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ABSTRACT

Osteoporosis is a bone disease associated with fracture risk. Accurate assess-

ments of fracture risk, guidelines to initiate preventive intervention, and monitoring

treatment response are of paramount importance in public health. Clinically, osteo-

porosis is defined by low bone mineral density, which explains 65-75% of the variance

in bone stiffness. The remaining variability is due to the cumulative and synergistic

effects of various factors, including trabecular bone micro-architecture. Osteoporostic

imaging is critically important in identifying fracture risks for planning of therapeutic

intervention and monitoring response to treatments. In this work, quantitative anal-

ysis of trabecular bone micro-architecture using volumetric imaging techniques and

computational biomechanical simulation through finite element modeling (FEM) are

applied on in vivo imaging for various human studies. The ability of imaging methods

in characterizing trabecular bone micro-architecture was experimentally examined us-

ing MRI and multi-row detector CT. They were found suitable for cross-sectional and

longitudinal studies in monitoring changes of trabecular micro-architectural quality

in clinical research. A framework which consists of robust segmentation of in vivo

images and quality mesh generator, was constructed for FEM analysis. The frame-

work was experimentally demonstrated efficient and effective to predict bone strength

under limited spatial resolution. The ability of distinguishing bone strengths of differ-

ent groups were evaluated on various human studies. And the relation between FEM

and image-based micro-architectural measures was explored. Quantitative analysis
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supports the hypothesis that trabecular bone have distinct structural properties in

different anatomic sites and the osteoporosis related change of the micro-architecture

also varies. It highlight the importance of standardizing the definition of bone scan lo-

cations and the segmentation of such well-defined regions. A shape modeling method

was proposed to solve the problem and its application in human proximal femur us-

ing MRI were presented. The method was compared with manual segmentation and

found highly accurate. Together with tools developed for quantitative analysis, this

work facilitates future researches of trabecular bone micro-architecture in different

anatomic sites.
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PUBLIC ABSTRACT

Osteoporosis is a bone disease associated with fracture risk. Accurate assess-

ments of fracture risk, guidelines to initiate preventive intervention, and monitoring

treatment response are of paramount importance in public health. Osteoporostic

imaging is critically important in identifying fracture risks for planning of therapeu-

tic intervention and monitoring response to treatments.

Quantitative analysis of trabecular bone micro-architecture using volumetric

imaging techniques and finite element modeling (FEM) are applied on in vivo imaging

for various human studies. The ability of imaging methods in characterizing trabec-

ular bone micro-architecture was experimentally examined using MRI and multi-row

detector CT. They were found suitable for cross-sectional and longitudinal studies in

monitoring changes of trabecular micro-architectural quality in clinical research.

A framework which consists of robust segmentation of in vivo images and qual-

ity mesh generator, was constructed for FEM analysis. The framework was experi-

mentally demonstrated efficient and effective to predict bone strength under limited

spatial resolution.

A shape modeling method was proposed to solve the problem of standardizing

the definition of bone scan locations and the segmentation. The method was compared

with manual segmentation and found highly accurate. Together with tools developed

for quantitative analysis, this work facilitates future researches of trabecular bone

micro-architecture in different anatomic sites.
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CHAPTER 1
INTRODUCTION

Osteoporosis is associated with an increased risk of low trauma fractures lead-

ing to increased mortality and morbidity. Its incidence increases progressively with

age [120, 80]. In the United States, about eight million women and two million men

have osteoporosis [102] with medical costs estimated at twenty two billion dollars in

2008 [13].

Osteoporotic imaging is critically important in identifying fracture risks of in-

dividuals for planning of therapeutic intervention and, also, in monitoring response

to treatments. Dual-energy X-ray absorptiometry (DXA) is the clinical standard

technique to classify bone mineral density (BMD) measurements in postmenopausal

women or older men (age 50 years) as osteopenic (T-score less than 1 to greater

than 2.5) or osteoporotic (T-score of 2.5 or lower). DXA BMD accounts for 60 to

70% of the variability in bone strength [177], and the remaining variability is due to

the cumulative and synergistic effects of various factors, including trabecular bone

(TB) micro-architecture [145, 81]. Thus, reliably measuring TB micro-architecture

could be of clinical significance, particularly as trabecular bone may be more sus-

ceptible to hormonal, pharmacological, and toxic effects. There is evidence in the

literature demonstrating that effects of therapeutic agents are greater on TB as com-

pared to overall BMD [9, 38, 175]. Results from several studies support the hypothe-

sis that bone structural metrics representing cortical geometry, individual trabecular

micro-architecture and plate-rod distribution are important determinants of fracture-
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risk [81, 118, 9, 38, 8, 87, 139, 97, 99]. Effective measures of TB micro-architecture

from in vivo imaging are useful to assess bone strength and fracture risk in the realm

of clinical therapy and treatment guidance, including growth and peak bone accrual,

aging, post-menopausal bone loss, cancer-related bone loss and conditional bone loss,

such as eating disorders, renal osteodystrophy, osteogenesis imperfacta, osteoarthritis,

rheumatoid arthritis, corticosteroid medicinal intake, etc [93].

The conventional tool for assessing TB structure is two-dimensional (2D) cross-

sectional histomorphometry from bone biopsies [112]. More recently, direct three-

dimensional (3-D) analysis of biopsy specimens using micro-computed tomography

(µ-CT) has gained interest [19, 64]. µ-CT instruments have maximum resolution

on the order of 8 µm isotropic voxels, providing detailed insight into TB micro-

architecture. Although it provides the highest resolution while being nondestructive,

µ-CT requires bone biopsy, which is rarely indicated clinically and is not suited for

monitoring treatment response.

High resolution in vivo imaging techniques provide an advanced tool for under-

standing of trabecular bone micro-architecture and its properties. Recent advance-

ments in volumetric bone imaging, such as magnetic resonance (MR) [177, 108, 29],

high resolution peripheral quantitative computed tomography (HR-pQCT) [17, 24],

and multi-row detector computed tomography (MDCT) [95, 139], allow character-

ization of bone micro-architecture without the need for biopsy. High complexity

of TB micro-architecture adds difficulty to construct a limited set of optimum TB

micro-architectural metrics comprehensively explaining osteoporotic fracture risks.
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Researchers have adopted various topologic and geometric approaches to character-

ize TB architecture using ex vivo and in vivo bone imaging technologies, and linked

their metrics to bone strength and/or fracture risks [113, 169, 65, 62, 51]. These re-

searches reveal that trabecular bone micro-architecture is an important determinant

of bone quality and monitor of fracture risk. A popular and widely used approach

of quantitatively characterization for TB micro-architecture is to classify individual

trabecular plates and rods and assess their compositions and distributions. Also, a

large number of histologic studies [81, 118] have confirmed the relationship between

erosion of trabeculae from plates to rods and fracture risk. Quantitative analysis of

trabecular bone micro-architecture using in vivo imaging is of high influence clinically

and is becoming the mainstream in research.

Another pathway of understanding fracture risk by bone imaging is to estimate

bone strength using computational biomechanical simulation through finite element

modeling (FEM) techniques. Despite the great success FEM has achieved in the

field of bone research using µ-CT [68, 48], application of FEM on in vivo imaging

remains a challenging task, due to the limited spatial resolution, and strong partial

volume effect. Specifically, constructing FE models of trabecular bone using clinical

MDCT images often fails due to loss of trabecular structure or filling or marrow holes

which miss represent the topology of trabecular network. Therefore, a reliable and

robust segmentation of trabecular bone network is a fundamental in FEM analysis

for in vivo imaging. Besides, in the field of bone research, few attention is paid on

the mesh generation for FEM, while for images of limited spatial resolution, coarse
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mesh representation would introduce inaccuracy for FEM simulation. And thus a

mesh generator which could guarantee the quality of mesh is also important. FEM

and imaging algorithms are both tools to understand trabecular bone properties.

However, the interaction between FEM metrics and micro-architecture at the level of

individual trabeculae and its implication fracture risk has been somewhat overlooked.

The relation between trabecular bone quantitative micro-architectural properties and

FEM metrics are of great interests and are explored in this research at human distal

tibia using MDCT imaging.

According to Wolff’s law, the remodeling of trabecular bone reacts to the

load under which it is placed. The remodeling of bone in different anatomical sites

will result in varying trabecular micro-architecture with distinct structural proper-

ties due to different geometries and shapes of bones where external loads come from

various directions. In literature, quantitative analysis have revealed that trabecular

networks have shown distinguishable characteristics at different anatomical sites at

human distal femur [60]. Even though these anatomical are closely located and con-

ventionally grouped as an intact region. Further understanding of trabecular bone

micro-architecture in such particular sites demands an advanced segmentation algo-

rithm to subdivide original region. A shape modeling method was proposed to solve

the problem and its application in human proximal femur using MRI are presented

in this work.

The overall objective of this research is to develop, validate, and optimize

clinically suitable in vivo methods for quantitative assessment of trabecular bone
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micro-architectural and mechanical properties over anatomically consistent regions

for cross-sectional and longitudinal studies.

Specific aims of this study involve (1) optimization of algorithms for quanti-

tative micro-architectural analysis of trabecular bone at in vivo imaging and study-

ing relationships among micro-architectural properties and various metrics of bone

strength at the levels of individual and whole bone, (2) development, validation of

methods for FEM of trabecular bone at in vivo CT imaging, and investigating FEM

measures in distinguishing various in vivo human groups, (3) development of an auto-

mated algorithm to compute subject-specific anatomic regions of interest for regional

analysis and comparison of bone measures.

1.1 Trabecular Bone Micro-architecture

Various topologic and geometric analytic approaches have been reported [113,

169, 65, 62, 51, 107] for characterizing TB micro-architecture. Parfitt et al. [113] con-

ceived a parallel interconnected plate model of TB yielding bone area fraction, TB

volume fraction, spacing, and number from 2-D histomorphometric sections. Vesterby

et al. [169] conceived a new stereologic parameter, called star volume, which is the

average volume of an object region that can be seen from a point inside that re-

gion unobscured in all directions. Hahn et al. [62] introduced the trabecular bone

pattern factor which captures TB connectivity in terms of the convexity property of

the TB surface defined as the ratio of the differences in perimeter and area under

dilation. Hildebrand et al. [65] developed a 3-D structure model index, a function of
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global plate-to-rod ratio, based on the observation that the rate of volume change with

thickness for a plate is different from that for a rod. Majumdar et al. [107] adopted ap-

parent TB number, thickness, spacing and fractal dimension measures to quantify TB

structural quality. Feldkamp et al. [51] showed that the makeup of TB networks can

be expressed in terms of topological entities such as the 3-D Euler number. Stauber

et al. proposed methods that classifies trabecular bone plate and rod [158, 160, 159].

Saha et al. developed digital topological analysis (DTA) [134, 133, 131, 132] to quan-

tify structural properties of TB, based on topological and geometrical characteristics

of TB network.

In this work, volumetric imaging algorithms, named Volumetric Topological

Analysis (VTA) and Tensor Scale (TS), were applied on in vivo imaging to mea-

sure the quality of trabecular bone micro-architecture. These two methods compute

the plate-width of individual trabeculae in units of micrometers and locally classify

individual trabecular type on the continuum between a perfect plate and a perfect

rod. Skeleton representation of tarbecular network is first extracted and used as a

core step in both methods. Traditional binary skeleton methods require the target

as a binary object, while in in vivo imaging, the binarization step often introduces

data loss. I therefore applied a new fuzzy skeleton algorithm to avoid binarization re-

lated data loss. The improvement of skeleton accuracy and the measure of trabecular

plate-width in in vivo imaging was examined.

The improved method yields accurate and robust measure of plate-widths. We

applied the improved VTA method to MRI imaging. The repeat scan reproducibility
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of the method was examined using two different in vivo MRI protocols at distal femur

and distal radius. In addition, we examined the methods ability to detect testosterone

treatment effects on hypogonnadal men in a 2 years follow-up study and the results

are presented in Chapter 2. The performance of the method is compared with the

conventional methods of digital topological analysis for plate/rod characterization.

In addition to MRI, we are also interested in MDCT imaging. Recent ad-

vances in MDCT technology have shown prominent improvements that overcome

major deficits of MRI and HR-pQCT related to scan-speed and size of field of view

(FOV). MDCT has ultra-fast scan speed and large FOV, which enables researches

for whole body study and longitudinal studies with accurate scanning protocols that

is easy to achieve clinically. However, in longitudinal studies, researchers often en-

counter a situation that a new and more advanced CT scanner replaces the older

scanner at the middle of the study, which may result in an incomplete process for

data acquisition and analysis, or a waste of previous data collected from the older

machine. It raises concerns of data uniformity in large-scale multi-site or longitudinal

studies that typically involve data from multiple scanners. Therefore, the relation of

data between different scanners and the continuity of scientific analysis results remain

a question to answer. In particular, we are interested in the relation and consistency

of MDCT based TB micro-architectural measures, in the condition of switching scan-

ners. One of the goals of this study is to compare TB micro-architectural measures

from two different MDCT scanners to determine if a longitudinal study can jump

scanners and still maintain longitudinal continuity. For MDCT imaging, we examine
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the effectiveness of two state-of-the-art scanners, namely Definition FLASH and SO-

MATOM Force, Siemens (Munich, Germany), in terms of accuracy and reproducibil-

ity of derived TB micro-architectural measures as well as their ability to predict actual

bone strength. We examine the association of TB measures derived from scans from

the two Siemens scanners with notably different spatial resolution features. Finally,

we seek the optimum TB imaging protocol for the latest SOMATOM Force scan-

ner, and determine its true spatial resolution feature in terms of modulation transfer

function (MTF).

1.2 Finite Element Modeling

Finite element modeling has been widely applied to various medical imaging

applications over the past two decades. The remarkable progress in high-resolution

imaging techniques draw great research interests in computing trabecular bone stiff-

ness from three-dimensional volumetric imaging using FEM. It is a powerful tool to

analyze bone stiffness and reactions under influences of external forces, which pro-

vides an insightful understanding of TB behaviors of human activities and helps to

model bone deformations and fractures. Advanced bone imaging techniques provide

high spatial resolution that enables researchers to build accurate FE models. Among

these imaging modalities, µ-CT achieves the highest spatial resolution, but it is in-

vasive to bone. In vivo imaging techniques, including MRI, HRpQCT, and MDCT,

draw more research interests. In literature, various FE methods have been reported

and applied on MRI [50], HRpQCT [17] and µ-CT [48]. Only a few results [47, 46]
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are available on MDCT due to challenging image resolution. Compared with MRI

and HRpQCT, MDCT has advantages of fast acquisition, widely availability and ca-

pability of visualizing large bone structures, which make it appropriate for clinical

use.

This work focused on FEM using MDCT images. It introduced image pro-

cessing methods to preserve trabecular bone connections under limited resolution

for MDCT images and a high quality mesh generator for FEM analysis. The repro-

ducibility of FEM-based bone stiffness on repeat MDCT images is evaluated. We also

show the relation between bone stiffness generated by FEM and actual bone stiffness

determined by mechanical testing. Our FEM consists of four sequential steps: (1)

image processing; (2) surface mesh generation; (3) volume mesh generation; (4) FEM

simulation. Output of each step is the input for the next step.

Original volumetric data is not always applicable for FE modeling because

medical images contain noise and artificial effects. Therefore proper processing steps

are necessary. The difficulty is to avoid eliminating bone structures during noise re-

moval procedures. In other words, preserving the connectivity of TB micro-architecture

is important, especially for MDCT images, which are of low spatial resolution. For

image processing, novel image processing algorithms for segmentation of trebacular

network under in vivo imaging were developed and will be presented in detail in

Chapter 3.1.

In the community of bone study, most studies focus on FEM simulations [50,

18], while little attention is paid on the mesh model. Several studies use basic cubic
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bricks as the approximation of bone structure model [50, 47, 96]. Some others use

Marching Cubes for surface mesh generation. Marching Cubes generates surface mesh

with bad triangles that is not satisfactory for FEM simulation and therefore relies

on post-processing tools. Several studies rely on commercial software for volume

rendition, which limits adoption for automation.

To generate meshes of high quality that suits the FEM analysis, a brief re-

view of mesh generation is presented in this work, with discussing of advantages and

disadvantages of different methods. And our framework of FEM mesh model is then

introduced. The framework possesses several desirable properties required for FEM

simulation: image topology preservation, surface and volume mesh with well-shaped

elements. With these properties, the presented framework is also applicable to other

types of imaging modalities and various applications. It is also a general tool for FEM

modeling in a broader range.

Experiments were designed to evaluate the proposed FEM framework. First

of all, the segmentation accuracy was examined by ROI-specific segmentation by hu-

man experts and its ability of preserving connectivity of trabecular bone network,

as well as marrow spacing was evaluated. With the proper segmentation for in vivo

MDCT imaging, FEM analysis are then applicable. In a cadaveric study, FEM com-

puted Young’s modulus were compared with actual Young’s modulus determined by

mechanical tests, to validate the ability of the proposed model in prediction of bone

strength. The FEM were also applied on in vivo experiments which involves sev-

eral human groups. Compressive modulus and shear modulus were computed on
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subject-specific ROIs, in hypothesis that FEM based measures are able to charac-

terize different groups. Finally, the computed FEM measures were compared with

bone micro-architectural measures that are computed from volumetrical imaging al-

gorithms to understand their relations. More details are presented in Chapter 3.

1.3 Shape Model and Subregional Segmentation

Osteoporosis is a degenerate bone disease affecting all bones. The bone struc-

ture decreases systematically which leads to loss of bone mass and deterioration of

micro-architecture. However, the severity of bone loss and deterioration were found

different in various anatomic sites in human body. In literature, researchers have

shown that bone mass percentage decreases and separation of trabecular structure

increases with the increase of distance from the end of bone on human distal ra-

dius [143, 106]. Recently, trabecular bone deterioration was found varying along the

longitudinal axis of the distal radius [60]. Increasing evidence supports the hypothe-

sis that trabecular bone have distinct structural properties in different anatomic sites

and the osteoporosis related change of the micro-architecture also varies.

The differences of trabecular micro-architecture in various regions highlight the

importance of standardizing the definition of bone scan locations and the segmenta-

tion of such well-defined regions for further study of trabecular micro-architecture

for both cross-sectional and longitudinal studies. The ability of locating the same

region of interest (ROI) across different patients is the prerequisites in cross-sectional

studies. And the accuracy of registering the same ROI on the same patient in longitu-
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dinal studies must also be a great impact factor. To facilitate the study of trabecluar

micro-architecture in different bone regions, I developed a shape model based method

to achieve automatic and robust segmentation. It is noted that the purpose is to sub-

divide a complete bone region, for example, the proximal femur, into sub-regions that

are likely of distinct bone qualities, instead of segmentation of the whole bone region.

In the field of medical imaging, shape models are widely used and proved to be

an effective approach for image segmentation [45]. In the past two decades, model-

based segmentation approaches have achieved a great success in medical imaging

analysis [46]. Shape models are adopted in areas where target objects have similar

shapes and structures. Generally, a mean shape, which represents the most significant

geometric features of target objects, is generated from a collection of training samples.

By matching the mean shape to individual objects, the segmentation is conducted.

The shape model makes use of prior information of target objects and are therefore

well suited for shapes that are of small variability, for example, in medical fields, lung,

tumor, distal and proximal femur. Active shape modeling has achieved success in a

few applications, it is still an active research area and suitable for medical applications.

The most common and generic way of representing a shape model is a set

of points that capture the most significant features of the shape. Usually, the set

of points are referred as landmarks. Let X = {L1, L2, L3, · · · , Ln} denote a vector

that contains n landmarks L1 to Ln. To generate the mean shape is to optimize the

vector X that is trained from different samples. However the success of generating a

mean shape involves multiple influence factors, such as, the selection of feature points,
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manual annotation accuracy, the selection of training shapes, total coverage rate of

the eigensystem, etc. More details will be discussed in Chapter 4.

Once the mean shape is obtained, one can register the mean shape onto new

shape subjects. The most natural way of registration is point to point matching. Tra-

ditionally, dense points matching is required to ensure accuracy of matching. How-

ever, the procedure need manual annotation that requires large amount of labor work

and expertise in medical fields and anatomical knowledge. Automatic registration

is therefore preferred for shape matching. I developed a two-step matching scheme

that successfully accomplished the shape matching task. The matching of reference

ans target surface enables us to deploy the landmark system defined on the reference

shape onto the new shape. Consequently, we constructed correspondence of surface

landmarks between two shapes.

To construct a dense volume correspondence, volume meshes were generated

inside the object surface. Similar to the correspondence of surface landmarks on

reference and target shape, volume landmarks are also paired. We defined a quasi-

uniform volume landmark system on the reference shape and deformed it to the

target shape using an elastic deformable model. Together with the surface landmark

correspondence, a discrete set of dense and quasi-uniform landmarks represents the

3D space R3. Transformation of volume on the lattice grid Z3 is then approximated

using the transform of landmarks. Landmark correspondence were constructed on a

few manual annotated subjects, which are volumes with each subregion marked by

an unique label, using the elastic deformable model. The 3D lattice grid Z3 of the
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mean shape is then labeled using averaged labels transformed from each annotated

subject to the mean shape space, using the spatial transform determined by landmark

correspondence.

Finally, to achieve the ultimate goal, segmentation of volume subregions, the

mean shape is deformed to any given new shape. Deformation process follows the

surface shape matching and elastic volume deformation. Spatial transform is then

determined after the deformation. And labeling of new shape is achieved by transform

the labeled lattice grid of the mean shape.

In Chapter 4, we will describe the entire work flow to achieve shape subregional

segmentation. Shape subjects are from human femur bone and a new landmark

system is defined using anatomic geometrical features determined by experts. Active

shape model will be generated using the landmark system defined on training shapes.

I will validate the shape model and evaluate its robustness with leave-one-out test.

The constructed active shape model is used to achieve shape matching from the

mean shape to the target shape, through a two-step matching scheme. The elastic

deformation model is presented in detail and its ability for preserving the shape

information will be examined. The accuracy of automatic registered sub-regions are

examined using those of manual annotations. The system provide an automatic and

robust solution for femur bone regional segmentation that can be widely applied on

various medical researches.
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CHAPTER 2
TRABECULAR BONE MICRO-ARCHITECTURAL ANALYSIS

Osteoporosis is linked to reduced bone mineral density (BMD) and structural

degeneration. This bone disease is associated with increased fracture risk, and the

fracture-incidence increases progressively with age [80]. The continued increase in life

expectancy is predicted to increase in fracture incidence, and Cooper et al. estimated

that the annual number of hip fractures will rise to 6.3 million by 2050 [41]. Ap-

proximately, 40% of women and 13% of men suffer at least one osteoporotic fracture

in their lifetime. Osteoporotic hip fractures reduce life expectancy by 10-20%, and

the annual healthcare cost for the United States alone is 19 billion dollars [109]. Al-

though, effective therapies are available for treatment of osteoporosis [82, 173], these

therapies are often expensive and associated with side effects [43, 27, 12]. Thus,

accurate assessments of fracture risk, clear guidelines to initiate preventive inter-

vention, and monitoring treatment response are of paramount importance in public

health [56, 55, 92].

Osteoporostic imaging is critically important in identifying fracture risks of

individuals for planning of therapeutic intervention and, also, in monitoring response

to treatments. Dual-energy X-ray absorptiometry (DXA) is the clinical standard

technique to classify BMD measurements in postmenopausal women or older men

(age 50 years) as osteopenic (T-score less than 1 to greater than 2.5) or osteoporotic

(T-score of 2.5 or lower). DXA BMD accounts for 60 to 70% of the variability in bone

strength [177], and the remaining variability is due to the cumulative and synergistic
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effects of various factors, including trabecular bone (TB) micro-architecture [145, 81].

Thus, reliably measuring TB micro-architecture could be of clinical significance, par-

ticularly as trabecular bone may be more susceptible to hormonal, pharmacological,

and toxic effects [28, 31].

2.1 Quantitative Trabecular Bone Measures

Volumetric topological analysis [139] and tensor scale [136] were previously

proposed to characterize TB and quantitatively measure the local structure plate-

width at individual voxel in a digitized object, and characterizes the local structure

type on the continuum between a perfect plate and a perfect rod. The original VTA

algorithm [139] was developed for binary objects requiring thresholding on fuzzy

representations of TB images, which is a sensitive and undesired step at in vivo

resolution [38]. An improved algorithm for fuzzy TB images was applied to eliminate

the thresholding step. Fuzzy skeleton improves accuracy of skeletons, which is also an

intermediate step for tensor scale, generated from fuzzy object. Below I will briefly

introduce these two methods. Fuzzy skeletonization will also be introduced and its

improvement of accuracy will be presented.

2.1.1 Volumetric Topologic Analysis

The overall objective of VTA was to measure the plate-width of individual

trabeculae in units of micrometers and locally classify individual trabecular type on

the continuum between a perfect plate and a perfect rod (Fig. 2.1(a)). Essentially, the

VTA algorithm computes local trabecular plate-width (Fig. 2.1(b)), which is different
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Figure 2.1: (a) Trabecular bone plate/rod classification of trabecular bone using

volumetric topological analysis. (b) Various measures on a schematic drawing of a

plate-like structure. (c) Color-coded geodesic distance transform from the surface

edge, providing one half of the local plate-width at an axial point, e.g. the axial point

a; but geodesic distance transform fails to provide local plate-width at a non-axial

point, e.g., the point p. (b) Color-coded local plate-width at a non-axial point, e.g.,

p, is derived from its most-representative axial point, here the axial point a.

from either trabecular thickness or skeletal width. The original VTA algorithm [139]

was developed for binary objects requiring thresholding on fuzzy representations of

TB images, which is a sensitive and undesired step at in vivo resolution [83]. Here,

we present an improved algorithm, which is directly applicable to fuzzy TB images

eliminating the thresholding stepa major source of error, especially, at in vivo image

resolution.

The VTA algorithm consists of five sequential steps: (1) fuzzy skeletonization,

(2) digital topological analysis, (3) geodesic distance transform, (4) geodesic scale

computation, and (5) volumetric feature propagation. The principle of VTA is de-
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scribed in figures 1(c) and (d). Let us assume that (c) represents the surface skeleton

of a plate-like object with varying plate-widths. A surface representation of an object

is obtained by surface skeletonization [133, 69]. After surface skeletonization, the

VTA algorithm identifies different topological entities, including surface edges (the

thick outline in figures 1(c) and (d)), on the skeleton using digital topological analysis.

The geodesic distance between two points on a surface skeleton is the length of the

shortest path between the two points such that the entire path lies on the skeletal

surface. VTA computes the geodesic distance at every surface interior point from

its nearest surface edge, which is referred as the geodesic distance transform (GDT)

(2.1(c)).

The central dotted line in both (c) and (d) represents the arc-skeleton, and

the points on the arc-skeleton are referred to as axial points. Note that, essentially,

the computed GDT is equal to the half of the local plate-width at an axial point, e.g.

the point a in (d). However, GDT fails to determine the local plate-width at non-

skeletal points, e.g. the point p in (c). A feature propagation step is applied, where a

non-axial point inherits the local plate-width from its mostrepresentative axial point.

For example, the point p is assigned the same plate-width as that of a after feature

propagation as illustrated in (d). Finally, another level of feature propagation is

applied where the plate-width values are propagated from the surface-skeleton to the

entire object volume, e.g. from figures 2(d) and (e). In this paper, we apply fuzzy

skeletonization in Step 1 instead of binary skeletonization. Steps 25 are implemented

using methods described in our previous work [139]. The feature propagation in
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Figure 2.2: Intermediate steps of VTA. (a) A TB region from a µCT image of a

cadaveric distal tibia. (b) Classified topolog-ical entities including plates (green),

rods (red), edges (light colors), and junctions (blue) on the fuzzy skeleton of (a).

(c-e) Color-coded (see 2.1(a) for the color bar) display of geodesic distance transform

(c), geodesic scale (d) and surface rendition of VTA results at individual trabeculae

(e).

Step 5 is accomplished using the principle established by Liu et al [100, 101] that is

independent of scan or processing order. Results of intermediate steps of VTA are

presented in Fig. 2.2.

2.1.2 Tensor Scale

Tensor scale algorithm [136] is directly applied on a volumetric fuzzy digi-

tal object that generates an optimum ellipsoidal representation of the local struc-
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ture at each individual curve-skeletal location. This ellipsoidal representation at a

curve-skeletal location is used to define different microarchitectural parameters, e.g.,

local plate-width, platelikeliness, rodlikeliness, orientation etc. of the local trabec-

ula. These local parameters at curve-skeletal locations are propagated to the object

volume using the two-level feature propagation approach described for VTA. Two

overall parameters in a TB region, namely PWTS and PRRTS were computed simi-

lar to PWVTA and PRRVTA, defined in Sec. 2.3 Eqn. 2.8. Although, both VTA and

tensor scale methods [140, 136] attempt to measure local structure plate-width, their

basic approaches are different. While VTA is a topologic approach based on geodesic

manifold path lengths, tensor scale use the geometry of local ellipsoid fits. Therefore

we investigate both measures in our experiments. Besides the plate-width measure,

the orientation information of tensor scale ellipsoid is used to distinguish between

longitudinal and transverse trabeculae. Finally, an overall parameter, namely tBMD

was computed as the volumetric BMD in TB regions contributed by transverse tra-

becular structures. This specific measure is investigated in this work, because, there

is evidence suggesting that reductions in the number of transverse trabeculae are as-

sociated with marked reduction in bone strength leading to failure due to buckling of

longitudinal trabeculae [153].

2.2 Fuzzy Skeleton Improves Skeleton Accuracy on Fuzzy Object

The performance of the TB plate-width computation method is highly depen-

dent on the quality of the surface skeleton generated from the volumetric represen-
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tation of a TB network acquired in vivo. Binary skeletonization is always associated

with binarization-related data loss adding skeletal inaccuracies such as disruption of

trabecular rods, perforation of plates, and filling of small marrow holes. For our stud-

ies under in vivo imaging conditions, the partial voluming effect introduces apparent

fuzziness for the target object. Therefore calibrating fuzziness in skeletonization and

avoiding binarization-related data loss could have significant improvements for our

studies.

2.2.1 Skeleton In Medical Imaging

Skeletonization provides a compact yet effective representation of an object

while preserving important topological and geometrical features; see [122, 126] for

thorough surveys on applications of skeletonization. Various implementations of skele-

tonization following the basic principle of Blum’s grassfire propagation are available

in literature [122, 152]. Traditional skeletonization algorithms are defined on binary

objects. Recently, Jin and Saha [69] have presented a comprehensive solution for

skeletonization of fuzzy object using the theory of fuzzy grassfire propagation and

collision impact. However, the influence of fuzzy skeletonization in different applica-

tions has not been studied.

Image resolution is a major bottleneck in medical imaging. Often, anatomic

structures are acquired in the presence of partial voxel voluming. Despite this bot-

tleneck, most medical imaging applications [122, 126] use the binary skeletonization,

which is associated with thresholding-induced data-loss and the effects are magnified
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at low image resolutions. On the other hand, fuzzy skeletonization may be directly

applied on the fuzzy representation of an object in the presence of partially volumed

voxels without requiring the binarization step. In this paper, we examine the role

of fuzzy skeletonization in measuring trabecular bone (TB) structure-width or plate-

width with limited resolution.

The significance of TB plate/rod distribution in assessing osteoporosis and low-

trauma fracture-risk has long been recognized in histologic studies [81, 118], which

have confirmed the relationship between erosion of trabeculae from plates to rods and

higher fracture risk. Various approaches have been reported to distinguish between

rod-like and plate-like trabeculae. The volumetric topological analysis (VTA) [139] is

an effective and powerful method to quantitatively characterize TB plate/rod [33] by

computing local TB plate-width based on topological classification, geodesic distance

analysis, and feature propagation on the skeleton of an object. The performance

of VTA is highly dependent on the accuracy of the skeleton used for plate-width

analysis. The original VTA algorithm [139] was developed for binary objects requiring

thresholding on TB images, which is a sensitive and undesired step at in vivo image

resolution [83].

The purpose of this work is to determine the influence of fuzzy skeletonization

on the performance of VTA at in vivo image resolution [35], where most bone voxels

are partially volumed. More specifically, we examine the accuracy and reproducibility

of plate-widths computed using the fuzzy and binary skeletonization-based VTA and

analyze their abilities to predict the actual bone strength.
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In this section, a few definitions and notations and brief outlines of the fuzzy

and binary skeletonization algorithms are presented followed by a short description

of the VTA [139] method used for TB plate-width computation. The 3-D cubic grid,

denoted as Z3, where Z is the set of integers, is used for image representation; each

grid element is referred to as a voxel. Conventional definitions of 8- and 4-adjacencies

in 2-D and 6-, 18-, and 26-adjacencies in 3-D are followed. This paper starts with the

assumption that the target object is fuzzily segmented using a suitable segmentation

algorithm [128, 168, 167, 155]. A fuzzy object O = (O, fO) is a fuzzy set of Z3, where

fO : Z3 → [0, 1] is the membership function and O = {p ∈ Z3|fO(p) > 0} is its

support. In this paper, 26-adjacency is used for object voxels, i.e., voxels in O, while

6-adjacency is used for background voxels, i.e, voxels in Ō = Z3 −O.

2.2.2 Binary And Fuzzy Skeletonization

The fuzzy and binary skeletonization algorithms using morphological erosion

under certain topologic and geometric constraints [69, 72, 123, 141, 133, 74] were

chosen for our comparative study. This simple yet effective approach, outlined in the

following, has become popular [122].
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Primary Skeletonization

• Locate all quench or skeletal voxels in the input object.

• Filter noisy quench voxels and mark significant skeletal voxels.

• Delete unmarked voxels in the increasing order of distance values while preserv-

ing the object topology and the continuity of skeletal surfaces.

Final Skeletonization

• Convert two-voxel thick structures into single-voxel thin surfaces and curves.

• Remove voxels with conflicting topologic and geometric properties.

Skeleton Pruning

• Remove noisy skeletal branches with low global significance.

Binary Skeletization: In binary skeletonization, a fuzzy object O = (O, fO) is

first binarized into Obin = {p|p ∈ O ∧ fO(p) > thr}, which is used as input. A

constant threshold value of ‘0.5’ is used for ‘thr’ for all experiments presented in this

paper. During primary skeletonization, the centers of maximal balls (CMBs) [3] are

located as binary quench voxels using 3-4-5 weighted distance transform (DT) [16,

15]. The filtering algorithm by Saha et al. [133] is applied to remove noisy quench

voxels and select significant surface and curve quench voxels. The four-condition

constraint of the (26,6) simple point/voxel characterization by Saha et al. [123] is

applied for topology preservation. Primary skeletonization produces a “thin set” [2]

that has at least one background neighbor except at very busy intersections. During

the final skeletonization step, two-voxel thick structures are eroded under topology

preservation and some additional geometric constraints [141, 133, 4] to generate a one-
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voxel thin skeleton while maintaining its overall shape. Finally, noisy skeletal branches

are removed during the pruning step using a global significance measure [139].

Fuzzy Skeletization: The fuzzy skeletonization algorithm is directly applied on

the fuzzy object O = (O, fO) without requiring the thresholding step. Here, fuzzy

distance transform (FDT) [130] is used instead of binary DT. A fuzzy quench voxel [69,

162] is located in a fuzzy object by detecting singularity voxels on the FDT map that

holds the following inequality for each 26-neighbor q:

FDT(q)− FDT(p) < 1
2
(fO(p) + fO(q))|p− q|, (2.1)

where |p − q| is the Euclidean distance between p, q. During the filtering step in

primary skeletonization, the measure of collision impact ξD [69] is used to define the

local significance of individual fuzzy quench voxels.

ξD(p) = 1− max
q∈N∗

26(p)

f+(FDT(q)− FDT(p))
1
2
(fO(p) + fO(q))|p− q|

. (2.2)

Collision impact at a quench voxel relates to the angle where independent fire-fronts

collide. The value is high when fire-fronts make a head-on collision. Quench voxels on

a core skeletal structure have high values of collision impact, while those on a skeletal

branch emanating from a noisy protrusion have low values [69]. Jin and Saha [69]

locally characterized the surface- and curve-like fuzzy quench voxels and argued the

use of different filtering kernels for them.

For topology preservation, the constraints of 3-D simple pints/voxels [123] are

applied on the support of the fuzzy object. Moreover, it is possible to find examples

in fuzzy skeletonization, where the criteria of quench voxels and 3-D simple voxels
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fail to maintain the continuity of skeletal surfaces. Thus, to ensure the continuity

of skeletal surfaces, additional constraints of (8,4) 2-D simple points are applied on

each of the three coordinate planes through the candidate voxel [69]. Similar to bi-

nary skeletonization, two-voxel thick structures are converted into a single-voxel thin

skeleton during final skeletonization. A few thick-voxels survive the first step of final

skeletonization, which are eliminated using the conflict between their topologic and

geometric properties. Finally, a collision impact-weighted path length of individual

skeletal branches is used as their global significance during the pruning step [69].

2.2.3 Experiment and Results

Results of surface skeleton and local plate-width computation from VTA are

presented in Fig. 2.3. In general, binary skeletonization over erodes TB surfaces,

which makes the computed plate-width lower than true plate-width and results in

more rod-like (reddish) trabeculae. Also, binary skeletonization created a few noisy

branches (indicated by red arrows) and less-smooth skeletal surfaces (indicated by

blue arrows). On the other hand, fuzzy skeletonization generated smoother surfaces

and yielded expected measures of plate-width.

Three quantitative experiments were designed to evaluate the following — (1)

accuracy, (2) repeat scan reproducibility, and (3) ability to predict bone strength.

Computer-generated phantoms were used for Experiment 1. Multi-row detector CT

(MD-CT) imaging of cadaveric TB specimens were used for Experiments 2 and 3. For

Experiment 3, bone strength of cadaveric specimens was determined by mechanical
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(c) (d)

(b)(a)

Figure 2.3: Results of binary and fuzzy skeletonization on two small regions from TB

images are shown in (a) and (b), respectively. Results of local plate-width on the

same image regions using binary and fuzzy skeletonization-based VTA are shown in

(c) and (d) respectively. The same color coding bar of Fig.2.1 are used here.

testing.

Computer-Generated Phantoms.

Computerized phantoms with known plate-widths were generated to examine

the accuracy of fuzzy and binary skeletonization-based VTA algorithms. First, 3-D

binary objects with boundary-noise and their true skeletons were generated at a high

resolution over an array of 512 × 512 × 512. Test phantoms were generated from

binary objects by down-sampling. The process starts by sampling ideal sinusoids of

known skeleton-width, say wS; let S denote the set of sampled points. A 3-D object V
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was computed from S by computing a distance transform from S, thresholding it at

a value, say wd, and, finally, adding random noisy protrusion of three-voxel diameter

on the object boundary. The plate-width of the binary object V was recorded as

wV = wS + 2×wd. The test phantom Vtest was generated by down-sampling V using

a 3 × 3 × 3 window to simulate fuzziness. Ten test phantoms were generated with

their plate-width wV = 3, 5, · · · , 21 in the voxel unit of the down-sampled image.

For fuzzy skeletonization-based VTA, the test phantom Vtest was directly used as the

input. For binary skeletonization, a threshold of 0.5 was applied on Vtest.

Cadaveric Specimens and MD-CT Imaging.

Fifteen fresh-frozen human cadaveric ankle specimens were obtained from 11

body donors (age: 55 to 91 years) under the Deeded Bodies Program, The University

of Iowa. The ankle specimens were removed at the mid-tibia region. Exclusion

criteria for this study were evidence of previous fracture or knowledge of bone tumor

or bone metastasis. These specimens were kept frozen until the performance of MD-

CT imaging. High resolution MD-CT scans of the distal tibia were acquired on a

128-slice SOMATOM Definition Flash scanner (Siemens, Munich, Germany) using

the following CT parameters: single tube spiral acquisition at 120 kV, 200 effective

mAs, 1 sec rotation speed, pitch factor: 1.0, nominal collimation: 16×0.3 mm, scan

length: 10 cm beginning at the distal tibia end-plateau, and total effective dose

equivalent to 17 mrem ≈ 20 days of environmental radiation in the USA. Images

were reconstructed at 0.2 mm slice thickness and 0.2×0.2 in-plane resolution using a

special U70u kernel achieving high structural resolution. Three MD-CT repeat scans



29

were acquired for each specimen with repositioning the phantom between scans.

Mechanical Testing for Bone Strength.

To determine TB strength, a cylindrical TB core 8 mm in diameter and

20.9±3.3 mm in length was cored from the distal tibia in situ along the proximal-distal

direction. Each TB core was mechanically tested for compression using an electrome-

chanical materials testing machine. To minimize specimen end effects, strain was

measured with a 6 mm gauge length extensometer attached directly to the midsec-

tion of the bone. A compressive preload of 10 N was applied and strains were set

to zero. At a strain rate of 0.005 sec−1, each specimen was preconditioned to a low

strain with at least ten cycles and then loaded to failure. Yield stress was determined

as the intersection of the stress-strain curve and a 0.2% strain offset of the modulus.

2.2.4 Results and Discussion

Accuracy.

To examine the accuracy of computed plate-width, an error was defined as

the mean absolute difference between computed and true plate-widths; let ErrorFSK

and ErrorBSK denote errors of fuzzy and binary skeletonization-based plate-width

computation. The mean and standard deviation of ErrorBSK over ten test phantoms

were 1.50±0.15 in the down-sampled voxel unit. The observed mean and standard

deviation of ErrorFSK was 0.40±0.02, a 73% reduction compared to ErrorBSK. A

paired t-test result (p < 0.001) comfirmed the significance of the error reduction.

Also, it is encouraging to note that the mean error of ErrorFSK is around 0.4 voxel
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unit, while the digital localization error in skeletonization is 0.38 [129]. Thus, it may

be inferred that the primary source of error in ErrorBSK is digital localization.
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Figure 2.4: (a) Mutual difference between fuzzy skeletons and binary skeletons of

three repeat-scan CT images of fifteen cadaveric trabecular bone specimens. (b)

Reproducibility of plate-width computed from binary and fuzzy skeleton in three

repeat scans of CT images.

Reproducibility.

Two different analyses were performed using the three repeat-scan MD-CT

images of fifteen cadaveric TB specimens to examine the reproducibility. First, the

mean absolute mutual difference (MAMD) of PWFSK (or PWBSK) was computed over

matching regions in post-registered repeat MD-CT scans of each TB specimen. The

results of MAMD analysis are presented in Fig. 2.4(a). It is observed that MAMD

of PWFSK is consistently lower than that of PWBSK for each TB specimen and a

paired t-test confirmed that the reduction in MAMD using fuzzy skeletonization is

statistically significant (p < 0.001)

The intraclass correlation (ICC) of PWFSK (or PWBSK) was computed over

matching spherical volume of interests (VOIs) in post-registered TB repeat MD-
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Figure 2.5: Ability of different TB measures to predict experimental bone strength:

(a) PWBSK (b) PWFSK (c) BMD. The ability is computed in terms of the R2 of linear

correlation between bone strength and respective measures.

CT scans. Ten spherical VOIs were randomly selected in the first scan of each TB

specimen (a total of 150 VOIs). Each VOI was located at least 8 mm proximal to the

distal endplate. A post-registration algorithm was used to locate the matching VOIs

in the second and third repeat scans. The VOI size was varied, and the ICC values

were presented in Fig. 2.4(b) as a function of VOI diameter. The fuzzy skeletonization-

based measure PWFSK achieves an ICC of 0.95 at a VOI diameter of 1.05 mm or

greater and it converges to the value of 0.98. In contrast, the binary skeletonization-

based measure PWBSK achieves the highest ICC value of 0.91 over the range of VOI

diameters of our experiment.

Ability to Predict Bone Strength.

Results of correlation analysis between TB yield stress and the average plate-

width computed from binary and fuzzy skeletonization are presented in Fig. 2.5.

PWFSK achieves the value of 0.92 for R2 or the coefficient of determination from
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linear regression analysis. On the other hand, R2 of PWBSK was 0.85. Note that

both measures achieves higher linear correlation with yield stress as compared to the

simple measure of average bone mineral density (BMD), in which the R2 was 0.74.

This observed results reaffirm the importance of TB plate/rod mirco-architecture as

well as the superiority of fuzzy skeletonization over the binary method in capturing

TB micro-structural properties at in vivo resolution.

In summary, this work has evaluated the role of fuzzy skeletonization in charac-

terizing TB micro-architecture at in vivo image resolution. The experimental results

have demonstrated that fuzzy skeletonization effectively eliminates the binarization

step which is always associated with data loss, especially, at regions with limited

resolution. It is experimentally confirmed that fuzzy skeletonization-based TB plate-

width is significantly more accurate and reproducible as compared to the binary

skeletonization-based measure. Further, it was found in a cadaveric study that the

fuzzy skeletonization-based TB plate-width measure has a stronger association with

actual bone strength than the binary method. In the context of the specific ap-

plication, the quality of surface skeleton influences the performance of volumetric

topological analysis (VTA) where surface skeleton heavily determines the accuracy

of plate-width. The improvement of plate-width using fuzzy skeletonization also in-

dicates that fuzzy skeletonization generates more accurate skeleton than the binary

method, possibly, by removing over erosion and false branches.
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2.3 Trabecular Bone Micro-architecuture Analysis using MRI

MRI has been successful in measuring trabecular bone micro-architecture [66,

178, 58, 57, 179, 176]. Here, we improved the VTA algorithm using the fuzzy skele-

tonization algorithm [69] to eliminate data loss in the binarization step and evaluated

it on in vivo MRI. The improved method yields accurate and robust measure of plate-

widths. We propose a new characterization of plate-like structures using plate-width

information. The repeat scan reproducibility of the method was examined using two

different in vivo MRI protocols at distal femur and distal radius. In addition, we ex-

amined the methods ability to detect testosterone treatment effects on hypogonnadal

men in a 2 years follow-up study and the results are presented. The performance of

the method is compared with the conventional methods of digital topological analysis

for plate/rod characterization.

The following notations are used in this section. Let O = {(p,BV F (p)) |

p ∈ Z3} be the bone volume fraction (BVF) representation of a TB image, where Z

is the set of integers, Z3 is the rectangular grid, p is a voxel location, and BVF(p)

is the BVF value at p. Let O denote the set of voxels with non-zero BVF, i.e.

O = {p | p ∈ Z3 ∧ BV F (p) 6= 0}. In the following, we describe the basic principle

of the fuzzy skeletonization algorithm, which eliminates data loss in the binarization

step and improves the performance.

The performance of our TB plate-width computation method is highly depen-

dent on the quality of the surface skeleton generated from the volumetric representa-

tion of a TB network acquired by in vivo imaging. In our previous algorithm, a binary
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skeletonization algorithm was used, which is always associated with binarization re-

lated data loss adding skeletal inaccuracies such as disruption of trabecular rods,

perforation of plates, and filling small marrow holes. Recently, Jin and Saha [69, 75]

developed a fuzzy skeletonization algorithm based on fuzzy grassfire propagation,

which eliminates binarization related data loss. Blums grassfire transform, originally

defined for binary objects, was modified for fuzzy representation of TB images where

the BVF is used to define the instantaneous speed of the grassfire front at a given bone

voxel. The speed of grassfire front at a given TB voxel p is inversely proportional

to its BVF. Using this notion, it can be shown that the fuzzy distance transform

(FDT) [130, 138, 40, 137] value at p defines the time that the fire front reaches p.

Therefore, the propagation time of a fire front at a TB voxel p to its neighbor q is

equal to the local BVF-weighted distance between p and q, and this equality is vio-

lated only at skeletal or quench points where the propagation process is interrupted

and stopped. Thus, a TB voxel p is a fuzzy quench voxel (Fig. 2.6(c)) if the following

inequality holds for every neighbor q of p Following the above definition, a quench

voxel fails to pass the grassfire front to any of itsneighbors, and thus, grassfire is

extinguished at quench voxels.

Although the fuzzy quench voxel captures medial axes or symmetry structures

using the notion of fuzzy grassfire transform, it creates a large number of spurious

quench voxels. Spurious quench voxels generate noisy skeletal branches, which are

not necessary to describe the overall object shape and topology. Often, such noisy

branches add undesired complexities in the skeleton and reduce the effectiveness of
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Figure 2.6: Results of intermediate steps of fuzzy skeletonization. (a) 3-D display of

TB region in a µ-CT image of a cadav-eric distal tibia specimen. (b) A sagittal image

slice displaying the fuzziness in the image. (c) All quench voxels before filtering. (d)

Results of final skeleton after filtering noisy quench voxels in (c); red arrows highlight

noisy branches. (e) Results of local significance computation. (f) Final results after

noisy branch pruning.

skeleton-derived measures. Therefore, it is necessary to remove spurious quench vox-

els, which is accomplished using their significance measures. Here, a function that

resembles the ”collision impact” of individual TB voxels is used to determine the sig-

nificance of a quench voxel as Eqn. 2.2. There are two types of quench voxelsa surface

quench voxel where two opposite fire fronts meet and a curve quench voxel where fire
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fronts meet from all directions on a plane. These unique geometric properties of a

surface or a curve quench voxel, are optimally used to determine its significance based

on the collision impact values of its neighboring voxels. For example, a significant

surface quench voxel ensures a 3×3 structure of quench voxels with high collision

impact in its neighborhood, while a significant curve quench voxel requires a three-

voxel curve in its neighborhood with high collision impact. A quench voxel with its

significance value above a threshold value thrsignificance, is referred as a significant

quench voxel or a fuzzy axial voxel. As illustrated in Fig. 2.6(d), the set of fuzzy axial

voxels captures the essential geometry of the original TB object; also, it reduces a

large set of non-significant quench voxels of (c).

In this work, the fuzzy skeletonization step starts with identifying the set

of all fuzzy quench voxels followed by computation of fuzzy axial voxels using the

above filtering method for significant quench voxels. Subsequently, TB object voxels,

which are not fuzzy axial voxels, are sequentially removed in the increasing order

of their FDT values while preserving the topology of the object. The notion of 3D

simple points [132] is used for topology preservation. It should be noted that, despite

the filtering of quench voxels, a few spurious branches may survive in the skeleton.

Therefore, a post-skeletal-pruning step is applied to prune noisy branches based on

their global significance computed as the collision- impact-weighted branch length.

Figure 2.6 shows results of intermediate steps of fuzzy skeletonization.

Fuzzy skeletonization reduces binarization related data loss, which improves

the preservation of trabecular network connectivity especially at relatively thin tra-
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Figure 2.7: Connectivity preservation of TB network using binary and fuzzy skele-

tonization methods. (a) The BVF map in an axial image of distal radius acquired in

vivo at 1.5 T MRI. The regions with relatively thin trabeculae are high-lighted with

arrows. (b,c) Results of binary and fuzzy skeletonization. In-plane connectivity loss

in the binary skeleton in (b) is highlighted in green; the matching trabeculae in (c)

are also highlighted.

beculae. Figure 2.7(a) shows the BVF map of TB network in an axial image slice

of distal radius acquired in vivo at 1.5 T MRI. Results of binary and fuzzy skele-

tonization are presented in (b) and (c), respectively. A few examples of trabecular

connectivity loss in the binary skeleton shown in (b) are highlighted in green; the

matching regions in the fuzzy skeleton are also highlighted. It should be noted that

the examples of in-plane connectivity loss of TB network as shown in (b) do not con-

tradict with 3D topology preservation using simple points [132], which guaranteed by

most skeletonization algorithms [122].

Micro-architectural measures.

The output of the VTA algorithm is a local plate-width (PW) function PW :
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O → R+, where PW (p) yields the local TB plate-width in units of micrometers at a

given bone voxel p ∈ O, R+ are real numbers. Three different measures of average

bone density, namely, bone volume by total volume (BV/TV), plate-like BV/TV, and

rod-like BV/TV, over a target region of interest (ROI) V are defined as follows:

BV/TV =

∑
p∈V

BVF(p)

V
(2.3)

BV/TVplate =

∑
p∈V andPW (p)≥THplate

BVF(p)

V
(2.4)

BV/TVrod =

∑
p∈V andPW (p)<THplate

BVF(p)

V
(2.5)

The threshold THplate was determined based on observed results of TB BMD distri-

bution over the range of TB plate-width (see Fig. 2.10). A clear deflation of BMD

distribution at the platewidth of ∼450 µm was noted on all curves in Fig. 2.10. This

deflation point of 450 µm was used to determine the threshold separating plate-like

and rod-like trabeculae. The platelikeness and rodlikeness measures of a TB voxel

p are defined using the eccentricity between the average TB thickness and the local

plate-width as follows:

platelikeness(p) =


0, if PW (p) < avth

1−
(

avth

PW (p)

)2

, otherwise,

(2.6)

rodlikeness(p) = 1− platelikeness(p) (2.7)

The parameter avth was determined as the average TB thickness reported in [129].

Note that the platelikeness measure is modelled using the eccentricity of an ellipse;
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here the smaller diameter captures the structure thickness, while the larger one rep-

resents TB plate-width. It should be emphasized that the above formulation of plate-

likeness and rodlikeness requires no threshold value. The average plate-width and

plate-to-rod ratio measures are defined as follows:

PWVTA =

∑
p∈O

PW (p)BVF(p)∑
p∈O

BVF(p)
(2.8)

PRRVTA =

∑
p∈O

platelikeness(p) BVF(p)∑
p∈O

rodlikeness(p) BVF(p)
(2.9)

Besides the above measure, two measures of TB plate/rod micro-architecture, namely

SCRDTA (surface-to-curve ratio) and EIDTA (erosion index), using the conventional

method of digital topological analysis were computed using the protocol prescribed

in [134].

2.3.1 Experiment

The aims of our experimental plans were – (1) evaluation of reproducibility for

in vivo repeat MRI scans using VTA measures at wrist and knee and (2) assessment

of the methods ability to detect treatment effects in hypogonadal men subjected to

testosterone treatment. For the first experiment, ultra high-field 7 tesla (T) MRI of

the distal femur at the right knee as well as 1.5 T MRI of the distal radius at the

right wrist were used. For the second experiment, 1.5 T MRI of distal tibia was used.

MR Imaging.

All MR datasets used in this paper were collected in vivo and several properties

have previously been published [8, 9, 85, 30]. The knee MRI was collected at New
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York University [30]. The right distal femur of each subject was scanned on a 7 T

whole body MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a

quadrature knee coil (18 cm diameter, transmit-receive). A high-resolution 3D-fast

low angle shot (FLASH) sequence was employed to obtain all images (TR/TE =

20/4.5; flip angle 10◦; bandwidth 130 Hz/pixel; one signal acquired; 130 axial images

with resolution 0.195 mm × 0.195 mm × 1 mm). Scanning time was ∼12 min total.

The wrist MRI data for assessment of reproducibility had been acquired pre-

viously at the University of Pennsylvania [85]. The right distal radius of each subject

was acquired on a Siemens 1.5 T MAGNETOM Sonata MR scanner (Siemens Medical

Solution, Erlangen, Germany), with a protocol described in detail in [85]. In brief,

3D fast large-angle spin echo (3DFLASE) sequence (36) yielded 0.137 mm × 0.13

7 mm × 0.410 mm voxel size. The imaging ROI of a 70 mm × 42 mm × 13 mm

slab centered 7 mm proximal to the most proximal tip of the epiphyseal line was

located during the first visit using a number of low resolution orthogonal 2D localizer

sequences. For followup exams, the 13 mm slab was selected by means of prospective

registration [117].

For the second experiment assessing the sensitivity of the new bone measures

to detect structural abnormalities, prior MRI data of the right distal tibia were re-

examined to evaluate the TB micro-structural implications of hormone therapy in

hypogonadal men. Full details of the prior studies are in [8, 9].

Subjects.

For the knee reproducibility experiment, MR bone data of four healthy male
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subjects (35±7.8 years) [30], without history of fracture, musculoskeletal disorder, or

any history of intake of bone altering medication were recruited in the Department

of Radiology at New York University. Each subject was scanned twice within the

same day with repositioning between scans. For the wrist reproducibility experiment,

previously acquired MR data of twenty women (62±8.1 years; 17 postmenopausal,

three premenopausal), were used [85]. Exclusion criteria included a history of fracture

or treatment for osteoporosis, a body mass index (BMI) greater than 30 kg m−2, and

the presence of primary bone cancer or metastases to the bone. Each subject had

been scanned three times over the course of 8 weeks with average interval between

scans being 20.2 d (standard deviation = 14.5 d).

For the second experiment, TB MR data of a previous longitudinal study [8] on

hypogonadal men under testosterone treatment were used. Specifically, 10 previously

untreated hypogonadal men (age range: 1880 years) were recruited under that study,

and their TB MRI data at baseline, 6, 12, and 24 months visit under testosterone

treatment were collected. Full details of human subjects and imaging protocols are

given in [8]. In brief: all 10 men had secondary hypogonadism for a duration of more

than 2 years with average duration of hypogonadism of 7.9 years (S.D. = 8.2 years).

Men were excluded if they had been consuming less than 750 mg of calcium per day

as determined by a food frequency questionnaire.

Image Processing.

Image processing steps are as follows: (1) BVF computation, (2) interpolation

to 150 m isotropic voxel size, (3) analysis using the improved VTA method, (4) ROI
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selection, and (5) computation of TB measures. BVF images were computed using

intensity connectivity and a local marrow intensity computation approach without

requiring global thresholding. In a BVF image, pixel intensity corresponds to the

fractional occupancy of bone. BVF images were resampled using the windowed-

sinc interpolation method producing 150 m isotropic voxel size, and the images were

subjected to VTA analysis. We first draw the ROI manually on the first MR scan

and generated ROIs of follow-up scans using transformation matrices that register

original image of the first scan to follow-up scans. The process involves only ROI

transformation and avoids interpolation related resolution loss of original BVF images.

Finally, we compute proposed measures for each BVF image.

Statistical Analyses.

Statistical analyses that quantitatively assess reproducibility of the VTA de-

rived TB measures in vivo repeat MR scans are: the mean, the root-mean-square

of coefficients of variation, and the intra-class correlation coefficient. For each sub-

ject, the coefficient of variation (CV) of a given TB measure was calculated across

repeat scans. For a given study and a given measure, an average CV was obtained

as the root mean square average of CV across all subjects (denoted RMS-CV) to

measure the global variability across repeat scans. In addition, the intra-class corre-

lation coefficient (ICC) was computed as a measure of reliability via one-way analysis

of variance (ANOVA). To examine a methods ability to detect longitudinal changes

in TB micro-architecture in the second experiment, we computed both p-values and

effect-size of changes. The effect-size was computed as the mean paired change of a
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Figure 2.8: Reproducibility of VTA-based characterization of TB plate/rod micro-

architecture for in vivo repeat MR scans of the distal radius on a 1.5T whole-body

MR scanner: (a) axial image and ROI (red). (b) Bone volume fraction (BVF). (c)

VTA-based color-coded plate/rod classification of individual trabeculae. (d-f), (g-i)

Same as (a-c) over the matching image slice from the post-registered repeat scan data.

measure between baseline and follow-up normalized by the standard deviation of the

paired changes among individual subjects.

2.3.2 Results

Reproducibility of TB Plate/Rod Measures in MR Repeat Scans.

Matching image slices of distal radius from post-registered wrist MR repeat
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Figure 2.9: Reproducibility of the TB plate-width measure for in vivo MR repeat

scans of distal radius. (a) Color-coded 3-D rendition of local TB plate-width in post-

registered virtual image cores from three MR repeat scans of a subject. (b,c) Same

as (a) for two other subjects with different TB characteristics. For each subject, the

mean and stand-ard deviation of the TB plate-width and plate-to-rod ratio measures

across three repeat scans are indicated.

scans along with parametric images are shown in Fig. 2.8. Color-coded renditions of

VTA plate-rod classification over matching ROIs in three repeat scans of a subject

from the wrist study is presented in Fig. 2.9. Quantitative results of the reproducibil-

ity study are summarized in table 2.1. RMS-CV values of repeat scans for knee and

wrist MRI are in the range of (1.0%, 4.7%) while the intra-class correlation coefficient
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Table 2.1: Results of in vivo repeat scan reproducibility analysis for the knee and the

wrist MRI studies.

Knee MRI study Wrist MRI study

Parameter Mean RMS-CV(%) ICC Mean RMS-CV (%) ICC

BV/TV(%) 23.9 3.2 0.96 7.1 2.9 0.97

BV/TVplate (%) 19.4 3.9 0.96 4.5 4.0 0.97

BV/TVrod (%) 4.5 2.0 0.96 2.6 4.2 0.96

PWVTA (µm) 937 1.0 0.93 621 2.1 0.95

PRRVTA 4.14 1.4 0.94 1.40 4.6 0.96

(ICC) values are in the range of (0.93, 0.97). Similar values of ICC for reproducibility

of DTA parameters SCRDTA and EIDTA were reported in [85]. For the knee MRI data,

we computed the ICC values for SCRDTA and EIDTA and the observed values are 0.91

and 0.93, respectively.

Effects of Testosterone Treatments on TB Micro-architecture in Hy-

pogonadal Men.

The baseline distribution of trabecular BVF at various TB plate-width among

the hypogonadal men used in the testosterone study is presented in Fig. 2.10. Changes

in TB plate-rod microarchitecture at different follow-ups under the hormone therapy

are presented in Fig. 2.11. Figure 2.11(a) to (d) presents color-coded 3D TB plate/rod

micro-architecture over matching ROIs from post-registered distal tibia MRI of a

hypogonadal man at baseline, 6, 12, and 24 months follow-ups. Figure 2.11(e) depicts

the mean changes in trabecular BVF distributions across TB plate-widths at three
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Figure 2.10: The baseline trabecular BVF distribution at various TB plate-widths

among hypogonadal men from the testosterone treatment study. The shaded area

represents the mean ± std of trabecular BVF values at corresponding TB plate-

width.

follow-up time points; see table 2.2 for quantitative results. Figure 2.12 compares

the effect-size of changes in different DTA and VTA measures of TB plate/rod micro-

architecture under hormone therapy at baseline, 6, 12, and 24 months followups. High

effect-size was observed for the two VTA measures PRRVTA and PWVTA than the two

DTA measures surface-to-curve ratio (SCRDTA), erosion index (EIDTA), especially, at

6 and 24 months follow-ups.
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Table 2.2: Progressive changes in VTA-based TB measures derived from a 2 years

follow-up distal tibia MRI study during testosterone hormone therapy in hypogonadal

men.

% change p

Baseline 6 mo 12 mo 24 mo 6 mo 12 mo 24 mo

BV/TV(%) 2.1±4.3 2.1±5.7 6.0±5.7 0.10 0.14 0.005

BV/TVplate (%) 6.5±10.7 7.2±13.8 16.2±14.7 0.06 0.07 0.003

BV/TVrod (%) 1.1±3.4 0.7±5.8 2.2±4.7 0.19 0.35 0.09

PWVTA (µm) 1.9±2.5 2.5±3.5 4.4±3.9 0.03 0.02 0.003

PRRVTA 5.1±8.1 7.3±9.9 14.1±10.7 0.05 0.02 0.001

SCRDTA 1.7±10.6 5.1±6.8 5.2±8.5 0.23 0.02 0.04

EIDTA -5.3±10.6 -6.1±9.8 -9.2±11.2 0.10 0.04 0.01

2.3.3 Discussion and Conclusion

TB Plate/Rod Measures And Their MR Repeat Scan Reproducibil-

ity.

The significance of plate/rod distribution in trabecular bone has long been

recognized. A large number of histologic studies [81, 118, 87] have confirmed the

relationship between erosion of trabeculae from plates to rods and higher fracture

risk. Kleerekoper et al [81] found lower mean TB plate density in individuals with os-

teoporotic vertebral compression deformities compared with a BMD-matched control

group without fractures. Recker [118] found differences in TB plate density on two

BMD-matched groups with (lower density) and without (higher density) vertebral

crush fractures. Various approaches have been reported to distinguish rod-like from
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Figure 2.11: Changes in TB plate/rod micro-architecture over a 24-month MRI study

monitoring effects of hormone therapy in hopogonadal men. (a-d) Color-coded display

of TB plate/rod classification from distal tibia MRI at baseline, 6-, 12-, and 24-month

follow-ups. (e) Mean changes of BVF at different TB plate-width in ten hypogonadal

men as observed at different follow-ups.

plate-like trabeculae. Hahn et al [62] expressed the relation of trabecular plates to

rods in terms of the ratio of concave to convex surfaces of the bone pattern in 2D

histologic bone sections. Specifically, the ratio of trabecular plates and rods was de-

fined in terms of the ratio of the differences in perimeter and area under a simulated

dilation. This line of thought was extended into a direct 3D measure of structure

model index [65], where the global plate-to-rod ratio was expressed in terms of the
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Figure 2.12: Effect-size of changes in different TB measures from MRI at 6-, 12-, and

24-month follow-ups under the testos-terone hormone therapy in ten hopogonadal

men.

ratio of volume change with thickness under simulated 3D dilation. Notably, however,

these prior studies were all based on bone biopsies.

In previous work, Saha and his colleagues developed DTA [132, 131, 133,

134] that characterizes topological plates, rods, and junctions at individual TB vox-

els. This method was applied to in vivo studies assessing implications of hormonal

changes [8, 175] or renal osteodystrophy [179] on TB plate-rod micro-architecture.

DTA based assessment of TB micro-architecture revealed reduced trabecular plates

in subjects with vertebral fracture [98] or deformity [174]. However, a major lim-

itation of the DTA method is that resulting classifications are inherently discrete,

failing to distinguish between narrow and wide plates. The balance between plates

and rods during bone formation at younger ages, as well as during bone loss or anti-

resorptive treatment, changes gradually and, therefore, demands classification of TB

micro-architecture on the continuum between a perfect plate and a perfect rod. Also,
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theoretically, the discrete TB plate/rod classification by DTA is sensitive to image

voxel size. For example, a trabecula classified as rod at one voxel size may be classified

as a plate at a smaller voxel size. In contrast, the VTA algorithm solved the problem

by computing local plate-width in the units of micrometers for individual trabeculae.

Color-coded illustrations of the TB network in Fig. 2.8 and 2.9 confirm the methods

ability to classify individual trabeculae on the continuum between a perfect plate and

a perfect rod. Regional agreements of TB plate/rod classification in repeat MR scans

are visually observed in these figures. The three rows in Fig. 2.9 represent repeat scans

of TB from three different subjects with distinct trabecular plate/rod composition.

The method successfully represents the large difference across the three subjects and

shows much smaller variance at repeat scans. In the discussion of effects of testos-

terone treatment on TB micro-architecture in hypogonadal men, we also compared

DTA with VTA in measuring quality changes of TB micro-architecture.

It is noted in table 2.1 that RMS-CV values are small for all TB measures

for both the knee and the wrist MRI studies. The lowest RMS-CV value of 1.0

was observed for the core VTA measure PWVTA, which indicates that the PWVTA

measure is reproducible with 1.0% variability relative to its mean value. The ICC,

i.e. the variability of the measure relative to the range of values obtained across the

population, was found to be 0.93 and 0.95 for the same measure for the two studies.

PRRVTA shows somewhat greater RMS-CV since the variability in both platelikeness

and rodlikeness measures are combined in this ratio measure (see Eqn. 2.8). However,

the observed ICC values of PRRVTA are similar to those of PWVTA, which suggests
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that the across-population variation of PRRVTA is higher than that of PWVTA. High

reproducibility of the VTA measures establishes their suitability for clinical or research

studies including multi-center studies and longitudinal ones where multiple follow-up

scans are needed.

Beyond the measures given in table 2.1, the method yields unique information

on the distribution of BV/TV at different values of trabecular plate-width (Fig. 2.10).

These distributions provide insight into the pathogenesis of bone degeneration (or,

development) process at the level of TB micro-architecture. For example, besides

early detection of trabecular bone conversion from plates to rods, the method is

potentially capable of distinguishing gradual conversion of trabecular plates to rods

from rapid perforation of trabecular plates. We observed that there is an apparent

separation gap at around 450 m, which differentiates rod- and platelike trabeculae.

Effects of Testosterone Treatments on TB Micro-architecture in Hy-

pogonadal Men.

Benito et al [9] reported the results of a 2 years follow-up study examining

the effects of testosterone replacement treatment on TB micro-architecture using

the same imaging tools. The MR image from these two studies were re-analyzed

using the improved VTA algorithm. Here, we present the result and compare it with

DTA in assessing effects of testosterone treatment on TB micro-architecture among

hypogonadal men.

Figure 2.10 presents the distribution of TB volume at different plate-widths

for hypogonadal men at different time-points in the follow-up study. Here, the VTA
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algorithm provides unique information not obtainable by DTA or any other existing

tools. Figure 2.11(a)(d) depicts the change in TB micro-architecture over a matching

ROI for a hypogonadal subject during the 2 years treatment period. A gradual and

progressive shift in trabecular composition toward more plate-like structures is noted

in the figure. The quantitative results of table 2.2 confirm this effect on TB micro-

architecture of the hormone treatment. The mean plate-width PWVTA and plate-

to-rod ratio PRRVTA showed statistically significant changes as early as 6 months of

the treatment. After 24 months of treatment, all TB measures showed statistically

significant improvements, except BV/TVrod over rod-like trabeculae. BV/TVplate was

found to increase 6.5% at the 6 months but did not quite reach significance (p = 0.07).

Distributions of changes in BVF at different trabecular plate-width during the 2 years

treatment period are presented in Fig. 2.11(e). At 12 and 24 months follow-ups, there

is apparent increase in BVF around ∼625 µm plate-width, which is close to the mean

TB plate-width observed in table 2.1. In table 2.2, quantitative results of changes for

2 years follow-up study on hypogonadal men during testosterone hormone therapy are

presented. Figure 2.12 presents the effect-size of changes of VTA and DTA measures

at different follow-ups.

The above results shed light on the mechanism of hormone therapy in terms of

TB microarchitecture. A net increase in BV/TVplate occurs due to gradual conversion

of TB rods into plates under hormone therapy, and the shift is detectable as early as

at 6 months. On the other hand, the relative constancy of the BV/TVrod measure

is associated with the uncertainty of the balance between the rates of rod to plate
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conversion and generation of new TB rods. While the conversion of TB rods to plates

decrease rod density, generation of new TB rods increases it. These two opposite

effects nearly cancel each other.

There is histologic evidence demonstrating improvements in TB microarchi-

tecture in hypogonadal men after testosterone treatment. Baran et al [6] reported

increases in relative osteoid volume, total osteoid surface, linear extent of bone forma-

tion, and bone mineralization in an osteoporotic hypogonadal male after 6 months of

testosterone replacement. Francis et al [53] observed increased total and free plasma

1,25-dihydroxyvitamin D in hypogonadal men on testosterone treatment, and bone

biopsy at 6 weeks after treatment confirmed increase in skeletal retention of calcium

and bone formation by testosterone treatment. It is in accordance with our observa-

tions of positive changes in TB micro-architectural changes after testosterone treat-

ment. The early detection of positive changes in TB microarchitecture using VTA in

hypogonadal men after 6 months of testosterone treatment (table 2.2) suggests that

VTA may be a more responsive or sensitive way to monitor osteoporosis or treatment

effect as compared to DTA or BV/TV, which required more time to detect treatment

effects. Specifically, as compared to DTA measures, two VTA measures plate-width

PWVTA and plate-to-rod ratio PRRVTA show statistically significant changes under

treatment at 6 months, while none of the DTA measures produced significant differ-

ence at 6 months. In addition, VTA offers resolutionindependent measures in units of

micrometers, and insight into the mechanism of a treatment at the level of individual

trabecular plate/rod micro-architecture.
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In summary, We improved the VTA algorithm to eliminate data loss in the bi-

narization step using fuzzy skeletonization. The method offers reproducible measures

of TB plate/rod micro-architecture at in vivo MRI. It computes local plate-width and

characterizes individual trabeculae on the continuum of a perfect plate and perfect

rod. The method yields the width information of individual trabeculae and offers an

insight speculation into the bone structure at micrometer level, which existing tools

are not able to provide. By studying a group of human subjects, we observe a pattern

of width distribution of human TB. The method is suitable for cross-sectional and

follow-up studies toward answering clinical and biological questions. The method

should be equally suited for studies with other modalities providing trabecular bone

images with limited spatial resolution, including high-resolution CT. However, evalu-

ation of the methods full potential requires drug intervention studies in larger cohorts

of patients.

The method presented in this paper is based on direct microstructural analysis

of TB network in high-resolution MR imaging, and provides measures of plate/rod

distribution of individual trabeculae. Unlike the indirect methods, the morphologic

interpretations of our measures are well defined, and histologic evidence confirms

the relationship between osteoporosis and the gradual conversion of trabecular plates

to rods, a process well known to increase fracture risk. Further, our method offers

plate/rod characterization at the level of individual trabeculae, which may be useful

as a regional biomarker, especially, in recognizing heterogeneous bone loss. Lastly, it

would be worthwhile to compare the relationship between highresolution image-based
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direct morphologic measures of TB micro-architecture and indirect MRI measures and

their strengths and weaknesses in assessing fracture risk and their ability to monitor

disease progression or response to treatment.

2.4 Trabecular Bone Micro-architecuture Analysis using MDCT

Imaging

State-of-the-art volumetric bone imaging modalities, including magnetic res-

onance imaging (MRI) [177, 107, 94, 29] and high resolution peripheral quantitative

computed tomography (HR-pQCT) [17, 83, 25], have been investigated for quan-

titative assessment of bone microarchitecture at peripheral skeletal sites. Despite

considerable efforts and successes, these techniques suffer from slow-speed scanning

causing motion artifacts [17, 105, 77], smaller field of view (FOV) susceptible to po-

sitioning error [105, 20], need for a specialized scanner and/or associated hardware,

and, in the case of MRI, failure to provide quantitative BMD. Recent advances in

multi-row detector CT (MDCT) technology have shown prominent improvements

that overcome major deficits of MRI and HR-pQCT related to scan-speed and FOV.

A state-of-the-art MDCT scanner, specifically, Siemens SOMATOM Force, achieves

xy-plane 10% modulation transfer function (MTF) of 30.0lp/cm ≈ 167 µm true in-

plane resolution and z-plane 10% MTF of 17.7lp/cm ≈ 282 µm true z-plane resolution

using ultra-high resolution (UHR) mode. This scanner acquires a 10 cm scan-length

at a peripheral site using the UHR mode in just 6sec as compared to ∼2.9min for

0.9cm scan-length using HR-pQCT [23]. Also, it offers major dose reduction while
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simultaneously increasing spatial resolution and SNR. If MDCT is established as effec-

tive for quantitative bone microarchitectural imaging, its wide availability in clinical

environments will immediately put it as a front runner for large multi-center bone

studies.

A pertinent challenge with CT for bone research emerges due to wide variation

in imaging and reconstruction features from different vendors and rapid upgrades in

technology. It raises concerns of data uniformity in large-scale multi-site or longi-

tudinal studies that typically involve data from multiple scanners. In longitudinal

studies, researchers often encounter a situation that a new and more advanced CT

scanner replaces the older scanner at the middle of the study, which may result in

an incomplete process for data acquisition and analysis, or a waste of previous data

collected from the older machine [61, 71, 73]. Therefore, the relation of data between

different scanners and the continuity of scientific analysis results remain a question

to answer. In particular, we are interested in the relation and consistency of MDCT

based TB micro-architectural measures, in the condition of switching scanners. One

of the goals of this study is to compare TB micro-architectural measures from two

different MDCT scanners to determine if a longitudinal study can jump scanners and

still maintain longitudinal continuity.

In this section, we examine the effectiveness of two state-of-the-art scanners,

namely Definition FLASH and SOMATOM Force, Siemens (Munich, Germany), in

terms of accuracy and reproducibility of derived TB micro-architectural measures as

well as their ability to predict actual bone strength. Also, as mentioned earlier, we
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examine the association of TB measures derived from scans from the two Siemens

scanners with notably different spatial resolution features. Finally, we seek the opti-

mum TB imaging protocol for the latest SOMATOM Force scanner, and determine

its true spatial resolution feature in terms of MTF.

2.4.1 Methodology

The overall objective of our experiments is to evaluate the role of a state-of-

the-art MDCT imaging technology in computing TB microarchitectural metrics at a

peripheral sites. Specifically, the methods and experiments were designed to perform

the following tests on a Siemens SOMATOM Force scanner.

(1) To examine the accuracy and reproducibility of TB microarchitectural

measures computed using MDCT imaging at a peripheral site, namely distal tibia,

and to assess their ability to predict actual bone strength.

(2) To determine if a longitudinal study can jump two different MDCT scan-

ners and still maintains longitudinal data continuity.

(3) To determine the optimum MDCT imaging protocol in a state-of-the-art

Siemens SOMATOM Force scanner achieving the highest spatial resolution.

To comprehensively perform these tests, the following materials and methods

were used (1) cadaveric ankle specimens, (2) UHR MDCT scanning of distal tibia

specimens under in vivo conditions using Siemens Definition FLASH and Siemens

SOMATOM Force scanners, (3) micro-CT scanning of cadaveric ankle specimens, (4)

mechanical testing on cadaveric ankle core specimens determining their strengths and
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elastic moduli, (5) UHR MDCT ankle scans of healthy volunteers on two different

scanners at a short time gap, (6) image processing and computation of TB microar-

chitectural metrics, and (7) estimation of modulation transfer functions (MTFs) of

two scanners at different scan protocols. The overall design of materials and methods

of our experiments are summarized in Fig. 2.13.

Figure 2.13: The overall design of methods and materials used in the current study.
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2.4.1.1 Study Groups

Cadaveric Ankle Specimens.

Twenty-two fresh-frozen cadaveric ankle specimens were removed at mid-tibia

from seventeen body donors (age at death: 79.6±13.2 yr; 8 males, 9 females). Those

bodies were collected under the Deeded Bodies Program at The University of Iowa,

Iowa City, IA. Exclusion criteria were evidence of previous fracture or knowledge of

bone tumor or bone metastasis. After collection, these specimens were placed in

a sealed plastic bag and kept frozen until MDCT imaging. This set of twenty-two

specimens, referred to as Specimens A, was used for repeat UHR MDCT imaging on

a Siemens Definition Flash scanner as well as for micro-CT imaging and mechanical

testing. Another set of three ankle specimens from two body donors, referred to as

Specimens B, was collected and used for repeat MDCT scans under each of numerous

CT scan protocols on the Siemens SOMATOM Force scanner.

Healthy Volunteers.

MD-CT distal tibia scans were obtained for twenty healthy volunteers (age:

range 35 to 20; 26.2±4.5 years; 10 females) in two state-of-the-arts scanners. This

study was designed around the transition period of the MDCT scanner upgrade at the

University of Iowa Comprehensive Lung Imaging Center (ICLIC) research CT facility.

First, each volunteer was scanned in old scanner before upgrade who were recalled

after upgrade and rescanned in the new scanner. The range of time gaps between the

two scans on an individual participant was 48 to 40 days with the meanstd. 44.6±2.7

days. All experiments involving human subjects were approved by The University
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of Iowa Institutional Review Board and all participants provided written informed

consent.

2.4.1.2 Ultra-High Resolution MDCT Imaging

UHR MDCT scans of distal tibia using two state-of-the-arts scanners (old

scanner: Siemens Definition FLASH, Munich, Germany; new scanner: Siemens SO-

MATOM Force, Munich, Germany) were used for experiments. For both scanners,

imaging experiments were performed at ICLIC. UHR mode: Both FLASH and Force

scanners have two 64 rows of 0.6 mm detectors. The highest resolution single gun

scan mode was used, which activates the 32 inner most 0.6 mm detectors to maxi-

mize beam quality. Siemens double z-sampling allows for a dual sampling of the 0.6

mm detectors, splitting the signal so that each detector creates a 0.3 mm slice in the

z-plane [115, 52]. The UHR scan mode provides a more accurate slice profile and

lowered partial volume artifacts enabling high image detail with a maximum achiev-

able in-plane as well as z-plane resolutions. For both scanners, a scan-length of 10

cm beginning at the distal tibia end-plateau were used; an AP projection scout scan

of the entire tibia was acquired to locate the field of view. A Gammex RMI 467

Tissue Characterization Phantom (Gammex RMI, Middleton, WI) was scanned to

calibrate CT Hounsfield units into BMD (mg/cm3). Scanner-specific CT parameters

are described in the following.

FLASH Scanner.

Single tube spiral acquisition at 120 kV, 200 effective mAs, 1 sec rotation speed,
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pitch factor: 1.0, nominal collimation: 16×0.3 mm, total effective dose equivalent:

170 µSv ≈ 20 days of environmental radiation in the US. After scanning in a helical

mode with a 0.4 mm slice thickness, data were reconstructed at 0.2 mm slice thickness

using a normal cone beam method with a special U70u kernel achieving high structural

resolution.

FORCE Scanner.

Single X-ray source spiral acquisition at 120kV, 200 effective mAs, 1sec rota-

tion speed, pitch = 1.0, and nominal single collimation width of 0.6mm, total effective

dose equivalent: 50 µSv ≈ 5 days of environmental radiation in the US. Images were

be reconstructed at 0.3 mm slice-thickness with 0.2 mm slice-spacing and 0.1 mm

pixel-size using Siemenss special kernel Ur77u with Edge Technology to achieve high

spatial resolution. For the cadaveric ankle specimens in Specimens B, MDCT scans

the effective mAs of 100 and 50 and the pitch of 0.85 were also collected.

2.4.1.3 Mechanical Testing of Specimens

A cylindrical TB core was harvested from each of the twenty-two distal tibia

sample of Specimens A, and compressive mechanical tests were performed. Youngs

modulus (E) of each specimen was determined using an extensometer test, while the

Yield stress was determined in a platen test. The platen test was performed because

during the first test, most TB cores failed near their ends rather than within the

extensometer span. Therefore, specimen lengths were shortened to obtain more ho-

mogeneous properties across each length. All specimen preparation and mechanical
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testing were performed at the University of Iowas Orthopaedic Biomechanics Labo-

ratory.

Specimen Preparation.

Cylindrical TB specimens of nominally 8 mm in diameter were cored from

distal tibia in situ along the proximal-distal direction. A-P and M-L radiographs

were first used to determine the central axis of the bone and thus the core location

and to ensure elimination of the growth plate from a test specimen. Specimen were

cored with saline immersion using an 8.25 mm inner diameter diamond coring bit

(Starlite Indus- tries, Rosemont, PA). The core was released from the distal radius

by cutting it with a razor saw, and the specimen ends were sanded smooth, flat, and

parallel. Specimen length and diameter were measured three times and averaged, and

the middle 6 mm of the specimen length was marked for extensometer attachment

position. Each core was wrapped in saline-soaked gauze, and frozen until thawed for

testing. For the non-extensometer testing, the specimen ends were again sanded to

remove damaged bone from the specimen ends. For extensometer testing, a minimum

specimen length of 18 mm was desired, to achieve both the minimum aspect ratio

of 2:1 recommended for TB compression specimens [79] and a 3:1 ratio of specimen

length to extensometer gage length used in an earlier study [78]. For the subsequent

platen testing, specimen length was dependent on how much bone needed to be

removed from the damaged ends; the resulting aspect ratios were all greater than 1:1.

Mechanical Testing.

The TB cores were mechanically tested in compression using an electrome-
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chanical materials testing machine (MTS Insight, MTS Systems Corp., Eden Prairie,

MN). Each specimen was placed between unlubricated, polished, plano-parallel steel

platens. For the extensometer test, to minimize specimen end effects, strain was mea-

sured with a 6 mm gage length extensometer (model 632.29F-30, MTS Systems Corp.,

Eden Prairie, MN) attached directly to the mid-section of the bone. For the second

test, strain was measured with the testing machine at the compressing platens. A

compressive preload of 10 N was applied and strains then set to zero. At a strain rate

of 0.005 s−1, each specimen was preconditioned to a low strain with at least ten cycles

and then loaded to failure. Youngs modulus was determined for each specimen as the

highest 20% section slope of the stress-strain curve. Yield stress was determined as

the intersection of the stress-strain curve and a 0.2% strain offset of the modulus.

2.4.1.4 Imaging Processing and TB Microarchitectural Metrics

The complete list of TB measures investigated in this study is shown in Ta-

ble 2.3. Each MD-CT image was processed through an image-processing cascade

in the following sequence (1) conversion of CT Hounsfield unit (HU) numbers to

bone mineral density (BMD) (unit: mg/cm3) and computation of vBMD , (2) in-

terpolation at isotropic voxels, (3) selection of volumes of interest (VOIs), (4) fuzzy

skeletonization and computation of TB network area density (NAD), (5) digital topo-

logical analysis for computation of erosion index (EIDTA), (6) volumetric topological

analysis for computation of TB average plate-width (PWVTA) and plate-to-rod ra-

tio (PRRVTA), (7) tensor scale analysis for computation of TB average plate-width
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Table 2.3: List of MDCT-based TB measures examined in this study.

Parameter (unit) Description

vBMD (mg/cm3) Volumetric trabecular bone mineral density

tBMD (mg/cm3) Volumetric BMD contributed by transverse trabeculae

NAD (cm−1) Trabecular bone network area density

EIDTA (no unit) Trabecular bone erosion index computed using DTA

PWVTA (µm) Trabecular bone average plate-width computed using VTA

PRRVTA (no unit) Trabecular bone plate-to-rod ratio computed using VTA

PWTS (µm) Trabecular bone plate-width computed using tensor scale

PRRTS (no unit) Trabecular bone plate-to-rod ratio using tensor scale

TB-Th (µm) Trabecular bone average thickness

TB-Sp (µm) Trabecular bone marrow spacing

SMI (no unit) Trabecular bone structural model index

(PWTS) and plate-to-rod ratio (PRRTS) and trabecular BMD contributed by trans-

verse trabeculae (tBMD), (8) star-line analysis for computation of TB thickness (TB-

Th) and spacing (TB-Sp) measures, and (9) computation of structure model index

(SMI). These image processing methods are briefly described in the following.

BMD Computation and Isotropic Voxel Interpolation.

An MDCT scan of a Gammex RMI 467 Tissue Characterization Phantom

(Gammex RMI, Middleton, WI) was performed after scanning a cadaveric specimen

or a human subject with the matching CT protocol and reconstruction kernel. The

calibration phantom contains sixteen cylinders with known physical densities; see

Fig. 2.14(a). A fully automated algorithm was developed in our laboratory to locate

and segment those cylinder using their known dimensions and relative locations. Each
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Figure 2.14: Conversion of CT HU numbers into BMD using a calibration phantom.

(a) An axial image slice from an MDCT scan of a Gammex RMI 467 Tissue Charac-

terization Phantom. The image shows the cross-sectional profile of sixteen cylinders

with known physical density. (b) A typical conversion function. Each cross repre-

sents the computed average CT number for the corresponding cylinder and its known

physical density.

segmented cylinder was eroded by five voxels to eliminate partial voluming effects and

the average CT number over the eroded region was computed. A conversion function

was computed using the correspondence between computed average CT numbers and

the known physical density of individual cylinders; see Fig. 2.14(b). As shown in the

figure, the conversion function has two segments, the lower segment was computed

using the calibration data from the cylinders with their physical density greater or

equal to that of pure water; the other segment of the calibration function was com-

puted using the remaining cylinders. After converting an MDCT image into a BMD
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image, it was interpolated at 150 µm isotropic voxels using a windowed sync inter-

polation method.29 All subsequent image processing operations were performed on

BMD images at 150 µm isotropic voxels.

VOI Selection.

Different VOI selection schemes were applied for different experiments depend-

ing upon their purposes. VOI selection methods for different experiments are briefly

outlined in the following.

VOI selection for the bone strength experiment: The twenty-two cadaveric an-

kle specimens from SpecimenA were used for this experiment. The size and location

of VOIs for image analysis of the cadaveric bone strength study were chosen as per

the information recorded during specimen preparation for mechanical testing. First,

the tibial bone region was filled using distance transform [16, 130] and connectivity

analysis [128] and the bone axis was aligned with the coordinate z-axis [89, 88, 90].

After reorienting the bone image, a VOI cylinder of 8-mm diameter along the coordi-

nate z-axis was generated and its proximal end was manually positioned at the center

of the cortical rim using in-plane translation through a graphical user interface. The

location of the distal end of the VOI cylinder in the slice direction and its length were

determined as per the core location and length recorded during specimen preparation;

the growth plate was visually located in the CT data of each specimen. Finally, the

central 6-mm region from the cylinder was used as the VOI for the extensometer test;

for the non-extensometer study, the length of the VOI was determined as per data

collected during specimen preparation for the second mechanical test.
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VOI selection for the repeat scan reproducibility experiment: The twenty-two

cadaveric ankle specimens from SpecimenA were used for this experiment. The pur-

pose of this experiment was to examine the reproducibility performance index as a

function of VOI size to assess the localization scale yielding a reliable TB microarchi-

tectural measure. For a given VOI size, ten spherical VOIs were randomly selected

in the first MDCT scan of each cadaveric specimen (a total of 250 VOIs). Each VOI

was randomly located within 30% peeled region covering 1.5 to 4.3 cm proximal sites

of distal tibia, or equivalently, 4 to 12% of an average distal tibia. A post-registration

algorithm was used to locate the matching VOIs in the second and third repeat scans.

The range of VOI diameter covered in this experiment was 0.15 mm to 6.75 mm, i.e.,

1 to 45 voxels.

VOI selection for the between-scanner human study: UHR MDCT scans of

distal tibia of twenty human volunteers on two scanners were used for this study. The

correlation between measures using images from two MDCT scanners was analyzed

at a regional scale using smaller VOIs. Also, the correlation of summary measures

from two scanners were analyzed using larger VOIs adjusting for variations among

individual-specific tibial length and width values. For the correlation study of regional

measures, fifty spherical VOIs each of diameter 4.65 mm, i.e., 31 voxels were randomly

selected within 30% peeled region covering 4 to 12% proximal sites of an individual

participants distal tibia. Thus, for a given TB microarchitectural measure, a total

of 1000 observed data were used for analysis. These VOIs were first selected in the

image from the old scanner, and a post-registration algorithm was used to locate the
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matching VOIs in the image from the new scanner. For the correlation study of a

global measure, regions covering 4 to 6% and 6 to 8% proximal sites of an individual

participants distal tibia were used for VOIs. Inner VOIs were determined using 60%

peel, while outer VOIs were determined in the region between 30% and 60% peels.

Global VOIs were independently determined in the images from the two scanners.

Fuzzy Skeletonization.

The performance of the TB plate-width computation method [139, 34] is highly

dependent on the quality of the surface skeleton [122] generated from the volumetric

representation of a TB network acquired in vivo. Binary skeletonization [133] is al-

ways associated with binarization-related data loss adding skeletal inaccuracies such

as disruption of trabecular rods, perforation of plates, and filling of small marrow

holes. Fuzzy skeletonization reduces binarization-related data loss, which improves

the preservation of trabecular network connectivity especially at regions containing

relatively thin trabeculae. The fuzzy skeletonization algorithm [69] uses fuzzy distance

transform to simulate a grassfire propagation of a fuzzy object, where the fire-front

speed at a location depends on its object membership; here, the bone volume fraction.

The fire propagation is interrupted and stopped at fuzzy quench points, which fail

to pass fire-fronts to their neighbors. Although fuzzy quench points capture the me-

dial axis or symmetry-structures, they create numerous spurious skeletal structures;

and this phenomenon is further aggravated in fuzzy skeletonization. Spurious quench

points are detected and only significant quench points are kept using a measure of

collision impact [70] capturing the angle between colliding fire-fronts. Subsequently,
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object points, excluding significant quench points, are sequentially removed in the

increasing order of their FDT values while preserving object topology, which is ac-

complished using the characterization of 3-D simple points [132, 124]. It should be

noted that, despite the filtering of quench points, a few spurious skeletal branches may

still survive. A post-skeletal-pruning step [139, 4] is applied to prune noisy branches

based on their global significance computed as the collision-impact-weighted branch

length.

2.4.1.5 Other Quantitative Methods

Digital Topological Analysis.

Digital topological analysis or DTA [131] is a three-dimensional method that

accurately determines the topological class (e.g., surfaces, curves, junctions) of each

individual voxel in a digitized structure; see Figure 3. This method has been popularly

applied for quantifying quality of TB architectural makeup. Before applying DTA, a

fuzzy segmented TB volume image is skeletonized. A skeleton of a TB volume image

is a network of one- and two-dimensional digital structures representing trabecular

rods and plates, respectively. DTA involves inspecting local topological numbers, i.e.,

numbers of bone components, tunnel, and cavities in the 3×3×3 excluded (i.e., the

central voxel is excluded) neighborhood each bone voxel [131]. The algorithm use a

three-step approach to achieve a unique topological classification at every bone voxel

using lookup tables and topological analysis in the extended neighborhood solving

for local topological ambiguities in digital manifolds and their junctions. These topo-
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logical classes are then used to compute several topological parameters for trabecular

bone networks. The specific parameter, namely erosion index (EI) was found to be

highly sensitive in most studies using DTA, and this DTA parameter is used in our

experiments. The EI is defined as the ratio of all topological parameters expected

to increase during the erosion process (specifically, curve, curve-edge, surface-edge,

profile-edge, and curve-curve-junction types) compared with those that are expected

to decrease (surface and surface-surface junction types).

Structure Model Index.

The structure model index or SMI [65] is an indirect global estimation of the

plate-rod characteristic of a three-dimensional structure. SMI is calculated by a dif-

ferential analysis of a triangulated surface of a structure, which is defined using the

surface area derivative with respect to the half-thickness or the radius assumed con-

stant over the entire structure. This derivative is estimated by a simulated thickening

of the structure by translating the triangulated surface by a small extent ∆r in its

outward normal direction and dividing the associated change of surface area with ∆r.

For an ideal plate and rod structure the SMI value is 0 and 3, respectively. For a

structure with both plates and rods of equal thickness, the value is between 0 and 3,

depending on the volume ratio of rods to plates.
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2.4.2 Results

2.4.2.1 Reproducibility of quantitative measures on cadaveric subjects.

The reproducibility of each quantitative measure was summarized in Figure

4 as a function of VOI size. For a given VOI size, each measure was calculated

over the randomly located VOIs for all three repeat scans. The ICC value was then

computed and used as reproducibility index. It was observed that the ICC values

increase with the enlargement of VOI size and gradually converge to a stable level.

At the final stable stage (VOI diameter of around 4 mm), most measures, namely

vBMD , tBMD, NAD, PWVTA, PRRVTA, PWTS, PRRTS, TB-Th, TB-Sp, reach the

ICC value of 0.95. In contrast, structure model index converges to around 0.86 and

erosion index oscillates between 0.80 and 0.90. We also observed that the ability

of reaching convergence is different for each measure. The PWTS and PRRTS were

found of ICC value of 0.8 at VOI diameter of 0.15 mm. And other measures reach

this level and remain at VOI diameter of 2 mm, except SMI and EI. In addition,

we ranked these measures by calculating the area under the curve, as an index of its

reproducibility. The ranked order is as follows: PWTS > TB-Sp > PRRTS > tBMD >

TB-Th > PWVTA > NAD > PRRVTA > SMI > EI

2.4.2.2 Consistency of quantitative measures on µ-CT and MDCT.

Correlations of proposed quantitative measures between µ-CT and MDCT

were computed using linear regression. For MDCT, mean value was used as the

average of three repeat scan. The correlation coefficient (R2) was plotted as a function
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Figure 2.15: The reproducibility of all quantitative measures. Intra-class correlation

coefficient (ICC) value is plotted as a function of VOI size. The range of VOI diameter

is from 0.15 to 6.75 mm.

of VOI diameter size as shown in Fig. 2.16.

With the enlargement of VOI diameter size, correlations of quantitative mea-

sures were found increasing and then saturated. Although different measures saturate

at different VOI diameter size, when the VOI is sufficient large, i.e., diameter is larger

than 3.5 mm, all measures reach convergence. Such correlation remains even when

the VOI diameter size grows. In addition, the slope of linear regression equation

remains stable for each of the quantitative measure.

The network length measure was found with the highest correlation (R2 >



74

Figure 2.16: The correlation of quantitative measures between µ-CT and MDCT.

Correlation coefficient (R2) was computed using linear regression.

0.80) between µ-CT and MDCT. This observation reveals the ability of MDCT imag-

ing to identify trabecular network compared with high-resolution µ-CT. It is noted

that, on the contrary, the thickness measure was found with less correlation (R2 is

approximate 0.50). The reason is that although MDCT imaging is capable of identify-

ing more than 80 percent trabecular structures, the strong partial volume effect adds

fuzziness at TB boundaries and thus thickens the network. The plate-width measure,

either computed by VTA or tensor scale method, has higher correlations between

imaging modalities since naturally, the plate-width of trabecular was thicker than the

thickness, and the partial volume effect was less influential. We can also observe that

quantitative measures computed by tensor scale, including tBMD, PWTS and PRRTS,
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Table 2.4: Average slopes and intersects of linear regression lines of several measures

when the diameter of ROI is larget than 5 mm.

PWVTA PRRVTA PWTS PRRTS NAD

slope 1.22±0.03 2.84±0.02 1.93±0.08 3.41±0.16 0.018±0.001

intersect 233.6±33.4 -0.66±0.37 -119.3±42.2 -1.65±0.41 0.03±0.003

are better than measures computed by VTA, which indicates that the tensor scale

method is more accurate in computing trabecular plate-width under limited imaging

resolution.

2.4.2.3 Ability to predict bone strength.

The ability of proposed TB measures to predicted bone strength was summa-

rized in Fig. 2.17. Linear regression was applied between each measure and the yield

stress and the corresponding correlation coefficient (R2) was computed. In the figure,

each dot represents the mean value calculated as the average of values from three

repeat scans of each subject.

The R2 value of BMD was found 0.61, which is in accordance with DXA

BMD meta-analysis that in general it accounts for 60 to 70% of the variability in

bone strength. The plate-width measures computed by VTA and tensor scale, i.e.,

PWVTA,PRRVTA, were observed with the closest trends with that of yield stress,

R2 = 0.81 and R2 = 0.80, respectively. Structure model index and erosion index were

observed with relatively low correlation with yield stress, R2 = 0.62 and R2 = 0.61,
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respectively. All listed measures have shown better or at least the same correlation

with yield stress than BMD.

2.4.2.4 Continuity and consistency of quantitative measures between two

scanners.

Trabecular bone measures were computed using MDCT images from FLASH

and FORCE scanners over inner, outer regions and 50 randomly selected ROIs for

each subject. For random ROIs, trimming algorithm was done so that any pairs of

observation for FLASH and FORCE scanner for which at least one is above 90th

percentile of distribution or below 10th percentile of distribution for data combined,

these pairs were not used in analysis.

Complete data analysis results were summarized in multiple tables: table 2.5,

table 2.6, table 2.7, table 2.8, table 2.9.

Lin’s Concordance Correlation Coefficient (CCC), the Pearson Correlation Co-

efficient (PCC) were computed between FLASH scan measures and FORCE scan mea-

sures. CCC can be interpreted as the agreement between continuous measurements

about a 45-degree line.

Overall, a very high correlation between FLASH measures and FORCE mea-

sures were observed for various measures over different ROIs. It confirms that tra-

becular bone measures can be continuously and consistently computed from different

imaging conditions. Therefore keeping data consistent in the case of switching scan-

ners in longitudinal studies would be possible.
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Comparing results between inner and outer regions, it is observed that gener-

ally measures in the outer region have better correlation than measures in the inner

region. The reasons is that trabecular network in the outer region (closer to cortical

bone) are generally stronger than that in the inner region, which can be observed

by computed mean values, for example PWTS,BMD. In fact, various researches also

show that trabecular bone in outer region consists of more plate-like structure [136].

Due to thin trabeculae, structure in the inner region is more sensitive to noise. This

explains the difference of correlations between inner and outer regions. The results

of random ROIs were observed of lower correlation because these ROIs are of smaller

size than inner and outer regions, which represent more local information than global

characteristics. The variety is reasonably higher.

Other observations are the ability of different bone micro-architectural mea-

sures. Compared with BMD, which is the DXA information, TB-Th, PWTS,PWVTA

are more robust measures in different ROIs, while TB-Sp and NAD have larger vari-

ances, because they are more vulnerable to noise.

In total, combined measures over both inner and outer regions in 4-8% tibia

length (shown in Fig. 2.18) have shown a promising consistency. Most measures

were observed well predicted by the 45 degree line. We may draw the conclusion the

micro-architectural measures are consistent computed from two scanners.
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2.5 Conclusion

Osteoporostic imaging is critically important in identifying fracture risks of

individuals. Reliably measuring trabecular bone micro-architecture could be of clin-

ical significance. In vivo volumetric bone imaging modalities, including MRI and

MDCT, have been investigated for quantitative assessment of bone microarchitecture

at peripheral skeletal sites in this study. We have shown prominent improvements

that overcome major deficits of MRI and MDCT related to limited spatial resolution

and partial volume effect. My study establishes a complete micro-architectural mea-

surements of trabecular bone quality and have shown the effectiveness and robustness

which encourages future studies.
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Figure 2.17: The ability of quantitative measures to predict bone strength. Linear

regression is applied between each measure and the yield stress. The correlation

coefficient (R2) was computed and shown for each measure.
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Figure 2.18: Correlations between FLASH (old) and FORCE (new) scanners using

various measures over the region (inner and outer combined) of distal tibia in 4-8%

length.
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Table 2.5: Descriptive statistics, Lin’s Concordance Correlation Coefficient (CCC),

the Pearson Correlation Coefficient (PCC) for bone measures obtained from FLASH

and FORCE scanners, for inner region in 4-6% tibia length.

Variable FLASH FORCE CCC PCC

BMD (mg/cc) 1132.4 (25.91) 1128.3 (28.06)
0.923

(0.822, 0.967)
0.933

PRRTS 2.65 (0.34) 3.26 (0.30)
0.308

(0.144, 0.455)
0.863

PRRVTA 17.43 (5.45) 14.89 (4.75)
0.803

(0.617, 0.904)
0.906

PWTS(µm) 1178.7 (199.05) 1109.0 (171.00)
0.809

(0.608, 0.912)
0.87

PWVTA(µm) 916.04 (129.42) 879.37 (113.61)
0.844

(0.668, 0.931)
0.885

PVF 0.94 (0.01) 0.93 (0.02)
0.714

(0.486, 0.851)
0.869

TB-Sp (µm) 435.06 (82.72) 370.34 (90.68)
0.715

(0.515, 0.842)
0.915

TB-Th (µm) 155.05 (13.77) 128.68 (9.94)
0.267

(0.127, 0.396)
0.957

NAD (cm−1) 0.09 (0.02) 0.12 (0.03)
0.427

(0.216, 0.600)
0.858

pBMD (mg/cc) 932.83 (84.29) 888.88 (96.58)
0.779

(0.570, 0.893)
0.873

rBMD (mg/cc) 199.53 (62.78) 239.41 (74.68)
0.712

(0.469, 0.855)
0.837

t-BMDTS (mg/cc) 300.26 (59.87) 266.50 (56.84)
0.770

(0.572, 0.883)
0.895

SMI 0.39 (0.99) -0.03 (1.03)
0.789

(0.578, 0.901)
0.854

EI 0.71 (0.26) 0.51 (0.18)
0.577

(0.321, 0.755)
0.846
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Table 2.6: Descriptive statistics, Lin’s Concordance Correlation Coefficient (CCC),

the Pearson Correlation Coefficient (PCC) for bone measures obtained from FLASH

and FORCE scanners, for outer region in 4-6% tibia length.

Variable FLASH FORCE CCC PCC

BMD (mg/cc) 1185.4 (30.83) 1184.1 (32.76)
0.983

(0.960, 0.993)
0.985

PRRTS 2.45 (0.39) 3.25 (0.41)
0.290

(0.137, 0.430)
0.878

PRRVTA 16.25 (5.89) 15.51 (6.68)
0.962

(0.911, 0.984)
0.975

PWTS(µm) 1221.2 (252.94) 1224.1 (230.40)
0.976

(0.942, 0.990)
0.979

PWVTA(µm) 912.75 (148.35) 918.20 (148.45)
0.967

(0.921, 0.987)
0.966

PVF 0.94 (0.02) 0.93 (0.02)
0.960

(0.910, 0.982)
0.984

TB-Sp (µm) 442.37 (109.61) 346.56 (91.17)
0.631

(0.424, 0.776)
0.929

TB-Th (µm) 167.41 (17.48) 136.89 (13.60)
0.325

(0.170, 0.464)
0.971

NAD (cm−1) 0.09 (0.02) 0.13 (0.03)
0.403

(0.222, 0.557)
0.947

pBMD (mg/cc) 946.89 (113.25) 935.84 (123.88)
0.974

(0.938, 0.989)
0.981

rBMD (mg/cc) 238.47 (85.35) 248.26 (95.07)
0.965

(0.917, 0.985)
0.975

t-BMDTS (mg/cc) 319.79 (81.56) 302.08 (74.24)
0.947

(0.883, 0.977)
0.975

SMI 0.64 (1.24) -0.22 (1.29)
0.780

(0.621, 0.877)
0.962

EI 0.74 (0.31) 0.46 (0.20)
0.535

(0.310, 0.704)
0.948



83

Table 2.7: Descriptive statistics, Lin’s Concordance Correlation Coefficient (CCC),

the Pearson Correlation Coefficient (PCC) for bone measures obtained from FLASH

and FORCE scanners, for inner region in 6-8% tibia length.

Variable FLASH FORCE CCC PCC

BMD (mg/cc) 1097.9 (25.44) 1092.4 (28.07)
0.901

(0.777, 0.957)
0.921

PRRTS 2.52 (0.51) 3.08 (0.47)
0.514

(0.291, 0.683)
0.855

PRRVTA 15.00 (4.78) 12.43 (4.15)
0.804

(0.637, 0.898)
0.943

PWTS(µm) 1042.4 (159.87) 967.34 (134.99)
0.798

(0.611, 0.901)
0.91

PWVTA(µm) 852.99 (133.86) 812.36 (118.00)
0.896

(0.778, 0.953)
0.947

PVF 0.93 (0.02) 0.92 (0.02)
0.758

(0.578, 0.868)
0.942

TB-Sp (µm) 529.24 (107.99) 468.00 (130.50)
0.821

(0.658, 0.911)
0.942

TB-Th (µm) 146.76 (14.40) 122.85 (9.55)
0.307

(0.150, 0.448)
0.969

NAD (cm−1) 0.07 (0.02) 0.09 (0.02)
0.537

(0.308, 0.708)
0.872

pBMD (mg/cc) 859.64 (99.62) 792.81 (109.79)
0.753

(0.555, 0.870)
0.907

rBMD (mg/cc) 238.31 (85.59) 299.55 (92.13)
0.731

(0.529, 0.855)
0.904

t-BMDTS (mg/cc) 240.19 (51.21) 211.31 (51.13)
0.797

(0.621, 0.896)
0.921

SMI 1.37 (0.85) 1.12 (0.89)
0.856

(0.689, 0.937)
0.885

EI 0.91 (0.40) 0.71 (0.27)
0.726

(0.497, 0.860)
0.924
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Table 2.8: Descriptive statistics, Lin’s Concordance Correlation Coefficient (CCC),

the Pearson Correlation Coefficient (PCC) for bone measures obtained from FLASH

and FORCE scanners, for outer region in 6-8% tibia length.

Variable FLASH FORCE CCC PCC

BMD (mg/cc) 1168.2 (33.49) 1162.8 (34.79)
0.965

(0.919, 0.985)
0.976

PRRTS 2.74 (0.60) 3.56 (0.55)
0.476

(0.290, 0.627)
0.957

PRRVTA 17.03 (7.01) 15.85 (7.23)
0.966

(0.923, 0.986)
0.979

PWTS(µm) 1210.4 (254.88) 1171.1 (215.08)
0.954

(0.893, 0.981)
0.98

PWVTA(µm) 944.46 (181.33) 944.46 (174.33)
0.985

(0.963, 0.994)
0.985

PVF 0.94 (0.02) 0.93 (0.02)
0.967

(0.929, 0.985)
0.992

TB-Sp (µm) 505.45 (136.28) 425.44 (129.22)
0.785

(0.607, 0.888)
0.926

TB-Th (µm) 168.90 (22.72) 139.06 (18.06)
0.467

(0.284, 0.617)
0.985

NAD (cm−1) 0.08 (0.02) 0.11 (0.03)
0.503

(0.296, 0.666)
0.907

pBMD (mg/cc) 937.38 (126.21) 915.04 (131.70)
0.970

(0.932, 0.987)
0.985

rBMD (mg/cc) 230.78 (99.38) 247.75 (104.50)
0.969

(0.928, 0.986)
0.982

t-BMDTS (mg/cc) 286.60 (75.59) 264.40 (69.09)
0.924

(0.839, 0.965)
0.97

SMI 1.08 (1.14) 0.51 (1.16)
0.848

(0.711, 0.923)
0.953

EI 0.71 (0.36) 0.47 (0.23)
0.668

(0.446, 0.812)
0.965
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Table 2.9: Descriptive statistics, Lin’s Concordance Correlation Coefficient (CCC),

the Pearson Correlation Coefficient (PCC) for bone measures obtained from FLASH

and FORCE scanners, for randomly picked ROIs in 4-8% tibia length.

Variable FLASH FORCE PCC

BMD (mg/cc) 1089.6 (44.72) 1087.7 (44.50) 0.951

PRRTS 2.33 (0.76) 2.70 (0.79) 0.79

PRRVTA 12.01 (5.47) 11.00 (5.20) 0.869

PWTS(µm) 908.74 (228.83) 902.78 (216.75) 0.89

PWVTA(µm) 741.20 (191.32) 741.14 (190.20) 0.883

PVF 0.90 (0.05) 0.90 (0.05) 0.879

TB-Sp (µm) 606.18 (227.05) 566.22 (226.69) 0.9

TB-Th (µm) 136.85 (21.21) 120.58 (17.00) 0.913

NAD (cm−1) 0.06 (0.03) 0.07 (0.04) 0.912

pBMD (mg/cc) 739.99 (214.49) 704.09 (222.21) 0.88

rBMD (mg/cc) 347.03 (179.58) 379.68 (186.48) 0.842

t-BMDTS (mg/cc) 198.78 (85.67) 183.99 (80.50) 0.918

SMI 0.61 (1.86) 0.65 (1.84) 0.909

EI 1.64 (1.54) 1.40 (1.44) 0.769
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CHAPTER 3
COMPUTATIONAL AND MECHANICAL ANALYSIS OF

TRABECULAR BONE

3.1 Image Segmentation of Trabecular Bone

Osteoporosis is associated with an increased risk of fractures. Its incidence

increases progressively with age [119]. In the United States, about 8 million women

and 2 million men have osteoporosis with medical costs estimated at $22 billion in

2008 [13]. Clinically, osteoporosis is defined by low bone mineral density (BMD).

However, BMD only accounts for approximately 60% to 70% of the variability in

bone strength [177]. The remaining variability is due to the cumulative and synergis-

tic effects of various factors, including trabecular bone (TB) microstructure [81, 118].

Thus, reliably measuring TB microstructure could be of clinical significance, particu-

larly as trabecular bone may be more susceptible to hormonal, pharmacological, and

toxic effects.

TB is a complex interconnected network of individual trabecular microstruc-

tures. The conventional tool for assessing TB structure is two-dimensional (2D)

cross-sectional histomorphometry from bone biopsies [112]. Recent advancements

in volumetric bone imaging, such as magnetic resonance (MR) [177, 108, 29], high

resolution peripheral quantitative computed tomography (HR-pQCT) [17, 24], and

clinical computed tomography (CT) [95, 139, 136], allow characterization of bone

micro-architecture at peripheral sites without the need for biopsy.

Various methods related to digital topology and geometry [126], scale [121, 65],
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and computational mechanics [116, 105, 79] have been reported in literature [91].

Saha et al. developed a skeletonization [122] based method of digital topological

analysis [123, 124, 133, 125] for regional plate-rod characterization of individual tra-

beculae. This basic method has been further modified and applied by other research

groups [156, 157, 97, 174] for assessment bone strength and fracture-risk. Segmen-

tation of TB from the marrow space is essential for quantitative analysis of mor-

phometric and biomechanical properties of TB microstructure. Irrespective of the

methods used for quantitative in vivo assessment of TB microstructure, the fidelity

of measures largely depends on the accuracy of TB segmentation. Although, current

in vivo imaging technologies allow characterization of TB microstructure, accurate

segmentation of TB network in such images remains challenging due to significant

partial voluming effects, noise, and space varying background intensity for marrow

voxels.

Clinical CT imaging is rapidly emerging as a frontrunner for imaging bone

microstructure at peripheral sites due to its high availability in clinical environments,

high spatial resolution, ultra-high speed scanning, ultra-low dose radiation, and large

scan-length. A global threshold scheme [111, 127] is often used for TB segmentation

in CT imaging. However, due to partial voluming, scattering and other CT imaging

artifacts, trabecular bone regions with dense and thick trabeculae require higher

values of the threshold to preserve marrow holes, while regions with sparse and thin

trabeculae demands lower values of the threshold to preserve local connectivity of

trabecular network. Therefore, locally adaptive thresholding is needed for accurate
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and robust segmentation of TB that preserves both marrow holes as well as trabecular

network connectivity. Waarsing et al. applied local thresholding on high resolution

micro-CT imaging [170]. Burghardt et al. developed a locally adaptive thresholding

approach using a hysteresis-based algorithm on gradient map, and applied the method

on high resolution peripheral quantitative CT (HRpQCT) images [22]. In addition to

threshold based methods, Scherf and Tilgner proposed the Ray Casting Algorithm,

which utilizes local maximum, to segment fossil and cancellous bone in micro-CT

images [142]. Tassani et al. applied a modified Chan-Vese method to segment TB on

micro-CT images [163].

First, we introduce a space-variant hysteresis approach to preserve connec-

tivity of trabecular structure, and a high quality mesh generator for accurate FEM

analysis to overcome difficulties that limit the application of MDCT for FEM on TB

network. The space-variant hysteresis method works well in preserving connections

of trabecular network under in vivo MDCT imaging and is demonstrated useful for

FEM. Nevertheless, it suffers from the problem that the selection of critical thresholds

is manual and thus limits the application on other imaging modalities. To overcome

the problem, we present a new method for TB segmentation from in vivo clinical

CT imaging of distal tibia by computing spatial variation in the background mar-

row intensity and the bone-marrow contrast. First, it enhances local TB separability

using a new anisotropic diffusion algorithm that uses Hessian matrix to encourage

along-structure smoothing, while restricting cross-structure diffusion, thus, arrest-

ing edge-blurring. Subsequently, the method determines the spatial variation in the
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background marrow intensity and the bone-marrow contrast using a new multi-scale

morphological algorithm. Essentially, the algorithm is designed to determine local

intensity values for TB structures resembling mountain-ridges as well as for marrow

regions forming valleys running quasi-parallel to TB ridges.

3.1.1 Space-variant Hysteresis

TB is a connected network, and preservation of its connectivity is essential for

effective FEM analysis in acquired images. At limited spatial resolution and signal-

to-noise ratio, available at in vivo imaging, preservation of TB network as well as

marrow pores is highly threshold sensitive [127]. Trabeculae near a tibial axis are

generally thinner than those closer the cortical bone. Also, marrow spacing of TB

network near cortical bone is smaller as compared to that near the tibial axis. See

Fig. 3.1 for illustration. Therefore, a larger threshold is needed near cortical bone to

preserve marrow pores (Fig. 3.1b), while a lower threshold is needed near the tibial

axis to preserve trabecular connectivity(Fig. 3.1c).

As demonstrated in Fig. 3.1, single threshold fails to preserve the connectivity

of trabeculae near the tibial axis, and the marrow pores near cortical bone. Therefore,

a space-variant thresholding strategy is adopted to compensate for the difference in

trabecular patterns in different regions. In addition, at a given region a hysteresis

approach is applied instead of a hard threshold to take advantage of contextual infor-

mation. Following the spirit of the hysteresis algorithm [26], a conservative threshold

value is used to determine confident TB voxels, while a lenient threshold is used to
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(a) (b) (c) (d)

Figure 3.1: A matching slice of trabecular bone at distal tibia. (a) Fuzzy image,

intensities are shown in the range [1000, 1300]. Binary image after applying (b) a

high threshold to preserve marrow pores near cortical bone, and (c) a low threshold to

preserve trabecular connectivity near tibial axis. (d) Binary image after space-variant

hysteresis.

locate less confident TB voxels which are confirmed by the presence of confident TB

voxels in their neighborhood. The method of determining the values of conservative

and lenient thresholds for this application is described in the following.

The space-variant threshold parameters are defined as functions of distance

from the outer boundary BC of the segmented cortical bone region [89]. Let f(p)

denote the MDCT image intensity at a voxel p, and let DT (p) be its distance value

from the BC . Also, let T denote the entire tibial region enclosed by BC and let dmax

be the maximum value of DT (·) within T . To determine the optimum values for

conservative and lenient thresholds at different regions, inputs from multiple expert

users are used. The tibial region T was divided into 3 sub-regions — 0 to 30% peel

(Router), 30% to 60% peel (Rinterm), and 60% peel (Rinner) sub-regions. An x% peel

region on an axial slice is the set of all voxels with DT (p) > x% of dmax. For each
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(a) (b) (c)

Figure 3.2: Mesh models of one cadaveric subject using (a) a µ-CT image, (b) an

MDCT image without image processing, and (c) an MDCT image with space-variant

hysteresis. ROI size is 8mm × 8mm × 6mm.

region, an expert user was asked to set two threshold values as follows — (1) conserva-

tive threshold (tcon): a threshold not including a noisy voxel from the marrow region

and (2) lenient threshold (tlin): a threshold preserving all TB connectivity. These

threshold values were independently determined by three expert users on MDCT im-

ages of fourteen cadaveric tibia specimens. Observed mean ± std values for (tcon,tlin)

over Router, Rinterm, and Rinner are (1314±18, 1213±26), (1249±21, 1177±19), and

(1177±26, 1125±23), respectively.

A space-variant thresholding scheme is defined using a two-step linear function,

where the expert-guided average threshold values from Router, Rinterm, and Rinner are

assigned at 15%, 45%, and 80% peel locations. Finally, the space-variant hysteresis

is defined as follows; the 26-neighborhood N(p) [139] was used for our experiments.

Mesh representations of the central region of trabecular bone at distal tibia
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are shown in Fig. 3.2. Meshes are generated from segmented results using the space-

variant hysteresis method and a constant thresholding. The mesh generator will

be described in Sec. 3.2. Figure 3.2(a) represent the same trabecular area from

corresponding µ-CT image and was considered as ground truth. It is apparent that

the mesh generated from space-variant hysteresis (c) is fully connected while the mesh

of a constant threshold (b) fails to preserve the completeness of the network, similar

to the result shown in Fig. 3.1. It emphasizes that due to the limited resolution and

strong partial volume effect of in vivo MDCT imaging, an appropriate segmentation

algorithm has a great influence to preserve the completeness and the topology of

entire trabecular network.

For FEM analysis, preserving the completeness of the trabecular network is

fundamental. Traditional thresholding scheme may fail to correctly identify thin con-

necting trabecular bone, resulting missing of parts of the structure. Therefore, I

developed the space-variant hysteresis method to maximumly preserve the complete-

ness of structure. This method has been demonstrated successful in segmentation

of in vivo MDCT images and application in FEM [32]. However, the space-variant

hysteresis method requires experts to decide critical parameters, i.e., the thresholds

of (tcon,tlin) over Router, Rinterm, and Rinner. The method is therefore less adaptive to

other imaging modalities. Further, if the imaging conditions change, those critical

parameters have to be redetermined. The lack of automation is the biggest drawback.

To overcome this problem, I developed a new segmentation algorithm that is fully

automatic and adaptive to different imaging modalities. The method is described in
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the following section.

Algorithm 3.1 Space-variant hysteresis

1. Segment cortical bone and compute DT (·)
2. ∀p ∈ T , if f(p) > tcon(p), add p in Ucon

3. While Q is not empty

4. pop p from Q

5. ∀q ∈ N(p)− Ucon, if f(q) > tlin(q)

6. add q in Ucon; add q in Q

7. EndWhile

3.1.2 Multi-scale Morphological Reconstruction

3.1.2.1 Anisotropic Diffusion

Anisotropic diffusion, first proposed by Perona and Malik [114], can be de-

scribed using a divergence operator on an intensity flow vector field F as follows:

∂I

∂t
= divF, (3.1)

where I is the image at time point t. The intensity flow vector, constructed as

F = G(|∇I|) · ∇I, controls the diffusion process that facilitates within-region dif-

fusion, while arresting cross-structure blurring. Here, ∇I represents the intensity

gradient, and the diffusion-conductance function G is a monotonocally decreasing

nonlinear function that leads to generous diffusion within a homogeneous region,

while a constricted diffusion across boundaries. Following the recommendation by
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Perona and Malik, we use

G(|∇I|) = exp(−|∇I|
2

µ2
). (3.2)

The discrete formulation of the diffusion flow process is expressed as

It+1(p) = It(p) +
k

|N8(p)|+ 1

∑
q∈N8(p)

G(|∇Ip,q|)∇Ip,q, (3.3)

where t ≥ 0 is the iteration number; I0 = I; N8 is the 8-neighborhood; ∇Ip,q is the

intensity gradient between two voxels p, q; and k ∈ [0, 1] is a constant determining

the overall speed of diffusion. In the above equation, the parameter µ serves as the

fulcrum in the entire diffusion process selecting between within- and across-region

image gradients. Thus, the choice of µ is critical, and a robust locally adaptive

strategy is needed to improve the performance of anisotropic diffusion [166]. Inspired

by Frangi’s vesselness enhancement using Hessian matrix [54], we develop a locally

adaptive strategy using the eigen values and eigen vectors of Hessian matrix that will

facilitate diffusion along the structure, while constricting diffusion across an edge.

The formulation of our locally adaptive diffusion process using Hessian matrix is

described in the following.

Let H(p) denote the Hessian at a voxel p; let λ1(p) and λ2(p) be the two

eigenvalues of H(p) and i1(p) i2(p) be corresponding eigenvectors. Let us assume

that |λ1(p)| ≤ |λ2(p)|. In general, when both |λ1(p)| and |λ2(p)| are small, the voxel p

belongs to a homogeneous region; in this case, a generous diffusion should be allowed

in all directions. When both |λ1(p)| and |λ2(p)| are large, p is an end- or a sharp

corner-point, and the diffusion should be restricted in all directions. When |λ1(p)| is
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(c) (d)

(a) (b)

Figure 3.3: Results of Hessian matrix-guided anisotropic diffusion. (a) An axial view

of an original BMD image and the region of interest (ROI). (b) BMD image within the

ROI. (c) Color coded illustration of local tensor. Here, hue is the primary direction;

saturation is the eccentricity of the tensor; and intensity is the BMD value. The color

disk is shown. (d) Diffusion enhanced BMD image.

small but |λ2(p)| is large, p lies on an edge and a generous diffusion can be allowed

along i1(p), the eigenvector associated to the smaller eigenvalue, representing the

direction along the structure, while the diffusion along i2(p) representing the direction

across the edge should be prohibited.

Here, we describe the computation of the parameter µp,q for the diffusion flow

from a voxel p to its neighbor q. Let ip,q denote the unit vector from p to q. The



96

second-order gradient magnitude Lp,q from p to q is derived by projecting the Hessian

matrix H(p) along ip,q as follows:

Lp,q = |iTp,qH(p) ip,q|. (3.4)

To constrain diffusion in high-gradient regions, we use the the l1 norm of the Hessian

matrix as follows:

Sp = |λ1(p)|+ |λ2(p)|. (3.5)

Thus, the local diffusion control parameter µp,q should account for both directional

gradient component Lp,q as well as local isotropic gradient component Sp. The pa-

rameter µp,q is formulated as follows:

µ2
p,q = ∇avg exp

(
−Lp,q + Sp

2λavg

)
, (3.6)

where ∇avg is the average gradient magnitude, and λavg is the average of |λ1| and

|λ2| within the trabecular bone regions. Results of the new Hessian matrix-guided

anisotropic diffusion is presented in Fig. 3.3. As it visually appears, the new diffusion

algorithm has increased the contrast and local separability between trabecular bone

microstructures and the marrow spacing. It is encouraging to note that, in bright re-

gions containing thicker trabeculae, the algorithm enhances trabecular separation and

preserves small marrow holes. At the same time, in darker regions containing thinner

and sparse trabeculae, the algorithm preserves the trabecular structure. Therefore, it

may be claimed that the algorithm improves local separability of trabecular structure.
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3.1.2.2 Grayscale Morphological Reconstruction

The new TB segmentation algorithm models TB microstructures in a CT

image as bright structures resembling ridges accompanied with quasi-parallel and rel-

atively darker marrow regions resembling valleys. Our algorithm aims to determine

spatial variation of intensity values for marrow valleys and TB ridges. Grayscale mor-

phological algorithms [146, 147] are used as the underlying tool to determine local

valley and ridge intensity profiles. A multi-scale strategy is incorporated to approx-

imate the valleys and ridges, which are recognized over a large range of scales of

morphological operations reducing the subjectivity of selecting a specific scale [183].

Let V and R denote the smooth intensity maps of marrow valleys and TB ridges,

respectively, computed using multi-scale morphological algorithms. The segmenta-

tion of a TB network can be obtained using a space-varying thresholding scheme

that accounts for spatial variation of both the valley intensity V and the trabeculae-

marrow contrast R−V . The computation of V and R together with the space-varying

thresholding algorithms are described in the following.

Let Es denote a binary structuring element (SE) at a given scale s; the inten-

sity map of the valley Vs is obtained after removing the trabecular structures using

morphological opening as follows,

V 1
s = I ◦ Es = (I 	 Es)⊕ Es, (3.7)

where ◦,	,⊕ denote the morphological opening, erosion, dilation operators, respec-

tively. The morphological opening algorithm is repeated for a range of scales of SE.

At a relatively smaller scale, the opening algorithm captures small variations in the
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Illustration of TB segmentation using multi-scale morphological algo-

rithms. (a) Original BMD image. (b) Regional intensity distribution of marrow

valleys. (c) Same as (b) but for TB ridges. (d) Binary segmentation mask for TB

microstructures. (e) BMD image on the TB mask of (d). (f) Segmented TB mask

using manual global thresholding on the BMD image of (a).

background intensity, but, suffers the risk of being influenced by thicker trabeculae.

At a larger scale, relatively small scale variations in the background intensity are

ignored. To overcome these challenges and to reduce subjectivity errors of selecting

a specific morphological scale, we used averaged intensity map over a large range of

scales. The regional valley intensity V for marrow using the multi-scale strategy is

given by

V =
∑
s

wsVs, (3.8)
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Figure 3.5: Illustration of marrow valley, TB ridge, and threshold detection on the

intensity profile of the straight line shown in Fig. 3.4(a). The intensity profile is shown

in blue, while the valley, ridge, and threshold profiles are shown in red, green, and

gold colors, respectively.

where wss are equal weights such that
∑

sws = 1. Here, circular SEs with diameters

{9, 11, · · · , 21} voxels are used; uniform weights are used for all scales.

The intensity map of the TB ridge Rs at a given scale s is computed using a

morphological closing operation as follows:

R1
s = I • Es = (I ⊕ Es)	 Es. (3.9)

The regional TB ridge intensity R using the multi-scale strategy is given by

R =
∑
s

wsRs. (3.10)
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(a) 

(b) 

(b) (c) (d) 

Figure 3.6: Comparison of regional TB segmentation using different methods. (a)

Original BMD image and three random ROIs. (b, c, d) Segmentation results using

global thresholding, Otsu’s method, and our method, respectively. The enlarged

display of each region is presented.

Finally, the binary segmentation of TB region is obtained by using a space varying

thresholding map T that accounts both regional marrow intensity as well as bone-

marrow contrast as defined in the following.

T = (1− α)V + αR. (3.11)

The value of α was empirically determined as 0.4, and used for all experiments pre-

sented in this paper; See Fig. 3.5. Results of computing spatial distribution of marrow

valley and TB ridge intensity values are presented in Fig. 3.4. Detection of low-

intensity TB microstructures while preserving high-intensity marrow holes is visually

apparent in (d) as compared to the results of global manual thresholding in (f).
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3.1.2.3 Segmentation Accuracy

The performance of the new TB segmentation method was evaluated in terms

of sensitivity, specificity, accuracy and Jacaard Index by comparing with the results of

regional manual thresholding. To study the implication of the new TB segmentation

method on the TB thickness measure, we computed the measures from TB segmen-

tations using the new and other methods and examined their abilities of predicting

actual bone strength. These experiments and results are described in the following.

To quantitatively examine the sensitivity, specificity, accuracy and Jaccard

Index, twenty in vivo CT images of distal tibia of healthy volunteers (age: 19 to 21

years; 10 males, 10 females) were used. Images were acquired at 120 kV, 200 effective

mAs, 1 s rotation speed, pitch factor: 1.0, and reconstructed at 0.2 mm isotropic voxel.

CT HU numbers were converted to BMD using a Gammex calibration phantom. For

each image, twenty small region of interests (ROIs) (30×30×3 voxels) were randomly

selected from the 30% peel ROI at 8% proximal site of the distal tibia covering 8%

of the tibial length (see Fig. 3.3). Thus, we generated a total of 400 small ROIs for

the accuracy experiment. As illustrated in Fig. 3.6, segmentation results on one slice

of the TB image and three small ROIs are shown for each segmenation method.

Three mutually blinded readers independently selected the threshold value

for TB segmentation in each small ROI, and the true TB segmentation for each

ROI was determined using the average threshold value from three readers. For each

method, true positive (TP), false negative (FN), true negative (TN) and false pos-

itive (FP) were computed. Sensitivity=TP/(TP+FN), specificity=TN/(TN+FP),
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Table 3.1: Accuracy results of different methods on twenty in vivo CT images.

Sensitivity Specificity Accuracy Jaccard Index

Global threshold 0.94 ± 0.05 0.75 ± 0.14 0.81 ± 0.10 0.70 ± 0.12

Otsu’s method globally 0.94 ± 0.13 0.70 ± 0.25 0.80 ± 0.14 0.69 ± 0.17

Otsu’s method locally 0.95 ± 0.09 0.79 ± 0.20 0.85 ± 0.11 0.75 ± 0.17

Space-variant hysteresis 0.93 ± 0.15 0.85 ± 0.14 0.89 ± 0.07 0.79 ± 0.13

Our method 0.95 ± 0.05 0.90 ± 0.09 0.92 ± 0.04 0.84 ± 0.06

accuracy=(TP+TN)/(TP+TN+FP+FN), Jaccard Index = TP/(TP+FN+FP) and

the results are summarized in Table 3.1.

The proposed method produced high sensitivity (0.95), specificity (0.90), ac-

curacy (0.92) and Jaccard Index (0.84). In comparison, global threshold individually

selected for each image by users, the space-variant hysteresis method, Otsu’s method

applying on the entire image and only in each of small ROIs are presented.

Overall, every method achieves a high sensitivity (≥ 0.93), which means that

every method has successfully identified trabecular bone structures. However, the

specificity has shown a great difference. Otsu’s method applying globally on the en-

tire image has shown lowest specificity of 0.70. Otsu’s method applying on each ROI

has shown better result of 0.79. The possible reason is that trabecular bone intensities

across the whole MDCT images are nonuniform, rather a regional pattern likely occur

such that the segmentation value of intensity to separate bone and marrow varies in

different areas. Such effect has been visually observed and validated in Sec. 3.1.1.

Manually selected global threshold has shown specificity of 0.75. The comparatively
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low specificity indicates a problem that although these methods are able to identify

trabecular bone network, the marrow hole are probably falsely filled, leading to vi-

olation of the topology of the whole network structure. Therefore the segmentation

methods could influence the overall measurement of trabecular micro-architecture,

including trabecular thickness, trabecular spacing, and etc. The space-variant hys-

teresis method uses the information of distance from cortical bone. Space-variant

thresholds and hysteresis process are applied to capture the intensity variability. The

algorithm is successful to partially compensate the variance of intensity and preserve

marrow holes. The specificity was found 0.85, better than Otsu’s and manual se-

lected global thresholding scheme. Our proposed multi-scale morphological method

greatly improved the segmentation by considering the variability of trabecular bone

intensities in different regions automatically. It successfully identifies trabecular bone,

sensitivity of 0.95, and avoids oversegmentation, achieving specificity of 0.90, which

could preserve the marrow holes. Therefore, it is more accurate in computing trabecu-

lar bone micro-architectural measures. In addition, compared with the space-variant

hysteresis method which requires a few critical parameters that need to be deter-

mined by experts from a set of in vivo images, the new algorithm is fully automatic

and more robust to different imaging modalities. The proposed method also achieves

the highest accuracy (0.92) and Jaccard Index (0.84). It is thus possible to conclude

that the proposed algorithm is an accurate segmentation method of trabecular bone

for in vivo imaging.
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3.1.2.4 Ability to Predict Bone Quality Measures

To study the implication of the new TB segmentation method on the TB mi-

crostructural measures, we computed the thickness and spacing of TB network, from

TB segmentations using the new and other methods and examined their abilities of

predicting actual bone strength. For this purpose, twenty-two cadaveric ankle spec-

imens were obtained from 11 body donors (age: 55-91 years). The ankle specimens

were removed at the mid-tibia region. Exclusion criteria for this study were evidence

of previous fracture of knowledge of bone tumor or bone metastasis. CT images were

acquired using the same protocols as described in Sec. 3.3.1.

To determine TB strength, mechanical tests were applied on a cylindrical TB

core from distal tibia of 8 mm in diameter and 20.9±3.3 mm in length for each

subject using an electromechanical materials testing machine. To minimize specimen

end effects, strain was measured with a 6 mm gauge length extensometer attached

directly to the midsection of the bone. A compressive preload of 10 N was applied and

strains were set to zero. At a strain rate of 0.005s−1, each specimen was preconditioned

to a low strain with at least ten cycles and then loaded to failure. Yield stress was

determined as the intersection of the stress-strain curve and a 0.2% strain offset of

the modulus.

The size and location of ROIs for image analysis was chosen as the information

recorded during specimen preparation for mechanical tests. First the image was

rotated to align the bone axis along the coordinate z-axis. Detailed descriptions can

be found in the experiment section 3.3.1.
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Figure 3.7: Ability to predict bone strength using TB thickness measures computed

by different methods. Correlation between yield stress and TB thickness computed

by manual global thresholding (a), Otsu’s method (b), and our method (c).

The TB structures were obtained by segmentation using the proposed method,

a global thresholding for each subject and Otsu’s method. TB thickness was computed

using the method described in [129]. The linear correlation between experimental

yield stress and computed TB thickness is shown in Fig. 3.7.

As observed from the figure, the TB thickness measure using segmentation

with the new method has higher correlation with actual bone strength as compared

to those using TB segmentation with other two methods. The prediction error for

each method was computed using the linear regression function. The paired t-tests

of prediction errors showed that the prediction error of the new method was signifi-

cantly smaller than the global thresholding (p = 0.03) and Otsu’s method (p = 0.01),

respectively.

The linear correlation between experimental yield stress and computed tra-

becular spacing is shown in Fig. 3.8. The new method has shown with R2 = 0.79,
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Figure 3.8: Ability to predict bone strength using TB spacing measures computed

by different methods. Correlation between yield stress and TB spacing computed by

manual global thresholding (a), Otsu’s method (b), and our method (c).

better than Otsu’s method and manually selected thresholds. The paired t-tests of

prediction errors showed that the prediction error of the new method was also signifi-

cantly smaller than the global thresholding (p = 0.01) and Otsu’s method (p < 0.01),

respectively. It can be explained as the new segmentation method has successfully

identified trabecular network, as well as preserving marrow holes avoiding filling of

marrow wholes or thickening of trabecular bone. Successful segmentation of trabec-

ular network and marrow space preserve the topology of the structure, that is likely

the reason computed thickness and spacing were found correlated with experimental

yield stress. Together with the accuracy experiment, we may conclude that the new

algorithm works well for trabecular bone segmentation for in vivo MDCT images.

In summary, a new TB segmentation algorithm using Hessian-based anisotropic

diffusion and multi-scale morphological operations has been developed for in vivo CT

imaging. Experimental results have established high sensitivity, specificity, and ac-
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curacy of the new method as compared to manual global thresholding, space-variant

hysteresis and individual ROI-specific regional thresholding with Otsu’s method. The

main reason behind the improved performance of the new segmentation method is

that the method simultaneously accounts for background variation as well as local

contrast. It was observed in experimental results of a cadaveric study that TB seg-

mentation using the new method significantly improves the ability of computed TB

thickness and spacing measure to predict actual bone strength determined by me-

chanical testing. These results reinforce the importance of accurate TB segmentation

for assessment of TB micro-architecture and prediction of bone strength.

3.2 High Quality Mesh Generation

FEM has rigorous requirements of mesh. With respect to topology and geom-

etry, FEM requires the mesh to be manifold, non-self-intersecting. With respect to

precision, FEM relies on mesh quality determined by shape and size of elements [149].

A good mesh generator should guarantee the topological and geometrical correctness

as well as producing elements with high quality. In this work, a high quality mesh

generator is adopted, including a Delaunay surface mesh generator and a lattice-based

volume mesh generator.

3.2.1 Surface Mesh Generation

Given volumetric imaging data I, surface mesh generator produces a mesh

representation S of the isosurface S = {g(p) | g(p) = c, p ∈ I}, where each point

on the surface has the same value c. c is a constant and f is an implicit function.
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Specifically, in the application for TB surface generation, given the binary image I∗,

S = {g(p) | p ∈ I∗}.

FEM has rigorous requirements of mesh. With respect to topology and geom-

etry, FEM requires the mesh to be manifold, non-self-intersecting. With respect to

sensitivity and precision, FEM relies on mesh quality determined by shape and size

of elements. A good mesh generation method should have desired properties which

guarantee the topological and geometrical correctness as well as producing elements

with high quality.

In computer aided design, triangular mesh is the most common representation

of surface mesh. Angles of triangles are therefore the measure of triangular mesh

quality. Triangles with small angles are considered as bad elements, for example, a

triangle whose smallest angle is less than 1 degree. The sensitivity of FE model is

impacted by bad elements of the mesh. In other words, the ability of avoiding bad

elements is the key to quality mesh generation.

Surface mesh generation algorithms for FEM are expected to produce elements

with good quality that guarantee topology and geometry as well as being timely and

computationally efficient. However, it is theoretically difficult for mesh generation

algorithms to meet all desired properties. Among various methods for surface meshing

in literature, they can be classified into three categories: lattice based method, dual

based method, and Delaunay based method. Here, only the most widely used and

applicable to FE modeling are reviewed.

Lattice based methods guarantee topology and geometry but fail to generate
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mesh of good quality. Marching Cubes [103] is the most well-known and widely used

method [180]. Marching Cubes iterates along the rectilinear grid, classifies each voxel

into a predefined case depending on the local information of the voxel and produces

triangular surface mesh. The advantage of Marching Cubes is that it is fast, easy

for implementation, and generates manifold isosurface. However, the main drawback

is that the triangular mesh may include triangles with small angles (less than 0.1

degree), which does not meet the criteria of FEM simulations. Therefore, a post-

processing step is often inevitable to smooth the mesh and improve the quality. It

requires additional time while the quality of surface mesh may not be guaranteed.

Dual based methods preserve features of the surface and produces triangles

with adaptive sizes and thus time and memory efficient. However, these methods

suffer from non-manifold elements and elements of bad quality. Dual Contouring

(DC) [49] introduces the perception of dual grids. Octree is used to represent volu-

metric data. Therefore, sizes of triangles can be controlled by depth of the octree.

An edge e with two end points p, q ∈ I is marked as sign-change edge when p ∈ S

and q ∈ S. Whenever a sign-change edge is found, DC creates a dual edge and con-

struct quads using dual edges. It is shown that dual edges could approximate the

surface S and preserves sharp features of S by minimizing a quadratic error function.

The advantage of DC is that it is adaptive in resolution, computationally efficient

and preserves sharp features of the surface. However, the surface mesh generated

by the original DC is non-manifold and also ambiguous under certain circumstances.

Improved DC [182] addresses the ambiguity but the generated surface mesh is still
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non-manifold. Similar to the lattice based methods, a post-processing step is neces-

sary to improve quality of generated triangles. Yet, no guarantee of good qualities

is ensured while non-manifold situations add difficulty for the post-processing proce-

dure.

Delaunay based methods generate triangles subject to the given surface point

set I∗ to approximate the topology of the surface, where triangles satisfy the Delaunay

criteria. Unlike lattice based and dual based method, Delaunay based methods are

not heuristic and are strictly restricted by the Delaunay criteria. Therefore, Delaunay

based methods can precisely state properties of the surface and generate surface mesh

of good quality. Compared with lattice based and dual based methods, Delaunay

based methods require more time and memory. Nevertheless, the ability to generate

guaranteed quality mesh makes it suitable for FE calculation. Recently, Boissonnat

and Oudot [14] introduce a Restricted Delaunay Triangulation (RDT) algorithm that

returns a manifold, non-self-intersecting, topology preserving triangular surface mesh

with provably good triangular quality. RDT iteratively computes Delaunay triangles

and adds new points onto the surface to preserve desired properties, i.e., Delaunay

criteria and manifold topology. The intersection point of the triangles dual edge on

the corresponding Voronoi Diagram with the surface is added when the radius of

triangles circumsphere is larger than a fraction of the distance from the point to the

nearest point on the medial axis. Then the Restricted Delaunay Triangulation is

locally updated, after which the manifold topology and Delaunay criteria are both

satisfied.
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Therere two major advantages of the RDT algorithm. First, the algorithm

is proved to generate triangular mesh with the smallest angle larger than a user

specification as long as it is no larger than 30 degree. The provable bounded angles

ensure the availability for further FE calculations. Second, the algorithm eliminates

the unnecessary time consuming post-processing step for quality improvement, which

is a crucial component for lattice based and dual based methods to get satisfactory

surface mesh quality. Besides, the post-processing step often relies on smoothing and

is possible to break the correctness of topology and geometry, for example, introducing

self-intersections or invert elements.

In the framework, the RDT based method is used as the surface mesh generator

because of its desirable properties for FEM simulation. With the help of CGAL [165],

surface mesh is generated with provably good mesh quality. The minimum angle is

30 degree and the maximum angle is 150 degree.

3.2.2 Volume Mesh Generation

Given surface mesh S, volumetric mesh generator produces a polygonal rep-

resentation V of the interior volume of S. SV , the surface of V , is an approximation

to the isosurface S. Among feasible polygonal representations, tetrahedron is the

dominant representation and attracts the most research interests. The equilateral

tetrahedron with all dihedral angles equal to arccos(1/3)≈ 70.5, is the ideal high-

quality element. Divergence of dihedral angles from the ideal value measures the

quality of tetrahedron elements. Specifically, minimum and maximum dihedral an-
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gles of V have a great influence on the quality of volume mesh since they slow the

convergence and reduce sensitivity of FEM simulations. Aspect ratio is another mea-

surement for mesh quality. It is the ratio of the length of the longest edge over the

shortest edge. Ideally, the best aspect ratio is 1 (equilateral tetrahedron). Large

aspect ratio indicates the element is thin and ill-shaped.

Over the past two decades, an extensive study on volume mesh generation

has been performed [171]. Various methods has been proposed to generate volumet-

ric mesh with high-quality tetrahedron elements. These techniques can be classi-

fied into four categories: advancing-front-based, octree-based, Delaunay-refinement-

based, and lattice-based methods.

Advancing-front-based methods generate tetrahedron elements by inserting

Steiner points or elements inside the domain heuristically so that new elements sat-

isfy desired size and shape criteria [1]. This technique preserves the input surface and

terminates until the whole volume is tetrahedralized. An inevitable and difficult step

is merging fronts because of intersections generated during the algorithm. Although

advancing-front-based methods are fast, they cant offer any guarantees of mesh qual-

ity. As a result, in reality, global smoothing steps are usually required to improve the

output quality. Still, mesh quality is not guaranteed and bad elements may exist.

Octree-based methods produces tetrahedron elements of adaptive sizes by con-

trolling the octree depth. It subdivides the domain recursively into cubical cells

adaptively according to local grid information. The advantage is that total number

of elements of the domain is much less compared with uniform methods. Therefore,
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it reduces computational time since computation in FEM simulation is determined

by number of elements. Several variants are proposed to generate high quality mesh.

Shephard et al. [148] introduced Finite Octree method which reproduces features of

the input surface. Bielak et al. [11] presented a parallel method to speed up mesh

generation. Mitchell and Vavasis [110] offer octree mesher with theoretical guarantee

of avoiding bad tetrahedral by generalizing the quadtree mesher of Bern et al. [10]

from two dimension to three dimensions.

Delaunay-refinement-based methods generates tetrahedron elements by insert-

ing points to enforce tetrahedra satisfying constraints on size and quality, as well as

maintaining a Delaunay or constrained Delaunay triangulation [150]. These methods

produce volume mesh with surface exactly the same as the input. Delaunay criteria

optimizes the radius to edge ratio but it doesnt guarantee dihedral angles in three

dimension. Therefore, slivers, where the tetrahedron element has a good radius to

edge ratio but dihedral angles can be arbitrarily between 0 and 180◦, may occur, and

the near coplanar area of slivers may be over-refined [37]. Chew [39] presented an

algorithm to eliminate most slivers. Cheng et al. [36] presented a technique called

sliver exudation that takes as its input a Delaunay triangulation with good radius to

edge ratios and returns output mesh without extremely bad slivers. Alliez et al. [1]

proposed a variational algorithm to generate isotropic tetrahedral mesh and achieved

to generate elements with good shape. However, slivers may still survive and there

is no guarantee to completely remove them. In practical conditions, these methods

usually eliminate most skinny tetrahedron elements and generate satisfactory volume
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meshes. Tetgen [151] is arguably the most popular mesh generator. It generates ex-

act constrained Delaunay triangulation and boundary conforming meshes by adding

Steiner points to control user-specific element size.

Lattice-based methods construct rectilinear grids and generate tetrahedron el-

ements based on pre-computed stencils. Labelle and Shewchuk [84] present a lattice-

based algorithm called Isosurface Stuffing (IS) based on body centered cubic (BCC)

lattice and prove that the generated volume mesh has bounded dihedral angles guar-

anteed by the computer-assisted proof. Bounded dihedral angles are between 10.7◦

and 164.8◦. The algorithm works similar to Marching Cubes algorithm except that

a point snapping technique is introduced to adjust points on the surface to meet the

quality and topology requirement. IS is one of few algorithms that provides theoreti-

cal guarantees on dihedral angles and generated mesh with good quality. Inspired by

this method, Doran [45] introduces an algorithm using A15 lattice grid. Wang and

Yu [171] propose a robust meshing algorithm based on adaptive BCC lattice grid, of-

fering bounded dihedral angles larger than 10◦ if uniform mesh is generated and 5.71◦

in adaptive case. The drawback of these methods is that generated surface mesh is

not exactly the same as the input because the point snapping procedure relocates

several surface points.

In this work, IS is selected since it is the most recently developed technique for

quality mesh generation and one of few guaranteed quality mesh generating algorithm.

The surface and volume mesh generation are both guaranteed to produce mesh

of high quality, which ensures FEM simulation to be reliable and accurate. In addi-



115

tion, the mesh generator is also applicable to other types of imaging modalities and

various applications. It is also a general tool for FEM modeling in a broader range.

3.3 Finite Element Modeling of Cadaver Study

3.3.1 Experiment

The experiment was designed to evaluate the advanced finite element model

using mechanical tests on human cadaveric data in MDCT imaging. First, the re-

producibility of computed Young’s modulus (YM) across repeat scans was examined.

Second, the relation between the computed YM and actual YM determined by me-

chanical test was studied. In comparison, we also present the result using the basic

brick model that is widely used in bone study [50, 47].

Specimen preparation for mechanical testing:

Cylindrical TB specimens nominally 8 mm in diameter and 20.9±3.3 mm

in length were cored from each distal tibia specimen in situ along the proximal-

distal direction for mechanical testing. A-P and M-L radiographs were first used to

determine the plane of an initial distal cut done to eliminate the growth plate from a

test specimen, and then to determine the central axis of the bone and thus the core

location; the initial distal cut was located 2 mm proximal to the growth plate. Each

specimen was cored with saline immersion using an 8.25 mm inner diameter diamond

coring bit (Starlite Industries, Rosemont, PA). The core was released from the distal

radius by cutting it with a razor saw, and the specimen ends were sanded smooth,

flat, and parallel. Specimen length and diameter were measured three times and
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Figure 3.9: Mechanical tests of trabecular bone.

averaged, and the middle 6 mm of the specimen length was marked for extensometer

attachment position.

Mechanical testing:

Compressive Youngs modulus of each TB core was mechanically determined on

an electromechanical materials testing machine (MTS Insight, MTS Systems Corp.,

Eden Prairie, MN). Each specimen was placed between unlubricated, polished, plano-

parallel steel platens. To minimize specimen end effects, strain was measured with a 6

mm gage length extensometer (model 632.29F-30, MTS Systems Corp., Eden Prairie,

MN) attached directly to the midsection of the bone. A compressive preload of 10

N was applied and strains then set to zero. At a strain rate of sec−1, each specimen

was preconditioned to a low strain with at least ten cycles and then loaded to failure.
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Youngs modulus (E) was determined for each specimen as the highest 20% section

slope of the stress-strain curve.

MDCT imaging.

Twenty two fresh-frozen human cadaveric ankle specimens were obtained from

12 body donors (age at death: 82.3±12.5 years). The bodies were collected under

the Deeded Bodies Program, The University of Iowa, Iowa City, Iowa, USA, and the

ankle specimens were removed at mid-tibia. Exclusion criteria for this study were

evidence of previous fracture or knowledge of bone tumor or bone metastasis. The

ankle specimens were kept frozen until MDCT and µ-CT Imaging.

High resolution MDCT scans of the distal tibia were acquired at the University

of Iowa Comprehensive Lung Imaging Center on a 128 slice SOMATOM Definition

Flash scanner (Siemens, Munich, Germany) using the following CT parameters: Sin-

gle tube Spiral acquisition at 120 kV, 200 effective mAs, 1 sec rotation speed, pitch

factor: 1.0, nominal collimation: 16×0.3 mm, scan length of 10 cm beginning at

the distal tibia end-plateau and total effective dose equivalent:17 mrem ≈ 20 days

of environmental radiation in the USA. One AP projection scout scan of the entire

tibia was acquired to locate the field of view (FOV) for the CT scan. High resolution

MDCT scan mode: The Siemens Flash scanner has two 64 rows of equal 0.6 mm

detectors under two X-ray guns allowing operation in both single and dual source

scan modes. The highest resolution single gun scan mode was used, which activated

16 of the most inner 0.6 detectors to maximize beam quality. Siemens double z sam-

pling allowed for a dual sampling of the 0.6 mm detectors, splitting the signal so that
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each detector created a 0.3mm slice in the z plane [80]. As specified by the manufac-

turer, the z-UHR scan mode within the Siemens Flash scanner enabled high image

detail with a maximum achievable isotropic resolution of 30 lp/cm (0.17 mm) at 0%

modulation transfer function (MTF) (± 10 %) and thus provided a more accurate

slice profile and lowered partial volume artifact allowing for better separation of TB

structures. After scanning each specimen in a helical mode with a 0.4 mm slice thick-

ness, data were reconstructed at 0.2 mm slice thickness using a normal cone beam

method with a special U70u kernel achieving high structural resolution. A calibration

phantom was scanned once per specimen to calibrate CT Hounsfield units into BMD

(mg/cm3). Three repeat MDCT scans of each distal tibia specimen were acquired

after repositioning the specimen on the CT table before each scan. Following MDCT

repeat scans, each specimen was further scanned on an Imtek Micro-cat II scanner at

28.8 µm isotropic resolution, after removing soft tissue and dislocating the tibia from

the ankle joint.

ROI Selection.

The objective of ROI selection for the cadaveric study was to select a region

that is close to the region that was drilled during specimen preparation for mechanical

testing. Size and location of these ROIs were chosen as per the information recorded

during specimen preparation for each experiment. First, the bone was oriented to

align its axis along the coordinate z-axis using the following two steps (1) generation

of a cylinder C with its axis lying on the coordinate z-axis and its cross-sectional area

equating the average tibial cross-sectional area, and (2) reorientation of the tibial vol-
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ume to align its axis with C by maximizing the overlap between the tibial volume and

the cylinder C. After reorienting the bone image, a ROI cylinder of 8 mm diameter

along the coordinate z-axis was generated and its proximal end was manually posi-

tioned at the center of the cortical rim using in-plane translation through a graphical

user interface. The location of the distal end of the ROI cylinder in the slice direction

and its length were determined as per the core location and length recorded during

specimen preparation; the growth plate was visually located in the CT data of each

specimen. Finally, the central 6 mm region from the cylinder was used as ROI for

the extensometer test.

FEM Simulation.

A linear FEM simulation model is applied on the generated volume mesh V to

compute the compressive YM. A trabecular subject is modeled as an isotropic, linear

elastic material with a YM of 10 GPa, and a Poisson ratio of 0.3. Abaqus is used as

the FEM simulator. A uniaxial displacement equaling 2% of the bone segment height

was applied perpendicularly to the distal surface of the tibia for determining axial

strength. Bottom of the cylinder is fixed and constant forces are applied onto the top

plane, which simulates the real mechanical test.

3.3.2 Results

The reproducibility of computed compressive YM across repeat scans is shown

in Fig. 3.10. Intra-class correlation coefficient (ICC) values of the proposed model and

the brick model were both 0.97. The result indicates that the proposed model and
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(a) (b)

ICC = 0.97 ICC = 0.97

Figure 3.10: Intra-class correlation coefficient of three repeat scans of MDCT images

from cadaveric subjects. (a) Proposed finite element model. (b) Brick model.

the brick model are both highly reproducible. In addition, the fact that both mod-

els achieve high reproducibility indicates that the new segmentation method worked

equally well on repeat scans.

The correlation between averaged YM computed from two models and the

actual YM determined by mechanical test is presented in Fig. 3.11. The YM of each

subject is the average value of three repeat scans. The linear regression revealed that

averaged YM computed with the advanced model was highly correlated (R2=0.83)

with the actual YM. In comparison, averaged YM computed with the brick model

showed much less association (R2=0.71). Since input images are the same and the only

difference between these two models is the mesh, we owned the ability of accurately

predicting TB strength to the high quality mesh generator.

In summary, a new segmentation method has been presented that effectively

preserves TB network connectivity and guarantees a lower bound of mesh quality

for FEM. The method is found highly reproducible under repeat MDCT scans. In a
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(a) (b)

R2 = 0.83 R2 = 0.71

Figure 3.11: Bone strength correlation between computed Young’s modulus and ac-

tual Young’s modulus. (a) Young’s modulus computed with advanced finite element

model. (b) Young’s modulus computed with the brick model.

cadaveric ankle study, a high linear correlation has been observed between computed

bone strength using the new method and the actual strength determined experimen-

tally. The new method improves the accuracy of applying FEM on in vivo MDCT

imaging under limited spatial resolution. Therefore it enables us to apply FEM on

human in vivo studies. In the following sections, I will present the application of the

FEM onto different human groups.

3.4 Finite Element Modeling of Human Study

3.4.1 Experiment

Subjects.

In the study, several groups of human subjects are obtained. Studies involving

human subjects were approved by the University of Iowa Institutional Review Board

and all participants provided written informed consent. In total, four different human
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groups are involved: Iowa Bone Development Study (IBDS), pilot selective serotonin

reuptake inhibitors (SSRI) subjects, and pilot cystic fibrosis (CF) subjects.

In a human pilot study, eleven patients (5 male) with cystic fibrosis (CF),

twelve patients (6 male) on continuous treatment with the SSRI-treated patients

(male: height mean±SD 180.1±3.5 cm weight 86.0±16.1 kg; female: height 163.3±7.7

cm, weight 70.1±13.6 kg) were matched with an age-similar group of healthy IBDS

cohort members (controls) by sex, height, and weight using a variable optimal match-

ing algorithm with two to four controls/patient (total 36 controls). MDCT scans of

the distal tibia and whole body (WB) DXA were acquired. The preliminary results

from our pilot study indicate that ultra-high resolution CT imaging, together with

our advanced computational algorithm are well-suited to detect structural differences

in cortical and TB compartments with divergent fracture risk.

MDCT images of distal tibia bone scans were obtained for 46 healthy males and

51 healthy females (age: range 19 to 20 years; 19.4±0.4 years) as part of the ongoing

Iowa Bone Development Study (IBDS). In general, observed heights and weights for

male participants (height 180.4 ± 8.0 cm, weight 83.6 ± 14.8 kg) were greater that

female participants (height 165.2 ± 6.8 cm, weight 67.9 ± 21.0 kg). MDCT scans

were obtained on the left lower leg using the MDCT protocol.

MDCT Imaging

High resolution MDCT scans of the distal tibia were acquired at the University

of Iowa Comprehensive Lung Imaging Center on a 128 slice SOMATOM Definition

Flash scanner (Siemens, Munich, Germany). More details are described in Sec. 3.3.1.
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(a) (b)

z

Figure 3.12: Subject-specific ROIs for bone measures on human distal tibia. This

ROI selection scheme eliminates size-related bias for individuals distal tibias and

distal radii.(a) different ROIs with respect to tibia vertical distance, (b) cubical ROI

determined by centers of gravity of tibia and fibula. The coordinate system and

directions are specified.

ROI Selection.

Trabecular bone structure in human distal tibia varies according to the vertical

distance to the most distal point (Fig. 3.12(a)). Trabecular bone network near and

below the growth plate is much denser than that in the proximal end. It is observed

that trabecular bone structure that is further from the most distal point has less

density in human distal tibia. Clinically, identifying the anatomical significance of
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different regions of trabecular bone structure is an interesting research area. However,

it is beyond the scope of this study. Here, to select ROIs that is reliable and capable

of differentiating properties of trabecular bone network, we take distance, direction,

peeling, etc into consideration. First, the distal tibia and fibula bone image were

automatically filled and aligned to Z-axis using the algorithm described in [81]. ROI

of 4-8% of vertical bone length from the most distal point was used. After that, for

each slice, a ROI was obtained by applying 45% peel from the cortical bone. Center

of gravity (CG) of tibia was computed for each slice in 4-8%. Then a cubic ROI was

generated such that its volume is the same as the peeling ROI. The averaged CG

(red point in Fig. 3.12(b)) is the center of the cubic ROI. The cubic ROI was then

reoriented such that the line joining CG of tibia and fibula is perpendicular to the

edge of the cubic ROI (Fig. 3.12(b)). By using the fibula as the reference direction,

the ROI is anchored and reliable across different subjects. We refer the direction that

joining two center of gravities as X axis. The perpendicular direction to X in the

same plane is Y axis. And Z is vertical axis.

FEM Simulation:

A linear FEM simulation model is applied on the generated volume mesh V to

compute the compressive YM. A trabecular subject is modeled as an isotropic, linear

elastic material with a YM of 10 GPa, and a Poisson ratio of 0.3. Abaqus is used as

the FEM simulator. A uniaxial displacement equaling 2% of the bone segment height

was applied perpendicularly to the distal surface of the tibia for determining axial

strength. Bottom of the cylinder is fixed and constant forces are applied onto the top
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plane, which simulates the real mechanical test.

For the cubical ROI defined for human studies of distal tibia, Fig. 3.12, we com-

pute FEM modulus measures: compressive Young’s modulus along X, Y, Z direction

and shear modulus along six directions, named as X shear Y, X shear Z, Y shear X,

Y shear Z, Z shear X, Z shear Y. X shear Y represents the direction that the object

is fixed on one side of the bounding box of X direction, and the other side is sheared

along Y direction. Similar naming convention applies to other directions.

3.4.2 Data Analyses

Matching criteria:

(1) Separate matching by gender to get equal percentage of male and female

subjects in case and control groups. Two matching variables are included: height

(weight=1), scale weight (weight=1).

(2) Total number of matched IBDS subjects equals (number of pilot group

subjects) × 3 with equal proportion of female subjects in case and control group.

(3) Minimize distance between groups as Dij =
∑
wk ∗ |X i

k −X
j
k|, where the

sum is over the number of matching factors X (with index k) and wk is the weight

assigned to matching factor k and X i
k is the value of variable Xk for subject i.

Two-sample analysis:

In the two-sample analysis, three controls per one case were selected. Results

for t-tests with equal variance were reported if tests for equality of variances (p-value

> 0.15), otherwise Satterthwaites method was used. Since all pilot groups have small
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Table 3.2: Two-sample analysis result for cystic fibrosis group. Three controls per

case are used for matching IBDS group.

Case N=11 Control N=33 T-test Wilcoxon Effect size

Variable (MPa) Mean StdDev Mean StdDev p-value p-value

X shear Y 14.1305 10.666 21.5817 6.8404 0.0491 0.0258 -0.76

X shear Z 23.9874 17.9991 32.9859 10.3448 0.141 0.0322 -0.55

Y shear X 15.1402 11.8444 23.1888 8.5376 0.0185 0.0154 -0.85

Y shear Z 22.6034 17.842 35.9224 15.6507 0.0229 0.0064 -0.82

Z shear X 60.6436 28.1412 80.8895 17.663 0.0433 0.0423 -0.78

Z shear Y 55.303 25.7149 82.759 17.8595 0.0057 0.0009 -1.14

compressive X 91.2501 60.5427 128.1 45.975 0.0394 0.0917 -0.74

compressive Y 90.7846 55.6138 140.1 58.316 0.0286 0.0452 -0.79

compressive Z 585.0 249.1 775.8 128.3 0.0317 0.0268 -0.85

size, non-parametric exact Wilcoxon rank-sum test was used to confirm t-test results.

Paired analysis:

In accordance with two-sample analysis, results for comparison with control

group use three controls per one case. Non-parametric Wilcoxon matched pairs signed

ranks exact test (SRT) p-value was used. Effect size was defined as mean paired

difference standardized by its standard deviation.

3.4.3 Results and Discussions

3.4.3.1 FEM distinguishes bone quality between different groups

Statistical analysis has been applied on FEM measures for CF, SSRI and

IBDS groups. The independent two-sample t-test analysis tests whether there is



127

Table 3.3: Two-sample analysis result for SSRI group. Three controls per case are

used for matching IBDS group.

Case N=11 Control N=33 T-test Wilcoxon Effect size

Variable (MPa) Mean StdDev Mean StdDev p-value p-value

X shear Y 13.5288 6.1826 20.122 6.7297 0.0058 0.0052 -0.96

X shear Z 22.8241 10.221 28.9161 11.0306 0.1103 0.131 -0.54

Y shear X 15.3441 7.789 21.0937 6.6449 0.0166 0.0454 -0.83

Y shear Z 25.8757 15.7176 29.416 11.1488 0.4815 0.2709 -0.24

Z shear X 62.0204 26.3268 78.4332 23.5016 0.0477 0.0282 -0.68

Z shear Y 59.8147 27.066 74.8339 19.5226 0.0963 0.063 -0.59

compressive X 92.5293 44.7407 122.6 50.9398 0.0747 0.0389 -0.61

compressive Y 89.9111 45.4566 120.4 46.0155 0.052 0.1134 -0.66

compressive Z 595.1 237.3 689.3 161 0.2201 0.1287 -0.43

a significant difference between means of two independent samples from a normal

distribution. Here, pilot groups are CF and SSRI. IBDS group consists of healthy

age-, gender-, height-, and weight-matched volunteers, and three controls per case for

pilot group are used. The paired t-test is also using three controls per case.

The comparison of CF and IBDS group is summarized in table 3.2. T-test p-

value of two-sample analysis has shown all measures but X shear Z are significantly

different in the mean values between these two groups. T-test p-values in paired

analysis (table 3.4), reported X shear Z, Z shear X, and compressive X were not sig-

nificant. The CF group were found of less mean values of each measure than the

healthy controls.
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For CF group, the deficit in mean values of each measure suggest that trabec-

ular structure is weaker than normal healthy young people. The observation agrees

to previous studies [5] that 50 – 75% of adults with CF have low bone density and

increased rates of fractures. Compressive Z measure of CF group was found with

24.49% less than the healthy groups and the difference is statistically significant. Ac-

cording to Wolff’s law, the remodeling of trabecular bone reacts to the load under

which it is placed. Since the bone structure needs to carry the body weight, trabecular

bone along the Z direction undertakes more compressive loads than other trabecular

compartments, which is also shown in mean values (table 3.4). The significant deficit

in compressive modulus along Z direction is a strong signal of bone quality.

The comparison of SSRI and IBDS group is summarized in table 3.3. Com-

pressive measures were not found significant. Significant differences were found in

shear directions, including X shear Y, Y shear X, Z shear X. Paired analysis results

(table 3.5) also reported significant difference for the three directions.

For SSRI group, deficit in mean values of each measure was also found. It

indicates the trabecular structure is not as strong as the healthy controls. Evidence

in literature has reported loss of bone mass in SSRI patients [172]. In a previous

study, the same SSRI group was reported with 12.5% lower mean TB plate-width

(p = 0.052) as compared to age-similar and sex-, height-, and weight-matched healthy

controls. In this experiment, the compressive modulus along Z direction was found

12.9% less but not significant. The deficit of mean values of compressive and shear

modulus suggests that trabecular network in X-Y direction is of higher differences.
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Table 3.4: Paired analysis result for cystic fibrosis group. Three controls per case are

used for matching IBDS group.

Case N=11 Paired Diff %
Paired

t-test
SRT

Effect

size

Variable (MPa) Mean StdDev Mean StdDev Diff p-value p-value

X shear Y 14.1305 10.666 -7.4512 10.4628 -34.94 0.0398 0.0674 -0.71

X shear Z 23.9874 17.9991 -8.9985 17.9769 -26.83 0.1279 0.123 -0.5

Y shear X 15.1402 11.8444 -8.0486 11.3576 -35.76 0.0406 0.1016 -0.71

Y shear Z 22.6034 17.842 -13.319 16.8204 -37.9 0.0253 0.0674 -0.79

Z shear X 60.6436 28.1412 -20.2458 32.1258 -22.7 0.0631 0.1748 -0.63

Z shear Y 55.303 25.7149 -27.456 24.2782 -33.55 0.0038 0.0049 -1.13

compressive X 91.2501 60.5427 -36.8948 68.8773 -24.9 0.106 0.1475 -0.54

compressive Y 90.7846 55.6138 -51.7231 54.2601 -35.9 0.0212 0.0391 -0.95

compressive Z 585.0168 249.0998 -190.801 247.1914 -24.49 0.0284 0.0674 -0.77

It is possible the deterioration happens first in X-Y plane, while trabecular network

must sustaining body weight in Z direction and therefore is less variant compared

with healthy groups.

3.4.3.2 FEM and quantitative bone micro-structural measures

Studies of human trabecular bone developed from DXA and BMD analysis

to advanced imaging methods and FEM. Micro-structural methods that measure

the quality of trabecular bone has been found more accurate and sensitive than the

BMD [121, 34]. FE methods provide information of bone strength and simulates the

behavior of the bone network. It is therefore worth investigating the relations between
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Table 3.5: Paired analysis result for SSRI group. Three controls per case are used for

matching IBDS group.

Case N=11 Paired Diff %
Paired

t-test
SRT

Effect

size

Variable (MPa) Mean StdDev Mean StdDev Diff p-value p-value

X shear Y 13.5288 6.1826 -6.6686 5.4685 -33.02 0.0023 0.0029 -1.22

X shear Z 22.8241 10.221 -6.174 9.559 -20.09 0.0578 0.042 -0.65

Y shear X 15.3441 7.789 -5.7496 7.241 -26.78 0.0189 0.0425 -0.79

Y shear Z 25.8757 15.7176 -3.5403 15.0165 -10.82 0.4314 0.2036 -0.24

Z shear X 62.0204 26.3268 -16.4128 24.8777 -20.39 0.0431 0.0522 -0.66

Z shear Y 59.8147 27.066 -15.0192 26.8314 -19.1 0.0786 0.1294 -0.56

compressive X 92.5293 44.7407 -30.1051 36.8998 -24.79 0.0165 0.0122 -0.82

compressive Y 89.9111 45.4566 -30.5043 44.8013 -23.72 0.0379 0.0425 -0.68

compressive Z 595.0562 237.3089 -94.2776 234.7836 -12.9 0.1917 0.2036 -0.4

trabecular bone micro-architectural measures using quantitative imaging methods

and measures of FEM.

In this work, I have constructed a comprehensive set of quantitative measures

using advanced imaging algorithms and a framework of FEM using in vivo MDCT

imaging. It is a interesting to explore the connections or correlations between imaging

based measures and FEM outcomes.

First, we consider the compressive Young’s modulus computed using the FEM

framework. Linear correlation was computed between compressive Young’s modulus

and other bone measures on different study groups. Compressive Young’s modulus

reflects the stiffness of trabecular structure and is therefore an important overall in-
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dicator of bone quality. For compressive Young’s modulus along X, Y, Z directions,

BMD was found not a good predictor, which is not in accordance to common knowl-

edge that BMD explains 60-70% variances of bone strength. A further study is needed

to better understand the relation of BMD and compressive modulus.

Table 3.6: Correlations between finite element measures and micro-architectural mea-

sures of SSRI group.

lBMD pBMD PW

Compressive X 0.39 0.68 0.76

Compressive Y 0.24 0.23 0.38

Compressive Z 0.48 0.66 0.83

X shear Y 0.02 0.01 0.04

X shear Z 0.01 0.04 0.08

Y shear X 0.36 0.38 0.55

Y shear Z 0.21 0.35 0.45

Z shear X 0.44 0.54 0.74

Z shear Y 0.4 0.38 0.57

Trabecular bone is often classified into plate and rod [139, 134]. An increasing

evidence in literature [121, 34] suggests that the amount of plate structure reflects the

quality of bone. More plate structure often means better quality bone structure. I

hypothesize that the compressive modulus has a correlation with the plate structure.

With the VTA and tensor scale algorithm, I am able to define BMD of plate-like

trabecular bone, denoted as pBMD, and the average plate-width of trabecular bone,
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Table 3.7: Correlations between finite element measures and micro-architectural mea-

sures of CF group.

lBMD pBMD PW

Compressive X 0.65 0.61 0.62

Compressive Y 0.69 0.73 0.75

Compressive Z 0.65 0.67 0.74

X shear Y 0.61 0.63 0.64

X shear Z 0.43 0.47 0.51

Y shear X 0.52 0.56 0.57

Y shear Z 0.32 0.38 0.41

Z shear X 0.69 0.65 0.71

Z shear Y 0.67 0.65 0.72

denoted as PW . High correlations were observed between compressive Young’s mod-

ulus along Z direction and pBMD, R2 is 0.66, 0.67, 0.77, for SSRI, CF, and IBDS

groups, respectively. In addition, PW was found more correlated with compressive

Young’s modulus, R2 is 0.83, 0.74, 0.90, for SSRI, CF, and IBDS groups, respectively.

It is an interesting and encouraging result that trabecular bone micro-architecutral

measures have a close bond with compressive Young’s modulus determined by FEM.

Both imaging based algorithms and FEM methods provide irreplaceable information

and characterization of trabecular network properties. They together could offer a

better understanding of trabecular bone.

Besides compressive modulus, other interesting results were observed for shear

modulus. Unlike compressive modulus, especially the one along Z direction, which
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Table 3.8: Correlations between finite element measures and micro-architectural mea-

sures of IBDS group.

lBMD pBMD PW

Compressive X 0.24 0.49 0.61

Compressive Y 0.19 0.36 0.36

Compressive Z 0.22 0.77 0.90

X shear Y 0.24 0.51 0.56

X shear Z 0.15 0.47 0.59

Y shear X 0.27 0.51 0.57

Y shear Z 0.15 0.38 0.41

Z shear X 0.24 0.64 0.77

Z shear Y 0.24 0.63 0.70

could be explained as body weight loading to the trabecular network, shear modulus

could be interpret as the unusual forces loading to bone, for example, sports activity,

falling, crushing. According to Wolff’s law, trabecular bone network seldom reacts

to these uncommon forces, thus it is more difficult to predict the properties of shear

modulus. Nevertheless, we still find interesting results. First, BMD was not well

correlated with shear modulus. Possibly, BMD isn’t a good linear predictor. It may

indicate that FEM describes properties of trabecular bone that are not overlapped

with those BMD could explain, at least not in a simple linear form. Second, shear

modulus has shown strong directionality in this study. The shear modulus along Z

direction correlates better with lBMD, pBMD, PW , than that along X or Y direction,

in every group. In comparison, shear modulus along X and Y direction doesn’t show
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significant difference. It can be explained as the shear modulus along Z direction is

more meaningful while X, Y direction doesn’t have a clear geometric meaning. It is

possible that trabecular network has almost the same ability dealing with the shear

force from any direction perpendicular to Z. And shear of trabecular structure along

Z direction is a regular behavior and thus more predictable by micro-architectural

measures.

This study has proposed a new angle of understanding trabecular bone net-

work. Micro-architectural measures from digital and volumetric algorithms and FEM

describes different aspects of bone architecture. The relation between these different

measures could help us to reveal the mechanism of bone and inspire to discover new

and more accurate means to model the complex trabecular network system. A few

hypotheses were proposed but not experimentally validated, and therefore the study

is preliminary. Designing appropriate experiments is difficult because various meth-

ods and algorithms are involved. And the most challenging problem is the limitation

of resolution under in vivo MDCT imaging. It is necessary to start from µ-CT scans

with high resolution that is reliable and accurate, which is often considered as the

ground truth. Although the study in this work has lots of physical limitations, we

successfully constructed a FEM system that could be useful for in vivo studies.

3.5 Conclusion

FEM has been a successful tool in the field of bone study using high resolution

imaging, which is critically important in identifying trabecular bone quality related
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fracture risk. However, limited spatial resolution and partial volume effect of in vivo

MDCT imaging are still challenging to FE models. In this work, a segmentation

algorithm that reliably identifies trabecular bone and preserve marrow topology is

proposed, followed by a mesh generator that produces high quality mesh for FEM

analysis. The effectiveness of proposed FEM framework was experimentally validated.

The application of FEM has shown the ability of detecting differences of trabecular

bone quality. The relation of FEM computed measures and micro-architectural mea-

sures was explored. The FEM framework was successful for in vivo MDCT imaging

and is probably applicable for future studies.



136

CHAPTER 4
REGIONAL ANALYSIS USING SHAPE MODELING

Shape model is an effective tool to solve segmentation and registration prob-

lems for medical imaging applications [42]. Shape modeling involves many techniques,

for example, model construction, shape matching, shape deformation, feature extrac-

tion, etc, making it a comprehensive problem. Many of these technical problems are

of great diversity. Although there exists various solutions to each problem, individ-

ual application places unique requirements that are generally not easy to solve using

a specific method. In terms of our application, i.e., segmentation of sub-regions of

bone in different anatomic sites, there are several desired properties that inspire the

development of shape modeling.

First, the targets have obvious geometric and topological features, because

our target shapes are human bones, including proximal femur, distal femur, distal

radius, etc, which share similar appearances. They are anatomically meaningful and

have correspondence at specific places. Therefore, landmark system is a natural fit

for these target shapes, making advantages of these prior information. In addition,

if landmarks are able to capture geometric information on these shapes, automatic

detection and matching of feature points can accelerate the process and reduce manual

work.

The regional segmentation of human bones requires a method that is automatic

and reliable. From the landmark system, we can build up a shape model. Shape

model has the advantage that once established, it is able to apply onto any new
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shape. Unlike other methods, shape model does not allow free deformation, rather

is restricts the shape in a subspace that maintains basic information and essential

features of the target. Training from a set of shapes, for example, proximal femur

bones, the shape model will always produce a valid shape instance which is desirable.

In this work, I developed a shape model framework that is robust as well as automatic

to achieve the segmentation task. The framework involves several components that

ensures the model achieve great performance in the specific application, as well as fit

general applications in a broader range.

4.1 Shape Smoothing for Low Resolution MRI Images

In 3D space, X = {L1, L2, L3, · · · , Ln} denotes a vector that contains n land-

marks, Li = {(xi, yi, zi)}. Given a training set of shapes Xi, a mean shape X̄ can

be generated using principle component analysis (PCA). The landmark can be de-

fined implicitly using a set of coordinates. However, these landmarks are often drawn

on a given surface mesh S, through a graphical user interface. In medical imaging

applications, the raw dataset is 3D scan image, represented as I. To construct the

landmark system, the first step is to generate surface mesh S from I. The surface

mesh generator has been described in Sec 3.2.

Due to the scanning principle of medical equipment, image spacing is not

always isotropic in 3D. Often, the slice spacing is much larger than in-plane spacing.

The resulting images and derived surface mesh have staircase artifacts, as shown in

Fig 4.1. Such artifacts misrepresent the original shape appearance and influence the
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Figure 4.1: (a). Surface mesh generated from a low resolution MRI image. (b).

Surface mesh using isotropic distance smoothing.

placing of landmark, and further impact the accuracy of shape model construction.

Ever worse, the artifacts will be inherited by the shape model, such that if landmarks

are placed on false geometric feature points, the shape model will retain the artifact,

making matching the shape model to new shape instances inaccurate.

To reduce the staircase artifact, I introduced an image smoothing scheme

using signed distance transform on isotropic grids. The method applies on the digital

image I, and it produces a smooth result that satisfies the requirement of landmark

placement; see 4.1(b). Although the method does not directly apply on the surface

mesh S, I argue that it also works by first doing a grid scanning and the method has

advantages that is adaptive to general surface smoothing tasks.

In this work, the shape model to be constructed is human proximal femur.

We thus need an isotropic representation. The original binary anisotropic image is

first interpolated to isotropic I. Holes or cavities inside the shape body are filled

using image closing operator: I •Es = (I ⊕Es)	Es. Es denote a binary structuring
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element at a given scale s. Let’s denote the foreground object by O, and background

by Ω, then I = O ∪ Ω.

The smoothing method starts by computation of distance map. Initially,

boundary points are identified and their distance values are set to zero. Signed dis-

tance transform is computed on both the object and background to get the distance

map M , such that ∀p ∈ O,M(p) > 0 and ∀q ∈ Ω,M(q) < 0.

A smoothing step follows by applying the smoothing kernel Θ to get smoothed

image I∗ = f(I) = Θ ∗ I. The new boundary is the level set at distance value of

zero, f(I) = 0. The properties of the smoothing kernel determines the appearance

of smoothed image. An isotropic kernel is radial symmetric and rotation invari-

ant. The most common kernel is Gaussian kernel G(x) = 1√
2πσ

e−x
2/2σ2

. Anisotropic

kernels takes advantages of directional information and selectively smooth the im-

age in certain direction. In other words, anisotropic kernels are feature-preserving

smoothing kernels. As an example, Perona and Malik’s anisotropic diffusion [114],

∂I
∂t

= div(c(x, y, t)∇I), works as an anisotropic kernel to facilitate edge-preserving

smoothing. The notion of feature-preserving smoothing has been introduced into

mesh smoothing [7, 164]. These methods directly apply on the mesh representation

instead of digital images. Nevertheless, the advantage of the smoothing scheme here

is that the choice of smoothing kernel is more flexible depending on the application

and the smoothing result one wants to achieve. In this work, the Gaussian kernel is

adopted to reduce the staircase artifacts and the result is promising 4.1.

The proposed method can also be applied to meshes. Given a mesh represen-
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Figure 4.2: Proximal femur shapes from different subjects and the generated mean

shape.

tation S of object O, a scanning step, which is often referred to as scan-conversion or

voxelization [76], converts the mesh into volume images. In the scan-conversion step,

the key is to determine the grid to separate inside and outside of O. A few existing

algorithms achieves the voxelization. Some detect the intersection between uniform

grid and polygons [67]. Some uses more advanced structures like octree [76]. Once the

voxelization is achieved. The mesh smoothing can be converted into the smoothing

of digital images. The advantage here is that the smoothing kernel is selective and

thus able to handle different requirements of smoothing.

After smoothing, surface shapes of femur subjects are obstained. In the next

step, a new landmark system is defined by experts to represent the object shape.

Construction of the system will be presented in the following section.
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(a) (b)

Figure 4.3: Landmark system of human proximal femur. (a) primary landmark (red

dots) and landmark lines. (b) Landmark mesh (red dots are primary landmarks and

blue dots are innner landmarks).

4.2 Landmark System Construction

The landmark system is a crucial component for mean shape generation.

Salient landmarks should capture the geometric features of the given shape surface.

They should also be highly reproducible across different subjects. An appropriate

number of landmarks are required to represent the shape in a discrete form. These

landmarks are considered as a sampling of target shape, and therefore uniformly dis-

tributed landmarks are preferred. In this work, the landmark system L is generated

for the shape model of a given 3D femur shape. The training set is a set of proximal

femur subjects.

Landmarks that are of geometric importance and with high reproducibility are

referred as primary landmarks. They are generated by experts on each training shape

surface using a graphical user interface (GUI). Experts are asked to interactively
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place landmark points onto the surface and use corresponding landmark curves as

reference to divide the entire surface into subsurface regions, such that each region is

homogeneous with regular shape, avoiding significant shape variations, such as large

curvature, large protrusion or sharp edges. Figure 4.3 (a) shows primary landmarks,

landmark curves and corresponding subsurface regions defined on a training shape.

Inside each surface subregion, an inner landmark is added if there exist a salient

feature point that must be maintained. With the reference of primary landmarks,

additional landmarks are automatically placed in each subregion to achieve a dense

distribution. These landmarks are referred as secondary landmarks. By defining

primary landmarks to represent geometric features and secondary landmarks to meet

a predefined density, we argue that such an approach is a robust and efficient way to

construct the landmark system toward an optimal tradeoff.

Establishing the landmark system on each training shape is fulfilled in five

sequential steps: (1) Define the primary landmark system; (2) place primary land-

marks on individual training shapes; (3) define complete landmark set on one proto-

type training shape; (4) generate landmark mesh on the prototype shape; (5) warp

the complete set of prototype landmarks on each individual training shape using the

correspondence of primary landmarks.

primary landmark system: primary landmarks that represent geometric fea-

tures are determined for human proximal femur by experts. They are reproducible

across shapes and are then used to divide the anatomic shape surface into subsurfaces.

An example of a primary landmark system on human proximal femur is illustrated
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in Fig 4.3 (a).

primary landmarks placement: primary landmarks are drawn by two experts

using a GUI following a prototype, which defines the order of landmark curves and

several geometric points, that has been defined for human proximal femur. Each user

follows the order of landmark curves and places primary landmarks. A third user

reviews the landmark and makes corrections if needed.

Complete landmark set on prototype shape: Secondary landmarks are gener-

ated to achieve the predefined density only on one prototype training shape. Here

secondary landmarks doesn’t carry geometric information.

Generate landmark mesh: A surface mesh is generated from the complete set

of landmarks L defined on the prototype shape, using a manifold Delaunay triangu-

lation based on the computation of manifold distance transform. Manifold distance

is defined on the surface S. Given two points p, q on S(V,E), where V is surface

vertices and E is surface edges, a path π between p and q is the sequential set of edges

(e1, e2, · · · , en). N(p) is the set of neighbor vertices of p. The length of π, denoted as

L(π), is the sum of edge lengths of (e1, e2, · · · , en). Let P denote all paths from p to

q. Manifold distance D(p, q) is therefore represented as

D(p, q) = min
π∈P
L(π). (4.1)

The manifold distance transform yields a manifold distance map (Mdt) and a

nearest landmark map (Mlm) for all landmarks. The algorithm to compute manifold

distance transform is summarized in Algo. 4.1. Using the information of Mlm, the

landmark mesh Slm = (L, Elm), where L is the set of landmark, Elm is the set of
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edges, is generated following the Algo. 4.2. The generated landmark mesh is shown

in Fig. 4.3 (b).

Algorithm 4.1 Manifold distance transform

Input: S(V,E),L
Output: Mdt, Mlm

Algorithm:

1. Initialize an empty queue Q

2. for all v ∈ V
3. Mdt(v) = MaxValue

4. Mlm(v) = -1

5. for all l ∈ L

6. Mdt(l) = 0

7. Mlm(l) = l

8. push l into Q

9. While Q is not empty

10. pop v from Q

11. for all v′ ∈ N(v)

12. if Mdt(v
′) > Mdt(v) + |vv′|

13. Mdt(v
′) = Mdt(v) + |vv′|

14. Mlm(v′) = Mlm(v)

15. push v′ into Q

16. EndWhile

Warp landmarks onto individual shape: The complete landmark set defined

on the prototype training shape was deformed onto any individual training shape

using the correspondence of primary landmarks. The idea is using piecewise defor-

mation such that each surface subregion are transformed from the prototype shape

to individual shape, where the correspondence of two subregions is defined by their

primary landmarks. Let R denote a subregion on the prototype shape, which contains
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Algorithm 4.2 Manifold landmark mesh generation

Input: S(V,E),L, Mlm

Output: Slm(L, Elm)
Algorithm:

1. Initialize Elm = empty set

2. for all v ∈ V
3. l1 = Mlm(v)

4. for all v′ ∈ N(v)

5. l2 = Mlm(v′)

6. if l1 6= l2 and l1l2 /∈ minElm

7. Elm = Elm ∪ l1l2

primary landmarks p1, p2, · · · , pn and secondary landmarks s1, s2, · · · , sm. R′ denotes

the subregion on the target shape, with p′1, p
′
2, · · · , p′n as primary landmarks. The task

is to determine secondary landmarks s′1, s
′
2, · · · , s′m, on the target shape. The criteria

is to minimize the change of landmark mesh after mapping R to R′. A process that

simulates the physical deformation of a spring system is adopted. For the landmark

mesh, each edge is treated as a spring, and each landmark is a mass node. Primary

landmarks of R are gradually moved to R′ under an external force, in each iteration of

time period ∆t. The movement of node will lead to deformation of springs and spring

forces tend to maintain the original shape and impede the change. The system will

achieve convergence after all springs are balanced. After a few iterations, the whole

landmarks are warped to R′, and s′1, s
′
2, · · · , s′m are placed. An extended deformation

system will be described in more details in Sec. 4.5.2.
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4.3 Landmark Based Active Shape Model

Following previous sequential steps, the landmark system can be established on

every training shape. The active shape model is then generated following the outline

by Cootes [42]. The mean as well as variations in an anatomic shape is computed

using the Procrustes method [59] and principal component analysis (PCA).

Shape models are a set of objects that have similar shapes and therefore are

able to be represented using a generic form of representation. 2D and 3D objects

are usually target shapes. In medical imaging, the representation of 3D objects are

volumetric imaging data or a mesh representation or a point cloud. Landmarks that

capture the outline of the shape are marked on the representation of the object. These

landmarks are generally geometric features and important points that maintain the

topology and connectivity. In 3D space, let X = {L1, L2, L3, · · · , Ln} denote a vector

that contains n landmarks, Li = {(xi, yi, zi) | xi, yi, zi ∈ R3}. Given a training set

of shapes Xi, a mean shape X̄ can be generated using PCA and the family of shape

model is represented as

X = X̄ + Pb (4.2)

where P = {p1, p2, · · · , pm} is the m dimensional eigenvectors and b is a m dimen-

sional vector. To generate the mean shape using PCA, first one computes the mean

of all training data,

X̄ =
1

n

n∑
i=1

Xi (4.3)



147

and the covariance,

V =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T (4.4)

Eigenvectors pi and corresponding eigenvalues λi are computed and sorted (λi ≥ λi+1).

The total variance is computed as Vx =
∑
λi. For the sake of model simplicity, we

reduce the dimensions of the shape model. The first m eigenvalues are selected and

smaller eigenvalues are truncated such that

m∑
i=1

λi > rVx (4.5)

where r is the ratio that the model explains, for instance, r = 0.95.

Following the above steps, a mean shape X̄ will be generated from a set of

training shapes Xi. The eigenvalues λi represent the shape information and govern

the change of shape appearance. By controlling the shape descriptive vector b, one

can generate a family of shapes that is analogous to the mean shape.

4.4 Automatic Shape Matching

Shape models solve segmentation and registration problems for a set of objects

that have similar shapes. Once the shape model is constructed, the goal is to find

a shape deformation procedure to match the shape model to the target object. The

advantage of shape model is its adaptability from the shape model to other objects

based on shape deformation. The deformation process is called shape matching or

shape registration. However, the shape matching has been a challenging part for

3D modeling. Establishing the correspondence between the mean shape and target

shapes and the matching criteria largely influence the quality of shape modeling. In
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some applications of medical imaging, manual registration is used to match source and

target shapes [135] using graphical user interface. In some other applications, since

target objects all have similar shapes and the variability between objects is small,

shape model is capable to provide reliable and accurate registration results. In this

study, I proposed a new scheme for shape matching. The matching process consists

of two steps. In the first step, an automatic initial shape alignment is achieved using

feature point matching. Secondly, an iterative shape matching step based on the shape

model accomplishes the shape registration. Successful shape matching reduces tedious

and time-consuming expert works for identification of salient anatomic features on

each object, making it automatic and much easier to define region of interests that

are clinically concerned.

Shape matching algorithm automatically computes correspondences between

the involved shapes. Given the reference shape X and a target shape X̃, shape match-

ing is to find the deformation D : X → X̃. In this study, we assume the deformation

of femur bone shape is affine transform. Let φ(s, t, θ) denote the affine transform,

s is scale factor, t is translation and θ is rotation angle. The optimum affine trans-

formation minimizes the error metrics between the reference shape and the target

shape. In addition to the affine transform, we consider the generic shape deformation

of active shape model restricted by its eigenvectors and eigenvalues. Rather than

arbitrary shape deformation, eigenvalues and eigenvectors preserve the shape model

and guide the deformation. Let δ(b,m) denote the deformation parameter, b is cor-

responding control parameters, m is the dimension. Now the deformation is written
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as Dδ,φ : X → X̃. And the shape matching is formalized as a joint optimization

problem

D = arg min
δ,φ
|X − X̃|2 (4.6)

In 3D space, the Euclidean distance is often used as the error metric ε, to represent

the similarity of shapes. The error metric ε = |X − X̃|2 can be written as the sum of

closest distances from points on the reference shape to the target shape.

In a simple situation, where the reference shape X and the target shape have

the same number of landmarks and the landmark correspondence has been estab-

lished, there exists a close form solution to find the best affine transform that aligns

reference and target shapes [42]. Let Hs denote the surface of target shape, xi is a

point on the reference shape. The affine transform φ(s, t, θ) maps xi to the closest

point x̃i on the target shape surface Hs. Then we rewrite the optimization as

D = arg min
δ

n∑
i=0

|X − φ−1(Hs, xi)|2. (4.7)

This method utilizes landmark correspondence to achieve shape matching.

However, in most applications, numbers of landmarks of reference and target shapes

differ. And the prior knowledge of established correspondence of landmarks is not

available or needs manual identification. In this study, our goal is to automatically

generate landmark system defined in Sec. 4.2, through shape matching. Here, the

reference shape is the mean shape, X = X̄ + Pb, generated in Sec. ??. The target

shape X̃ is a surface mesh representation of any given femur subject. A shape match-

ing method based on feature points extraction and matching is presented in following

paragraphs.
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4.4.1 Feature Points Extraction

Feature points extraction of target shape dates back to 2D digital images.

Harris corner detector introduces the earliest feature points identification in 2D im-

ages [63]. More advanced feature points were proposed to maintain invariant proper-

ties of images, such as rotation, scaling, by incorporating local descriptive features.

Therefore, these feature points are suitable to be used as anchor points to match a few

images that share the same scene but with different filming conditions like angle and

illumination. The most widely known invariant feature point extraction in 2D images

is the SIFT feature detector [104]. Inspired by the success of descriptive features in 2D

images, feature descriptors that extract salient points from a surface mesh also made

great progress. Several researchers extended 2D image descriptors into mesh. Harris

3D [154] extends Harris corner detector into 3D meshes. Mesh-SIFT [44] borrows the

notion of SIFT and has achieved scale invariance in feature detection in 3D meshes.

Several methods uses the differences of Gaussians (DOG), which is also a classical

method in 2D image processing, as feature detector [181, 86]. These methods enables

us to capture important features of the shape that can be used for shape registration.

In this work, I adopted a feature point extraction method based on the canon-

ical heat diffusion process on a shape. The method, called Heat Kernel Signature

(HKS) [161], captures global information of the geometry of the shape, and renders

a feature map based on the geometric importance of each point. HKS models a

heat diffusion process on a Riemannian manifold. Heat dissipates over time in the

neighborhood of a point on the manifold. The scale information is intrinsically incor-
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porated in the diffusion time. The heat propagation on the shape is governed by the

heat diffusion equation,

(∇X +
∂

∂t
)u = 0 (4.8)

where, ∇X represents the positive semi-definite Laplace-Beltrami operator. The so-

lution u(x, t), denoted as heat kernel t(x, y), describes the amount of heat at point x

on time t, with initial condition u(x, 0) = δ(x− y). For compact manifolds, the heat

kernel has the following eigendecomposition:

kt(x, y) =
∞∑
i=0

e−λitψi(x)ψi(y) (4.9)

where λi is ith eigenvalue and ψi(x), ψi(y) are corresponding eigenvectors of ∇X .

The heat kernel signature proposed in [161] is written as

h = kt(x, x) =
∞∑
i=0

e−λitψ2
i (x) (4.10)

and further improved to scale invariance to the input shape X by taking the logarithm

of h, and then shifting the phase after discrete-time Fourier transform [21]. Finally,

scale-invariant heat kernel signature (SI-HKS) was obtained to describe feature of

any point on the shape X.

SI-HKS has several advantages that satisfy feature point extraction in our

study. To begin with, it is scale-invariant to shape size. Often, the reference and

target shapes are of different size. Usually, scale normalization is an necessary step to

convert matching shapes to the same scale. However, in this study, the mean shape

consists of only n landmarks (Fig. 4.3) and the target shape is a dense mesh with m
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vertices (Fig. 4.1) (m � n). The common normalization would fail due to different

number of vertices.

SI-HKS captures essential geometric features of the shape, with less spurious

feature points. Unlike other feature point detectors that depend on local descriptive

measures, SI-HKS conveys the global information. Therefore, feature points identified

by SI-HKS are robust to local shape variances. In this study, human femur shapes

have various appearances and some subjects may even suffer from osteoporosis or

osteophyte which alternate local appearances of shape. As a result, local descriptive

feature detectors are likely to highlight such abnormal regions and lead to failure

of shape matching from the normal healthy shape to the abnormal target. SI-HKS

detects salient features in a larger neighborhood when the time period is appropriately

set.

4.4.2 Automatic Matching Algorithm

The flow chart of shape deformation. The workflow of automatic shape

matching consists of five sequential steps as shown in Fig. ??: (1) mesh decimation

of target shape, (2) feature points extraction, (3) feature points clustering, (4) shape

alignment, (5) shape model matching.

Mesh decimation. Initially, the target shape mesh is decimated to approxi-

mate the number of vertices of the reference mesh, or the mean shape. Let’s denote

the mean shape by X = X̄ + Pb, b = 0, with n vertices (each vertex is also the

landmark, refer to the mesh generation of mean shape in Sec. 4.2). The target shape
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is a dense triangular mesh Y with m (m � n). A decimate rate r = 1 − n/m, is

approximately applied on Y to generate a new mesh Y′ with m′ vertices. The prin-

ciple of decimation [144] is maintaining mesh topology, without splitting or deletion

of boundaries. Therefore, the geometric features of the original mesh are kept. With

the topology constraint, the yield mesh Y′ may not have the exact same number of

vertices as X. Duplicate points should be removed in a post-processing step.

Feature points extraction. After mesh decimation, SI-HKS computes the

feature value map on mesh X and Y′. A large time scale is used to avoid local extrema

as discussed in above paragraphs. An example showing the computed feature map is

presented in Fig. 4.4. SI-HKS captures salient points that represent salient features of

the shape. It can be observed in the figure that a large number of feature points often

concentrate in a few regions with salient geometric features, such as the femur head,

where the surface is of uniform importance of notice, and the protrusion at the great

trochanter, where the surface curvatures change rapidly. The mesh decimation ensures

the mean shape X and target shape Y have similar number of vertices. Therefore,

salient points also distribute similarly in each salient regions.

Feature points clustering. The first N salient points are identified based

on the feature value. They are clustered into C centers, using the K-means method.

The clustering center is shown in Fig 4.4. In this work, N = 300 and C = 6 has been

chosen determined by experiments of on the training dataset of femur subjects. The

location of clustering centers matches well with anatomic feature points of proximal

femur, covering the femural head, the great trochanter, and the lesser trochanter.
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Figure 4.4: Automatic feature point extraction on human femur shapes using scale-

invariant heat kernel signature. From left to right of each row, each shape repre-

sents: mesh of a sample femur subject; feature value overlay on the mesh using scale-

invariant heat kernel signature; smoothed feature map; first 300 important points

extracted from the feature map; clustering centers of feature points. The first row

represents the mean shape. The second row shows an example of another femur

subject. The color bar is shown on the left.

Clustering centers, center of gravity on the mean shape and the target shape are

denoted as ci, cg and c̃i, c̃g respectively. Generally, distances from several salient

points to the center of gravity of proximal femur have certain order. For example,

the distance from the point at great trochanter to the center of gravity is larger than

that of the point at lesser trochanter. Our extracted clustering centers correspond to

specific anatomic points, and thus can be ordered based on the distance to the center

of gravity. cis and c̃is are sorted in order of distance disti = ‖ci− cg‖, and paired {ci,

c̃i}.
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Shape alignment. Affine transform τ is computed from the paired centers

{ci, c̃i} and then used to approximately align the mean shape X onto the target

shape X̃. In implementation, X̃ is projected on to the mean shape frame using τ−1.

The classical iterative closest point (ICP) algorithm refines the shape alignment by

minimizing the cost of Euclidean distance. Let ϕ represent the transform obtained by

ICP, then the optimal transform from shape model to the target shape is φ = ϕ(τ).

Notably, although the ICP algorithm is able to minimize the distance between two

point clouds, and could be used to register two shapes, it fails without the initial

affine transform τ . Without the shape alignment determined by matching clustering

centers {ci, c̃i}, the ICP algorithm would converge to a local minimum, resulting in

mismatch between mean and target shape, due to differences of coordinate system

between mean shape and target shape, as well as the large variety of human proximal

femur subjects; see some examples of femur subjects in Fig. 4.2. The feature point

extraction and clustering take advantages of the geometric information of the femur

shape and make the alignment reliable and robust.

Shape model matching. Shape alignment finds the optimal transform map-

ping the target shape on to the coordinate system of the mean shape. Still, the mean

and target shape are only partially overlapped. The next task is to matching the

mean shape to the target such that finally these two shapes are close to identical. In

other words, the differences between mean and target shape after shape alignment

are unique features of the target. We can find the best fit to the target shape features

using the active shape model. The shape model, represented as X = X̄ + Pb, is a
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generalization of shape instances in a high dimensional feature space Θ, determined

by the training models. Finding the best fit to the target shape is to find the best

projection of the shape model in the subspace constrained by the eigensystem and

the control parameter b. δ(b,m) denotes the critical parameter; m is the dimension

of subspace. The optimization process is to solve

D = arg min
δ
|X − φ−1(X̃)|2, (4.11)

where φ is the transform found in shape alignment step.

Inspired by the work of Cootes [42], I developed an iteratively algorithm to

solve the problem. In each iteration, the method contains two steps. In the first step,

we generate and modify a shape instance by allowing it deforming freely in the high

dimensional space Θ. The shape instance is an approximation of the target shape. Let

X ′i denote the shape instance in current ith iteration, Xi−1 = X̄ + Pbi−1 denote the

actual shape generated by the active shape model in i-1 th iteration, where b0 = 0,

when i = 1 and X0 = X̄ is the mean shape. In each iteration, Xi−1 and target

shape X̃ are first aligned, such that the scale, pose are matched. X ′i is generated

by minimizing cost function ε = |X̃ − Xi−1|2. For the first iteration, X0 and X̃ are

already aligned by affine transform φ. In future iterations, the ICP algorithm is used

to optimize the pose and rotation of X̃ to align with Xi−1.

In the second step, the shape instance is projected onto the subspace con-

strained by the shape model. At ith iteration, X ′i is obtained by sampling X̃. Then

features of the target shape are approximated by the differences between X ′i and

Xi−1, represented as f = X ′i −Xi−1. The residual of parameter ∆bi is computed by
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generalizing the active shape model.

f = X ′i −Xi−1 = P∆bi, (4.12)

∆bi = P−1(X ′i −Xi−1) (4.13)

Then the shape parameter and actual shape are updated:

bi = bi−1 + ∆bi, (4.14)

Xi = X̄ + Pbi. (4.15)

Let d = |Xi − Xi−1|2 measures the change of generated shape between adjacent

iterations. The iterative process terminates when ε is smaller than the predefined

threshold γε, or d is sufficient small (less than γd), or i is larger than maximum

number of iterations (imax). The process is guaranteed to converge in finite number

of iterations because the error metric d decreases in each iteration. The iterative

process can be summarized in Algo. 4.3.

Following the active shape model matching algorithm, the final shape X is

generated as a close approximation to the target shape. X is governed by the eigen-

system that has shown to cover 98% features of femur subjects, with much fewer

dimension m. The landmark system {Li}, i = 1, 2, · · · ,m of the shape model have

been successfully deployed onto the target shape. Now vertex vi of X corresponds to

landmark Li in the landmark system.

In summary, given any femur shape, the automatic shape matching algorithm

generates a shape instance from the active shape model. The shape instance, which
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Algorithm 4.3 Iterative shape model matching

Input: X̃, X̄, P, τ, φ, γε, γd, imax
Output: b, X
Algorithm:

1. i = 1,b0 = 0, X0 = X̄

2. While i < imax and (d > γd or ε > γε)

3. Apply affine transform τ on X̃ to match the coordinate system of Xi−1.

4. Minimize |Xi−1 − τ−1(X̃)|2 using ICP algorithm and get the transform ϕ.

5. Sampling X̃ by finding closest points from Xi−1 to ϕ−1(τ−1(X̃)) and get X ′i.

6. Compute:

7. ∆bi = P−1(X ′i −Xi−1)

8. bi = bi−1 + ∆bi

9. Xi = X̄ + Pbi

10. ε = |ϕ−1(τ−1(X̃))−Xi|2
11. d = |Xi −Xi−1|2
12. i = i+ 1

13. EndWhile

14. b = bi, X = Xi

contains m landmarks, is a close approximation to the target femur shape. Each

landmark of the shape instance locates on the target shape. The correspondence of

landmarks is established. Therefore, the landmark system has been established on

the target femur shape.

4.5 Volume Shape Deformation

Clinically, different anatomic sites indicate distinct properties of bone metrics,

for example, BMD and trabecular microarchitecture [60]. Automatic segmentation

of subregions of the target volume is a challenging task. In this work, I proposed

a shape model based framework to solve the problem. As discussed in previous

sections, the shape model with a landmark system has been constructed to describe
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the shape. Here, the active shape model and the landmark system are rooted on

the surface of the shape. Given any femur shape, the algorithm is able to achieve

accurate registration of the shape model and target shape, and deploy the surface

landmark system onto the target shape. Nevertheless, to subdivide the target volume

into demand regions that are ready for clinical studies, for example, trabecular bone

micro-architectural analysis, we need to define the volume landmark system. The

system contains a few landmarks and landmark connection information. On the mean

shape, each landmark has been classified into one of the subregions and has a unique

label. A volume shape deformation algorithm is used to transform the landmark

system defined on the mean shape onto the target shape. The process is similar to

the surface landmark deformation. Once the deformation is successfully achieved, the

subregion segmentation can be achieved with the information of volume landmarks.

Here, the whole process contains two major components: construction of the volume

landmark system and automatic shape deformation.

4.5.1 Volume Landmark System

Volume landmark system is a structure similar to the surface landmark system

described in previous sections. The construction of volume landmark was developed

based on the requirements of the study. The ultimate goal is to achieve regional

segmentation on a 3D digital image I. In other words, for any pixel p ∈ I, we need to

classify and assign a label l(p) to p. The transformation of the grid pixel p between

the structured grid (Z3) is an interpolation process using landmarks defined in the
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Figure 4.5: Volume mesh of the mean shape.

unstructured 3D volume (R3). Uniform distributed landmarks are preferred in terms

of interpolation. The number of volume landmarks are generated with the average

distance of adjacent landmarks less or approximately equal to the average distance

of surface landmarks. In this way, the number of volume landmarks are controlled

to reduce the computational complexity. The system also records the connection

of volume landmarks. We can represent the system with a volume mesh V , with

landmarks {Vj}, j = 1, 2, · · · , N .

First, the system is generated as a volume mesh with quasi-uniform points

inside the surface of generated shape instance X from active shape model. Surface
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landmarks {Li} are naturally a subset of the volume landmarks. For volume mesh

construction, Delaunay-refinement-based methods generates tetrahedron elements by

inserting points to enforce tetrahedra satisfying constraints on size and quality, as well

as maintaining a Delaunay or constrained Delaunay triangulation [150]. In addition,

these methods produce volume mesh with surface exactly the same as the input. By

inserting ”steiner points”, we can generate quasi-uniform points with the average

edge length similar to the grid size. In this work, the volume mesh is generated using

Tetgen [151], a quality volume mesh generator. An example of the volume mesh is

shown in Fig. 4.5.

After the construction of the volume mesh V , a labeling process L : Vj →

r is applied to each landmark Vj, where r is the set of subregions r1, r2, · · · , rk.

(Mathematical representation of the volume landmark system somewhere?)

4.5.2 Automatic Deformation Algorithm

For a group of similar shapes, one can deform one shape instance to another,

such that the reference shape overlaps with the target. The goal of deformation is

that the information of the reference shape is carried during the deformation. Finally

the deformed shape is able to deploy the carried information on the overlapped target.

Specifically, in this work, I developed an automatic shape deformation algorithm to

deploy the landmark system onto any given volume shape. With the information of

landmark labels, subregions of the shape can therefore be defined.

The deformation from reference to the target shape requires a matching cri-
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teria between the two shapes. In previous sections, the complete volume landmark

system has been constructed on the mean shape, and we already have the surface land-

mark system deployed onto the target shape using automatic shape matching. The

correspondence of surface landmarks on the reference and target shape is therefore

established. The criteria that guides the deformation process contains two compo-

nents: (1) matching corresponding surface landmarks and (2) minimizing a function

that measures volume differences between the reference and target shapes.

Volume landmark meshes are denoted as O = {V,G} and O′ = {V ′, G′}, for

the mean shape and the target shape, respectively. V = {L,B} represents the vertices

of mean shape, where L, B are surface landmarks and inner volume landmarks. G =

{Gs, Gt} represents the connected graph of vertices, where Gs, Gt are then triangles

of surface landmarks and tetrahedra of inner volume landmarks. The deformation

process is then obtained by solving the following minimization problem:

min
V

(
n∑
i=1

|L− L′|2 + α g(B,B′)

)
, (4.16)

where the function g(B,B′) measures the criteria of volume difference, and α is a

constant balancing the two components.

In this work, volume landmarks inside the surface are generated uniformly.

The uniform system has several advantages. First, volume landmarks are finally

used for interpolation and determine labels of regions. Uniform landmarks are stable

and reliable for interpolation. Second, the uniform system avoids tetrahedron with

extreme elements that could cause violation of topology during mesh deformation.

The deformation process should keep as much information for the reference shape, and
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thus the uniformity of volume landmarks should not be damaged during deformation.

I therefore define a similarity measure to constrain the deformation process using the

function:

g(B,B′) =
m∑
i=1

|Ti − T ′i |, (4.17)

where Ti represents the volume of the ith tetrahedron. And the minimization problem

is re-written as:

min
V

(
n∑
i=1

|L− L′|2 + α
m∑
i=1

|Ti − T ′i |

)
. (4.18)

In this application, the femur shape can be modeled as a solid material with

elastic springs connecting all landmarks V . The whole shape is treated as an de-

formable shape and initially springs are at a stable stage with forces balanced. The

deformation process can be thought as the reference shape being driven by an externel

force Fs that matches surface landmarks L on to L′. Under the driven force Fs, the

shape will change and the elastic system reacts to the change such that inner springs

deform and finally reach stable. According to physics law, spring force is along the

spring when it is compressed or stretched. We can write the force as:

Fs = ks ∗
∆l

lorig
(4.19)

where ks is a constant, ∆l is the difference of spring length, lorig is the original length

of the spring. (more description about the spring) Also, during the deformation

process, the constrain that maintains the uniformity of tetrahedral volumes, can be

modeled as reaction force Fv. Similar to the definition of spring force, I define the

reaction force Fv with respect to the difference of volume. The direction of Fv is
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along the movement direction of the barycenter of one tetrahedron. We can write the

equation as:

Fv = kv ∗
∆v

vorig
(4.20)

where kv is a constant, ∆v is the difference of tetrahedral volume, vorig is the original

volume of the tetrahedron.

The volume mesh deformation process is an iterative process that simulates the

physical behavior of the elastic system. The duration of each iteration is a predefined

constant ∆t. At any time/iteration t during the deformation process, a force Fs(L, t)

is applied on the surface landmarks of the shape model to gradually move Li toward

L′i and is defined as a constant force along the vector Li − L′i. In one iteration, Li

moves ∆t closer to L′i. ∆t is small such otherwise the system can not stabilize. After

a few iterations, Li may get very close to L′i, while oscillate around L′i due to the

dynamics of the elastic system. The oscillation around the target point L′i is avoided

by forcing Li to move to L′i at the end of iteration when they become sufficiently

close.

In each iteration, the movement of Li leads to compression or stretch of springs.

Spring forces gradually move inner volume landmarks Bi to achieve the next stabi-

lization. All springs (edges) adjacent to Bi contribute spring forces for displacement.

The total force is computed and applied on Bi such that it is moved from ei to e′i.

Due to the change of volume, the constraint force Fv reacts to slow the change of

original volume. It then moves Bi to a balanced point e′′i . Bi is thus guided under Fs

and Fv where a balance is achieved. Bi moves freely inside the volume as long as the
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displacement satisfies topology constraints: no collision, self-intersection, or cavity.

Specifically, the vector e′′i − ei are not allowed to collide on to other landmarks or

triangles. If collision is detected, the movement of Bi will be marked as illegal and

discarded. Similar to surface landmarks, if a volume landmark oscillates around a

point, the cumulated force in the latest l iterations are computed to determine the

position of the oscillated landmark. The movement of inner landmarks finally reach

stabilization.

The deformation process stops when all surface landmarks Li on the shaped

model have been successfully deformed to corresponding landmarks L′i. Through

the elastic deformation, the reference and target shape maximumly overlapped and

a uniformly distributed volume landmark system has been deployed on the target

shape.

4.6 Regional Segmentation

After volume shape deformation, a complete landmark system on the tar-

get shape has been established. The uniformly distributed landmarks are samples

of the three dimensional space R3. The transform in R3 could then be approxi-

mated by corresponding landmarks V and V ′. For each grid pixel p ∈ Z3 of the

target image that we want to segment, we first find its k nearest neighbor landmarks

V ′1(p), V ′2(p), · · · , V ′k(p). Corresponding landmarks V1(p), V2(p), · · · , Vk(p) are deter-

mined on the mean shape. A transform Ωp(V, V
′) is computed using corresponding

landmarks. The label of p is determined as the label of the transformed grid pixel
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on the mean shape. For this application, femur shapes are known as smooth surfaces

and of limited degree of freedom in variation. We therefore choose the thin plate

spline (TPS) as the transform to imply a penalty involving the smoothness of the

fitted surface.

The above method demands a labeled image of the mean shape; let’s denote

it as prototype labeled image Ḡ ∈ Z3. We generate the labeled image following

strategies described below. Let Ω(Vj, V̄ ) : R3 → R3 denote the transform from the

coordinate system of any given shape to the coordinate of the mean shape, where

Vj and V̄ are volume landmarks of training shape j and mean shape. Ḡ is gener-

ated using TPS transform from a set of ground truth images where subregions are

manually labeled by experts (Fig. 4.7), represented as G1, G2, · · · , Gk. Following the

automatic shape matching and volume deformation step described in previous sec-

tions, the complete landmark system of the mean shape (V̄ ) is deployed onto Gj and

the corresponding landmark system Vj are obtained. TPS transform Ω(Vj, V̄ ) maps

Gj to G′j, the labeled image in the coordinate space of the mean shape. The average

of I ′j is used to decide the label for each pixel p ∈ Ḡ. Finally, the prototype segmented

image Ḡ which corresponds to the mean shape X̄ is constructed.

The regional segmentation of any digital femur image I∗ are achieved following

the proposed pipeline. The complete work flow can be summarized as: (1) smooth

the original digital image I∗, and generate a surface mesh S∗ from smoothed image;

(2) extract feature points from decimated mesh of S∗ using SI-HKS, align S∗ to mean

shape using clustered centers of feature points; (3) generalize mean shape to match S∗
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and place surface landmarks on S∗; (4) deform mean shape volume landmark system

to S∗ using corresponding surface landmarks and get volume landmarks V ∗ for S∗;

(5) compute Ω(V, V ∗) and apply it to Ḡ to get final regional segmented image G∗.

4.7 Experiment

The aim of our experimental plan is to assess the methods ability to subdivide

the proximal femur into predefined subregions.

MR Imaging

The femur MRI was collected at New York University [30]. The right proxi-

mal femur of each subject was scanned on a 7 T whole body MR scanner (Siemens

Medical Solutions, Erlangen, Germany) using a quadrature knee coil (18 cm diame-

ter, transmit-receive). A high-resolution 3D-fast low angle shot (FLASH) sequence

was employed to obtain all images (TR/TE = 20/4.5; flip angle 10◦; bandwidth 130

Hz/pixel; one signal acquired; 130 axial images with resolution 0.242 mm × 0.242 mm

× 1.50 mm). Scanning time was ∼12 min total.

Subjects

MRI bone data of thirty human subjects were recruited in the Department of

Radiology at New York University. Each subject was scanned twice within the same

day with repositioning between scans.

Manual segmentation

For the training phase, the trabecular bone region outline was manually seg-

mented for each image slice. A example of MRI proximal femur image is shown in
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Fig. 4.7(a), manual segmented tarbecular bone region overlaid on the proximal femur

bone is shown in Fig. 4.7(b).

Inside the trabecular region, subregions are defined by expert users to sub-

divide the proximal femur into femoral head, femoral neck, great trochanter, lesser

trochanter, inter trochanter, etc, following the guidance proposed for clinical research.

Figure 4.7(c) shows an example of manual segmented subregions, where each color

represents one subregion.

4.8 Results

A mean shape and corresponding active shape model has been generated using

thirty training shapes with manually drawn surface landmarks. The ability of gen-

eralizing the shape model to match individual shapes was tested using leave-one-out

strategy, to maximumly make use of training samples. Average error per landmark

is approximate 7 pixels of the image size. Eigenvalues that represent main informa-

tion of shape variability were calculated and shown in Fig. 4.6(a). The coverage rate

which is the ratio of cumulated eigenvalues to the sum of all eigenvalues is shown in

Fig. 4.6(b). Twenty-two eigenvalues were required to achieve 0.95 coverage rate.

The mean shape was constructed and the prototype labeled image was gener-

ated using average of transformed manual labeled images. Given a new image with

trabecular ROI, our shape model was able to subdivide it into subregions. One ex-

ample is illustrated in Fig. 4.7(d). The overall accuracy of subregions were found 0.80

± 0.08.
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Figure 4.6: (a). Eigenvalues of active shape model. (b). Coverage rate of active shape

model computed as ratio of cumulated eigenvalues to the sum of all eigenvalues.

4.9 Conclusion

Shape model is an effective tool to solve segmentation and registration prob-

lems for medical imaging applications. In this work, a shape model based framework

has been constructed to achieve the purpose of subdividing proximal femur trabecu-

lar bone region into predefined subregions. The framework solves the segmentation

problem of 3D digital images by transforming from digital lattice grid to the space of

volume shape. A new landmark system and an active shape model were built to aid

establishing the correspondence between shape model and individual shape instance.

Generated uniform and dense volume landmarks establishes the transform that maps

the segmented mean shape image to the target image. Finally the subregion segmen-

tation is achieved.
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(a) (b) (c) (d)

Figure 4.7: (a). A example slice of human proximal femur from an MRI image.

(b). Manual segmented trabecular bone ROI. (c). Manual labeled subregions. (d).

An example showing the overlay of segmented subregions using our method over the

original ROI.
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CHAPTER 5
CONCLUSION

Osteoporosis is a bone disease associated with an increased risk of low trauma

fractures that entails massive medical costs. Osteoporosis is clinically defined by

low bone mineral density (BMD), which explains 65-75% of the variance in bone

stiffness. The remaining variability is due to the cumulative and synergistic effects

of various factors, including trabecular bone micro-architecture. Effective measures

of TB micro-architecture are useful to assess bone strength and fracture risk in the

realm of clinical therapy and treatment guidance. The advance of high resolution

imaging provides a tool for understanding of trabecular bone micro-architecture and

its properties.

Quantitative assessment of trabecular bone has drawn great research interests

and applications of quantitative methods are the main stream in the field of bone re-

search. In this work, volumetric imaging algorithms, named Volumetric Topological

Analysis (VTA) and Tensor Scale (TS), were applied on in vivo imaging to measure

the quality of trabecular bone micro-architecture. These methods offer reproducible

measures of TB plate/rod micro-architecture at in vivo MRI, and were experimen-

tally demonstrated suitable for cross-sectional and follow-up studies toward answering

clinical and biological questions, under limited spatial resolution. The morphologic

interpretations of our measures are well defined, and histologic evidence confirms the

relationship between osteoporosis and the gradual conversion of trabecular plates to

rods, a process well known to increase fracture risk.
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We have shown the effectiveness of two state-of-the-art scanners, in terms

of accuracy and reproducibility of our micro-architectural measures as well as their

ability to predict actual bone strength. The bone measures derived from the two

scanners with notably different spatial resolution features were found of high corre-

lation. It revealed that a longitudinal study can jump scanners and still maintain

longitudinal continuity. Therefore keeping data uniformity in large-scale or multi-site

or longitudinal studies is feasible.

We constructed a finite element model (FEM) to quantitatively assess bone

strength by in vivo MDCT imaging. New segmentation algorithms that reliably iden-

tifies trabecular bone and preserve marrow topology were proposed to overcome lim-

ited spatial resolution and partial volume effect. The effectiveness of proposed FEM

was experimentally validated. The application of FEM has shown the ability of de-

tecting differences of trabecular bone quality on different in vivo human groups. The

relation of FEM computed measures and micro-architectural measures was explored.

In osteoporosis, bone structure decreases systematically which leads to loss

of bone mass and deterioration of micro-architecture. However, the severity of bone

loss and deterioration were different in various anatomic sites in human body. A

shape model based segmentation algorithm was developed to subdivide human prox-

imal femur into predefined subregions, which helps to further understand trabecular

properties in different regions. The method solves the segmentation problem of 3D

digital images by transforming from digital lattice grid to the space of volume shape.

A new landmark system and an active shape model were built to aid establishing
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the correspondence between shape model and individual shape instance. Generated

uniform and dense volume landmarks establishes the mapping between the segmented

mean shape image and the target image. The model achieved automatic subregional

segmentation of proximal femur and provided a general solver for subregional seg-

mentation for other shapes.

In summary, this work has made contributions to understanding trabecular

bone micro-structures using quantitative imaging measures at in vivo imaging. Var-

ious studies, including cadeveric and in vivo groups, have shown that these quanti-

tative measures are capable to assess quality of bone and predict the fracture risk.

Therefore, it is of high potential to help prevent osteoporosis and guide the treatment

clinically.
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CHAPTER 6
FUTURE WORK

Digital and volumetric imaging algorithms have been proved effective to quan-

titatively measure trabecular bone micro-structure. However, there are rooms for

improvement. Current algorithms, i.e., volumetric topological analysis (VTA) and

tensor scale (TS) depends on the skeleton representation. More accurate skeleton

algorithms could improve the accuracy of these two methods. In terms of clinical

researches, the full potential of these methods needs to be evaluated in other imaging

modalities.

We successfully constructed FEM for in vivo MDCT imaging. However, the

segmentation is still a great impact factor due to the fact that the complex topology

of trabecular bone network highly affects FEM results. The FEM demands more ac-

curate segmentation algorithm that correctly preserve the completeness of trabecular

network under limited spatial resolution. In addition, current linear FE model could

be improved to non-linear with unisotropic materia properties.

Subregion segmentation consists of a few technical components, each of which

can still be optimized. For example, we may introduce automatic feature point ex-

traction algorithms to identify salient surface landmarks in the training phase, which

could reduces large amount of manual work. The automatic shape matching method

could also be improved with more robust identification of feature points on target

shapes. In this work, it is optimized for proximal femur, but in more general cases,

a robust and efficient approach is required. The deformation of volume landmarks is
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possible to be improved by adding a regularization term that constrains the process,

or we can speed up the deformation process.

The future research direction is combining imaging and FEM based methods,

and applies on different anatomic sites determined by the subregional segmentation

method. It is interesting to investigate the properties of trabecular bone network

and understand its behaviors. In the future, with more advanced imaging tools,

quantitative methods may become more accurate and robust to measure the quality

of bone from different aspects.
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