4, the NCO false-positive-suppression-based

single modal OCT vessel classification is further extended to use the additional fundus

vessel information. Especially note that the multimodal vessel segmentation approach

provides a scheme to utilize the combined complementary features from SD-OCT vol-

umes and color fundus photographs, such as the 3-D retinal layer information, better

NCO contrast from the 3-D SD-OCT modality, and better vessel contrast inside the

NCO from fundus photographs.

In addition, in aim 3, the pre-segmented NCO positional information is incorpo-

rated into the vessel classification for suppressing the false positive tendency near the

NCO boundary. Such a technique is also applied on aim 4 of the multimodal vessel

segmentation. While in aim 2, the pre-segmented vessel positional information is in-

corporated into the cost function of the graph searching of the NCO to enhance the

NCO segmentation. Thus this project provides a scheme for iteratively identifying

the structures having mutual positional relationship by incorporating each other’s

pre-identified positional information.

Although the initial NCO segmentation performed in human eyes is not able to
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be evaluated based on the manual tracings directly from SD-OCT volumes, the re-

peatability analysis indicates the robustness of the algorithm across repeated visits.

While the enhanced wavelet-transform-learning-based NCO segmentation is capa-

ble to directly compare to the manual delineation from SD-OCT volumes, both the

quantitative and visual results demonstrate a great agreement between the automated

segmentation and the manual tracings. Due to the constant anatomic structure and

stable nature of the NCO, the robust segmentation of the 3-D NCO moves us towards

being able to verify our core hypothesis motivating this study that the identification

of the NCO will enable more reproducible and objective glaucomatous parameters

than what is currently possible from manual planimetry alone.

8.2 Potential future directions

This section provides some potential future directions to help the management of

glaucoma.

8.2.1 NCO-based volumetric parameters

As mentioned previously, the identification of the NCO in SD-OCT volumes could

help produce a zero reference plane and thus provide a possibility to derive various

optic nerve morphometric parameters based on the NCO reference plane. Here we

propose two potential volumetric parameters - the “pre-NCO rim volume” and “post-

NCO cup volume”. Fig. 8.1 is an example illustration of the created NCO reference

plane and proposed volumetric computation positions. The 2-D NCO position is

obtained from the segmentation described in Chapter 4. The precise locations of

the 3-D NCO points are determined by perpendicularly projecting the 2-D NCO
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points onto the interpolated surface 3 (Section 4.5.2 of Chapter 4). A least-squares

fit was used to fit a plane to the projected 3-D NCO points and this plane was then

transformed into a horizontal plane - forming the desired NCO reference plane (Fig.

8.1.a and b). The same transformation was applied to the OCT volume and top

internal limiting membrane (ILM) surface and they are thus re-flattened.

The pre-NCO rim volume and post-NCO cup volume were computed based on the

horizontal NCO reference plane and the re-flattened top ILM surface. More specif-

ically, the 2-D NCO points were perpendicularly projected to the top ILM surface

from the reference plane to find the position where the NCO boundary crossed. The

pre-NCO rim volume is the summation of the voxels under the top ILM surface and

above the reference plane and the post-NCO cup volume is that above the top ILM

surface and under the reference plane (Fig. 8.1.c).

(a) (b) (c)

Figure 8.1: Example illustration of the NCO reference plane and the volumetric
computation positions. (a) Reference plane (indicated by the green line) overlapping
with a cross-sectional slice of OCT image. (b) 3-D rendering of the reference plane.
(c) Pre-NCO rim volume (indicated by the blue color) and post-NCO cup volume
(indicated by the magenta color).
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Note that the proposed NCO reference plane and volumetric parameters are based

on the flattened OCT volumes. Here we just want to address the potential derivation

of various optic nerve head (ONH) volumetric parameters based on the identified NCO

boundary. A more practical way may consider transforming the 3-D NCO points to

the original “tilted” raw OCT space and compute the 3-D parameters in the original

space. In addition, the “reference plane” may not necessarily be a flat surface. A

fitted surface such as by the thin plate spline based on the 3-D NCO points may be

more desirable.

8.2.2 Segmentation of anterior surface of lamina
cribrosa

As mentioned in Chapter 2, laminar deformation results in a clinically deeper glau-

coma cupping from the damage of the lamina cribrosa, scleral flange, and peripapillary

scleral connective tissues. A potential future direction for helping the management

of glaucoma is to deal with the deeper glaucoma cupping. An initial investigation

could segment the anterior surface of lamina cribrosa (ASLC) in SD-OCT volumes

using the graph theoretic approach. Fig. 8.2 illustrates a typical central ONH with

the highlight of the NCO (yellow arrows), large blood vessel (pink arrow) inside the

NCO, and the ASLC (green arrow) in the SD-OCT volume of a glaucomatous human

eye. Note that the mutual positional relationship exists among the ASLC, NCO, and

blood vessels. Thus the ASLC could be segmented by incorporating the detected

NCO and blood vessel locational information to the graph search. More specifically,

the lamina cribrosa typically locates in the region under and inside the NCO. The

segmented NCO boundary could be used to confine a particular region of interest
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(ROI) for the graph searching of the ASLC. As can be seen in Fig. 8.2, a large

blood vessel crosses over with the lamina cribrosa, causing the difficulty of the ASLC

segmentation. This is not non-typical in the ONH-centered SD-OCT scans because

the poles of the lamina cribrosa are the pathway of the blood vessels exiting the eye.

This problem could be remedied by incorporating the detected blood vessel positional

information to the graph searching of the ASLC.

Figure 8.2: Illustration of typical central ONH with highlight of NCO (yellow arrows),
large blood vessel inside NCO (pink arrow), and ASLC (green arrow).

Currently both the human and non-human primate SD-OCT volumes we have

are acquired using the SD-OCT with the central wavelength at 800 nm range. The

ASLC is only visible in a small amount of SD-OCT scans. However, the SD-OCT

with higher wavelength centered at 1-1.1 µm could provide deeper penetration of

the ONH and would be expected to provide better visibility of the laminar cribrosa.

Thus the segmentation of ASLC is promising considering the capability of the high

visibility of this structure in the longer wavelength SD-OCT scans.
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[47] M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, “Image structure cluster-
ing for image quality verification of color retina images in diabetic retinopathy
screening,” Medical Image Analysis, vol. 10, pp. 888–898, 2006.

[48] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu, “An optimal algo-
rithm for approximate nearest neighbor searching in fixed dimensions,” Journal
of the ACM, vol. 45, no. 6, pp. 891–923, 1998.



126

[49] H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Au-
tomatic retinal blood flow calculation using spectral domain optical coherence
tomography,” Optics Express, vol. 15, no. 23, pp. 15 193–15 206, 2007.

[50] M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff,
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[52] Z. Hu, M. Niemeijer, M. D. Abràmoff, K. Lee, and M. K. Garvin, “Automated
segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening
false positive suppression,” in Proc. of Medical Image Computing and Computer-
Assisted Intervention (MICCAI 2010), Part III, ser. Lecture Notes in Computer
Science, vol. 6363. Springer-Verlag, 2010, pp. 33–40.

[53] M. Niemeijer, M. K. Garvin, B. van Ginneken, M. Sonka, and M. D. Abràmoff,
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