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ABSTRACT 

 

Currently in our clinic, a mega-voltage cone beam computed tomography 

(MVCBCT) scan is performed before each treatment for patient localization. For non-

small cell lung cancer (NSCLC) patients, a strain gauge is used as an external surrogate 

to indicate tumor motion in both the planning stage and the treatment stage. However, it 

is likely that the amplitude of tumor motion varies between treatment fractions without a 

corresponding change in the surrogate signal. Motion amplitude larger than what was 

planned may underdose the tumor and overexpose normal tissues.  

The overall objective of this project is to extend the capabilities of MVCBCT for 

respiratory motion management by taking advantage of 2D projection images. First, a 

new method was developed to detect ipsi-lateral hemi-diaphragm apex (IHDA) motion 

along superior-inferior (SI) direction in 3D. Then a respiratory correlated reconstruction 

method was implemented and verified. This method is able to create MVCBCT volume 

in the full exhale (FE) and the full inhale (FI) phases, respectively. The diaphragm to 

tumor motion ratio (DTMR) was derived by quantifying the absolute position of the 

tumor and IHDA in these two volumes. The DTMR and the extracted IHDA motion were 

further used to calibrate the strain gauge signal.  

Second, an organ motion detection approach was developed, in which the 

detection is converted into an optimal interrelated surface detection problem. The 

framework was first applied to tumor motion extraction, which enables accurate detection 

for large tumors (with a diameter not smaller than 1.9cm). The framework was then 

applied to lung motion extraction and the extracted lung motion model was used to create 

a series of displacement vector fields for a motion compensated (MC) reconstruction. The 

accuracy of both tumor extraction and the MC approach was validated, which shows their 

clinical feasibility.  
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Last but not least, a novel enhancement framework was developed. The aim of 

this approach is to eliminate the overlapping tissues and organs in the CBCT projection 

images. Though scattering and noise is the major problem, the proposed method is able to 

achieve enhanced projection images with a higher contrast to noise ratio (CNR) without 

compromising detection accuracy on tumors and IHDA. 
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ABSTRACT 

 

Currently in our clinic, a mega-voltage cone beam computed tomography 

(MVCBCT) scan is performed before each treatment for patient localization. For non-

small cell lung cancer (NSCLC) patients, a strain gauge is used as an external surrogate 

to indicate tumor motion in both the planning stage and the treatment stage. However, it 

is likely that the amplitude of tumor motion varies between treatment fractions without a 

corresponding change in the surrogate signal. Motion amplitude larger than what was 

planned may underdose the tumor and overexpose normal tissues.  

The overall objective of this project is to extend the capabilities of MVCBCT for 

respiratory motion management by taking advantage of 2D projection images. First, a 

new method was developed to detect ipsi-lateral hemi-diaphragm apex (IHDA) motion 

along superior-inferior (SI) direction in 3D. Then a respiratory correlated reconstruction 

method was implemented and verified. This method is able to create MVCBCT volume 

in the full exhale (FE) and the full inhale (FI) phases, respectively. The diaphragm to 

tumor motion ratio (DTMR) was derived by quantifying the absolute position of the 

tumor and IHDA in these two volumes. The DTMR and the extracted IHDA motion were 

further used to calibrate the strain gauge signal.  

Second, an organ motion detection approach was developed, in which the 

detection is converted into an optimal interrelated surface detection problem. The 

framework was first applied to tumor motion extraction, which enables accurate detection 

for large tumors (with a diameter not smaller than 1.9cm). The framework was then 

applied to lung motion extraction and the extracted lung motion model was used to create 

a series of displacement vector fields for a motion compensated (MC) reconstruction. The 

accuracy of both tumor extraction and the MC approach was validated, which shows their 

clinical feasibility.  
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Last but not least, a novel enhancement framework was developed. The aim of 

this approach is to eliminate the overlapping tissues and organs in the CBCT projection 

images. Though scattering and noise is the major problem, the proposed method is able to 

achieve enhanced projection images with a higher contrast to noise ratio (CNR) without 

compromising detection accuracy on tumors and IHDA. 
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CHAPTER 1 

BACKGROUND AND MOTIVATION 

 

1.1 Project introduction 

 

Radiation therapy to the lung tumor has been a primary treatment option for lung 

cancer for four decades, often in conjunction with chemotherapy when a patient is 

medically unfit for surgery or when the tumor is inoperable (Vora et al., 2000). Generally, 

the development of radiotherapy aims to improve the accuracy and effect to the targeted 

tumor cells while reducing the radiation to the surrounding healthy tissues, since 

radiation may damage DNA of both healthy and malignant cells. Respiratory motion is 

one of the major challenges that may degrade the effectiveness of modern conformal 

radiation therapy (CRT) or intensity modulated radiation therapy (IMRT).  

Overall, the purpose of my Ph.D. work is to explore and validate several novel 

methods that use mega-voltage cone beam CT (MVCBCT) projection images to make 

lung cancer radiotherapy more reliable. The MVCBCT is a daily localization device that 

takes advantage of the treatment beam and an electronic portal imaging device (EPID) 

(Section 1.3 provides the details). In the current clinical procedure, it creates a 3D 

volumetric image which is reconstructed from a series of 2D rotational projection images. 

This 3D volume is used to align with the treatment plan and localize the patient on the 

treatment table. However, when the MVCBCT is used for imaging non-small cell lung 

cancer (NSCLC) patient, this 3D volume alone does not provide information related to 

intra-fractional motion, e.g. respiratory motion. On the other hand, the projection images 

of MVCBCT provide high temporal resolution where one could observe the respiratory 

motion through the 2D image sequence (Figure 1-1). Based on this characteristic, several 

novel methods are developed, including: 
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(1) Detect the motion amplitude of the ipsi-lateral hemi-diaphragm apex (IHDA) 

in projection images, which is used as an internal surrogate to tumor motion 

amplitude; 

(2)  (3D+t) tumor motion model extraction from MVCBCT projection images; 

(3) Respiratory correlated (RC) reconstruction; 

(4) Motion compensated (MC) reconstruction by using a prior motion model of 

the lung; 

(5) An enhancement framework that aims to remove the overlapping confounding 

tissues and organs in the MVCBCT projection images. 

The motivations of each method are introduced as follows. First, the aim of IHDA 

detection is to calibrate the strain gauge signal during treatment delivery. Currently in our 

clinic, the strain gauge is used as an external surrogate to tumor motion during both 

treatment planning and the delivery. There are two major sources of inaccuracies of using 

the strain gauge: phase difference and inter-fractional variation of tumor motion. This 

variation could bring additional toxicity to surrounding tissues and reduce the actual dose 

the tumor may receive. On the other hand, the internal anatomical structures, such as the 

diaphragm or the trachea, have better correlation and less phase difference with the tumor, 

especially for tumors in the lower lobe. The use of the internal surrogate could not only 

provide phase information, but also provide absolute position. Moreover, the diaphragm 

has better contrast than the trachea in the 2D projection images, which makes it very 

suitable to be used as an internal surrogate. In chapter 2, the framework of IHDA 

detection in projection images is presented. The IHDA motion amplitude along the 3D 

superior-inferior (SI) direction is computed, which provides a respiratory signal with 

absolute positioning. This signal is further used as initial input for other approaches, 

including (3D+t) motion extraction, RC reconstruction, MC reconstruction and 

background subtraction.  
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Second, a novel approach of extracting (3D+t) tumor motion model is developed 

and introduced in Chapter 3. Generally, accurate organ segmentation in 2D projection 

images is limited by the low contrast and overlapping confounding tissues. To mitigate 

the influence of those confounding boundaries to the segmentation, the segmented 3D 

tumor shape of each phase is determined from multiple projection images that are sorted 

to this phase. Moreover, the tumor segmentation is converted into a multiple interrelated 

surface detection problem based on a graph search framework, which finds the globally 

optimal solution by solving a maximum flow problem. Constraints on motion and the 

tumor surface are further incorporated in the framework, which makes the segmentation 

more robust. The segmentation framework achieves promising results for large tumors. 

Small tumors are not always visible in the projection images. The accuracy of direct 

tumor segmentation becomes a problem. 

The implementation and validation of the RC reconstruction approach is 

introduced in Chapter 4. RC reconstruction involves sorting the projection images into 

several subsets (phase bins) based on the respiratory signal. Each projection image subset 

is then used to reconstruct a 3D volumetric image. Tumor motion estimation based on RC 

reconstruction can be suitable for various tumor sizes. The RC reconstruction creates a 

bimodal MVCBCT, which contains a 3D volume in full exhale (FE) and full inhale (FI) 

phase respectively. To calibrate the strain gauge, a linear relationship is assumed between 

diaphragm and tumor motion amplitude between the two phases. The diaphragm to tumor 

motion ratio (DTMR) is used to measure this linear relationship, which has a 

mathematical representation as: 

FEFI

FEFI

TumorTumor

IHDAIHDA
DTMR

−
−=

 

(1-1) 
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The DTMR is further used to divide the IHDA motion amplitude, which is 

extracted from 2D projection images. The result after the division is the estimated tumor 

motion amplitude, which will be used to calibrate the strain gauge.  

Chapter 5 introduces the motion compensated (MC) reconstruction based on a 

prior motion model of the lung. Generally, respiratory motion causes motion artifacts in 

the full reconstructed volume (reconstructed from all the projection images), degrading 

the accuracy of target localization. RC reconstruction is limited by the view-aliasing 

artifact caused by an insufficient number of projection images. On the other hand, MC 

reconstruction is free of the view-aliasing artifacts, since it uses all the projection images. 

Moreover, it incorporates a prior motion model into the de-convolution process during 

the back-projection, which makes it also free of motion blur. Usually the motion model is 

represented by a time sequence of displacement vector fields (DVF). We have studied the 

feasibility of using a prior model generated from a lung motion model, which is derived 

by using the method introduced in Chapter 2. We have validated both correlated 

reconstruction and MC reconstruction based on image quality and clinically significant 

parameters, such as motion and volume quantification accuracy.  

Finally, an enhancement framework of MVCBCT is introduced in Chapter 6. In 

the MVCBCT 2D projection images, the organ of interest (OOI), such as the diaphragm 

or the lung, is always superimposed with other anatomical structures and often has low 

contrast. From this perspective, it would also be promising if one could make the OOI 

clearer and without overlapping confounding objects through an image enhancement 

procedure. The enhancement is achieved by forward projection of non-interest organs and 

tissues of the 3D volume. A study based on image quality and organ localization 

accuracy shows the feasibility of this approach.  

Chapter 7 gives a brief conclusion of this thesis and presents the future directions. 

In this introduction chapter, a comprehensive review of management of 

respiratory motion in radiotherapy is followed, including the problems brought by 
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respiratory motion, and current image guided radiotherapy (IGRT) techniques applied to 

account for those problems. Then the description of the mega-voltage cone beam CT 

(MVCBCT) system is given. MVCBCT is currently equipped in our clinic for daily 

localization, which is the platform where all the new approaches presented in this thesis 

were developed and validated.  

(a) (b) 

Figure 1-1: Examples of projection image of Mega-voltage cone beam CT: (a) The tumor 
is visible in the right lower lobe of the lung (blue ellipse). The hemi-diaphragm at the 

bottom of each lung is visible; (b) a lateral view shows the two hemi-diaphragms overlap 
with each other, making it difficult to identify diaphragm boundary in the overlapping 

area (red ellipse). 

 

Figure 1-1 gives one example of an MVCBCT projection image, where part of the 

tumor boundary has weak contrast. The diameter of the tumor in this patient is about 5 

cm, which is very large compared to all the other patient image data that we have derived. 

For some patients the tumor boundary is not readily identifiable in the projection image 

even by a human expert.  
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1.2 Background of respiratory motion management in 

radiation therapy 

 

Cancer is a worldwide challenge to health. In a world cancer report conducted by 

the World Health Organization in 2008, cancer was anticipated to overtake heart disease 

to become the leading cause of death worldwide in 2010 (Boyle & Leven, 2009). The 

cases of cancer will double by 2020 and will nearly triple by 2030. Among various 

cancer-related causes of death, cancer in lung and bronchus is estimated to be the leading 

type in the United States, composing 29% and 26% for male and female respectively 

(Jemal, Siegel, Xu, & Ward, 2010). The possible treatment of lung cancer includes 

surgery, chemotherapy and radiation therapy. Recent advances in medicine and 

engineering have changed the curative effect overtime. According to a recent survey, the 

five year survival rate among 200 patients diagnosed with stage I non small cell lung 

cancer (NSCLC), which accounts for 75% to 80% of all lung cancer cases, could improve 

from 10% to 36% using the modern three-dimensional (3D) conformal radiation therapy 

(CRT) (Belderbos, Heemsbergen, De Jaeger, Baas, & Lebesque, 2006). However, the 

worldwide survival rate of lung cancer is still low, with only 14% in 2008.  

 

1.2.1 Mechanics of Respiration 

 

Respiration is the major function of lungs to exchange gas between blood and air. 

One cycle of breathing can be generally divided into inhale and exhale phases. During the 

inhale phase, respiratory muscles, such as the diaphragm and intercostal muscles that 

connect adjacent ribs, contract and descend, pulling the ribs superiorly and anteriorly, 

thus increasing the volume of the thoracic cavity. The air outside is pushed into the cavity 

by the transpulmonary pressure. During the exhale phase the respiratory muscles relax 



7 
 

 

and the lung recoils to its deflated volume. Since the mechanism of the inhale phase 

requires active participation of respiratory muscles, which is different from the exhale 

phase, the time frames for inhale and exhale are typically different. The motion trajectory 

of a specific location in the lung such as that of the tumor varies from inhale to exhale.  

The breathing pattern can vary in magnitude, period and regularity. Figure 1-2 

compares the position of the ipsi-lateral hemi-diaphragm apex (IHDA) as a function of 

time of two patients extracted from fluoroscopic images of mega-voltage cone beam 

computed tomography (MVCBCT), where distinct differences could be observed (details 

of IHDA motion detection can be seen in chapter 2). The IHDA position along the 

superior-inferior (SI) direction here serves as the respiratory signal, which is considered 

as a surrogate of tumor motion. On one hand, respiration is an involuntary action. One 

can be unconscious about his or her breathing. During unconscious respiration, the 

periodic cycle is regulated through chemoreceptors by the levels of CO2, O2 and pH in 

the arterial blood. Thus the frequency of respiration is varied during different times. On 

the other hand, individuals are able to control the magnitude and frequency of respiration 

within a certain limit. This enables clinicians to use audiovisual feedback to coach the 

patient during respiration, which has been demonstrated to have a better respiratory 

regularity (Neicu, Berbeco, Wolfgang, & Jiang, 2006). 
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 Figure 1-2: Variation of respiratory patterns from two different patients. The horizontal 
axis is the rotation angle of the Mega-voltage cone beam CT from -90º to 110º. The 

vertical axis is the superior-inferior position of the ipsi-lateral hemi diaphragm apex in 
mm, which is a good surrogate of tumor motion and represents the respiratory traces. 

 

1.2.2 Problems of respiration in radiotherapy 

 

Respiratory motion, along with other types of motion such as cardiac, 

gastrointestinal or skeletal muscular motion, composes the intrafraction motion during 

radiotherapy. During the entire course of radiotherapy, intrafraction motion limits the 

accuracy of image acquisition, treatment planning and delivery of radiation. Respiratory 

motion affects organs and all tumor sites in the thorax and abdomen. Typically lung 

tumors move from 5 to 10 mm during free breathing. The amplitude could reach to 4.5 

cm in some cases (Stevens et al., 2001). For image acquisition, respiratory motion 

generates artifacts for all imaging modalities, including computed tomography (CT), and 

positron emission tomography (PET). During a CT scan, different parts of the object 

move in and out of the CT slice window. Conventional CT reconstruction algorithms that 

do not account for motion assume that the imaged anatomy is invariant during image 

acquisition. The motion brings artifacts such as distortion of the target volume and 

incorrect positional and volumetric information. Figure 1-3 compares the imaging effect 

of two computed tomography (CT) scans with and without incorporation of respiratory 
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motion information. Figure 1-3a shows one slice of a 4D CT volume, which is 

reconstructed from retrospectively-sorted projection images. Figure 1-3b shows one slice 

of an MVCBCT volume, which is reconstructed from projection images containing all 

the phases. It can be seen that the boundaries of the tumor and diaphragm are hard to 

identify in the MVCBCT image.  

During treatment planning, to account for the uncertainties in the geographic 

positions such as intrafraction motion (due to respiration), interfraction motion and setup 

error, large margins should be added to the clinical tumor volume (CTV) to create a 

planning target volume (PTV) (using the International Commission on Radiation Units 

and Measurements (ICRU) report 62 nomenclature (Prescribing, 1993) (DeLaney, 2009). 

However, large margins limit the dose that can be prescribed. It may also increase the 

likelihood of treatment-related complications. Apart from respiratory motion, there are 

also other factors that clinicians should consider when designing the CTV-PTV margin, 

such as tumor growth and shrinkage, inter or intra-observer variations in GTV delineation, 

daily variation of respiratory motion, systematic error such as CT artifacts, and patient 

setup error. 

During radiotherapy, the existence of respiratory motion causes a blurring of dose 

distribution to the anatomy. Using a static beam, the actual dose distribution would 

become a convolution between the anticipated dose and the probability distribution 

function of total motion displacements that occur when the beam is on (Lujan, Larsen, 

Balter, & Ten Haken, 1999). The lung motion limits the accuracy of radiation delivered 

to the tumor volume. It is reported that the under-dose could reach 30% by using 

conventional radiation therapy techniques (Ross, Hussey, Pennington, Stanford, & Fred 

Doornbos, 1990). 
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Figure 1-3: Image reconstruction example slice in coronal view: (a) FE phase of planning 
CT; (b) MVCBCT reconstructed from all the projections; (c) FE phase of RC MVCBCT 
reconstructed by FDK algorithm; (d) FE phase of RC MVCBCT reconstructed by ART 

algorithm (tumor contour is displayed in blue) 

 

1.2.3 Respiratory Motion Management 

 

Currently the common approaches of accounting for respiratory motion during 

treatment can be generally divided into three categories: breath holding, respiratory 

synchronization and respiratory gating. In this section we will focus on the respiratory 

gating technique that is currently implemented in our clinic.  



11 
 

 

Different from the real time tracking system, the gating system turns on the 

treatment beam only when the tumor moves within a predefined range of positions in the 

respiratory gating system. Since the dose is not continuously delivered, respiratory gating 

takes a longer time than real-time tracking. The position and allowed range of the “gate” 

is usually determined during the planning and localization stage by monitoring the 

respiratory motion. Usually the gating position is selected where the tumor motion is 

estimated to be minimal (full exhale) or the lung volume is maximal (full inhale) 

compared with the rest of the respiratory cycle. Vedam et al (Vedam, Keall, Kini, & 

Mohan, 2001) reported that the point of full exhale provides the most stable portion of the 

respiratory cycle, but factors such as increased fraction of lung tissue exposed to radiation, 

and less separation of lung and critical tissues during the full exhale phase should also be 

considered. More generally, the gating window is always a trade-off between the duty 

cycle and the amount of residual motion, where a larger gating window increases the duty 

cycle and reduces overall treatment time, but increases the tumor motion within the gate. 

The gating could be either based on motion amplitude or phase. For amplitude-based 

gating, the gate is a pre-set interval of the relative positions of the tumor. Phase-based 

gating usually requires an algorithm to compute the relative phase for each sampling time 

point based on the cyclic nature of the signal. The gate is a window between a start and 

end phase within each cycle.  

The methods to identify tumor position are similar to real time tracking. Currently 

either external surrogates or internal fiducial markers are used in gating systems. The 

internal marker faces the problem of pneumothorax (Topal & Ediz, 2003). For external 

surrogates, there are several commercial respiratory gating systems available, including 

the Varian Real-time Position ManagementTM  (RPM) system (Varian Medical Systems, 

Palo Alto, CA), BrainLab (Heimstetten, Germany) ExacTrac Gating/Novalis Gating 

system and Siemens Medical systems (Concord, CA) linear accelerator gating interface 

with an Anzai Belt (Anzai medical CO., Tokyo, Japan). The Varian RPM uses an infrared 
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tracking camera and a reflective plastic box that is placed on the patient’s anterior 

abdominal surface. The ExacTrac system also uses infrared external markers, but it also 

has X-ray imaging capabilities to determine internal anatomy position. Our clinic uses the 

Anzai AZ-733V system, which relies on a strain gauge to record the pressure change 

caused by expansion of a belt strapped around the patient’s abdomen.  

The planning stage for respiratory gated treatments requires gated CT or 4D CT 

scans. Both methods can improve the accuracy of target definition and increase sparing of 

critical structures (D'Souza et al., 2007). For 4D CT, The image acquisition is 

synchronized with the respiratory signal acquisition. Images are acquired at each couch 

position for many respiratory phases. Then the phase information is used to sort the raw 

CT data (projection image) into various phases. Then all the reconstructed images of a 

particular respiratory phase can be concatenated to form a complete 3D volume. Mean 

tumor position, tumor range of motion and relation of tumor trajectory to other organs 

can be derived (Underberg et al., 2004). Currently our clinic is equipped with 4D CT for 

treatment planning. Different imaging parameters, such as the number of slices and the 

number of phases, can be applied to the system. For a typical 4D image containing 8 

phases and 91 slices, the 4D CT scan can be obtained within a few minutes. Gated CT, on 

the other hand, is equivalent to a subset of a 4D CT scan. The imaging acquisition is 

initiated by a trigger that is controlled by the respiratory signal. The gating parameters 

such as displacement or phase based gating, selection of full exhale or inhale and the 

window size for gating (duty cycle) are determined prior to the scan. 

During the treatment, the correlation between tumor motion and the respiratory 

trace of the surrogate will be used to gate the beam. It is very likely that the time-

dependent tumor motion does not accurately correspond to the respiratory surrogate. 

Some studies show that the correlation between tumor motion and external surrogate 

motion cannot be generalized and depends on individual patients (Bruce, 1996; Hoisak, 

Sixel, Tirona, Cheung, & Pignol, 2004). Other studies show that the tumor residual 
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motion can be large when the abdominal surface surrogate is used as the resp(Hoisak et 

al., 2004)iratory signal (Berbeco, Mostafavi, Sharp, & Jiang, 2005; Berbeco, Nishioka, 

Shirato, & Jiang, 2006) and about 30% of the time the radiation beam will miss the target 

(H. Wu et al., 2008). It is reported that a -0.65 to 0.3 s phase delay exists between the 

tumor motion and its abdominal surrogate, while the phase difference between the tumor 

motion and signal of respiratory volume of lung is -0.3 to 0.5 s. Correlation coefficients 

vary greatly from 0.39 to 0.99 for both abdominal surrogates and respiratory volume, 

while respiratory volume has better correlation and reproducibility from day to day 

(Hoisak et al., 2004). Figure 1-4 illustrates the potential phase difference for an external 

surrogate. In this figure one can observe the phase delay between the IHDA and the strain 

gauge signal. Thus the tumor will shift from its desired position during treatment, under-

dose the tumor and overdose the surrounding tissues. It is recommended that if a 

consistent phase delay larger than 0.5 s is observed, the delay should be considered when 

setting the gate interval (Berbeco, Nishioka et al., 2005).  

 

 

Figure 1-4: The correlation between IHDA position (red curve) and Anzai strain gauge 
signal (blue curve). Time delays between these two signals can be observed. The 

horizontal yellow line is a hypothetical amplitude-based gating threshold. If this threshold 
is applied to the strain gauge signal, the position of the IHDA in real beam-on time is 

shown in the thick red curve, which will simultaneously cause an overdose to the 
surrounding tissues during exhale. 
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Another major problem of using external surrogates is the intra-fractional 

variation of tumor motion. The tumor motion is likely to change over the course of 

treatment, which makes the correlation with an abdominal surrogate different from that 

which was recorded with the planning CT scan. Generally, variation in the respiratory 

phase can be observed by the signal derived from the external surrogate. However, 

variation in the range of motion can occur without being detected by the strain gauge. In 

our clinic, since the therapist calibrates the Anzai gating system to make the full exhale 

and full inhale phase correspond to 0% and 100% respectively before synchronization, a 

simple scale to the amplitude of the tumor motion will not change the corresponding 

strain gauge signal. Figure 1-5:  illustrates a typical example, where an increase to the 

motion amplitude requires a shorter gating window. Applying the original gating window 

will overdose the surrounding tissues and underdose the tumor.  

 

Figure 1-5: A simple illustration showing the problem of correlation using abdominal 
surrogate: A gating threshold is set as 30% amplitude based on tumor motion during 

planning (pink curve), and the corresponding gating windows in two cycles are illustrated. 
On treatment day the amplitude of tumor motion increases to a certain amount (red curve). 

Applying the gating window the tumor will be outside the desired treatment location 
during a portion of the duty cycle.  
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1.3 MVCBCT as a daily localization tool 

1.3.1 The requirement for localization 

 

As the advances of modern radiotherapy techniques such as 3D CRT and IMRT 

provide more and more conformal and accurate dose delivery, there is a concern related 

to whether the information acquired during the planning CT (such as tumor size, shape, 

correlation of respiration, etc.) is still accurate and reliable enough to represent the patient 

during treatment. A procedure, called “localization” (or setup, or patient alignment in 

some literature) is needed to verify the anatomical and positional information 

immediately before the treatment and provide more accurate reproducible patient setup. 

Conventionally portal images have been used to confirm the patient position based on 

bony anatomy or implanted markers, but this is limited by the time required to process 

the radiographic film and the extra dose to the patient. The highly sensitive and 

automated on-board electronic portal imaging device (EPID), such as the amorphous 

silicon flat panel, is a recent development that breaks through these limits. However, the 

2D projection nature of an EPID limits its capability for 3D visualization and verification. 

Thus there is growing interest in the development of 3D imaging of the patient on the 

treatment table. 

There are several systems that have been developed for this purpose. Generally 

the beam source of the system could be either based on kilo-voltage (KV) X-rays when 

used in diagnostic CT or fluoroscopy or mega-voltage (MV) X-rays which are generated 

from a linear accelerator during treatment. We can categorize the imaging system in a 

treatment room into 4 groups: (1) A CT-on-rail system, which enables the diagnostic CT 

scanners to move on a rail installed in the treatment room (Ma & Paskalev, 2006). (2) 

The kilo-voltage cone beam CT (KVCBCT) system. For most occasions it uses an 

additional KV X-ray source and EPID attached to the treatment gantry to derive cone 
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beam images (Oelfke et al., 2006). There is also an implementation of the KVCBCT 

system on a mobile C-arm (Sorensen, Chow, Kriminski, Medin, & Solberg, 2006). (3) 

The MV CT system, which either uses the existing treatment machine with an attached 

arc of detectors (Evans, Gildersleve, Rawlings, & Swindell, 1993), or a helical 

tomotherapy system that uses an MV fan beam source and a CT ring (Mackie et al., 

2003). (4) The MVCBCT system uses the existing treatment machine with an EPID for 

imaging (Morin et al., 2006; Pouliot et al., 2005).  

Our clinic is currently equipped with the Siemens MVisionTM MVCBCT 

(Siemens oncology care systems, Concord, CA) which utilizes an amorphous silicon 

electronic portal imaging device (Ford, Chang, Mueller, Sidhu, Todor, Mageras, Yorke, 

Ling, & Amols, 2002a). The device and the illustration of its main components can be 

seen in Figure 1-6.   

 

Figure 1-6: Siemens Mvision MVCBCT in the department of radiation oncology, the 
University of Iowa. The main components are illustrated in the picture.   
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1.3.2 An overview of MVCBCT 

 

MVCBCT has several protocols on the range of rotation angle for imaging. For 

example, a clockwise rotation of 200 degrees from -90° to 110°, which is the default 

protocol (Figure 1-7), or 360 degrees from -180° to 179°. For these two protocols one 

projection image is generated per degree. The EPID has a 1024×1024 2D detector array, 

with each element sized in 0.4×0.4 mm2. The source to axis distance (SAD) is 100cm, 

while the source to imager distance (SID) is 145cm. The imaging volume at the isocenter 

is about 27.4×27.4×27.4 cm3, which is large enough to encompass the size of at least one 

lung. The shape of the imaging field of view (FOV), is a cylinder with two small cones 

capping the opposite ends of the rotation axis, due to the cone beam geometry.  

 

Figure 1-7: The gantry of MVCBCT rotates from -90° to 110 in the default protocol.  

 

Although MVCBCT provides a less expensive and more convenient way for 

patient localization, it should be noted that the imaging quality of MVCBCT is somewhat 

degraded compared to that of the planning CT, due to the utilization of MeV photons for 

diagnostic imaging. It is a departure from the general preference for kilo-electron volt 

(KeV) photons. It is reported that the imaging quality in terms of contrast-to-noise ratio 
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and spatial resolution of MVCBCT acquired using the 6MV treatment beam is inferior to 

KVCBCT, even when the dose for MVCBCT is three times that of KVCBCT (Stutzel, 

Oelfke, & Nill, 2008). The difference of attenuation coefficients between tissues in the 

KeV range is greater than that of the MeV range as a result of predominant photon 

interactions with the human body being different. In the MeV range, the primary 

mechanism of photon interaction is Compton scattering, where the cross section for 

Compton scattering is quite similar for bone, muscle, and soft tissues. Conversely, 

photoelectric effect composes the majority of photon interaction in the KeV range, whose 

cross section for bone is very different than it is for soft tissues, producing a high subject 

contrast. The exposure setting for MVCBCT ranges from 2 to 15 MUs. Figure 1-1 is an 

example of one projection image of MVCBCT for a 5MU protocol, which can be 

considered as one frame of an MV fluoroscopic sequence taken while the gantry rotates. 

The lung, the tumor located in the lower lobe, and the diaphragm are visible, but the 

boundaries of the tumor in some parts are not discernible. 

A recent development of MVCBCT imaging is to use carbon rather than tungsten 

as the electron target and to remove the flattening filter for generation of Bremsstrahlung 

X-rays. This is because low atomic number electron targets like carbon generate more 

KeV-range photons than high atomic number targets like tungsten, resulting in better 

imaging quality. The removal of the flattening filter also increases the proportion of KeV-

range photons. This method is implemented by the University of California San 

Francisco and Siemens Oncology Systems (Faddegon, Wu, Pouliot, Gangadharan, & 

Bani-Hashemi, 2008), which also developed MVCBCT. They replaced the 18-21 MeV 

electron scattering foil in the target slide with a 4.2 MeV carbon electron target with no 

flattening filter, which is called the “imaging beam line” (IBL), compared to the 

traditional “treatment beam line” (TBL). Unlike conventional CT, MVCBCT requires 

constant geometrical calibration of 3D to 2D projection, since the relative position of the 

linac X-ray source and the EPID imager may shift over time due to the sagging of 
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mechanical supports. A special calibration phantom containing 108 tungsten beads is 

used, while the position in both 3D and 2D projections of those beads can be measured 

and used to compute the projection matrix. The details of the calibration method can be 

found in (Pouliot et al., 2005). 

The use of MVCBCT brings an additional procedure and dose to the clinical 

workflow of radiotherapy for lung cancer. In our clinic, the MVCBCT imaging is well 

integrated into the entire treatment planning process. The workflow begins with a 4D 

planning CT. After the raw data is reconstructed into multiple 3D volumetric images 

according to the phase information provided by a synchronized strain gauge, the 4D 

images are imported into the Pinnacle commercial treatment planning system (Philips, 

Bothell, WA) that enables one to define the treatment field size, gating window, 

treatment isocenter, anatomical structures, and beam arrangements to deliver a dose 

distribution. Using a conventional fractionation, a typical course of radiotherapy for lung 

cancers involves 30 to 35 daily treatments (6 to 7 weeks, 5 days a week). Hypo-

fractionation, on the other hand, aims to increase the biologic dose that increases the daily 

dose and uses fewer fractions (3 to 5 fractions). Prior to treatment, the patient is imaged 

with MVCBCT. Immediately after the reconstruction, the 3D volumetric image is 

registered to the planning KVCT using the COHERENCETM Adaptive Targeting 

registration software to determine the patient shifts. The registration is based on 

maximization of mutual information (Ford et al., 2002). Currently the 3D MVCBCT 

image is reconstructed from all the projection images. For scans in the thoracic area, this 

3D image contains information of all the respiratory phases, which causes the motion blur 

(Figure 1-3b). A combination of images of 4D phases are used to compare with the 

motion blurred 3D volume. Further manual adjustment based on the bony anatomy or 

organ contours is made. Usually the table shift can be made to align the treatment image 

with the planning CT within 3 minutes after the beginning of the acquisition of 

MVCBCT. The image acquisition takes about one minute, using the 200 degree standard 
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protocol. Since a typical respiratory cycle takes about 5 to 10 seconds, there would be 

about 5 to 12 cycles during a single scan. The reconstruction utilizes a modified 

Feldkamp, Davis, Kress (FDK) algorithm (Feldkamp, Davis, & Kress, 1984). It begins 

immediately after the acquisition of the first projection image, and utilizes it for 

backprojection. For each projection image the backprojection process is quicker than the 

imaging acquisition, so when all the projection images are acquired the 3D volumetric 

image can also be derived.  

It is reported that 3D MVCBCT provides more accurate patient localization than 

2D portal images (Morin et al., 2006). Apart from daily localization, MVCBCT can also 

be used to monitor patient anatomical changes, calculate dose (Morin et al., 2007), and 

reduce image artifacts for patients with dense metal objects (such as hip replacements). 

The details of these applications can be found in (Morin et al., 2006).  

 

1.3.3 Patient data 

 

Over the 5 years of my Ph.D. research, projection images of 96 MVCBCT 

localization scans from 19 patients have been collected, including a variety of tumor sizes, 

shapes, locations, imaging regions, etc. The number of MVCBCT scans for each patient 

ranges from 1 to 24. In the following chapters, there is inconsistency of the number of 

patient images that are tested among different approaches, and only part of patient images 

are used for each approach. The limited data set is due to the retrospectively gathered 

data that does not always have the characteristics that we would need for the analysis. 

The required characteristics for each method will be further explained in the 

corresponding chapters. There is no subjective preference of using images belonging to 

any specific patient.  
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CHAPTER 2 

AUTOMATIC IHDA DETECTION 

 

The diaphragm is a good internal surrogate to tumor motion. However, the 

practice of using the diaphragm should be adequately validated. A study based on 32 

fluoroscopic images from 10 lung cancer patients (Cervino, Chao, Sandhu, & Jiang, 

2009) shows promising result that the average correlation factor between the two motions 

is 0.94 and 0.98, using two regression models respectively. However, a weak correlation 

can still exist. In some patients with emphysema, unexpected movements of the 

diaphragm were observed (Iwasawa et al., 2000). So for each patient, one should verify 

whether the diaphragm can be used as a surrogate during planning and daily localization. 

Once a strong correlation between the diaphragm and the tumor is verified, we could use 

the projection images of the MVCBCT scan to (1) quantify the (Ipsilateral Hemi-

diaphragm Apex) IHDA motion, (2) verify the diaphragm-tumor motion relationship by 

phase correlated reconstruction of full exhale and full inhale images and (3) calibrate the 

strain gauge signal used for gating. 

Accurate detection of the diaphragm is the prerequisite step for the adaptive 

gating system. The respiratory trace of the diaphragm is not only used to calibrate strain 

gauge signals, but also to establish the phase correspondence of the projection images in 

various approaches described in later chapters, including organ motion segmentation 

(chapter 3), correlated reconstruction(chapter 4), motion compensated reconstruction 

(chapter 5) and projection image enhancement (chapter 6). Although the diaphragm 

generally has good contrast in most projection images (Figure 1-1a), the accurate 

detection of the diaphragm in all the projection images of MVCBCT is a challenging task 

due to the weak boundary in the presence of overlapping confounding organs or tissues 

(Figure 1-1b). Previous methods that successfully detect or track the diaphragm through 
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an X-ray image sequence include augmented active shape model (ASM) (Fujita, 

Chandrasekhar, Singh, & Finucane, 2006) and Hough transforms based on circles 

(Condurache, Aach, Eck, Bredno, & Stehle, 2005). There are more studies proposed to 

track the respiratory motion of tumors in fluoroscopic images, including ASM (Q. Xu, 

Hamilton, Schowengerdt, & Jiang, 2007), template matching (Cui et al., 2007) and 

optical flow (Q. Xu et al., 2008). However, it should be noted that MVCBCT projection 

images are very different from the fluoroscopic video. The contrast of MVCBCT 

projection images is much lower. The projection angle of the beam is fixed for 

fluoroscopic video, while for MVCBCT systems the gantry rotates during image 

acquisition. Some methods suitable for fluoroscopic images, such as using the average 

image intensities within a region of interest to estimate the respiratory phase (Berbeco et 

al., 2005), may not be suitable to MVCBCT projection images. Besides, the frame per 

second (FPS) rate for MVCBCT projections is only about 3, which is much less than that 

of a fluoroscopic video. All those features make the diaphragm detection in MVCBCT 

images more difficult. Moreover, for the purpose of online calibration of the strain gauge 

to tumor motion before daily treatment, the time spent on diaphragm detection should be 

within a clinical limit, which is recommended to be one minute at most. 

In this chapter, an automatic IHDA detection framework is presented. Generally, 

it is composed of three sequential parts: (1) Confine the IHDA motion in projection 

images within a narrow region of interest (ROI) based on user initialization; (2) 

automatic detection of diaphragm boundary and IHDA position; (3) derive the 3D IHDA 

motion trajectory from the 2D image coordinates. In the following paragraphs, section 

2.1 introduces how to determine the region of interest of the IHDA within each projection 

image based on manual initialization in four frames. Sections 2.2 and 2.3 introduce two 

IHDA detection approaches, which are both based on converting the image space into a 

Hough space by using a double-parabola model. The pros and cons of these two methods 

are discussed. Section 2.4 introduces a fully automatic IHDA detection framework based 
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on pre-segmentation of the diaphragm in 3D reconstructed volumes. Comparison of the 

fully automatic approach against the semi-automatic approach is made based on the 

detection accuracy. 

 

2.1 Manual initialization of IHDA ROI 

 

It can be seen from Figure 1-1 that the diaphragm only takes up a small portion of 

the area of the projection image. It would be convenient if an ROI can be determined 

prior to the diaphragm detection, thus the process of image analysis and diaphragm 

detection can be confined in this area. To create this ROI, we have developed a robust 

approach based on an interpolated ray tracing algorithm. The method was firstdeveloped 

and validated by Dr. Siochi before my arrival to the University of Iowa. One could refer 

to his paper as (Siochi, 2009) for details.  

Generally, this method computes the 3D position of the IHDA from 

corresponding 2D positions in two projection angles (Figure 2-1). The IHDA motion is 

assumed to be confined in a rectangular box (shown as green), where the location of FE 

and FI phase forms two diagonal vertices of the rectangular box (the blue curve). Thus 

we can derive the range of IHDA motion based on 3D FE and FI positions. These two 

positions are further re-projected onto each projection plane, generating a 2D bounding 

rectangle. Thus a region of interest (ROI) is derived for image processing and IHDA 

detection. Once the IHDA is detected in each 2D projection image, it is backprojected to 

3D coordinates to derive the motion trajectory. The 3D position is an approximation 

between FE and FI points based on linear interpolation along the longitudinal coordinate 

(v coordinate in image plane and z for room coordinate, perpendicular to the paper in 

Figure 2-1). The error of this interpolation is within a sub-millimeter. 
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Figure 2-1: A 3D illustration of cone beam geometry of 3D to 2D projection. The large 
red circle is the trajectory of image center. Two projection images are acquired in 

different viewing angles. The red line represents the ray that projects the isocenter onto 
the image center (Strictly speaking, there would be some small deviation due to the 

variation of system geometry. But the projected position of isocenter would be very close 
to the image center). The blue line represents the perspective projection of the IHDA in 

two corresponding 2D positions. Note that the beam source is not necessarily on the same 
trajectory with the image center.  

 

There are several advantages of the interpolated ray tracing method. First, the two 

projection images used to determine the 3D IHDA position can be from arbitrary viewing 

angles, though best accuracy is achieved when they are more or less 90° apart. This gives 

the user more freedom to initialize 2D IHDA positions. Second, it is very likely that the 

two initialization points do not correspond to the same 3D locations. This could be due to 

the variation of the amplitude of respiration in each phase or manual initialization error. 

The interpolated ray tracing algorithm allows the two projection rays to be non- coplanar 

(i.e. not strictly intersect in 3D), since the computation of the intersection of the two rays 

is not directly solved in 3D geometry. Instead, the intersection point is computed in a 2D 

axial plane after orthogonal projection (Figure 2-2). Based on the relationship of similar 

triangles, the z direction (Cranio-Caudal direction) can be computed as 
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 (2-2) 

where l represents the distance of a specific point in 3D location to the beam 

source. The subscript d and p represents the 3D position of the original IHDA and its 

projection respectively.  

The interpolated ray tracing method was validated in Dr. Siochi’s experiment, 

achieving a sub-millimeter error based on a phantom with predefined motion. 

 

 

Figure 2-2: Computation of 2D coordinates of intersection point using interpolated ray 
tracing algorithm. The two rays of perspective projection from two angles more or less 90 

degrees apart are projected onto the axial plane. The x and y coordinates of the 
intersection point is determined by the two rays. The z coordinate is interpolated from the 

projected point in the detector.  
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2.2 Double-parabola model 

 

In Dr. Siochi’s paper (Siochi, 2009), an efficient algorithm was proposed to detect 

the boundary of a tungsten pin of an imaging phantom in 2D projection images based on 

histogram thresholding. This algorithm works successfully for a tungsten pin, but the 

accuracy is not guaranteed when it comes to patient imaging, since there is more 

irregularity and noise presented (Figure 1-1). During the first two years of my Ph.D. 

research, we have developed two automatic diaphragm detection approaches for step (2). 

Both methods are based on a Hough transform based on a double-parabola shape 

template. The first approach is based on the global optimization of a dynamic Hough 

transform (DHT), while the second one is a tracking approach by finding a probability 

density function (PDF). The mathematical representation of the model is:  
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where the four parameters are (x0, y0, a1, a2). (x0, y0) represents the position of the 

parabola vertex (which also represents the IHDA) and a1 and a2 are four times the focal 

length of each parabola segment. The double-parabola model is shown to be superior to 

some other templates. Simple shapes, such as a single parabola or arcs of an ellipse, also 

resemble a hemi-diaphragm. However, we chose a double-parabola model because the 

hemi-diaphragm is asymmetrical in some lateral views (Figure 1-1). We have generated a 

training set of diaphragm ROI from the MVCBCT projection images and have manually 

drawn the contour of the diaphragm. Then the contours are fitted with a single parabola, 

ellipse arc and double parabola based on the least square fitting. The root-mean-square 

error between the contour and the fitting model are 0.98, 0.81, and 0.24mm for single 

parabola, ellipse arc and double parabola, respectively.  
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Given the shape template with the parameter set (x0, y0, a1, a2) at frame t within 

the ROI, the Hough value measures how well the double-parabola template matches the 

image by adding the cost values at pixels along the shape contour, 

,),,,,,(),(),,,,(
0

0

0021
),(

2100 ∑∑
∆+

∆−=∈

==
xx

xxxshapeyx

yxaayxcyxgtaayxH  

(2-4) 

Thus, the 2D image sequence is transformed into a five-dimensional (5D) Hough 

parameter space 
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(2-5) 

Function c(x,y,a1,a2,x0,y0) is the cost value determined by both the projection 

image and the parameters of the parabola model. It is computed as  
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(2-6) 

where the function N(x,a,x0) is the normal direction of the parabola contour as a 

function of the horizontal direction x, and a and x0 (the normal direction is not influenced 

by y0). Nx and Ny represents the component of the normal vector in x and y directions, 

respectively. I(x,y) represents the intensity of pixel (x,y) of the projection image. The cost 

function in equation (2-6) is actually a dot product between two 2D vectors: the normal 

direction of the parabola and the image gradient at (x,y). In this way, a high cost value 

will be given if one pixel has high gradient amplitude and similar gradient direction with 

the normal direction of the parabola. Figure 2-3 illustrates the difference between the two 

vectors in one projection image: 
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Figure 2-3: An illustration showing the normal direction of a parabola curve and the 
image gradient at the corresponding point location 

 

The normal direction of the parabola function can be computed as  

1)(4

1
),,(,

1)(4

)(2
),,(

2
0

202
0

2

0
0

+−
=

+−

−
=

xxa
xaxN

xxa

xxa
xaxN yx

 

(2-7) 

Analyzing the 5D Hough space requires a lot of time and memory. To speed up 

the detection process, the Hough accumulator array is reduced to three dimensions from 

the original five dimensions.Within each frame t, for each (x0, y0) cell we select the 

maximal value among all the combinations of (a1, a2), and use a separate array to record 

the corresponding (a1, a2). The mathematical representation is as follows: 

),,,,,(max),,( 21002,100 taayxHtyxH aa=  

(2-8) 

An illustration of converting the image space to Hough accumulation space is 

shown in Figure 2-4. 
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Figure 2-4: A simple illustration of one cell (blue rectangle) in Hough space (below) 
corresponds with the double parabolic shape (blue contour) in image space (top). The red 
rectangle in both image space and Hough space represents the range of motion of IHDA 
determined by interpolated ray tracing algorithm. The yellow rectangle in image space 

represents the area used for gradient computation and Hough accumulation. 

 

2.3 Dynamic Hough transform (DHT) 

 

DHT, originally proposed by Lappas et al. (Lappas, Carter, & Damper, 2002; 

Lappas, Damper, & Carter, 2006) for an application of Pingpong ball detection in a video, 

is a natural extension of the traditional Hough transform (Ballard, 1981) to object motion 

detection in a time sequence of images. Instead of searching for the Hough peak in one 

single image, DHT aims to detect a trajectory of the object in motion. It transforms each 

image frame into the Hough space and uses a sequence of Hough peaks to represent the 

trajectory. Its direct predecessor is velocity Hough transform (VHT), where constant 

motion speed is assumed (Nash, Carter, & Nixon, 1997). For DHT, both the change in 
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motion amplitude and direction is allowed. And it uses a dynamic programming 

algorithm to find the optimal motion trajectory based on an energy function.  

Previous work of diaphragm detection using Hough based approach include 

Condurache et al. (Condurache et al., 2005), where standard Hough transform of circle 

model was employed to detect diaphragm in cardiac X-ray projection images, followed 

by  refinement of active contour model (ACM). There are two major advantages of our 

method: (1) the DHT framework enables to establish inter-frame constraint and global 

optimization; (2) we have used a double parabolic model, which is a better representation 

of diaphragm shape than other analytical models, such as circle (Condurache, Aach, Eck, 

Bredno, & Stehle, 2005), ellipse, and single rotational parabola. The model is composed 

of two parabolic segments, which shares the same symmetrical axis and vertices. 

For each projection image indexed t, we look for a vertex (x0(t), y0(t) with the 

corresponding maximizing a1 and a2 values and form a trajectory through accumulation 

space by maximizing an energy function. Similar to Lappas’ original work (Lappas et al., 

2002; Lappas et al., 2006), the energy function is optimized that takes account of Hough 

value and penalties of change in motion and direction. The difference lies in the curvature 

of the diaphragm, which makes the diaphragm shape able to deform through the image 

sequence. An additional component is added to the energy function to incorporate the 

penalties of shape deformation. The overall energy function is as follows:       

ndeformatiodirectionmotionhoughtraj EwEwEwEwE 4321 −−−=  

(2-9) 

The Hough energy is the summation of the Hough values of all the points on this 

trajectory in accumulation space: 
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The motion energy is a penalty that discourages speed differences in diaphragm 

motion: 

∑
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Here, vx and vy are the speeds in horizontal and longitudinal directions in image 

space, respectively, where vx(t)=x0(t)-x0(t-1) and vy(t)=y0(t)-y0(t-1). wvx and wvy are the 

corresponding weights on the speed changes. For simplicity, the speed is the 

displacement between two successive frames, since the time between frames is 

approximately constant. The direction energy is a penalty for changes in the velocity 

direction, 
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The deformation energy is different from that of Lappas, which penalizes changes 

in rotation and scale for rigid shape templates. We use the focal length parameter a1 and 

a2 to account for deformation of the two parabola segments  
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Equations (2-11), (2-12) and (2-13) are soft constraints that suppress but do not 

prohibit large changes. In order to prevent some obvious irregular changes in motion and 

Hough value, we also apply hard constraints that forbid changes above a certain threshold: 

(a) The IHDA displacement should not exceed ∆x0 and ∆y0 between adjacent views and 

(b) the Hough value of the current view should be a factor α times greater than that of the 

previous view: 
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Equation (2-14) is a constraint optimization problem. The energy term Etraj is a 

function of the IHDA location of Hough peaks in all the views. Because the energy terms 

in equation (2-9) can be grouped into 198 sets of three related frames, we followed the 

“dynamic programming” procedure in Lappas’ work (Lappas et al., 2002) to solve the 

optimization problem.  

 

2.4 Tracking based on probability density function (PDF) 

 

To successfully detect the IHDA, the IHDA through projection images should 

correspond to the Hough cell with the largest Hough value. However, this assumption 

fails in a few cases when the confounding objects have stronger Hough accumulation 

values than the diaphragm. The contra-lateral hemi-diaphragm, which is the part of the 

diaphragm under the other lung and has almost identical shape features, is the major 

source that misleads the detection. Generally this problem occurs in the lateral views 

(250~290° and 70~110° for standard protocol) where the two hemi-diaphragms are 

projected very close to each other (Figure 1-1b) and the ROI is unable to exclude the 

confounding one. Figure 2-5 shows one example of Hough parameter space.  

To correct the confounding problem in DHT, the detection method should 

incorporate other features of Hough space, rather than the intensity of Hough value alone 

(the first term in equation (2-9). In Figure 2-5, it can be observed that the correct IHDA 

trajectory is generally a continuous curve, with each point a local maxima (peak) in 

Hough space. And the value of those Hough peaks change gradually among adjacent 
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frames. Intuitively we could add another penalty or constraint in DHT framework based 

on the difference of Hough accumulation value between two peaks in adjacent frames. 

However, it is hard to find one such value that can be applied to all the images.  

  

Figure 2-5: The Hough accumulator array displayed as maximal intensity projection on 
2D (SI direction and time) overlaid with detected IHDA trajectory. Left: The detected 

IHDA position is attracted to contra-lateral hemi-diaphragm using DHT approach. Right: 
The detected IHDA position based on probabilistic tracking in Hough space. 

 

To address this issue, a tracking-based approach is developed, which also takes 

advantage of using Hough space and double parabola model. However, instead of 

simultaneously detecting all the peaks based on global optimization, a tracking scheme 

based on searching for Hough peaks with maximal probability density function (PDF) is 

applied. The tracking starts from four user initialized frames and spreads to neighboring 

frames. It is more clinical useful, since only a few neighboring frames need to be 

corrected when the user wants to modify the detection result in some frames.  

The Hough Transform and probability have a very strong relationship. Early in 

1991, Stephens (Stephens, 1991) defined a mathematically “correct form” of the Hough 

transform from a probabilistic perspective, which takes the log of the probability density 

function of the image output parameters based on a Bayesian framework. Kiryati et al. 

proposed a probabilistic Hough transform, which only selects a subset of edge points for 

the voting stage to compute the Hough accumulator array (Kiryati, Eldar, & Bruckstein, 

1991). Xu et al. (L. Xu, Oja, & Kultanen, 1990) proposed a randomized Hough transform 
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approach, which used a many-to-one mapping from image space to parameter space. The 

presented method is originated from Hills et al.’s work (Hills, Pridmore, & Mills, 2003), 

where they tracked a set of combined features in a video by estimating a joint PDF in 

Hough space. Mills et al. (Mills, Pridmore, & Hills, 2003) further combines Hough 

transform with extended Kalman filter.  

 

Figure 2-6: Distribution of IHDA motion in time sequence of projection images from 21 
MVCBCT fractions. The distribution of motion is represented by ∆x0 and ∆y0. 

 

The main assumption of our approach is that the Hough peaks of IHDA in 

adjacent frames have very similar parameters, including the position x0, y0, curvature of 

parabola a1, a2, and the Hough value. Given a set of Hough parameters (x0, y0, a1, a2) at 

frame t, which we denote as (x0
t, y0

 t, a1
 t, a2

 t), the PDF of parameters in the next frame 

(t+1) is assumed to be normally distributed, with the mean equal to the parameter set in 

frame t, which has the mathematical representation: 
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In this equation p represents any pattern measurement, including Hough 

parameter x0, y0, a1, a2, and the Hough value. The parameters k and σ are the 

normalization parameter and deviation of Gaussian distribution respectively. So once all 

the Hough peaks in the frame (t+1) are detected, the probability of each peak can be 

estimated using the joint probability of all the parameters. The Hough peak with maximal 

PDF is selected as the next IHDA position. The assumption of normal distribution is 

validated using the experimental result from MVCBCT projection image sequences.  

The tracking approach starts from the four manual initialized frames. For a given 

frame t with the detected IHDA position (x(t),y(t) shape parameter a1(x(t),y(t),t) and 

a2(x(t),y(t),t), the algorithm tries to find the IHDA position in the next frame (t+1) or (t-1) 

and subsequently repeats this process. All the Hough peaks are selected prior to the 

tracking process, which are local maxima of H(x,y,t+1). For each Hough peak, a PDF is 

evaluated to give the likelihood of moving from a previous point location to this one, 

represented by: 
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(2-16) 

where we use the superscript “xt”  rather than “x(t)”  to represent the function of 

time. The PDF is multiplied by five components where each of the first four components 

measures the conditional probability of one model parameter (x,y,a1,a2). For example, 

fx(x
t+1|xt) represents the probability of moving from position xt in frame t to xt+1 in frame 

t+1. George et. al. found that the PDF for diaphragm motion can be considered an 

approximately normal distribution(George et al., 2005). In this study we further assume 

that both the IHDA motion and the curvature of a1 and a2 are normally distributed. The 

first four components are normally distributed, where the mean equals the value of the 

model parameter in t. The fifth component fcor measures the probability based on the 
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normalized cross correlation between two regions. It is determined by the neighborhood 

of (xt+1,yt+1) and (xt,yt) in the Hough accumulation array H(x,y,t). The closer the 

correlation is getting to one, the higher the probability value. The conditional 

probabilities of the five components have the mathematical representation as follows: 
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The function fa is used for both component a1 and a2. The Gaussian window ϭ is 

derived from a statistical analysis of the manual IHDA identification results on 40 

MVCBCT scans from 6 patients. Figure 2-6 shows the distribution of IHDA 

displacements of x0 and y0, which is similar to a 2D Gaussian distribution.  

For both DHT and PDF based tracking approach, the IHDA position in 2D 

projections are converted to the 3D coordinate system based on the interpolated ray 

tracing method (Siochi, 2009). 

 

2.5 Towards fully automatic procedure:  

Automatic ROI detection 

 

The interpolated ray tracing algorithm used to determine ROIs in the projection 

images requires the manual initialization of point locations in two projection images at 

full exhale (FE) and full inhale (FI) respectively. However, the process of human 

initialization on four projection images requires special training to the clinicians to make 

them understand the principles and get familiar with the software. Moreover, manual 

initialization could be time consuming, especially for those images with low contrast of 
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diaphragm and confounding tissues. Instead, the determination of ROIs could be made 

fully automatic. In this section we introduce a new approach that can automate this 

process.  

 

2.5.1 General framework 

 

Figure 2-7 illustrates the main steps of this method, with the intermediate results 

shown in Figure 2-8.  

 

Figure 2-7: Flowchart of the fully automatic IHDA detection framework 

 

First a 3D volume is reconstructed from all the projection images. Though this 

volume contains motion artifacts (see Figure 2-8a), it does not influence the robustness of 

a rough estimation of the IHDA position. The reconstructed volume is first pre-processed 

by a Gaussian smoothing filter, which reduces the noise and makes the voxel intensity 

more homogeneous inside the lung (Figure 2-8b). Then both lungs are segmented based 

on Otsu’s method, which automatically performs image thresholding (Otsu, 1975). An 



 

 

optimal threshold is exhaustively searched that minimizes the intra

image histogram (Figure 

called “bottom surface” is detected

mask. Not all of the “bottom surface” voxels are on the diaphragm surface: the superior 

surface of the tumor and the small part of lung wall as seen in 

of the diaphragm surface. A morphological analysis is performed to eliminate all the 

“bottom surfaces” that are not a part of the diaphragm surface. The corrected diaphragm 

surface is shown in Figure 

Figure 2-8: Intermediate result of the proposed method: (a) A coronal slice of 
reconstructed MVCBCT volume; (b) The coronal slice after Gaussian filtering; (c) Result 

of Otsu thresholding (red binary mask); (d) Bottom surface of the Otsu segmentation 
(pink contour); (e) Diaphragm surface detection; (f) Diaphragm surface overlaid on 3D 

 

optimal threshold is exhaustively searched that minimizes the intra-class variance in the 

Figure 2-8c). Based on the segmented lung mask, a subset of voxels, 

called “bottom surface” is detected, which is located in the most inferior position of the 

mask. Not all of the “bottom surface” voxels are on the diaphragm surface: the superior 

surface of the tumor and the small part of lung wall as seen in Figure 2-8

of the diaphragm surface. A morphological analysis is performed to eliminate all the 

“bottom surfaces” that are not a part of the diaphragm surface. The corrected diaphragm 

Figure 2-8e and Figure 2-8f. 

(a) (b) 

(d) (e) 

Intermediate result of the proposed method: (a) A coronal slice of 
reconstructed MVCBCT volume; (b) The coronal slice after Gaussian filtering; (c) Result 

esholding (red binary mask); (d) Bottom surface of the Otsu segmentation 
(pink contour); (e) Diaphragm surface detection; (f) Diaphragm surface overlaid on 3D 

visualization of MVCBCT volume 
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class variance in the 

c). Based on the segmented lung mask, a subset of voxels, 

, which is located in the most inferior position of the 

mask. Not all of the “bottom surface” voxels are on the diaphragm surface: the superior 

d are not a part 

of the diaphragm surface. A morphological analysis is performed to eliminate all the 

“bottom surfaces” that are not a part of the diaphragm surface. The corrected diaphragm 

(c) 

(f) 

Intermediate result of the proposed method: (a) A coronal slice of 
reconstructed MVCBCT volume; (b) The coronal slice after Gaussian filtering; (c) Result 

esholding (red binary mask); (d) Bottom surface of the Otsu segmentation 
(pink contour); (e) Diaphragm surface detection; (f) Diaphragm surface overlaid on 3D 
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The rough 3D position of IHDA is selected from the voxels of the diaphragm 

surface. The number of hemi-diaphragms presented in the 3D volume can be analyzed 

from the binary mask of the diaphragm surface (two for Figure 2-8e, but one in cases 

where only one lung is entirely visible in the FOV of the volume). A template matching 

approach is employed to find the location of the most suitable voxel of one hemi-

diaphragm surface to serve as the rough IHDA position. This 3D position is then 

projected onto each 2D projection image. A margin is added to the projected location to 

generate an ROI, which is the working area for 2D motion detection approach.  

 

2.5.2 Diaphragm surface detection via morphological 

analysis 

 

In order to locate the diaphragm surface from a binary image of the lung mask 

using morphological analysis, we begin by assigning a binary value to each voxel in a 

binary image voxel (x,y,z). Voxels in the lung region are assigned an intensity value of 

I(x,y,z)=1, while voxels outside of the lung region are assigned a value of I(x,y,z)=0. To 

generate the bottom surface illustrated in Figure 2-8d, a condition check is performed to 

each voxel in the volume. A voxel is only considered to be bottom surface if both 

I(x,y,z)=1 and I(x,y+1,z)=0. The superior-inferior (SI) direction of the volume is defined 

by y and the inferior direction is defined by y+. 

The bottom surface detection generates a new binary image B(x,y,z), where a 

voxel is defined by B(x,y,z)=1 if it belongs to the bottom surface. An algorithm is 

implemented to uniquely label the connected components of the bottom surface (Cormen, 

2001). To separate the bottom surfaces from the diaphragm surface, we applied stringent 

criteria to each connected component: 

(1) The size of the connected component should be larger than a threshold Tsize1; 
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(2) For each component, there is no other component with a size larger than 

threshold Tsize2 located inferiorly to it. For two connected components A and B, 

that B is inferior to A is defined as follows: there exists two voxels a(xa,ya,za) 

and b(xb,yb,zb), a∈A and b∈B that xa=xb, za=zb, ya<yb. 

The size of each bottom surface is computed simultaneously with the connected 

component labeling algorithm. The second separation criterion is performed after the 

labeling process. If the first criterion is satisfied for each component, the algorithm will 

then search for the voxels located inferiorly to it. 

 

2.5.3 IHDA position estimation via template matching 

 

Once the diaphragm surface binary image is derived, template matching is 

performed to find the IHDA position for each hemi-diaphragm. A parabolic surface 

model is applied to represent the shape template of the diaphragm surface, with a 

function of:  

0
2

02
2

01 )()(),( yzzaxxazxyy +−+−==  

(2-18) 

where there is a corresponding y value in the SI direction to represent the height 

of the diaphragm surface for each combination of x and z in the lateral and anterior-

posterior direction. The parameters x0, y0 and z0 describe the IHDA position, which is the 

most superior point on the diaphragm surface. a1 and a2 describe the curvature of the 

parabolic surface in x and z directions. To find the IHDA, an exhaustive search is 

performed for all the possible combinations of these parameters to determine a parabolic 

surface: x0, y0, z0, a1 and a2. Although an exhaustive search in five-dimensional space is 

very time-consuming, this does not adversely affect our application because the allowed 

range of those parameters is restricted. The range, x0, y0, z0 is selected from the small 
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number of 3D volume voxels on the diaphragm surface as seen in Figure 2-8e. The 

flatness of the diaphragm surface near the IHDA position makes the a1 and a2 value very 

small. The exhaustive search aims to find the optimal solution, which has the largest 

energy function:  
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(2-19) 

 

where △x and △z defines the size of the parabolic surface. Function c(x,y,z) is the 

cost image computed from the original 3D volume. For each voxel, the intensity of c(x,y,z) 

represents the likelihood of becoming a part of the diaphragm surface. Currently we set 

the cost value equal to the gradient in a SI direction. Although the parabolic function 

representation is only an approximation of the diaphragm surface, it is an effective way to 

estimate the rough 3D IHDA position. 

 

2.5.4 Derive 3D IHDA position from 2D projection space 

 

Once the IHDA ROI is determined, one can use the DHT or PDF based tracking 

approach to detect the IHDA within the defined ROIs. One difference of using PDF 

based tracking approach from manual initialization is the starting frame. For manual 

initialization, the tracking could be started from the 4 initialized frames. For automatic 

approach, For PDF-based tracking, the IHDA position is determined on two projection 

images t1 and t2 by automatically selecting the maximal accumulation value in the Hough 

space (H(x,y,t1), H(x,y,t2). For a standard MVCBCT protocol, t1 and t2 is chosen at frames 

near 60 and 120 respectively, where there is no overlapping between the two hemi-

diaphragms at those angles.  



 

 

Figure 2-9: An example of IHDA motion detection: The estimated 3D position for each 
IHDA is projected onto 2D projection image to create ROIs (red and blue rectangle). The 

double-parabola model is fitted on the hemi

 

Figure 2-9 shows one example of automatic ROI detection and 

detection. Once the 2D positions of the IHDA in all the projection images are determined, 

the corresponding 3D positions need to be estimated, since the surrogate of the tumor 

motion is in the 3D IHDA position. 

this perspective projection. In this figure 

derived using the methods presented in sections 2.2 through 2.4. Assume that an angle is 

projected onto the 2D EPID, parallel to the SI direction (

projected location as Po
2d

denoted by P2d, where P is the real 3D IHDA position when this projection image is 

acquired.  

We are interested in knowing the SI direction of 

more clinically significant than the other two directions. Bear in mind that it is impossible 

to accurately derive the 3D location for 

ray between the X-ray source 

 

An example of IHDA motion detection: The estimated 3D position for each 
2D projection image to create ROIs (red and blue rectangle). The 

parabola model is fitted on the hemi-diaphragm (red contour

shows one example of automatic ROI detection and diaphragm 

ositions of the IHDA in all the projection images are determined, 

the corresponding 3D positions need to be estimated, since the surrogate of the tumor 

motion is in the 3D IHDA position. Figure 2-10 illustrates the cone beam geome

this perspective projection. In this figure Po is the estimated IHDA position, which is 

derived using the methods presented in sections 2.2 through 2.4. Assume that an angle is 

projected onto the 2D EPID, parallel to the SI direction (y axis). If we denote the 2D 

2d, then the real IHDA position is located nearby to 

is the real 3D IHDA position when this projection image is 

We are interested in knowing the SI direction of P (y in this figure), since it is 

more clinically significant than the other two directions. Bear in mind that it is impossible 

to accurately derive the 3D location for P, since it could be located on any point along the 

ray source S and the detected 2D IHDA P2d. However, since most of 
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An example of IHDA motion detection: The estimated 3D position for each 
2D projection image to create ROIs (red and blue rectangle). The 

diaphragm (red contour). 

diaphragm 

ositions of the IHDA in all the projection images are determined, 

the corresponding 3D positions need to be estimated, since the surrogate of the tumor 

illustrates the cone beam geometry of 

is the estimated IHDA position, which is 

derived using the methods presented in sections 2.2 through 2.4. Assume that an angle is 

denote the 2D 

, then the real IHDA position is located nearby to Po
2d and is 

is the real 3D IHDA position when this projection image is 

his figure), since it is 

more clinically significant than the other two directions. Bear in mind that it is impossible 

, since it could be located on any point along the 

. However, since most of 



 

 

the IHDA motion occurs in the SI direction, the 3D position of 

close point P’. It is the intersection point of the ray 

parallel to the projection image p

 

Figure 2-10: An illustration of estimating 3D IHDA 

 

Let’s denote P as the 4×3 projection matrix. The perspective projection of a 3D 

point onto the 2D detector can be represented as 

expanded as: 
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where u and v are the horizontal and vertical coordinates of the 2D projection 

plane, respectively. Pij represents the element of the 

projection matrix. Px, Py, 

direction of P’y, we will consider point 

the IHDA motion occurs in the SI direction, the 3D position of P can be estimated by a 

. It is the intersection point of the ray S-P2d and a plane that contains 

parallel to the projection image plane. 

 

n illustration of estimating 3D IHDA position from 2D.

as the 4×3 projection matrix. The perspective projection of a 3D 
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are the horizontal and vertical coordinates of the 2D projection 

represents the element of the ith row and the jth column of the 

, Pz is the 3D coordinate of point P. To derive the estimated SI 

, we will consider point Pe, which is located on the same plane as 
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can be estimated by a 

and a plane that contains Po and 

from 2D. 

as the 4×3 projection matrix. The perspective projection of a 3D 

. The equation can be further 

(2-20) 

are the horizontal and vertical coordinates of the 2D projection 

th column of the 

. To derive the estimated SI 

, which is located on the same plane as Po and 
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P’. It has the same x and z coordinate as Po, and same y coordinate as P’. Based on the 

relationship of similar triangles, Pe
2d (the 2D projection of Pe) would have the same u 

with Po
2d and the same v with P2d. Thus Pey can be derived from the following equations: 
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(2-21) 

where only Pey is unknown. We then use Pey to estimate Py, which provides close 

approximation to our goal. It is a very close approximation to Py. Consider that half of the 

EPID height hd is about 20 cm, and SAD equals to 145 cm. The maximal angle between 

the ray S-P2d and x-z plane would be sin-1(hd/SAD). Typically the lateral motion of the 

IHDA ml is less than 0.5 cm (x and z component of vector Po-P). Thus the largest 

possible error of the IHDA in the SI direction would be ml·hd/SAD, which is around 0.07 

cm. Compared to a typical motion range of 2 cm, the error is relatively small. Moreover, 

the diaphragm is usually very close to the iso-center of the cone beam CT during the 

localization scan, which makes the angle between S-P2d ray and x-z plane close to zero. A 

typical estimation error for the 3D IHDA position would be much smaller. 

 

2.6 Experiments and validation 

2.6.1 Results of semi-automatic approach 

 

Figure 2-11 shows the root mean square error (RMS) of 200 projection images for 

19 MVCBCT scans of 6 patients. Since the study is taken on the second year of my Ph.D., 

only MVCBCT scans of 7 patients were derived at that time. Among the 7 patients, the 

diaphragm of one patient moves out of the imaging region of 2D EPID detector 
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occasionally, which makes it impossible for IHDA detection. For the other 6 patients, 

3~4 scans were selected for each to make the result well balanced among different 

patients. Overall PDF-based tracking yields better results than DHT. DHT has a 

significantly large error for image “WB1” and slightly larger error than PDF-based 

tracking approach in most of the images, due to the confounding contra-lateral hemi-

diaphragm in the lateral frames. The overall detection accuracy for probabilistic tracking 

is 1.228±0.220mm, compared with DHT 1.341±0.640mm.  

 

Figure 2-11: Comparison between DHT and probabilistic Hough tracking approach on 
RMS error (in mm) in 19 MVCBCT scans. 
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Figure 2-12: A screen layout of the main interface of Just Enough DICOM. The top-left 
and bottom-left area shows the trajectory of IHDA position in superior-inferior direction 
and lateral direction respectively. The right area shows the MVCBCT projection image. 

 

2.6.2 Results of fully automatic approach 

 

The fully automatic method was tested 15 patients, all of whom satisfied the need 

of having images whose diaphragm was within the bottom border of the projection image 

(Figure 2-13a, b). 4 out of 19 patients were not suitable IHDA detection. Cumulatively 35 

MVCBCT localization scans were evaluated. The principle of determining the number of 

images used for experiment for each patient is as follows: 7 images are selected for each 

patient. If the number of images available for one patient is less than 7, then use all the 

images available.  

The automatic 3D IHDA localization worked well for 14 of the 15 patients, where 

the 2D IHDA position was within the ROI created from the projected 3D position. The 

method worked poorly on one patient, who had a very large tumor attached to the 
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diaphragm, thereby obstructing it. The missing strong diaphragm gradient caused the 

detected IHDA position to shift laterally (Figure 2-13c, d). 

  

  

Figure 2-13:Patient data that unsuitable for automatic IHDA detection. (a) A coronal slice 
of 3D volume and (b) one projection image of one patient whose diaphragm is not visible 

in the projection image (indicated by the red ellipse). (c) A coronal slice of 3D volume 
and (d) one projection image of a patient who has a very large tumor attached to the 

diaphragm of the right lung (appears on the left in both images). No IHDA is found in the 
first patient. For the second patient the IHDA position (indicated by red ROI and contour) 

is far from the desired position (yellow arrow). The other detected IHDA is acceptable 

 

To evaluate the detection accuracy the detected IHDA position is compared to 

those identified manually by a clinician. The error is quantified based on estimated 3D 

positions in a SI direction, using the method described in section 2.6. Average and 

standard deviation errors over 200 frames are quantified. The results of the 35 daily 
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localization scans are shown in Figure 2-14. The IHDA positions were manually 

identified by two clinicians in three scans (g1, h1, n1) to test the inter-expert variance:  

 

Figure 2-14: The detection accuracy (in mm) of 3D IHDA position in SI direction. The 
average and standard deviation error of 200 projection images are displayed. 

 

The overall average and standard deviations for the 35 scans is 2.933±4.189 mm 

and 1.714±1.544 mm for the DHT and tracking based approach, respectively (compared 

with 19 scans of semi-automatic approach with 1.341±0.640mm and 1.228±0.220mm for 

DHT and PDF tracking, respectively). The inter-expert variance is 1.046±0.674 mm, 

1.715±1.132 mm and 3.903±3.700 mm for the three scans. Some of the correct IHDA 

detection examples are shown in Figure 2-15. 

 

 

 



 

 

Figure 2-15: Examples of correct IHDA detection. Red rectangle: ROI; Red contour: 
detected parabola model of diaphragm; Small red point: Expert defined IHDA position

 

Figure 2-16: Examples of problematic cases: (a, b, c): the detected diaphragm (red 
contour) is actually the contra
IHDA position; (d) the variance between two expert identified points (red and blue

 

 

Generally, the difference in IHDA identification between two sources (either 

manual identification or automatic detection) can either be due to the smooth transition of 

the diaphragm boundary or a different in

of error (type-I) is generally small (within 3 

a setup error of 5 mm is added to the gross tumor volume (GTV) to create a clinical target 

volume (CTV) for treatm

to this type. The inter-expert variance from these two patients can be used as reference 

  

Examples of correct IHDA detection. Red rectangle: ROI; Red contour: 
detected parabola model of diaphragm; Small red point: Expert defined IHDA position

  

Examples of problematic cases: (a, b, c): the detected diaphragm (red 
contour) is actually the contra-lateral hemi-diaphragm, where the red dot shows the right 
IHDA position; (d) the variance between two expert identified points (red and blue

2.6.3 IHDA detection error analysis  

Generally, the difference in IHDA identification between two sources (either 

manual identification or automatic detection) can either be due to the smooth transition of 

the diaphragm boundary or a different interpretation of the IHDA position. The first type 

I) is generally small (within 3 mm) and clinically acceptable, since usually 

is added to the gross tumor volume (GTV) to create a clinical target 

volume (CTV) for treatment delivery. All the inter-expert variances of g1 and h1

expert variance from these two patients can be used as reference 
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Examples of correct IHDA detection. Red rectangle: ROI; Red contour: 
detected parabola model of diaphragm; Small red point: Expert defined IHDA position 

 

Examples of problematic cases: (a, b, c): the detected diaphragm (red 
diaphragm, where the red dot shows the right 

IHDA position; (d) the variance between two expert identified points (red and blue dots). 

Generally, the difference in IHDA identification between two sources (either 

manual identification or automatic detection) can either be due to the smooth transition of 

terpretation of the IHDA position. The first type 

) and clinically acceptable, since usually 

is added to the gross tumor volume (GTV) to create a clinical target 

of g1 and h1 belong 

expert variance from these two patients can be used as reference 
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for type-I errors, where an automatic detection can be considered as “good” when it is 

close to this range. The second type of error (type-II), however, needs to be corrected, 

since at least one of the two sources is not the real IHDA. Instead, it could be an 

overlapped confounding boundary. For all the scans it is quite common that in some 

projection angles the contra-lateral hemi-diaphragm (CLHD) is also located in the ROI of 

the desired hemi-diaphragm and overlaps it. CLHD also creates a strong Hough peak in 

the Hough accumulation space, confounding the algorithm to make the right choice. 

Generally, PDF tracking is more robust than DHT in keeping on the right hemi-

diaphragm boundary. DHT fails to detect the correct boundary when CLHD has a 

stronger corresponding Hough accumulation value, which makes the DHT find the 

globally maximal solution. Based on our observations, the existence of the type-II error, 

such as those influenced by the CLHD, would make the sum of the average and standard 

deviation of quantification error larger than 3 mm. For the inter-expert variance in n1, 

there is strong disagreement between the two observers in some frames, illustrated in 

Figure 2-16d. This is caused by two boundaries that belong to the same lung. The 

detected diaphragm curve is closer to the red point but not shown here for better 

visualization purpose.  

The performance of the automatic approach on different scans of the same patient 

does not change much. If accuracy is achieved for one scan, similar accuracy can be 

expected on other scans of the same patient and vice versa. In Figure 2-14, both patient g 

and h have seven scans. The standard deviation of the average IHDA error using the 

tracking-based approach is 0.466 and 0.395 mm, while the standard deviation of all the 

patients is 0.667 mm. One can observe from the 7 scans of patient h that the DHT error is 

significantly larger than the tracking-based approach. For this patient, the detected IHDA 

by DHT is often attracted by the CLHD when the CLHD moves within the ROI. Figure 

2-17a, and b illustrate the detected IHDA trajectory overlaid on a maximal intensity 

projection (MIP) image of the Hough accumulation array. This MIP image is derived by 
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projecting the original 3D array H(x, y, t) along x direction to create a new array HMIP(y, 

t), i.e. 

),,(max),( tyxHtyH xMIP =  

(2-22) 

The horizontal coordinates of this image are the index of projection images 

ranging from 1 to 200. The horizontal axis is the vertical direction of the projection plane. 

It can be seen that the difference of the two detected trajectories are in the first few 

frames, where the CLHD is located inferior to the correct IHDA and even has a stronger 

Hough accumulation value.  

 

Figure 2-17: The detected contour IHDA position using (a) DHT and (b) tracking-based 
approach is overlaid on the maximal intensity projection of Hough accumulation array. 

The 3D IHDA position along SI direction is shown in (c). 
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Based on our observation, the influence of the CLHD is the major source of error 

in IHDA detection. Generally the tracking-based approach better avoids erroneous CLHD 

identification than DHT. However, it is not entirely accurate as can be seen in the scans 

presented in Figure 2-14. Three different examples of misdetection onto CLHD are 

shown in Figure 2-16. 

Here we will discuss how much accuracy is clinically acceptable for IHDA 

detection. The amplitude of respiratory motion of IHDA, D, will be used to calibrate the 

strain gauge signal S based on the relationship S=F(D), where function F is determined 

by quadratic fitting between the correlation of the two signals. Thus the accuracy of 

IHDA detection would influence the accuracy of dose distribution on the tumor. The 

preliminary studies of Siochi et al (Siochi, 2007; Siochi, Kim, & Bhatia, 2008)based on 

three patients have indicated that a motion of 3mm in excess of planned motion did not 

have a significant change (<1%) in their tumor control probability (TCP). However, two 

patients who consistently had 5mm or more motion in excess of planned motion had a 

drop of 10%. The relationship between diaphragm and tumor motion can be represented 

by D=G(T), where D and T is the motion of IHDA and tumor respectively and G is 

assumed to be a linear function. The DTMR is the scale factor in G, which plays vital 

part in determining the accuracy of the gating threshold. We could expand T=G-1(D) into 

T=D/k, where k is the DTMR. The error of tumor could further be represented as: 

2
/

k

D
kkDT ⋅∆+∆=∆  

(2-23) 

Here ∆T, ∆D, ∆k can be considered as three random variables with expectation 

equaling to zero. It can be further assumed that they are normally distributed, with 

average value equaling to zero and the standard deviation corresponding to the average 

quantification error of tumor motion amplitude, IHDA motion amplitude and DTMR, 
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respectively. Based on the rule of addition of two Gaussian functions, the standard 

deviation of ∆T can be further represented as: 

 

4

2
222 var/varvar

k

D
k kDT ⋅+= ∆∆∆  

(2-24) 

where var represents the standard deviation of each variable indicated by the 

subscript. Assume that the typical value for k (DTMR) is 1.2. Take 30mm as typical 

diaphragm motion amplitude into the equation. ∆k is more or less than 10%, where the 

details are shown in Chapter 4. For ∆D, take the average error of the fully automatic ROI 

determination followed by PDF-based tracking, which is 1.714mm. This setting of 

parameters leads to an average error of tumor motion as 2.43mm, which satisfies the 3mm 

criterion. Generally, the fully automatic approach provides a worse condition, since the 

accuracy for semi-automatic approach is even better. Between the two components of ∆D 

and ∆k, ∆k has larger contribution to the error. Furthermore, there are some reasons that 

enable the clinicians further loose the accuracy requirement. First, the manual correction 

could further reduce ∆D to the order of 1mm. Second, the problematic detection has 

higher probability to be selected as outliers during RANSAC fitting (Chapter 4). Last, a 

margin will be added to create a planning target volume before treatment delivery, which 

further reduces for the uncertainties of the tumor motion range. In sum, the semi-

automatic framework and the fully-automatic framework based on PDF-tracking 

approach achieve clinically acceptable accuracy. 
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2.6.4 Implementation issues 

 

Currently the semi-automatic approach is implemented on “UIHC 4D 

Verification”. It was developed in Microsoft Visual Basic 2010. The major functions 

used for strain gauge calibration were also implemented in this software, which is 

currently under clinical trial. The functions include: (1) Manual initialization of IHDA 

locations on 2 FE frames and 2 FI frames; (2) ROI determination via interpolated ray 

tracing algorithm; (3) IHDA detection via DHT or PDF-based tracking; (4) RC 

reconstruction; (5) interactive tumor segmentation via graph cuts; (6) DTMR 

computation and strain gauge calibration based on random sample consensus (RANSAC). 

The function (4) to (6) will be further introduced in Chapter 4. Due to the existence of the 

error, the clinical software should allow manual correction and guidance to the algorithm 

for the problematic detection. A graphical user interface (GUI) is developed that enables 

clinicians to manually adjust the IHDA detection. Typically type-II error occurs in 

several consecutive frames of projection images, this is illustrated in Figure 2-16. Based 

on this feature, it is suitable to apply the tracking-based approach again, since the IHDA 

positions in consecutive type-II error frames can be corrected once the clinician has made 

the adjustment in one frame. In this way the manual correction will not only affect the 

modified frame, but also affect several neighboring frames. The PDF-based searching 

starts again using the manually corrected frame as the initial one. The neighboring frames 

will be searched through and the new detection result will replace the result of the first 

round. From a wider perspective, though automatic approaches are employed aiming to 

automate manual identification of IHDA, the software ends up with incorporating the 

manual correction because the automation sometimes does not do as well. The overall 

performance in terms of both the accuracy and the running time, however, is significantly 

improved from using either manual identification or automated process alone. One may 
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further consider the automatic detection and the manual correction as iterative steps, 

where this iterative nature is able to take advantage from both sides.  

The semi-automatic framework based on “UIHC 4D Verification” was tested on 

an Intel@ CoreTM II 2.40 GHZ CPU, 3G RAM desktop computer. The running time of the 

two Hough-based approaches can generally be divided into four major steps: pre-filtering 

of the ROI images, Hough transform, Hough peak detection and IHDA motion trajectory 

detection. Generally, the major bulk of time is in image filtering and the Hough transform. 

Each of these steps takes about 10~15s. The Hough peak detection and trajectory 

detection either based on dynamic programming or PDF tracking is relatively quick, 

which only requires 2~3 seconds in all. The time for manual correction is even quicker, 

since the Hough array and Hough peak is kept in memory and the correction only 

requires re-computation of IHDA trajectory in several neighboring frames.  

The fully automatic framework is tested on an Intel® Core ™ i7-2620M CPU 

@2.70GHz laptop with 4GB RAM. The 3D volumetric image reconstruction takes about 

8.3 s, where all the 200 projection images are reconstructed into a 3D volume containing 

128×128×128 voxels, with a voxel spacing of 2 mm. This resolution is sufficient for 

robust automatic IHDA detection, which takes 4.9 s to generate 2D ROIs for each 

projection image. Compared with our former semi-automatic approach, it takes 30 to 60 s 

for a clinician to manually identify the IHDA position in 4 projection images, depending 

on his/her familiarity with the software and the visibility of the image. The Hough 

transform for 200 ROIs takes 6.9 s. Once the Hough accumulation array is available, 

either DHT or tracking-based approach takes less than 0.5 s for IHDA detection. The 

overall computation time is about 20 s. The time frame is acceptable for clinical 

implementation. For comparison, careful manual identification of 200 projection images 

requires 10 to 20 minutes. 
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CHAPTER 3  

RESPIRATORY MOTION MODEL EXTRACTION DIRECTLY FROM 

MVCBCT PROJECTION IMAGES 

 

In the last chapter, a framework for detecting IHDA from MVCBCT projection 

images is presented. A further potential step is to use these projection images to directly 

monitor or detect intra-fractional motion of other organs, such as the tumor or the lung, 

since the projection images provide high temporal resolution (about 0.3s). Different 

approaches have been proposed, including (1) monitoring tumor change by projecting a 

volume of interest for visualization (Reitz, Gayou, Parda, & Miften, 2008); (2) extracting 

the 2D/3D position of a projected implanted marker (T. Li et al., 2006) or diaphragm 

edge (as presented in last chapter); (3) registering from 3D image space to projection 

space for inter-phase motion compensated reconstruction (T. Li, Koong, & Xing, 2007). 

Direct tumor tracking or detection in 2D images is mainly focused on fluoroscopy 

(Shimizu et al., 2001). However, few studies have addressed direct tumor detection in 

MVCBCT projection images, which suffer from relatively poor contrast due to the 

energy range of the imaging photons and the interfering anatomies.  

In this study, we present a novel method based on an optimal graph search 

framework to extract 3D respiratory motion models from multiple respiratory phases in 

2D projection images. The optimal graph search method, first proposed by Li et al. (K. Li, 

Wu, Chen, & Sonka, 2006; X. Wu & Chen, 2002) has gained much attention in the field 

of medical image segmentation in the past few years. The advantage of optimal detection 

of multiple surfaces has made it widely useful in various image segmentation tasks, such 

as multiple intra-retinal layer segmentation in optical coherence tomography (OCT) 

images (Garvin et al., 2008), simultaneous bladder and prostate surface segmentation in 
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CT images (Song, Wu, Liu, Sonka, & Garvin, 2010), and multiple surface delineation of 

knee-joint bone and cartilage in MR images (Yin, Zhang, & Sonka, 2008).  

The graph search framework was originally designed for multiple-surface 

segmentation in 3D images. My innovation in this work is to make this graph-based 

globally optimal method suitable for 3D organ segmentation from 2D image series. An 

innovative design of graph construction and nodes weight assignment is developed to 

fulfill this goal, which will be presented in details in upcoming sections. Two major 

advantages make the proposed method robust in the low-contrast MVCVBCT projection 

images: (1) The 3D tumor surface segmentation is based on all the 2D projection images 

that belong to the corresponding respiratory phases. The detection inaccuracies induced 

by low contrast and interference in one projection image can be reduced. (2) Compared 

with other 2D-to-3D object shape recovery methods, such as free form deformation 

(Lotjonen, Magnin, Nenonen, & Katila, 1999), B-spline surface model (Moriyama et al., 

2002) and triangulated mesh pulling (Chen et al., 2011), our approach incorporates the 

maximal allowed motion displacement of the tumor as an inter-surface constraint in the 

surface detection process and obtains a global optimal solution.  

 

3.1 The motion extraction framework 

3.1.1 Overview of the approach 

 

The main steps of the proposed approach are illustrated in Figure 3-1 with the 

intermediate results for tumor segmentation shown in Figure 3-2. In preparation for the 

algorithm, the projection images are sorted into several respiratory sorting bins according 

to the 3D anatomical positions of the ipsi-lateral hemi-diaphragm apex (IHDA), which is 

automatically extracted from projection images based on the framework introduced in the 

last chapter. The algorithm starts with an initial 3D static mesh model, which reflects the 
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approximate topological structure information of the targeted tumor surface. The initial 

tumor mesh is projected onto each 2D projection image. The new location of mesh points 

for all the respiratory bins are determined simultaneously using a multi-surface optimal 

graph search method, which requires computation of the silhouette outline for each 

projected mesh at first.  

 

Figure 3-1: Flowchart of the motion extraction approach 

 

3.1.2 Model initialization  

 

The initial static model is the average of the meshes for the full exhale (FE) and 

full inhale (FI) phases of the 4D CT. For each mesh point, a range of motion is 

determined using the equation )( mfem PPP −+ α  and )( mfim PPP −+ α , where Pfe and Pfi 

are the corresponding positions in FE and FI phase, respectively. Pm is the mean position. 

α is used to control the allowed range, which is typically set between 1.5 and 2.0. The 

generation of the initial mesh is performed offline during the planning stage and can be 

completed within 2 minutes.  

 



 

 

Figure 3-2: Intermediate steps of the tumor motion e
(a) Full exhale phase of 4D diagnostic CT volume overlaid with 
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(a)  

: Intermediate steps of the tumor motion extraction approach.
(a) Full exhale phase of 4D diagnostic CT volume overlaid with tumor
(b) projected initial static mesh (green), its silhouette contour (red), motion direction 

silhouette contour after the graph search computation (blue). 

3.1.3 Silhouette contour extraction 

tic mesh, along with pre-defined motion vectors, is projected onto 

each 2D projection image. In order to move the mesh towards tumor boundary 

in the projection image, the silhouette outline is extracted from each projected mesh by 

using an efficient algorithm (Chen et al., 2011), which includes three major steps: (1) 

select candidate mesh edges (which are potentially silhouette edges) based o

topology of the graph; (2) split intersected candidate edges; (3) follow edges clockwise 

on the split candidate edges to extract the silhouette outline. The efficiency comes 

primarily from the first step, where the majority of edges are excluded af

topological analysis. An example of the detected silhouette outline is shown in 

59 

(b) 

xtraction approach. 
tumor mesh (blue);  

(b) projected initial static mesh (green), its silhouette contour (red), motion direction 
utation (blue).  

defined motion vectors, is projected onto 

each 2D projection image. In order to move the mesh towards tumor boundary locations 

uette outline is extracted from each projected mesh by 

, which includes three major steps: (1) 

select candidate mesh edges (which are potentially silhouette edges) based on local 

topology of the graph; (2) split intersected candidate edges; (3) follow edges clockwise 

The efficiency comes 

primarily from the first step, where the majority of edges are excluded after the 

topological analysis. An example of the detected silhouette outline is shown in Figure 3-2.  
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3.1.4 Multiple surface detection via optimal graph search 

 

A key innovation of the proposed method is converting the segmentation of 

objects with quasi-periodic motion in 2D rotational cone beam projection images into a 

3D multiple interrelated surface detection problem, which can be solved by a graph 

search framework (K. Li et al., 2006; X. Wu & Chen, 2002). The details are presented as 

follows. A 4D (3D+t) directed graph G=(V, E) is constructed based on the initial tumor 

mesh, where V and E are the set for vertices and edges, respectively. The graph contains 

N×M×T nodes, where N and T are the number of points of the static tumor mesh and the 

number of respiratory bins, respectively. M is the number of sampled points along the 

pre-defined motion vector. Each combination of [n,m,t] is one unique spatial and 

temporal location, that represents the mth sampled point in the column defined by mesh 

point n in phase t. The segmented tumor surfaces are defined by the function N:(n,t)� N 

(n,t), where n∈n ={0,…,N-1}, t∈ t ={0,…,T-1}, and N (n,t)∈  m ={0,…,M-1}. A cost 

value is computed for each node [n,m,t], denoted by c(n,m,t), using the following 

equation: 
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where P and p is the total number and the index of projection images, 

respectively. The function ),( tpδ =1 when the pth projection image belongs to the tth 

bin, otherwise it equals zero. The function ),( pnζ =1 when the nth point in the pth 

projection image is included in the silhouette contour, otherwise it equals zero. w(n,m,p) 

is the cost function of the mth sample point in the nth column in the pth projection image, 

which is defined as: 
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where pP  is the 3D

projection image. P(n,m) 

motion vector of the nth mes

of the nth point of the static m

of a given 2D location.  

Figure 3-3: 

 

The reason for using the negative dot product between these two vectors is that 

along the tumor boundary in 2D projection image

opposite to the image gradient. 

in the 4D graph is determined fr

corresponding respiratory 

Intra-column arcs are used to define the graph topology, which connect adjacent nodes 

that belong to the same colum

below [n,m-1,t]. (2) Inter

3D-to-2D projection operation of a vector or point in  the 

 is the location of the mth sample point along the pre

th mesh point. The operation normal(n) gives the normal direction 

th point of the static mesh, while the operation grad computes the image gradient 

: A simple illustration of the 4D graph construction

using the negative dot product between these two vectors is that 

ong the tumor boundary in 2D projection images, the projected normal direction is 

to the image gradient. Equation (3-1) and (3-2) show that the cost for each node 

in the 4D graph is determined from all the 2D projection images that belong to the 

corresponding respiratory bin. Three different types of arcs are added to the graph:

are used to define the graph topology, which connect adjacent nodes 

that belong to the same column. The arc goes from each node [n,m,t] (m>0)

Inter-column arcs are used to connect adjacent columns in the same 
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r or point in  the pth 

e pre-defined 

(n) gives the normal direction 

computes the image gradient 

 

A simple illustration of the 4D graph construction 

using the negative dot product between these two vectors is that 

, the projected normal direction is 

show that the cost for each node 

om all the 2D projection images that belong to the 

Three different types of arcs are added to the graph: (1) 

are used to define the graph topology, which connect adjacent nodes 

[n,m,t] (m>0) to the node 

are used to connect adjacent columns in the same 
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respiratory bin. The arc goes from each node [n,m,t] (m>δm) to [adj(n),m- δm,t] , where 

adj(n) represents adjacent mesh points of n. δm is the shape smoothness constraint, which 

is the maximal allowed difference in m between adjacent columns of one tumor surface. 

(3) Inter-phase arcs are used to connect the same columns in different respiratory bins. 

The arc goes from each node [n,m,t] (m> δt) to [n,m- δt, t±1] . δt is the inter-phase 

constraint, which is the maximal allowed difference in m between adjacent bins of the 

same column. We define that [n,m,0]=[n,m,T] to form a closed loop of respiratory bins. 

Figure 3-3 illustrates the main idea for graph construction, where a simple case of 

T=2,M=7, δm= δt=1 is shown. For visualization purposes, only two columns are shown 

for each bin. And only one inter-phase arc is drawn. The optimal solution can be 

computed by solving a maximal flow problem in the constructed graph (K. Li et al., 

2006). 

 

3.2 Application to the tumor motion extraction 

 

The graph search framework was experimented on both tumor and lung 

segmentation. In this section the experiment and validation on tumor segmentation is 

presented. The application to lung motion extraction will be presented in combination to 

motion-compensated reconstruction in Chapter 5.  

Generally, deriving the ground truth of patient tumor shape by using daily 

localization MVCBCT is very difficult. The standard reconstruction method of 

MVCBCT uses all the projection images. The tumor is blurred in the 3D volume. Though 

4D CT is able to provide clear boundary of tumor volume in multiple phases of 3D 

volumetric images, the tumor shape, size and motion pattern is likely to change through 

the course of radiotherapy. To validate the accuracy of the segmentation framework, we 

have designed and made an imaging phantom. It has a pre-determined size, shape and 



 

 

motion pattern, which can serve as ground truth. The segmentation result can then be 

compared with the ground truth. 
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density of about 0.4 g/cc 
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box embedded with six spherical pieces of pa

the phantom, a coronal slice of 

respectively. It can be seen

diagnostic CT slice, while it is hard to observe the two smallest inserts in the MVCBCT 

projection images.  

Figure 3-4: A picture of Left: the imaging phantom; Middle: a coronal slice of one phase 
of the 4D diagnostic CT; Right: one projection image of MVCBCT with a dose of 10MU

 

motion pattern, which can serve as ground truth. The segmentation result can then be 

compared with the ground truth.  

3.2.1 Phantom design 

phantom consists of two symmetrical blocks of basswood, with

 to mimic lung tissue. Each block has six different sized hollow 

hemispheres measuring 3.81, 3.18, 2.54, 1.91, 0.95, and 0.48cm in diameter, respectively. 

These hollow hemispheres were filled with paraffin wax, with a density of about 0.93 

to mimic lung tumors. The two halves were carefully aligned to form a rectangular 

box embedded with six spherical pieces of paraffin wax. Figure 3-4 shows a picture of 

m, a coronal slice of a diagnostic CT and a MVCBCT projection image, 

seen that all the six spherical inserts have clear boundar

diagnostic CT slice, while it is hard to observe the two smallest inserts in the MVCBCT 

A picture of Left: the imaging phantom; Middle: a coronal slice of one phase 
of the 4D diagnostic CT; Right: one projection image of MVCBCT with a dose of 10MU
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motion pattern, which can serve as ground truth. The segmentation result can then be 

ymmetrical blocks of basswood, with a 

to mimic lung tissue. Each block has six different sized hollow 

in diameter, respectively. 

of about 0.93 

to mimic lung tumors. The two halves were carefully aligned to form a rectangular 

shows a picture of 

diagnostic CT and a MVCBCT projection image, 

that all the six spherical inserts have clear boundaries in the 

diagnostic CT slice, while it is hard to observe the two smallest inserts in the MVCBCT 

 

A picture of Left: the imaging phantom; Middle: a coronal slice of one phase 
of the 4D diagnostic CT; Right: one projection image of MVCBCT with a dose of 10MU 
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The imaging phantom is placed on a cart attached to the Quasar respiratory 

motion (QRM) phantom (Modus Medical Devices, INC, London, ON, Canada) to 

simulate respiratory motion. The QRM phantom is programmed to move only in the 

superior-inferior (SI) direction, with its position, as a function of time t, defined as 

)/)((cos)( 0
4

00 τπ ttAztz ++=  

(3-3) 

where the motion amplitude A0 is 30 mm, and the period τ is 4s to represent 

typical breathing. z0 and t0 are the DC component of the motion and the starting phase of 

the phantom motion, which varies among different experiments. The phantom tests were 

done on two scans, with a dose of 5MU and 10MU, respectively. The imaging phantom 

experiment was not only used in the tumor segmentation verification introduced in this 

chapter, but also used for validation of correlated reconstruction presented in Chapter 4 

and validation for projection image enhancement technique introduced in chapter 6.  

 

3.2.2 Validation result 

 

The graph-based segmentation framework was also tested on 12 scans from three 

patients. Among all the 19 patients, the selected three patients have relatively large 

tumors in the lower lobe of the lung, which can be identified directly by human eye in the 

projection images. In this way the tumor segmentation can be compared with manual 

contour in the projection images. 3 images were selected for each of the previous two 

patients. 6 images were selected for the third patient, since an additional 4D CT was 

taken in the middle of the course of radiotherapy for this patient, which can be used to 

create the prior geometric tumor model for more following MVCBCT scans. All the 

patient scans used an imaging dose of 10MU.  



 

 

Figure 3-5 shows the detection result of the largest spherical insert of the phantom 

(top) and a real patient whose tumor is right above the diaphragm (bottom). The top

corner shows the detected 3D mesh in the corresponding 

is based on 2D contours in projection space. For the phantom images, the detected 

contour of the inserts is compared with the contour computed from the predefined size 

and the motion, which is considered ground truth. It can be seen that the insert can be 

detected robustly in the presence of the interfering superimposed objects, such as 

interfering spheres (Figure 

of the plastic support (small white circles in 

Figure 3-5: Detection result on
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shows the detection result of the largest spherical insert of the phantom 

and a real patient whose tumor is right above the diaphragm (bottom). The top

corner shows the detected 3D mesh in the corresponding respiratory bin. The evaluation 

is based on 2D contours in projection space. For the phantom images, the detected 

ntour of the inserts is compared with the contour computed from the predefined size 

and the motion, which is considered ground truth. It can be seen that the insert can be 

detected robustly in the presence of the interfering superimposed objects, such as 

Figure 3-5-1), the QRM motion phantom (Figure 3-5

of the plastic support (small white circles in Figure 3-5-3 and Figure 3-5-

Detection result on Top row: the imaging phantom; Bottom row
with tumor above the diaphragm. Red: silhouette outline of initial mesh;

tumor contour (deformed silhouette outline); yellow: contour of ground truth for phantom 
images, manually annotated contour for patient images. The detected 3D tumor mesh of 

the corresponding respiratory bin is displayed on the top-right corne
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shows the detection result of the largest spherical insert of the phantom 

and a real patient whose tumor is right above the diaphragm (bottom). The top-right 

bin. The evaluation 

is based on 2D contours in projection space. For the phantom images, the detected 

ntour of the inserts is compared with the contour computed from the predefined size 

and the motion, which is considered ground truth. It can be seen that the insert can be 

detected robustly in the presence of the interfering superimposed objects, such as 

5-2) and the holes 

-4). 

 

 

Bottom row: a patient 
: silhouette outline of initial mesh; blue: detected 

: contour of ground truth for phantom 
The detected 3D tumor mesh of 

right corner. 



 

 

Figure 3-6: Mean and standard deviation of
contour and ground truth; 

ground truth over 200 projection images of four spherical inserts.

 

The evaluation is based on the four lar

boundary information of the two smaller ones in the MVCBCT projection images (

3-4). Two metrics were employed to validate the detection result: The 2D dice coefficient 

and the difference of centroid positions along the SI direction. 

Figure 3-6 shows the mean and standard deviation 

200 projection images for the four largest inserts tested. It can be seen that the dice 

coefficient decreases slightly when the tumor size goes down, while this phenomenon 

does not occur in the centroid error. 

for centroid localization and a slight improvement in the dice coefficient. For patient 

images, the tumor was independently contoured by two 

contour was computed to compare with the detection result. The difference between the 

two manual contours is also quantified. 

 

and standard deviation of Left: dice coefficient between detected 
contour and ground truth; Right: centroid difference between detected contour and 

ground truth over 200 projection images of four spherical inserts.

The evaluation is based on the four largest inserts, since there is no strong 

boundary information of the two smaller ones in the MVCBCT projection images (

). Two metrics were employed to validate the detection result: The 2D dice coefficient 

ce of centroid positions along the SI direction.  

shows the mean and standard deviation values of those metrics over 

200 projection images for the four largest inserts tested. It can be seen that the dice 

creases slightly when the tumor size goes down, while this phenomenon 

does not occur in the centroid error. An imaging dose of 10 MU obtains better accuracy 

and a slight improvement in the dice coefficient. For patient 

tumor was independently contoured by two clinical experts. The average 

contour was computed to compare with the detection result. The difference between the 

two manual contours is also quantified.  
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Figure 3-7: Mean and standard deviation of
over 200 projection images of 12 MVCBT scans

 

Figure 3-7 shows the dice coefficient and centroid difference over 12 MVCBCT 

scans from 3 patients, wh

proposed method is even better 

expected, since the detection incorporates motion constraint

multiple images that belong to the same corresponding bin, while the manual contour is 

standard deviation of (a) dice coefficient; (b) centroid difference 
over 200 projection images of 12 MVCBT scans of patients

shows the dice coefficient and centroid difference over 12 MVCBCT 

scans from 3 patients, where it can be seen that the overall dice coefficient

proposed method is even better than variations between manual contours. This result is 

expected, since the detection incorporates motion constraints as well as information from 

t belong to the same corresponding bin, while the manual contour is 
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centroid difference 
of patients.  

shows the dice coefficient and centroid difference over 12 MVCBCT 

coefficient of the 

variations between manual contours. This result is 

as well as information from 

t belong to the same corresponding bin, while the manual contour is 
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based solely on one projection image, which contains several confounding objects 

generated by the projection of other tissues.  

On average, the phantom study obtained a dice coefficient of 0.87±0.03 and a 

centroid error of 1.94±1.31mm. Results based on 12 MVCBCT scans from 3 patients 

obtained 0.91±0.03 for dice coefficient and 1.83±1.31mm for centroid error, compared 

with a difference between two sets of independent manual contours of 0.89±0.03 and 

1.61±1.19mm, respectively. As discussed in the last chapter, based on a study of three 

patients, a motion of 3mm in excess of planned motion did not have a significant change 

(<1%) in their tumor control probability (TCP) (Siochi et al., 2008). Moreover, a setup 

error of 5mm is typically added to the gross tumor volume (GTV) for treatment delivery. 

For both phantom and patient studies, the quantified centroid accuracy is generally 

acceptable within the clinical requirement. 
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CHAPTER 4 

BIMODAL MVCBCT VIA CORRELATED RECONSTRUCTION 

 

In the previous chapters, we have shown the advances in MVCBCT imaging, 

which have made it clinically possible to perform patient localization prior to each 

treatment by registering the treatment CT to the planning CT. This process uses the 

treatment beam from a linear accelerator (linac) and an electronic portal imaging device 

(EPID) to capture projection images as the gantry rotates. These projection images are 

used for reconstruction by default. They could also be used in cine mode, where they 

could be exported into DICOM format for visualization and analysis. In Chapter 3, we 

have shown the feasibility of using MVCBCT projection images to identify tumor 

positions. The tumor motion amplitude could be further used to calibrate the strain gauge. 

However, as we have also presented in Chapter 3, the direct tumor segmentation 

framework is currently only suitable for large tumors. The method is not robust enough to 

capture the motion of small tumors, since the contrast in most of the projection images is 

low and the tumor boundary is poorly defined (see Figure 3-4). Tracking techniques that 

have been successfully applied to fluoroscopic images, such as methods based on 

template matching (Cui et al., 2007) or optical flow (Q. Xu et al., 2008) may not be 

robust enough for MVCBCT projection images as well. 

An alternative approach may be to use the diaphragm motion since it correlates 

well with tumor motion for most lung cancer patients (Cervino et al., 2009). In a 

preliminary study conducted by Dr. Siochi(Siochi, 2007), he identified the IHDA and the 

superior edge of the tumor in MVCBCT projections from 27 treatment fractions of one 

non-small-cell lung cancer (NSCLC) patient. The tumor position correlates well with the 

IHDA position in these projection images, with an averaged coefficient of determination 

of 0.95 for the linear fit. Moreover, the diaphragm edge between air and tissue is clearly 
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visible in the projection images. Methods presented in Chapter 2 have been able to detect 

2D IHDA positions in MVCBCT projection images semi-automatically, and convert 

them to 3D room coordinates using an interpolated ray tracing algorithm (Siochi, 2009). 

However, performing the same task for the tumor is more difficult. 

One could use the MVCBCT images to quantify the relationship between tumor 

and diaphragm motion. Applying respiratory correlated (RC) reconstruction by 

retrospectively sorting all the projection data according to diaphragm position would 

reduce blurring significantly, enabling clinicians to identify tumor and diaphragm 

boundaries directly on the images. We can then derive the diaphragm-to-tumor motion 

ratio (DTMR), which is based on the tumor centroid displacement and the IHDA 

displacement between full exhale (FE) and full inhale (FI) CBCT images. The strain 

gauge signal could be calibrated for tumor motion by using the DTMR and correlating 

the IHDA positions with the corresponding strain gauge signal recorded for each 

projection image.  

This chapter will be divided into three sections. The first section will show the 

feasibility of quantifying DTMR and tumor volume changes for a large tumor by using 

RC MVCBCT. However, RC MVCBCT based on one scan has many missing projection 

images; this causes severe view aliasing artifacts and degrades the reconstructed image 

quality, potentially limiting its applicability to larger tumors and small displacements. 

Section two describes the phantom tests that are carried to quantify the inaccuracies 

brought by the image degradation. It should be noted that the patient images could not 

provide ground truth for tumor size, shape or motion amplitude. At best, one can only 

hope to establish agreement among multiple dynamic imaging modalities such as Cine-

MR and 4DCT. Hence, in order to quantify the errors in volume and motion 

determination, a phantom with spherical inserts was imaged to study the feasibility of 

using RC MVCBCT to quantify tumor motion and tumor volumes. The actual motion of 

the phantom and the size of the inserts are known and serve as ground truth. The last 
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section will present our current methods that were implemented in the clinical software 

“UIHC 4D verification”, which is currently under clinical trial for strain gauge 

calibration based on correlated bimodal MVCBCT.  

 

4.1 Patient studies 

 

Current MVCBCT imaging uses all the projections to reconstruct a static image. 

By selecting projections belonging to the same respiratory phase, it is possible to 

reconstruct MVCBCT images of moving tumors with multiple phases. In this study the 

FE and FI phases are reconstructed for each MVCBCT scan. The superior-inferior 

position of the IHDA, provided by the previous step, is scaled from 0 to 100 to represent 

normalized respiratory phases. The ideal phase bin for the FE phase should be 0 to pw, 

and (100−pw) to 100 for the FI phase, where pw stands for the window size of the phase 

bin. But for real respiratory traces, especially for irregular breathing, inclusion of 0 or 

100 will only encompass a small amount of projections. Both factors should be 

considered for proper phase window and level values. An exhaustive search strategy is 

applied to find these values. For the FI phase, it aims to find a phase window and level 

that maximize the averaged respiratory amplitude of projections within the phase window. 

For the FE phase, the same procedure is used for minimization of the amplitude. 

The default CBCT reconstruction algorithm by Feldkamp, Davis, and Kress 

(FDK)(Feldkamp et al., 1984), is fast and produces good images, but an inadequate 

number of projections results in strong aliasing artifacts. Algorithms derived from 

Algebraic reconstruction techniques (ART)(Gordon, Bender, & Herman, 1970) are more 

robust for incomplete projections but require much more computation time due to 

iterative re-projection and backprojection (Mueller, Yagel, & Wheller, 1999a). Hardware 
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acceleration based on graphics cards made it feasible to accomplish cone beam ART 

reconstruction within a clinical time limit (Mueller, Yagel, & Wheller, 1999b).  

 

Figure 4-1: Image reconstruction example slice in coronal view: (a) FE phase of planning 
CT; (b) MVCBCT reconstructed from all the projections; (c) FE phase of RC MVCBCT 
reconstructed by FDK algorithm; (d) FE phase of RC MVCBCT reconstructed by ART 

algorithm (tumor contour is displayed in blue 

 

We have tested both methods to investigate the feasibility of tumor contouring 

without considering reconstruction speed. The projection matrices of MVCBCT, which 

were derived during MVCBCT geometric calibration (Morin et al., 2006), are used for 

voxel-driven computations in FDK method and ray-driven models in ART (Galigekere, 
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Wiesent, & Holdsworth, 2003). A Bessel-Kraiser filter (Lewitt, 1990) is used as the 

interpolation kernel for ART, since it has less aliasing artifacts than bilinear or Gaussian 

kernels for ray-driven back-projection. 

The IHDA position and tumor boundary in both FE and FI images are identified 

by a researcher without prior knowledge of the patient using the Pinnacle treatment 

planning software. The volume and centroid of the tumor and the DTMR are then 

calculated. These parameters are also quantified on the planning CT for comparison. 

Figure 4-1 shows one example of manual contouring of the tumor using Pinnacle. The 

figure is the same as Figure 1-3. It is displayed again here for convenient purpose. 

Figure 4-1a shows one coronal slice of a 4D planning CT. The MVCBCT has a 

much lower contrast to noise ratio (CNR). In Figure 4-1b a MVCBCT image 

reconstructed using all the projection data is shown. Static tissues such as shoulders are 

visible, but objects in motion, such as ribs, hemi-diaphragms and the tumor are very 

blurred. In the example image of the respiratory sorted reconstruction, the tumor 

boundary and diaphragm are better defined, regardless of the reconstruction method: 

FDK (Figure 4-1c) or ART (Figure 4-1d). Reconstruction artifacts existed in both FDK-

MVCBCT and ART-MVCBCT, further degrading the image quality. Both FDK and 

ART have truncation artifacts at the border of the imaging FOV. The intensities of organs 

outside the FOV contribute to the voxel at the FOV border during back-projection. For 

FDK, the streak artifact is observable, which is due to incomplete projections. The patient 

received audio-coaching during the treatment in order to encourage regular breathing. 

While this makes the gated RT treatment more reliable, it can also help improve the 

reconstruction of limited projection data by avoiding large gaps of missing projections. 

However there are some exceptions when the patient is unable to maintain the regularity 

during the scan. In our study, the IHDA respiratory phase in one of 16 MVCBCT images 

shows a very irregular pattern (Figure 4-2a), where the respiratory amplitudes for some 

maxima are much smaller than those of the other maxima. The exhaustive search strategy 
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had a hard time for this image, since no projections are within the FI phase window from 

frame 60 to 160 (Figure 4-2a). The image reconstructed in this projection set is severely 

degraded, making it impossible to contour the tumor correctly. For reference, Figure 4-2b 

shows a regular breathing pattern. 

  

Figure 4-2: Normalized respiratory phase for Left: irregular breath; Right: regular breath. 

 

 

Figure 4-3: Tumor volume plotted against elapsed days from first fraction 
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The radiation effect on tumor volume over the course of radiotherapy is plotted in 

Figure 4-3. Images reconstructed by FDK and ART are both studied. The effect of 

radiotherapy shows an exponential pattern of volume shrinkage. The average discrepancy 

in tumor volume between FDK and ART methods is 9.38%, with a standard deviation of 

7.2%. The discrepancy between the two methods may be due to human subjective error 

and improper setting of display window and level, which is shown to affect the object 

size measurement (Baxter & Sorenson, 1981). Although small errors existed between 

FDK and ART in size measurement, both methods agree well for the purpose of 

monitoring the trend of tumor change. Tumor volumes derived from two 4D planning CT 

scans are also shown in the graph, which can be considered as a gold standard. For the 

planning CT taken 6 days before the start of radiotherapy treatments, the tumor size is 

much smaller than the tumor size in both FDK-MVCBCT and ART-MVCBCT images 

taken minutes before the first radiation treatment. This may be due to tumor growth 

during the 6 day interim between imaging and treatment, since there is no radiation given 

during the 6 day interim and the tumor was particularly aggressive. The tumor size 

contoured in the second planning CT agrees well with the MVCBCT taken on the same 

day. 

 

Figure 4-4: DTMR value for 15 MVCBCT and 2 planning CT (MVCBCT with irregular 
breathing is excluded). 
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DTMR values are plotted in Figure 4-4. DTMR is computed from the IHDA 

motion and tumor motion, which is displayed in Figure 4-5. The measured motion is 

generally consistent between FDK-MVCBCT and ART-MVCBCT. The measured IHDA 

motion ranges from 0.78cm to 2.17cm, with an average and standard deviation of the 

difference between FDK and SART methods of 0.058cm ± 0.052cm. The tumor motion 

ranges from 0.8cm to 1.82cm, with a deviation between the two methods of 

0.131cm±0.112cm.  

 

Figure 4-5: Motion of IHDA and tumor centroid for 15 MVCBCT and 2 planning CT 
(MVCBCT with irregular breathing is excluded). 

 

Comparing tumor and IHDA motion to the slice thickness in the superior-inferior 

direction, which is 1.071mm and 3.0mm for the MVCBCT and 4DCT respectively, 

variation by one voxel in the IHDA identification may induce a 10% DTMR change. This 

error is consistent with the average difference between FDK and ART measurements. 

There are a few cases with a significant exception such as the one on day 7. The motion 

of both the IHDA and the tumor centroid in this scan is relatively small. The division 

between the two measured motions to compute the DTMR further increases the 

inaccuracy, which is part of the reason for the larger error. DTMR from the planning 
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4DCT taken 6 days before the first treatment day is much smaller than that of the 

MVCBCT, possibly due to discrepancies in tumor volume and/or natural variations in 

breathing patterns from one day to the next. For the planning 4D CT taken on the 4th 

week, the DTMR is close to that of the MVCBCT. Typically most images have a DTMR 

larger than 1, which is consistent with lung expansion during inhale. For the few cases 

where DTMR is smaller than 1, they may be due to manual identification and contouring 

errors, but it is also possible that the patient was breathing more with their chest than with 

their diaphragm. 

To sum up, we have verified the feasibility of assessing tumor response based on 

respiratory sorted MVCBCT derived tumor volumes. Parameters measured for the tumor 

contour and the IHDA in MVCBCT images are close to those of the planning CT and are 

in a reasonable range, except for a few cases in the first week of the MVCBCT, probably 

due to the time delay between 4DCT imaging and the first treatment fraction. The 

comparison of the DTMR for planning CT data and MVCBCT data also shows that it is 

feasible to use limited projection reconstruction to determine the tumor and diaphragm 

motion relationship. Generally, the validation work presented in this section shows the 

feasibility of observing trends in tumor size changes and measuring the DTMR to 

establish a relationship between tumor and diaphragm motion. Reconstruction artifacts 

induced by incomplete projections and truncations are the main reasons that affect tumor 

contour accuracy. The accuracy of using respiratory sorted MVCBCT reconstruction to 

measure object size and motion still needs to be assessed. It will be very helpful to image 

an object with prior knowledge about its density, shape and size, in order to quantify the 

reconstruction error. The next section will focus on the quantification of the 

reconstruction accuracy. 
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4.2 Phantom studies 

 

The details of the phantom design and the predefined motion can be seen in 

section 3.2.1. It is not only used for validation of the segmentation framework introduced 

in Chapter 3, but also used for validation for the correlated reconstruction approach 

presented in this chapter. The respiratory signal is based on the cranio-caudal motion of 

the center of the spherical insert. It is automatically rescaled into a relative motion range 

from 0 to 100, which corresponds to the most superior and the most inferior positions, 

respectively. This is similar to patient studies, where the rescaling is applied to the 

motion of the IHDA. 3D images at FE (0%) and FI (100%) are sufficient to quantify 

“tumor” displacement between full exhale and inhale states. Projection images are sorted 

to those two respiratory states with a fixed amplitude interval. The size of the allowed 

amplitude interval is a compromise between view aliasing artifacts (the reduction of 

which requires more projections) and residual motion (the reduction of which requires 

fewer projections). The interval is set at 10%, which corresponds to 3.0 mm in our study. 

Hence, the FE image is reconstructed from projections with sphere positions of 

approximately 0 to 3 mm from full exhale position. For the FI image, the selected 

projections have sphere positions of approximately 27 to 30 mm inferior to the full exhale 

position. For a CBCT scan that acquires 200 projections of a phantom that moves 

according to Figure 2-3, about 70 projections are included in the FE phase, while about 

30 belong to the FI phase.  

Image reconstruction was performed using the Feldkamp, Davis, Kress (FDK) 

method (Feldkamp et al., 1984). For the MVCBCT imaging of a static phantom, a clinical 

FDK reconstruction system is used. The dimension of the 3D volumetric image is 256 × 

256 × 274 (274 is in the craniocaudal direction), with a voxel spacing of 1.0 mm. For 

imaging of the moving phantom, an offline FDK algorithm is developed for the RC 

reconstruction. (The offline application uses the same algorithm as the online version, but 
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it is used to reduce demand for the clinical imaging workstation that performs the online 

reconstruction.) The sorted projections are reconstructed into an image of 256×256×256, 

with a voxel spacing of 1.071 mm. The dimension of each 3D image for the 4DCT scan 

is 512×512×274 (274 in the craniocaudal direction), with a transverse slice thickness of 

1.0 mm. 

The commercially available product of MVCBCT uses a 6 MV treatment beam 

line (TBL), while a test system in our clinic uses a 4.2 MeV imaging beam line (IBL). 

The lower energy photons provide a better quality image for the same dose (Faddegon et 

al., 2008; Faddegon et al., 2010; Flynn et al., 2009), allowing us to determine if RC 

MVCBCT benefits from the new beam line. For both TBL and IBL modes, the standard 

protocols use a 200° arc from -90° to 110°, generating one projection image per degree. 

We also tested a TBL protocol with a full rotation (359° arc), so that we can evaluate 

whether the increased number of projections improves our ability to determine tumor 

sizes and motion from RC MVCBCT. 

We acquired 12 scans, six with the phantom at rest and six with the phantom in 

motion. The six scans used the three modes (200° IBL, 200° TBL, 359° TBL) at 5 and 10 

MU. The phantom was also scanned at rest and in motion using 4D kVCT to compare our 

RC MVCBCT results against a clinical 4D system. All the 3D MVCBCT and kV CT 

volumetric images were stored in DICOM format and imported into the Philips Pinnacle 

(Philips Medical Systems, Andover, MA) treatment planning system. All spherical inserts 

in all the images were contoured. The volume and center of the contoured regions of 

interest were derived using Pinnacle’s measurement tools. The displacements between 

volumes in the FE and FI images were computed from the difference of the centroid 

positions. 

Previous studies have demonstrated that the display window center (WC) and 

window width (WW) significantly influence the apparent size of an object in CT imaging 

(Baxter & Sorenson, 1981; Magnusson, 1987). It was found that the WC should be half 
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of the attenuation differences between the object and the background in order to yield the 

correct size. In this study, we set the WC at half of the attenuation difference between the 

spherical insert and the basswood frame. The WW is set as the attenuation difference. 

 

4.2.1 Image quality 

 

Figure 4-6 shows one coronal slice of the FE phase for kVCT and RC MVCBCT 

imaging for different protocols. Figure 4-7 compares the attenuation profiles of those 

images for the largest two spherical inserts. For the kVCT, the image intensity is 

distributed uniformly within each spherical insert and the CT number represents the 

material density well. For the other three RC MVCBCT images, the image intensity is no 

longer uniformly distributed, as noise occurs in both wax and basswood regions. There is 

some difference between the CT number in the RC MVCBCT and the CT number that 

corresponds to the actual density of the material. As expected, the uniformity within the 

sphere improves as the dose is increased from 5 to 10 MU (from upper right to lower left 

panel), and as one goes to a softer energy spectrum (from lower left, TBL, to lower right, 

IBL). The smallest insert is identifiable in images reconstructed using IBL or images 

reconstructed from 359 projections. Using a wider range of projections and IBL improves 

the imaging quality. 
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Figure 4-6: One coronal slice of the phantom imaged using kVCT (top-left), RC 
MVCBCT with 5 MU TBL (top-right), RC MVCBCT with 10 MU TBL (bottom-left), 

and RC MVCBCT with 10 MU IBL (bottom-right). 
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Figure 4-7: Imaging profile of the two largest inserts in FE phase images using kVCT 
(top-left), RC MVCBCT with 5 MU TBL (top-right), RC MVCBCT with 10 MU TBL 

(bottom-left), and RC MVCBCT with 10 MU IBL (bottom-right). 

 

4.2.2 Volume quantification 

 

We use the relative error to measure the accuracy of volume determination. The 

relative error is defined as the normalized difference with the nominal designed value: 

designeddesignedactual VVVerrorrelative /−=  

(4-1) 

where Vactual is the volume measured from the contours and Vdesigned is the nominal 

designed volume.  
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Figure 4-8: Relative error in volume as a function of the phantom insert diameter. 

 

Figure 4-8 compares the average and standard deviation of the relative error in 

volume for all the kVCT images and RC MVCBCT images. For the planning CT, the 

error is within 10% for all the inserts of different sizes. For RC MVCBCT, an inverse 

relationship between object size and relative error is present. Image degradation due to 

view aliasing artifacts and residual motion only affects the apparent size of the border 

region for large objects, but may affect the small object entirely. The image pixel 

dimension also affects smaller objects, since it is a larger fraction of the object’s diameter. 

The residual motion of 3 mm also has a greater effect on smaller objects. The average 

error of the four larger inserts is about 10%, but errors increase significantly when the 

object diameter is less than 1 cm, indicating that volume measurement in RC MVCBCT 

is not suitable for small objects. For larger tumors, we have observed tumor volume 

reduction through a course of treatment using methods similar to what is described in the 

last section (Figure 4-3), so RC MVCBCT could provide tumor response assessments for 
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tumors larger than 2 cm in diameter, as verified by 4D kVCT imaging. However, the case 

study was for a regular breather who provided a sufficient distribution of uniformly 

spaced projections for RC MVCBCT. Irregular breathers will most likely have fewer 

projections with irregular spacing and could induce more artifacts. Further studies with 

irregular breathing patterns programmed into the phantom would be needed to determine 

the limitations on these situations. 

We further reclassified the results based on different imaging parameters to study 

their influence on the accuracy of volume determination. Table 4-1 to Table 4-4 show the 

averages and standard deviations of relative errors belonging to different subsets of 

imaging parameters, including different respiratory states (Table 4-1), number of 

projections (Table 4-2), imaging dose (Table 4-3) and source energy (Table 4-4). 

In Table 4-1, the relative error of static objects using standard MVCBCT is 

significantly smaller than that for FE or FI images using RC reconstruction. The error 

using static object MVCBCT data is even comparable to that of the kVCT for the four 

larger inserts. This is, in part, a consequence of using fewer projections, as can be seen as 

well in Table 4-2 where the relative errors for a complete rotation (359°) are lower than 

those for a 200° arc. However, one would expect that since the FE phase has more 

projections (70) than the FI phase (40), the FE phase should have better accuracy. This 

seems to be true only for the smallest sphere, while for the larger spheres, the FI phase is 

slightly better. This could be a consequence of the actual residual motion in the 

reconstruction. Although the projection sorting algorithm used a 3 mm window, the 

actual residual motion could be slightly smaller for the FI phase than for the FE phase. In 

fact, for the FI phase, typically only two projections were selected per respiratory cycle. 

With fewer projections in the FI phase, the likelihood of spanning the entire 3 mm 

window is lower. 

It is very likely that more projections available in a wider range of angles for each 

phase may reduce the view aliasing artifacts for tumors, although the effect of these 
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artifacts on volume determination for spherical objects seems to be less of an issue than 

residual motion. However, using a 359° rotation increases the image acquisition time. 

This presents a compromise between reducing setup time and finding a more accurate 

protocol. 

Table 4-3 and Table 4-4 present counterintuitive results. One would expect higher 

imaging doses to produce better images and, hence, improved volume determination. 

Similarly, one would expect softer energies to yield lower volume errors due to improved 

image quality. Figure 4-6 shows how image quality improves according to this expected 

pattern. Table 4-3 and Table 4-4, however, show the opposite trend. The differences, 

however, are within the standard deviations. Within experimental error, they essentially 

produce the same result. It is possible that the amount of residual motion varies quite a bit 

due to the random starting phase for image acquisition, and this is just enough to affect 

the results. 

 

Sphere diameter, cm Static FE phase FI phase 

3.81 3.02%±1.53% 5.81%±2.03% 4.74%±3.12% 

3.18 2.60%±2.28% 8.42%±2.95% 7.08%±3.03% 

2.54 3.08%±2.51% 10.6%±5.20% 6.43%±5.26% 

1.91 7.95%±10.3% 15.8%±5.65% 9.52%±8.11% 

0.95 8.11%±6.73% 33.6%±20.3% 31.4%±16.4% 

0.48 16.7%±10.1% 27.6%±19.9% 100%±48.3% 

Table 4-1: Average and standard deviation of relative volume error for FE and FI phases 
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Sphere diameter, cm  200 degrees 359 degrees 

3.81 2.84%±1.70% 5.91%±3.40% 

3.18 6.33%±3.81% 5.12%±3.87% 

2.54 8.09%±6.43% 3.62%±2.14% 

1.91 11.8%±9.47% 6.58%±4.38% 

0.95 21.3%±18.8% 19.3%±18.1% 

0.48 55.8%±48.8% 36.2%±25.7% 

Table 4-2: Average and standard deviation of relative volume error for different arcs 

 

Sphere diameter, cm  5 MU 10 MU 

3.81 3.66%±2.06% 5.38%±2.69% 

3.18 4.52%±3.15% 7.54%±3.64% 

2.54 5.29%±4.33% 8.08%±6.01% 

1.91 8.20%±5.91% 14.0%±10.0% 

0.95 23.9%±18.0% 24.7%±20.7% 

0.48 42.1%±52.8% 47.7%±41.8% 

Table 4-3: Average and standard deviation of relative volume error for 5 and 10 MU 

  

Sphere diameter cm kV CT IBL MVCBCT TBL MVCBCT 

3.81 4.02%±1.04% 4.81%±0.85% 4.37%±3.02% 

3.18 3.80%±1.10% 6.65%±3.79% 5.72%±3.71% 

2.54 4.69%±2.94% 8.36%±5.64% 5.86%±5.13% 

1.91 5.66%±2.28% 14.8%±9.76% 9.21%±7.55% 

0.95 6.37%±3.89% 32.5%±20.1% 20.3%±17.6% 

0.4 7.98%±2.76% 45.0%±62.8% 45.1%±37.3% 

Table 4-4: Average and standard deviation of relative volume error for different energies 
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4.2.3 Motion quantification 

 

Similar to volume determination, we also use relative error to present the 

normalized accuracy of motion quantification, expressed as: 

designeddesignedactual MMMerrorrelative /−=  

(4-2) 

where M represents the displacement of the centroid between FE and FI 

respiratory states and the subscripts are consistent with those in (4-1). Figure 4-9 shows 

the average and standard deviation of the relative error of the motion of the six spherical 

inserts when using kV CT and RC MVCBCT. It should be noted that there is only one kV 

CT scan of a moving object. The measured displacement is very accurate for this kV CT 

scan. The three largest inserts have exactly the same motion measurement as the nominal 

designed value of 30mm. The error for the smallest of the three inserts is within 2%. For 

RC MVCBCT, the errors for the five largest inserts are all about 5%. The error is slightly 

larger for the smallest insert at 6.8%. All the relative error of motion is within 10%, 

which correlates well with the 10% amplitude interval in amplitude-based projection 

sorting. 
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Figure 4-9: Relative error in displacement as a function of the phantom insert diameter. 

 

Since the difference of motion quantification between different inserts is small, 

we present the average and standard deviation of the relative error in Table 4-5 by 

summarizing all the inserts belonging to the same type of RC MVCBCT scan. The 

nomenclature for the various imaging parameters is consistent with that of the previous 

section. The difference in relative error is very small (0.3%) between different imaging 

parameters, indicating that motion quantification is comparably more robust and 

insensitive to variation in manual contouring than volume determination. It is feasible to 

quantify tumor motion amplitudes between FE and FI respiratory states by using RC 

MVCBCT, even for objects with a diameter of about 0.5 cm. It should be noted that 

typical tumor motion amplitudes range from 1.0 cm to 2.5 cm, which is smaller than the 

phantom motion in this study. This gives us confidence to extend the practice of 

evaluating motion between the FE and FI respiratory states of 4DCT data to cases of RC 

MVCBCT taken immediately prior to treatment, to determine if the maximum motion is 

consistent with the one determined at the time of treatment planning 
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Imaging parameter Relative error 

kVCT 0.61%±0.83% 

All RC MVCBCT 5.06%±2.14% 

IBL 5.00%±2.07% 

TBL 5.09%±2.22% 

5MU 4.90%±2.21% 

10MU 5.20%±2.13% 

TBL 200 4.94%±2.41% 

TBL 359 5.22%±2.13% 

Table 4-5: Average and standard deviation of relative error of motion using kVCT and RC 
MVCBCT 

 

4.2.4 Discussions of phantom experiment 

 

Based on the error analysis in section 2.6.3, it is shown that ∆k has larger 

influence in determining ∆T than ∆D. So it would be desirable to make ∆k  as small as 

possible. In section 2.6.3, a rough estimation of ∆k on the order of 10% is used. In the RC 

reconstruction of patient images, it is further shown that the difference of DTMR 

quantification between FDK and SART algorithm is 11.3±10.4%. However, the studies 

taken on patient images lack the ground truth information. In this subsection ∆k is further 

analyzed based on the motion quantification accuracy that derived from phantom images. 

First, the DTMR is rewritten here: 

EI

EI

T

D
k =

 

(4-3) 
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where DEI and TEI is used to represent the range of motion between FE and FI 

phase of 3D MVCBCT volume for diaphragm and tumor respectively. The error of 

DTMR can be further expanded as: 
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Similar to the analysis in section 2.6.3, if normal distribution assumption is used 

for all the random variables, the standard deviation of ∆k can be written as, 
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where it is influenced by both DEI and TEI. A typical value of diaphragm motion 

(DEI) and tumor motion (TEI) would be 25mm and 20mm, respectively. ∆TEI achieves 

standard deviation of 1.52mm based on the phantom studies, while ∆DEI reaches 0.58mm, 

based on the difference of motion quantification between FDK and SART algorithm for 

patient images. This set of parameters make ∆k equal to 9.57%, which is very close to the 

10% estimation.  

Generally, the results of phantom studies provide some lower bound on errors, 

since the error may be greater due to inaccuracies in contouring non-spherical objects and 

reconstruction errors arising from irregular breathing patterns. First, because the study 

used spheres, they may be less susceptible to view aliasing artifacts. Volume 

determination for tumors may be less accurate than what is noted here, but these studies 

at least establish a lower limit on tumor sizes that can be evaluated with RC MVCBCT. 

For motion assessment, however, since the centroid of the tumor is used, it will be less 

sensitive to the identification of the tumor edges. This could explain why the accuracy for 

motion assessment is more robust. This could carry over into patients as well, and manual 
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identification of the tumor in projection images for a test patient showed that the tumor 

displacements between full inhale and exhale, averaged over all imaged respiratory 

cycles, was within 3 to 5 mm of the value determined from RC MVCBCT. 

When one determines volumes and motion within a patient, they need to know 

whether their imaging methods are causing errors. Using spheres allows us to reduce the 

possible errors coming from user variability in contouring, and instead allows us to 

determine possible errors that come from the reconstruction of fewer projections than 

what one would normally expect. The patient imaging study presented in the last section 

has to rely on comparison of the RC MVCBCT results against the results from the 4D 

planning CT. While volumes can be compared for MVCBCT and 4DCT images taken on 

the same day, one cannot compare the amplitude of motion from full exhale to full inhale 

since the respiratory motion for the two separate imaging sessions may be different. This 

is the best one can do for patient studies, since the true motion and volume of the tumor 

cannot be established; even the 4D planning CT will contain residual motion and artifacts, 

and its usefulness in serving as ground truth is subject to these errors.  

In this section, the feasibility of using RC MVCBCT to quantify object motion 

and size has been evaluated. The primary source of object boundary detection errors is 

the reconstruction error induced by missing projections. Better accuracy can be achieved 

for volume determination when the object is sufficiently large (a minimum diameter of 2 

cm). For larger tumors, response assessment in terms of volume reduction is feasible for 

regular breathers, at least until the tumor shrinks down to 2 cm, where a 4D kVCT would 

be needed for volume determination. Motion measurement results, on the other hand, are 

more robust. The relative error is within 10% for even the smallest object, and it is 

independent of energy, dose and protocol. This would allow us to relate diaphragm 

motion to tumor motion which, in turn, could be used for calibrating surrogates of tumor 

motion (since we can track the diaphragm in the projections), even for the smallest lung 

tumors that are clinically encountered in radiotherapy. The phantom studies in this work 
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can serve as a quality assurance method for any type of respiratory-correlated imaging, 

since they provide ground truth for size and motion, which cannot be unequivocally 

established with patient images. In the next section, we will present our current technique 

based on a clinical software “UIHC 4D verification” to quantify tumor and IHDA motion 

in real patient images to derive DTMR. The procedure of using IHDA motion signal and 

DTMR value to calibrate the strain gauge will also be presented.  

 

4.3 Current method implemented for strain gauge 

calibration on clinical software 

 

To calibrate the strain gauge based on IHDA motion signal and DTMR value, one 

has to derive both the tumor centroid and IHDA position in FE and FI phases of the 3D 

MVCBCT volume. The IHDA position could be directly determined from the volumetric 

image. The tumor centroid position, however, should be computed from a 3D segmented 

tumor mask.  

For the phantom study, the manual segmentation based on the spherical inserts is 

relatively easy, since the clinicians can directly fit a spherical shape to match the 

boundary of inserts. However, for patient images, the irregular shape of the tumor 

requires that the tumor boundary has to be identified slice by slice. This is very tedious in 

3D images. An automatic segmentation approach is needed. However, the variation of 

tumor in size, shape, structural pattern, and the degree of attachment to normal anatomic 

structures makes the automatic segmentation a challenging task. Over the years there 

have been many publications devoted to this area, including gray value thresholding 

(Diciotti et al., 2008; Goo et al., 2005), region growing (Brown et al., 1997; Brown et al., 

2001; Dehmeshki, Amin, Valdivieso, & Ye, 2008), classification based approach 

(Armato III, Giger, & MacMahon, 2001), and optimization based techniques (Opfer & 
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Wiemker, 2007; Wang et al., 2009).  There are also many studies dedicated to lung tumor 

segmentation in a series of follow-up CT scans, such as patient-specific prior model 

developed by Brown et al. (Brown et al., 2001), and techniques combining segmentation 

and registration (Kabus, Müller, Wiemker, & Fischer, 2008). These methods took 

advantage of the similarities of tumor shape of the same patient in different scans. 

Though many clinical tools such as Pinnacle have integrated algorithms for lung 

tumor segmentation, there is still a long way to go before clinicians can rely solely on the 

result of automatic algorithms to create GTVs for the treatment. Furthermore, the tumor 

segmentation in the RC MVCBCT volume is more error-prone than diagnostic CT, due to 

the poorer imaging quality and view-aliasing artifact. Human verification and 

modification is still indispensable at the current stage. To develop a tool useful for 

clinical application, the accuracy of the segmentation approach is not our primary 

concern in this proposal. Instead, we try to implement an efficient approach which 

enables intuitive user interaction and modification during the segmentation. The tumor 

segmentation procedure could be semi-automatic, but it should not take longer than the 

clinical limit.  

In this section, we will first discuss two graph-based algorithms that we have 

implemented for tumor segmentation. In the last section we will present how to use the 

derived DTMR and IHDA motion to calibrate the strain gauge.  

 

4.3.1 Optimal graph search based approach 

 

In Chapter 3, a novel method based on graph search framework for 3D organ 

segmentation from 2D projection images was presented. In this section, the graph search 

framework is used again, but for a different application: simultaneously segment the 

tumor in both the FE and FI phases of MVCBCT images. One of the advantages of using 
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graph search methods is that we can impose the shape similarity between the two phases 

to the segmentation result. Though there is some deformation when the tumor moves 

from FE phase to FI phase, the general shape should not change too much during 

respiration. The optimal graph search method is very helpful to meet our needs, since the 

constraint on the distance of the tumor surface in different phases can be represented by 

the inter-column edge. A detailed description of our implementation is as follows. 

 

 

Figure 4-10: Flowchart of simultaneous segmentation of tumor in both FE and FI images 
using optimal graph search method 

 

Figure 4-10 shows the main framework of the method. First, the user is required 

to initialize a region of interest (ROI) of tumor in both FE and FI images. In the current 

interface, the ROI is a 3D ellipsoid that contains the entire tumor. A screen layout is 

shown in Figure 4-11, where the FE and FI can be displayed simultaneously on the screen 

by adjusting the transparency of each image. The purple ellipse represents the ROI 

contour in this slice. The input is the 3D volumetric region specified by the ROI. The 

algorithm starts by pre-filtering the 3D ROI image, either based on a Gaussian filter or 

the anisotropic diffusion filter. Generally speaking, the Gaussian filter is faster, but the 
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diffusion filter has the advantage of preserving the boundary while reducing noise at the 

same time.  

  

Figure 4-11: Left: A screen layout showing the FE (blue) and FI image (yellow) together 
in one sagittal plane; Right: only with FE image. 

 

To restrict the change of the tumor surface from FE to FI phase, we have to first 

know about the relative motion of the tumor. Otsu’s method (Otsu, 1975) is used to 

convert the gray scale image to a binary segmented image under an optimized threshold 

value. Thus a rough position of the tumor centroid can be estimated by taking the average 

of all the “foreground” pixels in the binary image. Otsu’s method is based on the 

assumption that the image to be segmented generally contains two classes of pixels. This 

assumption matches our situation well, since the attenuation coefficients of the lung 

tumor and the surrounding pulmonary region are significantly distinct. Some of the 

peripheral lung tissues, such as the diaphragm and normal organs, have attenuation 

coefficients that are very similar to that of the tumor. However, these tissues exist in both 
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FE and FI images. The error of relative motion of the tumor induced by these tissues can 

be greatly cancelled by subtraction between the tumor centroid in two images.  

Based on the estimation of the tumor centroid, we are able to establish the 

correspondence between the two images. The process of graph construction is based on a 

spherical coordinate system (r, θ, φ), where r represents the distance to the origin, θ 

represents the inclination angle measured from the zenith direction (SI direction in patient 

coordinates), φ represents the azimuth angle (Figure 4-12a). The tumor centroid in each 

image is the origin of the coordinate system. The transformation from the original 

Cartesian coordinate to the spherical coordinate is as follows: 
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A 4D graph is created from two 3D ROI volumes, where the 4D coordinate (r, θ, 

φ, t) is used to specify each node of the graph. The additional parameter t represents the 

phase of the image. Currently since there are only FE and FI images, t only has two 

values: 0 and 1. The other three parameters (r, θ, φ) identifies the position of the node in 

the original image using equation (4-6). The cost of each node C(r, θ, φ, t) is based on the 

gradient amplitude, which is computed as the difference of filtered gray value of the 

image (represented by G) between adjacent nodes along the radial direction: 

),,,(),,,((),,,( trGtdrrGtrC ϕθϕθϕθ −+=  

(4-7) 

In this equation dr is the smallest unit along the radial direction, which is equal to 

one voxel spacing in our application. As discussed, the tumor has larger gray values 
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(attenuation coefficients) than the surrounding area. Thus the cost function designed in 

this way favors the direction of the gradient that points outwards from the origin. This 

property enables the detected surface to locate on the boundary that has a higher intensity 

than the inner side. To derive gray values in spherical coordinates, bilinear interpolation 

is applied to resample the original image in Cartesian coordinates.  

 

Figure 4-12: Left: A simple illustration of the spherical coordinates used in tumor surface 
segmentation; Right: An illustration of inter-column constraint. 

 

Each column of the graph is composed of all the nodes that have same value of (θ, 

φ, t). There are two types of constraint applied to the simultaneous surface segmentation: 

surface smoothness constraint ∆Rintra and inter-surface constraint ∆Rinter. The first 

constraint connects adjacent columns in one image, which is illustrated in Figure 4-12b. 

We set the constraint along both θ and φ directions, which requires that the node position 

of one surface between adjacent columns should not be larger than ∆Rintra. The inter-

surface constraint requires that the difference of the node position from two surfaces in 

the same column (θ, φ) should not be larger than ∆Rinter. Under this constraint the tumor 

surfaces in two images are able to interrelate with each other. The smaller ∆Rinter is, the 
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more the constraint is forced on the shape similarities. In the current implementation we 

set ∆Rinter to dr, ∆Rinter as five times dr.  

(a)  (b) 

(c)  (d) 

Figure 4-13: 3D tumor segmentation in RC MVCBCT volumes based on the graph search 
method. The image is shown in a coronal plane. (a) original image; (b) result after Otsu 
threshold; (c) segmented result based on graph search (red region); (d) segmented result 
after user correction. The user added two constraint points in this image, which makes a 

change in the tumor surface. 

 

The two interrelated surfaces are able to be detected, which have the maximum 

summation of cost values satisfying both smoothness and inter-surface constraints. The 

constraint optimization is realized by transforming the problem into computing a 

minimum s-t cuts problem. According to the graph construction procedure, each node (r, 

θ, φ, t) has to connect with three nodes from other columns to apply the smoothness and 

inter-surface constraint. The three nodes are ),,),,(max( min tdRrr inra ϕθθ +∆− , 



99 
 

 

),,),,(max( intmin tdRrr ra ϕϕθ +∆−  and ),,),,(max( intmin dttRrr er +∆− ϕθ , where rmin is the 

bottom node of each graph. Apart from those edges, other types of edges are also needed, 

including the intra-column edges connecting the descending node, and edges connecting s 

and t nodes. The minimum s-t cuts problem could be further solved by maximal 

flow/minimum cut algorithm in polynomial time such as push-relabel (Cherkassky & 

Goldberg, 1997) or Boykov’s method (Boykov & Kolmogorov, 2004). After the 

completion of maximum flow computation, the node is transformed back to Cartesian 

coordinates. After the minimal cut computation, the node that connects to s belongs to the 

tumor, while the node that connects to t is the background.  

We have also made this algorithm work interactively with the user’s modification. 

In the current GUI we have designed, the user is able to add a few constraint points, 

which are used to force the surface to locate on the specified locations. This constraint is 

realized by changing the cost value of the corresponding node to be large enough to 

guarantee that the desired node is on the boundary of the segmentation result. An 

example of the segmentation result without and with the user’s modification is shown in 

Figure 4-13c and Figure 4-13d respectively, where the user is able to make the tumor 

surface pass through the desired locations. 

 

4.3.2 Interactive graph cut algorithm 

 

Though tumor segmentation based on optimal graph search provides a promising 

solution to our requirement, there are several limitations of the current implementation. 

First, since the double-surface segmentation is performed on the radial basis, the tumor in 

both FE and FI images has to be star-shaped. However, this is not always true from our 

experience with the patient images. Second, the transformation between Cartesian 

coordinates and spherical coordinates, as well as the interpolation process, is very time-
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consuming. Methods based directly on original imaging coordinates would be more 

desirable. Third, the interactive modification by the user is not very easy to manipulate 

under the radial basis framework. The user has to draw the constraint points one by one 

and should be very careful on the position of the surface. It would confuse the algorithm 

if the user happens to click on two nodes that belong to the same column of the 

constructed graph.  

Considering all those factors, more recently we have implemented a more flexible 

algorithm based on interactive graph cuts. This method was first proposed by Boykov et 

al. (Boykov, Veksler, & Zabih, 2001; Boykov & Funka-Lea, 2006) and is a powerful 

technique for optimal boundary segmentation. It is also based on solving a maximum 

flow/minimum cut problem in the constructed graph, which is similar to the previous 

method. However, there is no topology of “column” in the graph cut algorithm. Each 

image voxel is a node in the graph, which makes the constructed graph based on the 

original image coordinate (each voxel is connected to its neighboring voxels). The 

segmentation result is a direct separation of all the image voxels into two sets. These 

characteristics makes the graph cuts algorithm significantly different from the graph 

search method. One of the great advantages of this method to our application is that the 

user can interactively identify the labeling of some of the image voxels as “object” or 

“background”. Once an initial segmentation is complete, the user can further modify the 

manual labeling and redo the segmentation. The segmentation on the subsequent times 

can utilize the information of the remaining edge capacity of the graph from the previous 

round, which makes the computation of maximum flow much faster than the first time.  

The workflow of the interactive graph cuts method is shown in Figure 4-14: , 

where several steps are the same as those of the previous method. It differs in two 

aspects: (1) there is no forward or inverse transformation and interpolation of the 

coordinates; (2) the manual labeling can be used efficiently in multiple times to assist the 

clinicians to modify the segmentation result.  
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Figure 4-14: Flowchart of simultaneous segmentation of tumor in both FE and FI images 
using interactive graph cuts algorithm. 

 

Once the initial estimation of the tumor centroid in two images is determined, the 

position of the tumor centroid is used as the origin of the image coordinate. We use the 

4D coordinate (x, y, z, t) to represent the graph nodes, where (x, y, z) is the Cartesian 

coordinate of the image voxel. Similar to the previous subsection, t is the phase number 

of the image. There are also two types of edges in this graph: edge connects adjacent 

voxels in the same image, and edge connects voxels that have the same position from two 

images. The intra-image edge is based on a 26-neighborhood metric. Thus each node (x, 

y, z, t) is connected to (x+dx, y+dy, z+dz, t), where the possible value of dx, dy, dz is {-1, 

0, 1} and the neighborhood criterion requires that max(dx, dy, dz)≦1. The inter-image 

edge constrains the shape difference of the tumor. Each node (x, y, z, t) is connected with 

(x, y, z, t+dt), where dt could be 1 or -1.  

From my experience, the boundary penalties set in each edge capacity plays a 

vital role in the final segmentation result. A poor set of boundary penalties may result in 

shrinkage of the segmented result to the initial labeling. In the current implementation, 

we used the function proposed in Boykov’s paper (Boykov & Funka-Lea, 2006): 
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(4-8) 

In this equation, the boundary penalties Bp,q that connects voxel p and q is 

determined by the gray value of those voxels Ip, Iq and a parameter σ representing the 

variance of the gray value. This function penalizes a lot for discontinuities between pixels 

of similar intensities when |Ip-Iq|<σ. Conversely, the penalty is small when |Ip-Iq|>σ. 

Thus we have to choose this parameter very carefully. To achieve a robust segmentation 

result, currently we calculate the variance of image intensities prior to the graph cuts 

computation. The ROI image is the smallest rectangular box that contains the user-

specified ellipsoid. All the voxels outside the ellipsoid is automatically assigned 

background label, while the voxels within a certain distance to the origin are assigned 

foreground (tumor). Our algorithm starts with the computation of the standard deviation 

among all the foreground and background voxels respectively. The parameter σ for intra-

image edge is a scale of the summation of foreground and background variance. A 

different scale is applied for the inter-image edge.  

The major problems of using the graph cuts algorithm without user initialization 

is the leakage to the surrounding tissues when the tumor is attached to a tissue that has 

very similar attenuation coefficients (Figure 4-15b). However, this problem could be 

solved by reducing the tumor ROI and manual identification (Figure 4-15c). Recently, 

Song et al. (Song, Chen, Bai, Sonka, & Wu, 2011) presented a new segmentation 

approach that incorporates the advantages of both graph cut and graph search algorithm. 

This approach enables simultaneous segmentation of tumor and the surrounding surface 

like the diaphragm, and is able to partly solve the leakage problem in some cases. 

Promising results have been achieved in some of the RC MVCBCT images, which makes 

the algorithm potentially useful in segmentation of the tumor which is attached to the 

surrounding tissues. On the other hand, even if the leakage problem is alleviated, the 

manual modification in some other problematic areas is still required. Our current 

framework based on graph cuts segmentation is able to achieve satisfying results after 
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adding three or four areas of manual labeling, based on visual inspection. For a tumor 

with a diameter larger than 5cm, the current algorithm is able to segment a tumor in FE 

and FI images simultaneously within 5sec, using an Intel® Core ™ i7-2620M CPU 

@2.70GHz laptop computer with 4GB RAM. The segmentation using information of 

previous edge capacities is within one second.  

   

Figure 4-15: 3D tumor segmentation in RC MVCBCT volume using interactive graph 
cuts. Result is shown in coronal slice: (a) original image; (b) initial segmentation (red 

region) based on elliptical ROI without manual correction. Some part of the segmented 
volume leaks to the peripheral lung regions on the left; (c) modified segmentation (red 

region) with manual correction (blue region). 
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4.3.3 Clinical software for strain gauge calibration 

 

Figure 4-16: The user interactive interface to quantify DTMR after reconstruction of both 
full exhale and full inhale phase of MVCBCT. The full exhale image is shown as green in 

axial plane, lateral plane and sagittal plane from left to right. The dark red area is the 
tumor segmentation result.  

 

In the current framework, after the volume of FE and FI phases are reconstructed, 

the clinicians are able to segment the tumor semi-automatically in a user-interactive 

interface introduced in section 4.3.2. The IHDA position in the two volumes can be 

identified directly by using the interpolated ray tracing algorithm. A snapshot of the 

current user interface containing the volume of full exhale is shown in Figure 4-16, where 

the tumor and diaphragm boundaries are much clearer than those of the un-correlated 

volume.  

Generally we assume a linear relationship between diaphragm and tumor motion. 

Since the FE and FI phase of MVCBCT is averaged from all the projection images sorted 

to FE and FI respectively, the DTMR is a significant clinical parameter to describe the 
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overall scale of linearity during the scan. Once the DTMR is determined, the clinicians 

are able to move into another user interactive interface to quantify the gating threshold 

for treatment. A snapshot of this GUI is shown in Figure 4-17. In the left, the correlation 

between strain gauge and IHDA is plotted, where the vertical axis is the absolute 

amplitude of the IHDA, and the horizontal axis is the percentage scale of the strain gauge. 

Two parabolic curves are fitted for the relationship between the two variables in inhale 

and exhale phase respectively. The fitting is based on random sample consensus 

(RANSAC) (Fischler & Bolles, 1981), where only a subset of sampled points which are 

deemed “good for fitting” are used, while excluding the potential outliers. The fitting is 

based on the least square metric.  

The difference in the correlation pattern in exhale and inhale phase is due to the 

phase difference between the strain gauge and diaphragm motion. The workflow is often 

initiated with a given allowed tumor motion margin, which represents the range of 

amplitude that allows the beam to turn on. By multiplication with DTMR, we can derive 

the allowed range of IHDA motion. Thus the threshold of the strain gauge during exhale 

and inhale phases could be determined by finding the intersection with the parabolic 

curves. In the example shown in Figure 4-17, the DTMR is 1.08. A 10mm tumor motion 

range is given, which results in 33% exhale and 63% inhale threshold. 
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Figure 4-17: the user interactive interface to determine the gating threshold during 
treatment based on DTMR. The blue and orange curve in the left fits the correlation 

between IHDA position and strain gauge percentage in exhale and inhale phases 
respectively. The strain gauge percentage value and IHDA motion amplitude as a 

function of time is shown on the right.  
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CHAPTER 5  

MOTION COMPENSATED RECONSTRUCTION 

 

In the last chapter, the accuracy of using RC volume for motion and volume 

quantification of the tumor has been shown. However, the major disadvantage of RC 

reconstruction approach is the view-aliasing artifacts caused by an insufficient number of 

projection images. This problem can be mitigated by using multiple rotations or slowing 

the gantry rotation speed (T. Li et al., 2006; T. Li & Xing, 2007)(T. Li et al., 2006; T. Li 

& Xing, 2007) to increases the number of projection images for each phase. However, for 

those methods, the increased image acquisition time and the amount of imaging dose 

delivered to the patient make it impractical to implement clinically. Other approaches 

seek to reduce the aliasing artifacts using algebraic reconstruction techniques and 

compressed sensing theory (Leng et al., 2008; Sidky & Pan, 2008), which enable accurate 

image reconstruction using under-sampled projection images. These iterative 

reconstruction algorithms are very time-consuming and require GPU platform for clinical 

implementations.  

An alternative approach is based on motion compensated (MC) reconstruction. In 

this method a motion model is provided in advance of the reconstruction and is 

incorporated into the de-convolution process during the back-projection. Usually, the 

motion model is represented by a time sequence of displacement vector fields (DVF). A 

mathematical description of the MC approach based on Feldkamp, Kress, Davis (FDK) 

reconstruction algorithm is explained in the work of Schafer et. al. (Schafer, Borgert, 

Rasche, & Grass, 2006). A straightforward method of deriving patient motion is to 

perform a deformable registration among different phases of the 4D planning CT to 

obtain a 4D DVF (T. Li et al., 2006; Rit, Wolthaus, van Herk, & Sonke, 2009; Q. Zhang 

et al., 2010). The accuracy of this approach is degraded by the motion that occurs 
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between treatment planning and treatment delivery. Li. et al. proposed registering the 

different phases of gated KV-CBCT images (T. Li et al., 2007). However, since the 3D 

RC cone beam volumes are contaminated with severe aliasing artifacts, the accuracy of 

using those images to derive DVF remains ambiguous.  

One promising solution is to use MVCBCT projection images to monitor or detect 

intra-fractional motion, since they have a high temporal resolution (about 0.3s for 

MVCBCT). Different approaches based on 2D motion detection have been proposed, 

including (1) monitoring tumor change by projecting a volume of interest for 

visualization (Reitz et al., 2008); (2) extracting the 2D/3D position of a projected 

implanted marker (T. Li, Schreibmann, Yang, & Xing, 2006) or diaphragm edge (Siochi, 

2009), which can also be used as respiratory signal for RC reconstruction; (3) performing 

deformable registration between the projected 3D volume and the 2D projection images 

to create a displacement vector field (FOV) for motion-compensated reconstruction. 

Direct tumor tracking or detection in 2D images is mainly focused on fluoroscopy 

(Shimizu et al., 2001). However, few studies have addressed direct tumor detection in 

MVCBCT projection images, which suffer from relatively poor contrast due to the 

energy range of the imaging photons and the interfering anatomies. The registration 

approach aims to optimize some similar metric between the forward-projected image of 

the 3D volume and the original projection image (T. Li et al., 2007; Rit et al., 2009). 

Once again, the iterative scheme of forward-projection and optimization is extremely 

slow, making it difficult for an immediate application in the treatment room. 

Alternatively, one can compute a (3D+t) deformable object model from the 2D 

projection images and makes use of this model for MC reconstruction. Various 

approaches have been proposed for recovering a 3D shape from 2D projections, including 

the thorax and the lung (Lotjonen et al., 1999; Lotjonen, Reissman, Magnin, & Katila, 

1999)(Sato, Moriyama, Hanayama, Naito, & Tamura, 1997; Veisterä & Lötjönen, 2001) 

and left ventricle surfaces (Chen et al., 2011; Moriyama et al., 2002; Sato et al., 1997; 
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Veisterä & Lötjönen, 2001). Usually, a geometric prior model is segmented from a 3D 

planning volume and projected onto 2D projection images (orthogonal biplane or multi-

views). Then the model is deformed according to the information provided in the 

projection images. The computation of displacement vectors for the deformation varies 

among different studies, including manual contoured outline (Veisterä & Lötjönen, 2001), 

boundary detection along the projected normal direction of silhouette outline (Chen et al., 

2011), elastic matching between virtual projections and real X-ray images (Lotjonen et al., 

1999; Lotjonen, Reissman et al., 1999), and iterative fitting to a 4D closed surface based 

on B-splines (Moriyama et al., 2002; Sato et al., 1997). 

In this chapter a novel MC reconstruction approach that uses the DVF generated 

from a 3D dynamic geometrical object shape model is presented, which is based on the 

segmentation framework introduced in chapter 3. The new approach has several 

advantages, which make it distinctive from previous methods: 

(1) The method takes advantage of the projection images to generate DVF while 

maintaining a clinical acceptable time frame. Instead of being used for 

deformable registration with forward projection (T. Li et al., 2007), the 

projection images are used to compute the deformation of a geometric prior 

model; 

(2) The deformation of the geometric prior model is computed simultaneously for 

all the respiratory phases. We convert the mesh deformation into a multiple 

interrelated 3D surface detection problem, where the globally optimal solution 

can be found in polynomial time by solving a maximum flow problem in a 4D 

directed graph; 

(3) Both mesh surface smoothness constraint and motion displacement constraints 

are employed in the graph search framework, which makes the object motion 

segmentation very robust. 
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The method is tested on lung motion model extraction from MVCBCT projection 

images. The DVFs generated from lung motion model are used for respiratory MC 

reconstruction. The method is compared with three other approaches based on 

reconstruction accuracy: (1) RC FDK reconstruction, (2) MC reconstruction using DVF 

generated from 4D planning CT and (3) MC reconstruction using DVF generated from 

RC MVCBCT. This chapter is organized as follows. Section 1 introduces the details of 

our MC reconstruction approach. Section 2 describes how the new method is compared 

and validated with other three traditional MC reconstruction approaches, while the 

evaluation result is also presented. Section 3 concludes with a discussion of the 

experimental results. 

 

5.1 The motion compensation framework 

 

Figure 5-1 shows the general framework for deriving DVF from MVCBCT 

projection images. It’s a natural extension of the segmentation framework introduced in 

chapter 3. The lung with the tumor is segmented in the full exhale (FE) phase of the 4D 

planning CT. A B-spline deformable registration method is used to derive the DVF from 

the FE phase to the full inhale (FI) phase of the planning CT (Cao, Du, Ding, Reinhardt, 

& Christensen, 2010). The DVF is then used to deform the lung mesh created from the 

FE image to generate a mesh for the FI phase. Since these steps only require the 4D 

planning CT, they can be performed after the planning scan. 

On the treatment day, once all the projection images are acquired, a 3D MVCBCT 

is reconstructed from all the projections. The lung model generated in the FE and FI 

phases of the planning CT is aligned to the cone beam coordinates. The averaged mesh 

between the FE and the FI phase is computed and used as the initial mesh model, which 

is further projected onto each 2DCB projection. The CB projections are sorted according 
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Figure 5-1: The general framework for deriving DVF from MVCBCT projection images
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5.1.1 Respiratory signals and phase sorting 

During the localization scan, the CB projections are correlated with the 

respiratory signal. The standard of care for this procedure is motion monitoring using the 

733V respiratory gating system (Anzai Medical Co., Tokyo, Japan). However, 

several studies have suggested that more accurate tumor motion may be determined when 

using internal anatomical surrogates, such as the apex of the diaphragm (Cervino et al., 

. The respiratory signal used in this study is based on this 

approach, which detects the apex of the diaphragm using the algorithm presented in 

he respiratory sorting is based on both the motion amplitude of the diaphragm 

and the inhale/exhale session. This involves three steps: First, the local maxima and 
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diaphragm apex (IHDA) into several 

The locations of mesh points in each respiratory phase are computed by 

The major difference to 

candidate edges” are used 

instead of silhouette edges to provide external forces to deform the mesh. The reason of 

se edges for lung motion segmentation will be discussed in details later.  

 

The general framework for deriving DVF from MVCBCT projection images 

n scan, the CB projections are correlated with the 

respiratory signal. The standard of care for this procedure is motion monitoring using the 

733V respiratory gating system (Anzai Medical Co., Tokyo, Japan). However, 

more accurate tumor motion may be determined when 

(Cervino et al., 

d in this study is based on this 

the algorithm presented in 

he respiratory sorting is based on both the motion amplitude of the diaphragm 

steps: First, the local maxima and 



 

 

minima of the signal are detected. Second, based on those maxima/minima positions, 

each projection image is labeled with a binary respiratory state “exhale” or “inhale”

Finally, the projection images are sorted into mul

and the label. Figure 5-2 illustrates an example of the respiratory sorting

wonder why phase 8 to 11 is missing in the second wave valley. That is exactly how the 

algorithm works. During the second wave valley the IHDA does not go that far towards 

inferior location, assigning phase 8 to 11 would vary IHDA location from what it should 

be during the first wave valley. 

Figure 5-2: An example showing a respirat

 

 

Segmentation of the lung takes two steps. First, an automatic algorithm is 

implemented to generate a binary image of the whole thoracic cavity based on gray lev

threshold and connected with component labeling. The binary image contains both lungs, 

including the trachea and the bronchia. Secondly, manual adjustment is used to keep the 

minima of the signal are detected. Second, based on those maxima/minima positions, 

each projection image is labeled with a binary respiratory state “exhale” or “inhale”

Finally, the projection images are sorted into multiple bins based on both the amplitude 

illustrates an example of the respiratory sorting. One may 

wonder why phase 8 to 11 is missing in the second wave valley. That is exactly how the 

ring the second wave valley the IHDA does not go that far towards 

inferior location, assigning phase 8 to 11 would vary IHDA location from what it should 

be during the first wave valley.  

 

An example showing a respiratory signal sorted into 20 respiratory bins 
ranging from 0 to 19. 

5.1.2 The initial lung model 

Segmentation of the lung takes two steps. First, an automatic algorithm is 

implemented to generate a binary image of the whole thoracic cavity based on gray lev

threshold and connected with component labeling. The binary image contains both lungs, 

including the trachea and the bronchia. Secondly, manual adjustment is used to keep the 
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minima of the signal are detected. Second, based on those maxima/minima positions, 

each projection image is labeled with a binary respiratory state “exhale” or “inhale”. 

tiple bins based on both the amplitude 

. One may 

wonder why phase 8 to 11 is missing in the second wave valley. That is exactly how the 

ring the second wave valley the IHDA does not go that far towards 

inferior location, assigning phase 8 to 11 would vary IHDA location from what it should 

ory signal sorted into 20 respiratory bins 

Segmentation of the lung takes two steps. First, an automatic algorithm is 

implemented to generate a binary image of the whole thoracic cavity based on gray level 

threshold and connected with component labeling. The binary image contains both lungs, 

including the trachea and the bronchia. Secondly, manual adjustment is used to keep the 
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cancerous lung while removing everything else. A triangulated mesh of the lung is 

generated from the binary image using the marching cubes algorithm {207 Lorensen, 

W.E. 1987} (Figure 5-3). Using an accurate B-spline deformable registration algorithm, 

we preserved both the parenchymal tissue volume and probability measure of vessel 

structure {208 Cao, K. 2010}. The optimization metric is based on the sum of the squared 

tissue volume difference and the sum of the squared vesselness measure difference, 

respectively {208 Cao, K. 2010}. 

     

Figure 5-3: The major process of generating initial lung shape model in the MVCBCT 
coordinate: (a) bony structures (red) segmented from 4D planning CT; (b) The alignment 
of the bony structures onto the fully reconstructed MVCBCT; (c) Triangulated lung mesh 
segmented from the FE phase of 4D planning CT; (d) The lung mesh transformed to the 

MVCBCT coordinate. 

 

The mesh created in the FI phase is derived from the FE phase based on the DVF 

computed during inter-phase registration. Using our in-house software platform, the 

MVCBCT image without MC is rigidly aligned to the coordinates of the 4DCT using 

bony anatomic structures (see Figure 5-3a, b). The lung meshes in the FE and FI phases 

are then transformed to the cone beam geometry (Figure 5-3d), which provides the initial 

lung shape and motion model. The initial model is the average of the meshes of the FE 

and FI phases. For each mesh point, a range of motion is determined using the equation 

Pmean+α(PFE-Pmean) and Pmean+α(PFI-Pmean), where PFE and PFI is the corresponding 
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positions in FE and FI phases, respectively, and Pmean is the mean position. α is used to 

control the allowed range, which is typically set between 1.5 and 2. In this study, it is 

assumed that each mesh point moves along the direction defined by Pfe and Pfi, providing 

a close approximation to the real motion trajectory. The generation of the initial mesh is 

performed off-line during the planning stage and can be completed within 2 minutes. 

 

5.1.3 Candidate edge selection 

 

The gradient amplitude and the direction of the lung boundary are the most salient 

features of the projection images. In order to deform the initial mesh towards these 

desired locations, the mesh points that correspond to the strong boundary in the 

projection images should be selected as anchor points to guide the deformation of the 

other points. For tumor segmentation, the strong boundary in the projection images 

typically corresponds to the silhouette contour of the mesh, which has been discussed in 

section 3.1.3. This is the same case for left ventricle segmentation in C-arm cone beam 

projection images, with details in my previous paper (Chen et al., 2011). Unlike the left 

ventricle or tumor, however, the lung mesh is a concave shape. During inspiration the 

lung walls bulges outward while the diaphragm hollows inward. Due to this characteristic, 

the silhouette contour of the projected lung mesh may not correspond to an equally strong 

boundary in the projection image. This is indicated by the red arrow in Figure 5-4. 



 

 

 

Figure 5-4: (a) Original MVCBCT projection image; (b) The projection of the initial lung 
mesh (green) and the sil
bottom does not have corresponding strong gradient. (c) Projected initial lung mesh 

(green), detected candidate edge (red contour), projected motion direction (yellow line), 
projected normal direction (blue line); (d) original candidate edge (red), projected motion 

direction (yellow line), deformed candidate edge after optimal graph search (blue)

 

Instead of using the silhouette contour as our boundary when aligning the mesh 

with the projection image, we define a subset of mesh edges as candidate edges. A 

candidate edge is required to satisfy two conditions: (1) all the neighboring points should 

be on one side of the edge in the projection space; (2) the surface region near the edge 

should be smooth. The first criterion guarantees that the ray integral on two sides of the 

candidate edge is different. The second one ensures that the difference is large enough to 

produce a high contrast. The detected intensity of the projection images can be compu

as a ray integral of the attenuation coefficients as a 3D volume: 

attenuation coefficient of the lung is distinct from the surrounding tissue, the gradient in 

the CB projection is caused by the difference in the length

through the lung. Figure 5

large differences in the ray accumulation, the top two locations are likely to correspond to 

a strong gradient, while the bottom location may have a weak or even invisible gradient

  

(a) Original MVCBCT projection image; (b) The projection of the initial lung 
mesh (green) and the silhouette contour (red). Note that the part of the contour at the 
bottom does not have corresponding strong gradient. (c) Projected initial lung mesh 

(green), detected candidate edge (red contour), projected motion direction (yellow line), 
irection (blue line); (d) original candidate edge (red), projected motion 

direction (yellow line), deformed candidate edge after optimal graph search (blue)

Instead of using the silhouette contour as our boundary when aligning the mesh 

n image, we define a subset of mesh edges as candidate edges. A 

candidate edge is required to satisfy two conditions: (1) all the neighboring points should 

be on one side of the edge in the projection space; (2) the surface region near the edge 

mooth. The first criterion guarantees that the ray integral on two sides of the 

candidate edge is different. The second one ensures that the difference is large enough to 

produce a high contrast. The detected intensity of the projection images can be compu

as a ray integral of the attenuation coefficients as a 3D volume: ∫=
−

eII 0

attenuation coefficient of the lung is distinct from the surrounding tissue, the gradient in 

the CB projection is caused by the difference in the length of the beam that passes 

5-5 compares three locations where an edge may exist. Due to 

large differences in the ray accumulation, the top two locations are likely to correspond to 

he bottom location may have a weak or even invisible gradient
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(a) Original MVCBCT projection image; (b) The projection of the initial lung 
houette contour (red). Note that the part of the contour at the 

bottom does not have corresponding strong gradient. (c) Projected initial lung mesh 
(green), detected candidate edge (red contour), projected motion direction (yellow line), 

irection (blue line); (d) original candidate edge (red), projected motion 
direction (yellow line), deformed candidate edge after optimal graph search (blue). 

Instead of using the silhouette contour as our boundary when aligning the mesh 

n image, we define a subset of mesh edges as candidate edges. A 

candidate edge is required to satisfy two conditions: (1) all the neighboring points should 

be on one side of the edge in the projection space; (2) the surface region near the edge 

mooth. The first criterion guarantees that the ray integral on two sides of the 

candidate edge is different. The second one ensures that the difference is large enough to 

produce a high contrast. The detected intensity of the projection images can be computed 

∫ drr )(µ
. Since the 

attenuation coefficient of the lung is distinct from the surrounding tissue, the gradient in 

of the beam that passes 

compares three locations where an edge may exist. Due to 

large differences in the ray accumulation, the top two locations are likely to correspond to 

he bottom location may have a weak or even invisible gradient. 



 

 

Figure 5-5: An illustration representing likely strong and weak boundaries. The top two 
locations produce distinctive differences, as marked by the red lines passing 
lung. The bottom boundary is very indistinctive with little difference visible around its 

 

5.1.4 Multiple surface detection via optimal graph search

 

The multiple surface segmentation procedure follows the graph sea

which is presented in chapter 3. It should be further noted that 

mesh points in any given phase

candidate points, candidate points belonging 

belonging to several candidate edges in different projections. It is the weight of the 

candidate points that contribute to surface detection and pulls the non

smoothness constraints. For candid

different projections, the weight is a combination of image gradients in multiple 

MVCBCT projection images.

 

 

 

An illustration representing likely strong and weak boundaries. The top two 
locations produce distinctive differences, as marked by the red lines passing 
lung. The bottom boundary is very indistinctive with little difference visible around its 

intersections with the lung. 

5.1.4 Multiple surface detection via optimal graph search

The multiple surface segmentation procedure follows the graph sea

which is presented in chapter 3. It should be further noted that there are three types of 

mesh points in any given phase of the constructed graph shown in Figure 

candidate points, candidate points belonging to one candidate edge, and candidate points 

belonging to several candidate edges in different projections. It is the weight of the 

candidate points that contribute to surface detection and pulls the non-candidate point by 

smoothness constraints. For candidate points belonging to several candidate edges in 

different projections, the weight is a combination of image gradients in multiple 

images. 
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An illustration representing likely strong and weak boundaries. The top two 
locations produce distinctive differences, as marked by the red lines passing through the 
lung. The bottom boundary is very indistinctive with little difference visible around its 

5.1.4 Multiple surface detection via optimal graph search 

The multiple surface segmentation procedure follows the graph search framework 

there are three types of 

Figure 3-3: non-

to one candidate edge, and candidate points 

belonging to several candidate edges in different projections. It is the weight of the 

candidate point by 

ate points belonging to several candidate edges in 

different projections, the weight is a combination of image gradients in multiple 



 

 

 

Figure 5-6 shows projection of the deformed 

the optimal graph search. 

space. The deformed edges move toward locations with strong image gradients, such as 

the diaphragm and the lung wall

Figure 5-6: Deformed mesh after optimal graph search. (a) 0% inhale phase; (b) 50% 
inhale phase; (c) 100% inhale phase; (d) 50% exhale phase

 

To generate the DVF, the displacements for all the voxels in the 3D volu

to be interpolated. The thin plate spline (TPS) interpolation algorithm 

is used to generate a 3D DVF using the displacement of a known point set called “anchor 

points.” The TPS interpola
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5.1.5 TPS interpolation 

shows projection of the deformed mesh in four projection images after 

the optimal graph search. Figure 5-4d shows the deformed candidate edge in projection 

space. The deformed edges move toward locations with strong image gradients, such as 

lung wall. 

Deformed mesh after optimal graph search. (a) 0% inhale phase; (b) 50% 
inhale phase; (c) 100% inhale phase; (d) 50% exhale phase

To generate the DVF, the displacements for all the voxels in the 3D volu

to be interpolated. The thin plate spline (TPS) interpolation algorithm (Bookstein, 1989)

is used to generate a 3D DVF using the displacement of a known point set called “anchor 

points.” The TPS interpolation aims to minimize the physical energy function as follows

∫∫ 








∂
∂+

∂∂
∂+

∂
∂

2

)()(2)(
2

22

2

2

dxdy
y

z

yx

z

x

z

 

117 

mesh in four projection images after 

d shows the deformed candidate edge in projection 

space. The deformed edges move toward locations with strong image gradients, such as 

 

Deformed mesh after optimal graph search. (a) 0% inhale phase; (b) 50% 
inhale phase; (c) 100% inhale phase; (d) 50% exhale phase. 

To generate the DVF, the displacements for all the voxels in the 3D volume need 

(Bookstein, 1989) 

is used to generate a 3D DVF using the displacement of a known point set called “anchor 

tion aims to minimize the physical energy function as follows: 

(5-1) 
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Figure 5-7: DVF from 0% inhale (FE) phase to 100% (FI) inhale phase. The mesh in 0% 
inhale phase is used as the reference phase 

 

The first term of the algorithm represents the interpolation error of the anchor 

points while the second term represents the bending energy of the transformation of a 

“thin plate.” The parameter λ is tuned appropriately to control the balance between the 

exact mapping of the anchor points and the rigidity of the deformation. For our purposes 

the anchor points are also the candidate points. Figure 5-7 shows the DVF from 0% 

inhale phase to 100% exhale phase. Two sets of images taken at FE and FI are 

reconstructed using the proposed approach. For the FE phase, the DVF is generated 

between the deformed mesh at 0% exhale which serves as the reference phase. For FI, the 

100% inhale phase is used as the reference phase. 

 

5.2 Experiments with the motion compensated approach 

 

The MC reconstruction method is tested on the same 12 MVCBCT localization 

scans that were used in tumor segmentation approach. Again, those scans were taken 
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from three patients who have large NSCLC tumors (>10cm3) in the bottom lobes of their 

lungs, which are visible in the projection images. A total of four sets of 4D planning CTs 

were used to generate the initial lung mesh model and provide a reference for evaluation. 

For the first two patients, one planning CT scan was taken several days prior to the 

treatment session. Two scans were captured for the third patient, since the tumor changed 

during the course of treatment and re-planning was required. For each 4DCT set, a 3D 

time sequence of volumes was acquired, representing ten different respiratory phases 

ranging from 0% to 100% on the inhale and exhale session. All the algorithms introduced 

in this study were implemented using our in-house software “MING DICOM”. 

 

5.2.1 Other MC reconstruction approaches for comparison 

 

Three different methods are used in comparison to the proposed approach: RC 

FDK, MC FDK using the deformation of the 4D CT and MC FDK using the deformation 

of the RC MVCBCT. For the RC FDK, the projection images are sorted into two subsets 

(FE/FI) to reconstruct 3D volumetric images. The limited number of projection images 

(200 using the default setting) restricts image production in other respiratory phases, 

since fewer projections occur during the middle of inhalation or exhalation. The sorting 

of the projection images is based on the superior-inferior direction of the IHDA signal 

only, since the motion pattern differs in the middle of the inhale/exhale phases. 

Compared to phase-based sorting schemes, amplitude-based methods are able to control 

the residual motion by adjusting the gating window. The size of the gating window is a 

tradeoff between view-aliasing artifact and motion artifact. Based on our experience, at 

least 30 projection images are needed in each phase to produce a clinically meaningful 

image set. To include sufficient images, the width of the gating window ranges from 10% 
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to 25% for FE phase, and 20% to 40% for FI phase (We scale the maximum and 

minimum of the amplitude to 100% and 0% respectively). 

The RC MVCBCT in the FE and FI phase is further used to generate two sets of 

3D DVF (FE to FI, FI to FE) for the MC approach. Similar to the RC FDK method, two 

phases (one at FE and one at FI) of images are produced. DVF from FE to FI are used to 

reconstruct the images during the FE phase, while DVF from FI to FE are used to 

reconstruct the images for the inhale phase. During the reconstruction, the DVF is 

interpolated for CB projections that belong to intermediate phases. 

Since there are more than 10 phases of images in one 4D CT set, a 4D DVF is 

generated using the image of each phase with respect to a reference phase. The DVF is 

converted into cone beam coordinates using the transformation information derived 

during the alignment of the two images (see Figure 5-3a, b). Interpolation of DVF for 

intermediate phases is also needed. 

 

5.2.2 Reconstructed images 

Figure 5-8 shows the results of MVCBCT at FE phase using the various 

approaches discussed in this paper. It is evident that for the FDK without MC (row a), 

strong motion artifacts in both tumor and diaphragm are visible. For RC reconstruction 

(row b), the motion artifact is greatly reduced, however there are still strong view-

aliasing artifacts (the streaking and banding). For the MC methods (rows c to e), the 

motion is reduced without introducing aliasing artifacts. 
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   (a) 

   (b)  

   (c)  

Figure 5-8: Reconstructed MVCBCT at the FE phase for one patient using different 
approaches. From left to right are the images of sagittal, coronal and axial views, 

respectively. (a) Conventional FDK using all the projection images; (b) RC 
reconstruction; (c) Motion compensated using 4D CT; (d) Motion compensated using RC 

MVCBCT; (e) The new approach. 
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   (d)  

   (e) 

Figure 5-8 continued 

 

Figure 5-9 shows a single profile aligned in a superior-inferior direction passing 

through the tumor. It is evident that the edge of the tumor and the diaphragm is much 

smoother in Figure 5-9a, showing obvious motion artifacts. For both the RC 

reconstruction and the proposed approach, the edge becomes much steeper. Some 

features generated using the 4D CT approach (Figure 5-9b) are preserved in the image 

reconstructed using the proposed approach (Figure 5-9c): the two small peaks located 

between the tumor and the lung wall are particularly noteworthy. The difference in the 

location of the edges between the reconstructed MVCBCT and the 4D CT, is due to the 

different respiratory sorting techniques applied for the reconstruction. Further differences 

were introduced due to the change of motion that occurred between the planning time and 

the treatment time. 

 



 

 

Figure 5-9: Profile of reconstructed 
inferior direction (x-axis is superior
CT number). (a) Conventional FDK; (b) 
difference in edge location is due to the change in motion pattern between planning CT 

 

 

Several metrics are used to evaluate the target localization and image quality of 

the reconstructed image. First, t

on data derived from 12 MVCBCT scans. For images with poor quality, such as 

there would be a very large variance of manually annotated contours of the tumor by 

different physicians. The edge of 

images. To minimize inter

implemented to segment the tumor and quantify the tumor size. The algorithm starts with 

a user-defined region of interest (ROI)

and connected region labeling is used to segment the tumor within the ROI. Since the 

data provided by the CT scans of the tumor and the surrounding soft tissue inside t

differs greatly, the Otsu threshold tries to

intra-variance of the two separating classes

planning 4D CT is used as ground truth and the relative error is computed 

(a) (b)

Profile of reconstructed MVCBCT (blue) and 4D CT (red) 
axis is superior-inferior direction in physical coordinate, y

CT number). (a) Conventional FDK; (b) RC reconstruction; (c) proposed approa
difference in edge location is due to the change in motion pattern between planning CT 

and CBCT. 

5.2.3 Volume measurement accuracy 

Several metrics are used to evaluate the target localization and image quality of 

the reconstructed image. First, the accuracy of tumor volumetric measurement is tested 

on data derived from 12 MVCBCT scans. For images with poor quality, such as 

there would be a very large variance of manually annotated contours of the tumor by 

different physicians. The edge of the tumor is sometimes difficult to define on these 

images. To minimize inter-observer variability, a semi-automatic approach is 

implemented to segment the tumor and quantify the tumor size. The algorithm starts with 

defined region of interest (ROI) in the 3D volume. The Otsu threshold 

and connected region labeling is used to segment the tumor within the ROI. Since the 

data provided by the CT scans of the tumor and the surrounding soft tissue inside t

differs greatly, the Otsu threshold tries to find the optimal threshold that minimize

of the two separating classes. The tumor volume calculated from the 

planning 4D CT is used as ground truth and the relative error is computed 
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(c)  

 along superior-
inferior direction in physical coordinate, y-axis is the 

reconstruction; (c) proposed approach. The 
difference in edge location is due to the change in motion pattern between planning CT 

Several metrics are used to evaluate the target localization and image quality of 

he accuracy of tumor volumetric measurement is tested 

on data derived from 12 MVCBCT scans. For images with poor quality, such as RC FDK, 

there would be a very large variance of manually annotated contours of the tumor by 

the tumor is sometimes difficult to define on these 

automatic approach is 

implemented to segment the tumor and quantify the tumor size. The algorithm starts with 

in the 3D volume. The Otsu threshold (Otsu, 1975) 

and connected region labeling is used to segment the tumor within the ROI. Since the 

data provided by the CT scans of the tumor and the surrounding soft tissue inside the lung 

minimizes the 

. The tumor volume calculated from the 

planning 4D CT is used as ground truth and the relative error is computed as follows: 
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(5-2) 

Figure 5-10 shows the relative error of tumor quantification of 12 MVCBCT daily 

localization scans. To reduce errors that may occur due to any change in tumor volume 

between the planning CT and the treatment/localization CT, we also analyze four 

MVCBCT scans taken closest to the planning day for each patient. The time period 

between the planning CT and MVCBCT scan is less than 6 days and there is no radiation 

therapy during this intermission. These images are marked with asterisks in Figure 5-10. 

According to a study on tumor growth conducted by Arai et al, a large cell carcinoma has 

a doubling time of 67.5 days, which is the most aggressive type of NSCLC (Arai et al., 

1994). Based on the linear growth and exponential growth models, the growth rate for a 

six-day time period can be estimated to be 8.9% and 6% respectively, which can be 

considered as upper bound. Table 5-1 and Table 5-2 show that MC reconstruction based 

on 4D CT scans and the proposed method have better tumor quantification accuracy than 

the other two approaches (RC MVCBCT, MC reconstruction using DVF computed from 

4D CT, MC reconstruction using DVF computed from RC MVCBCT is abbreviated for 

“RC”, “MC-4DCT”, “MC-CBCT” respectively). 
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Figure 5-10: Relative error of tumor volume quantification in 12 MVCBCT images. The 
bars with an asterisk represent the first MVCBCT scan after the 4D planning CT which is 

used as ground truth 

 

 

Relative Error RC MC-4DCT MC-CBCT Proposed Method 

FE phase 27.71%±22.4% 7.10%±7.52% 12.15%±9.77% 7.78±7.10% 

FI phase 
 

21.47%±22.1% 11.00%±7.37% 14.93%±14.83% 11.81±6.68% 

Table 5-1: Overall relative error of volume measurement. 

 

Relative Error RC MC-4DCT MC-CBCT Proposed Method 

FE phase 22.76%±12.65% 3.38%±3.46% 9.26%±4.64% 3.39±3.64% 

FI phase 22.42%±10.02% 6.60%±6.03% 10.94%±7.54% 8.57±8.31% 

Table 5-2: Overall relative error for the 4 MVCBCT scans close to planning day. 
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5.2.4 Motion measurement accuracy 

 

Motion measurement accuracy is another important clinical parameter in 

radiotherapy. In this study the motion of IHDA positions from FE to FI is manually 

identified, which has a very small inter-observer variability. The displacement of the 

IHDA in the superior-inferior (SI) direction is compared to the average peak-to-valley 

IHDA motion in the SI direction during the cone beam scan. This is considered as ground 

truth. The SI direction of motion of the IHDA is automatically determined from the 2D 

projection images using the method introduced in chapter 2. Similar to volume 

measurement, a relative error is used: 

DCT

MVCBCTDCT
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MM
ErrorMotionRelative

4
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(5-3) 

Figure 5-11 shows the relative error for 12 patients. The overall accuracy for the 

four methods is shown in Table 5-3, where the RC reconstruction method and the 

proposed method have greater accuracy than both the MC-4DCT and the MC-CBCT. 

Motion correction based on 4D CT reveals the largest error which is mainly due to the 

inconsistency of the motion pattern between the planning session and the localization 

session. 
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Figure 5-11: Relative error of IHDA motion quantification in 12 MVCBCT images 

 

Reconstruction 
method RC MC-4DCT MC-CBCT Proposed 

method 

Relative error 16.36%±11.27% 47.09%±22.78% 26.00%±22.02% 17.62±11.38% 

Table 5-3: Overall relative error for IHDA motion 

 

5.2.5 Image quality measurement 

 

Contrast to noise ratio (CNR) is a simple and objective measure of the 

detectability of certain structures with uniform intensity. In this study it is used to assess 

the image quality in the tumor and diaphragm region based on the following formula: 

object

backgroundobject II
CNR

σ
−

=
 

(5-4) 

where I and σ are the mean and standard deviation within the object (tumor or 

diaphragm) or background. The segmentation of the tumor and the diaphragm is based on 
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the same approach that is used for tumor volume measurement. The results of CNR are 

shown in Table 5-4, where it is evident that 4D CT has significantly better CNR than 

MVCBCT, and RC CBCT has smallest CNR value. CNR of the proposed method is 

slightly better than the other three approaches. 

 

Location 4D CT RC-CBCT MC-4D CT MC-CBCT MC-mesh 

Tumor FE 6.33±2.44 2.37±0.30 3.51±0.35 3.42±0.40 3.85±0.42 

Tumor FI 6.81±2.72 2.30±0.29 3.51±0.46 3.34±0.50 3.58±0.33 

Diaphragm FE 12.36±4.96 2.37±0.45 3.32±0.85 2.93±0.81 3.53±1.06 

Diaphragm FI 11.00±4.20 2.50±0.38 3.29±0.78 3.08±0.82 3.40±0.93 

Table 5-4: CNR in different regions using different reconstruction approaches 

 

5.3 Discussions and conclusions for the new MC approach 

 

In this study, we developed a novel MC reconstruction approach for daily 

MVCBCT localization. The method is based on deforming the lung mesh using the image 

information provided by 2D cone beam projections. Our approach has the best overall 

performance among the four approaches compared. It has the second best accuracy in 

both tumor volume measurement and diaphragm motion measurement. MC using 4D CT 

is slightly better than the proposed approach in tumor volume measurement, but more 

inaccurate in diaphragm motion measurement. RC FDK has slightly better accuracy in 

motion measurement, but its performance in tumor volume measurement and CNR is the 

worst among the four. For CNR, the proposed method is the best among the four methods. 

There are several advantages of the proposed approach. First, generating a DVF 

based on 2D projection images is more accurate than using the 4D CT and RC CBCT. 

This comparison formed the basis of a previous study. (T. Li et al., 2007). RC CBCT 

contains severe aliasing artifacts, which cause inaccuracies in the 4D DVF during 
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registration. This is well illustrated by our results of the motion measurement error; RC 

FDK has the best accuracy among the four, but MC using those RC CBCT images is 

more error-prone. Conversely, the reproducibility of the deformation during the 4D 

planning CT is not reliable on the MVCBCT scan, as seen in the motion quantification 

result. The MC reconstruction using DVF from 4D CT has up to 47% relative error in 

motion quantification. The IHDA motion between 0% and 100% exhale of the 4D CT is 

also quantified, which is much smaller than the average peak to valley IHDA motion 

extracted from CB projections. In one case the IHDA motion in 4D CT was 8 mm, while 

the average IHDA motion in one MVCBCT scan was up to 22 mm. Apart from the 

change in motion amplitude, another possible reason to account for this inconsistency is 

that the respiratory signal used during 4D CT acquisition is relative phase based. The 

proposed method, on the other hand, utilizes the absolute 3D IHDA position as the 

respiratory signal. The deformation of the projected mesh points in 2D space can be 

accurately back-projected to 3D space using the projection matrix of the cone beam 

system. 

Second, the proposed approach can be used “on-the-fly” in cases where the 

estimation and compensation of the respiratory motion during the acquisition of CB 

projections is needed. Although manual editing of the initial lung model derived from the 

4D CT is required, these procedures can be accomplished right after the acquisition of the 

planning CT. To further improve efficiency, the manual alignment correction may be 

replaced with available commercial registration software. For MC reconstruction using 

the proposed method, the deformation, DVF interpolation and MC reconstruction are 

fully automated. The proposed approach obviates the protracted need of forward 

projection registration required by the image-space to projection-space registration 

method (T. Li et al., 2007). Calculation times for the deformed mesh computation via 

optimal graph search take about a minute using an Intel (R) Core (TM) i-7 2620M CPU 

with 4GB RAM. Generating a DVF using the same processor takes about five minutes, 
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although calculation times may be reduced through the use of a computationally light 

interpolation technique. 

Though free of reconstruction artifacts, 2D CB images contain a lot of noise due 

to MV photon scatter (Figure 5-4). There are confounding edges that lead the mesh 

deformation towards the wrong locations in projection space. The proposed method 

consists of two components to avoid those edges. First, the use of the dot product 

between the vector of the projected normal direction and the gradient can eliminate the 

indistinct edges with the gradient where it is not conforming to the desired direction. The 

second one is the use of the smoothness and inter-phase constraints as used in the optimal 

graph search method, where the motion of one mesh point in one respiratory phase is 

limited by the position of its neighboring point and its neighboring phase. 

The primary source of inaccuracy in the proposed approach is the location of the 

lung in some of the CB projection images. Among the image sets that we used, the whole 

lung is visible in only one CB projection set. The portion of the lung needed to determine 

the CBCT volume is located outside of the field of view on the two remaining image sets. 

In cases where the lower part of the diaphragm is located outside of the image, the 

algorithm has difficulty in detecting the candidate edges, which may explain why the 

motion error is greater for two of the patients. 

All three patients used in this study had large NSCLC tumors (>10cm3). Large 

tumors also form a part of the initial lung mesh so that the candidate edges that delineate 

the tumor in CB projections can guide the tumor deformation during DVF estimation. 

However, there might be no candidate edge for a small tumor in the projection space. The 

tumor deformation has to rely on the interpolation from the deformed lung mesh only, 

which may not represent the real tumor deformation and for this reason there may be no 

candidate edges for small tumors. Future studies will focus on patients with tumors of 

varying sizes in more locations. The accuracy of mesh deformation will also be evaluated 

in the projection space. 
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Overall, compared with three traditional methods, the new method which is 

presented in this chapter shows superior target localization accuracy and image quality. 

This improvement is achieved by utilizing the 2D MVCBCT projections for both DVF 

generation and MC reconstruction.  
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CHAPTER 6 

ENHANCEMENT OF PROJECTION IMAGES VIA BACKGROUND 

SUBTRACTION 

 

In the previous chapters, we have discussed the advantages and current technical 

limitations of MVCBCT. We have presented several new approaches that try to reduce 

the inaccuracies brought by using strain gauge with the MVCBCT system, including 

direct IHDA and tumor detection from 2D projection images, RC reconstruction, and the 

motion compensated reconstruction approach. Ideally, it would be desirable if the tumor 

position could be detected accurately and robustly from 2D projection images. However, 

the presented tumor segmentation technique (shown in chapter 3) is more suitable for 

large tumors. Detection of small tumors is limited by low image contrast and 

confounding objects. The strain gauge calibration relying on 3D RC or MC 

reconstruction approach is based on the linear relationship assumption between IHDA 

and tumor motion. The DTMR quantified from the FE phase and the FI phase can be 

considered the average value of the 200 projection images.  

In this chapter, we will present a new enhancement framework that tries to 

improve the visualization effect of MVCBCT projection images. Similar to IHDA or 

tumor detection presented in chapter 2 and 3, the enhancement framework is also based 

on using the projection images of MVCBCT as a concept of “cine” mode to observe the 

intra-fractional motion, as they provide a high temporal resolution (about 0.3 s for each 

frame). The MVCBCT projection images can be considered as rotational fluoroscopic 

video, which can be used for visual guidance in many interventional procedures, such as 

the angiographic C-arm system for real-time cardiac and vessel imaging (Cusma, Bell, 

Wondrow, Taubel, & Holmes, 1999; Fahrig, Fox, Lownie, & Holdsworth, 1997; Orth, 

Wallace, & Kuo, 2008). However, the major limitations of using cone beam projection 
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images for visual guidance is the scattering of beam photons and lacking depth 

information, which are prevalent in all the previous applications. The organ of interest 

(OOI), such as the left ventricle for cardiac imaging, or the diaphragm and the tumor for 

lung imaging, is often superimposed with other anatomical structures, making it less 

distinguishable from the surrounding tissues, which is illustrated in Figure 6-1 for several 

examples. The overlapping with non-interest organs limits the use of projection images 

for accurate localization and segmentation of OOI. It would be desirable if the 

accumulation of the ray integral of those non-interest tissues (background) can be 

avoided, thus removing the confounding regions for better visualization. 

(a) (b) (c) 

Figure 6-1: Examples of some cone beam projection images which have significant 
overlapping organs: (a) C-arm angiography of left ventricular area. The left 
ventricle is overlapped with descending aorta; (b) MVCBCT projection 
images of lung with NSCLC. The tumor and the hemi-diaphragm overlapped 
with the contra-lateral hemi-diaphragm; (c) The overlapping of the contra-
lateral hemi-diaphragms. 

 

The enhancement framework is based on avoiding the ray integral of non-interest 

tissues to derive the enhanced projection images for MVCBCT. The method is tested on 

both phantom images and NSCLC patient images. Two schemes were applied to derive 

the enhanced OOI. The first approach removes all the non-interest tissues (background) 

in the 3D volume and projects the remaining OOI onto the projection space. The second 
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approach removes the OOI in the 3D volume and projects all the background information 

on the projection space. The projected background image is used to subtract from the 

original projection image. This method is similar to the principle of digital subtraction 

angiography (DSA) (Brody, 1982), which is created by subtracting the imaging data 

before and after the administration of a contrast agent. Zhang et.al. proposed a method to 

remove the background information for projection images of kilo-voltage (KV) CT (J. 

Zhang, Yi, Lasio, Suntharalingam, & Yu, 2009). However, they only isolated a slice of 

interest from the KV image and the enhanced projection image only contains organ 

information of one specific slice. Our study is distinguished in three aspects. Firstly, we 

isolate the whole OOI to enhance the projection image, rather than a single slice of the 

volume. Secondly, we compare the direct projection and background subtraction 

approach in terms of image quality and 2D organ detection accuracy. Both pros and cons 

of the two methods are presented. Thirdly, we incorporate RC reconstruction into the 

OOI enhancement framework, which is proved to be more suitable for imaging areas 

containing respiratory motion. 

This chapter is organized as follows. Section 1 introduces the details of the 

enhancement framework and the imaging data used for validation. Section 2 shows the 

result of the validation on different metrics with a discussion section. Section 3 concludes 

with a potential range of applications of the method. 

 

6.1 The enhancement framework 

6.1.1 The general principles 

 

The electrical portal imaging device (EPID) of MVCBCT is a flat panel detector 

receiving attenuated X-ray from the beam source. The detected intensity of projection 

angle θ at pixel location (u, v) is given by: 
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(6-1) 

where I0(θ) is the mean detector intensity for a non-attenuated X-ray beam at 

projection angle θ. This factor varies with exposure and cannot be measured with an 

object in the X-ray field. It is represented as a function of θ since small variation occurs 

in different projection angles. The detected intensity is composed of the primary beam 

and scattered radiation. The scattered radiation deviates from the straight line path 

between the X-ray beam and the image detector, which is a major source of image 

degradation. Here SPR is the scatter-to-noise ratio (Joseph & Spital, 1982). P(u,v,θ) is the 

primary beam attenuation, which is equal to the line integral of the linear attenuation 

coefficient along the ray direction: 
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The line integral along L of 3D tomographic image can be divided into OOI 

region Lo and non-OOI (background) region Lb: 
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(6-3) 

Combining Equation (6-1) and (6-3), we can derive 
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(6-4) 

As mentioned earlier, two schemes are experimented in this study to derive an 

OOI-enhanced projection image. The first approach is to remove all the non-OOI regions 

in the volume and project the OOI part onto the 2D space, generating an image with the 

detected intensity as: 



 

 

)(),,( ,('
0 θθ vuP

OOI
oeIvuI =

where the derived new intensity is represented as 

Po, since Po’ is the line integral of OOI region using the attenuatio

reconstructed volume, which is different from the real coefficients of the patient 

to some degree. 

The second approach projects the non

from the original image, deriving a new backgro

,()(),,( 0 θθ vuPIvuI oBS =

Figure 6-2: Intermediate results of the proposed method: (a) One original projection 
image with the pixel value shown as accumulated attenuation co

reconstructed volume based on SART; (c) Volumetric image with OOI removed; (d) 
Reprojection of volume (c); (e) subtraction of (a) & (d); (f) Volumetric image with non

OOI region removed; (g) Reprojection of volume (f).

 

Similar to Equation 

reconstructed attenuated coefficients, which is different from the real coefficients of the 

,),θv

 

where the derived new intensity is represented as IOOI. Here we use 

is the line integral of OOI region using the attenuation coefficients of the 

reconstructed volume, which is different from the real coefficients of the patient 

The second approach projects the non-OOI regions onto the 2D space and subtract 

from the original image, deriving a new background-subtracted image IBS

),,(')()],,(1)[,,(), 0 θθθθθ vuPIvuSPRvuPv bb −+

Intermediate results of the proposed method: (a) One original projection 
image with the pixel value shown as accumulated attenuation coefficients; (b) 

reconstructed volume based on SART; (c) Volumetric image with OOI removed; (d) 
Reprojection of volume (c); (e) subtraction of (a) & (d); (f) Volumetric image with non

OOI region removed; (g) Reprojection of volume (f). 

on (6-5), Pb’  is used to represent the line integral of the 

reconstructed attenuated coefficients, which is different from the real coefficients of the 
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. Here we use Po’  instead of 

n coefficients of the 

reconstructed volume, which is different from the real coefficients of the patient anatomy 

OOI regions onto the 2D space and subtract 

BS. 

)  

(6-6) 

 

Intermediate results of the proposed method: (a) One original projection 
efficients; (b) RC 

reconstructed volume based on SART; (c) Volumetric image with OOI removed; (d) 
Reprojection of volume (c); (e) subtraction of (a) & (d); (f) Volumetric image with non-

is used to represent the line integral of the 

reconstructed attenuated coefficients, which is different from the real coefficients of the 
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patient anatomy (Pb). Figure 6-2 shows the workflow of the proposed method, with the 

intermediate results for each step. The OOI can be any organs or tissues the clinicians 

with to get better visualization in the 2D projection images. In this example the OOI is 

the lung containing the tumor mass. 

 

6.1.2 Numerical projection based on SART 

 

The image reconstruction of the unprocessed volume is based on simultaneous 

algebraic reconstruction technique (SART) (Andersen & Kak, 1984). The computation of 

the ray integral based on image reconstructed by SART algorithm is inherently more 

authentic than that of Feldkamp algorithm (Feldkamp et al., 1984), since it makes the 

integral of the projection ray converge to the detected intensity of the 2D projection data 

during the iterations. This feature enables the algorithm to generate the numerically 

projected image close to the original detected intensity. Compared to ART, on the other 

hand, SART has no stripping nor aliasing artifact (Mueller, Yagel, & Wheller, 1999a), 

which is more suitable for cone beam reconstruction. SART updates the linear 

attenuation coefficient of each voxel by the following equation: 
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(6-7) 

The equation shows how to update the jth voxel from (k-1)th iteration to kth 

iteration. The numerator of the correction term on the right is the difference between the 

original pixel value pi and the numerically projected value, which is the line integral 
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along the path of the X-ray. The correction term depends on a weighted average of all 

rays of projection Pθ that traverse the voxel j, where θ denotes the projection angle. 

To compute each voxel’s contribution wijvj to Pi in Equation (6-7), an 

interpolation kernel h is used for the continuous volume representation: 

∑∑∑ −−−=
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(6-8) 

where x, y, z and nx, ny, nz is the continuous and discrete Cartesian coordinate 

representation of the volumetric image, respectively. Among various choices of h, we use 

a kernel based on the Kaiser-Bessel window, which has many good features, such as fast 

decay for frequencies past the Nyquist rate and radial symmetry (Mueller, Yagel, & 

Wheller, 1999a). The line integral as a function of distance to the voxel center is pre-

computed analytically into a kernel-footprint (Mueller, Yagel, & Wheller, 1999b). During 

the re-projection and back-projection process of SART, only the distance between the 

voxel center and the ray needs to be computed. Generally, a ray passing through the 

volume can be represented as: 

tdstx +=)(  

(6-9) 

where s is the position of the X-ray source in room coordinate at one orientation 

angle. d is an R3 direction vector of the ray, which is usually normalized. t is a parameter 

indicating the distance to the beam source. Different from diagnostic CT system, many 

cone beam system is dependent on a 3×4 matrix P for each projection angle to accurately 

define the 3D-to-2D projection. Given a 3D point in room coordinate v3={x,y,z,w3}, its 

corresponding 2D projection location v2={u,v,w2} can be defined by v2=P·v3, where v3 and 

v2 are both represented as homogeneous coordinate. The projection matrix can also be 

used to determine the beam source position. 
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Where P3 is the matrix containing the first three columns of P and p4 is the fourth 

column. The direction vector d can be computed from 2D projected position [u,v]. 

+−−= pPd 1
3  

(6-11) 

where p+=[u,v,1] T. The distance between the voxel center and the ray can be 

computed as: 

)( jvsdr −×=
 

(6-12) 

Here vj is the jth voxel’s center position. 

The proposed method based on SART can be applied based on either standard 

reconstruction or RC reconstruction approach, where only a subset of projection images 

are selected and backprojected to 3D volume in the latter case. 

 

6.2 Verification of enhancement framework 

 

The proposed method was tested on the imaging phantom, which was described in 

details in section. Similar to previous introduced phantom experiment (chapter 3 and 4), 

the predefined motion and the size of the phantom inserts are used to serve as ground 

truth for the evaluation. The OOI enhancement technique is based on RC SART 

reconstruction for scans with motion. The predefined motion function of the phantom is 

used to provide the respiratory signal for the RC reconstruction. The projection images 

are divided into 8 equally spaced respiratory bins based on the amplitude of the motion. 
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Projection images belonging to the same respiratory bin are used to reconstruct a RC 3D 

volume, which is further used for OOI enhancement 

The method was also tested on 11 MVCBCT scans from 6 patients due to the 

limited hardware resources for computation. The OOI enhancement is performed on the 

diaphragm region. The patient scans used an imaging dose of 10MU. The number that 

one scan covers for patient respiratory cycle ranges from 6 to 20 in our study. The 

respiratory signal used for RC reconstruction is based on the 3D position of ipsi-lateral 

hemi-diaphragm apex (IHDA), where it can be extracted from projection images using 

the detection algorithm introduced in chapter 2. Manual correction is made after the 

automatic detection to guarantee that there is no clinically significant error of IHDA 

position. Similar to phantom study, the RC reconstruction is based on 8 respiratory bins 

respectively to evaluate the influence of the residual motion to the image quality. 

As discussed in chapter 4, the RC reconstruction contains residual motion. 

Sometimes the tumor is attached to the peripheral organs, which have very similar 

attenuation coefficients with tumor. These factors make accurate delineation of the tumor 

boundary hard to achieve. Though we could choose the tumor as OOI, it is difficult to 

measure the performance of the enhancement without a convincing ground truth of the 

tumor boundary. Instead, the diaphragm area is chosen as OOI for patient images, since 

the diaphragm in 2D projections has strong contrast and is able to be recognized in most 

cases. 

6.2.1 Derived enhanced images 

 

Figure 6-3 and Figure 6-4 shows the result of enhanced projection image of the 

phantom and the patient, respectively. The subfigure a, b, c and d are the original image, 

projected background image, background-subtracted image and projected OOI image, 



 

 

respectively. The spherical inserts and the diaphragm are chosen to be the OOI region for 

phantom images and patient images, respectively.

Figure 6-3: One frame of OOI enhanced beam attenuation image of static phantom under 
5MU MVCBCT scan. The largest spherical insert is chosen as OOI in this example. 
The original image; (b) projected image of non
image; (d) projected image of OOI region. All the images are displayed using the same 

 

In Figure 6-3 it can be seen that the overlap of the two spherical inserts that 

originally exists in the un

diaphragm originally exists in the unprocessed image 

OOI projection and background subtraction. 

images in Figure 6-3 along the profile that traverse horizontally through the center of the 

largest sphere. It can be found that the projected OOI or projected background image has 

The spherical inserts and the diaphragm are chosen to be the OOI region for 

phantom images and patient images, respectively.  

(a) 

(c) 

frame of OOI enhanced beam attenuation image of static phantom under 
The largest spherical insert is chosen as OOI in this example. 

The original image; (b) projected image of non-OOI (background) region; (c) subtracted 
cted image of OOI region. All the images are displayed using the same 

level and window. 

it can be seen that the overlap of the two spherical inserts that 

originally exists in the un-processed image disappears. In Figure 6-4 the overlapping 

originally exists in the unprocessed image disappears in both images of direct 

background subtraction. Figure 6-5 shows the intensity of the four 

along the profile that traverse horizontally through the center of the 

largest sphere. It can be found that the projected OOI or projected background image has 
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The spherical inserts and the diaphragm are chosen to be the OOI region for 

(b) 

(d) 

frame of OOI enhanced beam attenuation image of static phantom under 
The largest spherical insert is chosen as OOI in this example. (a) 

OOI (background) region; (c) subtracted 
cted image of OOI region. All the images are displayed using the same 

it can be seen that the overlap of the two spherical inserts that 

the overlapping 

disappears in both images of direct 

shows the intensity of the four 

along the profile that traverse horizontally through the center of the 

largest sphere. It can be found that the projected OOI or projected background image has 
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less noise than the other two images. It is consistent with Equation (6-5) and Equation (6-

6), where only background-subtracted image contains SPR term. The numerical 

projection of either the OOI or the background is free of scattered radiation. 

(a) (b) 

(c) (d) 

Figure 6-4: One frame of OOI enhanced beam attenuation image of patient under 10MU 
MVCBCT scan. (a) The original image; (b) projected image of non-OOI (background) 

region; (c) subtracted image; (d) projected image of OOI region. All the images are 
displayed using the same level and window. The red arrows points to the desired hemi-

diaphragm. The yellow arrow points to CLHD. Note how the gradient becomes relatively 
stronger than the CLHD in the enhanced images. 
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Figure 6-5: The pixel intensity of the four images along the profile shown in the left. 

 

6.2.2 Image quality measurement based on CNR 

 

Different metrics were employed to evaluate the outcome of the OOI-enhanced 

approach. Firstly, we explore the intensity change along the profiles in both unprocessed 

and enhanced images. The contrast-to-noise ratio (CNR), which is a simple and objective 

measure of the detectability of certain structures with uniform intensity, is used to 

measure the profiles of the interested regions. For phantom studies, we investigate the 

CNR along profiles that are perpendicular to the 2D boundary of the spherical inserts. 

Since the size and the motion of the phantom inserts are predefined, the 2D boundary can 

be derived based on 3D-to-2D projection of the 3D shape 

For patient studies, the 2D IHDA position is manually identified in all the 

projection images. Two rectangular regions, which are located superior and inferior to the 

IHDA, are selected to measure the CNR in the diaphragm region. CNR is defined as 

follow: 
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where I and ϭ represents the average and standard deviation of the profile 

intensities. The subscript “1” and “2” represents the two regions used to quantify CNR. 

For phantom images they are the regions that locate inside and outside the boundary of 

spherical insert, while for patient images they are the regions that locate superior and 

inferior to IHDA. 

Figure 6-6 compares the CNR quantified from original (unprocessed) images, 

OOI projected images (obj_reproj), and background subtracted images (bkg_sub), 

respectively on the five larger spherical inserts. The column and the error bar show the 

average and the standard deviation of CNR over 200 projection images, respectively. 

There is significant improvement (two to three fold, generally) by using direct OOI 

projection approach, while background subtraction approach improves the CNR slightly. 

The average improvement of the direct projection approach is 365% and 238% for static 

and motion scan, respectively, while the background subtraction approach achieves 21.4% 

and 13.8%.  

Generally, the static scan has much better CNR than the scan with motion, since 

residual motion exists during the image acquisition of each projection image, which blurs 

the object boundary. The names of “sphere 1” to “sphere 5” is in the order from the 

largest inserts to the smallest one, thus the improvement by background subtraction 

method decreases as the object size decreases. It is probably due to that as the object size 

decreases, the limit of the MVCBCT hardware, such as the resolution of 3D volume and 

the scattered noise becomes more detrimental to the background subtraction method. 
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Figure 6-6: Average and standard deviation of CNR over 200 projection images of the 
five larger spherical inserts of the phantom. Top: static scan; Bottom: scan with 

predefined motion. 
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Figure 6-7: Average and standard deviation of CNR of diaphragm region of 10 
MVCBCT scans from 5 patients. 

 

Figure 6-7:  shows the CNR of diaphragm region from 10 MVCBCT scans. Both 

enhancement methods achieve an increased CNR for all the images. The average CNR 

increase derived by direct projection is 50.8%, compared with 22.3% of the background 

subtraction approach. 

 

6.2.3 Improvement on detection accuracy of phantom 

inserts 

 

We further evaluate the feasibility of using OOI-enhanced images to extract 

tumor motion from projection images based on the framework presented in chapter 3. In 

this section, the segmentation framework is used to evaluate the detection accuracy on 

OOI-enhanced images.  
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Figure 6-8: Average and standard deviation of dice coefficient of four largest spherical 
inserts: Top: static scan; Bottom: scan with predefined motion. 

 

Similar to the study described in chapter 3, dice coefficient and the object centroid 

error is also used to quantify the improvement on detection accuracy. For both metrics, 

the detected contour of the spherical inserts is compared with the ground truth, which is 

computed as the projection from the predefined size and 3D motion trajectory. Figure 6-8 

shows the dice coefficient of the four largest spherical inserts of the phantom. Generally, 

the dice coefficient decreases as the size decreases, since the fluctuation on the boundary 

brings larger variance for smaller size. The overall improvement of the direct projection 

approach is 0.6% and -0.5% for static scan and motion scan, respectively. The 

background subtraction approach achieves 2.9% and 0.5%. 
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Figure 6-9:  shows the centorid difference between the detected contour of the 

spherical inserts and the projected ground truth. The direct OOI projection method 

reduces the error tremendously in static scan, but not for motion scan, where the overall 

improvement is 65.2% (static) and -4.1% (motion). The background subtraction approach 

reduces the error slightly in almost every case, which achieves 1.8% and 4.5%. It should 

be noted that for motion scan, the graph search framework actually divides the motion of 

the phantom into several discretized phases. This is a major factor that leads to larger 

error in the motion scan. The improvement made by OOI-enhancement technique, on the 

other hand, is primarily related to the error that caused by the interference of overlapping 

objects. Statistically this improvement can be observed in the experimental result, e.g. the 

slight improvement of background subtraction approach in nearly all the cases. 
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Figure 6-9: Average and standard deviation of centroid error of four largest spherical 
inserts: Top: static scan; Bottom: motion scan. 

 

6.2.4 Improvement on IHDA detection accuracy 

 

In the original image of Figure 6-4, there are two visible boundaries of the 

diaphragm, which are two separate hemi-diaphragms that locate at the bottom of the left 

and the right lung, respectively. In chapter 2, we have shown that in the case when the 

contra-lateral hemi-diaphragm (CLHD) locates close to the desired IHDA, the gradient-
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based DHT approach may sometimes consider the CLHD as the detected diaphragm 

boundary. In some cases the CLHD even makes manual identification of IHDA error-

prone. The overlapping of CLHD occurs mainly near the rotation angle of ±90°, when the 

two lungs locate in the same direction of the projecting rays. Both OOI-projection and 

background subtraction provide promising solutions to avoid the influence of CLHD, 

since the boundaries of CLHD in those 2D projection images could be eliminated, or 

reduced to some degree. 

To evaluate the improvement of IHDA detection accuracy using the proposed 

method, we quantified the IHDA detection error based on original images, OOI projected 

images and background-subtracted images, respectively. The detected IHDA based on 

DHT is compared with manually identified IHDA by a clinical expert. The error is 

measured as the difference in 3D superior-inferior (SI) direction, where the IHDA 

position in 2D projection space can be converted to 3D room coordinate based on 

interpolated ray tracing method (Siochi, 2009). 

Figure 6-10 shows the IHDA detection accuracy in 11 MVCBCT scans from 6 

patients. Scan f1 is not included CNR quantification because the tumor is attached to the 

diaphragm for this patient, which makes CNR value irregular from other images. 

Generally, when the detection is successful in the overlapping cases, there is nearly no 

improvement by applying OOI-enhanced techniques. The direct OOI-projection approach 

may even reduce the detection accuracy slightly, since the continuous motion of IHDA is 

further descritized into 8 phases during the RC reconstruction. However, when DHT is 

misled to CLHD in some projection images, OOI-enhanced approach is able to correct 

the problems successfully (image d1, for example, note that the large standard deviation 

represents the misdetection in those frames). Since the manual identification of IHDA is 

performed in the original image, the boundary may not look exactly the same in the OOI 

enhanced images. It is not surprised that the error increases slightly in the good cases, 

such as b1 and c1. 
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Figure 6-10: Average and standard deviation of IHDA detection error along 3D SI 
direction from 11 MVCBCT scans of 6 patients. 

 

Figure 6-11 and Figure 6-12 further shows examples of using OOI-enhanced 

techniques to correct CLHD interference during IHDA detection. Figure 6-12 compares 

the Hough accumulation array computed from the unprocessed image and background-

subtracted image. It can be seen that the accumulation value of the CLHD appears 

stronger than the desired IHDA in the first few frames, which misleads the DHT 

detection to the wrong trajectory. In the accumulation array computed from background-

subtracted images, the desired IHDA trajectory becomes relatively larger than the CLHD. 

One frame example in the image space is shown in Figure 6-11, where the misled 

diaphragm position is successfully corrected. 

0

1

2

3

4

5

6

7

a1 a2 a3 b1 b2 b3 c1 c2 d1 e1 f1

IH
D

A
 d

e
te

ct
io

n
 e

rr
o

r 
(m

m
)

original

obj_reproj

bkg_sub



 

 

Figure 6-11: Successful correction to the interference of CLHD in IHDA detection: left: 
DHT detection is misled to the CLHD on the unprocessed image; right: DHT works 

correct on the background subtracted image. Red rectangle: region of interest of IHDA; 
Red contour: detected diaphragm contour; Red point: manually identified position, used 

 

Figure 6-12: 2D visualization of the Hough accumulation space through entire image 
sequence. Top: Hough space computed from unprocessed images; Bottom: Hough space 
computed from background subtracted images. Note how the a
superior diaphragm becomes relatively larger and influence the detected trajectory (blue 

 

 

 

 

uccessful correction to the interference of CLHD in IHDA detection: left: 
ion is misled to the CLHD on the unprocessed image; right: DHT works 

correct on the background subtracted image. Red rectangle: region of interest of IHDA; 
Red contour: detected diaphragm contour; Red point: manually identified position, used 

as ground truth. 

 

 

2D visualization of the Hough accumulation space through entire image 
sequence. Top: Hough space computed from unprocessed images; Bottom: Hough space 
computed from background subtracted images. Note how the accumulation value of the 
superior diaphragm becomes relatively larger and influence the detected trajectory (blue 

contour). 
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uccessful correction to the interference of CLHD in IHDA detection: left: 
ion is misled to the CLHD on the unprocessed image; right: DHT works 

correct on the background subtracted image. Red rectangle: region of interest of IHDA; 
Red contour: detected diaphragm contour; Red point: manually identified position, used 

2D visualization of the Hough accumulation space through entire image 
sequence. Top: Hough space computed from unprocessed images; Bottom: Hough space 
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6.2.5 Discussions of the enhancement framework 

 

From the previous experimental results, we can conclude that the direct OOI 

projection approach is very suitable to enhance static OOI. It replaces the original 

scattering–contaminated image with a new noise-free one. It achieves significant 

improvement on both CNR and detection accuracy, since the interference of overlapping 

objects is eliminated. However, when motion exists, the fidelity of the projected OOI 

becomes a question. Though CNR improvement is still significant, the detection accuracy 

is reduced generally. It is primarily due to the fact that the respiratory gating process 

groups the motion into several bins. Residual motion exists for each phase bin and the 

reconstructed image is actually averaged from all the projection images that are selected 

in the window (Dietrich, Jetter, Tücking, Nill, & Oelfke, 2006; T. Li et al., 2006; Sonke, 

Zijp, Remeijer, & van Herk, 2005). For the projection images that are selected to the 

same phase bin, the direct projection approach generates new images for those rotation 

angles from the same 3D volume, in spite of the residual motion that previously existed. 

The projected object is thus deviated from the original location as a result of the gating. 

Though one could apply motion compensated reconstruction method using a prior model 

of displacement fields (T. Li et al., 2007; Rit et al., 2009; Schafer et al., 2006), the 

accuracy of the motion model to represent the real motion remains a question. 

Though the background subtraction method also requires a gating process for 

motion scan, the original OOI boundary information is not lost after projection and 

subtraction. Thus the boundary location can be retained. This can explain why the 

detection accuracy does not deteriorate by using this approach. However, the background 

subtraction method also retains the scattered radiation in the subtracted image, which can 

explain why the CNR is relatively low compared to the direct projection approach. 

Moreover, the background subtraction approach cannot eliminate the background 

information completely. This is primarily due to three reasons: scattered radiation, 
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reconstruction error and the aforementioned grouping during the gating process. For 

scattered radiation, the cone beam CT based on 2D planar detector generally receives 

more photons than traditional multi-detector CT based on fan-beam geometry (Orth et al., 

2008). For both MV photons used in MVCBCT and KV photons used in diagnostic 

imaging, Compton scattering comprises the majority of interactions for normal tissues in 

the body. The noise level due to Compton scattering is lower for MV photons, since the 

scattering is mostly in the forward direction. For KV photons, the scattering is more 

isotropic (Morin et al., 2006). 

The reconstruction error could be due to several factors. Firstly, the lack of 

projection images causes view-aliasing artifact in the reconstructed volume. In our 

implementation, the 200 projection images are divided into 8 respiratory bins, generating 

only 25 images for each phase bin on the average. Through SART algorithm has the 

advantage of dealing with view-aliasing artifacts than methods based on filtered-

backprojection, it can never eliminate the image degradation due to missing projections. 

These artifacts will bring further inaccuracies in the projected OOI or background images. 

Though one could reduce the number of respiratory bins to have more projection images, 

the larger gating window brings larger object detection inaccuracies. 

Secondly, it is quite usual that the patient anatomy extends beyond the field of 

view (FOV) of the cone beam system. On one hand, it induces the truncation artifact, 

which makes the tissues near the truncated region has much higher attenuations. On the 

other hand, the tissue locates outside the FOV of the volumetric image is not accounted 

during the forward projection, which makes Pb’  less than what it should be. Though 

extrapolation techniques exist (Ohnesorge, Flohr, Schwarz, Heiken, & Bae, 2000), it 

cannot eliminate the inaccuracies brought by truncation. Based on our experience, the 

performance of OOI enhancement performs much better for images without truncation 

(such as phantom images). But truncation occurs for most of the NSCLC patients imaged 

by MVCBCT. 



155 
 

 

Generally, the enhancement framework based on SART introduced in this chapter 

is a feasibility study, where we only concern about the improvement based on detection 

accuracy or image quality of the projection images. Running time is not considered here, 

since current implementation of SART algorithm based on CPU platform takes about 7~8 

hours for RC reconstruction. To make the proposed feasible for clinical application, the 

running time is not longer a trivial issue. Current implementation for fast SART 

computation requires GPU platform, which could be considered as future work.  

One may think it is a contradiction that the IHDA motion signal is used as input 

for phase sorting, while at the same time the IHDA detection accuracy is used to evaluate 

the performance of the enhancement. It should be noted that the input IHDA is manually 

corrected, which guarantees that the phase sorting is reasonable. For a practical clinical 

implementation that uses the enhanced images for IHDA detection, the phase sorting has 

to be based on strain gauge signals. However, the feasibility study introduced in this 

chapter tries to focus on the performance of the enhancement framework only. It tries to 

avoid any error that is not related to the enhancement framework itself,since phase 

sorting based on the relative phase signal of the strain gauge may induce larger errors 

than that of IHDA. Moreover, the evaluation is also tested on CNR and tumor 

segmentation accuracy, which is not in a “chicken and egg” relationship with the 

enhancement procedure.  

To sum up, this chapter introduces two OOI enhancement methods based on cone 

beam CT geometry are presented, which are based the forward projection of OOI and 

background region, respectively. The direct projection approach achieves significant 

enhancement performance for static OOI, in terms of both CNR and boundary detection 

accuracy. The background subtraction approach improves the CNR and the detection 

accuracy for both static and moving OOI slightly but robustly. The experiments based on 

both phantom and patient images show the clinical feasibility to improve the detection 
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accuracy of tumor and diaphragm in projection images. The proposed OOI enhancement 

technique can be generalized on any cone beam CT systems. 

 



157 
 

 

CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

 

Respiratory motion management is an important research area of adaptive 

radiation therapy to lung cancer. Accurate gating and conformal shape of the radiation 

beam during the treatment delivery is a challenging problem. In this thesis, several new 

approaches based on MVCBCT localization system are proposed to improve the accuracy 

of treatment delivery. 

In chapter 2, a semi-automatic and a fully-automatic framework are developed for 

IHDA detection in MVCBCT projection images. The IHDA motion along SI direction 

can be used as respiratory signal, which is an internal surrogate to tumor motion. 

Currently, the semi-automatic framework has been implemented in a clinical software 

“UIHC 4D Verification” and under clinical trial. The method requires manual 

initialization of IHDA position in 4 frames. The semi-automatic framework is tested on 

19 patient images, deriving an error of 1.341±0.640mm and 1.228±0.220mm for DHT and 

PDF tracking, respectively. This error is clinically acceptable, based on the fact that 3mm 

excess of tumor motion only leads to a 1% change of tumor control probability. Besides, 

both methods are within the clinical time requirement. The software was also 

implemented with manual adjustment function, which allows the clinicians to rectify the 

problematic detection. In the future, we will test the software under longer term to 

validate the robustness of this method.  

The fully automatic approach replaces the manual initialization step with 

automatic ROI localization. The ROI of IHDA in the projection image is detected by 

estimating the IHDA range of motion in the reconstructed 3D volume. The estimation is 

based on template fitting and morphological analysis. The automatic framework is tested 

on 35 scans, deriving an accuracy of 2.933±4.189 mm and 1.714±1.544 mm for the DHT 
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and tracking based approach, respectively. The automatic approach is somewhat less 

accurate than the semi-automatic approach, due to problematic ROI initialization in some 

images. However, the automatic ROI determination followed by PDF-based tracking 

algorithm still fulfills the clinical requirement on the IHDA detection accuracy. Moreover, 

the system could be still relied on manual rectification on a few frames of projection 

images, which could be processed within the time requirement. Currently, the fully 

automatic framework is implemented in a separate platform called “MING-DICOM”. In 

the future, it can be implemented as part of the clinical software “UIHC 4D Verification”, 

which could be used for guidance for the ROI initialization. The clinicians can verify the 

ROI initialization manually. For problematic initialization, they can rectify it based on the 

semi-automatic framework. Since the automatic initialization is good for most cases, it 

could further save the running time of the procedure. 

In chapter 3, a novel method for direct tumor segmentation from projection 

images is developed. It is based on the idea of converting the quasi-periodic motion 

segmentation into an optimal interrelated surface detection problem. The problem can be 

further be solved by a graph search framework. A 4D directed graph is constructed based 

on an initialized mesh model, where the cost value for this graph is computed from the 

point location of a silhouette outline of projected tumor mesh in 2D projection images. 

The method was first evaluated on four different sized phantom inserts (all above 1.9 cm 

in diameter) with a predefined motion of 3.0 cm to mimic the imaging of lung tumors. A 

dice coefficient of 0.87±0.03 and a centroid error of 1.94±1.31mm were obtained. Results 

based on 12 MVCBCT scans from 3 patients obtained 0.91±0.03 for dice coefficient and 

1.83±1.31mm for centroid error, compared with a difference between two sets of 

independent manual contours of 0.89±0.03 and 1.61±1.19mm, respectively. These results 

show the clinical feasibility of the proposed approach. The limit of tumor segmentation 

validation is that there is no ground truth of patient data available. We can only compare 

with the detected tumor contour with the manual contour. However, the fidelity of the 
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manual contour remains a question, since the inter-variance between two users is 

comparable to the variance between detected contour and the average of manual contour. 

Though 4D CT generally provides volumetric image series with clear tumor boundary, 

the tumor shape and size would be different from MVCBCT scan. On the other hand, the 

imaging phantom provides ground truth data about “tumor” shape, size and position 

during the motion. The phantom used in this study has a spherical shape, which is 

relatively easy for 2D-to-3D shape recovery. In the future, we will design and make a 

new imaging phantom with more complicated “tumor” shape. The method will be further 

validated on those complicated shapes.  

In chapter 4, the accuracy of using RC MVCBCT to measure DTMR value is 

quantified. The DTMR measurement accuracy is further divided into study of 

quantification of volume and motion measurement. Again, patient images face the same 

problem of lacking ground truth data of tumor volume and motion amplitude. However, a 

clear exponential trend of tumor shrinkage is observable by manually contouring and 

measuring the tumor size through the course of radiotherapy. For phantom images, an 

average error of 10% is achieved for phantom inserts with a diameter of 1.9cm. For 

tumor motion quantification, an average error of 5% is achieved for phantom inserts with 

any size, given the nominal motion amplitude of 30mm. We further draw our conclusion 

that there is more than 99% probability of using the proposed IHDA detection approach 

and RC reconstruction technique to derive the average tumor localization accuracy within 

3.0mm. This conclusion is based on the normal distribution assumption of the measured 

variables, including IHDA detection accuracy from 2D projection images, IHDA and 

tumor motion between FE phase and FI phase in 3D volume. 

On the other hand, the imaging phantom only provides a lower bound of error for 

motion and volume quantification, since the phantom inserts are spherical in shape. We 

believe that irregular shape under the same condition would bring larger errors due to the 

segmentation inaccuracies. Similar to the previous segmentation framework, we will 
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design and make a new phantom with more complicated inserts to mimic tumor shape. 

The volume and motion measurement accuracy will be evaluated again on this new 

platform.  

In Chapter 5, a new motion compensated reconstruction approach is developed, 

which utilizes the prior motion model that was extracted from 2D projection images. The 

new method is compared with two traditional MC reconstruction approaches, which 

utilize prior motion model from 4D CT and RC MVCBCT, respectively. The RC 

reconstruction approach alone is also included for comparison. The proposed method is 

tested on 12 patient MVCBCT scans, where for each scan, 3D volume in FE and FI phase 

is reconstructed respectively. We measure the CNR value, the tumor volume and IHDA 

motion amplitude between FE and FI phase. The ground truth of tumor volume is based 

on 4D CT, where we try to minimize the inter-fractional change of tumor size by 

selecting MVCBCT scan that is close to the corresponding 4D CT scan. The ground truth 

of IHDA motion amplitude is based on the 3D motion extracted from 2D projection 

images. Overall, the new method has best performance in terms of image quality and 

fidelity to the real motion. For IHDA motion amplitude quantification, the new approach 

reaches a comparable accuracy as RC reconstruction technique, where both methods are 

better than MC based on 4D CT and RC MVCBCT. For tumor volume measurement, the 

new approach derives a similar accuracy with MC based on 4D CT, where both methods 

are better than two RC-MVCBCT related approaches. For image quality measurement 

based on CNR, the new approach has the highest CNR in both diaphragm and tumor area.  

Currently the MC reconstruction method is based on the segmentation framework 

introduced in chapter 3. The projection images are sorted into 20 bins, where 10 bins are 

used for exhale phase and the other 10 bins are used for inhale phase. The resolution of 

the lung mesh used for segmentation is set to make the running time of reconstruction 

process within an acceptable time. Generally, increasing the number of bins would 

improve the temporal resolution of the motion model, which may potentially increase the 
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motion amplitude accuracy or even the tumor volume accuracy as well. However, 

increasing the number of bins would reduce the number of projections for each bin, 

which may make the 2D-to-3D shape recovery not robust. On the other hand, increasing 

the mesh resolution would further increase the reconstruction accuracy. Future studies 

can be based on varying the number of bins and the mesh resolution of the reconstruction 

process. The new MC reconstruction approach could also be validated on imaging 

phantom, where the lung mesh model can be created from the basswood frame. We 

believe that the motion and volume quantification accuracy derived by the new MC 

method would be better than the RC reconstruction technique. 

In Chapter 6, a novel approach of enhancing MVCBCT projection images is 

introduced. The enhancement framework starts by reconstructing a 3D volume from 2D 

projection images based on simultaneous algebraic reconstruction technique (SART). 

Then the region of the organ of interest (OOI) is manually identified. Two strategies are 

used for image enhancement: the first approach sets the attenuation coefficient of non-

OOI region to zero and projects the volume that contains only the OOI region onto 

projection images; while the second approach sets the attenuation coefficient of OOI 

region to zero and projects the non-OOI region onto 2D to create a background image. 

The final enhanced image is derived by subtracting the background image from the 

original projection. The enhanced images generated by the two strategies were evaluated 

on two MVCBCT scans of phantom images and 10 patient images based on different 

metrics. The direct projection approach achieves an improvement of 365%, 238% and 

60.9% on average of contrast to noise ratio (CNR) on static phantom insert, moving 

phantom insert and patient diaphragm respectively. For the background subtraction 

approach, CNR improvement is 21.4%, 13.8% and 19.6%. In terms of detection accuracy, 

the direct projection approach achieves improvement of 65.2% on the quantification of 

the centroid of the static phantom insert, but fails to improve the detection accuracy in the 

motion scan (with 13.6% drop in diaphragm apex quantification accuracy). The 
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background subtraction approach improves the detection accuracy slightly (on the order 

of 0.5% and 4% for dice coefficient and centroid error, respectively) for nearly all the 

cases and achieves 13.1% improvement for diaphragm apex quantification.  

In all, the direct projection approach is able to derive enhanced OOI image with 

both improved CNR and detection accuracy for static object. For motion scan, the 

background subtraction approach is more suitable than the direct projection approach in 

terms of improving the detection accuracy. But the CNR improvement is not as large as 

the direct projection approach due to the scattered radiation. Future work may involve 

implementation of the algorithm to GPU platform and validation on more patient images.  
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