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ABSTRACT

An important research problem in Image-Guided Adaptive Radiation Therapy

(IGART) is how to accurately deform daily onboard Cone-Beam CT (CBCT) images

to higher quality pretreatment magnetic resonance (MR) or Fan-Beam CT (FBCT)

images, enabling cumulative dose to be evaluated and tumor response to be tracked.

In the case of IGART for prostate cancer, the question becomes to accurately register

the critical organs such as bladder, prostate and rectum. All are soft tissues and their

boundaries can not consistently be identified using CBCT. As such it is challenging

to register these soft organs precisely if the intensity difference serves as the only

similarity measure.

Organ surfaces are routinely contoured as part of standard treatment plan-

ning procotol. In this work we assume that the organ surfaces are provided either by

manual or automatic segmentation and can be used to improve the correspondences

at structure boundaries. Unfortunately, these standard segmentations are often in-

accurate so that the inclusion of the surfaces into the registration process may give

little improvement.

Originating from this specific problem, this work tries to answer a more gen-

eralized question. Given two intensity images and their associated inaccurate object

surfaces, can we design a non-rigid registration algorithm with improved registration

accuracy? Influenced by the ideas of data assimilation (DA) and smoothing spline

regression (SSR), this report provides a solution consisting of three components: sta-
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tistical shape modeling, spline-based surface estimation, and surface constrained non-

rigid image registration.

We surveyed several distinct surface registration algorithms and evaluated

their performance on patient data. The shape models of the pelvic organs were

built using training data. For image registration, the input surface is a combination

of the current observed and the one predicted by our shape model. This hybrid sur-

face was validated to be more accurate and therefore the image registration produced

smaller registration error. Experiments were performed using both simulated data

and real clinical data. Results show that the proposed method achieves satisfactory

improvement.
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CHAPTER 1
INTRODUCTION

Image registration is routinely used to compare images between individuals,

detect and measure changes between longitudinal images of the same individual,

fuse information from different imaging modalities, and many other applications.

Large registration error can occur around the region of interest (ROI) if intensity

contrast at the boundary of the ROI is insufficient. To overcome this problem, a priori

information of the ROI can be used to guide the registration process. For example,

labeled landmarks, 2D contours or 3D segmentations can serve as surrogate features to

augment and improve the intensity-only image registration. However, these geometric

features often contain errors at the boundary too. It is well known that interobserver

variability varies as a function of modality, organ, contour orientation, surface position

of the object, and training.

For many registration algorithms, the uncertainty with the identification of

the features is simply ignored. Segmentations are assumed accurate and the similar-

ity between them are directly used for registration. For certain applications, doing

so is legitimate if the features, even though having errors, are accurate enough in

the sense that they provide correct matching clues at the regions with low intensity

contrast. However, in cases where the segmentation error can not be ignored, the

former strategy will bring a new source of errors into the registration process. The

registration result becomes unstable.

This work makes an attempt to improve registration accuracy under such a
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situation. The primary application area of this dissertation is image-guided prostate

cancer radiotherapy and this application requires accurate and robust non-rigid image

registration of the pelvic anatomy. The boundaries of prostates are delineated by an

expert but with large interobserver segmentation error. Details are given in Sec. 2.5.3.

The basic idea proposed by this work is called surface assimilation, a method of

estimating the true surface from a priori observation data and the current observation.

Inspired by the similar concept of Data Assimilation from the subject of weather

predication [30], we obtain the general knowledge of the surface from statistical shape

analysis. The a priori knowledge about the shape are integrated with the observed

surface under the spline-based estimation framework for noisy observational data.

Loosely speaking, we reconstruct a surface with small segmentation error by correcting

an observed surface with large segmentation error using an a prori shape model.

The surface estimation problem is formulated as a spline-based optimal estimation

problem.

The proposed algorithm works on 1D parametric domains (curve) and 2D

parametric domains (cylinder and sphere). We claim that the reconstructed surface

is a better representation of the underlying anatomy. Therefore image registration

involving a pair of more accurate surfaces will lead to less registration error. We choose

the problem of registering prostate CT images as the working example throughout

the paper. It is worth mentioning, however, that our method is general and can be

applied to many body sites and different modalities.
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1.1 Background

External beam radiotherapy (EBRT) is the most common treatment option for

prostate cancer currently [103]. The patient lies on a movable table and an external

source of radiation is pointed at a particular part of the body, delivering therapeutic

radiation dose to the tumor. In order to compensate for the various uncertainties in

the treatment delivery, healthy tissue surrounding the tumor is inevitably irradiated.

However the tolerance to the radioactive rays of healthy tissue and the tumor are

often different. Even though DNA of both cancer cells and the healthy ones will be

damaged, the recovery rate of healthy ones is faster than those in the tumor. Normally

the prescribed dose will be delivered in fractional amounts during multiple treatment

sessions with the purpose of allowing healthy tissue to recover while still providing

lethal dose to the cancer cells. In the treatment planning phase, diagnostic imaging,

such as CT or MRI, is collected. Critical organs, such as bladder and rectum, together

with the tumor site are contoured by experts and are fed into the planning system to

generate a radiotherapy plan.

1.1.1 Uncertainty in Radiation Therapy

If dose can be delivered accurately to the tumor, a higher dose (dose escala-

tion) can be administered so that the treatment session (typically one or two weeks

in case of prostate radiotherapy) can be shortened, more healthy tissue will be spared

from the unintentional exposure and the patient survival rate is expected to improve.

However great attention must be paid to avoid increased toxicity to normal tissues in
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an attempt of dose escalation. There are many sources of uncertainty in radiother-

apy. Among them the geometric uncertainty is perhaps one of major risks to dose

escalation. Geometric uncertainty can be roughly classified into intrafractional or

interfractional uncertainty. Intrafractional uncertainty is the error that occurs within

a treatment fraction, such as the scattering uncertainty in radiation rays, bladder

shape changes due to voiding. Interfractional uncertainty is the dominating error

that happens from day to day, such as the table setup errors and misalignment errors

due to organ motions.

Large interfractional uncertainty impacts the reproducibility of dose delivery

from day to day causing tumors to be underdosed and the nearby critical organs

overdosed. To reduce the these errors, image-guided radiotherapy (IGRT) [39] was

invented. With the integrated on-board, low-dose, fast cone-beam CT (CBCT) imag-

ing capability, a tumor image can be acquired before each treatment fraction. Rigid

registration of treatment-day and planning-day images enables physicians to align

the patient table to assist the localization of tumors. Meijer et al. [94] showed that

the prostate planning margin can be reduced from 11 mm to 8 mm when aligning

the patient using rigid registration to align bony anatomy. However this improve-

ment would be compromised by the fact that the tumor and pelvic organs, as soft

tissue, may undergo large shape changes in position, size and shape over the course

of radiotherapy.
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1.1.2 Nonrigid Image Registration in Radiation Therapy

Nonrigid image registration is capable of estimating voxel-by-voxel correspon-

dence between two images and has been studied recently with rising interests in IGRT

aiming to lower the interfractional uncertainty. By registering daily CBCT images

to a higher quality pre-treatment fan-beam CT (FBCT) image, nonrigid image reg-

istration provides a means to compute cumulative treatment dose and track tumor

response. In Image-guided Adaptive Radiotherapy (IGART), 3D image data is reg-

istered to construct 4D voxel trajectories (i.e., time-dependent DVFs) that describe

deforming patient anatomy over a course of radiation therapy [97, 135, 6]. By doing

so an initial treatment plan can be modified on a daily basis to accommodate the

shape changes of delicate organs, such as bladder, prostate and rectum.

Nonrigid image registration algorithms based exclusively on intensity differ-

ence have been applied to registering FBCT and CBCT pelvic images [54, 86]. How-

ever due to the low contrast of soft tissue in CBCT imaging, the intensity difference

along the boundaries of the prostate and other organs are poor. Therefore the results

of the solely intensity-driven registration algorithms are often not accurate.

Various approaches have been proposed for improving the accuracy. Based

on the geometric entities used, these approaches can be roughly classified into three

categories, namely landmarks-, label- and surface-based. Using the SIFT feature

detection technique, Chao et. al [18] extracts the automatic landmarks from the

source and target bladder images to guide the registration process. Label images

(binary masks), when available from either manual or automatic segmentations of
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organs can be combined with the intensity feature to aid the registration results at

the low contrast region [64] or account for large organ deformation [21]. For surface-

based approaches, [70, 102, 78] register the source and target surfaces first and then

use the obtained transformation as the initial condition or extra constraint in volume

registration.

Studies have been done on the automatic FBCT/CBCT registration problem.

Zhou et al. [144] proposed registering two images after an automatic prostate seg-

mentation based on Active Shape Models (ASM). With the focus on single organ

object, this method contains two steps: the segmentation step and the registration

step. Lu et al. [87] proposed a joint segmentation and registration algorithm in which

the bladder, prostate and rectum are segmented by level-set method.

It worth mentioning that a good nonrigid image registration algorithm in IGRT

needs to be fast, accurate and robust. Although nonrigid registration algorithms are

generally more time consuming than rigid ones, recent progress in parallel computing

makes it possible to reduce the running time of nonrigid image registration [69, 113].

The major obstacle to wide adoption of nonrigid image registration lies in the difficulty

in increasing the accuracy and robustness of currently available algorithms.

1.1.3 Interobserver Segmentation Error

Landmark-based registration [108, 137] have taken into account the landmark

positioning error leading to more robust algorithms [25]. However, the existing surface

and intensity-driven nonrigid image registration methods assume the segmentations
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are accurate. This is generally not true for CBCT images where the boundaries of

the prostate and the surrounding organs at risk (OARs) are often difficult to distin-

guish from surrounding tissue. Previous studies [104] have shown that interobserver

segmentation errors (ISE) vary dramatically with location on the prostate surface

and OARs. Recent studies [135, 89] suggest the inter-observer delineation variability

of CBCT needs to be considered in the CBCT-based adaptive radiotherapy. If the

inaccurate segmentations are used in image registration, large registration error will

occur. Therefore, one of the major tasks of this study is to propose a new nonrigid im-

age registration algorithm with full consideration of organ segmentation uncertainty

aiming to find a more accurate image alignment.

For a long time, the study of estimating the interobserver segmentation error

has been lacking. It is perhaps partially due to the absence of reliable tools of 3D

surface analysis. The recent development in 3D surface registration make it feasi-

ble to qualify the segmentation errors, therefore facilitate the design of new image

registration algorithm capable of minimizing the impact of segmentation uncertainty.

Initial efforts were made in [138] to estimate the reliability of the organ boundary

delineation, nevertheless, how to make use of this reliability information in image

registration remains unclear.

1.2 Organization of Dissertation

Chapter 1 describes the background and motivation of this thesis. We briefly

present the idea of image-guided adaptive radiation therapy (IGART) and discuss
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the opportunities and challenges for deformable image registration in IGART. From

there, the theme of this dissertation, a general problem dealing with the uncertainty

in surface segmentation and image registration, is defined.

Chapter 2 introduces the idea of statistical shape model. After reviewing var-

ious surface registration techniques, we present our work on choosing the appropriate

methods of shape modeling for the pelvic organs. We also explore the possibility of

applying surface registration to study the interobserver segmentation error.

Chapter 3 introduces the theory of data assimilation and spline model for

observational data. We combine these theories, together with the statistical shape

model, to solve the problem of reconstructing 2D curve and 3D surface from noisy

observed data. Proof-of-concept experiments are done to demonstrate the ability of

the algorithm.

Chapter 4 describes the application of the proposed algorithm to the real

patient data from the IGART project. We design a nonrigid volumetric registration

method by combining the intensity and surface similarity. Results from evaluation

experiments further validate the performance of the proposed methods.

Chapter 5 concludes this dissertation and summaries the major contributions.

It also discusses the outlook of the future work.

Appendix A provides more information on the patient data used in the exper-

iments of this dissertation.
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CHAPTER 2
SURFACE REGISTRATION AND STATISTICAL SHAPE MODEL

2.1 Introduction

A good understanding of organ shapes and inter-observer segmentation vari-

ability can be used to design image segmentation and registration algorithms. As

mentioned in Chapter 1, organ segmentation among experts is not uniformly consis-

tent and contours can have uncertainties that vary with the position on the organ

surface. Fig. 2.1 shows a pair of FBCT / CBCT images from one patient that were

repeatedly traced by five different experts (Fig. 2.2 and Sec. 2.1 show these segmen-

tations in 3D). From the overlaid prostate contours, it is easy to see that the inter-

observer segmentation errors (ISE) in CBCT are larger than those in FBCT, plus

the prostate base seems to have larger ISE among experts within a CBCT image. If

arbitrary expert segmentation is used in registration process, this large segmentation

uncertainty will lead to large registration uncertainty and may pose a risk to patient.

So what can we do to reduce the negative effect of ISE in the image registration?

This study addresses ways to reduce negative effects of ISE through two steps.

First, we need a method to quantify ISE. This study uses surface registration and

Principal Component Analysis (PCA) to do so. Second, we use the organ shape

model and the knowledge about ISE to reconstruct a new surface closer to the true

one, the main idea of Chapter 3. Therefore, we also need methods to summarize the

organ shape statistics. Due to the similarity of both problems, we choose a similar



10

surface analysis method as that for ISE quantification.

In this chapter we survey the common surface registration techniques, evaluate

the candidate algorithms, summarize the organ shape statistics and estimate the

segmentation errors at the sites of prostate, bladder and rectum, respectively. The

output of this chapter is to provide the appropriate surface analysis tools for the

following chapters.

2.2 Surface Registration: A Survey

Image registration is the enabling technique for statistical shape analysis,

anatomical atlas building, longitudinal study, computer vision, pattern recognition

and knowledge discovery. Image registration has been widely used in the medical

image analysis. This section gives a brief review of surface registration algorithms

with bias on those commonly used in shape model building1. For an earlier review of

surface registration, see [5]. Surface registration algorithms can be grouped into three

categories: pointset, mesh and volume. For each category, the methods for pair-wise

surface registration will be reviewed. The group-wise surface registration is based on

these pair-wise methods. The representative group-wise algorithms will be discussed

in Sec. 2.3.

2.2.1 Surface Registration via Landmark Matching

A surface can be represented by a set or cloud of points. A typical landmark-

based surface registration needs to know the corresponding points in template and

1Geng [62] made substantial contribution to this section
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Fan-beam CT Cone-beam CT
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Figure 2.1: One patient’s FBCT/CBCT images in the study. From left to right FBCT
and CBCT grayscale image with the prostate contoured by five experts marked with
different colors. From top to bottom: A. The original image, B. Sagittal view, C.
Coronal view, D. Transverse view.
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Figure 2.2: A patient’s FBCT/CBCT prostate segmentations in the study. From
top to bottom: FBCT and CBCT prostates segmented by five experts marked with
different colors. These meshes are reconstructed from stacks of 2D manual contours.
Large segmentation variation among experts are visible at the base of the prostate.

(a) 3D view of prostate segmentations (b) 2D view of prostate segmentations

Figure 2.3: 3D and 2D overlays of five prostate segmentations from the same patient
contoured by five experts on the same day CBCT image.
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target images before solving for the spatial transformation. Iterative Closest Point

(ICP) [8] is a classic rigid landmark matching algorithm. It automatically estimates

the correspondence between two point sets and updates the correspondences at every

step of minimizing the distance between the two. While simple and fast, the plain ICP

is sensitive to noise and initial configuration. ICP-derived methods [111, 92, 47, 112]

relax the correspondence constraint and model landmark matching as a probability

density estimation problem to improve its robustness.

As the seminal nonrigid landmark registration algorithm, the Thin Plate Spline

(TPS) method introduced by Bookstein [10] estimates a smooth transformation be-

tween the spaces of two surfaces. It assumes the correspondence between the two

point sets is known and therefore suffers from the uncertainty of landmark locations.

Rohr [108] proposed a robust TPS method by considering the landmark uncertainty

in registration cost function. Chui and Rangarajan [25] combined TPS and the ro-

bust point matching (RPM) to search for the unknown correspondence. Dalal [29]

used TPS to measure the distance between two surfaces. Davis [38] and Worz [137]

introduced Elastic Body Spline (EBS) and Gaussian Elastic Body Spline (GEBS), re-

spectively, aiming to find more physics-based transformations. Wang [133] proposed a

shape-based 3D surface correspondence approach using geodesics and local geometry.

Besides the spatial coordinates of the landmarks, other geometric features, if

salient and reliable, can be used as the matching driving force. For example, in brain

cortex registration problem where the sulci and gyri present salient local geometric

characteristics. Curvatures and normal vectors of the crest lines (ridges and valleys)
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can constrain the registration under either ICP or TPS framework [119].

Partially due to the coarse discretization of a surface as a point set, it is hard

to ensure that the deformed point set lies exactly on the target surface. This could

be a major obstacle for the landmark-based methods to be used in complicated 3D

shape analysis.

2.2.2 Surface Registration using Parameterized Surfaces

Surface registration between two parameterized surfaces is suitable for the

applications requiring fine and dense correspondence on surfaces. The basic idea is

to view the source surface X as a mapping from a (u, v) parameter domain into a

3D Euclidean space as X : u × v → R3 and the target surface Y : u × v → R3.

Surface matching features (e.g. curvature) are transferred to the parametric space

and two parametric surfaces are aligned over the common (u, v) domain using various

registration techniques. Based on their topological difference, open surface is normally

flattened to a 2D (u, v) domain where u = [0, 1], v = [0, 1], while a closed surface is

mapped to a unit sphere S2.

Many surface parameterization methods have been proposed (for a detailed

review see [53]). Some [48, 49] of them are based on minimization of the metric

distortion. Some focus on surface areal distortion minimization [43, 46]. Some are

based on harmonic maps [142]. The methods of conformal parameterization [85, 67,

66] maps the similar triangles on the original surface to the similar triangle on the

sphere S2. It is bijective angle-preserving, independent of triangulation of surfaces



15

making it widely used in surface parameterization.

In the parametric space, surface registration tries to find a re-parameterization

(or transformation field) γ(u, v) optimizing the correspondence between X(u, v) and

Y (γ(u, v)). Since the domain of the transformation field is a unit sphere instead of Eu-

clidean space, covariant derivatives are often used to account for the intrinsic geometry

of the surfaces. Some approaches parameterize a transformation field, restricting the

search space of the allowed re-parameterization (e.g., Cauchy functions [35]). Joshi et

al. [78] presented a method of registering cortex surfaces via thin-plate spline (TPS)

method on the flattened surfaces. Horkeaw [73] parameterized a transformation field

with B-splines on 2D shape manifold. Some methods allow for large deformation due

to the use of non-parametric re-parameterization. Tosun et al. [123] aligned cortical

surfaces driven by optical flow. Twining et al. [126] extended the fluid volumetric

image registration [24, 23] to shape manifold. Yeo et al. [140] proposed the Spherical

Demons registration algorithm which is an extension of Diffeomorphic Demons [121,

130] method on sphere.

2.2.3 Surface Registration via Measure Matching

Like parametric surface registration, i.e. aligning two surfaces without reducing

surface (2D shape manifold) to zero-dimensional point set, Glaunès and Vaillant [63]

presented surfaces as measures of distributions, and surface similarity is defined into

a Hilbert space endowed with a computable norm. The surface registration is solved

as a variational problem under a framework of large deformation diffeomorphism.
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Vaillant and Glaunès [128] extended the surface measure to a generalized distribution

called currents from the theory of geometric measure. The currents representation

preserves the geometry of the structure because both location and the first order local

geometric feature appear in currents. Vaillant [129] used these methods to help the

study of brain cortex structures.

2.2.4 Surface Registration via Level sets

Huot and Yahia [139, 75] proposed surface matching algorithm based on level

sets. This method projects a surface into a cost hypersurface space and matches

two surface by finding the surface propagation under a level set formulation. It can

handle curvature singularities, large deformation and arbitrary topology. Luethi [91]

represented surfaces using distance map and level set where the dense correspon-

dence between two surfaces are estimated by a modified Demons algorithm [121] with

curvature driving force.

2.2.5 Surface Registration via Image Matching

Nonrigid image matching (or registration) seeks a point-wise correspondence

between two images by minimizing a cost function of the similarity between im-

ages. Choosing the similarity measure is a major part of nonrigid image registration

algorithm. For the images from the same imaging modality or their intensity rela-

tionship is known, the squared intensity error, the difference of intensity gradient

or the intensity correlation coefficients (CC) can be used as the similarity measure.

For multi-modality image registration, the mutual information (MI) [136, 90] from
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information theory has been used as the similarity measure. MI usually are sensitive

to the initial overlap between the targets. Studholme [115] proposed a normalized

mutual information (NMI) to overcome this issue. Pluim [101] and Zitova [146] gave

two comprehensive reviews on mutual information registration.

With the closed surfaces rasterized as binary label images, nonrigid image

matching can establish the correspondence between two surfaces. Frangi [56] used

image-based affine transform and nonrigid B-spline registration to model 3D cardiac

Active Shape Models. Taron [120] used the deformation fields to model different

shapes. One of the advantages of this method is that multiple surface objects can

be analyzed together. The weakness is that the nonrigid matching generally require

more computational resources. Besides, the deformed segmentation may not fully

overlap the target creating additional errors.

2.3 Group-wise Surface Registration

A statistical shape model is built from a group of training surfaces. The quality

of the correspondence heavily affects the quality of the shape model. If the correspon-

dence is unknown, we can estimate it using the group-wise registration. Group-wise

registration methods generally involve a global criterion measuring the group-wise

correspondence and can be roughly grouped into two categories: 1) Explicit template-

based group-wise registration and 2) Implicit template-based group-wise registration.

The explicit ones require a template surface to be selected and every other surface

is registered to the template pair-wisely. Bias can occur in selecting the template,
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i.e., the template can be unrepresentative about the population. Therefore, the shape

model could be biased. Frangi [56] registered surface iteratively in a natural coordi-

nate system to reduce the bias, but it could not be removed. On the other hand, the

implicit registration registers all inputs to a common and hidden coordinate system,

so is unbiased. In the following section we introduce six representative group-wise

surface registration methods. Four of them were evaluated in this study and MDL

was chosen to build the shape model of the prostate for future experiments.

2.3.1 Group-wise Registration using SPHARM First Order Ellipsoid

SPHARM [12] is a smooth, resolution-controllable shape descriptor. By defin-

ing the Fourier expansion on spherical domain, a closed surface x can be represented

by a series of Spherical Harmonics (SPHARM) in Eq. (2.1).

x(θ, φ) =
∞∑
l=0

l∑
m=−l

cl
mYl

m(θ, φ) (2.1)

where (θ, φ) is the coordinate on the sphere domain, Yl
m denotes a spherical harmonic

function of degree l and order m and cl
m is the corresponding coefficient.

By optimizing an equal area mapping and minimizing angular distortions [12],

a shape object is mapped from the 3D quadrilateral voxel mesh to the unit sphere.

From there the coefficients for spherical harmonics are computed to represent the

original shape object. With these harmonics defined naturally on (θ, φ) domain,

it is straightforward to obtain a spherical parameterization of a surface. With a

icosahedron subdivision on the sphere, the original shape can be represented as an
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uniformly distributed landmark mesh [80]. Both representations are extensively used

in the experiment of surface registration.

The correspondence of a group of surfaces can be estimated by aligning their

SPHARM parameterization such that the ridges of the first order ellipsoid coincide.

One problem of this method is that the rotational symmetry of first order ellipsoid

is undistinguishable. Arbitrary matching the ridges may weaken the quality of the

correspondence [117].

2.3.2 Particle-based Group-wise Registration

Following the strategy of minimizing information content across an ensemble

of surfaces, the particle-based groupwise registration offers a non-parametric corre-

spondence finding method [17]. Each surface is associate with a particle system,

represented as a pointset z = (x1, x2, . . . , xN), treated as a realization of a random

variable Z. Suppose every point xi with the PDF function p(xi) defined as

p(xi) =
1

N(N − 1)

N∑
j=1
j 6=i

G(xi − xj, σ) (2.2)

where G(xi − xj, σ) is a isotropic Gaussian with standard deviation σ. The amount

of information carried by a surface particle system z is therefore given as

H(z) = −
∫
p(z)log(p(z)) dz (2.3)

≈
∑
i

log
1

N(N − 1)

∑
j,j 6=i

G(xi − xj, σ) (2.4)
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For a collection of M surfaces, with their particle ensemble E = z1, z2, . . . , zM , we can

place these particles row by row into a matrix and the points with the same indices

(each column) can be modeled as a random variable. The information content across

E can be computed as H(E).

H(E) ≈ 1

2
log|S| = 1

2

∑
j

logλ j (2.5)

where λ j is the eigenvalue of the shape covariance matrix S (see Eq. (2.15)).

For the group-wise surface registration, the cost function

Q = H(E)−
M∑
k=1

H(zk) (2.6)

is minimized by finding ẑ = (ẑ1, ẑ2, . . . , ẑM) = arg minẑ Q with the constraint that

ẑ1, ẑ2, . . . , ẑM are on the original input surfaces. Minimizing the first part of Eq. (2.6)

leads to a compact shape model. The summation terms favor a equidistantly dis-

tributed particle coverage of the surfaces which is desirable for accurate surface rep-

resentation. The particle-based method requires no parameterization on surface there-

fore can be used for a wide range of surface topology, such as open surface, closed

surface and multi-objects [16].

2.3.3 Group Registration based on Minimum Description Length

The minimum description length (MDL) can serve as a global criterion in

group-wise surface registration for statistical shape modeling. Inspired by the prin-



21

ciple of Occam’s razor that the “best” model should describe the entire training set

most efficiently, Davies et al. [33] proposed encoding the training set with the mini-

mum description length Ltotal consisting of two components:

Ltotal = Lparam + Ldata (2.7)

When Ltotal is minimized, a good surface correspondence is obtained. This method

assumes the point distribution model (PDM) [27], a special multivariate Gaussian

model, can describe the surface population.

To overcome the slow convergence of the original method, Thodberg [122]

proposed a simplified and efficient MDL algorithm where Ltotal is defined as:

Ltotal =
∑
m

Lm where Lm =


1 + log (λm/λcut) for λm ≥ λcut

λm/λcut for λm < λcut.

(2.8)

λcut is a cut-off value deciding which modes are considered as systematic variations

and which ones are noise. λm corresponds to the mth eigenvalue of the local shape

features. λ cut and λm reflect the code length of Lparam and Ldata, respectively.

Heimann [72] improved the computation speed further by choosing Gaussian

envelop function to represent the correspondence φ(u, v) and using the shape index

S and the curvedness C as the local shape features, defined as

C =
2

π
ln
√

(κ2
1 + κ2

2)/2, S = − 2

π
arctan

κ1 + κ2

κ1 − κ2

(2.9)
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where κ1 and κ2 are the two principal curvatures. C and S improve the curvature

measurement by decoupling the size and shape aspects of the curvature. C indicates

how curved a surface is. S describes the concaveness and convexness of the surface.

2.3.4 Groupwise registration in Metric Shape Space

Surface registration may be sensitive to the parametrization of surfaces, i.e.

the different parameterization of surfaces results in the different correspondence. To

overcome these limitations, Kurtek [82] proposed a Riemannian framework for surface

registration. Each surface is, by a special representation, q-map, mapped into a metric

shape space. The distance between two surfaces in this space is invariant to rigid

motion, global scaling, and re-parametrization. Due to the property of this L2 metric,

the deformation of the parametric mesh on the fixed surface follows the geodesic

between the two surfaces. The registration result is, therefore, inverse-consistent.

For surface registration on the spherical domain, an algorithm starts by param-

eterizing a closed surface making it a 2D manifold represented by u−, v−parameters.

Many algorithms match two surfaces in this domain and the obtained deformation

field is defined in its tangent space. There is an issue of handling the parameterization

variability. In case of conformal mapping, it is not fully automatic and the north pole

has to be specified manually. Selecting a different north pole will result in different

spherical parameterizations. Suppose Y (u, v), X(u, v) are two parametric surfaces,

γ(u, v) is an arbitrary re-parameterization. It is obvious that ‖Y (u, v)−X(u, v)‖ 6=

‖Y (γ(u, v)))−X(γ(u, v))‖. It means even though the shapes of Y (u, v) and X(u, v)
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are fixed, the different parameterization of Y and X will result in different distances.

The variability of parameterization will eventually compromise the quality of shape

model. In the parameterization-invariant shape analysis technique [83] Y (u, v) and

X(u, v) will be indirectly represented by q-maps Q(Y ) and Q(X) with guaranteed

property ‖Q(Y (u, v)) − Q(X(u, v))‖ = ‖Q(Y (γ(u, v))) − Q(X(γ(u, v)))‖. It implies

that the surface-to-surface correspondence remains fixed no matter what the initial

surface parameterization is.

In this metric shape space we can further compute the geodesics between

parametric surfaces [84]. With this ability, it is claimed the Karcher mean and Karcher

variance of shapes lead to more accurate statistics computing of shape population [84].

2.3.5 Transitive inverse-consistent surface registration

Geng et al. [62] developed a group-wise registration method, called transitive

inverse consistent manifold registration (TICMR). It jointly registers a group of three

manifolds embedded in a higher dimensional image space and needs no common

reference frame. TICMR works for landmarks, surfaces and images. For the surface

registration, TICMR uses the iterative closest point (ICP) and linear interpolation on

the triangulated mesh to approximate a dense correspondence. A minimizer of elastic

energy on the surface provide extra regularization. Including the inverse consistency

error (ICE) [22] and the transitivity error (TE) [20] into the cost function, TICMR

can reduce certain local mis-alignment that occurs in uni-directional method.

TICMR can register a group of N images simultaneously by exhaustively pair-
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ing images up. However it is prohibitive as the computational complexity will rise

exponentially. To make it computation feasible, a clustering TICMR was developed

in [61]. This method clusters the population into groups of 3. If the group number

is larger than 3, cluster the subgroups to group of three recursively until every group

contains at most three surfaces. We can optimize the set of transformations in each

group using TICMR.

2.3.6 Group-wise image registration

As an extension to the pair-wise image registration (surveyed in Sec. 2.2.5), the

group-wise image registration can be used to study the shapes population. Cabezas [14]

reviewed the groupwise image registration for atlas building. In the implicit group-

wise registration, the global transformations are estimated simultaneously. Twining

et al. [125] used the minimum description length (MDL) to guide the group-wise non-

rigid image registration. Studholme [114], Bhatia et al. [9] and Zhang and Rangara-

jan [143], extending the concept of mutual information in pair-wise multi-modality

image registration, created a measure for population alignment. These methods are

computationally expensive since the computation increases exponentially when the

number of the input images increase linearly. Zollei et al. [147] proposed an efficient

registration method, congealing technique, where the objective function avoids the

expensive computation of the joint density function when the number of inputs is

large.
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2.4 Statistical Shape Models

Statistical shape models (SSM) carry the shape knowledge of the anatomical

objects from the observed medical image datasets. They provide a promising means

to constrain, drive or predict in various medical imaging applications such as image

segmentation, registration and interpretation. To build a SSM, one needs to capture

the average shape and discover the shape variation modes from a given training

population.

2.4.1 Methods

This section follows the concept of Point Distribution Model proposed by

Cootes et al. [27]. Suppose the training dataset contains M shapes {x1,x2, . . . ,xM},

and the group-wise correspondence is known (e.g., via the group-wise surface regis-

tration). Each shape consists of N pairs of evenly distributed sample points. The

i-th shape is represented as:

xi = (xi1, y
i
1, z

i
1, x

i
2, y

i
2, z

i
2, . . . , x

i
N , y

i
N , z

i
N)T (2.10)

and the sample matrix X is defined as:

X =



x1
1 x2

1 . . . xM1
y1

1 y2
1 . . . yM1

z1
1 z2

1 . . . zM1
...

...
...

x1
N x2

N . . . xMN
y1
N y2

N . . . yMN
z1
N z2

N . . . zMN


(2.11)
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The mean shape is obtained by averaging X row by row:

x̄ = (x̄1, ȳ1, ȳ1, x̄2, ȳ2, ȳ2, . . . , x̄N , ȳN , z̄N) (2.12)

where

x̄j =
1

M

M∑
i=1

xij , ȳj =
1

M

M∑
i=1

yij and z̄j =
1

M

M∑
i=1

zij (2.13)

To capture the shape variation, we subtract the mean shape from each shape:

δxi = xi − x̄ (2.14)

And we obtain the covariance matrix of size 3N × 3N :

S =
1

M

M∑
i=1

δxi(δxi)T (2.15)

Solving the eigen-decomposition equation

Spi = λ ip
i (2.16)

gives the eigenvectors {p1,p2, . . . ,p3N} and the corresponding eigenvalues {λ 1, λ 2, . . . ,

λ 3N} of S. S is then decomposed into 3N shape variation modes. Each eigenvector

pi captures one of these (directions), and λ i tells its significance. The eigenvectors

of S serve as a orthogonal basis of the space of shape. Given a particular shape x, it
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can be represented by:

x = x̄ + Pb (2.17)

where b = (b1, b2, . . . , b3N)T is a vector of weights, defining a coordinate in the pa-

rameter shape space, P = (p1,p2, . . . ,p3N) maps the shape parameter to the original

shape space and the mean shape translates the mapped one to the origin.

The eigenvalue λ i of S indicates how much variation appears on the particular

direction, the axis represented by pi. Thus, we can sort the eigenvalues from large to

small, and choose the first t(< 3N) ones to approximate a shape:

x ≈ x̄ + Ptbt (2.18)

where Pt = (p1,p2, . . . ,pt) and bt = (b1, b2, . . . , bt). One approach to choosing t is

to compare the sum of variance up to t and the total variance λ total =
∑3N

i=1 λ i such

that:
t∑
i=1

λ i ≥ αλ total 0 < α < 1 (2.19)

where the choice of α depends on the requirement of the application. Usually, a small

number of modes can describe most of the shape variation, leading to a compact

shape model.

Carrying the knowledge of shape it models, the Eq. (2.18) can generate new

examples of shapes by varying the random variable bt. When bt is assumed as a
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multi-variate Gaussian random variable [27], a proper range of bi can be:

− 3
√
λ i ≤ bi ≤ 3

√
λ i (2.20)

The PDM can be generalized to continuous domains. For a smooth parametric

curve (1D manifold), the shape probabilistic model Eq. (2.18) can be defined as

x̂(t) = x̄(t) +
M∑
i=1

bipi(t) = x̄(t) + P (t)b (2.21)

where t is a continuous variable. For a smooth parametric surface (2D manifold),

x(u, v) like the bladder and prostate surfaces in this work, we choose the shape model

given by

x̂(u, v) = x̄(u, v) +
M∑
i=1

bipi(u, v) = x̄(u, v) + P (u, v)b (2.22)

An illustration of how the shape changes over the first shape mode can be seen in

Fig. 2.4.

2.4.2 Evaluation measures

Evaluating the quality of the statistical shape model is an important task

for the whole dissertation. Under the assumption that shape sample is governed

by a Gaussian distribution, the quality of model depends on that of correspondence

estimated by the group-wise registration methods surveyed in Sec. 2.3. If the manual

landmarks are available, the first choice is to use the distance to these landmarks

as the gold standard to evaluate the correspondence. Unfortunately, we do not have
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Figure 2.4: Illustration of how the shapes of the bladder, prostate and rectum of
Patient A from NKI dataset changes. Only the first shape mode b1 is used. b1 varies
from −3

√
λ 1 to 3

√
λ 1. The mean shapes of each organs are shown in the middle

column with b1 = 0. The groupwise surface correspondence was estimated by MDL
method.
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them in our dataset. To evaluate in absence of ground truth, we use two published

and widely accepted measures [36, 117]: specificity and generalization ability, covering

different properties that a good model is expected to have.

Model generalization: a overfitted model is unable to generalize to unseen

shapes. Given limited training samples, a model with strong generalization ability can

perform well the unseen shape instances. The generalization ability is quantified us-

ing leave-one-out trials. Suppose the training set is given by A = {xi : i = 1, . . . ,M}

and the number of variation modes is nm. We build a model from all training samples

except the j-th. We can fit this model to the j-th example xj to obtain an approx-

imation x̃j. The average distance between the fitted model x̃j and the excluded xj

over the whole trials [36] is a function G(t).

G(nm) =
1

M

M∑
j=1

‖xj − x̃j‖ (2.23)

Model specificity: a model is specific if it only generates valid shape in-

stances that are similar to those in the training set [36]. One way of measuring the

specificity is to compare the probability density function (p.d.f) of a model and that

of the generated instances. Suppose we have a set of randomly generated examples

B = {yj : j = 1, . . . , ns} from a model with nm shape parameters, the average

distance between each of them to training set suggests how specific these generated
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sample to the model. Therefore the specificity S(k) is defined as:

S(nm) =
1

ns

ns∑
j=1

min
i
‖yj − xi‖ (2.24)

where ns is the number of samples drawn from the shape model. In the experiment

ns was chosen 10,000 times.

2.4.3 Experiment

Our NKI database contains the FBCT pelvic images from 19 patients acquired

daily through the treatment session (see [41] for detailed description). Table 2.1 pro-

vides a simple overview of the availability of the patient data. The bladder, prostate

and rectum on each image were contoured slice-by-slice by a single expert. These

organ segmentations comprise the training population of our experiment.

Two types of shape model can be constructed: one is for the whole patient

population (population level), the other is for the specific patient (individual level).

Due to the limited size of the shape instances, it is unrealistic to build an accurate

model for the entire population (including the unseen shapes). Besides, our immediate

use shape model is to help the image registration for a particular patient. Therefore,

our experiment only evaluates the shape model at the individual level.

Based on our requirement on algorithms and the availability of the implemen-

tations, we choose five algorithms as the candidates. 1) SPHARM First order ellipsoid

matching [116] (SPHARM); 2) Entropy-based particle system with SPHARM initial-

ization [17] (Particle); 3) SPHARM registration followed by Particle registration [99]
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Table 2.1: Numbers of CT scans (days) for each patient in NKI dataset

Patient
Total # Scan

of scans 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 13 X X X X X X X X X X X X X
B 10 X X X X X X X X X X
C 12 X X X X X X X X X X X X
D 11 X X X X X X X X X X X
E 13 X X X X X X X X X X X X X
F 9 X X X X X X X X X
G 12 X X X X X X X X X X X X
H 13 X X X X X X X X X X X X X
I 12 X X X X X X X X X X X X
J 11 X X X X X X X X X X X
K 12 X X X X X X X X X X X X
L 14 X X X X X X X X X X X X X X
M 11 X X X X X X X X X X X
N 11 X X X X X X X X X X X
O 6 X X X X X X
P 13 X X X X X X X X X X X X X
Q 13 X X X X X X X X X X X X X
R 12 X X X X X X X X X X X X
S 11 X X X X X X X X X X X

(SPHARM+Particle); 4) Minimum Description Length [72] (MDL); 5) SPHARM reg-

istration followed by MDL (SPHARM+MDL). The building steps are illustrated in

Fig. 2.5.

Parameterizing organ surfaces

We choose the parametric surface as the shape representation. With the shape

decomposition ability of SPHARM (Sec. 2.3.1), we converted each binary organ seg-

mentation to the block representation and then the icosahedron or the (u, v) paramet-

ric representations, respectively. This process is illustrated in Fig. 2.6. Icosahedron
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Collect training images

Segment the organ object
from each image (the organ
segmentation is represented
by a binary label image)

Represent each binary segmen-
tation with spherically para-
metric mesh using SPHARM

Find the correspondence be-
tween the parametric surfaces

PCA analysis

Point distribution model

Statistical Shape Modeling

Figure 2.5: Steps for building the organ shape model.
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representation is preferred over the (u, v) one for shape model building since the uni-

formly distributed point coverage reduces the bias. However, for the computation of

surface assimilation in the next chapters, a (u, v) representation is needed since it

provides a natural coordinate system on the sphere domain.

2.4.4 Results

The evaluation results of the five surface registration algorithms on the blad-

der, prostate and rectum dataset are reported in Fig. 2.7, Fig. 2.8 and Fig. 2.9,

respectively. In each figures, the x-axis is the number of shape variation modes nm

and the y-axes associated with G(nm) and S(nm) are the errors of the generality abil-

ity and specificity, respectively. For a specific algorithm and a given nm, the errors

are averaged cross the patient population. An algorithm with smaller errors is better.

The evaluation results show the pattern that all algorithms’ generality errors

go down and specificity errors slightly go up as more shape modes are involved. The

error ranges on the bladder and prostate are similar and both are much smaller than

that on the rectum. We attribute this pattern to the topological difference between

the spherical-like bladder, prostate and the tubular-like rectum. This may suggest:

1) the candidate algorithms are not good at tubular structure modeling 2) the shape

consistency among rectum surfaces is bad. Due to these reasons, we did not use the

rectum data in our experiments in Chapter 3 and Chapter 4.

Some patients have more than 12 organ segmentations. Thus nm along the x-

axis could be larger than 10 (we need 11 segmentations to complete the computation
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Figure 2.6: Illustration of surface parameterization using SPHARM.
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if nm = 10). However, the average over the population is unreliable when nm is

beyond 11 (we do not have enough samples for the average).

In the case of shape analysis, the generalization ability is more important than

the model specificity because we do not generate new surfaces. In the case of shape

simulation and prediction, model specificity weighs over the generalization ability.

When the number of shape variation modes is larger than 6, our experiment

shows MDL is consistently better than other algorithms. The results agree with

[117, 34] where MDL is the winner over SPHARM and DevCov on the site of lateral

ventricles and femoral head. We also see that the concatenation of algorithms (one

algorithm followed by another), like SPHARM+MDL and SPHARM+Particle, helps

little.

We conclude by choosing MDL as the shape modeling method for the remain-

ing chapters. However the implementation of MDL [72] we have is much slower (at

least 10 times) than other non-MDL methods. The Particle method offers a bet-

ter trade-off between the accuracy and running time. In the case of prostate, the

performance of Particle is closer to MDL.

To leave us enough data for validation experiments done in Chapter 3 and

Chapter 4, we choose the first 8 organ shapes for every patient to build the shape

model.



40

2.5 Inter-observer Segmentation Error

Given multiple segmentations on the same object, we propose to quantify the

organ boundary segmentation error denoted by ω(u, v) using the Principal Component

Analysis (PCA) with the assumption that the inter-observer segmentations follow

Gaussian model. The correspondence among these manual surfaces can be estimated

using the group-wise surface registration methods in the previous section.

The quantification of the inter-observer segmentation error (ISE) serves two

purposes: 1) it helps to generate the simulated manual segmentations used in the

experiments of Chapter 3 and Chapter 4, 2) it predicts the segmentation errors on a

new manual segmentation, playing an important role in the algorithms in Chapter 3

and Chapter 4. We demonstrate the idea in the following study which quantifies the

ISE for FBCT/CBCT.

2.5.1 Description of Patient Data

A multiple observer-contouring study was performed on a set of FBCT and

CBCT that were obtained as part of an IRB-approved protocol [141]. All patients

underwent primary external beam radiotherapy and had tumors that were confined

to the prostate (2 x T1cN0, 1 x T2aN0, 1 x T3aN0). Three patients had markers

or dosimeters implanted prior to treatment: Patient 1 had 2 DVS devices (Sicel

Technologies, Morrisville, NC) implanted in the prostate, patient 3 3 gold markers

and patient 4 3 Calypso markers (Calypso Medical Technologies, Seattle, WA). Fan

beam CTs of the pelvis were acquired with continuous 1.5 mm slices on a 16 slice
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scanner with a 60 cm field-of-view (140kV, 350 mAs, Brilliance Big Bore, Philips

Medical Systems, The Netherlands). Kilovoltage CBCTs were acquired in half-fan

mode with bowtie filter and anti scatter grid (125kVp, 80mA, 25 ms, Varian Medical

Systems, Palo Alto, CA). 630 projections were acquired over a 360 degree rotation in

approximately one minute. The field-of-view was 48x48 cm2 in axial plane and 14.25

cm longitudinal length. A 512 matrix was used for both imaging modalities. Pixel size

for CBCTs was either 0.059 x 0.059 x 0.15/0.1 cm3 or 0.49 x 0.49 cm x 0.15 cm3. For

FBCTs pixel size was either 0.097 x 0.097 x 0.15 cm3 or 0.117 x 0.117 x 0.15 cm3. All

imaging was performed without intravenous contrast. Structure delineation On both

imaging modalities prostate, bladder and rectum were delineated independently by

5 medically experienced personnel using commercially available treatment planning

software (Pinnacle version 8.1, Philips Medical Systems, Milpitas, CA). Contouring of

FBCT and CBCT images was performed independently on each modality according to

a detailed contouring protocol that among others provided instructions on the choice

of window level and a description of anatomical details to be considered during the

contouring process.

2.5.2 Method

Let Xi(u, v) and Yi(u, v), i = 1 . . . n, denote the manually segmented prostate

surfaces traced on FBCT and CBCT images, respectively, by the i-th expert. Each
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randomly sampled FBCT prostate surface, X(u, v), can be represented as

X(u, v) = X̄(u, v) +
n∑
i=1

biβi(u, v) (2.25)

where X̄(u, v) is the mean prostate surface, bi is a random variable with normal distri-

bution bi ∼ N(0, σ2
i ), σ

2
i is the i-th eigenvalue of the covariance matrix, and βi(u, v) is

the corresponding vector-valued eigenfunction, representing the i-th variation mode.

Similarly, Y (u, v) can be represented as

Y (u, v) = Ȳ (u, v) +
n∑
i=1

ciψi(u, v) (2.26)

where Ȳ (u, v) is the mean shape of CBCT prostate, ci ∼ N (0, ε2i ), and ψi(u, v) is the

corresponding variation mode.

The segmentation uncertainty ω(u, v) is designed to have the following prop-

erty. ω(u, v) is low at the regions where the experts’ manual contours closely agree

with each other. Experts are confident about the boundary location either because

of the boundary is easy to distinguish or is supported by experts’ knowledge. When

we register these regions, more weight should be given to these regions. The segmen-

tation uncertainty is high at regions of large inter-observer discrepancies, indicating

the lack of expert consensus on boundary location. We thus should give less weight

when matching these regions. To simplify the computation we define

ω(u, v) = tr(Cov (X(u, v))) + tr(Cov (Y (u, v))) (2.27)
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At each point (u0, v0), the trace of the covariance Cov (X(u0, v0)) is derived as

tr(Cov (X(u0, v0))) = tr(E {[X(u0, v0)− X̄(u0, v0)][X(u0, v0)− X̄(u0, v0)]T})

= tr(E {[
n∑
i=1

biβi(u0, v0)][
n∑
i=1

biβi(u0, v0)]T})

=
3∑

k=1

n∑
i=1

n∑
j=1

E {bibj}βik(u0, v0)βjk(u0, v0)

=
3∑

k=1

n∑
i=1

σ2
i β

2
ik(u0, v0)

where i has the same meaning in Eq. (2.25) and k represents the k-th direction among

x, y and z directions. Similarly, tr(Cov (Y (u0, v0))) =
∑3

k=1

∑n
i=1 ε

2
iψ

2
ik(u0, v0).

2.5.3 Preliminary Results for Individual Patient

A multiple observer-contouring study was performed on a set of FBCT and

CBCT from 4 patients. On both imaging modalities prostate, bladder and rectum

were delineated independently by 5 medical experts using commercially available

treatment planning software (see ?? for description). This is a different dataset with

that used in Sec. 2.4.

We computed the FBCT/CBCT segmentation errors for each of four patients

following the steps in Fig. 2.10. The correspondence among the training surfaces were

computed using MDL (see Sec. 2.3.3). The boundary variance among the manual

surfaces was computed using the method in Sec. 2.5.2 and are illustrated in Fig. 2.13.
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Collect FBCT and
CBCT training images

Segment the prostate mul-
tiple times from each im-
age (each segmentation is

saved as a binary label image)

Convert each segmenta-
tion to a spherical parame-
terization using SPHARM

Find the corre-
spondence between
FBCT surfaces

Find the corre-
spondence between
CBCT surfaces

PCA Analysis PCA Analysis

Compute FBCT
segmentation error

Compute CBCT
segmentation error

Modeling Interobserver Segmentation Error

Figure 2.10: Steps for modeling the inter-observer segmentation error.
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2. PCA analysis

Figure 2.11: Procedures for quantifying the inter-observer segmentation error (ISE).
Given five instances (in solid colors) of segmentations of the same prostate, we first
run group-wise surface registration to estimate the correspondence (red arrows) and
then use PCA to compute the distribution of segmentation errors on the average
surface (in rainbow color).

−3σ −σ mean σ 3σ

Figure 2.12: Illustration of the first variation mode of the ISE model. The mean
shape (σ = 0) is shown at the center. This example shows that a large segmentation
error happened at the base of the prostate.
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2.6 Discussion

Different shape analysis algorithms have the different assumptions therefore

the different methodologies towards the shape object. Each algorithm has its own

strengths and limitations. Therefore, it is necessary to evaluate the candidate meth-

ods in the context of physiologically meaningful results. This chapter evaluated dif-

ferent 3D shape analysis methods to seek the appropriate surface alignment method

that can capture the shape knowledge of the underlying anatomical changes of pelvic

organs. With generalization and specificity as the benchmark measures, the group-

wise surface registration method based on the minimum description length (MDL) is

chosen over other methods.

A wider range evaluation experiment can be done in the future by including

the methods in the metric shape space Sec. 2.3.4 and those based on grayscale image

registration. Other evaluation methods, e.g., ground truth PDM (similar to know

transformation) proposed by Munsell [96], can be included. We used a fixed surface

resolution (the number of points covering the surface), i.e., 2562 points (Icosahedron,

d4)) in the experiment. A sensitivity analysis on the resolution can also be an inter-

esting study since it affects the speed of the algorithms, a major concern for clinical

use.

In Sec. 2.4.3, we map the pelvic organ surfaces, i.e. the bladder, prostate and

rectum surfaces, onto the unit sphere, from there we establish the parametric mesh

using the SPHARM method. For bladder and prostate, since their shapes are similar

to a sphere, this spherical mapping does not cause significant distortion. For a rectum
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surface, however, is topological equivalent to a tube. In the pre-processing step we

capped the two ends to make the mapping working but large mapping distortion

could occur. Huysmans [76] proposed a parameterization of tubular surfaces and a

group-wise surface registration based on MDL method. Future work can be done to

evaluate the severity of the distortion of spherical parameterization of rectum surface.

If the distortion is large, the cylindrical mapping can be an alternative option.

Comparing with the implicit representations, such as level set, curvature flow,

medial representation [100], the parameterized surface is more straightforward for

PCA-based shape analysis. The advantages include 1) it is a natural representation

of 3D objects and the geometric features (e.g. curvature) are preserved naturally

2) its parametric form makes it easy to switch among arbitrary resolutions. 3) it

is less demanding on the disk storage and computational resources than the volume-

based representation. Mapping the original shapes to the spherical domain provides a

common coordinate system in which the one-by-one correspondence between surfaces

can be estimated. These methods, like spherical-MDL and registration in shape space,

can only model one shape object. The extension to multiple shape registration has

not been reported. In such applications, a volume-based or particle-based method

may be preferable.

One limitation of this study is that we explain the shape changes purely based

on the observed shape samples without considering the domain-specific knowledge.

For instance, the shape changes of a prostate are also subject to the interaction with

the seminal vesicle. As such the large deformation on a pair of prostate surfaces
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suggested by the pure shape analysis is implausible in clinical sense. The fullness

and voidness of the bladder and the rectum also make it hard for shape analysis and

inference. Therefore the clinical inputs are necessary for the accurate modeling of

shape objects and the interaction among them.

Although we only built statistical shape models for individual patients, the

shape model for the population, if accurate, can be used in a wider range of applica-

tions [93, 95]. Modeling and quantifying the segmentation error is a non-trivial and

interesting question in radiotherapy. And it is receiving increasing attention [89].

We analyzed the shape changes and the segmentation error using Principle

Component Analysis (PCA) with the assumption that they can be explained by the

Gaussian model. From that we developed a method for quantification. However, due

to the limited resources, this assumption was not verified. With more data avail-

able, kernel-based method [26], non-linear PCA [11], or Principal Geodesic Analysis

(PGA) [52], can be applied.

The modeling of segmentation error cross the population is even harder since

it requires large scale training inputs and sophisticated statistical methods. Likely, a

consistent segmentation error model independent of patient-to-patient does not exist.

The distribution of interobserver segmentation error (ISE) varies case-by-case. As

the study of vessel contouring [19] suggests the segmentation error could be related

with the surrounding intensity.
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2.7 Summary

The surface assimilation method introduced in the next chapter requires a

good understanding of the organ shapes and the interobserver segmentation uncer-

tainty. We propose that both knowledge can be obtained though the statistical shape

analysis (SSA). The quality of SSA, in turn, depends on that of group-wise correspon-

dence. Therefore, we surveyed the common surface registration algorithms, selected

the candidate group-wise registration methods, evaluated their performance with our

organ shape database. Following the Principal Component Analysis method, we built

two types of statistical models for organ segmentations using the suitable algorithms.

One is the statistical shape model (SSM) summarizing the average shape and the ma-

jor variation modes. SSM helps to predict where the plausible boundary is in a noisy

segmentation. The other model is the one for interobserver segmentation error (ISE)

characterizing the distribution of manual segmentation error along a organ surface.

Both models carry important knowledge that are essential to the surface assimilation

(Chapter 3) and the shape model-constrained image registration (Chapter 4).
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CHAPTER 3
SURFACE ASSIMILATION

3.1 Introduction

Suppose the signal f(t) is corrupted by the additive noise ε(t) and the observed

measurement yi of f(t) at i-th location of total N observation spots can be represented

as

yi = f(ti) + εi, i = 1, 2, . . . , N (3.1)

Assume f is smooth and has continuous derivative at least m order, and εi is a i.i.d

Gaussian random variable with zero mean and variance σ2. An estimate of f can be

obtained by minimizing

1

N

N∑
i=1

(yi − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (3.2)

The first part, represented by the residual sum of squares (RSS), measures the fidelity

to the observed signal. The second part measures the smoothness of the estimated sig-

nal. The smoothing parameter λ balances these two penalties, which is also known

as the bandwidth in some statistics literature. When λ = 0, Eq. (3.2) becomes

an interpolation problem. When λ → ∞, it is close to a linear regression model.

As a classic non-parametric regression problem, it has received considerable amount

of attention [28]. Among the methods solving this regression model, the theory of

smoothing splines proposed by Wahba et al. [132] is widely accepted. It shows that
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the minimizer of Eq. (3.2) is a natural polynomial spline and provides the automatic

algorithm (Generalized Cross Validation) to estimate the optimal smoothing param-

eter λ .

The assumption that εi is both homoscedastic and uncorrelated is too restric-

tive for many practical applications. By weakening the assumption, Eq. (3.1) can be

generalized in several ways. Supposing the variances of εi are unequal (heteroscedas-

ticity), Andrews [4] showed GCV was still a feasible solution to achieve asymptotically

the optimality. Altman [3], Opsomer et al. [98] and Brabanter et al. [40] considered

the case that εi is correlated. Other extensions include the multi-variates regression,

such as spline model on plain [55] and sphere [132], the error-in-variable, i.e. the mea-

surements of t contain errors [7]. The limitations of the smoothing spline regression

may include: 1) It requires large observational data to reveal its internal structure

and properties. 2) When the errors are highly correlated, the estimation of f is likely

not good enough.

Consider our original problem: given a stack of 2D manual contours of an

3D object with these contours having the segmentation (observational) errors, our

goal is to estimate a new surface closer to the true one. It can be formulated as a

nonparametric regression problem. The challenge is that the segmentation errors are

correlated and unequal instead of i.i.d homoscedastic Gaussian random noise along

the boundary. Without the prior knowledge about the signal, the nonparametric

regression in this case is hard. To simplify our problem we assume the errors are

uncorrelated based on the following reasons. The object boundary is contoured slice
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by slice and a human observer segmenting a slice generally does not refer to the

previous ones. Thus the error between the slices can be treated as uncorrelated. The

in-slice error is correlated, which makes it hard for the nonparametric regression to

distinguish the signal from the noise. To deal with it we will use the history knowledge

of the signal, i.e., the statistical shape model (SSM) from the previous chapter. As

for the heteroscedasticity of the error variances, estimated by the analysis of the

interobserver segmentation error (ISE), we use them as a clue for fusing the observed

boundary and the predicted one from the SSM.

3.2 Data Assimilation with Shape Prior

Interestingly, combining the observed surface with the prior knowledge is sim-

ilar to a Data Assimilation (DA) [79] problem. Therefore we call our surface fusion

method Surface Assimilation. As a typical DA problem, Numerical Weather Predic-

tion (NWP) tries to give a better estimate of current weather condition by consider-

ing the current inaccurate observation and the prediction from the historical weather

data.

The data assimilation can be formulated as an optimization problem. In a

simple form, given N pointwise measurements, the cost function (Eq. (3.3)) consists

of the sum of the squared difference between the observed measurements yi and

the estimate f(ti) weighted by the accuracy of observation σ2
i , plus the sum of the

squared difference between the model prediction ŷi and the estimate f(ti) weighted
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by the accuracy of prediction δ2
i .

C(f) =
N∑
i=1

(yi − f(ti))
2

σ2
i

+
N∑
i=1

(ŷi − f(ti))
2

δ2
i

(3.3)

The pointwise correspondence between yi, f(ti) and ŷi is established by the curve or

surface registration (see Chapter 2). Under the spline-based function approximation

framework, the smoothness of f in Eq. (3.3) is regularized by the constraint:

C(f) =
N∑
i=1

(yi − f(ti))
2

σ2
i

+
N∑
i=1

(ŷi − f(ti))
2

δ2
i

+ λ

∫ 1

0

(f (m)(u))2du (3.4)

In our case, the statistical shape model (SSM) built from a set of high quality object

segmentations provides the model prediction ŷ. A set of multi-observer segmented ob-

jects are collected to determine the segmentation error σi. As in Chapter 2, the shape

model and segmentation error are both assumed as Gaussian random distribution

summarized by Point Distribution Model (PDM). Suppose the shape is represented

by N points and the SSM contains M variation modes described as

x = x̄+ Pb (3.5)

where x̄ is the mean shape, b = (b1, b2, . . . , bM)T is a M×1 vector of Gaussian random

variables, P = (p1,p2, . . . ,pM) is a N × M matrix defining the shape variation

directions. Given an observed surface y, we can obtain a predicted one by minimizing
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shape model space

noise space

observed shape y

predicted shape ŷ by shape model

Figure 3.1: Observed shape (red) is projected onto the shape model space, forming a
predicted surface (blue).

the cost function:

b̂ = arg min
b

[x̄+ Pb−R(y)]2 (3.6)

where R(•) is the Procrustes transformation. This linear regression gives a set of

shape coefficients b̂. From it a new shape ŷ = x̄+ P b̂, which is the predicted surface

based on our prior shape knowledge Fig. 3.1. We will combine it with the observed

surface to estimate the truth.

Eq. (3.6) can be viewed as a signal-noise filtering process. Suppose the sta-

tistical shape model (SSM) can capture all instances of a signal (true shape). Given

a noisy signal (the true surface corrupted by the inter-observer segmentation error,

ISE), the recoverability of SSM against ISE depends on the orthogonality of the

space of SSM and ISE. Ideally, if the ISE noise is in the null space of SSM, by solving

Eq. (3.6), ISE will be filtered out and ŷ will be close to the true one. The worse

case happens when the ISE falls into the same space of the SSM where the noise
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and signal are undistinguishable. Also, the recoverability is compromised by the Pro-

crustes transform since the differences in scale, rotation and translation are removed.

A signal corrupted by these transformations will be hard to identify.

In many real applications, the shape model is not perfect, meaning that the

signal often contains the components in the higher dimensions. In such case, even if

the noise is perpendicular to the signal, the shape model prediction is not accurate

enough. Therefore we use the current observed signal y to compensate. In this study

we choose the following equation to assimilate these two kinds of surfaces:

C(f) =
N∑
i=1

(1− αi)(yi − f(ti))
2 +

N∑
i=1

αi(ŷi − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (3.7)

where αi ∈ [0, 1] is the pointwise normalized of Eq. (2.27) balancing the contribution

from the model prediction and the current observation at the i-th point.

As we see in the later discussion, under the smoothing spline regression (SSR)

framework, the first two terms are in a Hilbert space, orthogonal to the one that the

third term is in. Therefore the minimizer of C(f) in Eq. (3.7) can be obtained by

minimizing the first two terms (Data Assimilation) and substituting yi in Eq. (3.2)

with this minimizer, and then solving Eq. (3.2) by SSR.

The first terms of Eq. (3.7) is a quadratic function. It is easy to verify that its

minimizer is given by

f̂i = (1− αi)yi + αiŷi (3.8)
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Therefore the minimizer of Eq. (3.7) is obtained by minimizing the following equation

1

N

N∑
i=1

(f̂i − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (3.9)

In the upcoming sections we introduce the theory of smoothing spline regression.

3.3 Smoothing Spline Regression

Suppose the observation of f is indirect by satisfying the relationship y(i) =

Lif(xi) + εi and the penalty on f is some more general quadratic functionals, we can

extend Eq. (3.2)

1

N

N∑
i=1

(yi − f(ti))
2 + λ

∫ 1

0

(f (m)(u))2du (3.10)

to a more general form

1

N

N∑
i=1

(yi − Lif)2 + λ

∫ 1

0

(Lmf(u))2du (3.11)

where Li is a linear evaluation functional and Lm is anm-th order differential operator.

Different applications can be formulated under Eq. (3.11) with different domains and

specific splines. For example, the growth curves are defined on the continuous interval

and the weather data are defined on the sphere. By considering the model space of f

in a reproducing kernel Hilbert space (RKHS), we can study this generalized Penalized

Least Square (PLS) problem in a unified fashion [132].
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3.3.1 Reproducing Kernel Hilbert Space

This section explains briefly the mathematical background of RKHS. The fol-

lowing definitions and theorems were adapted from [31] and [134].

Definition 3.1 (Vector space[31]). A vector space V is a mathematical structure

over a field F with a vector addition operation ⊕, a scalar multiplication operation

⊗, a unary additive inverse operation 	 satisfying the following axioms: For any

u, v, w ∈ V and a, b ∈ F,

• Associative Law: (u⊕ v)⊕ w = u⊕ (v ⊕ w)

• Commutative Law: u⊕ v = v ⊕ u

• Inverse Law: u⊕ (	u) = 0V

• Identity Laws: 0V ⊕ u = u and 1⊗ u = u

• Distributive Laws: a⊗ (b⊗ u) = (ab)⊗ u and (a+ b)⊗ u = a⊗ u⊕ b⊗ u.

A function over a vector space V to R defined a norm, denoted ‖·‖, if it satisfies the

following properties: For any f, g ∈ V and a scalar α, (1) ‖f‖ ≥ 0, (2) ‖αf‖ = |α|‖f‖,

(3) ‖f + g‖ ≤ ‖f‖+ ‖g‖, (4) ‖f‖ = 0 if and only if f = 0. A norm measures the size

of a vector or the distance between two vectors. A vector space with a norm is call

normed vector space.

Definition 3.2 (Banach space[31]). A Banach space is a normed vector space X

which is complete w.r.t the norm. That is, every Cauchy sequence {fn}∞n=1 converges

to an element f in X: limn→∞‖fn − f‖ = 0
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Definition 3.3 (Hilbert space[31]). A Hilbert space H is a Banach space endowed

with an inner product mapping which, for any f, g, h ∈ H and a scalar α, satisfies

the following properties: (1) < αf, g >= α < f, g >, (2) < f, g >=< g, f >, (3)

< f, g + w >=< f, g > + < f,w >

Theorem 3.1 (Reize representation theorem[134]). Let L be a bounded linear

functional on a Hilbert space H . There exists a unique u ∈ H such that Lf =<

f, u >H for all f ∈ H . The element u is called the representer of L.

Assuming H is a Hilbert space of real-valued functions from χ to R for some mea-

surable domain χ. For a fixed element x ∈ χ, a evaluational functional Lx ∈ H is

defined as

Lxf = f(x)

Definition 3.4 (RKHS[134]). A Reproducing Kernel Hilbert Space (RKHS) is a

Hilbert space of real-valued functions H that every evaluational functional in H is

bounded.

Due to the Reize representation theorem, for every evaluation functional L, there is

a unique vector (denoted by Rx) in H such that

Lxf = f(x) =< f,Rx >H (3.12)
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A function R(x, z) = Rx(z) is called the Reproducing Kernel (RK) since R(x, z) =

LzRx =< Rx, Rz > (the second equality due to Reize representation theorem). It is

easy to check R(x, z) is symmetric and nonnegative definite.

Theorem 3.2 (MooreAronszajn theorem[134]). For every nonnegative definite

function R on χ× χ , there exists a unique RKHS on χ with R as its RK.

See [132] for the proof. The following properties of RKHS will be used throughout

this chapter. If H 0 and H 1 are two closed subspaces of an RKHS H , then H 0 and

H 1 are also RKHS. If H 0 and H 1 are orthogonal complement to each other, then we

say H can be decomposed into H 0 and H 1, denoted by H = H 0 ⊕ H 1, and their

reproducing kernels, R, R0 and R1, satisfies R = R0 +R1, vice versa [134].

3.3.2 Penalized Least Square Estimation

This section summarizes materials from [134] and [132] describing the proce-

dures to obtain the estimate of f , denoted as f̂ , by minimizing Eq. (3.11) with the

assumption that the λ is fixed. The methods of selecting λ will be discussed in

Sec. 3.5.

With the assumption that f ∈ Wm and the decomposition Wm = H 0 ⊕ H 1,

the PLS in Eq. (3.11) can be expressed as

1

N

N∑
i=1

(yi − Lif)2 + λ‖P1f‖2 (3.13)

with the smoothness penalty functionals Jm(f) = ‖P1f‖2, where P1 is the orthogonal

projection of f onto H 1 in Wm. When f is confined in RKHS, the minimizer of
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Eq. (3.13) was proved as a spline function [81].

By Reize Representation Theorem, for every bounded linear functional Li there

exists a representer ηi such as

< ηi, f >= Lif, f ∈ HR

By the property of RKHS,

ηi(x) =< ηi, Rx >= LiRx = Li(·)R(x, ·) (3.14)

where the first equality is derived from Eq. (3.12) and Li(·) means Li is applied to

what follows as a function of (·) [132]. Eq. (3.14) shows that we can compute the

the representer ηi by applying the operator Li to the reproducing kernel R. Since

R(x, z) = R0(x, z) +R1(x, z) and H R = H 0⊕H 1, applying P1 to ηi projects ηi onto

H 1.

Let ξi = P1ηi, by the property of RKHS and the self-adjoint P1 such that

< P1g, h >=< g, P1h > for any g, h ∈ H , we have

ξi(x) =< ξi, Rx >=< P1ηi, Rx >=< ηi, P1Rx >=< ηi, R
1
x >= LiR

1
x (3.15)

Furthermore, since < ηi − ξi, ξj >= 0

< ξi, ξj >=< ηi, ξj >= Liξj = Li(x)Lj(z)R
1(x, z) (3.16)
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Denote

T = {Liφν}ni=1
p
ν=1 (3.17)

Σ = {Li(x)Lj(z)R
1(x, z)}ni,j=1 (3.18)

where T is an n × p matrix, and Σ is an n × n matrix. In our basic PLS problem

(Eq. (3.2)), Li is the linear evaluation functional, i.e., Lif = f(xi), thus ξi(x) =

R1(x, xi), T = {φν(xi)}ni=1
p
ν=1, and Σ = {R1(xi, xj)}ni,j=1.

The following theorem shows that the smoothing spline estimate fλ is a linear

combination of the basis of H 0 and the representer in H 1 [134].

Theorem 3.3 (Kimeldorf-Wahba representer theorem[132]). Suppose T is of

full column rank and let φ1, . . . , φp span the null space (H 0) of P1, then fλ , the

minimizer of PLS Eq. (3.13), is given by

fλ =

p∑
ν=1

dνφν +
n∑
i=1

ciξi (3.19)
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where

ξi =P1ηi, (3.20)

d =(T ′M−1T )−1T ′M−1y, (3.21)

c =M−1(I − T )(T ′M−1T )−1T ′M−1)y, (3.22)

M =Σ + nλ I, (3.23)

Σ =< ξi, ξj >. (3.24)

Proof [134]: Suppose the minimizer fλ is in the form

fλ =

p∑
ν=1

dνφν +
n∑
i=1

ciξi + ρ (3.25)

where ρ is some element in HR perpendicular to φ1, . . . , φp, ξ1, . . . , ξn, therefore we

have

Liρ =< ηi, ρ >= 0 (3.26)

and

‖P1f‖2 = ‖
n∑
i=1

ciξi + ρ‖2 = c>Σc+ ‖ρ‖2 (3.27)

Then Eq. (3.13) becomes

1

n
‖y − Td− Σc‖2 + λ c>Σc+ ‖ρ‖2 (3.28)

It is obvious that Eq. (3.28) is minimized when ‖ρ‖2 = 0. Rewriting the PLS eq. (3.13)
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as

1

n
‖y − Td− Σc‖2 + λ c>Σc (3.29)

and making the first derivatives w.r.t c and d equal to zero gives

(Σ + nλ I)Σc+ ΣTd = Σy,

T>Σc+ T>Td = T>y

(3.30)

It is easy to verify that the solution [134]

d =(T ′M−1T )−1T ′M−1y,

c =M−1(I − T )(T ′M−1T )−1T ′M−1)y,

(3.31)

where M = Σ + nλ I satisfies. �

Utreras [127] showed that the following equation

(Σ + nλ I)c+ Td = y,

T>c = 0

(3.32)

is equivalent to Eq. (3.30). Solving c and d for Eq. (3.32) provides a numerically

friendly solution. Let the QR decomposition of T be

T = [Q1 Q2]

[
R
0

]

where Q = [Q1Q2] is an orthogonal matrix, Q1 is n by p, Q2 is n by n− p and R is p
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by p upper triangular. Skipping the steps in between (see [132]) on the manipulation,

we give the expressions of c and d directly

c = Q2(Q>2 MQ2)−1Q>2 y,

d = R−1Q>1 (y −Mc)

(3.33)

We conclude this section by the following definition that plays an important role in

Sec. 3.5.

Definition 3.5 (Influence matrix[132]). H(λ ) is called the influence matrix if it

satisfies L1fλ
...

Lnfλ

 = H(λ )y (3.34)

With ρ = 0 in Eq. (3.25), we have

L1fλ
...

Lnfλ

 = Td+ Σc (3.35)

Therefore H(λ )y = Td + Σc. Subtracting this from the first equation in Eq. (3.32)

gives H(λ )y = y − nλ c. Further, substituting c with Eq. (3.33)

H(λ ) = I − nλQ2(Q>2 MQ2)−1Q>2 (3.36)
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3.4 Splines for Surface Assimilation

A comprehensive set of smoothing splines have been developed for different

applications such as polynomial splines, periodic splines, spherical splines, vector

splines. To our interests, we focus on the periodic splines for closed 2D curve as-

similation and spherical splines for closed 3D surface assimilation. This section was

adapted from [134].

3.4.1 Periodic splines

When the object is in form of a closed smooth curve, the polynomial splines will

cause error at the starting and end points (actually overlapped). Thus we probably

need splines defined on the circle satisfying the periodic boundary condition. Without

loss of generality, we assume f is a periodic function defined on the unit circle with

the domain χ = [0, 1].

Let kr(x) = Br(x)/r! be scaled Bernoulli polynomials where Br(x), r =

0, 1, . . . , x ∈ [0, 1] satisfy the recursive definition [132]

B0(t) = 1

1

r

d

dt
= Br−1(t),

∫ 1

0

Br(u) du = 0, r = 1, 2, . . .

From [1] the following formula holds

B2m(x) = (−1)m−12(2m)!
∞∑
ν=1

cos 2πνx

(2πν)2m
, x ∈ [0, 1]
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The Sobolev Hilbert space for periodic spline of order m is [134]

Wm
2 (per) =

{
f : f (j)are absolutely continuous, f (j)(0) = f (j)(1), j = 0, . . . ,m− 1,∫ 1

0

(f (m))2 dx <∞
}

Craven [28] derived that the space Wm
2 (per) is an RKHS with inner product

< f, g >=
(∫ 1

0

f dx
)(∫ 1

0

g dx
)

+

∫ 1

0

f (m)g(m) dx (3.37)

And Wm
2 (per) can be decomposed into two orthogonal subspace as [134]

Wm
2 (per) = H 0 ⊕H 1 (3.38)

where

H 0 = span{1}, H 1 =
{
f ∈ Wm

2 (per) :

∫ 1

0

f dx = 0
}

(3.39)

Wm
2 (per) is an RKHS with the corresponding RK: R(x, z) = R0 +R1

R0(x, z) = 1,

R1(x, z) = (−1)m−1k2m(|x− z|)

recall k2m(·) is a scaled Bernoulli polynomials (see above). In the experiments we

chose m = 2, i.e., the cubic periodic spline as the building elements for f .
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3.4.2 Thin-plate splines

Introduced by Duchon [45] for geometric design, thin-plate splines (TPS) were

adapted [132, 65] for spatial smoothing problems due to their rotation-invariant prop-

erty. Given a set of control nodes {Di : i = 1, 2, . . . , K}, a two dimensional TPS

f(x1, x2) =
K∑
i=1

ciU(‖(x1, x2)−Di‖) (3.40)

where U(r) = −r2 log r2 is the radial basis kernel function. For d dimensional m order

thin plate spline, the smoothness penalty of f is [134]

Jdm(f) =
∑

α1+···+αd=m

m!

α1! . . . αd!

∫ ∞
−∞

. . .

∫ ∞
−∞

(
∂mf

∂xα1
1 . . . ∂xαdd

)2 d∏
j=1

dxj (3.41)

In our experiment we chose d = 2 and m = 2, the smoothness penalty becomes

J2
2 (f) =

∫ ∞
−∞

∫ ∞
−∞

(
f 2
x1x1

+ 2f 2
x1x2

+ f 2
x2x2

)
dx1dx2

Define the Sobolev Hilbert space for a thin-plate spline as

Wm
2 (Rd) = {f : Jdm(f) <∞} (3.42)
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Wm
2 (Rd) is a RKHS if and only if 2m− d > 0 with an inner product defined as [45]

< f, g >=
∑

α1+···+αd=m

m!

α1! . . . αd!

∫ ∞
−∞

. . .

∫ ∞
−∞(

∂mf

∂xα1
1 . . . ∂xαdd

)(
∂mg

∂xα1
1 . . . ∂xαdd

) d∏
j=1

dxj (3.43)

The minimizer to the following PLS (Penalized Linear Smoothing) problem is a thin-

plate spline function f

1

N

N∑
i=1

(yi − f(xi))
2 + λ Jdm(f) (3.44)

in Wm
2 (Rd) where xi = (xi1, x

i
2, . . . , x

i
d). The null space H 0 of the penalty functional

Jdm is of the dimensionality M =

(
d+m− 1

d

)
and spanned by polynomials denoted

as φ1, . . . , φM in d variables of total degree up to m− 1 [132]. In our experiments we

chose d = 2 and m = 2, then M = 3, and H 0 is spanned by φ1(x) = 1, φ2(x) = x1,

φ3(x) = x2.

To avoid the tedious computation of the RK of Wm
2 (Rd), Duchon [45] and

Wahba [132] showed the solution to Eq. (3.44)

f̂(x) =

p∑
ν=1

dνφν(x) +
n∑
i=1

ciξi (3.45)

can be approximated by replacing ξi with Em(x,xi) under the condition that x1, . . . ,xn

are such that least square regression on φ1, . . . , φM is unique where Em is the Green
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function for the m-iterated Laplacian Em(x, z) = E(‖x− z‖), and

E(u) =


(−1)

d
2

+1+m|u|2m−d log |u|, d even

|u|2m−d, d odd

For genuine RK and the spline computation, see [65].

Let T = {φν(xi)}ni=1
p
ν=1 and K = {Em(xi, xj)}ni,j=1. Assume that T is of full

column rank, the coefficients c and d are solutions to

(K + nλ I)c+ Td = y,

T>c = 0

3.4.3 Spherical splines

Spherical splines are the fundamental tools for the surface assimilation on

the closed surfaces. By combining the periodic and thin-plate splines, Wahba [131]

developed the spherical splines for smoothing spline regression on the unit sphere

domain. The Laplacian operator on the unit sphere S is defined as

∆f =
1

cos2 φ
fθθ +

1

cos θ
(cosφfφ)φ (3.46)
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where θ ∈ [0, 2π] is the longitude and φ ∈ [−π/2, π/2] is the latitude. The energy

penalty of f is given by [134]

J(f) =


∫ 2π

0

∫ π
2

−π
2
(∆

m
2 f)2 cosφ dφdθ, m is even

∫ 2π

0

∫ π
2

−π
2

{
(∆

m−1
2 f)2θ

cos2 φ
+ (∆

m−1
2 f)2

φ

}
cosφ dφdθ, m is odd

(3.47)

Let x = (θ, φ) the Sobolev Hilbert space

Wm
2 (S ) =

{
f :
∥∥∥∫
S
f dx

∥∥∥ <∞, J(f) <∞
}

(3.48)

Wm
2 (S ) is an RKHS when m > 1 which can be decomposed into two orthogonal

subspace as

Wm
2 (S ) = H 0 ⊕H 1 (3.49)

where

H 0 =span{1},

H 1 =
{
f ∈ Wm

2 (S ) :

∫
S
f dx = 0

}

The corresponding RK of Wm
2 (S ) is given by [134]

R0(x, z) = 1,

R1(x, z) =
∞∑
l=1

2l + 1

4π

1

{l(l + 1)}m
Pl(cos γ(x, z))
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where Pl are the Legendre polynomials and γ(x, z) is the angle between x and z [132].

Since the RK R1 is the summation of an infinite series and its closed form

expression only available for m = 2 or m = 3, the computation for R1 is inconvenient.

Wahba[131] proposed approximatingR1 by a closed-form RKQ1. H Q1 is topologically

equivalent to H R1 .

3.5 Estimating the Smoothing Parameter

In our cost function (3.7), the weight λ is a crucial parameter for the overall

performance. Over-smoothing and under-smoothing both leads to unsatisfactory re-

sults. As an important part of the theory of smoothing spline regression, automatic

selection of the smoothing parameter is introduced in this section. Its limitation will

be discussed in Sec. 3.7. Sec. 3.5.1 and Sec. 3.5.2 were adapted from [134].

3.5.1 Predictive Mean Squared Error

To estimate the smoothing parameter λ we need a criterion for fitting perfor-

mance. Define the expected squared prediction error as

ET (λ ) =
1

N

N∑
i=1

(Lifλ − Lif)2 (3.50)

where fλ is the estimate of the unknown true function f . Under the smoothing

spline regression model, fλ is a function of λ indicated by the subscript. Suppose g =

(L1f, . . . , LNf)>, with Eq. (3.34) we have (L1fλ , . . . , LNfλ )> = H(λ )y = h(λ )(g+ε),
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where ε ∼ N (0, σ2I). This error can be decomposed into two components:

ET (λ ) =
1

N
E ‖H(λ )(g + ε)− g‖2

=
1

N
E ‖(I −H(λ )g) +H(λ )ε‖2

=
1

N
E ‖(I −H(λ )g)‖2 +

2

N
E (I −H(λ ))gH(λ )ε+

1

N
E ‖H(λ )ε‖2

=
1

N
‖(I −H(λ )g)‖2 +

σ2

N
TrH2(λ )

=b2(λ ) + σ2v(λ ) (3.51)

where b2 and σ2v are known as squared bias and variance, respectively [134]. With

Sec. 3.3.2, we have

I −H(λ ) = NλQ2(Q>2 (Σ +Nλ I)Q2)−1Q>2 (3.52)

Let UDU> be the eigenvector eigenvalue decomposition of Q>2 ΣQ2 and Γ = Q2U ,

I −H(λ ) = NλΓ(D + nλ I)−1Γ> (3.53)

Further, with h = Γ>g, b2(λ ) and v(λ ) can be expressed as [132]:

b2(λ ) =
1

N

N−p∑
ν=1

( Nλhν
λ ν +Nλ

)2

v(λ ) =
1

N

(
N−p∑
ν=1

( λ ν
λ ν +Nλ

)2

+ p

) (3.54)
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where hν are the elements of h and λ ν are the diagonal elements of D. Wahba [132]

showed that ET (λ ) have at least one minimizer λ ∗ > 0 because db2(λ )
dλ
|λ=0 = 0 and

dv(λ )
dλ
|λ=0 < 0 lead to dET (λ )

dλ
|λ=0 < 0.

3.5.2 Generalized Cross Validation

b2(λ ) in Eq. (3.51) is a monotone increasing function with λ . v(λ ) is a de-

creasing one. Therefore λ balances the trade-off between the bias and variance. This

smoothing parameter deals with the model complexity and eventually controls the

under- and over- fitting [132]. The minimizer to ET (λ ) suggests a straightforward

choice of λ . However, since b2(λ ) depends on the unknown true function f (the

variance v(λ ) does not), ET (λ ) depends on f . It is not practical to compute λ from

ET (λ ).

Independent of f , the cross-validation provides an estimate of ET (λ ). Let f
[k]
λ

be the minimizer of Eq. (3.13) involving all observational data except yk

1

N

N∑
i=1
i 6=k

(
yi − Lif

)2

+ λ ‖P1λ ‖2 (3.55)

The cross-validation estimate of the expected squared prediction error (3.50) is

CV (λ ) =
1

N

N∑
k=1

(
yk − Lif [k]

λ

)2

(3.56)

Minimizing CV(λ ) will give an estimate of λ . However, the computation of f
[k]
λ needs

expensive iteration from i = 1, . . . , N . With the following theoremthe computation
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can be reduced. CV (λ ) can be computed using the whole observed data and the

diagonal elements of the influence matrix [132].

Theorem 3.4 ([132]).

CV (λ ) =
1

N

N∑
i=1

(yi − Lifλ )2

(1− hii)2
(3.57)

where hii is the ii-th entry of the influence matrix H(λ ) given in Sec. 3.3.2.

Replacing hii by µ1(λ ) = 1
N

∑N
i=1 hkk(λ ) = 1

N
TrH(λ ), we have the generalized

cross-validation (GCV)

GCV (λ ) =
1

N

N∑
i=1

(yi − Lifλ )2

(1− µ1(λ ))2

=
1

N
‖(I −H(λ ))y‖2/

[ 1

N
Tr(I −H(λ ))

]2

(3.58)

Minimizing Eq. (3.58) gives GCV estimate of λ . The “weak GCV theorem” [28]

shows that GCV (λ ) is a consistent and robust estimate of ET (λ ) [132].

3.5.3 Fast Algorithm for Evenly Spaced Gridded Data

Garcia [60] proposed a fast numerical method minimizing the Eq. (3.4) under

the assumptions: 1) a large amount of observational data is available. 2) observational

data are evenly spaced on Euclidean space Rn. 3) f is smooth in the sense that f has

up to order 2 continuous derivatives, i.e., m = 2 in (3.4). Though this method has

not been extended to the unit space S , it can be used in the surface assimilation for

curves and tubular objects. Our curves or surfaces are generally smooth. With the
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re-parameterization technique, it is easy to make ready the arbitrary evenly spaced

data. Therefore the assumptions above holds.

This method works on a grid of n-dimensions, n = 1, 2, 3, · · · . It uses the

discrete cosine transform (DCT) and the fast Fourier transform (FFT) to speed up

the computation of the Laplacian regularization. It can smooth closed curves if

the periodic boundary condition is satisfied, and open surfaces if the surfaces are

mapped to the planar domain. The downside of this algorithm is that it is not

directly applicable for closed surface mapped to the unite sphere. Bülow [13] solved

the diffusion equation on spherical surface. And Healy [71] published the software

package for spherical FFT. As such a fast method for spherical surface assimilation

is possible.

3.6 Experiments

We have applied the surface assimilation algorithm to the synthetic and the

patient data. In each experiment we measured the performance improvements before

and after the use of the algorithm. The performance metrics can be divided into two

categories: 1) spatial overlap metric 2) spatial distance metric.

Relative Overlap (RO) between two segmentations measures how well two

binary objects are matched. It is a common metric for evaluating segmentation and

registration algorithms. Given two corresponding regions of interest (ROI) A and B,

RO is defined as

RO (A,B) =
volume(A ∩B)

volume(A ∪B)
(3.59)
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where RO = 0 means the two ROIs are disjoint. RO = 1 means the two ROIs are

fully overlapped. When RO is used as the evaluation metric, the segmentation or

registration algorithm with the highest RO has the best performance. RO has the

following two weaknesses: 1) It is biased. Given an algorithm, a large ROI tends

to have higher RO than a small one. 2) It is global. It ignores the quality of local

structure matching.

Dice Similarity Coefficient (DSC) is another spatial overlap metric for seg-

mentation benchmark [42]. It is a concept in κ-statistics commonly used for reliability

studies [37]. For two binary segmentations A and B, the DSC is defined as

DSC (A,B) =
2(volume(A ∩B))

volume(A) + volume(B))
(3.60)

Similar to RO, the range of DSC is [0, 1] with 1 indicating a perfect overlap. However

since the distribution of DSC usually leans towards the value of 1, it is hard to apply

the statistics hypothesis testing techniques.

Logit Dice Similarity Coefficient (LDSC) can be used to overcome the

limitation of RO and DSC. Similar to [148], we apply the logit function to transform

the distribution of DSC into a normal distribution. LDSC is defined by:

LDSC (A,B) = ln

(
DSC (A,B)

1−DSC (A,B)

)
(3.61)

where the logit function maps the domain of DSC from [0, 1] to the range of [−∞,∞].

Note that both RO and DSC could be biased and erroneous. Compared to the small
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binary objects, the larger ones are prone to have higher spatial overlap. Therefore

other evaluation measures are required for an objective benchmark.

Mean Absolute Distance (MAD) is a performance metric based on distance.

The geometric differences, e.g., total curvature or distance, between two curves or sur-

faces before and after data assimilation can also be used for performance evaluation.

MAD represents the global disagreement between two surfaces.

Let A = a1, a2, . . . , an, B = b1, b2, . . . , bm, ai, bi representing the boundary of

the surfaces S1 and S2, MAD is defined as:

MAD =
1

2

(
1

n

n∑
i=1

d(ai, B) +
1

m

m∑
j=1

d(bj, A)

)
(3.62)

where d(ai, B) = minj‖bj − ai‖.

Hausdorff Distance (HD) is another distance-based metric that compares

the local similarities between two objects [87]. It is defined as

HD = max(max
i
d(ai, B),max

j
d(bj, A)) (3.63)

MAD measures the average closeness, and HD emphasizes the closeness in worst case.

3.6.1 Experiment with Synthetic Curves

We designed a proof-of-concept experiment with 2D curves to demonstrate our

algorithm. A smooth and closed parametric curve x(t) = (x1(t), x2(t)) represents the

region of interest (ROI). x(t) is actually an instance generated by a statistical shape
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Figure 3.2: Five instances of the true ROIs with different shape parameter w. In
the middle, the mean shape is obtained when w = 0. The shape model has only one
variation mode, which along the vertical direction.

model. For simplicity, we choose the circle as the mean shape of x(t) and restrict x(t)

to have only one shape variation mode changing the height of x(t) along the vertical

axis. Mathematically,

x1(t) = cos(t)

x2(t) = sin(t) + w sin(t)

where t ∈ [0, 2π), (cos(t), sin(t)) forms the mean shape and w is a normally distributed

variable, w ∼ N(0, σ2) and σ = 1
6
. Fig. 3.2 shows five shape samples ranging from

w = −3σ to w = 3σ.

To simulate the segmentations y(t) = (y1(t), y2(t)) among the different ob-

servers, we adopt the inter-observer segmentation error (ISE) model with the follow-

ing assumptions: 1) the boundary of x(t) at the north and south poles are assumed

to be known, therefore the segmentations there are accurate, and ISE is small. 2) the

boundary of x(t) at the equator is unclear, thus the segmentation at the equator is
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inaccurate leading to large ISE. For simplicity, we only simulate one mode of segmen-

tation variation which is purposely set perpendicular to that of x(t). Mathematically,

y1(t) = x1(t) + p cos(t)

y2(t) = x2(t)

where t ∈ [0, 2π), x1(t), x2(t) presents the mean shape of the segmentation, the ran-

dom variable p ∼ N(0, σ2) and σ = 1
6

controlling the shape of observed curve.

We show a group of simulated true and observed curves in Fig. 3.3. From the

top to bottom, the true curves (pink) x(t) with w = −σ, 0, σ are shown. From the

left to right, five observed curves with the shape parameter p ranging from −3σ to

3σ.

An example of estimating the true curve from the observed one is illustrated

in Fig. 3.4. The truth is colored pink and the observed is black. The equi-distant

dots along the black curve show the parameterization of the curve. The same pa-

rameterization are used through out all other curves but not drawn. By minimizing

Eq. (3.6), the shape model predicts the cyan curve. This curve and the black curve

are fused into the blue curve by following Eq. (3.8) where we choose αi = |1− sin(ti)|.

In such a way, the position of the new curve at the poles is primarily contributed

by the observations (black curve) and the position at the equator are dominantly

affected by the model curve (cyan curve). The blue curve presents a unrealistic dent

around the equator. That is removed by the smoothing spline regression, giving the
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Table 3.1: Results of 2D synthetic curve assimilation, Case 1: the shape varia-
tions of the true ROI and the segmentation are perpendicular

RO DSC LDSC MAD HD

Before After Before After Before After Before After Before After

Mean 0.877 0.942 0.932 0.970 3.041 3.798 0.067 0.031 0.134 0.051
Median 0.892 0.952 0.943 0.975 2.799 3.680 0.057 0.026 0.115 0.041

STD 0.090 0.044 0.055 0.024 1.167 0.904 0.051 0.023 0.102 0.034
IQR 0.124 0.058 0.069 0.030 1.381 1.291 0.069 0.029 0.141 0.044

Mean 7.4% 4.0% 24.9% 53.0% 61.9%
improvement (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD:
Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard Deviation, IQR: Interquartile Range

final surface assimilation result, the red curve. Comparing with the red curve with

the black curve, we can see the red one reduces the segmentation error that occurs

along the horizontal direction.

We simulated the true and observed curves for 2500 times. For each pair, we

ran the surface assimilation algorithm to estimate the true. This estimate was com-

pared to the observed curve with the evaluation measures mentioned in the previous

section. The average evaluation results are illustrated in Fig. 3.5 and numerically

summarized in Table 3.1. The mean improvements on RO, DSC, LDSC, MAD and

HD are 7.4%, 4.0%, 24.9%, 53.0% and 61.9%, respectively and statistically significant

(p < 0.001).

We also designed a counter example on 2D curves to show the limitation of

our algorithm. The instances of the true curves x(t) are as same as those used in

the previous experiment. Instead of being perpendicular to the true curve’s vari-

ation direction, the observed one y(t) varies along the same direction of the true.
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Figure 3.4: Illustration of surface assimilation algorithm in 2D phantom experiment
1. (a) shows a possible observed segmentation (black) of a true shape (pink). The
statistical shape model (SSM) predicts a new segmentation (cyan) in (b). (c) shows
the true, the observed and the SSM-predicted together. The latter two are combined
into the blue one in (d). The estimated true shape by the spline regression is shown
red in (e) and (f)
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Figure 3.5: Results of 2D synthetic curve assimilation, Case 1: the shape variations
of the true ROI and the segmentation are perpendicular. Each plot shows the results
before and after the curve assimilation.
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Mathematically,

y1(t) = x1(t)

y2(t) = x2(t) + p cos(t)

where t ∈ [0, 2π), x1(t), x2(t) presents the mean shape of the segmentation, the ran-

dom variable p ∼ N(0, σ2) and σ = 1
6

controlling the shape of observed curve.

A set of simulated true and observed curves is shown in Fig. 3.6. From the

top to bottom, the true curves (pink) x(t) with w = −σ, 0, σ are shown. From the

left to right, five observed curves with the shape parameter p ranging from −3σ to

3σ. We choose αi = |cos(ti)| to simulate the segmentation error along the curve, i.e.,

large error happens at the poles and small error happens at the equator.

Similarly, we simulated the true and observed curves for 2500 times and report

the evaluation results in Fig. 3.8 and Table 3.2. Statistically, the curve assimilation

makes no difference on RO, DSC, LDSC, MAD and HD in this case.

We use an example in Fig. 3.7 to show the limitation of the algorithm. The

true ROI is a pink circle at the center. Given an observed curve (black) similar to

a plausible instance of the true shape, the shape model is unable to distinguish the

two and predicts a cyan curve close to the observed one. Consequently the blue

one, combination of the cyan and the black, is close to the observed. So is the final

assimilated curve, the red one.
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Figure 3.6: Illustration of the true and observed shapes in the 2D phantom experi-
ment 2. The pink circles are the true. The black ones are the observed (simulated)
segmentations. Each row, from left to right, shows five segmentations with differ-
ent shape parameter p, overlaying the true shape having the shape parameter w.
The true shape and the segmentation both vary along the vertical direction. Large
inter-observer segmentation error happens at the poles. This is a counter example
of surface assimilation (SA) where SA can not estimate a segmentation closer to the
truth.

Table 3.2: Results of 2D synthetic curve assimilation, Case 2: the shape varia-
tions of the true ROI and the segmentation are in the same direction

RO DSC LDSC MAD HD

Before After Before After Before After Before After Before After

Mean 0.838 0.839 0.907 0.908 2.692 2.674 0.092 0.092 0.185 0.183
Median 0.861 0.862 0.925 0.924 2.519 2.527 0.075 0.075 0.150 0.150

STD 0.116 0.115 0.073 0.071 1.154 1.081 0.071 0.070 0.144 0.141
IQR 0.171 0.171 0.100 0.095 1.465 1.467 0.099 0.098 0.201 0.198

Mean 0.09% 0.05% -0.66% 0.23% 0.80%
improvement (p = 0.82) (p = 0.81) (p = 0.57) (p = 0.92) (p = 0.71)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD:
Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard Deviation, IQR: Interquartile Range
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Figure 3.7: Illustration of surface assimilation algorithm in 2D phantom experiment
2. (a) shows a possible observed segmentation (black) of a true shape (pink). The
statistical shape model (SSM) predicts a new segmentation (cyan) in (b). (c) shows
the true, the observed and the SSM-predicted together. The latter two are combined
into the blue one in (d). The estimated true shape by the spline regression is shown
red in (e) and (f)
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Figure 3.8: Results of 2D synthetic curve assimilation, Case 2: the shape variations
of the true ROI and the segmentation are in the same direction. Each plot shows the
results before and after the curve assimilation.
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−3σ −σ mean σ 3σ

Figure 3.9: Five true ROI instances with different shape parameter w.

3.6.2 Experiment with Synthetic Surfaces

We extended the experiment of 2D curve assimilation to the 3D surfaces. A

smooth and closed parametric surface x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) represents

the region of interest (ROI). For simplicity, we choose a sphere as the mean shape of

x(u, v) and restrict x(u, v) only changes along the vertical axis. Mathematically,

x1(u, v) = r cos(u)cos(v)

x2(u, v) = r cos(u)sin(v)

x3(u, v) = r sin(u) + w sin(u)

where r = 24 simulating the radius of a regular prostate, u ∈ [−π
2
, π

2
], v ∈ [0, 2π) and

w is a normally distributed variable, i.e., w ∼ N(0, σ2), σ = 4. Fig. 3.9 shows five

true shape samples from the model.

We follow the similar fashion as the 2D curve experiment to simulate the 3D
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inter-observer segmentations y(u, v) = (y1(u, v), y2(u, v), y3(u, v)). Mathematically,

y1(u, v) = x1(u, v)

y2(u, v) = x2(u, v) + p cos(u)sin(v)

y3(u, v) = x3(u, v)

where (x1(u, v), x2(u, v), x3(u, v)) serves the mean shape of the segmentation, p ∼

N(0, σ2), σ = 4 controlling the shape of observed surface along the horizontal direc-

tion. This segmentation model has only one variation mode, perpendicular to the

true shape model’s. In such way, The inter-observer segmentation error (ISE) is large

at the left and right ends of the equator. ISE is small at the poles. The ISE was

quantified using Eq. (2.27) and normalized to [0, 1] to help the fusion of the observed

and shape-model-predicted surfaces in Eq. (3.8). A group of observed surfaces are

shown in Fig. 3.10 where the true surfaces are not drawn. The color on the sur-

faces is for visualization of correspondence among surfaces and not for indicating the

segmentation error.

We simulated the true and observed surfaces for 1000 times and computed the

assimilated surfaces. The evaluation scores of each observed surface and its assimi-

lated surface against the true curve are collected. The average performance compari-

son is reported in Fig. 3.11 and Table 3.3. The results show a statistically significant

improvement is achieved.

Two specific examples are provided in Fig. 3.12 and Fig. 3.13 to demonstrate
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Figure 3.11: Results of 3D synthetic surface assimilation, Case 1: the shapes of true
ROI and segmentation vary in the same direction. Each plot shows the results before
and after the surface assimilation.
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Table 3.3: Results of 3D synthetic surface assimilation, Case 1: the shape vari-
ations of the true ROI and the segmentation are perpendicular

RO DSC LDSC MAD HD

Before After Before After Before After Before After Before After

Mean 0.879 0.927 0.933 0.962 3.086 3.382 0.997 0.654 3.181 1.366
Median 0.894 0.936 0.944 0.967 2.827 3.382 0.974 0.593 2.669 1.184

STD 0.092 0.041 0.055 0.022 1.230 0.581 0.651 0.299 2.499 0.794
IQR 0.130 0.055 0.073 0.029 1.481 0.934 0.975 0.439 3.537 1.113

Mean 5.5% 3.1% 9.6% 34.5% 57.1%
improvement (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD:
Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard Deviation, IQR: Interquartile Range

the algorithm of the surface assimilation. In Fig. 3.12 a fat segmentation is observed

in (b). Based on that the statistical shape model (SSM) predicts a new surface in

(c). This SSM-predicted surface is fused with the observed one using Eq. (3.8). The

smoothing spline regression makes a final prediction of the true surface (e). Similar

to the case of Fig. 3.4, the bumps in (d) are smoothed out. In Fig. 3.13, a thin

segmentation is observed and the spline regression smoothes out the pointy edges at

the equator.

To demonstrate the limitation of our method, we generated the observed sur-

faces by making them to change the shape vertically, as same as the shape model of

the true ROI (Fig. 3.14). Mathematically,

y1(u, v) = x1(u, v)

y2(u, v) = x2(u, v)

y3(u, v) = x3(u, v) + p sin(u)



94

(a) True ROI (b) Observed (c) SSM predicted

(d) Combined (e) Spline estimated

Figure 3.12: Demonstration of 3D synthetic surface algorithm, Case 1. (a) shows
an instance of the true shape. (b) shows an observed surface with large outward
segmentation error occurring at the left and right ends of the equator. (c) the statis-
tical shape model (SSM) predicts a new segmentation. The surfaces of (b) and (c)
are fused into one shown in (d). The estimated true shape by the smoothing spline
regression (SSR) is shown in (e). The bumps in (d) are smoothed out by SSR. Colors
on each surface are for visualization of the correspondence among surfaces not for
indicating the segmentation error.
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(a) True ROI (b) Observed (c) SSM predicted

(d) Combined (e) Spline estimated

Figure 3.13: Demonstration of 3D synthetic surface algorithm, Case 2. (a) shows an
instance of the true shape. (b) shows an observed surface with large inward segmenta-
tion error occurring at the left and right ends of the equator. (c) the statistical shape
model (SSM) predicts a new segmentation. The surfaces of (b) and (c) are fused into
one shown in (d). The estimated true shape by the smoothing spline regression (SSR)
is shown in (e). The pointy boundary at the equator in (d) are smoothed out by SSR.
Colors on each surface are for visualization of the correspondence among surfaces not
for indicating the segmentation error.
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x

y

z
True shape symmetrically changes along the z axis

Observed shape changes along
the same direction as the true one

Figure 3.14: 3D synthetic surface assimilation, Case 2: The sphere at the center
is the mean shape of the true ROI. The shape variations of the true ROI and the
segmentation are in the same direction (along the z axis). For a 2D slice view, see
Fig. 3.6.

where (x1(u, v), x2(u, v), x3(u, v)) serves the mean shape of the segmentation, p ∼

N(0, σ2), σ = 4 controlling the shape of observed surface along the z-axis. The

assimilation steps are similar to the experiment in 2D curve assimilation (Fig. 3.7).

To avoid verbosity we skip the detailed description here. The results reported in

Fig. 3.15 and Table 3.4 show no improvement after the surface assimilation. The

results actually became worse. It is caused by the spline regression that automatically

chose a slightly under-fit smoothing parameter λ which shrinks the fused surface

toward the center. This limitation will be discussed in Sec. 3.7.

We designed a third experiment for 3D synthetic surface assimilation to show

the algorithm strength. The true ROI x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) has the

sphere as the mean shape and two modes of shape variation along the x- and y- axis,
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Figure 3.15: Results of 3D synthetic surface assimilation, Case 2: the shape variations
of the true ROI and the segmentation are in the same direction

,



98

Table 3.4: Results of 3D synthetic surface assimilation, Case 2: the shape vari-
ations of the true ROI and the segmentation are in the same direction

RO DSC LDSC MAD HD

Before After Before After Before After Before After Before After

Mean 0.881 0.863 0.935 0.924 3.063 2.721 1.670 1.739 3.066 3.099
Median 0.898 0.887 0.946 0.940 2.865 2.753 1.415 1.460 2.493 2.498

STD 0.087 0.086 0.052 0.053 1.123 0.720 1.171 1.127 2.353 2.305
IQR 0.121 0.113 0.068 0.064 1.389 1.085 1.581 1.466 3.231 3.168

Mean -2.02% -1.09% -11.5% -4.12% -1.09%
improvement (p < 0.001) (p < 0.001) (p < 0.001) (p = 0.180) (p = 0.748)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD:
Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard Deviation, IQR: Interquartile Range

respectively (shown in Fig. 3.16). Mathematically,

x1(u, v) = r cos(u)cos(v) + w1 cos(u)cos(v)

x2(u, v) = r cos(u)sin(v) + w2 cos(u)sin(v)

x3(u, v) = r sin(u)

where r = 24 simulating the radius of a regular prostate, u ∈ [−π
2
, π

2
], v ∈ [0, 2π) and

w1, w2 are normally distributed variables, i.e., w1 ∼ N(0, σ2), w2 ∼ N(0, σ2), σ = 4.

The observed segmentation y is generated from

y1(u, v) = x1(u, v)

y2(u, v) = x2(u, v)

y3(u, v) = x3(u, v) + p sin(u)

where (x1(u, v), x2(u, v), x3(u, v)) serves the mean shape of the segmentation, p ∼
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x

y

z Observed shape symmetrically changes
along the z axis

1st mode of the true shape symmetrically
changes along the y axis

2nd mode of the true shape symmetrically
changes along the x axis

Figure 3.16: 3D synthetic surface assimilation, Case 3: the true ROI has two variation
modes and both are perpendicular to that of the segmentation
,

N(0, σ2), σ = 4 controlling the shape of observed surface along the z-axis. The

segmentation variation mode is perpendicular to those of the true ROI. Based on

our theory of surface assimilation, our algorithm should output a better estimate of

the true ROI. We simulated 8000 times and the results are reported in Fig. 3.17 and

Table 3.5 showing a statistically significant improvement.

3.6.3 Experiment with Real Data

We have validated the surface assimilation algorithm with the NKI prostate

database containing the FBCT pelvic images from 19 patients acquired daily through

the treatment session (see [41] for detailed description). Table 2.1 provides a quick

overview of the availability of the patient data. Based on the conclusion of Chapter 2,

for each patient, we chose the first eight prostate surfaces as the training set for shape
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Figure 3.17: Results of spline simulation experiment with the true shape having two
variation modes
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Table 3.5: Results of 3D synthetic surface assimilation, Case 3: the true ROI
has two variation modes and both are perpendicular to that of the segmentation

RO DSC LDSC MAD HD

Before After Before After Before After Before After Before After

Mean 0.877 0.940 0.932 0.969 3.040 3.545 1.741 0.505 3.213 0.889
Median 0.893 0.946 0.943 0.972 2.814 3.550 1.515 0.456 2.737 0.789

STD 0.090 0.028 0.054 0.015 1.181 0.490 1.212 0.202 2.418 0.338
IQR 0.125 0.042 0.070 0.022 1.368 0.810 1.641 0.274 3.358 0.441

Mean 7.2% 4.0% 16.6% 71.0% 72.3%
improvement (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity Coefficient, MAD:
Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard Deviation, IQR: Interquartile Range

model building and the remaining prostate surfaces as the truth in this validation

experiment (Fig. 3.18).

Taking Patient A as an example, we describe the details of the validation ex-

periment with Fig. 3.19. Patient A has 13 prostate segmentations from the FBCT

scans. FBCT has better image resolution and grayscale contrast than CBCT. There-

fore we assume the prostate surfaces on these scans are accurate. The first eight

prostate surfaces are used to build the statistical shape model (SSM) of Patient A’s

prostate resulting the purple surface at the left of Fig. 3.19. The prostate surface of

Scan 9 is used as the true for validation purpose.

To simulate the CBCT segmentations on the prostate of Scan 9, we use the

inter-observed segmentation error (ISE) model obtained in Sec. 2.5. The mean shape

of the ISE model is replaced by Scan 9 surface and 100 samples are generated from

the model (the blue arrows in Fig. 3.19). These samples serve as the possible observed

surfaces (gray) among the experts.
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Figure 3.18: Illustration of the use of the real patient data in this experiment.

Following the red arrows from left to right in Fig. 3.19, for each observed

surface, we obtain the predicted true (cyan) based on the knowledge contained in the

SSM. This cyan surface is fused with the observed one using the Data Assimilation

equation Eq. (3.8), resulting an intermediate surface (blue). We then apply the

smoothing spline regression (SSR) to the blue surface to obtain the spline-estimated

surface, the red one. Each red surface, as the final result of the surface assimilation

algorithm, is compared with the true surface indicated by the dotted gray arrow. The

observed surface is also compared with the true.

We chose Patient 3’s CBCT ISE model in Sec. 2.5 to simulate the observed

segmentation on NKI prostate surfaces. This ISE model shows a localized large

segmentation error appears at the base of a prostate. This will lead to a bump or a

dent in an observed surface. Accordingly, we provide two examples showing how our

algorithm works on both cases. Fig. 3.20 and Fig. 3.21 illustrate the bump case with
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2D slice view and 3D view, respectively. Fig. 3.22 and Fig. 3.23 illustrate the dent

case with 2D slice view and 3D view, respectively.

The experiment results are reported in Fig. 3.24, Fig. 3.25 and Table 3.7.

Although we generated 100 observed surfaces for each patient at particular day, only

part of them are topologically correct through the whole surface assimilation process

(Table 3.6). The observed surface from the ISE model may not be a valid closed

surface (topologically equivalent to a sphere) with the triangles on the surface cross

over each other. At the data assimilation (fusion) phase, the topology of the surface

can not be always guaranteed. Despite this limitation, the validation results are

promising.

Table 3.6: Numbers of valid surface assimilation cases in the NKI
experiment. Patient C, K, H, O and P are not included

Patient Scan 9 Scan 10 Scan 11 Scan 12 Scan 13 Scan 14

A 53 51 36 54 38 -
B 52 45 - - - -
D 57 53 67 - - -
E 76 84 62 84 64 -
F 62 - - - - -
G 73 68 67 72 - -
I 67 69 71 70 - -
J 84 86 82 - - -
L 68 72 61 45 60 61
M 62 48 46 - - -
N 58 48 62 - - -
Q 66 72 69 44 63 -
R 76 83 68 71 - -
S 75 68 77 - - -
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(a) (b)

(c) (d)

(e) (f)

True ROI
Observed
SSM predicted
Combined (DA)
Spline est.

Figure 3.20: 2D slice view of surface assimilation on real patient data, bump case.
The colors on the observed curve indicate the segmentation error. Large segmentation
error at the base of the prostate forming a bump. The shape model predicts the truth
(cyan). Blue curve in (d) is the result of Data Assimilation combining the observed
and SSM-predicted curve. The red curve in (e) and (f) is the result of spline regression.
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(a) (b) (c)

(d) (e) (f)

Figure 3.21: 3D view of surface assimilation on real patient data, bump case. From (a)
to (f): (a) the true ROI, (b) the observed surface. The colors on the observed surface
indicate the segmentation error. Large segmentation error at the base of the prostate
forming a bump. (c) the prediction made by the statistical shape model (SSM). (d)
the result of Data Assimilation combining the observed and SSM-predicted surfaces.
(e) the result of smoothing spline regression. (f) 2D slice view of the surfaces from
(a) to (e)
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(a) (b)

(c) (d)

(e) (f)

True ROI
Observed
SSM predicted
Combined (DA)
Spline est.

Figure 3.22: 2D slice view of surface assimilation on real patient data, dent case. The
colors on the observed curve indicate the segmentation error. Large segmentation
error at the base of the prostate forming a dent. The shape model predicts the truth
(cyan). Blue curve in (d) is the result of Data Assimilation combining the observed
and SSM-predicted curve. The red curve in (e) and (f) is the result of spline regression.
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(a) (b) (c)

(d) (e) (f)

Figure 3.23: 3D view of surface assimilation on real patient data, dent case. From (a)
to (f): (a) the true ROI, (b) the observed surface. The colors on the observed surface
indicate the segmentation error. Large segmentation error at the base of the prostate
forming a dent. (c) the prediction made by the statistical shape model (SSM). (d)
the result of Data Assimilation combining the observed and SSM-predicted surfaces.
(e) the result of smoothing spline regression. (f) 2D slice view of the surfaces from
(a) to (e)
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Figure 3.24: Results of prostate surface assimilation experiment on NKI data, RO
and DSC. For each subfigure, the letters B and A under the title are for Before and
After, respectively
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Figure 3.25: Results of prostate surface assimilation experiment on NKI data, MAD
and HD. For each subfigure, the letters B and A under the title are for Before and
After, respectively
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Table 3.7: Improvement in percentage after surface assimilation on NKI prostate data

Patient
RO DSC LDSC MAD HD

Mean SD Mean SD Mean SD Mean SD Mean SD

A 1.7 14.7 1.0 16.3 3.7 11.1 5.9 20.1 10.8 50.6
B 1.5 13.4 0.8 14.9 3.6 8.1 6.0 16.7 12.1 28.4
D 2.3 12.3 1.4 14.3 5.2 7.3 7.8 16.7 10.6 38.3
E 1.6 10.7 1.0 11.9 3.5 9.0 4.8 17.2 2.2 52.5
F 2.9 7.5 1.7 9.6 6.3 2.8 7.1 13.8 0.2 2.5
G 1.2 8.1 0.7 9.0 2.5 6.7 4.0 17.2 2.6 68.7
I 2.0 7.3 1.2 8.5 4.4 5.4 6.2 14.9 1.6 68.2
J 2.2 14.7 1.3 16.0 4.9 11.9 7.4 19.8 0.8 47.6
L 1.9 9.4 1.1 10.7 4.2 6.4 5.7 13.6 5.4 31.8
M 3.9 15.6 2.2 18.2 8.8 8.3 11.7 18.8 19.8 65.5
N 2.2 12.3 1.3 14.2 4.8 8.5 7.2 18.5 2.3 59.0
Q 2.9 13.0 1.7 15.4 6.8 6.0 9.6 18.4 22.1 42.0
R 2.5 17.8 1.4 20.0 5.9 11.4 8.3 21.4 16.3 51.7
S 2.7 20.9 1.6 23.0 5.9 16.0 7.2 23.0 12.3 14.8

Mean 2.3 12.7 1.3 14.4 5.0 8.5 7.1 17.9 8.5 44.4

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity
Coefficient, MAD: Mean Absolute Distance, HD: Hausdorff Distance, STD: Standard
Deviation, IQR: Interquartile Range

3.7 Discussion

Splines are extensively used in surface fitting problem. To deal with het-

eroscedastic data (variance is pointwisely unequal), the ideas like robust fitting [109],

weighted splines [32] and adaptive splines [88, 110] have been proposed. Besides the

smoothing splines defined on the regular grid domains, the spherical splines are our

major interest since they work on the closed surfaces. The extension of spherical

splines include fitting scattered data on sphere-like surface [2], spherical interpolation

and approximation [58] and the vector spherical splines [59].
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These regression methods are data driven without resorting to the prior knowl-

edge. When the noise is independent and uncorrelated with signal, the trend in the

observational data provides enough information for these methods to recover the sig-

nal. However in many applications (like our organ segmentation problem), the noise

is highly correlated with the signal and the true trend in the signal is disguised. If

the history (prior knowledge) of the signal is available, it can help to separate the

signal and noise. This is the basic idea of surface assimilation.

Shape priors have been used extensively in image segmentation algorithms [27].

The contribution of this study is to combine two priors, shape and segmentation

error, together. As a variant of Data Assimilation, the surface assimilation can be

extended in multiple ways. The 3D variance analysis is one of the themes in Data

Assimilation. Due to limited resources, we only describes a crude estimation to

determine the variance and correlation in the segmentation errors (see Sec. 2.5).

The errors are assumed isotropic and Gaussian. Analysis on the variance-covariance

structure remains interest [134] for future study.

Surface assimilation can be extended to time-dependent data with 4D variance

analysis. Wang [134] generalized the smoothing spline regression to ANOVA and data

can be smoothed along the time dimension. In our clinical application setting, patients

are scanned consecutive days. Therefore, the time-dependent surface assimilation

seems like another possible extension to this work.

Both the theory and experiments suggest that the performance of our algo-

rithm mainly depends on the orthogonality of the true object shape space and the
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segmentation error space. Ideally when the segmentation noise is perpendicular to

the true object shape, the proposed algorithm has the potential to fully recover the

true object boundary. However the limitation is that this algorithm is insensitive

to the translation, rotation and scaling difference since the Procrustes mapping in

Eq. (3.6) discards these global shape changes.

The segmentation uncertainty in this study is assumed fixed and unchanged

across the images (either intra-subject or inter-subject). This segmentation error

model requires training process and probably is not valid in a wider scenario. A pos-

sible extension could be to determine the segmentation error from the local intensity

context. For instance, if the local intensity is homogeneous, it is likely the manual

contours across this region has large variation comparing those passing through the

region with rich intensity changes. Various feature extraction techniques could be

applied here, such as the Gabor filter used in [19] to detect the spherical boundary,

or Hessian image filter [57] for detecting the sheet-like structure.

The choice of the building blocks, splines, can also be an interesting problem.

For example, the splines with finite support, like B-splines, are used in [44] to match

historical data. In robust spline regression, the splines with infinite support, like

Thin-plate splines, are preferred since the negative effects caused by the missing data

can be compensated from the other data [60].

We mainly studied the surface assimilation for single object. With the de-

velopment in statistical shape modeling and segmentation error analysis for multiple

objects, the surface assimilation for multiple objects will be a possible research direc-
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tion for future.

We have seen that surface folding, triangle crossing, etc. happens during

the fusion of the two surfaces. Therefore maintaining valid surface geometry and

improving the robustness of the surface assimilation algorithm is an important future

direction of this work.

3.8 Summary

We proposed a surface assimilation algorithm for predicting the true object

boundary in the presence of the segmentation errors. Formulated as a smoothing

spline regression problem, the surface assimilation combines the knowledge about

shape and segmentation errors. Benchmark experiment was performed on phantom

and real data with different configurations. Although cautions should be taken from

the few examples presented, the results seem promising.
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CHAPTER 4
NONRIGID IMAGE REGISTRATION WITH ASSIMILATED

SURFACE CONSTRAINT

This chapter presents an application of the surface assimilation (SA) technique

related to the nonrigid image registration. Instead of using the manual contoured

surface, we use the surface estimated by SA (see Chapter 3) to constrain the intensity-

driven nonrigid image registration to increase the registration accuracy. The proposed

registration algorithm is evaluated with phantom and real clinical data.

4.1 Introduction

As we mentioned in Sec. 1.1.2, the low contrast of intensity at the object

boundary in CBCT contributes to the image registration uncertainty. To reduce this

uncertainty, one can identify features (e.g., point landmarks, curves and segmenta-

tions) in the images to provide additional matching guidance [77, 21, 78]. However,

the uncertainty among different observers often exists in these identified features. In

case of contouring the prostate boundary, studies have shown that such errors vary

dramatically (from 1-4 mm) with location on the prostate surface and adjacent or-

gans at risk [104]. If these label features are directly used as the matching constraint,

large registration uncertainty can occur.

The identification errors in point landmark registration have been actively

studied [51, 50]. These points are generally sparse and the errors are therefore as-

sumed independent. A common approach to lower these errors in the registration is
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to weigh the landmark matching force with their estimated landmark error [108, 137].

Limited studies consider the inter-observer segmentation error (ISE) in image

registration. We proposed a surface constraint that accommodates the segmentation

uncertainty [141]. The experiment in [141] showed that the deformation from the

intensity matching can not always recover the correct deformation at the object’s

boundary. Therefore, registration accuracy is not always improved.

To overcome this limitation, we propose a new surface constraint to reduce

the image registration uncertainty in the presence of segmentation error. With the

help of surface assimilation, we estimate the true object boundary from the manual

(observed) segmentation (Sec. 3.3). The estimated surface is then used to guide the

intensity-based image registration (Sec. 4.2).

4.2 Methods

Suppose the template and the target images are denoted as T : Ω 7→ R and

S : Ω 7→ R, respectively, where Ω = [0, 1]3 is the image domain. Let X : S2 7→ Ω, as

a parametric surface, denote the true ROI in the template space. Let Yg : S2 7→ Ω

and Y : S2 7→ Ω denote the parametric surfaces of the true and observed ROI in the

target spaces, respectively, and let F : S2 7→ Ω be the assimilated surface of Y , where

S2 is the unit sphere. The image registration problem can be stated as: Find a dense

transformation h : Ω 7→ Ω that maps points in the target image to the corresponding

points in the template image.
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4.2.1 Design of cost function

The cost function provides the driving force to deform the coordinate system

of the target image into that of the template image. A cost function usually contains

similarity metrics and transformation constraints. Based on the availability of the

matching features, various similarity metrics can be used. When registering two

grayscale images, we can use intensity difference, mutual information or correlation

coefficient as a proxy for correspondence. If other matching features are available,

such as landmarks, curves and surfaces, we can design additional similarity cost terms

to define correspondence between the. Prior knowledge about the transformation,

such as smoothness, are assumed and included in the cost function. Particularly, our

algorithm uses the following metrics.

Sum of Squared Difference (SSD)

A common intensity similarity cost is the sum of squared difference (SSD),

which measures the intensity difference at corresponding position between two images.

Mathematically, it is defined by

CSSD(h) =

∫
Ω

[T (h(x))− S(x)]2 dx (4.1)

where h(x) is the transformation field, T (x) and S(x) are the template and target

image, respectively. Ω denotes the image domain. When the template and target

images are from the same imaging modality and the intensity profiles of two images

are similar, CSSD will serve as a good surrogate indicating the correspondence. CSSD
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will be used in our phantom experiment.

Mutual information (MI)

If the template and target images are from two different imaging modalities

and the intensities between the two are not linearly related, then CSSD is not a good

choice for measuring similarity. We can instead use the negative mutual information

(MI) [136] between two images. MI expresses the amount of information that two

image share and is defined as

CMI(h) = −
∑
a

∑
b

p(a, b) log
p(a, b)

pT◦h(a) pS(b)
(4.2)

where T ◦ h denotes the deformed template image, a and b are the indices of the

joint histogram bins. Similar to the Kullback-Leibler distance, CMI(h) measures the

distance between the joint intensity distribution of deformed template and target

image p(a, b), and the joint marginal distribution pT◦h(a) and pS(b). It is assumed

that good correspondence is achieved when MI is maximized. In practice, SSD and

MI are not mutually exclusive. Under the multi-stage strategy, Han[68] and Lou[86]

combined SSD and MI for faster boundary matching at initial stage in lung and

prostate image registration.

Surface Similarity Metric

Analogous to landmark registration, the distance between the template and

target surfaces can help registering two images. Assuming the correspondence be-
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tween surfaces has been obtained using the surface registration technique discussed

in Chapter 2, we define the equally-weighted assimilated-surface constraint (EWAS)

as:

CEWAS(h) =

∫ 2π

0

∫ π
2

−π
2

‖h(F (u, v))−X(u, v)‖| sinu| du dv (4.3)

where u, v establish the parametric mesh on the surfaces of X and F , and F (u, v) is

the assimilated surface of the given manual surface Y (u, v). A straightforward variant

of CEWAS is the equally-weighted manual surface constraint (EWMS):

CEWMS(h) =

∫ 2π

0

∫ π
2

−π
2

‖h(Y (u, v))−X(u, v)‖| sinu| du dv (4.4)

Similar to the landmark uncertainty in the landmark cost [107], we can define an

uncertainty-weighted manual surface constraint (UWMS) as:

CUWMS(h) =

∫ 2π

0

∫ π
2

−π
2

1

ω(u, v)
‖h(Y (u, v))−X(u, v)‖| sinu| du dv (4.5)

where ω(u, v) is given in Eq. (2.27) and indicates how much agreement there is on the

boundary location among the observers. It is a priori knowledge carried in the inter-

observer segmentation error (ISE) model. Similarly, we have the uncertainty-weighted

assimilated surface constraint (UWAS)

CUWAS(h) =

∫ 2π

0

∫ π
2

−π
2

1

ω(u, v)
‖h(Y (u, v))−X(u, v)‖| sinu| du dv (4.6)

The rationale is that 1
ω(u,v)

preferentially decreases the influence of those sur-
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face patches that are less accurately known. The cost function in Eq. (4.5) acts like

a distance function (similar to that used for ICP) to generate a potential or gradient

to draw the surfaces together. The distance function associated with a point on the

surface is adapted to become flat (i.e., stop attracting) over a range corresponding to

the uncertainty in the surface contour at that point. In regions where the surface is

known with high precision, the distance function will attract to within a small dis-

tance of the surface; in regions that are less precisely known, the potential will stop

attracting at a greater distance.

Laplacian Regularization (LAP)

As a common transformation smoothness constraint, the Laplacian operator

is used to regularize the displacement fields u(x) where u(x) = h(x) − x. This

regularization term is formed as

CLAP(h) =

∫
Ω

‖∇2u(x)‖2 dx (4.7)

where ∇ =
[

∂
∂x1
, ∂
∂x2
, ∂
∂x3

]
and ∇2 = ∇ · ∇ =

[
∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23

]
.

The total cost function is a linear combination of the intensity metric (CINTENSITY),

the surface metric (CSURFACE) and the regularization penalty (CREG):

CTOTAL(h) = CINTENSITY + ρCSURFACE + αCREG (4.8)

where the balancing parameters ρ and α control the significance of the different terms,
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CINTENSITY can be either CSSD or CMI. CSURFACE includes CEWMS, CUWMS, CEWAS

and CUWAS, CREG is CLAP in this work. We therefore have a suite of registration

algorithms derived from Eq. (4.8) by changing these weighting factors and the cost

terms. The evaluation experiment of those algorithms is reported in Sec. 4.3.

4.2.2 Transformation and Optimization

Based on the different requirements of registration problems, the transfor-

mation h(x) can be represented using various forms of basis function. As a widely

used fitting basis in engineering problems, we chose cubic B-splines to represent the

nonrigid transformation h(x). A B-splines based transformation is generally compu-

tationally efficient and its local support facilitate the capture of local deformation.

Let ci = [cx(xi), cy(xi), cz(xi)]
T be the coefficients of the i-th control point xi

on the spline lattice G along each direction. h(x) can be represented as

h(x) = x +
∑
i∈G

ciβ
(3)(x− xi), (4.9)

where β(3)(x) = β(3)(x)β(3)(y)β(3)(z) is a separable convolution kernel [15]. β(3)(x) is

the uniform cubic b-spline basis function defined as

β(3)(x) =


1
6
(4− 6x2 + 3|x|3), 0 ≤ |x| < 1

1
6
(2− |x|)3, 1 ≤ |x| < 2

0, |x| ≥ 2
(4.10)

With the b-spline representation, solving for h(x) by minimizing the cost function

Eq. (4.8) is equivalent to solving for the set of control coefficients ci. Among many
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Table 4.1: Image registration algorithms in the evaluation experiment

Algorithm Cost function Transformation Optimization

SSD CSSD + αCLAP B-splines Gradient descent
EWMS CSSD + ρCEWMS + αCLAP B-splines Gradient descent
UWMS CSSD + ρ1CUWMS + αCLAP B-splines Gradient descent
EWAS CSSD + ρCEWAS + αCLAP B-splines Gradient descent

SSD: Intensity-only registration. EWMS: Equally-weighted manual surface
constrained image registration. UWMS: Uncertainty-weighted manual surface
constrained image registration. EWAS: Equally-weighted assimilated surface
constrained image registration.

optimization methods we chose a standard Gradient Descent method for the phantom

experiment, a limited-memory, quasi-Newton minimization with bounds (L-BFGS-B)

[145] for the real data experiment. A multi-stage multi-resolution strategy is used to

speed up the convergence and to avoid local minimum.

4.3 Experiments

Evaluation of image registration is an important step in algorithm design.

We evaluated the proposed algorithm on phantom and real patient data sets with

three algorithms: 1) intensity-only registration; 2) intensity registration with equally-

weighted manual surface constraint; and 3) intensity registration with uncertainty-

weighted manual surface. These algorithms are listed in Table 4.1. For a fair com-

parison, the balancing parameter ρ1 in UWMS and ρ in other algorithms satisfies the

relation:

ρ1

∫ 2π

0

∫ π
2

−π
2

1

ω(u, v)
| sinu| du dv = ρ (4.11)
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Due to the absence of a “gold standard” to validate a registration algorithm,

indirect evaluation methods are needed to quantify the different aspects of the per-

formance of the algorithms. As same as the evaluation metrics used in Chapter 3,

our evaluation metrics include Relative Overlap (RO), Dice Similarity Coefficient

(DSC), Logit Dice Similarity Coefficient (LDSC), Mean Absolute Distance (MAD)

and Hausdorff Distance (HD) (see Sec. 3.6 for details).

In our experiment the true surface locations were known and therefore an

objective evaluation based on the target registration error (TRE) was computed [51].

The TRE is defined as the geometric discrepancy between two true surfaces after

the registration. Assuming the template surface X(u, v) is accurate, we characterize

the TRE of an algorithm by reporting the RO, DSC, LDSC, MAD and HD between

X(u, v) and the deformed true target surface h(Yg(u, v)).

4.3.1 Digital phantom experiment

In this experiment all phantom surfaces were positioned at the center of a

128× 128× 128 mm3 coordinate system. These surfaces were generated following the

same strategy in Sec. 3.6.2. In the template space, a ellipsoid surface with Gaussian

distributed z-axis is chosen to simulate the possible shape changes of X(u, v):

X(u, v) = (a cosu cos v, a cosu sin v, b sinu) (4.12)

where u ∈ [−π
2
, π

2
], v ∈ [0, 2π), a = 24 mm to simulate the radius of a regular

prostate, b is a Gaussian random variable with 24 mm mean and 4 mm standard
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−3σ mean 3σ

Figure 4.1: Fixing the height of the ellipsoid, the shape of Y (u, v) changes along y-axis
(horizontally). The colors on the surface indicate the magnitude and distribution of
the segmentation error. The largest error happens at the equator, the smallest error
at the poles.

deviation. The mean shape of X(u, v) is a sphere with 24 mm radius. And its shape

only changes along the z-axis.

To simulate the manual surface with inter-observer segmentation error, we first

obtain a true surface Yg(u, v) by sampling from Eq. (4.12) and then generate Y (u, v)

as

Y (u, v) = (Yg1(u, v), Yg2(u, v) + w cosu sin v, Yg3(u, v))

where w is a Gaussian random variable with zero mean and 4 mm standard deviation

(see Fig. 3.10 for example). For a fixed Yg(u, v), the shape of Y (u, v) changes only

along the y-axis. The largest segmentation error appears at the equator and is illus-

trated in Sec. 4.3.1. The surface assimilation algorithm is applied to each instance of

Y (u, v) to obtain F (u, v).

All surfaces are surrounded by an intensity object. In the template space,
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Template space, T(x) Target space, S(x)

h(x)

Sample X(u,v) for 400 times Sample Y(u,v) for 400 times

Register for 400 times

Figure 4.2: Illustration of the 3D phantom experiment. The colors on the ellipsoid
surface indicate the segmentation uncertainty. The segmentation of X(u, v) (blue
surface) was assumed as the true surface.

T (x) has a vertically elongated ellipsoid rasterized from

T (u, v) = (40 cosu cos v, 40 cosu sin v, 52 sinu)

In the target space, S(x) has a horizontally elongated ellipsoid rasterized from

S(u, v) = (40 cosu cos v, 52 cosu sin v, 40 sinu)

where we chose 40 mm and 52 mm as the lengths of axes to guarantee no surface

sample touches the boundary of the surrounding image object.

The surfaces were reused from the surface assimilation experiment in Sec. 3.6.2

where 1000 cases of the true, the observed and the assimilated surfaces were generated.

We used the observed and assimilated surfaces in the first 400 cases as Y (u, v) and
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F (u, v), respectively. The true surfaces in the next 400 cases were used as X(u, v).

Totally 400 pairs of images and surfaces are registered using the algorithms SSD,

EWMS, UWMS and EWAS with the following balancing parameters:

1. SSD: λ = 0.005.

2. EWMS: ρ = 5, λ = 0.005 .

3. UWMS: ρ1 = 25, λ = 0.005 and ω(u, v) defined by Eq. (2.27).

4. EWAS: ρ = 5, λ = 0.005.

The TRE results are shown in Fig. 4.3 and Table 4.3. SSD performs worst among

all algorithms, its TRE becomes even worse than that before registration. EWMS,

UWMS and EWAS all improved the TRE. EWAS achieves the best results in terms

of mean and standard deviation of TRE. The performance of UWMS is slightly better

than EWMS.

Table 4.2: The means of the evaluation criteria of the ellipsoid phantom experiment

RO DSC LDSC MAD HD

Before 0.835 0.905 2.693 2.364 4.464
SSD 0.631 0.770 1.241 4.182 9.363

EWMS 0.882 0.936 2.867 1.104 2.893
UWMS 0.886 0.938 2.914 1.052 2.811
EWAS 0.913 0.954 3.124 0.900 2.263

EWAS vs. EWMS 3.51% 1.96% 8.93% 18.5% 21.8%
improves (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity
Coefficient, MAD: Mean Absolute Distance, HD: Hausdorff Distance
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Figure 4.3: The target registration errors (TRE) in the phantom image registration.
SSD: intensity-only, EWMS: equally-weighted manual surface constraint, UWMS:
uncertainty-weighted manual surface constraint, EWAS: equally-weighted assimilated
surface constraint.



128

Table 4.3: The stddev of the evaluation criteria of the ellipsoid phantom experiment

RO DSC LDSC MAD HD

Before 0.119 0.075 1.223 1.735 3.509
SSD 0.082 0.066 0.347 1.725 3.351

EWMS 0.070 0.041 0.653 0.518 1.680
UWMS 0.070 0.042 0.670 0.501 1.635
EWAS 0.037 0.021 0.424 0.408 1.296

EWAS vs. EWMS 46.4% 48.6% 35.0% 21.3% 22.8%
improves (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity
Coefficient, MAD: Mean Absolute Distance, HD: Hausdorff Distance

4.3.2 Evaluation experiment on real data

Following the real data experiment in Sec. 3.6.3, we evaluated the image regis-

tration algorithms with the NKI database. It includes 19 prostate cancer patients of

with 12 (on average) repeated FBCT scans. Each scan has the bladder, prostate and

rectum contoured consistently by a single expert. Table 2.1 shows the availability

of the patient data. For each patient, we chose the image and the manual prostate

surface at the first day as the template image T (x) and surface X(u, v). The image

and surface at one day between Scan 9 to the last were chosen as the target image

S(x) and true surface Yg(u, v) (see Fig. 4.4).

The ground truth surfaces were not involved in the registration cost function.

They were only used for computing the target registration error (TRE). Since all

images were from the same imaging modality, the sum of squared difference CSSD was

used in the registration cost function.

The surfaces were reused from the surface assimilation experiment in Sec. 3.6.3.
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Figure 4.4: Overview of the registration experiment on the real patient data. For
each patient, the initial image (Scan 1) is taken as the template image and its manual
segmentation of prostate is taken as the template surface. The images and surfaces
starting from Scan 9 to the end are taken as the target image and the true target
surfaces. These surfaces, as the ground truth, are not involved in the registration cost
function. They are used for computing the target registration error (TRE).
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Patient A scan 9 is used as an example to explain the experiment. From Table 3.6, 53

valid surface assimilation cases were done for Scan 9. Therefore 53 pairs of observed

and assimilated surfaces are available for being the target surfaces Y (u, v) and F (u, v)

respectively. We register the images of T (x) and S(x) for 53 times with X(u, v) and

different Y (u, v) and F (u, v) using the algorithms: SSD, EWMS, UWMS and EWAS.

The balancing parameters for each algorithm are:

1. SSD: λ = 0.0005.

2. EWMS: ρ = 5, λ = 0.0005 .

3. UWMS: ρ1 = 20, λ = 0.0005 and ω(u, v) defined by Eq. (2.27).

4. EWAS: ρ = 5, λ = 0.0005.

The deformed target true surface, h(Yg(u, v)), was compared with X(u, v) to

compute the target registration error (TRE). The averaged TRE over 53 cases were

reported as the points with the same x coordinate in Fig. 4.10 and Fig. 4.11.

One particular case (Fig. 4.5 and Fig. 4.6) among the mentioned 53 pairs

of image registration is taken as an example demonstrating the registration results

(shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9).

The results of TRE over the all patients are reported in Table 4.4 and Table 4.5.

As the TRE results show, EWAS achieves the best results and SSD performs worst

among all algorithms. The EWAS and EWMS lines have a similar profile, both better

than UWMS. Statistically, the RO and DSC improvement of EWAS over EWMS is

equal. However, the LDSC, MAD and HD improvement is significantly different.
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(a) Template image (b) Target image

(c) Red-Green difference

Figure 4.5: An example of the template and target images before the registration. (a)
the template image of Patient A (Scan 1), (b) the target image of Patient A (Scan
9), (c) the red-green blended image showing the difference of the template and target
images. The template image is tinted green and the target is tinted red. Yellowish
color suggests small intensity difference.
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(a) (b) (c)

Figure 4.6: The difference among the template, the observed target and the true
target surfaces of the example shown in Fig. 4.5. (a) the template (pink) and the true
target (dark yellow) surfaces, (b) the template (pink) and the observed true (yellow)
surfaces, (c) the slice view of the template (pink), the true target (dark yellow) and
the observed target (rainbow).

4.4 Discussion

Through the phantom and patient data experiments, we have demonstrated

the strength of the equally-weighted assimilated surface constraint (EWAS) in the

non-rigid image registration. Comparing to the intensity-only (SSD), equally-weighted

manual surface constraint (EWMS) and uncertainty-weighted manual surface con-

straint (UWMS), EWAS has obtained the lowest target registration error (TRE).

These results agree with the conclusion in Chapter 3 that the assimilated sur-

face is a more accurate estimate to the truth. By matching the assimilated surface

at the region lack of intensity contrast, we obtain a better result. The upper bounds

of the improvement of the EWAS algorithm in the phantom and real patient exper-

iment are governed by the improvement results in Surface Assimilation in Table 3.3

and Table 3.7, respectively. Therefore, improving the quality of surface assimilation
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Template
Deformed true target by SSD
Deformed true target by UWMS
Deformed true target by EWMS
Deformed true target by EWAS

Figure 4.9: 2D slice view of the true target surfaces deformed by the different regis-
tration algorithms overlying on the template surface

algorithm remains the top priority for future work.

The performance of the uncertainty-weighted manual surface constraint, CUWMS,

is interesting. We initially designed this constraint by referring to a common practice

in the landmark registration where the point landmarks are directly penalized by the

landmark errors. Our previous study [141] shows that CUWMS for the surface match-

ing does not always help. The real patient experiment in Sec. 4.3.2 shows CUWMS is

worse than the equally weighted variants, CEWMS and CEWAS. We explain this from

two aspects:

1. Different than the sparse landmarks, a surface object represent a shape, i.e., the

points on a surface are correlated and follow a certain shape pattern. If a surface

is represented as a dense point cloud in the registration, the direct penalty
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Table 4.4: The means of the evaluation criteria in the prostate registration experiment

RO DSC LDSC MAD HD

Before 0.663 0.792 1.411 2.588 9.200
SSD 0.689 0.813 1.931 2.063 8.508

EWMS 0.771 0.869 1.931 1.322 5.879
UWMS 0.754 0.859 1.834 1.464 6.659
EWAS 0.781 0.876 1.992 1.252 5.424

EWAS vs. EWMS 1.30% 0.81% 3.16% 5.30% 7.74%
improves (p = 0.054) (p = 0.055) (p < 0.05) (p < 0.01) (p < 0.001)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity
Coefficient, MAD: Mean Absolute Distance, HD: Hausdorff Distance

ignoring this shape pattern will likely lead to unrealistic shape deformation.

2. The deformation at the region of low contrast is partially contributed by the

image registration using the surrounding grayscale content. In the phantom

experiment, the registration of the underlying big vertically-elongated ellipsoid

object to the big horizontally-elongated one affects the deformation of the sur-

face at the center. This underlying intensity deformation field can be either

agree or disagree with the true surface deformation. CUWMS only works for the

former situation. If the two types of deformation compete, the equally-weighted

strategy may be preferred to guard the undesirable deformation caused by the

intensity matching.

As mentioned in Chapter 2, four patients’ FBCT and CBCT surface segmen-

tation errors were analyzed (see Fig. 2.13). Visually, these distribution of the seg-

mentation errors cross patients appear inconsistent. Since the number of our training
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Table 4.5: The stddev of the evaluation criteria in the prostate registration experi-
ment

RO DSC LDSC MAD HD

Before 0.0000 0.0000 0.0000 0.0000 0.0000
SSD 0.0000 0.0000 0.2794 0.0000 0.0000

EWMS 0.0492 0.0320 0.2794 0.3146 1.3519
UWMS 0.0343 0.0227 0.1853 0.2925 0.7982
EWAS 0.0457 0.0293 0.2693 0.2939 1.1816

EWAS vs. EWMS 7.1% 8.4% 3.6% 6.6% 12.6%
improves (p < 0.05) (p < 0.05) (p = 0.17) (p = 0.13) (p < 0.05)

RO: Relative Overlap, DSC: Dice Similarity Coefficient, LDSC: Logit Dice Similarity
Coefficient, MAD: Mean Absolute Distance, HD: Hausdorff Distance

samples is small, meaningful patterns can be missed. Additionally, the distribution

of segmentation errors might depend on both human observers and also the inten-

sity context. An alternative strategy was proposed to use the intensity context as

registration constraints [118, 74].

Our original goal was to develop an image registration algorithm for regis-

tering FBCT and CBCT images. However no CBCT images were available in the

NKI dataset, our whole algorithm evaluation was done using FBCT images. We can

simulate the CBCT noise in the way described in [97]. This is coarse simulation. For

a sophisticated CBCT noise simulation, such as considering quantum noise, detector

blurring and additive system noise, see [124]. This method simulates the whole pro-

cess of image projection and reconstruction, therefore requires more computational

resources and parallel programming (cluster or GPU) is often needed.
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4.5 Summary

We described a surface-constrained nonrigid image registration algorithm in

the presence of inter-observer segmentation error (ISE). This registration algorithm

used the surface assimilation method introduced in Chapter 3. In our approach, a

noisy object segmentation is corrected (assimilated) using the a priori shape model

and the segmentation labelling error. The assimilated segmentation surface was shown

to be closer to the truth and therefore matching this surface to the template one can

improve the registration accuracy. We evaluated the algorithm with the intensity-

only registration, equally and uncertainty weighted manual surface registration on the

phantom and the real patient data. Benchmark results show the proposed algorithm

achieved the lowest target registration error over the competing algorithms.



141

CHAPTER 5
CONCLUSIONS

One source of error in image registration comes from the large inter-observer

organ segmentation variability. Trying to reduce this error is the practical purpose of

this work. It is relevant and important to the ongoing development of Image-guided

Adaptive Radiotherapy (IGART) aiming for a fast and accurate cancer treatment

option. Among many possible ways to estimate the segmentation uncertainty, this

thesis designed one method based on the point distribution model (PDM) and showed

how to use the segmentation uncertainty model to improve the image registration.

Although our experiment database is limited to the prostate images, the proposed

methods, from shape analysis to surface-constrained image registration, can be ap-

plied to other cancer sites, such as lung, head-and-neck and cervix. The theory of the

surface assimilation is general for a wide range of image segmentation, registration and

analysis problems. In summary, this dissertation makes the following contributions:

• Evaluated the group-wise surface registration algorithms for pelvic organs, built

the statistical shape models and quantified the interobserver segmentation errors

on the prostate.

• Developed a surface assimilation algorithm for estimating the true boundary

from the observed surface.

• Designed a surface-constrained nonrigid image registration algorithm between

two contoured images with the segmentation error.
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A statistical shape model (SSM) captures the shape knowledge of an organ

object from the training dataset. By assuming the shapes can be modeled as a lin-

ear Gaussian probability distribution, we used a Point Distribution Model (PDM)

to incorporate a priori shape knowledge. The quality of a PDM largely depends on

that of groupwise correspondence among the surfaces. In Chapter 2 we reviewed and

evaluated different groupwise surface registration algorithms. Based on the evalu-

ation results, the Minimum Description Length (MDL) registration algorithm was

selected as the choice for shape modeling. One drawback of MDL method is the long

computation time.

Inter-observer segmentation error (ISE) is a good indicator for regions that

need the correction from the shape model. In regions with low ISE, the observed

boundary is assumed more accurate than the shape model prediction and should be

kept. In regions with high ISE, the observed boundary is assumed less accurate than

the shape model prediction and should be corrected. Therefore, the quantification of

the ISE was done after the organ shape modeling.

Similar to the shape model, the ISE was also modeled as linear Gaussian prob-

ability distribution and the groupwise surface registration was also used for estimating

the correspondence among the training samples. The results show the inter-observer

segmentation error on FBCT is smaller that on CBCT image. Therefore in the later

patient experiment, we assumed that the segmentation on FBCT is accurate.

Estimating the true object boundary from the observed surface corrupted by

the segmentation error is one goal of this study. In Chapter 3, we discussed the
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recoverability of the SSM. The orthogonality between the segmentation error and

the shape model controls the accuracy of the SSM prediction. We formulated the

fusion of the observed surface and the SSM-prediction as a Data Assimilation problem

and solved it with the smoothing spline regression. We refer this process as surface

assimilation (SA).

We introduced the theory of smoothing spline and described its application on

the 1D periodic domain and the 2D spherical domain. We demonstrated the strength

and weakness of the surface assimilation method using the synthetic 2D curves and

3D synthetic surfaces. We also applied this method on the real patient data. The

results from the real data experiment show, on average, that the logit Dice similarity

coefficient (LDSC), the mean absolute distance (MAD) and Hausdorff distance are

improved by 5.0%, 7.1% and 8.5%, respectively.

Improving the registration accuracy between the FBCT and CBCT images is

the primary goal of this study. In Chapter 4, we designed a B-spline image registra-

tion with the equally-weighted assimilated surface constraint (EWAS). We evaluated

four algorithms on the phantom images and real clinical images: 1) the intensity-only

registration (SSD); 2) the intensity and equally-weighted manual surface registra-

tion (EWMS); 3) the intensity and uncertainty-weighted manual surface registration

(UWMS) and 4) the intensity and equally-weighted assimilated surface registration

(EWAS). The results from the real data experiment show, on average, that the target

registration errors described by logit Dice similarity coefficient (LDSC), the mean

absolute distance (MAD) and Hausdorff distance are improved by 3.2%, 5.3% and
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7.7%, respectively.

The prostate image registration is prone to fail due to the air bubbles in the

rectum. The appearance of these irregular black holes in the CT images often caused

the registration to fail (e.g. the Jacobian goes negative). Pre-processing is often

needed, either to paint them out or mask out the whole rectum.

It is an interesting problem to study the registration uncertainty over the

image domain. Risholm [106] proposed using Markov chain Monte Carlo (MCMC)

method and Bayesian inference [105] to study the registration uncertainty. We can

follow this idea to analyze the influence of our registration algorithm on dose delivery

in radiotherapy. It may also help with tuning the weighting parameters in Eq. (4.8).

One limitation of the registration algorithm developed in Chapter 3 is that it

requires the template and target images have been contoured before the registration.

This assumption may not always be true due to the time and resources required to

do the contouring, thus only the image on the planning day is contoured and the

CBCT images at the treatment day are generally uncontoured. Efforts have been

made on the automatic FBCT/CBCT registration problems [14]. Zhou et al. [144]

proposed registering two images after an automatic prostate segmentation based on

Active Shape Model (ASM). Even though fast, this method only segment the prostate

and the segmentation and registration are two separate part. Lu et al. [87] proposed

a joint segmentation and registration algorithm in which the bladder, prostate and

rectum are segmented by level-set method. The computation time of the method

reportedly needed several hours prohibiting the clinical use.
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Template

Target

Joint segmenta-
tion and registration

Transfomation h(x)

Segmented target

Figure 5.1: Illustration of joint registration and segmentation.

This motivates us to propose an automatic registration algorithm as future

work to meet the clinical criteria such as accuracy, robustness and speed. We can

combine the image registration algorithm in Sec. 4.2 with an image segmentation

process. The contours the FBCT image are mapped to the CBCT image, evolves

with the segmentation process and converges a good segmentation of the pelvic or-

gans in CBCT (see Fig. 5.1 for illustration). The segmentation uncertainty (can be

inferred from the intensity context) together with the shape model to penalize the

unrealistic shape deformation during the local boundary finding. It will be similar to

Lu’s method [87] in the sense that the segmentation and registration are alternatively

used. With the surface assimilation method, the time consuming Level-set segmenta-

tion is unnecessary and simpler and faster deformable segmentation methods would

be sufficient. Thus, we speculate that the new algorithm would converge faster and
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the whole algorithm would need less time.
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