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ABSTRACT

Currently in our clinic, a mega-voltage cone beam computed tomography
(MVCBCT) scan is performed before each treatment for patient localz&tor non-
small cell lung cancer (NSCLC) patients, a strain gauge is used askeamEsurrogate
to indicate tumor motion in both the planning stage and the treatment stage. However, it
is likely that the amplitude of tumor motion varies between treatmentdngctiithout a
corresponding change in the surrogate signal. Motion amplitude larger thawaghat
planned may underdose the tumor and overexpose normal tissues.

The overall objective of this project is to extend the capabilities of MVCRCT f
respiratory motion management by taking advantage of 2D projection imaggsa Fir
new method was developed to detect ipsi-lateral hemi-diaphragm apex)(fH@#n
along superior-inferior (SI) direction in 3D. Then a respiratory correlasahstruction
method was implemented and verified. This method is able to create MVCBCT volume
in the full exhale (FE) and the full inhale (FI) phases, respectively. Thierd@gp to
tumor motion ratio (DTMR) was derived by quantifying the absolute position of the
tumor and IHDA in these two volumes. The DTMR and the extracted IHDA motion were
further used to calibrate the strain gauge signal.

Second, an organ motion detection approach was developed, in which the
detection is converted into an optimal interrelated surface detection problem. The
framework was first applied to tumor motion extraction, which enables acclatatetion
for large tumors (with a diameter not smaller than 1.9cm). The framevaskh&n
applied to lung motion extraction and the extracted lung motion model was used to create
a series of displacement vector fields for a motion compensated (MC)trectina. The
accuracy of both tumor extraction and the MC approach was validated, which shows their

clinical feasibility.



Last but not least, a novel enhancement framework was developed. The aim of
this approach is to eliminate the overlapping tissues and organs in the CBCT projection
images. Though scattering and noise is the major problem, the proposed method is able to
achieve enhanced projection images with a higher contrast to noise ratio \(@hidt

compromising detection accuracy on tumors and IHDA.
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ABSTRACT

Currently in our clinic, a mega-voltage cone beam computed tomography
(MVCBCT) scan is performed before each treatment for patient localizd&tor non-
small cell lung cancer (NSCLC) patients, a strain gauge is used askeamEsurrogate
to indicate tumor motion in both the planning stage and the treatment stage. However, it
is likely that the amplitude of tumor motion varies between treatmentdngcotithout a
corresponding change in the surrogate signal. Motion amplitude larger thawaghat
planned may underdose the tumor and overexpose normal tissues.

The overall objective of this project is to extend the capabilities of MVCBET
respiratory motion management by taking advantage of 2D projection imaggsa Fir
new method was developed to detect ipsi-lateral hemi-diaphragm apex)(lH&i#n
along superior-inferior (SI) direction in 3D. Then a respiratory correlasahstruction
method was implemented and verified. This method is able to create MVCBCT volume
in the full exhale (FE) and the full inhale (FI) phases, respectively. Thierdmp to
tumor motion ratio (DTMR) was derived by quantifying the absolute position of the
tumor and IHDA in these two volumes. The DTMR and the extracted IHDA motion were
further used to calibrate the strain gauge signal.

Second, an organ motion detection approach was developed, in which the
detection is converted into an optimal interrelated surface detection problem. The
framework was first applied to tumor motion extraction, which enables accletatetion
for large tumors (with a diameter not smaller than 1.9cm). The framevawith&n
applied to lung motion extraction and the extracted lung motion model was used to create
a series of displacement vector fields for a motion compensated (MC)trectina. The
accuracy of both tumor extraction and the MC approach was validated, which shows their

clinical feasibility.



Last but not least, a novel enhancement framework was developed. The aim of
this approach is to eliminate the overlapping tissues and organs in the CBCT projection
images. Though scattering and noise is the major problem, the proposed method is able to
achieve enhanced projection images with a higher contrast to noise ratio \(@hidt

compromising detection accuracy on tumors and IHDA.
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CHAPTER 1
BACKGROUND AND MOTIVATION

1.1 Project introduction

Radiation therapy to the lung tumor has been a primary treatment option for lung
cancer for four decades, often in conjunction with chemotherapy when a patient is
medically unfit for surgery or when the tumor is inoperable (\&ral., 2000). Generally,
the development of radiotherapy aims to improve the accuracy and effectaoyéted
tumor cells while reducing the radiation to the surrounding healthy tissues, since
radiation may damage DNA of both healthy and malignant cells. Respiratory nsotion i
one of the major challenges that may degrade the effectiveness of modemmeabnf
radiation therapy (CRT) or intensity modulated radiation therapy (IMRT).

Overall, the purpose of my Ph.D. work is to explore and validate several novel
methods that use mega-voltage cone beam CT (MVCBCT) projection images to make
lung cancer radiotherapy more reliable. The MVCBCT is a daily localizdevice that
takes advantage of the treatment beam and an electronic portal imaging delize (E
(Section 1.3 provides the details). In the current clinical procedure, it ceed2s
volumetric image which is reconstructed from a series of 2D rotationatpoojemages.
This 3D volume is used to align with the treatment plan and localize the patient on the
treatment table. However, when the MVCBCT is used for imaging non-smdlingll
cancer (NSCLC) patient, this 3D volume alone does not provide information related to
intra-fractional motion, e.g. respiratory motion. On the other hand, the projection images
of MVCBCT provide high temporal resolution where one could observe the respiratory
motion through the 2D image sequence (Figure 1-1). Based on this characteristat, seve

novel methods are developed, including:



(1) Detect the motion amplitude of the ipsi-lateral hemi-diaphragm apex (IHDA)
in projection images, which is used as an internal surrogate to tumor motion
amplitude;

(2) (3D+t) tumor motion model extraction from MVCBCT projection images;

(3) Respiratory correlated (RC) reconstruction;

(4) Motion compensated (MC) reconstruction by using a prior motion model of
the lung;

(5) An enhancement framework that aims to remove the overlapping confounding
tissues and organs in the MVCBCT projection images.

The motivations of each method are introduced as follows. First, the aim of IHDA
detection is to calibrate the strain gauge signal during treatmentrgelugrently in our
clinic, the strain gauge is used as an external surrogate to tumor motiontahihing
treatment planning and the delivery. There are two major sources of inaeswufagsing
the strain gauge: phase difference and inter-fractional variation of tumammohis
variation could bring additional toxicity to surrounding tissues and reduce thé dasea
the tumor may receive. On the other hand, the internal anatomical structures, thgch as
diaphragm or the trachea, have better correlation and less phasendi#f with the tumor,
especially for tumors in the lower lobe. The use of the internal surrogate could not only
provide phase information, but also provide absolute position. Moreover, the diaphragm
has better contrast than the trachea in the 2D projection images, which makes it ver
suitable to be used as an internal surrogate. In chapter 2, the framework of IHDA
detection in projection images is presented. The IHDA motion amplitude along the 3D
superior-inferior (SI) direction is computed, which provides a respiratory sigthmal w
absolute positioning. This signal is further used as initial input for other approaches,
including (3D+t) motion extraction, RC reconstruction, MC reconstruction and

background subtraction.



Second, a novel approach of extracting (3D+t) tumor motion model is developed
and introduced in Chapter 3. Generally, accurate organ segmentation in 2D projection
images is limited by the low contrast and overlapping confounding tissues. ifjatenit
the influence of those confounding boundaries to the segmentation, the segmented 3D
tumor shape of each phase is determined from multiple projection images thateate sort
to this phase. Moreover, the tumor segmentation is converted into a multiple irgdrrelat
surface detection problem based on a graph search framework, which finds thg globall
optimal solution by solving a maximum flow problem. Constraints on motion and the
tumor surface are further incorporated in the framework, which makes thergagiome
more robust. The segmentation framework achieves promising results fotulaqys.

Small tumors are not always visible in the projection images. The accurdrgaif
tumor segmentation becomes a problem.

The implementation and validation of the RC reconstruction approach is
introduced in Chapter 4. RC reconstruction involves sorting the projection images into
several subsets (phase bins) based on the respiratory signal. Each projeg®subset
is then used to reconstruct a 3D volumetric image. Tumor motion estimation based on RC
reconstruction can be suitable for various tumor sizes. The RC reconstructios areate
bimodal MVCBCT, which contains a 3D volume in full exhale (FE) and full inhale (FI)
phase respectively. To calibrate the strain gauge, a linear relationabguised between
diaphragm and tumor motion amplitude between the two phases. The diaphragm to tumor
motion ratio (DTMR) is used to measure this linear relationship, which has a

mathematical representation as:

IHDA, - IHDA
Tumoy, —Tumog,

DTMR=

(1-1)



The DTMR is further used to divide the IHDA motion amplitude, which is
extracted from 2D projection images. The result after the division is tineagsti tumor
motion amplitude, which will be used to calibrate the strain gauge.

Chapter 5 introduces the motion compensated (MC) reconstruction based on a
prior motion model of the lung. Generally, respiratory motion causes motion artifact
the full reconstructed volume (reconstructed from all the projection imaggsadieg
the accuracy of target localization. RC reconstruction is limited by thealiasing
artifact caused by an insufficient number of projection images. On the other hand, M
reconstruction is free of the view-aliasing artifacts, since it usésegbrojection images.
Moreover, it incorporates a prior motion model into the de-convolution process during
the back-projection, which makes it also free of motion blur. Usually the motion model is
represented by a time sequence of displacement vector fields (DVF). Wsthdieel the
feasibility of using a prior model generated from a lung motion model, which is derived
by using the method introduced in Chapter 2. We have validated both correlated
reconstruction and MC reconstruction based on image quality and clinically significa
parameters, such as motion and volume quantification accuracy.

Finally, an enhancement framework of MVCBCT is introduced in Chapter 6. In
the MVCBCT 2D projection images, the organ of interest (OOI), such as the djaphra
or the lung, is always superimposed with other anatomical structures and oftew has |
contrast. From this perspective, it would also be promising if one could make the OOI
clearer and without overlapping confounding objects through an image enhancement
procedure. The enhancement is achieved by forward projection of non-interest adjans a
tissues of the 3D volume. A study based on image quality and organ localization
accuracy shows the feasibility of this approach.

Chapter 7 gives a brief conclusion of this thesis and presents the future directions.

In this introduction chapter, a comprehensive review of management of

respiratory motion in radiotherapy is followed, including the problems brought by



respiratory motion, and current image guided radiotherapy (IGRT) technigpiesdato
account for those problems. Then the description of the mega-voltage cone beam CT
(MVCBCT) system is given. MVCBCT is currently equipped in our clinic forydail
localization, which is the platform where all the new approaches presenkesl timeisis

were developed and validated.

() (b)

Figure 1-1: Examples of projection image of Mega-voltage cone beam CT: (&)riibe
is visible in the right lower lobe of the lung (blue ellipse). The hemi-diapheddhre
bottom of each lung is visible; (b) a lateral view shows the two hemi-diaphragntepove
with each other, making it difficult to identify diaphragm boundary in the overlapping
area (red ellipse).

Figure 1-1 gives one example of an MVCBCT projection image, where part of the
tumor boundary has weak contrast. The diameter of the tumor in this patient is about 5
cm, which is very large compared to all the other patient image data that weehisred.d
For some patients the tumor boundary is not readily identifiable in the projectiga ima

even by a human expert.



1.2 Background of respiratory motion management in

radiation therapy

Cancer is a worldwide challenge to health. In a world cancer report conducted by
the World Health Organization in 2008, cancer was anticipated to overtake heag diseas
to become the leading cause of death worldwide in 2010 (Boyle & Leven, 2009). The
cases of cancer will double by 2020 and will nearly triple by 2030. Among various
cancer-related causes of death, cancer in lung and bronchus is estimattt tiedeing
type in the United States, composing 29% and 26% for male and female respectively
(Jemal, Siegel, Xu, & Ward, 2010). The possible treatment of lung cancer includes
surgery, chemotherapy and radiation therapy. Recent advances in medicine and
engineering have changed the curative effect overtime. According ¢era sairvey, the
five year survival rate among 200 patients diagnosed with stage | non small cell lung
cancer (NSCLC), which accounts for 75% to 80% of all lung cancer cases, could improve
from 10% to 36% using the modern three-dimensional (3D) conformal radiation therapy
(CRT) (Belderbos, Heemsbergen, De Jaeger, Baas, & Lebesque, 2006). However, the

worldwide survival rate of lung cancer is still low, with only 14% in 2008.

1.2.1 Mechanics of Respiration

Respiration is the major function of lungs to exchange gas between blood and air.
One cycle of breathing can be generally divided into inhale and exhale phaseg.tBeirin
inhale phase, respiratory muscles, such as the diaphragm and intercostad thascle
connect adjacent ribs, contract and descend, pulling the ribs superiorly and Isinterior
thus increasing the volume of the thoracic cavity. The air outside is pushed inteithe ca

by the transpulmonary pressure. During the exhale phase the respiratorgysmelsc!



and the lung recoils to its deflated volume. Since the mechanism of the inhale phase

requires active participation of respiratory muscles, which is differemt fhe exhale

phase, the time frames for inhale and exhale are typically different. Thenrtrajectory

of a specific location in the lung such as that of the tumor varies from inhale te.exhal
The breathing pattern can vary in magnitude, period and regularity. Figure 1-2

compares the position of the ipsi-lateral hemi-diaphragm apex (IHDAjuascon of

time of two patients extracted from fluoroscopic images of mega-voltage cane bea

computed tomography (MVCBCT), where distinct differences could be observadgdet

of IHDA motion detection can be seen in chapter 2). The IHDA position along the

superior-inferior (SI) direction here serves as the respiratory signah wehconsidered

as a surrogate of tumor motion. On one hand, respiration is an involuntary action. One

can be unconscious about his or her breathing. During unconscious respiration, the

periodic cycle is regulated through chemoreceptors by the levelspfdz@nd pH in

the arterial blood. Thus the frequency of respiration is varied during diffemesg.tOn

the other hand, individuals are able to control the magnitude and frequency of respiration

within a certain limit. This enables clinicians to use audiovisual feedback tb tteac

patient during respiration, which has been demonstrated to have a betteragspirat

regularity (Neicu, Berbeco, Wolfgang, & Jiang, 2006).
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Figure 1-2: Variation of respiratory patterns from two different ptierhe horizontal

axis is the rotation angle of the Mega-voltage cone beam CT from -90° to 110°. The
vertical axis is the superior-inferior position of the ipsi-lateral hemi dagrhrapex in

mm, which is a good surrogate of tumor motion and represents the respiratory traces.

1.2.2 Problems of respiration in radiotherapy

Respiratory motion, along with other types of motion such as cardiac,
gastrointestinal or skeletal muscular motion, composes the intrafracticonmotiing
radiotherapy. During the entire course of radiotherapy, intrafraction motids the
accuracy of image acquisition, treatment planning and delivery of radiagspirRtory
motion affects organs and all tumor sites in the thorax and abdomen. Typically lung
tumors move from 5 to 10 mm during free breathing. The amplitude could reach to 4.5
cm in some cases (Stevens et al., 2001). For image acquisition, respiratory motion
generates artifacts for all imaging modalities, including computedgmapby (CT), and
positron emission tomography (PET). During a CT scan, different parts of tloe obje
move in and out of the CT slice window. Conventional CT reconstruction algorithms that
do not account for motion assume that the imaged anatomy is invariant during image
acquisition. The motion brings artifacts such as distortion of the target volume and
incorrect positional and volumetric information. Figure 1-3 compares the imefjety

of two computed tomography (CT) scans with and without incorporation of respiratory



motion information. Figure 1-3a shows one slice of a 4D CT volume, which is
reconstructed from retrospectively-sorted projection images. FiguresbheBis one slice

of an MVCBCT volume, which is reconstructed from projection images containing all
the phases. It can be seen that the boundaries of the tumor and diaphragm are hard to
identify in the MVCBCT image.

During treatment planning, to account for the uncertainties in the geographic
positions such as intrafraction motion (due to respiration), interfraction motion apd set
error, large margins should be added to the clinical tumor volume (CTV) to create a
planning target volume (PTV) (using the International Commission on Radiatias Unit
and Measurements (ICRU) report 62 nomenclature (Prescribing, 1993) (DeLaney, 2009)
However, large margins limit the dose that can be prescribed. It may alsasacthe
likelihood of treatment-related complications. Apart from respiratory motienetare
also other factors that clinicians should consider when designing the CTV-PGihma
such as tumor growth and shrinkage, inter or intra-observer variations in GTV detineat
daily variation of respiratory motion, systematic error such as CT astifactl patient
setup error.

During radiotherapy, the existence of respiratory motion causes a glafrdose
distribution to the anatomy. Using a static beam, the actual dose distribution would
become a convolution between the anticipated dose and the probability distribution
function of total motion displacements that occur when the beam is on (Lujan, Larsen,
Balter, & Ten Haken, 1999). The lung motion limits the accuracy of radiation alive
to the tumor volume. It is reported that the under-dose could reach 30% by using
conventional radiation therapy techniques (Ross, Hussey, Pennington, Stanford, & Fre

Doornbos, 1990).
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Figure 1-3: Image reconstruction example slice in coronal view: (a) FIe phatanning
CT; (b) MVCBCT reconstructed from all the projections; (c) FE phase diIRCBCT
reconstructed by FDK algorithm; (d) FE phase of RC MVCBCT reconstrugt@dRb
algorithm (tumor contour is displayed in blue)

1.2.3 Respiratory Motion Management

Currently the common approaches of accounting for respiratory motion during
treatment can be generally divided into three categories: breath hotipgatory
synchronization and respiratory gating. In this section we will focus orspeaatory

gating technique that is currently implemented in our clinic.
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Different from the real time tracking system, the gating systens tom the
treatment beam only when the tumor moves within a predefined range of positions in the
respiratory gating system. Since the dose is not continuously deliveredcat@ypgating
takes a longer time than real-time tracking. The position and allowee ohige “gate”
is usually determined during the planning and localization stage by monitoring the
respiratory motion. Usually the gating position is selected where the taotam is
estimated to be minimal (full exhale) or the lung volume is maximal (full &@hal
compared with the rest of the respiratory cycle. Vedam et al (Vedart, Kieg &

Mohan, 2001) reported that the point of full exhale provides the most stable portion of the
respiratory cycle, but factors such as increased fraction of lung tissueetpaoadiation,
and less separation of lung and critical tissues during the full exhale phase stmbiel al
considered. More generally, the gating window is always a trade-@fébatthe duty

cycle and the amount of residual motion, where a larger gating window increaskegyt
cycle and reduces overall treatment time, but increases the tumor motion etlyeté.
The gating could be either based on motion amplitude or phase. For amplitude-based
gating, the gate is a pre-set interval of the relative positions of the tumee-Pased
gating usually requires an algorithm to compute the relative phase foragaphng time
point based on the cyclic nature of the signal. The gate is a window betweeraadstart
end phase within each cycle.

The methods to identify tumor position are similar to real time tracking. &@lyre
either external surrogates or internal fiducial markers are used mg ggstems. The
internal marker faces the problem of pneumothorax (Topal & Ediz, 2003). For external
surrogates, there are several commercial respiratory gatirgsyavailable, including
the Varian Real-time Position Managem&({RPM) system (Varian Medical Systems,
Palo Alto, CA), BrainLab (Heimstetten, Germany) ExacTrac Gdtiogalis Gating
system and Siemens Medical systems (Concord, CA) linear accelgatitay interface

with an Anzai Belt (Anzai medical CO., Tokyo, Japan). The Varian RPM uses adhfra
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tracking camera and a reflective plastic box that is placed on the pa#atgtior
abdominal surface. The ExacTrac system also uses infrared externaisnhtk it also
has X-ray imaging capabilities to determine internal anatomy position.li@gruses the
Anzai AZ-733V system, which relies on a strain gauge to record the pressure change
caused by expansion of a belt strapped around the patient’s abdomen.

The planning stage for respiratory gated treatments requires gated DTCar 4
scans. Both methods can improve the accuracy of target definition and increasg &pari
critical structures (D'Souza et al., 2007). For 4D CT, The image acquisition is
synchronized with the respiratory signal acquisition. Images are acqueadhacouch
position for many respiratory phases. Then the phase information is used to sort the raw
CT data (projection image) into various phases. Then all the reconstructed ifhages o
particular respiratory phase can be concatenated to form a complete 3D vokene. M
tumor position, tumor range of motion and relation of tumor trajectory to other organs
can be derived (Underberg et al., 2004). Currently our clinic is equipped with 4D CT for
treatment planning. Different imaging parameters, such as the numlieesfasid the
number of phases, can be applied to the system. For a typical 4D image containing 8
phases and 91 slices, the 4D CT scan can be obtained within a few minutes. Gated CT, on
the other hand, is equivalent to a subset of a 4D CT scan. The imaging acquisition is
initiated by a trigger that is controlled by the respiratory signal.gélieg parameters
such as displacement or phase based gating, selection of full exhale or inhale and the
window size for gating (duty cycle) are determined prior to the scan.

During the treatment, the correlation between tumor motion and the respiratory
trace of the surrogate will be used to gate the beam. It is very likely thantie
dependent tumor motion does not accurately correspond to the respiratory surrogate.
Some studies show that the correlation between tumor motion and external surrogate
motion cannot be generalized and depends on individual patients (Bruce, 1996; Hoisak,

Sixel, Tirona, Cheung, & Pignol, 2004). Other studies show that the tumor residual
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motion can be large when the abdominal surface surrogate is used as the rakgiHois

al., 2004)iratory signal (Berbeco, Mostafavi, Sharp, & Jiang, 2005; Berbeco, Nishioka,
Shirato, & Jiang, 2006) and about 30% of the time the radiation beam will miss the target
(H. Wu et al., 2008). It is reported that a -0.65 to 0.3 s phase delay exists between the
tumor motion and its abdominal surrogate, while the phase difference between the tumor
motion and signal of respiratory volume of lung is -0.3 to 0.5 s. Correlation coefficients
vary greatly from 0.39 to 0.99 for both abdominal surrogates and respiratory volume,
while respiratory volume has better correlation and reproducibility frontaddsty

(Hoisak et al., 2004). Figure 1-4 illustrates the potential phase difference fxeamaé
surrogate. In this figure one can observe the phase delay between therH % strain
gauge signal. Thus the tumor will shift from its desired position during treatment; unde
dose the tumor and overdose the surrounding tissues. It is recommended that if a
consistent phase delay larger than 0.5 s is observed, the delay should be considered when

setting the gate interval (Berbeco, Nishioka et al., 2005).

Figure 1-4: The correlation between IHDA position (red curve) and Anza gimage
signal (blue curve). Time delays between these two signals can be observed. The
horizontal yellow line is a hypothetical amplitude-based gating thredfthis threshold
is applied to the strain gauge signal, the position of the IHDA in real beam-®istim
shown in the thick red curve, which will simultaneously cause an overdose to the
surrounding tissues during exhale.
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Another major problem of using external surrogates is the intra-fractional
variation of tumor motion. The tumor motion is likely to change over the course of
treatment, which makes the correlation with an abdominal surrogate diffenenthfat
which was recorded with the planning CT scan. Generally, variation in the respirat
phase can be observed by the signal derived from the external surrogate. However,
variation in the range of motion can occur without being detected by the strain igauge.
our clinic, since the therapist calibrates the Anzai gating system tothekdl exhale
and full inhale phase correspond to 0% and 100% respectively before synchronization, a
simple scale to the amplitude of the tumor motion will not change the corresponding
strain gauge signal. Figure 1-5: illustrates a typical example, wheneraase to the
motion amplitude requires a shorter gating window. Applying the originadgyatndow

will overdose the surrounding tissues and underdose the tumor.

Figure 1-5: A simple illustration showing the problem of correlation using abdbmina
surrogate: A gating threshold is set as 30% amplitude based on tumor motion during
planning (pink curve), and the corresponding gating windows in twogeteillustrated.
On treatment day the amplitude of tumor motion increases to a certain amduwur¢e).
Applying the gating window the tumor will be outside the desired treatmertidioca
during a portion of the duty cycle.
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1.3 MVCBCT as a daily localization tool

1.3.1 The requirement for localization

As the advances of modern radiotherapy techniques such as 3D CRT and IMRT
provide more and more conformal and accurate dose delivery, there is a concetn relate
to whether the information acquired during the planning CT (such as tumor size, shape,
correlation of respiration, etc.) is still accurate and reliable enough &sesirthe patient
during treatment. A procedure, called “localization” (or setup, or patient aigiim
some literature) is needed to verify the anatomical and positional information
immediately before the treatment and provide more accurate reproduciblé patup.
Conventionally portal images have been used to confirm the patient position based on
bony anatomy or implanted markers, but this is limited by the time required teproce
the radiographic film and the extra dose to the patient. The highly sensitive and
automated on-board electronic portal imaging device (EPID), such as the amorphous
silicon flat panel, is a recent development that breaks through these limits. Hatheve
2D projection nature of an EPID limits its capability for 3D visualization andicaion.
Thus there is growing interest in the development of 3D imaging of the patient on the
treatment table.

There are several systems that have been developed for this purpose. Generally
the beam source of the system could be either based on kilo-voltage (KV) Xhays w
used in diagnostic CT or fluoroscopy or mega-voltage (MV) X-rays which asraged
from a linear accelerator during treatment. We can categorize thengrsystem in a
treatment room into 4 groups: (1) A CT-on-rail system, which enables the diagnbstic C
scanners to move on a rail installed in the treatment room (Ma & Paskalev, 2006). (2)
The kilo-voltage cone beam CT (KVCBCT) system. For most occasions it uses an

additional KV X-ray source and EPID attached to the treatment ganteyite@adone
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beam images (Oelfke et al., 2006). There is also an implementation of the KVCBCT
system on a mobile C-arm (Sorensen, Chow, Kriminski, Medin, & Solberg, 2006). (3)
The MV CT system, which either uses the existing treatment machinenvdttached
arc of detectors (Evans, Gildersleve, Rawlings, & Swindell, 1993), or alhelica
tomotherapy system that uses an MV fan beam source and a CT ring (Maatkie e
2003). (4) The MVCBCT system uses the existing treatment machine withlarfdeP
imaging (Morin et al., 2006; Pouliot et al., 2005).

Our clinic is currently equipped with the Siemens MVislbiMVCBCT
(Siemens oncology care systems, Concord, CA) which utilizes an amorphaws silic
electronic portal imaging device (Ford, Chang, Mueller, Sidhu, Todor, Mageras, Yorke
Ling, & Amols, 2002a). The device and the illustration of its main components can be

seen in Figure 1-6.

Figure 1-6: Siemens Mvision MVCBCT in the department of radiation oncology, the
University of lowa. The main components are illustrated in the picture.
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1.3.2 An overview of MVCBCT

MVCBCT has several protocols on the range of rotation angle for imaging. For
example, a clockwise rotation of 200 degrees from -90° to 110°, which is the default
protocol (Figure 1-7), or 360 degrees from -180° to 179°. For these two protocols one
projection image is generated per degree. The EPID has a 1024x1024 2D detsgtor arra
with each element sized in 0.4x0.4 faffihe source to axis distance (SAD) is 100cm,
while the source to imager distance (SID) is 145cm. The imaging volume abdbater
is about 27.4x27.4x27.4 énwhich is large enough to encompass the size of at least one
lung. The shape of the imaging field of view (FOV), is a cylinder with two sroa#s

capping the opposite ends of the rotation axis, due to the cone beam geometry.

Figure 1-7: The gantry of MVCBCT rotates from -90° to 110 in the default protocol.

Although MVCBCT provides a less expensive and more convenient way for
patient localization, it should be noted that the imaging quality of MVCBCT igwsbiat
degraded compared to that of the planning CT, due to the utilization of MeV photons for
diagnostic imaging. It is a departure from the general preferen&ddaglectron volt

(KeV) photons. It is reported that the imaging quality in terms of contrastite ratio
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and spatial resolution of MVCBCT acquired using the 6MV treatment beam ioirti@ri
KVCBCT, even when the dose for MVCBCT is three times that of KVCBCT (Stutze
Oelfke, & Nill, 2008). The difference of attenuation coefficients between s3aube

KeV range is greater than that of the MeV range as a result of predomicdon
interactions with the human body being different. In the MeV range, the primary
mechanism of photon interaction is Compton scattering, where the cross section for
Compton scattering is quite similar for bone, muscle, and soft tissues. Conversely,
photoelectric effect composes the majority of photon interaction in the Ke¥,rahgse
cross section for bone is very different than it is for soft tissues, producing aihjghts
contrast. The exposure setting for MVCBCT ranges from 2 to 15 MUs. Figure 1-1 is an
example of one projection image of MVCBCT for a 5MU protocol, which can be
considered as one frame of an MV fluoroscopic sequence taken while the gamdss, rota
The lung, the tumor located in the lower lobe, and the diaphragm are visible, but the
boundaries of the tumor in some parts are not discernible.

A recent development of MVCBCT imaging is to use carbon rather than tungsten
as the electron target and to remove the flattening filter for gemet Bremsstrahlung
X-rays. This is because low atomic number electron targets like carbon ganerat
KeV-range photons than high atomic number targets like tungsten, resulting in better
imaging quality. The removal of the flattening filter also increases topron of KeV-
range photons. This method is implemented by the University of California San
Francisco and Siemens Oncology Systems (Faddegon, Wu, Pouliot, Gangadharan, &
Bani-Hashemi, 2008), which also developed MVCBCT. They replaced the 18-21 MeV
electron scattering foil in the target slide with a 4.2 MeV carbon electrget taith no
flattening filter, which is called the “imaging beam line” (IBL), comgzhto the
traditional “treatment beam line” (TBL). Unlike conventional CT, MVCBCT reegli
constant geometrical calibration of 3D to 2D projection, since the relative positio@ of t

linac X-ray source and the EPID imager may shift over time due to the sagging of



19

mechanical supports. A special calibration phantom containing 108 tungsten beads is
used, while the position in both 3D and 2D projections of those beads can be measured
and used to compute the projection matrix. The details of the calibration method can be
found in (Pouliot et al., 2005).

The use of MVCBCT brings an additional procedure and dose to the clinical
workflow of radiotherapy for lung cancer. In our clinic, the MVCBCT imggswell
integrated into the entire treatment planning process. The workflow begma 4
planning CT. After the raw data is reconstructed into multiple 3D volumetric Bnage
according to the phase information provided by a synchronized strain gauge, the 4D
images are imported into the Pinnacle commercial treatment plansitegrs{Philips,
Bothell, WA) that enables one to define the treatment field size, gating window,
treatment isocenter, anatomical structures, and beam arrangementgeioadébse
distribution. Using a conventional fractionation, a typical course of radiothéwapung
cancers involves 30 to 35 daily treatments (6 to 7 weeks, 5 days a week). Hypo-
fractionation, on the other hand, aims to increase the biologic dose that increasdy the d
dose and uses fewer fractions (3 to 5 fractions). Prior to treatment, the patiearesl i
with MVCBCT. Immediately after the reconstruction, the 3D volumetric imgge
registered to the planning KVCT using the COHEREN¢Edaptive Targeting
registration software to determine the patient shifts. The registrattmased on
maximization of mutual information (Ford et al., 2002). Currently the 3D MVCBCT
image is reconstructed from all the projection images. For scans in thadlavess this
3D image contains information of all the respiratory phases, which causes the bioti
(Figure 1-3b). A combination of images of 4D phases are used to compare with the
motion blurred 3D volume. Further manual adjustment based on the bony anatomy or
organ contours is made. Usually the table shift can be made to align the treatagent im
with the planning CT within 3 minutes after the beginning of the acquisition of

MVCBCT. The image acquisition takes about one minute, using the 200 degree standard
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protocol. Since a typical respiratory cycle takes about 5 to 10 seconds, there would be
about 5 to 12 cycles during a single scan. The reconstruction utilizes a modified
Feldkamp, Davis, Kress (FDK) algorithm (Feldkamp, Davis, & Kress, 1984). ihdeg
immediately after the acquisition of the first projection image, and esilizfor
backprojection. For each projection image the backprojection process is quicker than the
imaging acquisition, so when all the projection images are acquired the 3D votumetri
image can also be derived.

It is reported that 3D MVCBCT provides more accurate patient localization than
2D portal images (Morin et al., 2006). Apart from daily localization, MVCBCT tsm a
be used to monitor patient anatomical changes, calculate dose (Morin et al., 2007), and
reduce image artifacts for patients with dense metal objects (such as ageneghts).

The details of these applications can be found in (Morin et al., 2006).

1.3.3 Patient data

Over the 5 years of my Ph.D. research, projection images of 96 MVCBCT
localization scans from 19 patients have been collected, includiniesyvat tumor sizes,
shapes, locations, imaging regions, etc. The number of MVCBCT scans for each pati
ranges from 1 to 24. In the following chapters, there is inconsistency of the number of
patient images that are tested among different approaches, and only paenbfipaiges
are used for each approach. The limited data set is due to the retrospecthaigdyat
data that does not always have the characteristics that we would need foryhis.anal
The required characteristics for each method will be further explained in the
corresponding chapters. There is no subjective preference of using imiyesnggeto

any specific patient.
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CHAPTER 2
AUTOMATIC IHDA DETECTION

The diaphragm is a good internal surrogate to tumor motion. However, the
practice of using the diaphragm should be adequately validated. A study based on 32
fluoroscopic images from 10 lung cancer patients (Cervino, Chao, Sandhu, & Jiang,
2009) shows promising result that the average correlation factor between the tarsmot
is 0.94 and 0.98, using two regression models respectively. However, a weak correlation
can still exist. In some patients with emphysema, unexpected movements of the
diaphragm were observed (lwasawa et al., 2000). So for each patient, one should verify
whether the diaphragm can be used as a surrogate during planning and dazigtionali
Once a strong correlation between the diaphragm and the tumor is verifieol)ldeise
the projection images of the MVCBCT scan to (1) quantify the (Ipsilattadli-
diaphragm Apex) IHDA motion, (2) verify the diaphragm-tumor motion relationship by
phase correlated reconstruction of full exhale and full inhale images andil§gatesthe
strain gauge signal used for gating.

Accurate detection of the diaphragm is the prerequisite step for the adaptive
gating system. The respiratory trace of the diaphragm is not only usedtateadtrain
gauge signals, but also to establish the phase correspondence of the projectiomimages
various approaches described in later chapters, including organ motion segmentation
(chapter 3), correlated reconstruction(chapter 4), motion compensated recmmstruct
(chapter 5) and projection image enhancement (chapter 6). Although the diaphragm
generally has good contrast in most projection images (Figure 1-1a)cthratac
detection of the diaphragm in all the projection images of MVCBCT is a chaltetagh
due to the weak boundary in the presence of overlapping confounding organs or tissues

(Figure 1-1b). Previous methods that successfully detect or track the drapghraggh
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an X-ray image sequence include augmented active shape model (ASM) (Fujita
Chandrasekhar, Singh, & Finucane, 2006) and Hough transforms based on circles
(Condurache, Aach, Eck, Bredno, & Stehle, 2005). There are more studies proposed to
track the respiratory motion of tumors in fluoroscopic images, including ASM (Q. Xu,
Hamilton, Schowengerdt, & Jiang, 2007), template matching (Cui et al., 2007) and
optical flow (Q. Xu et al., 2008). However, it should be noted that MVCBCT projection
images are very different from the fluoroscopic video. The contrast of MVCBCT
projection images is much lower. The projection angle of the beam is fixed for
fluoroscopic video, while for MVCBCT systems the gantry rotates during image
acquisition. Some methods suitable for fluoroscopic images, such as using the average
image intensities within a region of interest to estimate the respingtase (Berbeco et
al., 2005), may not be suitable to MVCBCT projection images. Besides, the frame per
second (FPS) rate for MVCBCT projections is only about 3, which is much less than that
of a fluoroscopic video. All those features make the diaphragm detection in MVCBCT
images more difficult. Moreover, for the purpose of online calibration of thie giaage
to tumor motion before daily treatment, the time spent on diaphragm detection should be
within a clinical limit, which is recommended to be one minute at most.

In this chapter, an automatic IHDA detection framework is presented. Ggnera
it is composed of three sequential parts: (1) Confine the IHDA motion in projection
images within a narrow region of interest (ROI) based on user initialz#®)
automatic detection of diaphragm boundary and IHDA position; (3) derive the 3D IHDA
motion trajectory from the 2D image coordinates. In the following paragrapbison
2.1 introduces how to determine the region of interest of the IHDA within each projectio
image based on manual initialization in four frames. Sections 2.2 and 2.3 introduce two
IHDA detection approaches, which are both based on converting the image space into a
Hough space by using a double-parabola model. The pros and cons of these two methods

are discussed. Section 2.4 introduces a fully automatic IHDA detection faaknbased
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on pre-segmentation of the diaphragm in 3D reconstructed volumes. Comparison of the

fully automatic approach against the semi-automatic approach is made based on the

detection accuracy.

2.1 Manual initialization of IHDA ROI

It can be seen from Figure 1-1 that the diaphragm only takes up a small portion of
the area of the projection image. It would be convenient if an ROI can be determine
prior to the diaphragm detection, thus the process of image analysis and diaphragm
detection can be confined in this area. To create this ROI, we have developed a robust
approach based on an interpolated ray tracing algorithm. The method was ficgiddvel
and validated by Dr. Siochi before my arrival to the University of lowa. One cdeld re
to his paper as (Siochi, 2009) for details.

Generally, this method computes the 3D position of the IHDA from
corresponding 2D positions in two projection angles (Figure 2-1). The IHDA motion is
assumed to be confined in a rectangular box (shown as green), where the location of FE
and FI phase forms two diagonal vertices of the rectangular box (the blue Ginve)
we can derive the range of IHDA motion based on 3D FE and FI positions. These two
positions are further re-projected onto each projection plane, generating a 2D bounding
rectangle. Thus a region of interest (ROI) is derived for image pragessd IHDA
detection. Once the IHDA is detected in each 2D projection image, it is backpddject
3D coordinates to derive the motion trajectory. The 3D position is an approximation
between FE and FI points based on linear interpolation along the longitudinal coordinate
(v coordinate in image plane anfbr room coordinate, perpendicular to the paper in

Figure 2-1). The error of this interpolation is within a sub-millimeter.
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Range of
maotion of

Projection frame 1 FI Trajectory of

Image center Projection frame 2

Figure 2-1: A 3D illustration of cone beam geometry of 3D to 2D projection. The large
red circle is the trajectory of image center. Two projection images areedqui
different viewing angles. The red line represents the ray that projedteteater onto
the image center (Strictly speaking, there would be some small deviation due to the

variation of system geometry. But the projected position of isocenter wouldybelose

to the image center). The blue line represents the perspective projechenldDA in
two corresponding 2D positions. Note that the beam source is not necessarily on the same

trajectory with the image center.

There are several advantages of the interpolated ray tracing methodh€&itsi t
projection images used to determine the 3D IHDA position can be from arbitrarpgiewi
angles, though best accuracy is achieved when they are more or less 90° apgieshi
the user more freedom to initialize 2D IHDA positions. Second, it is very likaltihe
two initialization points do not correspond to the same 3D locations. This could be due to
the variation of the amplitude of respiration in each phase or manual init@iizator.

The interpolated ray tracing algorithm allows the two projection rays to be noaneopl
(i.e. not strictly intersect in 3D), since the computation of the intersectitwe ¢fvb rays

is not directly solved in 3D geometry. Instead, the intersection point is comput@®in a
axial plane after orthogonal projection (Figure 2-2). Based on the relationsimplaf s

triangles, the direction (Cranio-Caudal direction) can be computed as
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(2-2)
wherel represents the distance of a specific point in 3D location to the beam

source. The subscrigtandp represents the 3D position of the original IHDA and its

projection respectively.

The interpolated ray tracing method was validated in Dr. Siochi’s experiment,

achieving a sub-millimeter error based on a phantom with predefined motion.

Source at

first angle

point of projection

\ 2t second angle

Intersection
Fomt

Isocenter O

point of
projection at

first angle

Zource at

second angle

Figure 2-2: Computation of 2D coordinates of intersection point using interpolated ray
tracing algorithm. The two rays of perspective projection from two angles ondess 90
degrees apart are projected onto the axial planex @hdy coordinates of the
intersection point is determined by the two rays. Zbeordinate is interpolated from the
projected point in the detector.
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2.2 Double-parabola model

In Dr. Siochi's paper (Siochi, 2009), an efficient algorithm was proposed to detect
the boundary of a tungsten pin of an imaging phantom in 2D projection images based on
histogram thresholding. This algorithm works successfully for a tungsten pitiebut
accuracy is not guaranteed when it comes to patient imaging, since there is mor
irregularity and noise presented (Figure 1-1). During the first two yéany Ph.D.
research, we have developed two automatic diaphragm detection approachegs () st
Both methods are based on a Hough transform based on a double-parabola shape
template. The first approach is based on the global optimization of a dynamic Houg
transform (DHT), while the second one is a tracking approach by finding a pragbabilit

density function (PDF). The mathematical representation of the model is:

y= v = {ai(x—xo)22+ Yo fOr X < X,
a,(X=X%,)" +Y,, for x=x,
(2-3)
where the four parameters axg {o, &, &). (Xo, Yo) represents the position of the
parabola vertex (which also represents the IHDA)arahda, are four times the focal
length of each parabola segment. The double-parabola model is shown to be superior to
some other templates. Simple shapes, such as a single parabola or arcspseamlslh
resemble a hemi-diaphragm. However, we chose a double-parabola model bexause th
hemi-diaphragm is asymmetrical in some lateral views (Figure 1-1). Wedemerated a
training set of diaphragm ROI from the MVCBCT projection images and have manuall
drawn the contour of the diaphragm. Then the contours are fitted with a sindgdelpara
ellipse arc and double parabola based on the least square fitting. The root-mean-squa

error between the contour and the fitting model are 0.98, 0.81, and 0.24mm for single

parabola, ellipse arc and double parabola, respectively.
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Given the shape template with the parametengel( a;, &) at framet within
the ROI, the Hough value measures how well the double-parabola template rttegches

image by adding the cost values at pixels along the shape contour,

Xo +AX
H(XO’yO’ai’aZ’t): Zg(xiy): ZC(X1y!a1sa21X0sy0),
(x,y)Oshape X=Xq —AX

(2-4)
Thus, the 2D image sequence is transformed into a five-dimensional (5D) Hough

parameter space

(X, y,t) - H(Xo, Yo, &,8,,1),
(2-5)
Functionc(x,y,a,a,%o,Yo) is the cost value determined by both the projection

image and the parameters of the parabola model. It is computed as

N, (xa;,%;) Ga%+ N, (%ay,%,) Gﬂﬂ%y) for x< x,
c(X, ¥,ay,8,, %y, Yo) =

Nx(x,az,xo)d%+ N, (%25, %) Ig?y) , for x=x,

(2-6)

where the functiomN(x,a,%) is the normal direction of the parabola contoua as
function of the horizontal directiag anda andxo (the normal direction is not influenced
by yo). Nx andNy represents the component of the normal vectgraindy directions,
respectivelyl(x,y) represents the intensity of pix&ly) of the projection image. The cost
function in equation (2-6) is actually a dot prodbetween two 2D vectors: the normal
direction of the parabola and the image gradie(®,g} In this way, a high cost value
will be given if one pixel has high gradient amdie and similar gradient direction with
the normal direction of the parabola. Figure 2hBstrates the difference between the two

vectors in one projection image:
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Figure 2-3: An illustration showing the normal ditien of a parabola curve and the
image gradient at the corresponding point location

The normal direction of the parabola function carcomputed as

2a(X—X,) _ 1
42 (x=%,)? +1

N, (xa,%;) =

(2-7)
Analyzing the 5D Hough space requires a lot of tand memory. To speed up
the detection process, the Hough accumulator @&naduced to three dimensions from
the original five dimensions.Within each framéor each Xo, yo) cell we select the
maximal value among all the combinationgaf &), and use a separate array to record

the correspondinpy, &). The mathematical representation is as follows:

H (Xoy yoat) = maXal,aZ H (Xoa y07a1’a2’t)’
(2-8)
An illustration of converting the image space taugl accumulation space is

shown in Figure 2-4.



29

Figure 2-4: A simple illustration of one cell (bluectangle) in Hough space (below)
corresponds with the double parabolic shape (kbm¢ocir) in image space (top). The red
rectangle in both image space and Hough spacesaieethe range of motion of IHDA
determined by interpolated ray tracing algorithrhe ellow rectangle in image space
represents the area used for gradient computatidotdaugh accumulation.

2.3 Dynamic Hough transform (DHT)

DHT, originally proposed by Lappas et al. (Lapp@atter, & Damper, 2002;
Lappas, Damper, & Carter, 2006) for an applicatbRingpong ball detection in a video,
is a natural extension of the traditional Hougimsfarm (Ballard, 1981) to object motion
detection in a time sequence of images. Insteagarching for the Hough peak in one
single image, DHT aims to detect a trajectory efdbject in motion. It transforms each
image frame into the Hough space and uses a segjoéhtough peaks to represent the
trajectory. Its direct predecessor is velocity Hoiginsform (VHT), where constant

motion speed is assumed (Nash, Carter, & Nixon719%r DHT, both the change in
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motion amplitude and direction is allowed. Andses a dynamic programming
algorithm to find the optimal motion trajectory ledson an energy function.

Previous work of diaphragm detection using Hougsedaapproach include
Condurache et al. (Condurache et al., 2005), wétaredard Hough transform of circle
model was employed to detect diaphragm in cardiaay{orojection images, followed
by refinement of active contour model (ACM). Thare two major advantages of our
method: (1) the DHT framework enables to estabhgtr-frame constraint and global
optimization; (2) we have used a double parabobdeh which is a better representation
of diaphragm shape than other analytical modets) as circle (Condurache, Aach, Eck,
Bredno, & Stehle, 2005), ellipse, and single rotal parabola. The model is composed
of two parabolic segments, which shares the samenggrical axis and vertices.

For each projection image indexgave look for a vertexx(t), yo(t) with the
corresponding maximizing, anda, values and form a trajectory through accumulation
space by maximizing an energy function. Similatappas’ original work (Lappas et al.,
2002; Lappas et al., 2006), the energy functiarptemized that takes account of Hough
value and penalties of change in motion and dwactlhe difference lies in the curvature
of the diaphragm, which makes the diaphragm shbleeta deform through the image
sequence. An additional component is added torteegg function to incorporate the

penalties of shape deformation. The overall en&rggtion is as follows:

Etraj = Wl Ehough - W2 Emotion - W3 Edirection - W4 Edeformation

(2-9)
The Hough energy is the summation of the Houghesaaf all the points on this
trajectory in accumulation space:
200

Ehough = Z H (XO (t)! yO (t)!t)!

(2-10)
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The motion energy is a penalty that discouragesdsgéferences in diaphragm

motion:
200
Enoton = 2 (W (Vi (1) =V (t =) w4y (v, () =, (E=D)7),
(2-11)

Here,v, andvy are the speeds in horizontal and longitudinalotives in image
space, respectively, whevgt)=xo(t)-Xo(t-1) andvy(t)=yo(t)-Yo(t-1). Wwyx andw,y are the
corresponding weights on the speed changes. Folisity, the speed is the
displacement between two successive frames, diecnie between frames is

approximately constant. The direction energy ig@aity for changes in the velocity

direction,
200 v, (t) v (t-1)
E irection — (arCtan(y_) - arctan(yi))z’
et = 2. V, (1) v, (t-1)

(2-12)
The deformation energy is different from that oppas, which penalizes changes
in rotation and scale for rigid shape templates.u8&the focal length parameterand
ap to account for deformation of the two parabolanseqts
E amn = 28,0 =8, 1) (2,0 =2, -1)’),
(2-13)
Equations (2-11), (2-12) and (2-13) are soft camsts that suppress but do not
prohibit large changes. In order to prevent somaanis irregular changes in motion and
Hough value, we also apply hard constraints thdmidlochanges above a certain threshold:
(a) The IHDA displacement should not exceleglandAy, between adjacent views and
(b) the Hough value of the current view should li@céora times greater than that of the

previous view:
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H(t) > oH (t -1)
) subjectto § |, (t) = X, (t —=1)| < Ax,
|y0 t) - Yo (t _1)| < Ay,

max(E

traj

(2-14)
Equation (2-14) is a constraint optimization probl&he energy terrBy,; is a
function of the IHDA location of Hough peaks in @ik views. Because the energy terms
in equation (2-9) can be grouped into 198 sethrektrelated frames, we followed the
“dynamic programming” procedure in Lappas’ work fpas et al., 2002) to solve the

optimization problem.

2.4 Tracking based on probability density functiBDF)

To successfully detect the IHDA, the IHDA througljpction images should
correspond to the Hough cell with the largest Houglne. However, this assumption
fails in a few cases when the confounding objeatselstronger Hough accumulation
values than the diaphragm. The contra-lateral lidaphragm, which is the part of the
diaphragm under the other lung and has almosticgishape features, is the major
source that misleads the detection. Generallypttublem occurs in the lateral views
(250~290° and 70~110° for standard protocol) wileeewo hemi-diaphragms are
projected very close to each other (Figure 1-1b)the ROI is unable to exclude the
confounding one. Figure 2-5 shows one example efgHgparameter space.

To correct the confounding problem in DHT, the deten method should
incorporate other features of Hough space, rattaar the intensity of Hough value alone
(the first term in equation (2-9). In Figure 2-6¢an be observed that the correct IHDA
trajectory is generally a continuous curve, withrepoint a local maxima (peak) in

Hough space. And the value of those Hough peaksgehgradually among adjacent
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frames. Intuitively we could add another penaltganstraint in DHT framework based
on the difference of Hough accumulation value betwsvo peaks in adjacent frames.

However, it is hard to find one such value that loarapplied to all the images.

True IHDA trajectory

Figure 2-5: The Hough accumulator array displayethaximal intensity projection on
2D (Sl direction and time) overlaid with detectétDIA trajectory.L eft: The detected
IHDA position is attracted to contra-lateral hemaghragm using DHT approadRight:
The detected IHDA position based on probabilisacking in Hough space.

To address this issue, a tracking-based approat#vedoped, which also takes
advantage of using Hough space and double paratmdal. However, instead of
simultaneously detecting all the peaks based dvaglaptimization, a tracking scheme
based on searching for Hough peaks with maximdigiitity density function (PDF) is
applied. The tracking starts from four user inigatl frames and spreads to neighboring
frames. It is more clinical useful, since only e feeighboring frames need to be
corrected when the user wants to modify the detecgsult in some frames.

The Hough Transform and probability have a vergrgirrelationship. Early in
1991, Stephens (Stephens, 1991) defined a matheathatcorrect form” of the Hough
transform from a probabilistic perspective, whiakes the log of the probability density
function of the image output parameters basedBayasian framework. Kiryati et al.
proposed a probabilistic Hough transform, whichyadlects a subset of edge points for
the voting stage to compute the Hough accumulatay §Kiryati, Eldar, & Bruckstein,

1991). Xu et al. (L. Xu, Oja, & Kultanen, 1990) pased a randomized Hough transform
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approach, which used a many-to-one mapping frongénspace to parameter space. The
presented method is originated from Hills et aktgk (Hills, Pridmore, & Mills, 2003),
where they tracked a set of combined featuresvideo by estimating a joint PDF in
Hough space. Mills et al. (Mills, Pridmore, & Hill2003) further combines Hough

transform with extended Kalman filter.

5 -
25 ) --

Figure 2-6: Distribution of IHDA motion in time segnce of projection images from 21
MVCBCT fractions. The distribution of motion is mggented bylxo andAyo.

The main assumption of our approach is that thegH@eaks of IHDA in
adjacent frames have very similar parameters, @nafpthe position, Yo, curvature of
parabolaa;, a, and the Hough value. Given a set of Hough parems@s, Yo, &, &) at
framet, which we denote 8%, Yo', &', &"), the PDF of parameters in the next frame
(t+1) is assumed to be normally distributed, with the@mequal to the parameter set in
framet, which has the mathematical representation:

t+1_ t)Z

(P -p

f(p™ 1P =ke

(2-15)
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In this equatiorp represents any pattern measurement, including fiHoug
parameteKo, Yo, &, &, and the Hough value. The parameteasnds are the
normalization parameter and deviation of Gaussistniloution respectively. So once all
the Hough peaks in the fran(te-1) are detected, the probability of each peak can be
estimated using the joint probability of all thegraeters. The Hough peak with maximal
PDF is selected as the next IHDA position. The mggion of normal distribution is
validated using the experimental result from MVCB@®jection image sequences.

The tracking approach starts from the four mamisiblized frames. For a given
framet with the detected IHDA positiofx(t),y(t) shape parametes(x(t),y(t),t) and
ax(x(t),y(t),t) the algorithm tries to find the IHDA position ingtmext framet+1) or (t-1)
and subsequently repeats this process. All the Kpegks are selected prior to the
tracking process, which are local maximaigx,y,t+1). For each Hough peak, a PDF is
evaluated to give the likelihood of moving fromrayious point location to this one,

represented by:

PO y™a™,a,™) = L0 DO, (YY)
fa@a™ 1a) f, (8, " [a,") foo (X, Y™ X, Y1)
(2-16)

where we use the superscrigt “rather tharix(t)” to represent the function of
time. The PDF is multiplied by five components wheach of the first four components
measures the conditional probability of one modeametelx,y,a,a). For example,
f.0¢™|x') represents the probability of moving from positibin framet tox** in frame
t+1. George et. al. found that the PDF for diaphragotion can be considered an
approximately normal distribution(George et al.Q2)p In this study we further assume
that both the IHDA motion and the curvatureapfinda, are normally distributed. The
first four components are normally distributed, vehthe mean equals the value of the

model parameter i The fifth componentt,,; measures the probability based on the
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normalized cross correlation between two regidns.determined by the neighborhood
of ¢y and(X,y) in the Hough accumulation arrédfx,y,t) The closer the
correlation is getting to one, the higher the ploldg value. The conditional
probabilities of the five components have the nrathtecal representation as follows:

(%1% )2 (v ™ -yohH? _(at+1_at)2

O™ %)= ke 2, 0" y,)=ke 7, f,@"|a)=ke **

_(NCC(x% ™ yo' ™ %0 Yo )-D)?
2(TCOrZ

(2-17)
The functionf, is used for both componest anda,. The Gaussian windowris
derived from a statistical analysis of the mant)A identification results on 40
MVCBCT scans from 6 patients. Figure 2-6 showsdis&ribution of IHDA
displacements of andyo, which is similar to a 2D Gaussian distribution.
For both DHT and PDF based tracking approach,HAl position in 2D
projections are converted to the 3D coordinateesydiased on the interpolated ray

tracing method (Siochi, 2009).

2.5 Towards fully automatic procedure:

Automatic ROl detection

The interpolated ray tracing algorithm used to aeiee ROIs in the projection
images requires the manual initialization of péaettions in two projection images at
full exhale (FE) and full inhale (FI) respectivelyowever, the process of human
initialization on four projection images requirgesial training to the clinicians to make
them understand the principles and get familiah wie software. Moreover, manual

initialization could be time consuming, especidtly those images with low contrast of
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diaphragm and confounding tissues. Instead, trexm@tation of ROIs could be made
fully automatic. In this section we introduce a napproach that can automate this

process.

2.5.1 General framework

Figure 2-7 illustrates the main steps of this meéthath the intermediate results

shown in Figure 2-8.

{ zjl
MVCECT Object Bottom
Projection Surface
Images Detection
FDK Reconstruction tonesc e diComanioe it
S All th Labelling and
Sl & Diaphragm Region
Projection Images FIrRIELE
) 3D Diaphragm apex
R detection based on
. {B template matching
Otsu Threshold Diaphragm apex
= =T = motion detection in 2D
projection Images
.

Figure 2-7: Flowchart of the fully automatic IHDA&t&ction framework

First a 3D volume is reconstructed from all thej@cbon images. Though this
volume contains motion artifacts (see Figure 2-Ba)pes not influence the robustness of
a rough estimation of the IHDA position. The redamsted volume is first pre-processed
by a Gaussian smoothing filter, which reduces thisenand makes the voxel intensity
more homogeneous inside the lung (Figure 2-8b)nTwth lungs are segmented based

on Otsu’s method, which automatically performs im#tyresholding (Otsu, 1975). An
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optimal threshold is exhaustively searched thaimriges the intr-class variance in tr
image histogramHigure2-8c). Based on the segmented lung mask, a subsekefsy
called “bottom surface” is detec), which is located in the most inferior positiontbé
mask. Not all of the “bottom surface” voxels aretba diaphragm surface: the supe
surface of the tumor and the small part of lung aslseen ilFigure 28d are not a part
of the diaphragm surface. A morphological analisigerformed to eliminate all tt
“bottom surfaces” that are not a part of the diaghm surface. The corrected diaphre

surface is shown iRigure2-8e and Figure 2-8f.

(©)

Figure 2-8:Intermediate result of the proposed method: (apwecal slice o
reconstructed MVCBCT volume; (b) The coronal skdeer Gaussian filtering; (c) Resi
of Otsu thesholding (red binary mask); (d) Bottom surfacéhef Otsu segmentatic
(pink contour); (e) Diaphragm surface detectionDi@phragm surface overlaid on !
visualization of MVCBCT volume
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The rough 3D position of IHDA is selected from trexels of the diaphragm
surface. The number of hemi-diaphragms presentdwiBD volume can be analyzed
from the binary mask of the diaphragm surface (ovd-igure 2-8e, but one in cases
where only one lung is entirely visible in the FOMhe volume). A template matching
approach is employed to find the location of thestsuitable voxel of one hemi-
diaphragm surface to serve as the rough IHDA mwsifThis 3D position is then
projected onto each 2D projection image. A margiadded to the projected location to

generate an ROI, which is the working area for 2Riom detection approach.

2.5.2 Diaphragm surface detection via morphological

analysis

In order to locate the diaphragm surface from atdyimmage of the lung mask
using morphological analysis, we begin by assigaignary value to each voxel in a
binary image voxe{x,y,z) Voxels in the lung region are assigned an intgnsilue of
I(X,y,2)=1, while voxels outside of the lung region are assija value of(x,y,zF0. To
generate the bottom surface illustrated in Figu8el 2a condition check is performed to
each voxel in the volume. A voxel is only considkete be bottom surface if both
I(x,y,z)=1andI(x,y+1,z)=0. The superior-inferior (SI) direction of the volunsedefined
byy and the inferior direction is defined y.

The bottom surface detection generates a new bimeyeB(X,y,z) where a
voxel is defined byB(x,y,z)=1if it belongs to the bottom surface. An algoritism
implemented to uniquely label the connected compisnef the bottom surface (Cormen,
2001). To separate the bottom surfaces from thghddgm surface, we applied stringent
criteria to each connected component:

a) The size of the connected component should berlénga a thresholdsze:.
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@ For each component, there is no other componehtansize larger than
thresholdTs;,e2l0cated inferiorly to it. For two connected compotsA andB,
thatB is inferior toA is defined as follows: there exists two vox&(%,,Ya,z,)
andb(X,Yb,2,), allA andblIB thatXa=Xyn, Z=2p, Ya<Yb.

The size of each bottom surface is computed simedtasly with the connected

component labeling algorithm. The second separatiberion is performed after the
labeling process. If the first criterion is sagsfifor each component, the algorithm will

then search for the voxels located inferiorly to it

2.5.3 IHDA position estimation via template mathin

Once the diaphragm surface binary image is deriesaplate matching is
performed to find the IHDA position for each henmyghragm. A parabolic surface
model is applied to represent the shape templateeadiaphragm surface, with a

function of:

y= M%2) =a(Xx=%)" +a,(z-2,)" + Y,
(2-18)

where there is a correspondiygalue in the Sl direction to represent the height
of the diaphragm surface for each combinatior afdz in the lateral and anterior-
posterior direction. The parametegsy, andz, describe the IHDA position, which is the
most superior point on the diaphragm surfagenda, describe the curvature of the
parabolic surface ir andz directions. To find the IHDA, an exhaustive search
performed for all the possible combinations of éhparameters to determine a parabolic
surfacexo, Yo, Zo, @1 anday. Although an exhaustive search in five-dimensi@pace is
very time-consuming, this does not adversely afbeictapplication because the allowed

range of those parameters is restricted. The rapge, z is selected from the small
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number of 3D volume voxels on the diaphragm suréacseen in Figure 2-8e. The
flatness of the diaphragm surface near the IHDAtiposmakes they anda, value very
small. The exhaustive search aims to find the agtsulution, which has the largest
energy function:

Xo DX Zy+Dz

E(Xo, Yo, 29,84, 8,) = Z ZC(X1 X z2a,8,,Y,),2)

X=Xo—AX 7=25-Az

(2-19)

where ax and Az defines the size of the parabolic surface. Funai{®,y,z)is the
cost image computed from the original 3D volume. €axh voxel, the intensity ofx,y,z)
represents the likelihood of becoming a part ofdiahragm surface. Currently we set
the cost value equal to the gradient in a S| dmactlthough the parabolic function
representation is only an approximation of the ldiagm surface, it is an effective way to

estimate the rough 3D IHDA position.

2.5.4 Derive 3D IHDA position from 2D projectionasye

Once the IHDA ROl is determined, one can use th& DHPDF based tracking
approach to detect the IHDA within the defined R@se difference of using PDF
based tracking approach from manual initializat®the starting frame. For manual
initialization, the tracking could be started froine 4 initialized frames. For automatic
approach, For PDF-based tracking, the IHDA posiitsotletermined on two projection
images; andt, by automatically selecting the maximal accumutatralue in the Hough
space (x,y,k), H(x,y,b). For a standard MVCBCT protocdj,andt; is chosen at frames
near 60 and 120 respectively, where there is ndapy@ng between the two hemi-

diaphragms at those angles.
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Figure 2-9:An example of IHDA motion detection: The estimagdl position for eacl
IHDA is projected ont@D projection image to create ROIs (red and blatarggle). The
doubleparabola model is fitted on the he-diaphragm (red conto).

Figure 2-9shows one example of automatic ROI detectiondiaphragm
detection. Once the 2Dopitions of the IHDA in all the projection image® @eterminec
the corresponding 3D positions need to be estimatede the surrogate of the tun
motion is in the 3D IHDA positiorFigure 2-10llustrates the cone beam gectry of
this perspective projection. In this figLP, is the estimated IHDA position, which
derived using the methods presented in sectionthébRgh 2.4. Assume that an angl
projected onto the 2D EPID, parallel to the Sl cliien (y axis). If wedenote the 2[
projected location aB,?, then the real IHDA position is located nearbP,? and is
denoted by*®, whereP is the real 3D IHDA position when this projectiondge is
acquired.

We are interested in knowing the Sl directiorP (y in this figure), since it i:
more clinically significant than the other two dite®ns. Bear in mind that it is impossit
to accurately derive the 3D location P, since it could be located on any point along

ray between the Xay sourceSand the detected 2D IHDR?®. However, since most |
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the IHDA motion occurs in the SI direction, the BBsition ofP can be estimated by
close poinf’. It is the intersection point of the rSP* and a plane that contaiP, and

parallel to the projection imagdane.
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Figure 2-10: A illustration of estimating 3D IHD/positionfrom 2D

Let’'s denoteP as the 4x3 projection matrix. The perspective mtaja of a 3D
point onto the 2D detector can be representeP-P=P*. The equationan be further

expanded as:

p2d, = R +RP, +RP +R, py = PR+ PR + BosP, + By
Py, PX+ P3oPy+ PyaP, + Py Py, PX+ PyoPy+ PagP, + By
(2-20)
whereu andyv are the horizontal and vertical coordinates ofZbeprojection
plane, respectivelyr; represents the element of fith row and thgth column of the
projection matrixPy, Py, P, is the 3D coordinate of poift To derive the estimated

direction ofP’y, we will consider poinPe, which is located on the same plané?, and
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P’. It has the sameandz coordinate af,, and samg coordinate af®’. Based on the
relationship of similar triangle®:>* (the 2D projection oPe) would have the same

with P,?® and the samewith P?“. ThusPey can be derived from the following equations:

F)leox + l:)ZZF)ey + F)Z?al:)oz + P24
PSl’ I?)x + PSZRey + P33Poz + P34

PZdV —

(2-21)

where onlyPgy is unknown. We then ug&, to estimatd®,, which provides close
approximation to our goal. It is a very close appration toP,. Consider that half of the
EPID heighthy is about 20 cm, and SAD equals to 145 cm. The maixangle between
the rayS-P* andx-z plane would basin(hy/SAD) Typically the lateral motion of the
IHDA m is less than 0.5 cnx @ndz component of vectd?,-P). Thus the largest
possible error of the IHDA in the Sl direction wdldem-hy/SAD which is around 0.07
cm. Compared to a typical motion range of 2 cm gtiner is relatively small. Moreover,
the diaphragm is usually very close to the iso-@eot the cone beam CT during the
localization scan, which makes the angle betw&&Hf ray andx-z plane close to zero. A

typical estimation error for the 3D IHDA positiorowld be much smaller.

2.6 Experiments and validation

2.6.1 Results of semi-automatic approach

Figure 2-11 shows the root mean square error (RMI3D0 projection images for
19 MVCBCT scans of 6 patients. Since the studgken on the second year of my Ph.D.,
only MVCBCT scans of 7 patients were derived at time. Among the 7 patients, the

diaphragm of one patient moves out of the imagaggon of 2D EPID detector
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occasionally, which makes it impossible for IHDAeion. For the other 6 patients,
3~4 scans were selected for each to make the mslilbalanced among different
patients. Overall PDF-based tracking yields betsults than DHT. DHT has a
significantly large error for image “WB1” and slidylarger error than PDF-based
tracking approach in most of the images, due tatimfounding contra-lateral hemi-
diaphragm in the lateral frames. The overall detaciccuracy for probabilistic tracking

is 1.228+0.220mmcompared with DHTL.34140.640mm

B OHT

O Joint probahility method

ED1 EDZ ED3  LH1 LH2 LH3 MT1 MTI NT3 MTE SO5  SD2 SDL TSl T2 TS3 WB1 WBX WBS

Figure 2-11: Comparison between DHT and probalalldbugh tracking approach on
RMS error (in mm) in 19 MVCBCT scans.
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Figure 2-12: A screen layout of the main interfatdust Enough DICOM. The top-left
and bottom-left area shows the trajectory of IHD#Sifion in superior-inferior direction
and lateral direction respectively. The right aseaws the MVCBCT projection image.

2.6.2 Results of fully automatic approach

The fully automatic method was tested 15 patiait®f whom satisfied the need
of having images whose diaphragm was within théoboborder of the projection image
(Figure 2-13a, b). 4 out of 19 patients were ndable IHDA detection. Cumulatively 35
MVCBCT localization scans were evaluated. The ppiecof determining the number of
images used for experiment for each patient iplé®als: 7 images are selected for each
patient. If the number of images available for pagent is less than 7, then use all the
images available.

The automatic 3D IHDA localization worked well fb4 of the 15 patients, where
the 2D IHDA position was within the ROI createdrfrohe projected 3D position. The

method worked poorly on one patient, who had a lage tumor attached to the
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diaphragm, thereby obstructing it. The missingrggrdiaphragm gradient caused the

detected IHDA position to shift laterally (Figurel3c, d).

Figure 2-13:Patient data that unsuitable for autani DA detection. (a) A coronal slice
of 3D volume and (b) one projection image of onggo whose diaphragm is not visible
in the projection image (indicated by the red sHip (c) A coronal slice of 3D volume
and (d) one projection image of a patient who hesrg large tumor attached to the
diaphragm of the right lung (appears on the lefioth images). No IHDA is found in the
first patient. For the second patient the IHDA posi (indicated by red ROI and contour)
is far from the desired position (yellow arrow).eTtther detected IHDA is acceptable

To evaluate the detection accuracy the detectedhlpi@sition is compared to
those identified manually by a clinician. The enguantified based on estimated 3D
positions in a Sl direction, using the method dégdrin section 2.6. Average and

standard deviation errors over 200 frames are dightThe results of the 35 daily
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localization scans are shown in Figure 2-14. ThHBAHbositions were manually

identified by two clinicians in three scans (g1, hl) to test the inter-expert variance:

i
N
—

m Dynamic Hough transform
m Tracking based on PDF
m Inter-expert variance
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Figure 2-14: The detection accuracyfim) of 3D IHDA position in Sl direction. The
average and standard deviation error of 200 priojeatnages are displayed.

The overall average and standard deviations foB5hs&cans is 2.933+4.189m
and 1.714+1.544nmfor the DHT and tracking based approach, respagticompared
with 19 scans of semi-automatic approach with x84340nmand 1.228+0.228mfor
DHT and PDF tracking, respectively). The inter-axpariance is 1.046+0.67/m
1.715+1.132nmand 3.903+3.70hmfor the three scans. Some of the correct IHDA

detection examples are shown in Figure 2-15.



49

Figure 2-15Examples of correct IHDA detection. Red rectang©1; Red contour
detected parabola model of diaphragm; Small redtpiixpert defined IHDA positic

Figure 2-16 Examples of problematic cases: (a, b, c): the tiedediaphragm (re
contour) is actually the con-lateral hemidiaphragm, where the red dot shows the r
IHDA position; (d) the variance between two expéentified points (red and bl dots).

2.6.3 IHDA detection error analysis

Generally, the difference in IHDA identificationtiaeen two sources (eith
manual identification or automatic detection) cahex be due to the smooth transitior
the diaphragm boundary or a differerterpretation of the IHDA position. The first ty,
of error (typel) is generally small (within ‘mm) and clinically acceptable, since usus
a setup error of ;imis added to the gross tumor volume (GTV) to creaténical targe
volume (CTV) for treatrent delivery. All the inter-expert variancesgl and h belong

to this type. The inteexpert variance from these two patients can be asedferenc
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for type-I errors, where an automatic detectionloaiconsidered as “good” when it is
close to this range. The second type of error {ti)pdowever, needs to be corrected,
since at least one of the two sources is not thieliHDA. Instead, it could be an
overlapped confounding boundary. For all the sdaisguite common that in some
projection angles the contra-lateral hemi-diaphrg@irtHD) is also located in the ROI of
the desired hemi-diaphragm and overlaps it. CLHi0 aleates a strong Hough peak in
the Hough accumulation space, confounding the ggorto make the right choice.
Generally, PDF tracking is more robust than DHKeaeping on the right hemi-
diaphragm boundary. DHT fails to detect the corbeetndary when CLHD has a
stronger corresponding Hough accumulation valuéctwimakes the DHT find the
globally maximal solution. Based on our observatjdhe existence of the type-Il error,
such as those influenced by the CLHD, would makestim of the average and standard
deviation of quantification error larger tham®n.For the inter-expert variance in nl,
there is strong disagreement between the two obisenv some frames, illustrated in
Figure 2-16d. This is caused by two boundarieshibhing to the same lung. The
detected diaphragm curve is closer to the red finhhot shown here for better
visualization purpose.

The performance of the automatic approach on eiftescans of the same patient
does not change much. If accuracy is achievedrfersaan, similar accuracy can be
expected on other scans of the same patient aadsgrsa. In Figure 2-14, both patignt
andh have seven scans. The standard deviation of #rage IHDA error using the
tracking-based approach is 0.466 and 01889 while the standard deviation of all the
patients is 0.66/m One can observe from the 7 scans of pali¢hat the DHT error is
significantly larger than the tracking-based apphodor this patient, the detected IHDA
by DHT is often attracted by the CLHD when the CLHRIOves within the ROI. Figure
2-17a, and b illustrate the detected IHDA trajectorerlaid on a maximal intensity

projection (MIP) image of the Hough accumulatioragr This MIP image is derived by
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projecting the original 3D array(x, y, t)alongx direction to create a new arrblyp(y,

t), i.e.

Hye (y:1) = max, H (x,y,t)
(2-22)
The horizontal coordinates of this image are tliexnof projection images
ranging from 1 to 200. The horizontal axis is teetical direction of the projection plane.
It can be seen that the difference of the two detetrajectories are in the first few
frames, where the CLHD is located inferior to tberect IHDA and even has a stronger

Hough accumulation value.

C Rotation angles
l9o 70 50 30 10 10 30 50 70 90 110

TS oo - # tracking
el - - O DHT
- A expert

IHDA Positions (mm)

Figure 2-17: The detected contour IHDA positiomgsia) DHT and (b) tracking-based
approach is overlaid on the maximal intensity prtigen of Hough accumulation array.
The 3D IHDA position along Sl direction is shown(a).
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Based on our observation, the influence of the Clislihe major source of error
in IHDA detection. Generally the tracking-basedrapgh better avoids erroneous CLHD
identification than DHT. However, it is not entiyelccurate as can be seen in the scans
presented in Figure 2-14. Three different examplesisdetection onto CLHD are
shown in Figure 2-16.

Here we will discuss how much accuracy is clinicaltceptable for IHDA
detection. The amplitude of respiratory motiontdDIA, D, will be used to calibrate the
strain gauge sign&based on the relationshgs=F(D), where functiorF is determined
by quadratic fitting between the correlation of thwe signals. Thus the accuracy of
IHDA detection would influence the accuracy of ddgsribution on the tumor. The
preliminary studies of Siochi et al (Siochi, 2081ochi, Kim, & Bhatia, 2008)based on
three patients have indicated that a motion of 3maxcess of planned motion did not
have a significant change (<1%) in their tumor oalrobability (TCP). However, two
patients who consistently had 5mm or more motioexicess of planned motion had a
drop of 10%. The relationship between diaphragmtanmbr motion can be represented
by D=G(T), whereD andT is the motion of IHDA and tumor respectively aads
assumed to be a linear function. The DTMR s tlaestactor inG, which plays vital
part in determining the accuracy of the gatingshoéd. We could expant=G™(D) into
T=D/k, wherek is the DTMR. The error of tumor could further lepresented as:

AT =AD/k+AkE—Ik22

(2-23)
HereAT, 4D, 4k can be considered as three random variables witbcgation
equaling to zero. It can be further assumed theat &ne normally distributed, with
average value equaling to zero and the standardtievcorresponding to the average

quantification error of tumor motion amplitude, IIABnotion amplitude and DTMR,
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respectively. Based on the rule of addition of @aussian functions, the standard

deviation of4T can be further represented as:

2
vah, = \/varZAD/ K> +vara &

k4
(2-24)
wherevar represents the standard deviation of each vanablieated by the

subscript. Assume that the typical valueKDTMR) is 1.2. Take 3@mas typical
diaphragm motion amplitude into the equatidkis more or less than 10%, where the
details are shown in Chapter 4. F@, take the average error of the fully automatic ROI
determination followed by PDF-based tracking, whgh.714nm This setting of
parameters leads to an average error of tumor mas@®.481m which satisfies therBm
criterion. Generally, the fully automatic approgebvides a worse condition, since the
accuracy for semi-automatic approach is even b&tdween the two components4id
and4k, 4k has larger contribution to the error. Furthermthere are some reasons that
enable the clinicians further loose the accuraguirement. First, the manual correction
could further reducdD to the order of thm Second, the problematic detection has
higher probability to be selected as outliers dyRANSAC fitting (Chapter 4). Last, a
margin will be added to create a planning targéime before treatment delivery, which
further reduces for the uncertainties of the tumotion range. In sum, the semi-
automatic framework and the fully-automatic framekoased on PDF-tracking

approach achieve clinically acceptable accuracy.



54

2.6.4 Implementation issues

Currently the semi-automatic approach is implengtote“UIHC 4D
Verification”. It was developed in Microsoft VisuBBsic 2010. The major functions
used for strain gauge calibration were also impleeeein this software, which is
currently under clinical trial. The functions inder (1) Manual initialization of IHDA
locations on 2 FE frames and 2 FI frames; (2) R€&éaination via interpolated ray
tracing algorithm; (3) IHDA detection via DHT or FEbased tracking; (4) RC
reconstruction; (5) interactive tumor segmentatiengraph cuts; (6) DTMR
computation and strain gauge calibration basecandam sample consensus (RANSAC).
The function (4) to (6) will be further introducedChapter 4. Due to the existence of the
error, the clinical software should allow manuaireotion and guidance to the algorithm
for the problematic detection. A graphical useeiféce (GUI) is developed that enables
clinicians to manually adjust the IHDA detectiorypically type-1l error occurs in
several consecutive frames of projection images,ishllustrated in Figure 2-16. Based
on this feature, it is suitable to apply the tragkbased approach again, since the IHDA
positions in consecutive type-Il error frames carcorrected once the clinician has made
the adjustment in one frame. In this way the managakection will not only affect the
modified frame, but also affect several neighbofiagnes. The PDF-based searching
starts again using the manually corrected frantbasitial one. The neighboring frames
will be searched through and the new detectiontresilireplace the result of the first
round. From a wider perspective, though automgipr@aches are employed aiming to
automate manual identification of IHDA, the softe@nds up with incorporating the
manual correction because the automation sometiomesnot do as well. The overall
performance in terms of both the accuracy anduhaing time, however, is significantly

improved from using either manual identificationamttomated process alone. One may
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further consider the automatic detection and theuabcorrection as iterative steps,
where this iterative nature is able to take advgafeom both sides.

The semi-automatic framework based on “UIHC 4D feation” was tested on
an Intef? Cord™ 11 2.40 GHZ CPU, 3G RAM desktop computer. The iingrtime of the
two Hough-based approaches can generally be dividedour major steps: pre-filtering
of the ROI images, Hough transform, Hough peakatiete and IHDA motion trajectory
detection. Generally, the major bulk of time isrirage filtering and the Hough transform.
Each of these steps takes about 10~15s. The Haaghdetection and trajectory
detection either based on dynamic programming df #&cking is relatively quick,
which only requires 2~3 seconds in all. The timemi@nual correction is even quicker,
since the Hough array and Hough peak is kept in ongm@nd the correction only
requires re-computation of IHDA trajectory in sealereighboring frames.

The fully automatic framework is tested on an [&t€lore ™ i7-2620M CPU
@2.70GHz laptop with 4GB RAM. The 3D volumetric igeareconstruction takes about
8.3s, where all the 200 projection images are recootgdiinto a 3D volume containing
128x128x128 voxels, with a voxel spacing of 2 mmmisTesolution is sufficient for
robust automatic IHDA detection, which takes gt generate 2D ROls for each
projection image. Compared with our former sempendtic approach, it takes 30 to $0
for a clinician to manually identify the IHDA pogih in 4 projection images, depending
on his/her familiarity with the software and thsitility of the image. The Hough
transform for 200 ROIs takes 690nce the Hough accumulation array is available,
either DHT or tracking-based approach takes lems @5s for IHDA detection. The
overall computation time is about 20The time frame is acceptable for clinical
implementation. For comparison, careful manualtifieation of 200 projection images

requires 10 to 20 minutes.
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CHAPTER 3
RESPIRATORY MOTION MODEL EXTRACTION DIRECTLY FROM
MVCBCT PROJECTION IMAGES

In the last chapter, a framework for detecting IH®Pé&m MVCBCT projection
images is presented. A further potential step isstothese projection images to directly
monitor or detect intra-fractional motion of otleggans, such as the tumor or the lung,
since the projection images provide high tempasblution (about 0.3s). Different
approaches have been proposed, including (1) miorgttumor change by projecting a
volume of interest for visualization (Reitz, Gay®arda, & Miften, 2008); (2) extracting
the 2D/3D position of a projected implanted matKerLi et al., 2006) or diaphragm
edge (as presented in last chapter); (3) regigiérom 3D image space to projection
space for inter-phase motion compensated recotisinu@. Li, Koong, & Xing, 2007).
Direct tumor tracking or detection in 2D imagesniainly focused on fluoroscopy
(Shimizu et al., 2001). However, few studies had@ressed direct tumor detection in
MVCBCT projection images, which suffer from reladly poor contrast due to the
energy range of the imaging photons and the imiagenatomies.

In this study, we present a novel method basedapamal graph search
framework to extract 3D respiratory motion modetsri multiple respiratory phases in
2D projection images. The optimal graph search otgtfirst proposed by Li et al. (K. Li,
Wu, Chen, & Sonka, 2006; X. Wu & Chen, 2002) hasgdmuch attention in the field
of medical image segmentation in the past few y&drs advantage of optimal detection
of multiple surfaces has made it widely useful amious image segmentation tasks, such
as multiple intra-retinal layer segmentation inicgdtcoherence tomography (OCT)

images (Garvin et al., 2008), simultaneous bladdeérprostate surface segmentation in
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CT images (Song, Wu, Liu, Sonka, & Garvin, 2010y anultiple surface delineation of
knee-joint bone and cartilage in MR images (Yinadd, & Sonka, 2008).

The graph search framework was originally desigonednultiple-surface
segmentation in 3D images. My innovation in thigkug to make this graph-based
globally optimal method suitable for 3D organ segtagon from 2D image series. An
innovative design of graph construction and nodeigllt assignment is developed to
fulfill this goal, which will be presented in ddin upcoming sections. Two major
advantages make the proposed method robust inwhedntrast MVCVBCT projection
images: (1) The 3D tumor surface segmentationsedban all the 2D projection images
that belong to the corresponding respiratory phadss detection inaccuracies induced
by low contrast and interference in one projectioage can be reduced. (2) Compared
with other 2D-to-3D object shape recovery methsdsh as free form deformation
(Lotjonen, Magnin, Nenonen, & Katila, 1999), B-s@isurface model (Moriyama et al.,
2002) and triangulated mesh pulling (Chen et 8112, our approach incorporates the
maximal allowed motion displacement of the tumoaasnter-surface constraint in the

surface detection process and obtains a globahapsolution.

3.1 The motion extraction framework

3.1.1 Overview of the approach

The main steps of the proposed approach are dhestin Figure 3-1 with the
intermediate results for tumor segmentation showiigure 3-2. In preparation for the
algorithm, the projection images are sorted inteess respiratory sorting bins according
to the 3D anatomical positions of the ipsi-latérami-diaphragm apex (IHDA), which is
automatically extracted from projection images dase the framework introduced in the

last chapter. The algorithm starts with an iniBl static mesh model, which reflects the
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approximate topological structure information of targeted tumor surface. The initial
tumor mesh is projected onto each 2D projectiorgendhe new location of mesh points
for all the respiratory bins are determined sirmétausly using a multi-surface optimal
graph search method, which requires computatidhen$ilhouette outline for each

projected mesh at first.

MVCBECT

4D Planning CT Projection
Images l
- _ (2D+t) Graph
Tumor Segmantation Initial tumor model (A w "::;r;;;:;zz‘;:n formulation and
and Mesh Triangulation static mesh and Motion Contour :D Multi-Layer
in FE and FI phase vectors) Detection Optimal Ghraph
Searc

Figure 3-1: Flowchart of the motion extraction agguoh

3.1.2 Model initialization

The initial static model is the average of the nesdlor the full exhale (FE) and
full inhale (FI) phases of the 4D CT. For each muasint, a range of motion is
determined using the equati®f) + a(P, - P,) andP, +a(P; - P,,), wherePr andP;
are the corresponding positions in FE and Fl phasegectivelyPy, is the mean position.
a is used to control the allowed range, which isdglty set between 1.5 and 2.0. The
generation of the initial mesh is performed offloh&ing the planning stage and can be

completed within 2 minutes.
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Figure 3-2 Intermediate steps of the tumor motictraction approac
(a) Full exhale phase of 4D diagnostic CT volumertard withtumoi mesh (blue);
(b) projected initial static mesh (green), its subtte contour (red), motion directi
(yellow) and thesilhouett« contour after the graph search cartgtion (blue)

3.1.3 Silhouette contour extraction

The initial stéic mesh, along with p-defined motion vectors, is projected o
each 2D projection image. In order to move the meslards tumor boundalocations
in the projection image, the siluette outline is extracted from each projected nioss
using an efficient algorith (Chen et al., 2011which includes three major steps:
select candidate mesh edges (which are potensidtiguette edges) basen local
topology of the graph; (2) split intersected caatkdedges; (3) follow edges clockw
on the split candidate edges to extract the silttewitline. The efficiency come
primarily from the first step, where the majoritiyealges are excludedter the

topological analysis. An example of the detectéubsiette outline is shown IFigure 3-2.
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3.1.4 Multiple surface detection via optimal graggarch

A key innovation of the proposed method is conungrthe segmentation of
objects with quasi-periodic motion in 2D rotatiocahe beam projection images into a
3D multiple interrelated surface detection problerhich can be solved by a graph
search framework (K. Li et al., 2006; X. Wu & Ch@002). The details are presented as
follows. A 4D (3D+t) directed grapB=(V, E)is constructed based on the initial tumor
mesh, wher&/ andE are the set for vertices and edges, respectiValy.graph contains
NxMxT nodes, wher®&l andT are the number of points of the static tumor neeshthe
number of respiratory bins, respectivé¥yis the number of sampled points along the
pre-defined motion vector. Each combinatiorirom,t] is one unique spatial and
temporal location, that represents thid sampled point in the column defined by mesh
pointn in phasd. The segmented tumor surfaces are defined bytiaion.#:(n,t) > A4
(n,t), wherenlIn ={0,...,N-1}, t0Jt ={0,...,T-1}, and# (n,t)lJ m ={0,...,M-1}. A cost
value is computed for each ndaem,t], denoted by(n,m,t) using the following
equation:

P-1
c(n,mt) = ;5(9,0((& p)w(n,m, p)
(3-1)
whereP andp is the total number and the index of projectioages,
respectively. The functiod(p,t) =1 when thepth projection image belongs to ttib
bin, otherwise it equals zero. The functig, p) =1 when thenth point in thepth
projection image is included in the silhouette coint otherwise it equals zenw(n,m,p)
is the cost function of theth sample point in theth column in theth projection image,

which is defined as:

w(n,m, p) = =P, (normal (n)) Corad (P, (P (n, m)))
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(3-2)
Whereﬁ: is the3D-to-2D projection operation of a vector point in thepth
projection imageP(n,m)is the location of theith sample point along ¢hpre-defined
motion vector of theth meth point. The operationormal(n) gives the normal directic
of thenth point of the static esh, while the operatiagrad computes the image gradie

of a given 2D location.

==== Inter graph arc

——— Inter column arc

——> Intra column arc
@  Original mesh point

Phase 1
Added graph vertex

Figure 3-3 A simple illustration of the 4D graph construci

The reason fousing the negative dot product between these twtoris tha
along the tumor boundary in 2D projection ims, the projected normal direction
oppositeto the image gradienEquation (3-1) and (3-Zhow that the cost for each nc
in the 4D graph is determinecom all the 2D projection images that belong to
corresponding respiratobin. Three different types of arcs are added to thehg (1)
Intra-column arcs are used to define the graph topology, which conaé@acent node
that belong to the same coln. The arc goes from each nddem,t] (m>0) to the node

below[n,m-1,t]. (2) Inter-column arcs are used to connect adjacent columns in the :
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respiratory bin. The arc goes from each njpde,t] (m>dy,) to [adj(n),m-dmt], where
adj(n) represents adjacent mesh points.@k;, is the shape smoothness constraint, which
is the maximal allowed difference imbetween adjacent columns of one tumor surface.
(3) Inter-phase arcs are used to connect the same columns in diffeespiratory bins.
The arc goes from each ndaem,t] (m> o) to [n,m- &, t£l]. d; is the inter-phase
constraint, which is the maximal allowed differemecen between adjacent bins of the
same column. We define thatm,0]=[n,m,T] to form a closed loop of respiratory bins.
Figure 3-3 illustrates the main idea for graph ¢atsion, where a simple case of
T=2,M=7, 6= =1 is shown. For visualization purposes, only twaiomhs are shown
for each bin. And only one inter-phase arc is draldre optimal solution can be
computed by solving a maximal flow problem in tlemstructed graph (K. Li et al.,

2006).

3.2 Application to the tumor motion extraction

The graph search framework was experimented ontbotbr and lung
segmentation. In this section the experiment atidatgon on tumor segmentation is
presented. The application to lung motion extractidl be presented in combination to
motion-compensated reconstruction in Chapter 5.

Generally, deriving the ground truth of patient turshape by using daily
localization MVCBCT is very difficult. The standardconstruction method of
MVCBCT uses all the projection images. The tumdslisred in the 3D volume. Though
4D CT is able to provide clear boundary of tumduwee in multiple phases of 3D
volumetric images, the tumor shape, size and mgatern is likely to change through
the course of radiotherapy. To validate the acquofthe segmentation framework, we

have designed and made an imaging phantom. It pess-@etermined size, shape and
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motion pattern, which can serve as ground trutke §égmentation result can then

compared with the ground trut

3.2.1 Phantom design

The imagingophantom consists of tweymmetrical blocks of basswood, w a
density of about 0.4 g/do mimic lung tissue. Each block has six differeiaed hollow
hemispheres measuring 3.81, 3.18, 2.54, 1.91, arb0.4cmin diameter, respectivel
These hollow hemispheres were filleith paraffin wax, with a densityf about 0.9:
g/ccto mimic lung tumors. The two halves were carefaligned to form a rectangul
box embedded with six spherical pieces craffin wax. Figure 3-4hows a picture ¢
the phantm, a coronal slice cadiagnostic CT and a MVCBCT projection imas
respectively. It can bgeel that all the six spherical inserts have clear baties in the
diagnostic CT slice, while it is hard to observe thvo smallest inserts in the MVCB(

projection images.

O

Figure 3-4:A picture of Left: the imaging phantom; Middle: aronal slice of one pha:
of the 4D diagnostic CT; Right: one projection iraagf MVCBCT with a dose of 10M
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The imaging phantom is placed on a cart attachéaetQuasar respiratory
motion (QRM) phantom (Modus Medical Devices, IN@ndon, ON, Canada) to
simulate respiratory motion. The QRM phantom iggpaonmed to move only in the

superior-inferior (Sl) direction, with its positipas a function of timg defined as

z(t) = z, + A, cos* (rt(t +t,)/ 1)

(3-3)

where the motion amplitud® is 30 mm, and the periads 4s to represent

typical breathingz, andt, are the DC component of the motion and the stagirase of
the phantom motion, which varies among differemgesiments. The phantom tests were
done on two scans, with a dose of 5SMU and 10MUpeesvely. The imaging phantom
experiment was not only used in the tumor segmientaerification introduced in this
chapter, but also used for validation of correlatmbnstruction presented in Chapter 4

and validation for projection image enhancemertiriggie introduced in chapter 6.

3.2.2 Validation result

The graph-based segmentation framework was alttes 12 scans from three
patients. Among all the 19 patients, the selediegetpatients have relatively large
tumors in the lower lobe of the lung, which candentified directly by human eye in the
projection images. In this way the tumor segmentatian be compared with manual
contour in the projection images. 3 images werecsedl for each of the previous two
patients. 6 images were selected for the thircepgtsince an additional 4D CT was
taken in the middle of the course of radiotheragthiis patient, which can be used to
create the prior geometric tumor model for moréfeing MVCBCT scans. All the

patient scans used an imaging dose of 10MU.
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Figure 3-5shows the detection result of the largest spheinsalrt of the phantot
(top) and a real patient whose tumor is right above thphdtagm (bottom). The t-right
corner shows the detected 3D mesh in the correspgrespiratorybin. The evaluatiol
is based on 2D contours in projection space. Feptiantom images, the detec
contour of the inserts is compared with the cont@mmputed from the predefined si
and the motion, which is considered ground trutbah be seen that the insert car
detected robustly in the presence of the interfesuperimposed objects, sucl
interfering sphered{gure3-5-1), the QRM motion phantom (Figure&s3) and the holes
of the plastic support (small white circlesFigure 3-5-3 and Figure 3-%).

Figure 3-5:Detection result ¢ Top row: the imaging phantorBpttom row: a patient
with tumor above the diaphrag Red silhouette outline of initial mes blue: detected
tumor contour (deformed silhoueoutline); yellow contour of ground truth for phantc
images, manually annded contour for patient imageBhe detected 3D tumor mesh
the correspondinrespiratory bin is displayed on the toght corne.
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Figure 3-6: Meamnd standard deviation L eft: dice coefficient between detect
contour and ground trutRight: centroid difference between detected contour

ground truth over 200 projection images of fourespdal inserts

The evaluation is based on the fougest inserts, since there is no str

boundary information of the two smaller ones inMMCBCT projection imagesFigure

3-4). Two metrics were employed to validate the deseatesult: The 2D dice coefficie

and the differece of centroid positions along the Sl directi

Figure 3-6shows the mean and standard deviavalues of those metrics ov

200 projection images for the four largest instatded. It can be seen that the «

coefficient dereases slightly when the tumor size goes downgewhis phenomeno

does not occur in the centroid errAn imaging dose of 10 MU obtains better accur

for centroid localizatiorand a slight improvement in the dice coefficierdr patient

images, theumor was independently contoured by iclinical experts. The averag

contour was computed to compare with the detecteult. The difference between 1

two manual contours is also quantifit
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M Detected contour & averaged manual contour
M Inter-variance between manual contours

=

Dice coefficient

M Detected contour & averaged manual contour
M Inter-variance between manual contours

4 — -

Centroid error (mm)

Figure 3-7: Mean anstandard deviation (a) dice coefficient{b) centroid differenct
over 200 projection images of 12 MVCBT sc of patient.

Figure 3-7shows the dice coefficient and centroid differeacer 12 MVCBCT
scans from 3 patients, ‘ere it can be seen that the overall dioefficien of the
proposed method is even bethanvariations between manual contours. This rest
expected, since the detection incorporates motimstcains as well as information fror

multiple images thabelong to the same corresponding bin, while thaumal contour i:
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based solely on one projection image, which costa@veral confounding objects
generated by the projection of other tissues.

On average, the phantom study obtained a diceiciesitf of 0.87+0.03 and a
centroid error of 1.94+1.3dm Results based on 12 MVCBCT scans from 3 patients
obtained 0.91+0.03 for dice coefficient and 1.83#fnmfor centroid error, compared
with a difference between two sets of independariual contours of 0.89+0.03 and
1.61+1.19nm respectively. As discussed in the last chapteset on a study of three
patients, a motion of 3mm in excess of plannedenatid not have a significant change
(<1%) in their tumor control probability (TCP) ($iu et al., 2008). Moreover, a setup
error of 5nmis typically added to the gross tumor volume (GTdf)treatment delivery.
For both phantom and patient studies, the quadtd@ntroid accuracy is generally

acceptable within the clinical requirement.
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CHAPTER 4
BIMODAL MVCBCT VIA CORRELATED RECONSTRUCTION

In the previous chapters, we have shown the adganddVCBCT imaging,
which have made it clinically possible to perforatipnt localization prior to each
treatment by registering the treatment CT to tla@pihg CT. This process uses the
treatment beam from a linear accelerator (linad)amelectronic portal imaging device
(EPID) to capture projection images as the gamttates. These projection images are
used for reconstruction by default. They could dleased in cine mode, where they
could be exported into DICOM format for visualizatiand analysis. In Chapter 3, we
have shown the feasibility of using MVCBCT projectimages to identify tumor
positions. The tumor motion amplitude could beHartused to calibrate the strain gauge.
However, as we have also presented in Chaptee3litact tumor segmentation
framework is currently only suitable for large tursioThe method is not robust enough to
capture the motion of small tumors, since the @sttin most of the projection images is
low and the tumor boundary is poorly defined (seife 3-4). Tracking techniques that
have been successfully applied to fluoroscopic esaguch as methods based on
template matching (Cui et al., 2007) or opticalfl(®. Xu et al., 2008) may not be
robust enough for MVCBCT projection images as well.

An alternative approach may be to use the diaphragtion since it correlates
well with tumor motion for most lung cancer pate(€ervino et al., 2009). In a
preliminary study conducted by Dr. Siochi(Sioctd02), he identified the IHDA and the
superior edge of the tumor in MVCBCT projectionsnfr 27 treatment fractions of one
non-small-cell lung cancer (NSCLC) patient. The tumosition correlates well with the
IHDA position in these projection images, with areieaged coefficient of determination

of 0.95 for the linear fit. Moreover, the diaphragage between air and tissue is clearly
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visible in the projection images. Methods preseimedhapter 2 have been able to detect
2D IHDA positions in MVCBCT projection images seautomatically, and convert

them to 3D room coordinates using an interpoladégdnacing algorithm (Siochi, 2009).
However, performing the same task for the tumanadse difficult.

One could use the MVCBCT images to quantify thatr@hship between tumor
and diaphragm motion. Applying respiratory corretbfRC) reconstruction by
retrospectively sorting all the projection datacading to diaphragm position would
reduce blurring significantly, enabling cliniciattsidentify tumor and diaphragm
boundaries directly on the images. We can thervedhie diaphragm-to-tumor motion
ratio (DTMR), which is based on the tumor centmisplacement and the IHDA
displacement between full exhale (FE) and full lai{&l) CBCT images. The strain
gauge signal could be calibrated for tumor motipruéing the DTMR and correlating
the IHDA positions with the corresponding straimige signal recorded for each
projection image.

This chapter will be divided into three sectionkeTirst section will show the
feasibility of quantifying DTMR and tumor volumearges for a large tumor by using
RC MVCBCT. However, RC MVCBCT based on one scanrhasy missing projection
images; this causes severe view aliasing artitauisdegrades the reconstructed image
quality, potentially limiting its applicability ttarger tumors and small displacements.
Section two describes the phantom tests that aned&o quantify the inaccuracies
brought by the image degradation. It should bedhtitat the patient images could not
provide ground truth for tumor size, shape or moamplitude. At best, one can only
hope to establish agreement among multiple dynamaging modalities such as Cine-
MR and 4DCT. Hence, in order to quantify the eriorgolume and motion
determination, a phantom with spherical inserts wesyed to study the feasibility of
using RC MVCBCT to quantify tumor motion and tunvafumes. The actual motion of

the phantom and the size of the inserts are knawrsarve as ground truth. The last
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section will present our current methods that vileygemented in the clinical software

“UIHC 4D verification”, which is currently undericical trial for strain gauge

calibration based on correlated bimodal MVCBCT.

4.1 Patient studies

Current MVCBCT imaging uses all the projectionsgoonstruct a static image.
By selecting projections belonging to the sameiragpy phase, it is possible to
reconstruct MVCBCT images of moving tumors with tipié phases. In this study the
FE and FI phases are reconstructed for each MVC&@m. The superior-inferior
position of the IHDA, provided by the previous stegpscaled from O to 100 to represent
normalized respiratory phases. The ideal phas@bie FE phase should be Opiw,
and (00—pw) to 100 for the FI phase, wheper stands for the window size of the phase
bin. But for real respiratory traces, especiallyifeegular breathing, inclusion of O or
100 will only encompass a small amount of projewidoth factors should be
considered for proper phase window and level valdesxhaustive search strategy is
applied to find these values. For the FI phasanis to find a phase window and level
that maximize the averaged respiratory amplituderojections within the phase window.
For the FE phase, the same procedure is used homination of the amplitude.

The default CBCT reconstruction algorithm by Feltka Davis, and Kress
(FDK)(Feldkamp et al., 1984), is fast and produpesd images, but an inadequate
number of projections results in strong aliasirtgaats. Algorithms derived from
Algebraic reconstruction techniques (ART)(Gordoan8er, & Herman, 1970) are more
robust for incomplete projections but require moubre computation time due to

iterative re-projection and backprojection (Mueléagel, & Wheller, 1999a). Hardware
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acceleration based on graphics cards made it fedsibccomplish cone beam ART

reconstruction within a clinical time limit (MuelieYagel, & Wheller, 1999b).

Figure 4-1: Image reconstruction example sliceoional view: (a) FE phase of planning
CT,; (b) MVCBCT reconstructed from all the project# (c) FE phase of RC MVCBCT
reconstructed by FDK algorithm; (d) FE phase of R@CBCT reconstructed by ART
algorithm (tumor contour is displayed in blue

We have tested both methods to investigate thébigigsof tumor contouring
without considering reconstruction speed. The ptma matrices of MVCBCT, which
were derived during MVCBCT geometric calibrationdiyh et al., 2006), are used for

voxel-driven computations in FDK method and ray+ein models in ART (Galigekere,
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Wiesent, & Holdsworth, 2003). A Bessel-Kraisereil{Lewitt, 1990) is used as the
interpolation kernel for ART, since it has lesssiing artifacts than bilinear or Gaussian
kernels for ray-driven back-projection.

The IHDA position and tumor boundary in both FE &hdmnages are identified
by a researcher without prior knowledge of thequdatusing the Pinnacle treatment
planning software. The volume and centroid of tiradr and the DTMR are then
calculated. These parameters are also quantifiedeoplanning CT for comparison.
Figure 4-1 shows one example of manual contouririgeotumor using Pinnacle. The
figure is the same as Figure 1-3. It is displaygaimhere for convenient purpose.

Figure 4-1a shows one coronal slice of a 4D plagpdiim. The MVCBCT has a
much lower contrast to noise ratio (CNR). In Figdsgb a MVCBCT image
reconstructed using all the projection data is shdstatic tissues such as shoulders are
visible, but objects in motion, such as ribs, heimphragms and the tumor are very
blurred. In the example image of the respiratoryesbreconstruction, the tumor
boundary and diaphragm are better defined, regazdiethe reconstruction method:
FDK (Figure 4-1c) or ART (Figure 4-1d). Reconstroctartifacts existed in both FDK-
MVCBCT and ART-MVCBCT, further degrading the imageality. Both FDK and
ART have truncation artifacts at the border ofithaging FOV. The intensities of organs
outside the FOV contribute to the voxel at the H@Wvder during back-projection. For
FDK, the streak artifact is observable, which is tluincomplete projections. The patient
received audio-coaching during the treatment ireiotd encourage regular breathing.
While this makes the gated RT treatment more rgljabcan also help improve the
reconstruction of limited projection data by avagliarge gaps of missing projections.
However there are some exceptions when the pagiemable to maintain the regularity
during the scan. In our study, the IHDA respiratpinase in one of 16 MVCBCT images
shows a very irregular pattern (Figure 4-2a), witlkeeerespiratory amplitudes for some

maxima are much smaller than those of the otheim@axThe exhaustive search strategy
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had a hard time for this image, since no projestiar within the FI phase window from
frame 60 to 160 (Figure 4-2a). The image reconsduin this projection set is severely
degraded, making it impossible to contour the tuocmorectly. For reference, Figure 4-2b

shows a regular breathing pattern.

= FE phase
= Fl phase

o 50 100 -
MVCECT rotation angle MVGBCT rotation angle

-50

Mormalized respiratory amplitude

Figure 4-2: Normalized respiratory phaselfeft: irregular breathRight: regular breath.
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Figure 4-3: Tumor volume plotted against elapsega diaom first fraction
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The radiation effect on tumor volume over the cewsradiotherapy is plotted in
Figure 4-3. Images reconstructed by FDK and ARThaté studied. The effect of
radiotherapy shows an exponential pattern of volahmekage. The average discrepancy
in tumor volume between FDK and ART methods is %3®ith a standard deviation of
7.2%. The discrepancy between the two methods malb to human subjective error
and improper setting of display window and levdhjah is shown to affect the object
size measurement (Baxter & Sorenson, 1981). Althaumgall errors existed between
FDK and ART in size measurement, both methods age#idor the purpose of
monitoring the trend of tumor change. Tumor volurdesved from two 4D planning CT
scans are also shown in the graph, which can bgdemed as a gold standard. For the
planning CT taken 6 days before the start of ra@iatpy treatments, the tumor size is
much smaller than the tumor size in both FDK-MVCB&W ART-MVCBCT images
taken minutes before the first radiation treatm&hts may be due to tumor growth
during the 6 day interim between imaging and treaisince there is no radiation given
during the 6 day interim and the tumor was paréidulaggressive. The tumor size
contoured in the second planning CT agrees weli thie MVCBCT taken on the same

day.

FDK-MVCBCT
ART-MVCBCT

Planning CT

3
o

DTMR
2

o D N A @ '\b. '\43. ‘\'p\. rbr'_. f\;b~ q?. 'g:,. "bb. b.:v &5. &b' hg.

Days elapsed from the first day of treatment

Figure 4-4: DTMR value for 15 MVCBCT and 2 planni@d (MVCBCT with irregular
breathing is excluded).
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DTMR values are plotted in Figure 4-4. DTMR is cartgal from the IHDA
motion and tumor motion, which is displayed in Fgd-5. The measured motion is
generally consistent between FDK-MVCBCT and ART-MBCT. The measured IHDA
motion ranges from 0.78cm to 2.17cm, with an aveayl standard deviation of the
difference between FDK and SART methods of 0.058@052cm. The tumor motion
ranges from 0.8cm to 1.82cm, with a deviation betw#ne two methods of

0.131cmz0.112cm.

3 ! ! ! . T planding CT IHDA | T FDKIHDA
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Figure 4-5: Motion of IHDA and tumor centroid fob MVCBCT and 2 planning CT
(MVCBCT with irregular breathing is excluded).

Comparing tumor and IHDA motion to the slice thieks in the superior-inferior
direction, which is 1.071mm and 3.0mm for the MVCB&nd 4DCT respectively,
variation by one voxel in the IHDA identificationayinduce a 10% DTMR change. This
error is consistent with the average differencavbeh FDK and ART measurements.
There are a few cases with a significant excesiart as the one on day 7. The motion
of both the IHDA and the tumor centroid in thisscarelatively small. The division
between the two measured motions to compute the ®Tivther increases the

inaccuracy, which is part of the reason for thgeaerror. DTMR from the planning
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4DCT taken 6 days before the first treatment dagush smaller than that of the
MVCBCT, possibly due to discrepancies in tumor waéuand/or natural variations in
breathing patterns from one day to the next. Fepthnning 4D CT taken on the 4th
week, the DTMR is close to that of the MVCBCT. Tggdly most images have a DTMR
larger than 1, which is consistent with lung expamsluring inhale. For the few cases
where DTMR is smaller than 1, they may be due tauabidentification and contouring
errors, but it is also possible that the patierd im@athing more with their chest than with
their diaphragm.

To sum up, we have verified the feasibility of as&eg tumor response based on
respiratory sorted MVCBCT derived tumor volumes.aRzeters measured for the tumor
contour and the IHDA in MVCBCT images are closé¢htose of the planning CT and are
in a reasonable range, except for a few caseifirtt week of the MVCBCT, probably
due to the time delay between 4DCT imaging anditsetreatment fraction. The
comparison of the DTMR for planning CT data and MBCT data also shows that it is
feasible to use limited projection reconstructiométermine the tumor and diaphragm
motion relationship. Generally, the validation woresented in this section shows the
feasibility of observing trends in tumor size chesignd measuring the DTMR to
establish a relationship between tumor and diaphnagtion. Reconstruction artifacts
induced by incomplete projections and truncatioestlae main reasons that affect tumor
contour accuracy. The accuracy of using respiraoried MVCBCT reconstruction to
measure object size and motion still needs to besaed. It will be very helpful to image
an object with prior knowledge about its densityage and size, in order to quantify the
reconstruction error. The next section will focustibe quantification of the

reconstruction accuracy.
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4.2 Phantom studies

The details of the phantom design and the predgfimetion can be seen in
section 3.2.1. It is not only used for validatidrttte segmentation framework introduced
in Chapter 3, but also used for validation for ¢tberelated reconstruction approach
presented in this chapter. The respiratory sighbbsed on the cranio-caudal motion of
the center of the spherical insert. It is autonadiifaescaled into a relative motion range
from 0 to 100, which corresponds to the most sopamd the most inferior positions,
respectively. This is similar to patient studiebene the rescaling is applied to the
motion of the IHDA. 3D images at FE (0%) and FI%) are sufficient to quantify
“tumor” displacement between full exhale and intsibges. Projection images are sorted
to those two respiratory states with a fixed amphtinterval. The size of the allowed
amplitude interval is a compromise between vieasatig artifacts (the reduction of
which requires more projections) and residual nmoftbe reduction of which requires
fewer projections). The interval is set at 10%,ckhtorresponds to 3.0 mm in our study.
Hence, the FE image is reconstructed from projestwith sphere positions of
approximately 0 to 3 mm from full exhale positiér the Fl image, the selected
projections have sphere positions of approxim&@lyo 30 mm inferior to the full exhale
position. For a CBCT scan that acquires 200 prigjestof a phantom that moves
according to Figure 2-3, about 70 projections ackuded in the FE phase, while about
30 belong to the FI phase.

Image reconstruction was performed using the Fehgkdavis, Kress (FDK)
method (Feldkamp et al., 1984). For the MVCBCT imggf a static phantom, a clinical
FDK reconstruction system is used. The dimensiagh@BD volumetric image is 256 x
256 x 274 (274 is in the craniocaudal directionjhwa voxel spacing of 1.0 mm. For
imaging of the moving phantom, an offline FDK aligfom is developed for the RC

reconstruction. (The offline application uses tame algorithm as the online version, but
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it is used to reduce demand for the clinical imggiorkstation that performs the online
reconstruction.) The sorted projections are recootgd into an image of 256x256x256,
with a voxel spacing of 1.071 mm. The dimensioeath 3D image for the 4DCT scan

is 512x512x274 (274 in the craniocaudal directionfh a transverse slice thickness of

1.0 mm.

The commercially available product of MVCBCT use® MV treatment beam
line (TBL), while a test system in our clinic used.2 MeV imaging beam line (IBL).
The lower energy photons provide a better quatitgge for the same dose (Faddegon et
al., 2008; Faddegon et al., 2010; Flynn et al. 9208llowing us to determine if RC
MVCBCT benefits from the new beam line. For bothLTdéhd IBL modes, the standard
protocols use a 200° arc from -90° to 110°, geegaine projection image per degree.
We also tested a TBL protocol with a full rotati@®9° arc), so that we can evaluate
whether the increased number of projections imEoee ability to determine tumor
sizes and motion from RC MVCBCT.

We acquired 12 scans, six with the phantom ataregtsix with the phantom in
motion. The six scans used the three modes (20Q°2@0° TBL, 359° TBL) at 5 and 10
MU. The phantom was also scanned at rest and ilomosing 4D kVCT to compare our
RC MVCBCT results against a clinical 4D system. thi 3D MVCBCT and kV CT
volumetric images were stored in DICOM format amghorted into the Philips Pinnacle
(Philips Medical Systems, Andover, MA) treatmerdrpling system. All spherical inserts
in all the images were contoured. The volume amdecef the contoured regions of
interest were derived using Pinnacle’s measuretoerig. The displacements between
volumes in the FE and Fl images were computed frendifference of the centroid
positions.

Previous studies have demonstrated that the disptajow center (WC) and
window width (WW) significantly influence the apeat size of an object in CT imaging
(Baxter & Sorenson, 1981; Magnusson, 1987). It feaad that the WC should be half
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of the attenuation differences between the objedtthe background in order to yield the
correct size. In this study, we set the WC at bathe attenuation difference between the

spherical insert and the basswood frame. The W¥gtiss the attenuation difference.

4.2.1 Image quality

Figure 4-6 shows one coronal slice of the FE pfaskevVCT and RC MVCBCT
imaging for different protocols. Figure 4-7 comzatiee attenuation profiles of those
images for the largest two spherical inserts. RerkVCT, the image intensity is
distributed uniformly within each spherical insentd the CT number represents the
material density well. For the other three RC MVOB@ages, the image intensity is no
longer uniformly distributed, as noise occurs ithbhewax and basswood regions. There is
some difference between the CT number in the RC B@T and the CT number that
corresponds to the actual density of the matekgkxpected, the uniformity within the
sphere improves as the dose is increased froni6 MU (from upper right to lower left
panel), and as one goes to a softer energy speimum lower left, TBL, to lower right,
IBL). The smallest insert is identifiable in imagesonstructed using IBL or images
reconstructed from 359 projections. Using a wideige of projections and IBL improves

the imaging quality.
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4D CT RC MVCBCT TBL SMU

Figure 4-6: One coronal slice of the phantom imaggdg kVCT (top-left), RC
MVCBCT with 5 MU TBL (top-right), RC MVCBCT with 10MU TBL (bottom-left),
and RC MVCBCT with 10 MU IBL (bottom-right).
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Figure 4-7: Imaging profile of the two largest irtsen FE phase images using kVCT
(top-left), RC MVCBCT with 5 MU TBL (top-right), RGVCBCT with 10 MU TBL
(bottom-left), and RC MVCBCT with 10 MU IBL (bottomght).

4.2.2 Volume quantification

We use the relative error to measure the accuraegiome determination. The

relative error is defined as the normalized diffeewith the nominal designed value:
relative error = ’Vactual _Vdesigned /Vdesigned

(4-1)
whereVacewa IS the volume measured from the contours\afelgnedis the nominal

designed volume.
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Figure 4-8: Relative error in volume as a funcdrthe phantom insert diameter.

Figure 4-8 compares the average and standard wevadtthe relative error in
volume for all the kVCT images and RC MVCBCT imagesr the planning CT, the
error is within 10% for all the inserts of diffetesizes. For RC MVCBCT, an inverse
relationship between object size and relative esrpresent. Image degradation due to
view aliasing artifacts and residual motion onlieafs the apparent size of the border
region for large objects, but may affect the srobject entirely. The image pixel
dimension also affects smaller objects, sinceat larger fraction of the object’s diameter.
The residual motion of 3 mm also has a greateceffie smaller objects. The average
error of the four larger inserts is about 10%, doubrs increase significantly when the
object diameter is less than 1 cm, indicating tadime measurement in RC MVCBCT
is not suitable for small objects. For larger tuspave have observed tumor volume
reduction through a course of treatment using nakstisamilar to what is described in the

last section (Figure 4-3), so RC MVCBCT could pd®/tumor response assessments for
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tumors larger than 2 cm in diameter, as verifiedbykVCT imaging. However, the case
study was for a regular breather who provided &csent distribution of uniformly
spaced projections for RC MVCBCT. Irregular breagheill most likely have fewer
projections with irregular spacing and could indouare artifacts. Further studies with
irregular breathing patterns programmed into thenptm would be needed to determine
the limitations on these situations.

We further reclassified the results based on differmaging parameters to study
their influence on the accuracy of volume deteritnoma Table 4-1 to Table 4-4 show the
averages and standard deviations of relative ebelmnging to different subsets of
imaging parameters, including different respiratstigtes (Table 4-1), number of
projections (Table 4-2), imaging dose (Table 4+8) source energy (Table 4-4).

In Table 4-1, the relative error of static objacttng standard MVCBCT is
significantly smaller than that for FE or FI imagesng RC reconstruction. The error
using static object MVCBCT data is even comparabliat of the kVCT for the four
larger inserts. This is, in part, a consequenaesfyg fewer projections, as can be seen as
well in Table 4-2 where the relative errors foroanplete rotation (359°) are lower than
those for a 200° arc. However, one would expectdimee the FE phase has more
projections (70) than the FI phase (40), the FEselshould have better accuracy. This
seems to be true only for the smallest spheregvibilthe larger spheres, the Fl phase is
slightly better. This could be a consequence ofttiaal residual motion in the
reconstruction. Although the projection sortingaaithm used a 3 mm window, the
actual residual motion could be slightly smallartfte FI phase than for the FE phase. In
fact, for the FI phase, typically only two projexts were selected per respiratory cycle.
With fewer projections in the FI phase, the likelld of spanning the entire 3 mm
window is lower.

It is very likely that more projections availabiea wider range of angles for each

phase may reduce the view aliasing artifacts fiorais, although the effect of these
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artifacts on volume determination for sphericaleatg seems to be less of an issue than

residual motion. However, using a 359° rotatioreéases the image acquisition time.

This presents a compromise between reducing sietepaind finding a more accurate

protocol.

Table 4-3 and Table 4-4 present counterintuitigelts. One would expect higher

imaging doses to produce better images and, henpeyved volume determination.

Similarly, one would expect softer energies tog/iewer volume errors due to improved

image quality. Figure 4-6 shows how image qualitprioves according to this expected

pattern. Table 4-3 and Table 4-4, however, showfp®site trend. The differences,

however, are within the standard deviations. Witiperimental error, they essentially

produce the same result. It is possible that theuswtnof residual motion varies quite a bit

due to the random starting phase for image acgnsiand this is just enough to affect

the results.

Sphere diameter, cm

Static

FE phase

Fl phase

3.81
3.18
2.54
191
0.95
0.48

3.02%+1.53%
2.60%+2.28%
3.08%+2.51%
7.95%+10.3%
8.11%+6.73%
16.7%+10.1%

5.81%+2.03%
8.42%+2.95%
10.6%+5.20%
15.8%+5.65%
33.6%+20.3%
27.6%+19.9%

4.74%+3.12%
7.08%+3.03%
6.43%+5.26%
9.52%+8.11%
31.4%+16.4%
100%=48.3%

Table 4-1: Average and standard deviation of relative volume error fan&El phases



Sphere diameter, cm

200 degrees

359 degrees

3.81
3.18
2.54
1.91
0.95
0.48

2.84%+1.70%
6.33%+3.81%
8.09%+6.43%
11.8%+9.47%
21.3%+18.8%
55.8%+48.8%

5.91%+3.40%
5.12%+3.87%
3.62%+2.14%
6.58%+4.38%
19.3%+18.1%
36.2%+25.7%

Table 4-2: Average and standard deviation of relative volume errorffieredit arcs

Sphere diameter, cm

5MU

10 MU

3.81
3.18
2.54
1.91
0.95
0.48

3.66%+2.06%
4.52%+3.15%
5.29%+4.33%
8.20%+5.91%
23.9%+18.0%
42.1%+52.8%

5.38%+2.69%
7.54%+3.64%
8.08%+6.01%
14.0%+10.0%
24.7%+20.7%
47.7%+41.8%

Table 4-3: Average and standard deviation of relative volume error fat 5GaMU

Sphere diameter cm

IBL MVCBCT

TBL MVCBCT

3.81
3.18
2.54
1.91
0.95
0.4

4.02%+1.04%
3.80%+1.10%
4.69%+2.94%
5.66%+2.28%
6.37%+3.89%
7.98%+2.76%

4.81%+0.85%
6.65%+3.79%
8.36%+5.64%
14.8%+9.76%
32.5%+20.1%
45.0%+62.8%

4.37%+3.02%
5.72%+3.71%
5.86%+5.13%
9.21%+7.55%
20.3%+17.6%
45.1%+37.3%

Table 4-4: Average and standard deviation of relative volume errorffieredit energies
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4.2.3 Motion quantification

Similar to volume determination, we also use redagrror to present the

normalized accuracy of motion quantification, exset as:

relative error = |M M IM

actual designed designed

(4-2)
whereM represents the displacement of the centroid betwe&eand FI

respiratory states and the subscripts are consisténthose in (4-1). Figure 4-9 shows
the average and standard deviation of the relating of the motion of the six spherical
inserts when using kV CT and RC MVCBCT. It shoudrioted that there is only one kV
CT scan of a moving object. The measured displaserm&ery accurate for this kV CT
scan. The three largest inserts have exactly tihe saotion measurement as the nominal
designed value of 30m The error for the smallest of the three insextsithin 2%. For
RC MVCBCT, the errors for the five largest inseats all about 5%. The error is slightly
larger for the smallest insert at 6.8%. All theatele error of motion is within 10%,
which correlates well with the 10% amplitude intdrin amplitude-based projection

sorting.
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Figure 4-9: Relative error in displacement as &tion of the phantom insert diameter.

Since the difference of motion quantification bezwelifferent inserts is small,
we present the average and standard deviatioreattative error in Table 4-5 by
summarizing all the inserts belonging to the saype bf RC MVCBCT scan. The
nomenclature for the various imaging parametecsisistent with that of the previous
section. The difference in relative error is vemyadl (0.3%) between different imaging
parameters, indicating that motion quantificatiscomparably more robust and
insensitive to variation in manual contouring thvatlume determination. It is feasible to
guantify tumor motion amplitudes between FE andeBpiratory states by using RC
MVCBCT, even for objects with a diameter of aboii €m. It should be noted that
typical tumor motion amplitudes range from 1.0 en215 cm, which is smaller than the
phantom motion in this study. This gives us confmeto extend the practice of
evaluating motion between the FE and FI respirattaies of 4DCT data to cases of RC
MVCBCT taken immediately prior to treatment, toatetine if the maximum motion is

consistent with the one determined at the timeezitinent planning
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Imaging parameter Relative error
kvCT 0.61%+0.83%

All RC MVCBCT 5.06%+2.14%

IBL 5.00%+2.07%
TBL 5.09%+2.22%
5MU 4.90%+2.21%
10MU 5.20%+2.13%
TBL 200 4.94%+2.41%
TBL 359 5.22%+2.13%

Table 4-5: Average and standard deviation of relative error of motion kD@ and RC
MVCBCT

4.2.4 Discussions of phantom experiment

Based on the error analysis in section 2.6.3,sh@wvn thattk has larger
influence in determining T than4D. So it would be desirable to makk as small as
possible. In section 2.6.3, a rough estimatiodkodn the order of 10% is used. In the RC
reconstruction of patient images, it is furtherwhdhat the difference of DTMR
quantification between FDK and SART algorithm is3:110.4%. However, the studies
taken on patient images lack the ground truth magron. In this subsectiofk is further
analyzed based on the motion quantification acguttzett derived from phantom images.

First, the DTMR is rewritten here:

(4-3)
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whereDg, andTg is used to represent the range of motion betwé&earfd FI
phase of 3D MVCBCT volume for diaphragm and tunespectively. The error of

DTMR can be further expanded as:

ADEI +ATE| DEI2 _ ADEI +ATE| L

El El El El

Ak =

(4-4)
Similar to the analysis in section 2.6.3, if norrdistribution assumption is used

for all the random variables, the standard deviabibtk can be written as,

2 2

VaTZAD k?
var, = \/ © +varar, —
El El

(4-5)
where it is influenced by bothg, andTg,. A typical value of diaphragm motion
(Dgi) and tumor motionTg) would be 2&nmand 2@nm respectivelydTg achieves
standard deviation of 1.5#mbased on the phantom studies, whil®; reaches 0.58m
based on the difference of motion quantificatiotween FDK and SART algorithm for
patient images. This set of parameters m#&equal to 9.57%, which is very close to the
10% estimation.

Generally, the results of phantom studies provaieeslower bound on errors,
since the error may be greater due to inaccuratiesntouring non-spherical objects and
reconstruction errors arising from irregular bréaglpatterns. First, because the study
used spheres, they may be less susceptible toahasing artifacts. Volume
determination for tumors may be less accurate Wizt is noted here, but these studies
at least establish a lower limit on tumor size¢ taa be evaluated with RC MVCBCT.
For motion assessment, however, since the cerdfdiee tumor is used, it will be less
sensitive to the identification of the tumor eddglsis could explain why the accuracy for

motion assessment is more robust. This could @y into patients as well, and manual
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identification of the tumor in projection images #otest patient showed that the tumor
displacements between full inhale and exhale, geeraver all imaged respiratory
cycles, was within 3 to 5 mm of the value determdifrem RC MVCBCT.

When one determines volumes and motion within epitthey need to know
whether their imaging methods are causing errosgidSspheres allows us to reduce the
possible errors coming from user variability in tmuring, and instead allows us to
determine possible errors that come from the redoactson of fewer projections than
what one would normally expect. The patient imagihgly presented in the last section
has to rely on comparison of the RC MVCBCT resagiainst the results from the 4D
planning CT. While volumes can be compared for M\@JIBand 4DCT images taken on
the same day, one cannot compare the amplitudetdmfrom full exhale to full inhale
since the respiratory motion for the two sepanai@ging sessions may be different. This
is the best one can do for patient studies, simeé¢rtie motion and volume of the tumor
cannot be established; even the 4D planning CTaeiltain residual motion and artifacts,
and its usefulness in serving as ground truthlgestito these errors.

In this section, the feasibility of using RC MVCBG@Jd quantify object motion
and size has been evaluated. The primary sourgkj@ft boundary detection errors is
the reconstruction error induced by missing prigest Better accuracy can be achieved
for volume determination when the object is sufitly large (a minimum diameter of 2
cm). For larger tumors, response assessment irs tfreolume reduction is feasible for
regular breathers, at least until the tumor shraesn to 2 cm, where a 4D kVCT would
be needed for volume determination. Motion measargmesults, on the other hand, are
more robust. The relative error is within 10% fger the smallest object, and it is
independent of energy, dose and protocol. This vallbw us to relate diaphragm
motion to tumor motion which, in turn, could be dder calibrating surrogates of tumor
motion (since we can track the diaphragm in thgeptmns), even for the smallest lung

tumors that are clinically encountered in radiotipgt The phantom studies in this work
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can serve as a quality assurance method for aeydfyrespiratory-correlated imaging,
since they provide ground truth for size and mqtiwhich cannot be unequivocally
established with patient images. In the next sectie@ will present our current technique
based on a clinical software “UIHC 4D verificatioiw’ quantify tumor and IHDA motion
in real patient images to derive DTMR. The procedfrusing IHDA motion signal and

DTMR value to calibrate the strain gauge will ateopresented.

4.3 Current method implemented for strain gauge

calibration on clinical software

To calibrate the strain gauge based on IHDA magignal and DTMR value, one
has to derive both the tumor centroid and IHDA posiin FE and FI phases of the 3D
MVCBCT volume. The IHDA position could be directigtermined from the volumetric
image. The tumor centroid position, however, shan@adtomputed from a 3D segmented
tumor mask.

For the phantom study, the manual segmentatiorda@aséhe spherical inserts is
relatively easy, since the clinicians can direfitha spherical shape to match the
boundary of inserts. However, for patient images,itregular shape of the tumor
requires that the tumor boundary has to be idextigiice by slice. This is very tedious in
3D images. An automatic segmentation approachedetw However, the variation of
tumor in size, shape, structural pattern, and dugek of attachment to normal anatomic
structures makes the automatic segmentation aecigitig task. Over the years there
have been many publications devoted to this aneyding gray value thresholding
(Diciotti et al., 2008; Goo et al., 2005), regiawging (Brown et al., 1997; Brown et al.,
2001; Dehmeshki, Amin, Valdivieso, & Ye, 2008),sddication based approach
(Armato lll, Giger, & MacMahon, 2001), and optimian based techniques (Opfer &
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Wiemker, 2007; Wang et al., 2009). There are alaay studies dedicated to lung tumor
segmentation in a series of follow-up CT scansh suscpatient-specific prior model
developed by Brown et al. (Brown et al., 2001), ssuhniques combining segmentation
and registration (Kabus, Miller, Wiemker, & Fisch2008). These methods took
advantage of the similarities of tumor shape ofsd@e patient in different scans.

Though many clinical tools such as Pinnacle hategiated algorithms for lung
tumor segmentation, there is still a long way tdgéore clinicians can rely solely on the
result of automatic algorithms to create GTVs fa treatment. Furthermore, the tumor
segmentation in the RC MVCBCT volume is more epane than diagnostic CT, due to
the poorer imaging quality and view-aliasing adifdHuman verification and
modification is still indispensable at the currstaige. To develop a tool useful for
clinical application, the accuracy of the segmeateapproach is not our primary
concern in this proposal. Instead, we try to immatran efficient approach which
enables intuitive user interaction and modificatioming the segmentation. The tumor
segmentation procedure could be semi-automatidat bhould not take longer than the
clinical limit.

In this section, we will first discuss two graphsbd algorithms that we have
implemented for tumor segmentation. In the lastigeave will present how to use the

derived DTMR and IHDA motion to calibrate the strgauge.

4.3.1 Optimal graph search based approach

In Chapter 3, a novel method based on graph sé@miework for 3D organ
segmentation from 2D projection images was presdeirehis section, the graph search
framework is used again, but for a different amgilmn: simultaneously segment the

tumor in both the FE and FI phases of MVCBCT ima@a®e of the advantages of using
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graph search methods is that we can impose the Siragarity between the two phases
to the segmentation result. Though there is sorferdation when the tumor moves
from FE phase to FI phase, the general shape shotithange too much during
respiration. The optimal graph search method ig kielpful to meet our needs, since the
constraint on the distance of the tumor surfaadifierent phases can be represented by

the inter-column edge. A detailed description afioyplementation is as follows.

20 R. it ROI R Estimate the
Ao Identification in : 3 Tumor Centroid
Gated MVCBCT : Both FE and FI Diffusion by Otsu
Muhiaiiss Images b Thresholding

Inverse Simultaneous Sphe.r'tcai
Seg mented Transformation | Segmentation |, Coordinate
Binary Image <}: of Segmented [f an Two Spherical 4: Transformation
Binary Image Surfaces and
Interpolation

Figure 4-10: Flowchart of simultaneous segmentatfaiamor in both FE and Fl images
using optimal graph search method

Figure 4-10 shows the main framework of the metlradt, the user is required
to initialize a region of interest (ROI) of tumar both FE and Fl images. In the current
interface, the ROl is a 3D ellipsoid that contéims entire tumor. A screen layout is
shown in Figure 4-11, where the FE and FI can bplayed simultaneously on the screen
by adjusting the transparency of each image. Tihglgellipse represents the ROI
contour in this slice. The input is the 3D volunetegion specified by the ROI. The
algorithm starts by pre-filtering the 3D ROI imagéher based on a Gaussian filter or

the anisotropic diffusion filter. Generally speakithe Gaussian filter is faster, but the
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diffusion filter has the advantage of preserving loundary while reducing noise at the

same time.

Figure 4-11: Left: A screen layout showing the BEi¢) and FI image (yellow) together
in one sagittal plane; Right: only with FE image.

To restrict the change of the tumor surface frontd-El phase, we have to first
know about the relative motion of the tumor. Otgusthod (Otsu, 1975) is used to
convert the gray scale image to a binary segmentage under an optimized threshold
value. Thus a rough position of the tumor centozid be estimated by taking the average
of all the “foreground” pixels in the binary imadgetsu’s method is based on the
assumption that the image to be segmented genedaltgins two classes of pixels. This
assumption matches our situation well, since ttenaation coefficients of the lung
tumor and the surrounding pulmonary region areiogmtly distinct. Some of the
peripheral lung tissues, such as the diaphragmmardal organs, have attenuation

coefficients that are very similar to that of thenbr. However, these tissues exist in both
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FE and Fl images. The error of relative motionhaf tumor induced by these tissues can
be greatly cancelled by subtraction between thetw®antroid in two images.

Based on the estimation of the tumor centroid, reealle to establish the
correspondence between the two images. The protgsaph construction is based on a
spherical coordinate system €, ¢), wherer represents the distance to the origin,
represents the inclination angle measured fronzéinéh direction (Sl direction in patient
coordinates)y represents the azimuth angle (Figure 4-12a). Gimet centroid in each
image is the origin of the coordinate system. Taedformation from the original

Cartesian coordinate to the spherical coordinass i®llows:
r = /XZ + y2 + Z2

o /X2 + yz
@ =asin %m)
¢ = asin(y/,/x* +y?)

(4-6)

A 4D graph is created from two 3D ROI volumes, vehitre 4D coordinate, (6,
@, 1) is used to specify each node of the graph. Thédiadal parametetr represents the
phase of the image. Currently since there are BBland FI images,only has two
values: 0 and 1. The other three parametets §) identifies the position of the node in
the original image using equation (4-6). The cdsach nod&(r, 0, ¢, t) is based on the
gradient amplitude, which is computed as the diffiee of filtered gray value of the
image (represented I63) between adjacent nodes along the radial direction

C(r.0,¢,t) =G((r +dr,8,¢,t) -G(r,0,4,t)

(4-7)
In this equatiordr is the smallest unit along the radial directiohjak is equal to

one voxel spacing in our application. As discussieel fumor has larger gray values
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(attenuation coefficients) than the surroundingafiéus the cost function designed in
this way favors the direction of the gradient ghaints outwards from the origin. This
property enables the detected surface to locatkehoundary that has a higher intensity
than the inner side. To derive gray values in dpakcoordinates, bilinear interpolation

is applied to resample the original image in Caatesoordinates.

Figure 4-121 eft: A simple illustration of the spherical coordimatesed in tumor surface
segmentationRight: An illustration of inter-column constraint.

Each column of the graph is composed of all theeedHat have same value 6f (
¢, 1). There are two types of constraint applied tosiheultaneous surface segmentation:
surface smoothness constrafi®,,, and inter-surface constratiR . The first
constraint connects adjacent columns in one imagieh is illustrated in Figure 4-12b.
We set the constraint along batlandg directions, which requires that the node position
of one surface between adjacent columns shouldents#rger thalRiya. The inter-
surface constraint requires that the differenctne@iode position from two surfaces in
the same columrd( ¢) should not be larger thatRr. Under this constraint the tumor

surfaces in two images are able to interrelate egith other. The smallgR IS, the



98

more the constraint is forced on the shape sirtigariln the current implementation we

setdRner to dr, ARner as five timedr.

(d)

Figure 4-13: 3D tumor segmentation in RC MVCBCTuks based on the graph search
method. The image is shown in a coronal planeorig)nal image; (b) result after Otsu
threshold; (c) segmented result based on grapbtséad region); (d) segmented result
after user correction. The user added two constpaiimts in this image, which makes a

change in the tumor surface.

The two interrelated surfaces are able to be d=deuthich have the maximum
summation of cost values satisfying both smoothaasdsinter-surface constraints. The
constraint optimization is realized by transformthg problem into computing a
minimums-t cuts problem. According to the graph construcfioozcedure, each node (
0, ¢, 1) has to connect with three nodes from other cokitorapply the smoothness and
inter-surface constraint. The three nodes(arex(,,,,r ~AR,,),.6+dé ¢t , ,)

min ?
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(maxf,,,,.r —AR.,),6,¢ +dg,t) and (max(,,,.r —AR.).8.¢,t +dt), wherery, is the

bottom node of each graph. Apart from those edngsy types of edges are also needed,
including the intra-column edges connecting thededing node, and edges connecting
andt nodes. The minimurs-t cuts problem could be further solved by maximal
flow/minimum cut algorithm in polynomial time suels push-relabel (Cherkassky &
Goldberg, 1997) or Boykov’'s method (Boykov & Kolnaygv, 2004). After the
completion of maximum flow computation, the nodé&r@sformed back to Cartesian
coordinates. After the minimal cut computation, tiegle that connects shelongs to the
tumor, while the node that connectd te the background.

We have also made this algorithm work interactiweith the user’'s modification.
In the current GUI we have designed, the userlstabadd a few constraint points,
which are used to force the surface to locate ersgiecified locations. This constraint is
realized by changing the cost value of the cornedjpy node to be large enough to
guarantee that the desired node is on the boumddng segmentation result. An
example of the segmentation result without and tighuser’'s modification is shown in
Figure 4-13c and Figure 4-13d respectively, whieeeuser is able to make the tumor

surface pass through the desired locations.

4.3.2 Interactive graph cut algorithm

Though tumor segmentation based on optimal grapitisgrovides a promising
solution to our requirement, there are severalditiuins of the current implementation.
First, since the double-surface segmentation fpaed on the radial basis, the tumor in
both FE and FI images has to be star-shaped. Howtligis not always true from our
experience with the patient images. Second, tmsfibamation between Cartesian

coordinates and spherical coordinates, as wellasterpolation process, is very time-
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consuming. Methods based directly on original imggioordinates would be more
desirable. Third, the interactive modification b tuser is not very easy to manipulate
under the radial basis framework. The user hasaw the constraint points one by one
and should be very careful on the position of tinéese. It would confuse the algorithm
if the user happens to click on two nodes thatrigeto the same column of the
constructed graph.

Considering all those factors, more recently weehawyplemented a more flexible
algorithm based on interactive graph cuts. Thishoetvas first proposed by Boykov et
al. (Boykov, Veksler, & Zabih, 2001; Boykov & Funk&a, 2006) and is a powerful
technique for optimal boundary segmentation. #1$& based on solving a maximum
flow/minimum cut problem in the constructed graphjch is similar to the previous
method. However, there is no topology of “columm’the graph cut algorithm. Each
image voxel is a node in the graph, which makestmstructed graph based on the
original image coordinate (each voxel is connetbeits neighboring voxels). The
segmentation result is a direct separation ohallitnage voxels into two sets. These
characteristics makes the graph cuts algorithmifgigntly different from the graph
search method. One of the great advantages ahttisod to our application is that the
user can interactively identify the labeling of soof the image voxels as “object” or
“background”. Once an initial segmentation is coetgl the user can further modify the
manual labeling and redo the segmentation. The se@tion on the subsequent times
can utilize the information of the remaining edgeacity of the graph from the previous
round, which makes the computation of maximum fitouch faster than the first time.

The workflow of the interactive graph cuts methsaghown in Figure 4-14: |
where several steps are the same as those ofeieys method. It differs in two
aspects: (1) there is no forward or inverse transétion and interpolation of the
coordinates; (2) the manual labeling can be usidesftly in multiple times to assist the

clinicians to modify the segmentation result.
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Figure 4-14: Flowchart of simultaneous segmentatictmmor in both FE and Fl images
using interactive graph cuts algorithm.

Once the initial estimation of the tumor centraidwo images is determined, the
position of the tumor centroid is used as the or@jithe image coordinate. We use the
4D coordinatdX, y, z, tXo represent the graph nodes, whgrey, z)is the Cartesian
coordinate of the image voxel. Similar to the poeg subsection,is the phase number
of the image. There are also two types of edg#sisrgraph: edge connects adjacent
voxels in the same image, and edge connects vthalsave the same position from two
images. The intra-image edge is based on a 264ailgbod metric. Thus each noge
Yy, Z, t)is connected t{x+dx, y+dy, z+dz, t)where the possible value d@xX, dy, dzs {-1,

0, 1} and the neighborhood criterion requires thak(dx, dy, dzF1. The inter-image
edge constrains the shape difference of the tugamh nod€x, vy, z, tis connected with
(x,y, z, t+dt) wheredt could be 1 or -1.

From my experience, the boundary penalties sed¢h edge capacity plays a
vital role in the final segmentation result. A peet of boundary penalties may result in
shrinkage of the segmented result to the initia¢limg. In the current implementation,

we used the function proposed in Boykov's paperyi®e & Funka-Lea, 2006):

| - 2
(p zq)]

Bog = expl- Py
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(4-8)

In this equation, the boundary penaltBas, that connects vox@ andq is
determined by the gray value of those voxgl&, and a parameterrepresenting the
variance of the gray value. This function penaliadst for discontinuities between pixels
of similar intensities whefip-Iq|<o. Conversely, the penalty is small whémlq|>o.
Thus we have to choose this parameter very cayefidl achieve a robust segmentation
result, currently we calculate the variance of imagensities prior to the graph cuts
computation. The ROI image is the smallest rectmdnox that contains the user-
specified ellipsoid. All the voxels outside thapsbid is automatically assigned
background label, while the voxels within a certdistance to the origin are assigned
foreground (tumor). Our algorithm starts with tleenputation of the standard deviation
among all the foreground and background voxelsaasgely. The parameterfor intra-
image edge is a scale of the summation of foregt@ma background variance. A
different scale is applied for the inter-image edge

The major problems of using the graph cuts algorigithout user initialization
is the leakage to the surrounding tissues whetuther is attached to a tissue that has
very similar attenuation coefficients (Figure 4-13However, this problem could be
solved by reducing the tumor ROI and manual ideatiion (Figure 4-15c). Recently,
Song et al. (Song, Chen, Bai, Sonka, & Wu, 201&3@nted a new segmentation
approach that incorporates the advantages of baffhgut and graph search algorithm.
This approach enables simultaneous segmentatiumair and the surrounding surface
like the diaphragm, and is able to partly solveléadage problem in some cases.
Promising results have been achieved in some dR@&VCBCT images, which makes
the algorithm potentially useful in segmentatiorttad tumor which is attached to the
surrounding tissues. On the other hand, even ilieidleage problem is alleviated, the
manual modification in some other problematic arsasill required. Our current

framework based on graph cuts segmentation istal@ehieve satisfying results after
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adding three or four areas of manual labeling, thasevisual inspection. For a tumor
with a diameter larger than 5cm, the current atgoriis able to segment a tumor in FE
and Fl images simultaneously within 5sec, usingngl® Core ™ i7-2620M CPU
@2.70GHz laptop computer with 4GB RAM. The segmtgmiausing information of

previous edge capacities is within one second.

Figure 4-15: 3D tumor segmentation in RC MVCBCTwnk using interactive graph

cuts. Result is shown in coronal slice: (a) originaage; (b) initial segmentation (red

region) based on elliptical ROI without manual estion. Some part of the segmented

volume leaks to the peripheral lung regions onéfte (c) modified segmentation (red
region) with manual correction (blue region).
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4.3.3 Clinical software for strain gauge calibratio
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Figure 4-16: The user interactive interface to gD TMR after reconstruction of both
full exhale and full inhale phase of MVCBCT. Thdl fexhale image is shown as green in
axial plane, lateral plane and sagittal plane fleitnto right. The dark red area is the
tumor segmentation result.

In the current framework, after the volume of Fi &h phases are reconstructed,
the clinicians are able to segment the tumor senaraatically in a user-interactive
interface introduced in section 4.3.2. The IHDAIpos in the two volumes can be
identified directly by using the interpolated ragding algorithm. A snapshot of the
current user interface containing the volume dfduhale is shown in Figure 4-16, where
the tumor and diaphragm boundaries are much cldaarthose of the un-correlated
volume.

Generally we assume a linear relationship betwegrhdagm and tumor motion.
Since the FE and FI phase of MVCBCT is averageah fat) the projection images sorted

to FE and FI respectively, the DTMR is a significaelmical parameter to describe the
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overall scale of linearity during the scan. OneaETMR is determined, the clinicians

are able to move into another user interactivefiate to quantify the gating threshold

for treatment. A snapshot of this GUI is shown igufe 4-17. In the left, the correlation
between strain gauge and IHDA is plotted, wherevdhréical axis is the absolute

amplitude of the IHDA, and the horizontal axishe fpercentage scale of the strain gauge.
Two parabolic curves are fitted for the relatiopshétween the two variables in inhale

and exhale phase respectively. The fitting is basechndom sample consensus
(RANSAC) (Fischler & Bolles, 1981), where only aset of sampled points which are
deemed “good for fitting” are used, while excludihg potential outliers. The fitting is
based on the least square metric.

The difference in the correlation pattern in extaald inhale phase is due to the
phase difference between the strain gauge andrdiggphmotion. The workflow is often
initiated with a given allowed tumor motion margivhich represents the range of
amplitude that allows the beam to turn on. By mplittation with DTMR, we can derive
the allowed range of IHDA motion. Thus the threshail the strain gauge during exhale
and inhale phases could be determined by findiagritersection with the parabolic
curves. In the example shown in Figure 4-17, thé&/BTis 1.08. A 10mm tumor motion

range is given, which results in 33% exhale and &8%%le threshold.
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Figure 4-17: the user interactive interface to ueiee the gating threshold during
treatment based on DTMR. The blue and orange darree left fits the correlation
between IHDA position and strain gauge percentageiale and inhale phases
respectively. The strain gauge percentage valudHiDA motion amplitude as a
function of time is shown on the right.
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CHAPTER 5
MOTION COMPENSATED RECONSTRUCTION

In the last chapter, the accuracy of using RC veldion motion and volume
quantification of the tumor has been shown. Howeter major disadvantage of RC
reconstruction approach is the view-aliasing astfaaused by an insufficient number of
projection images. This problem can be mitigatedisipg multiple rotations or slowing
the gantry rotation speed (T. Li et al., 2006; T&LXing, 2007)(T. Li et al., 2006; T. Li
& Xing, 2007) to increases the number of projeciioages for each phase. However, for
those methods, the increased image acquisitiondimdehe amount of imaging dose
delivered to the patient make it impractical to iempent clinically. Other approaches
seek to reduce the aliasing artifacts using algelbeaonstruction techniques and
compressed sensing theory (Leng et al., 2008; S8dRgn, 2008), which enable accurate
image reconstruction using under-sampled projedti@ges. These iterative
reconstruction algorithms are very time-consumind gequire GPU platform for clinical
implementations.

An alternative approach is based on motion comped$&1C) reconstruction. In
this method a motion model is provided in advarfdd@ reconstruction and is
incorporated into the de-convolution process dutitggback-projection. Usually, the
motion model is represented by a time sequencespladement vector fields (DVF). A
mathematical description of the MC approach baseBleddkamp, Kress, Davis (FDK)
reconstruction algorithm is explained in the woflSchafer et. al. (Schafer, Borgert,
Rasche, & Grass, 2006). A straightforward methodesiving patient motion is to
perform a deformable registration among differdrges of the 4D planning CT to
obtain a 4D DVF (T. Li et al., 2006; Rit, Wolthawsn Herk, & Sonke, 2009; Q. Zhang

et al., 2010). The accuracy of this approach isatégd by the motion that occurs
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between treatment planning and treatment deliveret al. proposed registering the
different phases of gated KV-CBCT images (T. Lakt2007). However, since the 3D
RC cone beam volumes are contaminated with seliaseng artifacts, the accuracy of
using those images to derive DVF remains ambiguous.

One promising solution is to use MVCBCT projectiorages to monitor or detect
intra-fractional motion, since they have a highpenal resolution (about 0.3s for
MVCBCT). Different approaches based on 2D motioreckon have been proposed,
including (1) monitoring tumor change by projectengolume of interest for
visualization (Reitz et al., 2008); (2) extractihg 2D/3D position of a projected
implanted marker (T. Li, Schreibmann, Yang, & Xi2@06) or diaphragm edge (Siochi,
2009), which can also be used as respiratory sign&®C reconstruction; (3) performing
deformable registration between the projected 3IDnae and the 2D projection images
to create a displacement vector field (FOV) for immicompensated reconstruction.
Direct tumor tracking or detection in 2D imagesniainly focused on fluoroscopy
(Shimizu et al., 2001). However, few studies had@rassed direct tumor detection in
MVCBCT projection images, which suffer from reladly poor contrast due to the
energy range of the imaging photons and the intagenatomies. The registration
approach aims to optimize some similar metric betwie forward-projected image of
the 3D volume and the original projection imagel(Tet al., 2007; Rit et al., 2009).
Once again, the iterative scheme of forward-praecand optimization is extremely
slow, making it difficult for an immediate appligat in the treatment room.

Alternatively, one can compute a (3D+t) deformaigect model from the 2D
projection images and makes use of this model fGrristonstruction. Various
approaches have been proposed for recovering &&besrom 2D projections, including
the thorax and the lung (Lotjonen et al., 1999jdmmn, Reissman, Magnin, & Katila,
1999)(Sato, Moriyama, Hanayama, Naito, & Tamur®71¥eistera & L6tjonen, 2001)
and left ventricle surfaces (Chen et al., 2011;i#ona et al., 2002; Sato et al., 1997;
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Veistera & L6tjonen, 2001). Usually, a geometrimpmodel is segmented from a 3D
planning volume and projected onto 2D projectioages (orthogonal biplane or multi-
views). Then the model is deformed according tarf@mation provided in the
projection images. The computation of displacementors for the deformation varies
among different studies, including manual contowetline (Veistera & Lotjonen, 2001),
boundary detection along the projected normal doeof silhouette outline (Chen et al.,
2011), elastic matching between virtual projectiand real X-ray images (Lotjonen et al.,
1999; Lotjonen, Reissman et al., 1999), and iteeditting to a 4D closed surface based
on B-splines (Moriyama et al., 2002; Sato et &97).

In this chapter a novel MC reconstruction apprahel uses the DVF generated
from a 3D dynamic geometrical object shape modptesented, which is based on the
segmentation framework introduced in chapter 3. Adw approach has several
advantages, which make it distinctive from previmethods:

(1) The method takes advantage of the projection imeggsnerate DVF while
maintaining a clinical acceptable time frame. lagtef being used for
deformable registration with forward projection (I et al., 2007), the
projection images are used to compute the defoomati a geometric prior
model;

(2) The deformation of the geometric prior model is poited simultaneously for
all the respiratory phases. We convert the mesbrahetion into a multiple
interrelated 3D surface detection problem, wheeegibbally optimal solution
can be found in polynomial time by solving a maximiflow problem in a 4D
directed graph;

(3) Both mesh surface smoothness constraint and maigspacement constraints
are employed in the graph search framework, whiakes the object motion

segmentation very robust.
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The method is tested on lung motion model extradtiom MVCBCT projection
images. The DVFs generated from lung motion modelaed for respiratory MC
reconstruction. The method is compared with thteeraapproaches based on
reconstruction accuracy: (1) RC FDK reconstruct{@MC reconstruction using DVF
generated from 4D planning CT and (3) MC reconsisnausing DVF generated from
RC MVCBCT. This chapter is organized as followscti®m 1 introduces the details of
our MC reconstruction approach. Section 2 desctibesthe new method is compared
and validated with other three traditional MC restonction approaches, while the
evaluation result is also presented. Section 3lades with a discussion of the

experimental results.

5.1 The motion compensation framework

Figure 5-1 shows the general framework for derining~ from MVCBCT
projection images. It's a natural extension ofgshgmentation framework introduced in
chapter 3. The lung with the tumor is segmentatefull exhale (FE) phase of the 4D
planning CT. A B-spline deformable registration huet is used to derive the DVF from
the FE phase to the full inhale (FI) phase of la@ming CT (Cao, Du, Ding, Reinhardt,
& Christensen, 2010). The DVF is then used to deftire lung mesh created from the
FE image to generate a mesh for the Fl phase. 8iese steps only require the 4D
planning CT, they can be performed after the plagscan.

On the treatment day, once all the projection irsage acquired, a 3D MVCBCT
is reconstructed from all the projections. The lomgdel generated in the FE and FI
phases of the planning CT is aligned to the comenbeoordinates. The averaged mesh
between the FE and the FI phase is computed anldagsthe initial mesh model, which

is further projected onto each 2DCB projection. Tiprojections are sorted according
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to 3D anatomical positions of the i-lateral hemidiaphragm apex (IHDA) into sever
respiratory binsThe locations of mesh points in each respiratogsphare computed |
using thesegmentation framework introduced in Chap. The major difference t
tumor segmentation is that a subset of mesh eddlesl“candidate edg” are used
instead of silhouette edges to provide extern@deito deform the mesh. The reaso

using thee edges for lung motion segmentation will be dised in details late

Lungf Tumor I—-\
f:D Segmentation in
FE Phase
Geometrical (3D +t) Graph
RDEF;;'::':!:‘:: Prior Model Mesh Projection formulation and TPS
‘4D Planning CT, =g (Triangulated and Candidate Multi-Surface Interpolation to
B e Mesh and Mot Edge Detecti Optimal Graph Derive DVF
l FI phase lesh an lotion ige De ion ptimal Grapl erive
- Vectors) Search
Rigid Alignment
between 4D CT
and MVCBCT

Figure 5-1The general framework for deriving DVF from MVCB@fojection image

5.1.1 Respiratory signals and phase so

During the localizatin scan, the CB projections are correlated witk
respiratory signal. The standard of care for tiheepdure is motion monitoring using t
AZ-733V respiratory gating system (Anzai Medical Aakyo, Japan). Howeve
several studies have suggested more accurate tumor motion may be determined v
using internal anatomical surrogates, such aspbe af the diaphragi(Cervino et al.
2009; Keall et al., 2006)rhe respiratory signal ud in this study is based on ti
approach, which detects the apex of the diaphragingthe algorithm presented
chapter 2. Tie respiratory sorting is based on both the maioplitude of the diaphrag

and the inhale/exhale session. This involves steps: First, the local maxima a
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minima of the signal are detected. Second, basé¢dos® maxima/minima positior
each projection image is labeled with a binary irespry state “exhale” or “inhal.
Finally, the projection images are sorted intotiple bins based on both the amplitt
and the label. Figure 5iBustrates an example of the respiratory sorti@ge may
wonder why phase 8 to 11 is missing in the secoaekwalley. That is exactly how tl
algorithm works. Dting the second wave valley the IHDA does not gu thr toward:
inferior location, assigning phase 8 to 11 would/M&DA location from what it shoul

be during the first wave valle
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Figure 5-2:An example showing a respiory signal sorted into 20 respiratory b
ranging from O to 19.

5.1.2 The initial lung model

Segmentation of the lung takes two steps. Firsguaomatic algorithm i
implemented to generate a binary image of the wthaeacic cavity based on gray el
threshold and connected with component labeling. Gihary image contains both lun

including the trachea and the bronchia. Secondanual adjustment is used to keep
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cancerous lung while removing everything else.i&ngulated mesh of the lung is
generated from the binary image using the marcbutgs algorithm {207 Lorensen,

W.E. 1987} (Figure 5-3). Using an accurate B-splileéormable registration algorithm,
we preserved both the parenchymal tissue volumeuaniziability measure of vessel
structure {208 Cao, K. 2010}. The optimization niets based on the sum of the squared
tissue volume difference and the sum of the squageslelness measure difference,

respectively {208 Cao, K. 2010}.

Figure 5-3: The major process of generating initiag shape model in the MVCBCT
coordinate: (a) bony structures (red) segmented #D planning CT; (b) The alignment
of the bony structures onto the fully reconstrud®dCBCT; (c) Triangulated lung mesh
segmented from the FE phase of 4D planning CTTKa)lung mesh transformed to the

MVCBCT coordinate.

The mesh created in the FI phase is derived frentEhphase based on the DVF
computed during inter-phase registration. Usingindrouse software platform, the
MVCBCT image without MC is rigidly aligned to theardinates of the 4DCT using
bony anatomic structures (see Figure 5-3a, b).I0ig meshes in the FE and FI phases
are then transformed to the cone beam geometrur@-tr3d), which provides the initial
lung shape and motion model. The initial modehes @verage of the meshes of the FE
and FI phases. For each mesh point, a range obmistidetermined using the equation

Pmeart 0(Pre-Pmean andPmeart a(Pri-Pmean, WherePee andPg is the corresponding
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positions in FE and FI phases, respectively,Rnd,is the mean position. is used to
control the allowed range, which is typically setween 1.5 and 2. In this study, it is
assumed that each mesh point moves along theidiet#fined byP:. andPs, providing
a close approximation to the real motion traject@tye generation of the initial mesh is

performed off-line during the planning stage and loe completed within 2 minutes.

5.1.3 Candidate edge selection

The gradient amplitude and the direction of theglboundary are the most salient
features of the projection images. In order to dafthe initial mesh towards these
desired locations, the mesh points that correspmtiie strong boundary in the
projection images should be selected as anchotgmirguide the deformation of the
other points. For tumor segmentation, the stronghtdary in the projection images
typically corresponds to the silhouette contouthef mesh, which has been discussed in
section 3.1.3. This is the same case for left \@atsegmentation in C-arm cone beam
projection images, with details in my previous paizhen et al., 2011). Unlike the left
ventricle or tumor, however, the lung mesh is ecewr shape. During inspiration the
lung walls bulges outward while the diaphragm heionward. Due to this characteristic,
the silhouette contour of the projected lung mesly ot correspond to an equally strong

boundary in the projection image. This is indicatgdhe red arrow in Figure 5-4.
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Figure 5-4:(a) Original MVCBCT projection image; (b) The proj®n of the initial lunc
mesh (green) and thehouette contour (red). Note that the part of thet@or at the
bottom does not have corresponding strong gradienBrojected initial lung mes

(green), detected candidate edge (red contourjgqienl motion direction (yellow line

projected normalidection (blue line); (d) original candidate edged), projected motio
direction (yellow line), deformed candidate edgembptimal graph search (bl.

Instead of using the silhouette contour as our dannwhen aligning the me:
with the projectio image, we define a subset of mesh edges as etadidges. /
candidate edge is required to satisfy two condstigh) all the neighboring points shol
be on one side of the edge in the projection sg@¢¢he surface region near the e«
should be mooth. The first criterion guarantees that theindggral on two sides of tr
candidate edge is different. The second one enthiethe difference is large enougt
produce a high contrast. The detected intensitii@fprojection images can be corted

as a ray integral of the attenuation coefficiesta 8D volumel = Ioe_I Ho

. Since the
attenuation coefficient of the lung is distinctrfrahe surrounding tissue, the gradien
the CB projection is caused by the difference aléngtl of the beam that pass
through the lung. Figurg-5 compares three locations where an edge may existid
large differences in the ray accumulation, thettep locations are likely to correspond

a strong gradient, whildé bottom location may have a weak or even invasgoadier.
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Figure 5-5:An illustration representing likely strong and wdalundaries. The top tw

locations produce distinctive differences, as maitkethe red lines passithrough the

lung. The bottom boundary is very indistinctive lwfittle difference visible around i
intersections with the lung.

5.1.4 Multiple surface detection via optimal graggarcl

The multiple surface segmentation procedure folltvesgraph serch framework
which is presented in chapter 3. It should be &rtioted thathere are three types
mesh points in any given phi of the constructed graph shownFigure3-3: non-
candidate points, candidate points belon¢o one candidate edge, and candidate pi
belonging to several candidate edges in differenjeptions. It is the weight of tt
candidate points that contribute to surface deieand pulls the n-candidate point b
smoothness constraints. For calate points belonging to several candidate edg
different projections, the weight is a combinatainmage gradients in multip

MVCBCT projectionimages
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5.1.5 TPS interpolation

Figure 5-6shows projection of the deformmesh in four projection images af
the optimal graph searcFigure 5-41 shows the deformed candidate edge in proje:
space. The deformed edges move toward locatiomssivibng image gradients, suct

the diaphragm and theng wall.

Figure 5-6:Deformed mesh after optimal graph search. (a) Ralenphase; (b) 50¢
inhale phase; (c) 100% inhale phase; (d) 50% extzs.

To generate the DVF, the displacements for alvtheels in the 3D volme need
to be interpolated. The thin plate spline (TPSnpolation algorithn(Bookstein, 198¢
is used to generate a 3D DVF using the displaceofeanknown point set called “anch

points.” The TPS interpation aims to minimize the physical energy functamfollows:

E= izzl“” f()-y ||2 ”H{(gx’f) + 2(;)(6?/) + (gyf)}dxdy

(5-1)



118

Figure 5-7: DVF from 0% inhale (FE) phase to 100®) (nhale phase. The mesh in 0%
inhale phase is used as the reference phase

The first term of the algorithm represents therimdéation error of the anchor
points while the second term represents the beretirggy of the transformation of a
“thin plate.” The parametéris tuned appropriately to control the balance lketwthe
exact mapping of the anchor points and the rigiditthe deformation. For our purposes
the anchor points are also the candidate poingsir&i5-7 shows the DVF from 0%
inhale phase to 100% exhale phase. Two sets ofesiagen at FE and Fl are
reconstructed using the proposed approach. FdfEhghase, the DVF is generated
between the deformed mesh at 0% exhale which ses/tee reference phase. For Fl, the

100% inhale phase is used as the reference phase.

5.2 Experiments with the motion compensated approac

The MC reconstruction method is tested on the sHiMdVCBCT localization

scans that were used in tumor segmentation appréaeln, those scans were taken
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from three patients who have large NSCLC tumor®¢rf) in the bottom lobes of their
lungs, which are visible in the projection imagkgotal of four sets of 4D planning CTs
were used to generate the initial lung mesh mauipaovide a reference for evaluation.
For the first two patients, one planning CT scas te&ken several days prior to the
treatment session. Two scans were captured fahittepatient, since the tumor changed
during the course of treatment and re-planningnegsired. For each 4DCT set, a 3D
time sequence of volumes was acquired, represetgimdifferent respiratory phases
ranging from 0% to 100% on the inhale and exhadsiea. All the algorithms introduced

in this study were implemented using our in-hougerare “MING DICOM”.

5.2.1 Other MC reconstruction approaches for corapar

Three different methods are used in comparisohé@toposed approach: RC
FDK, MC FDK using the deformation of the 4D CT avi@ FDK using the deformation
of the RC MVCBCT. For the RC FDK, the projectionaiges are sorted into two subsets
(FE/FI) to reconstruct 3D volumetric images. Theited number of projection images
(200 using the default setting) restricts imagedpotion in other respiratory phases,
since fewer projections occur during the middlénbialation or exhalation. The sorting
of the projection images is based on the supeni@ripr direction of the IHDA signal
only, since the motion pattern differs in the meldf the inhale/exhale phases.
Compared to phase-based sorting schemes, amphasdzl methods are able to control
the residual motion by adjusting the gating windd¥we size of the gating window is a
tradeoff between view-aliasing artifact and motaotifact. Based on our experience, at
least 30 projection images are needed in each pbgseduce a clinically meaningful

image set. To include sufficient images, the wiltthe gating window ranges from 10%
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to 25% for FE phase, and 20% to 40% for FI phase $¢éle the maximum and
minimum of the amplitude to 100% and 0% respecfivel

The RC MVCBCT in the FE and FI phase is furtherdusegenerate two sets of
3D DVF (FE to FI, FI to FE) for the MC approachntiar to the RC FDK method, two
phases (one at FE and one at Fl) of images areipeddDVF from FE to Fl are used to
reconstruct the images during the FE phase, whiE fbom FI to FE are used to
reconstruct the images for the inhale phase. Duhageconstruction, the DVF is
interpolated for CB projections that belong to intediate phases.

Since there are more than 10 phases of image=idDICT set, a 4D DVF is
generated using the image of each phase with regpaceference phase. The DVF is
converted into cone beam coordinates using thefsemation information derived
during the alignment of the two images (see Figu8a, b). Interpolation of DVF for

intermediate phases is also needed.

5.2.2 Reconstructed images
Figure 5-8 shows the results of MVCBCT at FE phasieg the various
approaches discussed in this paper. It is evithetfor the FDK without MC (row a),
strong motion artifacts in both tumor and diaphragmvisible. For RC reconstruction
(row b), the motion artifact is greatly reducedwewer there are still strong view-
aliasing artifacts (the streaking and banding).tRerMC methods (rows c to e), the

motion is reduced without introducing aliasing faxtts.
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Figure 5-8: Reconstructed MVCBCT at the FE phaseife patient using different
approaches. From left to right are the images gittsé, coronal and axial views,
respectively. (a) Conventional FDK using all thejpction images; (b) RC
reconstruction; (c) Motion compensated using 4D @) Motion compensated using RC
MVCBCT; (e) The new approach.
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Figure 5-8 continued

Figure 5-9 shows a single profile aligned in a sigpenferior direction passing
through the tumor. It is evident that the edgeheftumor and the diaphragm is much
smoother in Figure 5-9a, showing obvious motiofaats. For both the RC
reconstruction and the proposed approach, the lzetgemes much steeper. Some
features generated using the 4D CT approach (Fig9i® are preserved in the image
reconstructed using the proposed approach (Fig9®:3he two small peaks located
between the tumor and the lung wall are particuladgteworthy. The difference in the
location of the edges between the reconstructed BIWTand the 4D CT, is due to the
different respiratory sorting techniques appliedtfe reconstruction. Further differences
were introduced due to the change of motion thatiwed between the planning time and

the treatment time.
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Figure 5-9:Profile of reconstructeMVCBCT (blue) and 4D CT (redjlong superior-
inferior direction (xaxis is superic-inferior direction in physical coordinate-axis is the
CT number). (a) Conventional FDK; (RC reconstruction; (c) proposed apgch. The
difference in edge location is due to the changaation pattern between planning ¢

and CBCT.

5.2.3 Volume measurement accuracy

Several metrics are used to evaluate the targalization and image quality «
the reconstructed image. Firshe accuracy of tumor volumetric measurement igtk
on data derived from 12 MVCBCT scans. For imageh woor quality, such éRC FDK,
there would be a very large variance of manuallyosaited contours of the tumor
different physicians. The edgethe tumor is sometimes difficult to define on th
images. To minimize int-observer variability, a senautomatic approach
implemented to segment the tumor and quantifyuheot size. The algorithm starts w
a userdefined region of interest (RCin the 3D volume. The Otsu thresh(Otsu, 1975)
and connected region labeling is used to segmertuthor within the ROI. Since tt
data provided by the CT scans of the tumor andtin@unding soft tissue insidhe lung
differs greatly, the Otsu threshold trie: find the optimal threshold thatinimizes the
intra-varianceof the two separating clas:.. The tumor volume calculated from t

planning 4D CT is used as ground truth and theivel@rror is computeas follows:
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i -V
RelativeVolume Error = MDCT MVCBCT

apcT
(5-2)

Figure 5-10 shows the relative error of tumor qii@ation of 12 MVCBCT daily
localization scans. To reduce errors that may odaarto any change in tumor volume
between the planning CT and the treatment/locaiza® T, we also analyze four
MVCBCT scans taken closest to the planning dayg&mwh patient. The time period
between the planning CT and MVCBCT scan is less éhdays and there is no radiation
therapy during this intermission. These imagesraaeked with asterisks in Figure 5-10.
According to a study on tumor growth conducted logiA&t al, a large cell carcinoma has
a doubling time of 67.5 days, which is the mostraggive type of NSCLC (Arai et al.,
1994). Based on the linear growth and exponent@aitih models, the growth rate for a
six-day time period can be estimated to be 8.9%6dfdespectively, which can be
considered as upper bound. Table 5-1 and Tablst®® that MC reconstruction based
on 4D CT scans and the proposed method have hatter quantification accuracy than
the other two approaches (RC MVCBCT, MC reconsipaaising DVF computed from
4D CT, MC reconstruction using DVF computed from RECBCT is abbreviated for
“RC”, “MC-4DCT", “MC-CBCT” respectively).
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Figure 5-10: Relative error of tumor volume quaaéfion in 12 MVCBCT images. The
bars with an asterisk represent the first MVCBCansafter the 4D planning CT which is
used as ground truth

Relative Error RC MC-4DCT MC-CBCT Proposed Method

FE phase 27.71%+22.4%  7.10%+7.52% 12.15%+9.77% 7.78+7.10%
Fl phase 21.47%+22.1%  11.00%+7.37%  14.93%+14.83% 11.81+6.68%

Table 5-1: Overall relative error of volume measurement.

Relative Error RC MC-4DCT MC-CBCT Proposed Method
FE phase 22.76%+12.65%  3.38%+3.46% 9.26%+4.64% 3.39+3.64%
Fl phase 22.42%+10.02%  6.60%16.03%  10.94%=+7.54% 8.57+8.31%

Table 5-2: Overall relative error for the 4 MVCBCT scans clog#aoning day.
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5.2.4 Motion measurement accuracy

Motion measurement accuracy is another importamnicel parameter in
radiotherapy. In this study the motion of IHDA pasis from FE to Fl is manually
identified, which has a very small inter-observariability. The displacement of the
IHDA in the superior-inferior (Sl) direction is cqrared to the average peak-to-valley
IHDA motion in the Sl direction during the cone beacan. This is considered as ground
truth. The Sl direction of motion of the IHDA istamatically determined from the 2D
projection images using the method introduced aptdér 2. Similar to volume

measurement, a relative error is used:

) . M -M
Relative Motion Error =| 4DCT weacr]

M 4DCT
(5-3)
Figure 5-11 shows the relative error for 12 patieiihe overall accuracy for the
four methods is shown in Table 5-3, where the Rf@nstruction method and the
proposed method have greater accuracy than boti@éDCT and the MC-CBCT.
Motion correction based on 4D CT reveals the largesr which is mainly due to the
inconsistency of the motion pattern between tharptay session and the localization

session.
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Figure 5-11: Relative error of IHDA motion quarddtion in 12 MVCBCT images

Reconstruction Proposed
method RC MC-4DCT MC-CBCT method
Relative error 16.36%+11.27%047.09%+22.78% 26.00%+22.02% 17.62+11.38%

Table 5-3: Overall relative error for IHDA motion

5.2.5 Image quality measurement

Contrast to noise ratio (CNR) is a simple and dbjeaneasure of the
detectability of certain structures with unifornta@nsity. In this study it is used to assess
the image quality in the tumor and diaphragm rediased on the following formula:

l object =1 backgrounJ
g

object

CNR=

(5-4)
wherel ando are the mean and standard deviation within theabl§fumor or

diaphragm) or background. The segmentation ofuh®t and the diaphragm is based on
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the same approach that is used for tumor volumeunement. The results of CNR are
shown in Table 5-4, where it is evident that 4D&E significantly better CNR than
MVCBCT, and RC CBCT has smallest CNR value. CNhefproposed method is

slightly better than the other three approaches.

Location 4D CT RC-CBCT MC-4D CT MC-CBCT MC-mesh

Tumor FE 6.33+2.44 2.37+0.30 3.51+0.35 3.42+0.40 3.85+0.42

Tumor FI 6.81+2.72 2.30+0.29 3.51+0.46 3.34+0.50 3.58+0.33
Diaphragm FE ~ 12.36+4.96 2.37+£0.45 3.32+0.85 2.93+0.81 3.53%£1.06
Diaphragm FI 11.00+4.20 2.50+0.38 3.29+0.78 3.08+0.82 3.40+0.93

Table 5-4: CNR in different regions using different reconstruction appesa

5.3 Discussions and conclusions for the new MC @aogr

In this study, we developed a novel MC reconstancéipproach for daily
MVCBCT localization. The method is based on defogrtihe lung mesh using the image
information provided by 2D cone beam projectionsr @proach has the best overall
performance among the four approaches comparkds ithe second best accuracy in
both tumor volume measurement and diaphragm matiggsurement. MC using 4D CT
is slightly better than the proposed approach mmatuvolume measurement, but more
inaccurate in diaphragm motion measurement. RC R&&slightly better accuracy in
motion measurement, but its performance in tumtume measurement and CNR is the
worst among the four. For CNR, the proposed meihdige best among the four methods.

There are several advantages of the proposed apprhéiast, generating a DVF
based on 2D projection images is more accurateubiag the 4D CT and RC CBCT.
This comparison formed the basis of a previousyst(id Li et al., 2007). RC CBCT

contains severe aliasing artifacts, which causecunacies in the 4D DVF during
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registration. This is well illustrated by our resubf the motion measurement error; RC
FDK has the best accuracy among the four, but M@guktose RC CBCT images is
more error-prone. Conversely, the reproducibilityhe deformation during the 4D
planning CT is not reliable on the MVCBCT scansasn in the motion quantification
result. The MC reconstruction using DVF from 4D R&s up to 47% relative error in
motion quantification. The IHDA motion between 0#da00% exhale of the 4D CT is
also quantified, which is much smaller than therage peak to valley IHDA motion
extracted from CB projections. In one case the IHD@étion in 4D CT was 8 mm, while
the average IHDA motion in one MVCBCT scan wasa@2 mm. Apart from the
change in motion amplitude, another possible re&s@agscount for this inconsistency is
that the respiratory signal used during 4D CT asitjan is relative phase based. The
proposed method, on the other hand, utilizes teelate 3D IHDA position as the
respiratory signal. The deformation of the projdategesh points in 2D space can be
accurately back-projected to 3D space using thggiion matrix of the cone beam
system.

Second, the proposed approach can be used “oythia-Eases where the
estimation and compensation of the respiratory enadiuring the acquisition of CB
projections is needed. Although manual editinchefinitial lung model derived from the
4D CT is required, these procedures can be accshegliright after the acquisition of the
planning CT. To further improve efficiency, the mahalignment correction may be
replaced with available commercial registratiortwafe. For MC reconstruction using
the proposed method, the deformation, DVF intepmieand MC reconstruction are
fully automated. The proposed approach obviatepthieacted need of forward
projection registration required by the image-spaqgarojection-space registration
method (T. Li et al., 2007). Calculation times fioe deformed mesh computation via
optimal graph search take about a minute usingth (R) Core (TM) i-7 2620M CPU

with 4GB RAM. Generating a DVF using the same pssoe takes about five minutes,
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although calculation times may be reduced throbghuse of a computationally light
interpolation technique.

Though free of reconstruction artifacts, 2D CB imsgontain a lot of noise due
to MV photon scatter (Figure 5-4). There are confbog edges that lead the mesh
deformation towards the wrong locations in promttspace. The proposed method
consists of two components to avoid those edgest, Bie use of the dot product
between the vector of the projected normal directiod the gradient can eliminate the
indistinct edges with the gradient where it is caforming to the desired direction. The
second one is the use of the smoothness and inéseonstraints as used in the optimal
graph search method, where the motion of one maisihip one respiratory phase is
limited by the position of its neighboring pointdaits neighboring phase.

The primary source of inaccuracy in the proposgaaah is the location of the
lung in some of the CB projection images. Amongithage sets that we used, the whole
lung is visible in only one CB projection set. Tipation of the lung needed to determine
the CBCT volume is located outside of the field/igiv on the two remaining image sets.
In cases where the lower part of the diaphragmadated outside of the image, the
algorithm has difficulty in detecting the candidatiges, which may explain why the
motion error is greater for two of the patients.

All three patients used in this study had large NS@mors (>10cr). Large
tumors also form a part of the initial lung mesttsat the candidate edges that delineate
the tumor in CB projections can guide the tumoodeition during DVF estimation.
However, there might be no candidate edge for dl $umaor in the projection space. The
tumor deformation has to rely on the interpolafim@m the deformed lung mesh only,
which may not represent the real tumor deformadiaah for this reason there may be no
candidate edges for small tumors. Future studi#dagus on patients with tumors of
varying sizes in more locations. The accuracy o$maeformation will also be evaluated

in the projection space.
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Overall, compared with three traditional methotie, new method which is
presented in this chapter shows superior targetifation accuracy and image quality.
This improvement is achieved by utilizing the 2D MBCT projections for both DVF

generation and MC reconstruction.
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CHAPTER 6
ENHANCEMENT OF PROJECTION IMAGES VIA BACKGROUND
SUBTRACTION

In the previous chapters, we have discussed thensalyes and current technical
limitations of MVCBCT. We have presented several agproaches that try to reduce
the inaccuracies brought by using strain gauge thghMVCBCT system, including
direct IHDA and tumor detection from 2D projectimmages, RC reconstruction, and the
motion compensated reconstruction approach. Idetailould be desirable if the tumor
position could be detected accurately and robdisiiy 2D projection images. However,
the presented tumor segmentation technique (showhapter 3) is more suitable for
large tumors. Detection of small tumors is limitediow image contrast and
confounding objects. The strain gauge calibrateying on 3D RC or MC
reconstruction approach is based on the lineatioakhip assumption between IHDA
and tumor motion. The DTMR quantified from the Atape and the FI phase can be
considered the average value of the 200 projeatiages.

In this chapter, we will present a new enhancerfrantework that tries to
improve the visualization effect of MVCBCT projemti images. Similar to IHDA or
tumor detection presented in chapter 2 and 3,thareeement framework is also based
on using the projection images of MVCBCT as a cphoé “cine” mode to observe the
intra-fractional motion, as they provide a high paral resolution (about 0.3 s for each
frame). The MVCBCT projection images can be conmeidas rotational fluoroscopic
video, which can be used for visual guidance inynaterventional procedures, such as
the angiographic C-arm system for real-time cardrat vessel imaging (Cusma, Bell,
Wondrow, Taubel, & Holmes, 1999; Fahrig, Fox, Logyr& Holdsworth, 1997; Orth,

Wallace, & Kuo, 2008). However, the major limitat®of using cone beam projection
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images for visual guidance is the scattering ofibphotons and lacking depth
information, which are prevalent in all the pre\sapplications. The organ of interest
(OQI), such as the left ventricle for cardiac inmagior the diaphragm and the tumor for
lung imaging, is often superimposed with other amatal structures, making it less
distinguishable from the surrounding tissues, wisdlustrated in Figure 6-1 for several
examples. The overlapping with non-interest ordemiss the use of projection images
for accurate localization and segmentation of QQWould be desirable if the
accumulation of the ray integral of those non-ies¢tissues (background) can be

avoided, thus removing the confounding regiond&iter visualization.

Boundary of

~ left ventricle (a)

(b)

Figure 6-1: Examples of some cone beam projectimges which have significant
overlapping organs: (a) C-arm angiography of lefttvicular area. The left
ventricle is overlapped with descending aortaMM)CBCT projection
images of lung with NSCLC. The tumor and the herapldragm overlapped
with the contra-lateral hemi-diaphragm; (c) Thertaygping of the contra-
lateral hemi-diaphragms.

The enhancement framework is based on avoidingaghantegral of non-interest
tissues to derive the enhanced projection imageslY¥CBCT. The method is tested on
both phantom images and NSCLC patient images. Therses were applied to derive
the enhanced OOI. The first approach removes alhtm-interest tissues (background)

in the 3D volume and projects the remaining OObdhe projection space. The second



134

approach removes the OOI in the 3D volume and gi®gl the background information
on the projection space. The projected backgroonage is used to subtract from the
original projection image. This method is similaitihe principle of digital subtraction
angiography (DSA) (Brody, 1982), which is creatgdshbtracting the imaging data
before and after the administration of a contrgen& Zhang et.al. proposed a method to
remove the background information for projectiomges of kilo-voltage (KV) CT (J.
Zhang, Yi, Lasio, Suntharalingam, & Yu, 2009). Hee they only isolated a slice of
interest from the KV image and the enhanced prigjedmage only contains organ
information of one specific slice. Our study istatiguished in three aspects. Firstly, we
isolate the whole OOI to enhance the projectiorgenaather than a single slice of the
volume. Secondly, we compare the direct projeciioth background subtraction
approach in terms of image quality and 2D orgaed®n accuracy. Both pros and cons
of the two methods are presented. Thirdly, we ipomate RC reconstruction into the
OOl enhancement framework, which is proved to beersaitable for imaging areas
containing respiratory motion.

This chapter is organized as follows. Section fothices the details of the
enhancement framework and the imaging data usedhfiolation. Section 2 shows the
result of the validation on different metrics wétldiscussion section. Section 3 concludes

with a potential range of applications of the metho

6.1 The enhancement framework

6.1.1 The general principles

The electrical portal imaging device (EPID) of MVCB is a flat panel detector
receiving attenuated X-ray from the beam source. détected intensity of projection

angled at pixel locatior(u, v)is given by:
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1(u,v,6) = 1,(8)e” ") [1+ SPRU,V, 6)]
(6-1)

wherelg(0) is the mean detector intensity for a non-attertliteay beam at
projection anglé. This factor varies with exposure and cannot be oreaswith an
object in the X-ray field. It is represented asiaction ofg since small variation occurs
in different projection angles. The detected initgris composed of the primary beam
and scattered radiation. The scattered radiatiiatis from the straight line path
between the X-ray beam and the image detector wikia major source of image
degradation. Here SPR is the scatter-to-noise adigeph & Spital, 1982(u,vp) is the
primary beam attenuation, which is equal to the iimiegral of the linear attenuation

coefficient along the ray direction:

Puv.t)= | u(rydr

L
(6-2)
The line integral along L of 3D tomographic image ®de divided into OOI
regionL, and non-OOI (background) regitg

P(uv,6) =P, (uVv,0) +R,uV,0) = [ u(rydr + | u(rydr

roL, roL,

(6-3)
Combining Equation (6-1) and (6-3), we can derive
I (u,v,8) = 1,(8)e™ e 91+ SPRU,vV, 8)]
(6-4)
As mentioned earlier, two schemes are experimanttds study to derive an
OOl-enhanced projection image. The first approadb remove all the non-OOI regions
in the volume and project the OOI part onto thespBce, generating an image with the

detected intensity as:
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Loor (U,V,8) = 1,(8)e™ ",
(6-5)
where the derived new intensity is representeloo,. Here we usP,’ instead of
P,, sincePo’ is the line integral of OOI region using the attatun coefficients of the

reconstructed volume, which is different from tkealrcoefficients of the patieanatomy

to some degree.

The second approach projects the-OOI regions onto the 2D space and subt
from the original image, deriving a new backund-subtracted imade:s.
| os (U, v, 8) =1,(O)P, (u,v,0)B, (u,v,8)[1+ SPRuU,v, )] - 1 ,(O)R, '(u,v,6)
(6-6)

Figure 6-2:Intermediate results of the proposed method: (a8 @iginal projectior
image with the pixel value shown as accumulateshatition cefficients; (b)RC
reconstructed volume based on SART; (c) Volumatnage with OOI removed; (¢
Reprojection of volume (c); (e) subtraction of €ajd); (f) Volumetric image with nc-
OOl region removed; (g) Reprojection of volume

Similar to Equatin (6-5), Py’ is used to represent the line integral of

reconstructed attenuated coefficients, which ifediht from the real coefficients of t
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patient anatomyR). Figure 6-2 shows the workflow of the proposedhrod, with the
intermediate results for each step. The OOI caanlyeorgans or tissues the clinicians
with to get better visualization in the 2D projectimages. In this example the OOl is

the lung containing the tumor mass.

6.1.2 Numerical projection based on SART

The image reconstruction of the unprocessed volsrhased on simultaneous
algebraic reconstruction technique (SART) (Ande&d€ak, 1984). The computation of
the ray integral based on image reconstructed TS&lgorithm is inherently more
authentic than that of Feldkamp algorithm (Feldkahal., 1984), since it makes the
integral of the projection ray converge to the digte intensity of the 2D projection data
during the iterations. This feature enables therélyn to generate the numerically
projected image close to the original detectedchsitg. Compared to ART, on the other
hand, SART has no stripping nor aliasing artifdtéller, Yagel, & Wheller, 1999a),
which is more suitable for cone beam reconstruc®ART updates the linear

attenuation coefficient of each voxel by the foliogvequation:

N
(pi = W, ™)
Z o W
ARy le
ZWu

AR

vik=v, "+

(6-7)
The equation shows how to update jtihevoxel from(k-1)th iteration takth
iteration. The numerator of the correction terntlomright is the difference between the

original pixel valugy and the numerically projected value, which islthe integral
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along the path of the X-ray. The correction termpetels on a weighted average of all
rays of projectiorP, that traverse the voxglwheref denotes the projection angle.
To compute each voxel’'s contributi@fy; to P; in Equation (6-7), an

interpolation kerneh is used for the continuous volume representation:

0,32 = XX F(0, ),y =1, z=n,)

Ny

(6-8)
wherex, y, zandny, ny, n, is the continuous and discrete Cartesian coorglinat
representation of the volumetric image, respegtivinong various choices &f we use
a kernel based on the Kaiser-Bessel window, whashrhany good features, such as fast
decay for frequencies past the Nyquist rate aniragmmetry (Mueller, Yagel, &
Wheller, 1999a). The line integral as a functiordistance to the voxel center is pre-
computed analytically into a kernel-footprint (Mieg| Yagel, & Wheller, 1999b). During
the re-projection and back-projection process oRFAonly the distance between the
voxel center and the ray needs to be computed.r@lgnea ray passing through the
volume can be represented as:
X(t) = s+dt
(6-9)
wheres is the position of the X-ray source in room cooadé at one orientation
angle.d is an R3 direction vector of the ray, which isalgunormalizedt is a parameter
indicating the distance to the beam source. Diffei@m diagnostic CT system, many
cone beam system is dependent on a 3x4 nfafiox each projection angle to accurately
define the 3D-to-2D projection. Given a 3D pointaom coordinat®s={x,y,z,ws}, its
corresponding 2D projection locatiog={u,v,w,} can be defined by,=P-v3, wherev; and
Vv, are both represented as homogeneous coordinaerdjection matrix can also be

used to determine the beam source position.
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s= _Pa_l P4
(6-10)
WherePs is the matrix containing the first three columf$@ndp; is the fourth

column. The direction vectarcan be computed from 2D projected posifion].
d=-P'p*

(6-11)
wherep®=[u,v,1]". The distance between the voxel center and theamye

computed as:
Il =[dx(s=v))|

(6-12)
Herey; is thejth voxel's center position.
The proposed method based on SART can be applgsdilmn either standard
reconstruction or RC reconstruction approach, wbahg a subset of projection images

are selected and backprojected to 3D volume itetiter case.

6.2 Verification of enhancement framework

The proposed method was tested on the imaging imanthich was described in
details in section. Similar to previous introdugdghntom experiment (chapter 3 and 4),
the predefined motion and the size of the phantwarts are used to serve as ground
truth for the evaluation. The OOI enhancement teglenis based on RC SART
reconstruction for scans with motion. The predefinetion function of the phantom is
used to provide the respiratory signal for the BEnstruction. The projection images

are divided into 8 equally spaced respiratory biased on the amplitude of the motion.
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Projection images belonging to the same respirdioryare used to reconstruct a RC 3D
volume, which is further used for OOl enhancement

The method was also tested on 11 MVCBCT scans &@atients due to the
limited hardware resources for computation. The &@iancement is performed on the
diaphragm region. The patient scans used an imaigisg of 10MU. The number that
one scan covers for patient respiratory cycle rarfigen 6 to 20 in our study. The
respiratory signal used for RC reconstruction seoleon the 3D position of ipsi-lateral
hemi-diaphragm apex (IHDA), where it can be extddtom projection images using
the detection algorithm introduced in chapter 2ni&l correction is made after the
automatic detection to guarantee that there idinally significant error of IHDA
position. Similar to phantom study, the RC recargdton is based on 8 respiratory bins
respectively to evaluate the influence of the neslignotion to the image quality.

As discussed in chapter 4, the RC reconstructiomanas residual motion.
Sometimes the tumor is attached to the periphegans, which have very similar
attenuation coefficients with tumor. These factoeke accurate delineation of the tumor
boundary hard to achieve. Though we could choaséutimor as OOI, it is difficult to
measure the performance of the enhancement withoomvincing ground truth of the
tumor boundary. Instead, the diaphragm area isethas OOI for patient images, since
the diaphragm in 2D projections has strong contradtis able to be recognized in most

cases.

6.2.1 Derived enhanced images

Figure 6-3and Figure 6-4 shows the result of enhanced piojeachage of the

phantom and the patient, respectively. The subdiguib, c and d are the original image,

projected background image, background-subtractege and projected OOl image,
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respectivelyThe spherical inserts and the diaphragm are chioses the OOI region fc

phantom images and patient images, respect

(b)

() (d)

Figure 6-3: Ondrame of OOl enhanced beam attenuation image € gthantom unde
5MU MVCBCT scan.The largest spherical insert is chosen as OOlignekample(a)
The original image; (b) projected image of -OOI (background) region; (c) subtract
image; (d) projeted image of OOI region. All the images are digpthusing the sarr
level and window.

In Figure 6-3t can be seen that the overlap of the two sphldnsarts tha
originally exists in the L-processed image disappears. In Figuretiéedoverlapping
diaphragmoriginally exists in the unprocessed imisappears in both images of dir.
OOl projection andbackground subtractioFigure 6-5shows the intensity of the fo
images in Figure 6-8long the profile that traverse horizontally thrbuge center of th

largest sphere. It can be found that the proje©@d or projected background image |
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less noise than the other two images. It is comsistith Equation (6-5) and Equation (6-

6), where only background-subtracted image cont@i®R term. The numerical

projection of either the OOI or the backgroundréefof scattered radiation.

(b)

(c) (d)

Figure 6-4: One frame of OOI enhanced beam attemushage of patient under 10MU
MVCBCT scan. (a) The original image; (b) projectehge of non-OOI (background)
region; (c) subtracted image; (d) projected imag@®I region. All the images are
displayed using the same level and window. Thearealvs points to the desired hemi-
diaphragm. The yellow arrow points to CLHD. Notenhiie gradient becomes relatively

stronger than the CLHD in the enhanced images.
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Figure 6-5: The pixel intensity of the four imagdsng the profile shown in the left.

6.2.2 Image quality measurement based on CNR

Different metrics were employed to evaluate theonte of the OOIl-enhanced
approach. Firstly, we explore the intensity chaalgag the profiles in both unprocessed
and enhanced images. The contrast-to-noise raliRjCwhich is a simple and objective
measure of the detectability of certain structuvegh uniform intensity, is used to
measure the profiles of the interested regionsphantom studies, we investigate the
CNR along profiles that are perpendicular to thel@Dndary of the spherical inserts.
Since the size and the motion of the phantom issed predefined, the 2D boundary can
be derived based on 3D-to-2D projection of the BBpe

For patient studies, the 2D IHDA position is mahualentified in all the
projection images. Two rectangular regions, whiehlacated superior and inferior to the
IHDA, are selected to measure the CNR in the degpirregion. CNR is defined as

follow:
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CNR:Q
o, +0,

(6-13
wherel ands represents the average and standard deviatidre qirofile
intensities. The subscripl™and “2” represents the two regions used to quantify CNR.
For phantom images they are the regions that locaige and outside the boundary of
spherical insert, while for patient images theytageregions that locate superior and
inferior to IHDA.

Figure 6-6 compares the CNR quantified from orig{naprocessed) images,
OOl projected images (obj_reproj), and backgrourmracted images (bkg_sub),
respectively on the five larger spherical inseftsee column and the error bar show the
average and the standard deviation of CNR overmp2ff@ction images, respectively.
There is significant improvement (two to three faldnerally) by using direct OOI
projection approach, while background subtractigoreach improves the CNR slightly.
The average improvement of the direct projectigoreach is 365% and 238% for static
and motion scan, respectively, while the backgrosuotraction approach achieves 21.4%
and 13.8%.

Generally, the static scan has much better CNRttieascan with motion, since
residual motion exists during the image acquisitbeach projection image, which blurs
the object boundary. The names of “sphere 1” thiésp 5” is in the order from the
largest inserts to the smallest one, thus the imgmment by background subtraction
method decreases as the object size decreaseprdiiably due to that as the object size
decreases, the limit of the MVCBCT hardware, suetha resolution of 3D volume and

the scattered noise becomes more detrimental toatlkground subtraction method.
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Figure 6-6: Average and standard deviation of CN& @00 projection images of the
five larger spherical inserts of the phantom. Tsiptic scan; Bottom: scan with
predefined motion.
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Figure 6-7: Average and standard deviation of CKBi@phragm region of 10
MVCBCT scans from 5 patients.

Figure 6-7: shows the CNR of diaphragm region fa@rMVCBCT scans. Both
enhancement methods achieve an increased CNR theamages. The average CNR
increase derived by direct projection is 50.8%, parad with 22.3% of the background

subtraction approach.

6.2.3 Improvement on detection accuracy of phantom

inserts

We further evaluate the feasibility of using OORanced images to extract
tumor motion from projection images based on taeBwork presented in chapter 3. In
this section, the segmentation framework is usexv#tuate the detection accuracy on

OOl-enhanced images.
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Figure 6-8: Average and standard deviation of daefficient of four largest spherical

inserts: Top: static scan; Bottom: scan with pribef motion.

Similar to the study described in chapter 3, dimefiicient and the object centroid

error is also used to quantify the improvement etection accuracy. For both metrics,

the detected contour of the spherical insertsnspared with the ground truth, which is

computed as the projection from the predefined @me3D motion trajectory. Figure 6-8

shows the dice coefficient of the four largest sjga¢ inserts of the phantom. Generally,

the dice coefficient decreases as the size de@esisee the fluctuation on the boundary

brings larger variance for smaller size. The ovengbrovement of the direct projection

approach is 0.6% and -0.5% for static scan andamaitan, respectively. The

background subtraction approach achieves 2.9% #4d.0
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Figure 6-9: shows the centorid difference betwiberdetected contour of the
spherical inserts and the projected ground trutie direct OOI projection method
reduces the error tremendously in static scannbutor motion scan, where the overall
improvement is 65.2% (static) and -4.1% (motiorfje Dackground subtraction approach
reduces the error slightly in almost every caseclwhchieves 1.8% and 4.5%. It should
be noted that for motion scan, the graph searchewark actually divides the motion of
the phantom into several discretized phases. Skasmajor factor that leads to larger
error in the motion scan. The improvement made ©y-@nhancement technique, on the
other hand, is primarily related to the error ttetised by the interference of overlapping
objects. Statistically this improvement can be olsgin the experimental result, e.g. the

slight improvement of background subtraction appinda nearly all the cases.
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Figure 6-9: Average and standard deviation of cgherror of four largest spherical
inserts: Top: static scan; Bottom: motion scan.

6.2.4 Improvement on IHDA detection accuracy

In the original image of Figure 6-4, there are wigible boundaries of the
diaphragm, which are two separate hemi-diaphragatdadcate at the bottom of the left
and the right lung, respectively. In chapter 2 hage shown that in the case when the

contra-lateral hemi-diaphragm (CLHD) locates clwsthe desired IHDA, the gradient-
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based DHT approach may sometimes consider the CddHiDe detected diaphragm
boundary. In some cases the CLHD even makes matardification of IHDA error-
prone. The overlapping of CLHD occurs mainly nér totation angle of £90°, when the
two lungs locate in the same direction of the g rays. Both OOI-projection and
background subtraction provide promising solutitmavoid the influence of CLHD,
since the boundaries of CLHD in those 2D projectinages could be eliminated, or
reduced to some degree.

To evaluate the improvement of IHDA detection aacyrusing the proposed
method, we quantified the IHDA detection error luase original images, OOI projected
images and background-subtracted images, resplgctiles detected IHDA based on
DHT is compared with manually identified IHDA bychnical expert. The error is
measured as the difference in 3D superior-inféfdy direction, where the IHDA
position in 2D projection space can be converteéedaoom coordinate based on
interpolated ray tracing method (Siochi, 2009).

Figure 6-10 shows the IHDA detection accuracy ilMMCBCT scans from 6
patients. Scafl is not included CNR quantification because thedurs attached to the
diaphragm for this patient, which makes CNR vatuegular from other images.
Generally, when the detection is successful irothexlapping cases, there is nearly no
improvement by applying OOIl-enhanced techniques.direct OOI-projection approach
may even reduce the detection accuracy slightigesihe continuous motion of IHDA is
further descritized into 8 phases during the R@mstruction. However, when DHT is
misled to CLHD in some projection images, OOl-erdehapproach is able to correct
the problems successfully (image d1, for exampée that the large standard deviation
represents the misdetection in those frames). $hecmanual identification of IHDA is
performed in the original image, the boundary matylook exactly the same in the OOI
enhanced images. It is not surprised that the arcoeases slightly in the good cases,

such as bl and c1.
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Figure 6-10: Average and standard deviation of IHiixection error along 3D Sl
direction from 11 MVCBCT scans of 6 patients.

Figure 6-11 andrigure 6-1Zurther shows examples of using OOI-enhanced
techniques to correct CLHD interference during IHB&tection. Figure 6-1@ompares
the Hough accumulation array computed from the argssed image and background-
subtracted image. It can be seen that the accuonbhzlue of the CLHD appears
stronger than the desired IHDA in the first fewnfies, which misleads the DHT
detection to the wrong trajectory. In the accumataarray computed from background-
subtracted images, the desired IHDA trajectory bexorelatively larger than the CLHD.
One frame example in the image space is showigure 6-1]1 where the misled

diaphragm position is successfully corrected.
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Figure 6-11: 8ccessful correction to the interference of CLHDHIDA detection: left:
DHT detecton is misled to the CLHD on the unprocessed imagéi: DHT works
correct on the background subtracted image. Radmngle: region of interest of IHD/
Red contour: detected diaphragm contour; Red poiatiually identified position, use
as ground truth.

Figure 6-122D visualization of the Hough accumulation spaceugh entire imag
sequence. Top: Hough space computed from unpratessges; Bottom: Hough spa
computed from background subtracted images. Natethe ccumulation value of th
superior diaphragm becomes relatively larger afidence the detected trajectory (bl

contour).
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6.2.5 Discussions of the enhancement framework

From the previous experimental results, we canladechat the direct OOI
projection approach is very suitable to enhanagcSxOl. It replaces the original
scattering—contaminated image with a new noisedree It achieves significant
improvement on both CNR and detection accuracgesine interference of overlapping
objects is eliminated. However, when motion exists,fidelity of the projected OOI
becomes a question. Though CNR improvement issggiflificant, the detection accuracy
is reduced generally. It is primarily due to thetfénat the respiratory gating process
groups the motion into several bins. Residual nmogixists for each phase bin and the
reconstructed image is actually averaged fromhallgrojection images that are selected
in the window (Dietrich, Jetter, Tucking, Nill, &e&lfke, 2006; T. Li et al., 2006; Sonke,
Zijp, Remeijer, & van Herk, 2005). For the projectimages that are selected to the
same phase bin, the direct projection approachrgerzgenew images for those rotation
angles from the same 3D volume, in spite of thi&luad motion that previously existed.
The projected object is thus deviated from theipnalgocation as a result of the gating.
Though one could apply motion compensated recactsirumethod using a prior model
of displacement fields (T. Li et al., 2007; Ritakt, 2009; Schafer et al., 2006), the
accuracy of the motion model to represent themeslon remains a question.

Though the background subtraction method also regja gating process for
motion scan, the original OOI boundary informatiemot lost after projection and
subtraction. Thus the boundary location can bermetla This can explain why the
detection accuracy does not deteriorate by usiisgafiproach. However, the background
subtraction method also retains the scatteredtradim the subtracted image, which can
explain why the CNR is relatively low comparedhe tirect projection approach.

Moreover, the background subtraction approach daglimoinate the background

information completely. This is primarily due ta¢le reasons: scattered radiation,
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reconstruction error and the aforementioned graugduring the gating process. For
scattered radiation, the cone beam CT based orié&apdetector generally receives
more photons than traditional multi-detector CTdabsn fan-beam geometry (Orth et al.,
2008). For both MV photons used in MVCBCT and K\ofns used in diagnostic
imaging, Compton scattering comprises the majafitipteractions for normal tissues in
the body. The noise level due to Compton scattesihgwer for MV photons, since the
scattering is mostly in the forward direction. lKdf photons, the scattering is more
isotropic (Morin et al., 2006).

The reconstruction error could be due to severdbfa. Firstly, the lack of
projection images causes view-aliasing artifachanreconstructed volume. In our
implementation, the 200 projection images are @dithto 8 respiratory bins, generating
only 25 images for each phase bin on the averdgeugh SART algorithm has the
advantage of dealing with view-aliasing artifat¢tart methods based on filtered-
backprojection, it can never eliminate the imaggrdéation due to missing projections.
These artifacts will bring further inaccuracieghe projected OOI or background images.
Though one could reduce the number of respiratmy to have more projection images,
the larger gating window brings larger object detecinaccuracies.

Secondly, it is quite usual that the patient angtextends beyond the field of
view (FOV) of the cone beam system. On one handditces the truncation artifact,
which makes the tissues near the truncated regismiuch higher attenuations. On the
other hand, the tissue locates outside the FOYeof/blumetric image is not accounted
during the forward projection, which makigs less than what it should be. Though
extrapolation techniques exist (Ohnesorge, Flotihw@arz, Heiken, & Bae, 2000), it
cannot eliminate the inaccuracies brought by trtionaBased on our experience, the
performance of OOl enhancement performs much biettémages without truncation
(such as phantom images). But truncation occursfist of the NSCLC patients imaged

by MVCBCT.
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Generally, the enhancement framework based on SARIduced in this chapter
is a feasibility study, where we only concern altbetimprovement based on detection
accuracy or image quality of the projection imad@saning time is not considered here,
since current implementation of SART algorithm liase CPU platform takes about 7~8
hours for RC reconstruction. To make the proposedible for clinical application, the
running time is not longer a trivial issue. Currenplementation for fast SART
computation requires GPU platform, which could besidered as future work.

One may think it is a contradiction that the IHDAton signal is used as input
for phase sorting, while at the same time the IHi2tection accuracy is used to evaluate
the performance of the enhancement. It should bedrtbat the input IHDA is manually
corrected, which guarantees that the phase sastiregasonable. For a practical clinical
implementation that uses the enhanced images DAlHetection, the phase sorting has
to be based on strain gauge signals. Howevergtmatility study introduced in this
chapter tries to focus on the performance of th@eoement framework only. It tries to
avoid any error that is not related to the enhamcerframework itself,since phase
sorting based on the relative phase signal oftlansgauge may induce larger errors
than that of IHDA. Moreover, the evaluation is alested on CNR and tumor
segmentation accuracy, which is not in a “chicket @egg” relationship with the
enhancement procedure.

To sum up, this chapter introduces two OOI enhaecemethods based on cone
beam CT geometry are presented, which are basddrtis@rd projection of OOl and
background region, respectively. The direct propecapproach achieves significant
enhancement performance for static OOI, in termzotthh CNR and boundary detection
accuracy. The background subtraction approach imesrthe CNR and the detection
accuracy for both static and moving OOI slightly mbustly. The experiments based on

both phantom and patient images show the clingadibility to improve the detection
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accuracy of tumor and diaphragm in projection insadée proposed OOI enhancement

technique can be generalized on any cone beam €18@sg.
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CHAPTER 7
CONCLUSION AND FUTURE DIRECTIONS

Respiratory motion management is an important reeesrea of adaptive
radiation therapy to lung cancer. Accurate gatimgy @onformal shape of the radiation
beam during the treatment delivery is a challengiredplem. In this thesis, several new
approaches based on MVCBCT localization systenpiemgosed to improve the accuracy
of treatment delivery.

In chapter 2, a semi-automatic and a fully-autoof@imework are developed for
IHDA detection in MVCBCT projection images. The IiADnotion along Sl direction
can be used as respiratory signal, which is amnateurrogate to tumor motion.
Currently, the semi-automatic framework has beguiemented in a clinical software
“UIHC 4D Verification” and under clinical trial. Tdnmethod requires manual
initialization of IHDA position in 4 frames. Them@automatic framework is tested on
19 patient images, deriving an error of 1.341+0r6Atand 1.228+0.220Gmfor DHT and
PDF tracking, respectively. This error is clinigadicceptable, based on the fact thrat3
excess of tumor motion only leads to a 1% chandearobr control probability. Besides,
both methods are within the clinical time requiretdhe software was also
implemented with manual adjustment function, whattbws the clinicians to rectify the
problematic detection. In the future, we will tds software under longer term to
validate the robustness of this method.

The fully automatic approach replaces the manutilization step with
automatic ROI localization. The ROI of IHDA in tpeojection image is detected by
estimating the IHDA range of motion in the reconsted 3D volume. The estimation is
based on template fitting and morphological analyBhe automatic framework is tested

on 35 scans, deriving an accuracy of 2.933x4rh88and 1.714+1.54dmfor the DHT
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and tracking based approach, respectively. Tharatto approach is somewhat less
accurate than the semi-automatic approach, duetdgmatic ROI initialization in some
images. However, the automatic ROI determinatidiovieed by PDF-based tracking
algorithm still fulfills the clinical requirementnothe IHDA detection accuracy. Moreover,
the system could be still relied on manual reddtiien on a few frames of projection
images, which could be processed within the tingeirement. Currently, the fully
automatic framework is implemented in a separadqim called “MING-DICOM”. In
the future, it can be implemented as part of theaal software “UIHC 4D Verification”,
which could be used for guidance for the ROI itigetion. The clinicians can verify the
ROl initialization manually. For problematic initization, they can rectify it based on the
semi-automatic framework. Since the automaticah#ation is good for most cases, it
could further save the running time of the procedur

In chapter 3, a novel method for direct tumor segaten from projection
images is developed. It is based on the idea oferting the quasi-periodic motion
segmentation into an optimal interrelated surfastection problem. The problem can be
further be solved by a graph search framework. Ad#Bcted graph is constructed based
on an initialized mesh model, where the cost vebu¢his graph is computed from the
point location of a silhouette outline of projectedhor mesh in 2D projection images.
The method was first evaluated on four differemédiphantom inserts (all above trf
in diameter) with a predefined motion of i@ to mimic the imaging of lung tumors. A
dice coefficient of 0.87+0.03 and a centroid eobt.94+1.3Inmwere obtained. Results
based on 12 MVCBCT scans from 3 patients obtain@t0.03 for dice coefficient and
1.83+1.3Immfor centroid error, compared with a differencensstn two sets of
independent manual contours of 0.89£0.03 and 1.8%1m respectively. These results
show the clinical feasibility of the proposed amaro. The limit of tumor segmentation
validation is that there is no ground truth of patidata available. We can only compare

with the detected tumor contour with the manuakocon However, the fidelity of the
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manual contour remains a question, since the rgaance between two users is
comparable to the variance between detected coatalithe average of manual contour.
Though 4D CT generally provides volumetric imageesewith clear tumor boundary,
the tumor shape and size would be different fromQBZT scan. On the other hand, the
imaging phantom provides ground truth data abauntr” shape, size and position
during the motion. The phantom used in this stualy d spherical shape, which is
relatively easy for 2D-to-3D shape recovery. Infitere, we will design and make a
new imaging phantom with more complicated “tumdrage. The method will be further
validated on those complicated shapes.

In chapter 4, the accuracy of using RC MVCBCT tamwee DTMR value is
guantified. The DTMR measurement accuracy is furtivdded into study of
guantification of volume and motion measurementiAgpatient images face the same
problem of lacking ground truth data of tumor vokiand motion amplitude. However, a
clear exponential trend of tumor shrinkage is oleae by manually contouring and
measuring the tumor size through the course obthadrapy. For phantom images, an
average error of 10% is achieved for phantom isseith a diameter of 1.9cm. For
tumor motion quantification, an average error of i58%chieved for phantom inserts with
any size, given the nominal motion amplitude ain®® We further draw our conclusion
that there is more than 99% probability of using pinoposed IHDA detection approach
and RC reconstruction technique to derive the @eetamor localization accuracy within
3.0mm This conclusion is based on the normal distrdouassumption of the measured
variables, including IHDA detection accuracy frol @rojection images, IHDA and
tumor motion between FE phase and Fl phase in 3iima

On the other hand, the imaging phantom only pravaléwer bound of error for
motion and volume quantification, since the phantoserts are spherical in shape. We
believe that irregular shape under the same camdiiould bring larger errors due to the

segmentation inaccuracies. Similar to the prevemggnentation framework, we will
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design and make a new phantom with more complidatsts to mimic tumor shape.
The volume and motion measurement accuracy wiladuated again on this new
platform.

In Chapter 5, a new motion compensated reconstruepproach is developed,
which utilizes the prior motion model that was agted from 2D projection images. The
new method is compared with two traditional MC mestouction approaches, which
utilize prior motion model from 4D CT and RC MVCBCriespectively. The RC
reconstruction approach alone is also include@donparison. The proposed method is
tested on 12 patient MVCBCT scans, where for eaah,s3D volume in FE and FI phase
is reconstructed respectively. We measure the CliReythe tumor volume and IHDA
motion amplitude between FE and FI phase. The grtnuth of tumor volume is based
on 4D CT, where we try to minimize the inter-fracial change of tumor size by
selecting MVCBCT scan that is close to the corradpw 4D CT scan. The ground truth
of IHDA motion amplitude is based on the 3D motextracted from 2D projection
images. Overall, the new method has best perforengnierms of image quality and
fidelity to the real motion. For IHDA motion amplde quantification, the new approach
reaches a comparable accuracy as RC reconstrietbnique, where both methods are
better than MC based on 4D CT and RC MVCBCT. Forduvolume measurement, the
new approach derives a similar accuracy with MGtam 4D CT, where both methods
are better than two RC-MVCBCT related approachesiage quality measurement
based on CNR, the new approach has the highesti€N&th diaphragm and tumor area.

Currently the MC reconstruction method is basethersegmentation framework
introduced in chapter 3. The projection imagessaréed into 20 bins, where 10 bins are
used for exhale phase and the other 10 bins adefosanhale phase. The resolution of
the lung mesh used for segmentation is set to rekeunning time of reconstruction
process within an acceptable time. Generally, exirg) the number of bins would

improve the temporal resolution of the motion moddlich may potentially increase the
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motion amplitude accuracy or even the tumor volac®uracy as well. However,
increasing the number of bins would reduce the rermobprojections for each bin,
which may make the 2D-to-3D shape recovery notsblfdn the other hand, increasing
the mesh resolution would further increase thenstraction accuracy. Future studies
can be based on varying the number of bins anchésh resolution of the reconstruction
process. The new MC reconstruction approach cdstdke validated on imaging
phantom, where the lung mesh model can be creaiedthe basswood frame. We
believe that the motion and volume quantificatioouracy derived by the new MC
method would be better than the RC reconstrucgohrtique.

In Chapter 6, a novel approach of enhancing MVCB@jection images is
introduced. The enhancement framework starts bgnstoucting a 3D volume from 2D
projection images based on simultaneous algebeaanstruction technique (SART).
Then the region of the organ of interest (OOI) anomally identified. Two strategies are
used for image enhancement: the first approachisetsttenuation coefficient of non-
OOl region to zero and projects the volume thataias only the OOI region onto
projection images; while the second approach ketattenuation coefficient of OOI
region to zero and projects the non-OOI region @mRdo create a background image.
The final enhanced image is derived by subtradtiegoackground image from the
original projection. The enhanced images genetaydatie two strategies were evaluated
on two MVCBCT scans of phantom images and 10 paitreages based on different
metrics. The direct projection approach achieveismmovement of 365%, 238% and
60.9% on average of contrast to noise ratio (CNR$tatic phantom insert, moving
phantom insert and patient diaphragm respectivythe background subtraction
approach, CNR improvement is 21.4%, 13.8% and 1916%rms of detection accuracy,
the direct projection approach achieves improverne66.2% on the quantification of
the centroid of the static phantom insert, busftalimprove the detection accuracy in the

motion scan (with 13.6% drop in diaphragm apex ¢tieation accuracy). The
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background subtraction approach improves the deteatcuracy slightly (on the order
of 0.5% and 4% for dice coefficient and centroierrespectively) for nearly all the
cases and achieves 13.1% improvement for diapheggm quantification.

In all, the direct projection approach is able ¢évivk enhanced OOl image with
both improved CNR and detection accuracy for statject. For motion scan, the
background subtraction approach is more suitalale the direct projection approach in
terms of improving the detection accuracy. But@NR improvement is not as large as
the direct projection approach due to the scattedition. Future work may involve

implementation of the algorithm to GPU platform aradidation on more patient images.
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