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ABSTRACT

This thesis mainly focuses on proposing a 4D (three spatial dimensions plus

time) tissue-volume preserving non-rigid image registration algorithm for pulmonary

4D computed tomography (4DCT) data sets to provide relevant information for ra-

diation therapy and to estimate pulmonary ventilation. The sum of squared tissue

volume difference (SSTVD) similarity cost takes into account the CT intensity changes

of spatially corresponding voxels, which is caused by variations of the fraction of tissue

within voxels throughout the respiratory cycle. The proposed 4D SSTVD registration

scheme considers the entire dynamic 4D data set simultaneously, using both spatial

and temporal information. We employed a uniform 4D cubic B-spline parametriza-

tion of the transform and a temporally extended linear elasticity regularization of

deformation field to ensure temporal smoothness and thus biological plausibility of

estimated deformation. A multi-resolution multi-grid registration framework was

used with a limited-memory Broyden Fletcher Goldfarb Shanno (LBFGS) optimizer

for rapid convergence rate, robustness against local minima and limited memory con-

sumption. The algorithm was prototyped in Matlab and then fully implemented in

C++ in Elastix package based on the Insight Segmentation and Registration Toolkit

(ITK). We conducted experiments on 2D+t synthetic images to demonstrate the ef-

fectiveness of the proposed method. The 4D SSTVD algorithm was also tested on

clinical pulmonary 4DCT data sets in comparison with existing 3D pairwise SSTVD

algorithm and 4D sum of squared difference (SSD) algorithm. The mean landmark
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error and mean landmark irregularity were calculated based on manually annotated

landmarks on publicly available 4DCT data sets to evaluate the accuracy and tem-

poral smoothness of the registration results. A 4D landmarking software tool was

also designed and implemented in Java as an ImageJ plug-in to help facilitate the

landmark labeling process in 4DCT data sets.
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PUBLIC ABSTRACT

Four dimensional (three spatial dimensions plus time) computed tomography

(4DCT) image of the lung can provide numerous valuable information. For example,

we can study the structures of vascular system, airway system, fissures, and tumors of

the lung using image segmentation techniques. Also, since the 4DCT image contains

a series of 3DCT lung images representing the shapes of the lung at different breath-

ing phases within the respiratory cycle, we can use image registration technique to

estimate how the lung changes its shape from one breathing phase to another within

the breathing cycle. In addition to estimating the transformation of the lung during

breathing, we can obtain information about local ventilation behavior (the amount

of expansion or contraction) by calculating the Jacobian of the estimated transform.

The assessment of local ventilation would in turn provide important guidance for

radiation therapy.

The work of this thesis is focused on image registration of 4DCT lung images.

The aim, of course, is to estimate accurate and biologically meaningful transforms

of the lung among different breathing phases, where “biologically meaningful” means

the estimated transforms should be relatively smooth and no folding of lung tissue

should result from the transforms. We need to take into account the characteristic

of CT image, that is, the image intensity (CT number) is proportional to the density

of the material being imaged. As the lung ventilates, air flows in and out, making

the density of the lung vary periodically. Therefore, CT image intensities of spatially
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corresponding point within the lung will also vary periodically, and the 4DCT lung

image represents one period of the infinite cyclic motion.

In this thesis, we present a new registration method to deal with 4DCT lung

image registration. This method takes into account the intensity variations of spa-

tially corresponding points and considers both spatial and temporal information

within the 4DCT lung image simultaneously. Experiments on synthetic and clini-

cal 4DCT images show that the proposed algorithm strikes a good balance between

registration accuracy and smoothness of transformation over time, both of which were

measured using manually annotated landmarks. A software tool was also developed

to help experts manually label landmarks in 4DCT images.
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CHAPTER 1
INTRODUCTION

In pulmonary radiation therapy, target localization and motion tracking of

parenchyma, as well as tumor regions, are critically important for guiding radia-

tion on pathology, minimizing dose for normal tissue and estimating regional lung

ventilation[13]. Time-resolved dynamic imaging data sets have become increasingly

available with the advancement of medical imaging techniques[9], making it feasible

to track and model pulmonary motion. Pulmonary 4DCT allows for reconstruction

of multiple 3D volumes corresponding to different breathing phases throughout the

respiratory cycle. Non-rigid image registration is used to estimate and track corre-

spondences between these phase images.

The CT number of lung parenchyma varies across the breathing phases due

to changes in fraction of tissue within voxels, which is caused by air flowing in and

out of the lung throughout the respiratory cycle. Non-rigid registration of 4DCT

pulmonary images is a difficult problem due to the fact that spatially corresponding

points belonging to different breathing phases have dissimilar image intensities be-

cause of lung ventilation. To compensate for these intensity variations, and to enforce

the principle of tissue conservation, Yin et al.[20] and Gorbunova et al.[6] indepen-

dently proposed an intensity-based registration similarity cost function that accounts

for these intensity changes across breathing phases. We will refer to this previously

established cost function as the sum of squared tissue volume differences (SSTVD).

The SSTVD cost function achieves desirable registration results for pulmonary CT
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image alignment compared to the conventional sum of squared (intensity) difference

(SSD) cost function [20],[6] which does not account for intensity changes. In this

paper, we extended the SSTVD registration framework from 3D to 4D.

4D registration techniques have become more common in recent years[11][19].

Unlike traditional registration schemes which perform a sequence of 3D pair-wise

registrations, either with respect to a common reference or between consecutive time

point images, 4D registration frameworks consider the information contained within

the entire time-resolved imaging data set simultaneously without bias toward any

chosen reference image. One advantage of 4D image registration is that it avoids

accumulation of numerical and discretization errors associated with 3D sequential

registration. Additionally, 4D registration frameworks provide smooth and consistent

displacement fields along spatial and temporal dimensions[16]. Thus, 4D registration

would provide more biologically reasonable tissue motion tracking than 3D pair-wise

registration. This could be used to improve radiation therapy plans and dose delivery

during breathing [10].

The advantage of one registration algorithm over another can only be quanti-

tatively shown through certain evaluation measures. One of the most effective means

for assessing the performance of registration algorithms is anatomical landmarks. The

average distance between locations of true landmarks on a certain breathing phase

image and those of deformed landmarks on the same phase resulting from estimated

transforms among the phases serves as a good measurement for registration accu-

racy. Meanwhile, the average magnitude of acceleration the deformed landmarks
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retain as they traverse through the 4D data set along their estimated trajectories is

a meaningful measurement of the temporal smoothness of the transform estimated

from registration.

The importance of anatomical landmarks for registration evaluation is ac-

knowledged but the difficulty of their acquisition remains. In the case of pulmonary

4DCT data sets, branch points of vessels are among the most common types of land-

marks to be labeled. However, because of lung motion within the respiratory cycle,

locations for corresponding landmarks will be constantly changing throughout the 4D

data set. Also, the fact that the observer needs to go through the CT image voxel by

voxel during the landmarking task makes him/her frequently miss the forest for the

trees, and “get lost” in the image volume.

In this thesis, we propose a 4D tissue preserving registration algorithm (4D

SSTVD) which incorporates the merits of SSTVD registration similarity cost with

a 4D transformation model. The resulting registration framework is more suitable

for 4DCT pulmonary image registration than either pairwise 3D SSTVD or 4D SSD

[11] registration. Then, we demonstrate the concepts, design and usage of a 4D

landmarking software, which is able to aid the user to label landmarks accurately

and efficiently on 4DCT data sets. And the 4D landmarks can in turn serve as

evaluation measures for registration results.
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CHAPTER 2
FOUR DIMENSIONAL TISSUE PRESERVATION NON-RIGID

IMAGE REGISTRATION FRAMEWORK

In essence, image registration is a large scale numerical optimization problem

with specialized objective functions. The scale is large in the sense that the domain

of the problem could be of enormously high dimension, and every evaluation of the

objective function as well as its derivative could require the involvement of large

number of samples, costing considerable amount of computation time.

The imperative task of image registration is to estimate a geometric transform

T, parametric or non-parametric, that deforms a “moving image” Im to match with

a “fixed image” If . How well the transform achieves this goal is in turn measured by

an objective or cost function in the form of Equ. 2.1:

Cost(T) = Dissimilarity(T) + λ ·Regularization(T) (2.1)

where the dissimilarity term measures how much the images to be registered are out of

alignment, while the regularization term measures the smoothness and/or magnitude

of the estimated transform, preventing over-fitting and maintaining certain topolog-

ical properties of the images during the optimization process. We would expect a

successful registration process to yield a transform T that minimizes the dissimilarity

between the moving and the fixed images and retain acceptable regularity at the same

time. If we employ parameterization for the transform, then the parameter space is

the domain (or search space) of this optimization problem.

In general, the image registration framework can be modularized and demon-
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Figure 2.1: Modularized image registration framework.

strated as in Fig. 2.1. The sampler for fixed image is often used when we are dealing

with images containing huge number of voxels, e.g., 4DCT data sets, where evaluat-

ing the cost function value and derivative based on all image voxels at every iteration

could be computationally prohibitive. The 4D tissue volume preserving image regis-

tration algorithm proposed in this thesis mainly focuses on the metric module.

2.1 Methods

Our proposed 4D SSTVD image registration method minimizes a 4D SSTVD

registration cost function that consists of an SSTVD similarity cost and a temporally

extended linear elastic regularization cost. In this paper, we denote the generic spatio-

temporal coordinate in the target image domain as x = (x1, x2, x3, x4)T ≡ (x, y, z, t)T ,

where x1, x2, x3, x4 will be used interchangeably with x, y, z, t for notational conve-
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nience. And the generic spatio-temporal coordinate in the moving image domain is

y = (y1, y2, y3, y4)T . The concept of time is identified with that of breathing phases

for the 4DCT image, indicating that the 3D image at time point t is the same as

the phase t 3D image. Also, the term fixed image will be used interchangeably

with target image in the registration framework.

2.1.1 Review of SSTVD Similarity Cost Function

The underlying assumption behind SSTVD similarity cost is that the total

tissue volume will remain roughly the same throughout the respiratory cycle while

the total lung volume will change as air flows in and out of the lung. Let IHUf : Ωf →

R,x 7→ IHUf (x) denote the fixed image in Hounsfield units and IHUm : Ωm → R,y 7→

IHUm (y) the moving image in Hounsfield units. Following the rationale presented in the

work of Yin et al.[20], an intensity linear transformation is performed on these images

and consequently the intensity value at each voxel is converted from radiodensity in

Hounsfield units to actual tissue volume in mm3. Specifically, we have:

If (x) = vf · rf (x) = v0 · rf (x)

Im(y) = vm · rm(y) = v0 · rm(y) (2.2)

where HUtissue = 55 and HUair = −1000 are the radiodensity values of tissue and air

in Hounsfield units. rf (x) and rm(y) with

rf (x) =
IHUf (x)−HUair
HUtissue −HUair

=
IHUf (x) + 1000

1055

rm(y) =
IHUm (y)−HUair
HUtissue −HUair

=
IHUm (x) + 1000

1055
(2.3)
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represent the fraction of tissue within a standard image voxel centered at x and y for

the fixed and moving image, respectively. vf and vm are the volumes of a standard

voxel in the fixed and moving image, respectively. For images in the same 4DCT

data set, we usually have vf = vm = v0, i.e., standard voxels have constant volume

in both the fixed and moving image, which can be calculated from physical spacing

of the data set. The resulting images If : Ωf → R and Im : Ωm → R are named

tissue-volume images and it is these two images that we are trying to register in the

SSTVD registration framework.

Let T : Ωf → Ωm,x 7→ T(x) be the geometric transform deforming Im to

match If . The SSTVD similarity cost is thus given by:

C(T) =
1

|Ωf |
∑
x∈Ωf

(
v0 · rf (x)− (|JT|(x) · v0) · rm(T(x))

)2

=
1

|Ωf |
∑
x∈Ωf

(
If (x)− |JT|(x) · Im(T(x))

)2

(2.4)

where v0·rf (x) is the volume of tissue within a standard voxel centered at x in the fixed

tissue-volume image If , while |JT|(x) · v0 · rm(T(x)) is the volume of tissue within a

standard voxel centered at x in the deformed moving tissue-volume image. The spatial

Jacobian of transform |JT|(x) is introduced because the mathematical interpretation

of transform Jacobian |JT|(x) is the contraction or expansion of an infinitesimal local

neighborhood of x induced by T. Let R denote the region occupied by the standard

voxel centered at x in the fixed image domain, whose volume is v0. Then T(R) 3 T(x)

would be the transformed region occupied by the “deformed voxel” in the moving

image domain, whose volume can be approximated by |JT|(x) · v0, as illustrated in
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Figure 2.2: Illustration of SSTVD cost and the “deformed voxel”.

Figure 2.2. In the SSTVD registration scheme, the term |JT|(x) ·Im(T(x)) as a whole

serves as the deformed moving image, instead of Im(T(x)) alone.

Compared to conventional SSD similarity cost function, which is given as below

(by abuse of notation for If and Im):

CSSD(T) =
1

|Ωf |
∑
x∈Ωf

(
If (x)− Im(T(x))

)2

(2.5)

the additional Jacobian modification |JT|(x) will help compensate for the intensity

changes of spatially corresponding voxels in a 4DCT image data set, which is caused

by periodic variations in the fraction of tissue within voxels during ventilation.
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2.1.2 General Concept of 4D Registration Framework

Before we talk about specific aspects of the 4D SSTVD registration framework,

we shall briefly introduce the general concepts of the 4D registration framework. The

one key difference between 4D and 3D image registration is that 4D registration uses

the information contained within the entire 4D data set. Specifically, the 4D image

itself will be treated as the moving image while the target image is not explicitly

given. In our proposed algorithm, the temporal average of the 4D deformed moving

tissue-volume image will be used as the target image. In essence, the algorithm is

trying to minimize the temporal variance of the 4D deformed moving tissue-volume

image. Conceptually, we can think of the target image also as a 4D image which

the temporal duplication of the 3D temporal average image. And the estimated

4D transform will deform the 4D moving image to match the conceptual 4D target

image. Based on this setup, at the beginning of the algorithm when the 4D transform

is just identity, the target image is the temporal mean of the original 4D image.

As the algorithm progresses, the target image is actually not stationary. It will

be iteratively updated and gradually stabilize toward a previously unknown average

shape as the estimated 4D transform converges toward an optimum. The estimated

4D transform, deforming the original 4D image into the average shape will be called

the “forward transform”. While the forward transform is acquired, we would expect

to have achieved a relatively stable target image, representing the temporal mean of

deformed moving tissue-volume image.

In practice, it is usually the 3D spatial transforms between pairs of specific
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breathing phase images that we are interested in. Therefore, we will also need to

estimate a 4D “inverse transform” deforming the previously obtained target image

into the original 4D moving image. After we estimated both the forward transform

and its corresponding inverse transform, we can easily obtain 3D spatial transforms

between any two phase images by composing the above two 4D transforms.

The whole process can be illustrated in Fig 2.3-2.7, in which T and S represent

the forward and inverse 4D transforms. x and y represent generic 4D coordinate

vectors in the target and moving image domain. xs and ys denote the corresponding

3D spatial coordinate vectors in the target and moving image domain. Here, we are

just pictorially demonstrating the general concepts about 4D registration. All these

terms will be more rigorously defined in next few subsections.

2.1.3 4D SSTVD Similarity Cost Function

Inspired by the work of Yin et al.[20], Gorbunova et al.[6] and Metz et al.[11],

the proposed 4D SSTVD similarity cost function takes advantage of the fact that

the tissue volume can be roughly considered as constant [20] throughout the respira-

tory cycle and it uses the spatial and temporal information within the 4D data set

simultaneously.

Before proceeding to the actual formulation of 4D SSTVD cost, we shall define

some notations. Define the 4DCT image domain as Ω = Ωs × Ωt, where Ωs =

Ωx × Ωy × Ωz is the spatial domain and Ωt = {0, 1, ..., |Ωt| − 1} is the temporal

domain. Also, let xs = (x, y, z)T ∈ Ωs be the vector of spatial coordinates, t ∈ Ωt
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Figure 2.3: 4D image registration concepts: 1. At the beginning of the 4D

registration, the initial transform is identity and the target image is just the

temporal average of all phases in the 4D moving image. So the target is blurry.
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Figure 2.4: 4D image registration concepts: 2. During the 4D registration process,

the temporal variance of the 4D deformed moving image is being minimized. So the

target image, being the temporal mean of the 4D deformed moving image, is getting

sharper.
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Figure 2.5: 4D image registration concepts: 3. After the 4D registration stops, the

temporal variance of the 4D deformed moving image has been reduced to small

value, and the target image has become sharp and clear. The 4D forward transform

deforming the 4D moving image to the target has been estimated.
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Figure 2.6: 4D image registration concepts: 4. Based on the 4D forward transform,

the 4D inverse transform is estimated by minimizing the displacement of any point

in the target image domain after that point gets mapped consecutively by the

forward and the inverse transforms to come back to the target image domain.
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Figure 2.7: 4D image registration concepts: 5. Once both the forward and the

inverse 4D transforms have been estimated, we can compose them to acquire the 3D

spatial transforms between any two 3D phase images.
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the time/phase coordinate, and thus x = (xTs , t)
T ∈ Ω represents the generic spatio-

temporal coordinates of a point in the 4DCT image domain. Denote T : Ωs × Ωt →

Ωs × Ωt as the transformation from fixed/target image domain to moving image

domain with the constraint that T(xs, t) = (φ(xs)
T , t)T where φ : Ωs → Ωs, i.e.,

no temporal displacement should occur. This is to ensure that any voxel within a

certain phase image will remain in that phase without being temporally deformed

and moving forward or backward in time. Finally, let |JT|(x) be the local Jacobian

of transformation T evaluated at x.

The original 4DCT image IHU : Ω→ R underwent the following linear trans-

formation of intensity and was converted into 4D tissue-volume image I : Ω → R

(the resulting tissue-volume image was windowed to get rid of intensity values falling

outside of the range [0, 1]).

I(x) = v0 ·
IHU(x)−HUair
HUtissue −HUair

= v0 ·
IHU(x) + 1000

1055
(2.6)

The proposed 4D SSTVD intensity cost function uses the 4D tissue-volume image

as the moving image and temporal average of deformed moving tissue-volume image

as the target image. Under this construction, the target image is given implicitly

and will be iteratively updated with the optimization process until it converges to a

relatively stable state. Note that at the beginning of the algorithm, the transformation

is identity and the transform Jacobian is 1 everywhere, so the initial target image is

just the temporal average of the entire 4D tissue-volume image.

Cint(T) =
1

|Ωs|
1

|Ωt|
∑
xs∈Ωs

∑
t∈Ωt

(
K̄(xs)−K(x)

)2

(2.7)
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where

K(x) = |JT|(x) · I(T(x)) (2.8)

is deformed moving tissue-volume image

K̄(xs) =
1

|Ωt|
∑
τ∈Ωt

K(xs, τ)

=
1

|Ωt|
∑
τ∈Ωt

(
|JT|(xs, τ) · I(T(xs, τ))

)
(2.9)

is temporal average of deformed moving tissue-volume image and serves as target

image in the registration framework.

2.1.4 4D Transformation Model

The 4D transformation T is parameterized using a tensor product of four 1D

cubic B-spline[14] kernels and is given by Equation 2.10. The notation T(x, a) is used

to emphasize the dependence of transformation T on spatio-temporal coordinates x,

as well as the parameters a used to parameterize the transformation. Similarly,

by abuse of notation, the Jacobian of transform, the deformed moving tissue-volume

image, and the temporal average of deformed moving tissue-volume image (the target

image) will be denoted as JT(x, a), K(x, a) and K̄(xs, a).
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T(x, a) = x + u(x, a)

= x +
Nx−2∑
i=−1

Ny−2∑
j=−1

Nz−2∑
k=−1

Nt−2∑
l=−1

ai,j,k,lB(
x

δx
− i)B(

y

δy
− j)B(

z

δz
− k)B(

t

δt
− l)

=


x
y
z
t

+

b
x

δx
c+2∑

i=b
x

δx
c−1

b
y

δy
c+2∑

j=b
y

δy
c−1

b
z

δz
c+2∑

k=b
z

δz
c−1

b
t

δt
c+2∑

l=b
t

δt
c−1


ai,j,k,l,1
ai,j,k,l,2
ai,j,k,l,3

0

 ·

B(
x

δx
− i)B(

y

δy
− j)B(

z

δz
− k)B(

t

δt
− l) (2.10)

In Equ. 2.10, u(x, a) is the displacement vector dependent on spatio-temporal

coordinates x and B-spline coefficients a. ai,j,k,l ∈ R3×{0} is the B-spline coefficient

vector at B-spline grid point (i, j, k, l) ∈ Z4. Note that setting the last coordinate

of all four dimensional B-spline coefficient vectors ai,j,k,l to 0 effectively prevents any

temporal transformation. The variables Nα and δα for α ∈ {x, y, z, t} represent the

number of grid points and grid spacing in the x, y, z, and t directions, respectively.

The expressions of cubic B-spline kernel as well as its first and second order derivatives

are given in Table 2.1. Their plots are shown in Figure 2.8. Even though we forbade

the existence of any temporal displacement, we used the 4D B-spline kernel to ensure

temporal smoothness of all spatial displacement components.

2.1.5 Temporally Extended Linear Elasticity Regularization

A temporally extended linear elastic model was used to regularize the 4D

SSTVD image registration algorithm. The conventional spatial linear elasticity regu-

larization is valid for small elastic deformations between a pair of phase images within
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Figure 2.8: Plots of cubic B-spline kernel and its 1st and 2nd order derivatives.
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B(x) B′(x) B′′(x)
−2 ≤ x ≤ −1 (x+ 2)3/6 (x+ 2)2/2 x+ 2
−1 ≤ x ≤ 0 (−3x3 − 6x2 + 4)/6 (−3x2 − 4x)/2 −3x− 2
0 ≤ x ≤ 1 (3x3 − 6x2 + 4)/6 (3x2 − 4x)/2 3x− 2
1 ≤ x ≤ 2 −(x− 2)3/6 −(x− 2)2/2 −x+ 2
|x| > 2 0 0 0

Table 2.1: Expressions of cubic B-spline kernel

and its 1st and 2nd order derivatives.

the breathing cycle[4]. Based on the spatial linear elastic model, we imposed an addi-

tional temporal smoothness regularization for spatial displacement components and

formulated the temporally extended linear elasticity regularization cost as follows:

Creg(a) =
1

|Ω|
∑
x∈Ω

||(Lu)(x, a)||2 (2.11)

where the linear elasticity differential operator L is given by (omitting arguments x

and a)

Lu = c1(∇ · ∇)u + c2∇(∇ · u) + c3u

= (L1, L2, L3, L4)T (2.12)

where

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t
)T
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is the gradient operator. And the regularization components Li’s are given by

L1 = c1(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

+
∂2ux
∂t2

)

+ c2(
∂2ux
∂x2

+
∂2uy
∂x∂y

+
∂2uz
∂x∂z

) + c3ux (2.13)

L2 = c1(
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

+
∂2uy
∂t2

)

+ c2(
∂2ux
∂y∂x

+
∂2uy
∂y2

+
∂2uz
∂y∂z

) + c3uy (2.14)

L3 = c1(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

+
∂2uz
∂t2

)

+ c2(
∂2ux
∂z∂x

+
∂2uy
∂z∂y

+
∂2uz
∂z2

) + c3uz (2.15)

L4 = c2(
∂2ux
∂t∂x

+
∂2uy
∂t∂y

+
∂2uz
∂t∂z

) (2.16)

The last regularization component L4 only contains mixed second order partial

derivative terms because temporal displacement ut has been constrained to 0. The

constants c1, c2 and c3 are the weights that adjust the elasticity of the model. In our

experiments, we chose c1 = 0.75, c2 = 0.25 and c3 = 0. Substituting Equations. 2.13-

2.15 into Eq. 2.11 gives

Creg(a) =
1

|Ω|
∑
x∈Ω

||(Lu)(x, a)||2 =
1

|Ω|
∑
x∈Ω

4∑
i=1

L2
i (x, a) (2.17)

2.1.6 Optimization Strategy

The 4D SSTVD registration algorithm is implemented by finding the trans-

formation parameters that minimize a linear combination of the intensity similarity

cost and the linear elasticity penalty term

Ctotal(a) = λCint(a) + Creg(a) (2.18)
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where λ is a weight to be tuned. For the experiments in this paper, we chose λ = 80.

Minimizing the cost function necessitates acquiring its derivatives with respect

to the transform parameters. Let bα , ap,q,r,s,α, α ∈ {x, y, z}, be the α component of

the B-spline coefficient vector ap,q,r,s at grid location [p, q, r, s] ∈ Z4. Using the chain

rule, product rule, and formulas from matrix calculus, the derivative of 4D SSTVD

intensity cost is given by

∂Cint(a)

∂bα
=

∂

∂bα

1

|Ωs|
1

|Ωt|
∑
xs∈Ωs

∑
t∈Ωt

(
K̄(xs, a)−K(x, a)

)2

=
2

|Ωs|
∑
xs∈Ωs

1

|Ωt|
∑
t∈Ωt

[(
K̄(xs, a)−K(x, a)

)
·
(

∂

∂bα
K̄(xs, a)− ∂

∂bα
K(x, a)

)]

=
2

|Ωs|
∑
xs∈Ωs

1

|Ωt|

[∑
t∈Ωt

(
K̄(xs, a) · ∂

∂bα
K̄(xs, a)

)
−
∑
t∈Ωt

(
K̄(xs, a) · ∂

∂bα
K(x, a)

)

−
∑
t∈Ωt

(
K(x, a) · ∂

∂bα
K̄(xs, a)

)
+
∑
t∈Ωt

(
K(x, a) · ∂

∂bα
K(x, a)

)]

=
2

|Ωs|
∑
xs∈Ωs

1

|Ωt|

[
∂

∂bα
K̄(xs, a) ·

∑
t∈Ωt

(
K̄(xs, a)−K(x, a)

)

−
∑
t∈Ωt

(
K̄(xs, a)−K(x, a)

)
· ∂

∂bα
K(x, a)

]

= − 2

|Ωs|
∑
xs∈Ωs

1

|Ωt|
∑
t∈Ωt

[(
K̄(xs, a)−K(x, a)

)
· ∂

∂bα
K(x, a)

]
(2.19)

where (omitting parameters x and a),

∂

∂bα
K(x, a) =

∂|JT |
∂bα

· I(T) + |JT | ·
∂I(T)

∂bα

=<
∂|JT |
∂JT

,
∂JT
∂bα

> ·I(T) + |JT | · ∇I(T)T
∂T

∂bα

=< cofJT ,
∂JT
∂bα

> ·I(T) + |JT | · ∇I(T)T
∂T

∂bα

= |JT |
(
< J−TT ,

∂JT
∂bα

> ·I(T) +∇I(T)T
∂T

∂bα

)
(2.20)
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And derivative of the linear elasticity term is (omitting parameters x and a):

∂Creg(a)

∂bα
=

∂

∂bα

∑
x∈Ω

||Lu||2 = 2
∑
x∈Ω

4∑
i=1

(
Li ·

∂Li
∂bα

)
(2.21)

Image registration is often an ill-posed problem with many locally optimal

solutions. Without the presence of an explicit target image, 4D registration is even

worse in this regard. For example, since the temporal average of the deformed moving

tissue-volume images is used as the registration target, two transformations differing

by any rigid motions will result in the same value of intensity based cost. Therefore,

similar to the work of Balci et al.[1], we impose a further constraint that the temporal

average of the displacement field at any spatial location should be zero. Specifically,

after every iteration, the derivative with respect to every B-spline coefficient will be

modified as below, so that the derivatives at any spatial grid point will sum up to zero

across time, resulting in zero average spatial displacement at any spatial location.

∂C

∂ap,q,r,s,α
← ∂C

∂ap,q,r,s,α
− 1

|Ωt|
∑
τ∈Ωt

∂C

∂ap,q,r,τ,α
, ∀ [p, q, r, s] ∈ Z4 (2.22)

An LBFGS optimizer was used in the registration framework because of its

rapid quadratic convergence rate and limited memory consumption.

2.1.7 Inverse Transform

In order to get pair-wise spatial transforms between any two phase images, it

is necessary to estimate the inverse transform S : Ω→ Ω that deforms the temporal

average of deformed moving tissue-volume image (the target image) to match the

original 4D tissue-volume image (the moving image). Because the B-spline param-

eterization does not have a closed form inverse expression, we estimate the inverse
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transform separately using a finer B-spline grid[11]. We minimize the following dis-

tance cost[3] to find the inverse transformation

Cinv(a
′) =

∑
x∈Ω

||S(T(x), a′)− x||2 (2.23)

where a′ is the set of B-spline coefficients parameterizing the inverse 4D transform S.

After the optimal forward and inverse transforms T̂ and Ŝ have been estimated, we

can compose them to acquire spatial transforms between any pair of two time point

images µ, ν ∈ Ωt.

Tµ→ν(ys) = (T̂µ ◦ Ŝν)(ys) (2.24)

where ys = (y1, y2, y3)T is a spatial point in time point image ν. T̂µ is the spatial

transform acquired by evaluating the optimal 4D forward transform at time point

µ and Ŝν is the spatial transform acquired by evaluating the optimal 4D inverse

transform at time point ν.

2.1.8 Implementation

The proposed 4D SSTVD algorithm was first prototyped in Matlab and tested

on simple synthetic images. After it demonstrated its effectiveness, the algorithm was

implemented using Elastix package[8] based on Insight Segmentation and Registra-

tion Toolkit (ITK) libraries. This algorithm was implemented with multi-threading

support. The experiments using clinical 4DCT data sets were run on a machine with

Intel i7 5930k CPU (6 cores, 12 threads @ 3.5GHz) and 64GB of DDR4 memory.

For each 4DCT data set, we used a multi-grid multi-resolution scheme consisting of 8
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resolutions from coarse to fine to estimate both the forward and inverse transforms.

The whole process took approximately 2 to 3 hours for each 4DCT data set.

2.1.9 Evaluation Methods

Evaluation of 4D registration frameworks needs to consider both accuracy

and temporal smoothness [11][1][19]. 4D registration may not necessarily yield the

best accuracy of registration results, but it generates deformation fields that are a lot

more temporally smooth and consistent. With comparable or slightly worse accuracy,

a temporally smoother outcome is preferred because the resulting estimated motion

is biologically more reasonable.

For registration accuracy evaluation, we used the Mean Landmark Error (MLE)

[15]. MLE measures the average distance between expert-labeled landmark positions

on all phase images (except for the one chosen as reference) and landmark positions

obtained by transforming the landmarks from a chosen reference phase onto all other

phases. Let pr,i be the ith landmark on the chosen reference time point r and Tr→t

be the spatial transform from time point r to t. Then Tr→t(pr,i; a) is the transformed

location in time point t of the landmark pr,i, while pt,i is the real location of the

corresponding landmark in time point t. The Mean Landmark Error is formulated as

in Equation 2.25.

MLE(a) =
1

N(|Ωt| − 1)

∑
Ωt3t6=r

∑
i∈N

||Tr→t(pr,i; a)− pt,i|| (2.25)

where N is the number of landmarks on every time point image.

For temporal smoothness evaluation, we used the Mean Irregularity of esti-
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mated landmark trajectories:

MIR(a) =
1

N |Ωt|
∑
t∈Ωt

∑
i∈N

||∂
2Tr→t(pr,i; a)

∂t2
|| (2.26)

where the second order partial derivatives are computed using centered finite differ-

ence assuming Neumann boundary conditions. Denote qt,i = Tr→t(pr,i; a) and we

have:

||∂
2Tr→t(pr,i; a)

∂t2
|| =

√√√√ ∑
α∈{x,y,z}

(
∂2qt,i,α
∂t2

)2

=

√√√√∑
α

(
qt+1,i,α − 2qt,i,α + qt−1,i,α

(∆t)2

)2

+O((∆t)2) (2.27)

This measure can be interpreted as the average magnitude of acceleration of land-

marks while they traverse their estimated trajectories across time. A smaller MIR

value would generally indicate smoother predicted landmark paths and is thus more

biologically plausible because the lung would tend to move in a smooth fashion during

ventilation.

Finally, to visually and qualitatively examine the result of registration, tempo-

ral mean and variance of the final deformed moving tissue-volume image before and

after registration were generated. We expect accurate registration would sharpen the

mean image and reduce the value of the variance image especially in regions where

the mean image was originally blurry [1] [19]. 4D Jacobian image was also computed

from the estimated 4D transform that deformed each phase within the original 4D

tissue-volume image to match the extreme exhale phase. Temporal mean and variance

of the 4D Jacobian image were overlaid on top of the extreme exhale phase image to

qualitatively illustrate lung ventilation behavior.
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2.2 Experiments and Results

To assess the performance of the proposed 4D tissue preservation registra-

tion framework, we performed experiments on 2D+t synthetic image and 4DCT pul-

monary data sets, and compared the results of this algorithm with those of existing

pairwise 3D SSTVD[20][6] and 4D SSD[11] methods. There exists a trade-off between

registration accuracy and temporal smoothness, so we evaluated both of these fac-

tors to demonstrate that the proposed 4D SSTVD method achieves a good balance

between them.

2.2.1 Synthetic Image Experiments with Matlab Implementation

The proposed 4D SSTVD registration framework was first implemented from

scratch in Matlab, because of Matlab’s fast prototyping capability and ease of de-

bugging. The implemented registration framework is very basic, consisting of 2D+t

SSTVD cost function, simple gradient descent optimizer with Armijo line search, lin-

ear interpolation moving image resampler, full grid target image sampler, and 2D+t

transform parametrized by B-spline. Experiments were conducted on two slightly

different 2D+t synthetic images using this basic Matlab implementation of the 2D+t

SSTVD algorithm.

2.2.1.1 Experiment 1: Single Disk Time Series

The first image is of dimension 48x48x4, composed of a time series of 4 con-

centric circles with varying radii and intensities. The 4 circles can be though of as

illustrating one period of an infinite cycle of motion, which is intended to abstractly
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mimic the 4DCT image of lung within the respiratory cycle. The image is assumed to

have already been converted into tissue-volume image and the total amount of tissue

is preserved. Specifically, the intensity range is [0, 1], representing the fraction of tis-

sue within each pxiel. And for any disk i ∈ {1, 2, 3, 4} within the times series, the area

Ai is inversely proportional to the intensity Ii, making Ai · Ii ≡ Const. As described

in the Methods section, this 2D+t image itself will be treated as the moving image,

and the temporal average of 2D+t deformed moving tissue-volume image at each it-

eration will serve as the target image for that iteration. The algorithm is allowed to

run for 210 iterations before it is terminated. The result is visually demonstrated in

Fig 2.9. We can see that the initial target image in Sub-figure 2.9a is blurry, being

the temporal mean of the original 2D+t image. But the target image in Fig 2.9e,

which is used in the final iteration of registration has become a lot sharper, indicating

all 2D deformed moving tissue-volume images within the 2D+t time series have been

converging toward a common shape (and intensity).

The displacement field in the target image domain, resulting from the final

estimated 2D+t forward transform is shown in Fig 2.10. The deformed grid and the

Jacobian of the final estimated transform are illustrated in Sub-figure 2.10d and Sub-

figure 2.10c, respectively. For such simple synthetic images, we would expect the 2D+t

SSTVD cost value and the SSTVD gradient magnitude to decrease monotonically.

This is indeed what we observed when plot the cost function value and gradient

magnitude with respect to iterations, as shown in Fig 2.11.

Following the outline of 4D registration framework presented in section 2.1.2,
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(a) Moving image I(y)

(b) Initial target image K̄0(xs) = 1/|Ωt|
∑

t∈Ωt
I(T0(xs, t,a)) = Ī(xs)

(c) Final deformed moving image (without Jacobian modification) I(T(x,a))

(d) Final deformed moving tissue-volume image K(x,a) = |JT|(x,a) · I(T(x,a))

(e) Final target image K̄(xs,a)

Figure 2.9: Concentric one disk experiment result using Matlab implementation.
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(a) Moving image I(y)

(b) Final target image K̄(xs,a), overlaid with displacement field of final transform T

(c) Final Jacobian image |JT|(x,a), overlaid with displacement field

(d) Deformed grid using final forward transform T, overlaid with displacement field

Figure 2.10: 2D+t forward transform qualitative analysis in single disk Matlab

experiment.
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(a) 2D+t SSTVD cost versus

iteration

(b) 2D+t SSTVD gradient

magnitude versus iteration

Figure 2.11: Optimization behavior of 2D+t forward transform estimation in single

disk Matlab experiment.

we proceed to estimate the 2D+t inverse transform based on the results of the fi-

nal estimated 2D+t forward transform. In Fig 2.12, the displacement field and the

Jacobian in the target image domain (which is the moving image domain for estimat-

ing the forward transform), calculated from the final estimated inverse transform are

shown.

After obtaining both the 2D+t forward and inverse transforms, we could con-

catenate them to easily acquire 2D spatial transforms between any two time points

within the time series. Sub-figure 2.13b illustrates the case where the first time point

2D disk I(ys, 0) is the moving image and the third time point 2D disk I(ys, 2) is the

fixed image. Sub-figure 2.13c shows the case where the two 2D images I(ys, 0) and

I(yx, 2) switch their roles in the registration framework.
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(a) Previous final target image K̄(xs,a), used as moving image to estimate inverse

transform

(b) Previous moving image I(y), used as target image to estimate inverse transform

(c) Final Jacobian image |JS|(y,a′) for inverse transform, overlaid with displacement field

Figure 2.12: 2D+t inverse transform qualitative analysis in single disk Matlab

experiment.
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(a) 2D+t image I(y) = I(ys, t), t ∈ {0, 1, 2, 3}

(b) 2D spatial transform: I(ys, 0) moving image, I(ys, 2) fixed image

(c) 2D spatial transform: I(ys, 2) moving image, I(ys, 0) fixed image

Figure 2.13: 2D spatial transforms acquired by composing forward and inverse

2D+t transforms in single disk Matlab experiment.
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2.2.1.2 Experiment 2: Twin Disks Time Series

The second synthetic 2D+t image on which experiments were conducted using

the Matlab implementation is a time series of twin circles of dimension 61x61x4.

This synthetic image also complies with the conservation of total amount of tissue

across time. The purpose of using twin circles in this 2D+t synthetic image is to

test the effectiveness of the proposed registration method when both contraction and

expansion are present in the foreground of each 2D time point image during the

registration process, as compared to the previous experiment where expansion and

contraction do not occur simultaneously in the foreground of any 2D time point image.

The registration result is visually illustrated in Fig 2.14.

The optimization behavior of the 2D+t forward transform estimation, and the

qualitative analysis of the final estimated forward and inverse transforms, including

the resulting 2D+t displacement fields and Jacobian images are shown in Fig 2.15,

2.16 and 2.17.

Finally, we could compose the estimated 2D+t forward and inverse transforms

to acquire spatial transforms between any pair of 2D time point images. In Sub-figure

2.18b, the first time point 2D image I(ys, 0) within the time series is the moving image,

while the third time point 2D image I(ys, 2) serves as the fixed image. In Sub-figure

2.18c, the first and third 2D images switch their roles in registration framework.

In the above two experiments on 2D+t synthetic images using Matlab imple-

mentation, the effectiveness of the proposed 4D SSTVD algorithm has been qual-

itatively demonstrated. These experiments gave me confidence and motivation to
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(a) Moving image: I(y)

(b) Initial target image K̄0(xs) = Ī(xs)

(c) Final deformed moving image (without Jacobian modification) I(T (x,a))

(d) Final deformed moving tissue-volume image K(x,a) = |JT|(x,a) · I(T (x,a))

(e) Final target image K̄(xs,a)

Figure 2.14: Concentric twin circles experiment result using Matlab implementation.
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(a) 2D+t SSTVD cost versus

iteration

(b) 2D+t SSTVD gradient

magnitude versus iteration

Figure 2.15: Optimization behavior of 2D+t forward transform estimation in twin

circles Matlab experiment.

implement the algorithm in C++ using Elastix package based on ITK library, so that

it can be used for clinical 4DCT pulmonary image registration.

2.2.2 Synthetic Image Experiments with C++ Implementation

The algorithm was then implemented in C++ using the Elastix package based

on ITK. The proposed 4D SSTVD algorithm was tested on a 129x129x129-pixel 2D+t

synthetic image as shown in Figure 2.19. The image consists of a time series of disk-

shaped regions, whose centers’ X coordinates remained the same across time while Y

coordinates traced a periodic sinusoid trajectory in time. Conceptually, we can think

of the 2D images within the time series as having already been converted into tissue-

volume images and their intensity values are within range [0, 1], representing fraction
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(a) Moving image I(y)

(b) Final target image K̄(xs,a), overlaid with displacement field of final transform T

(c) Final Jacobian image |JT|(x,a), overlaid with displacement field

(d) Deformed grid using final forward transform T, overlaid with displacement field

Figure 2.16: 2D+t forward transform qualitative analysis in twin circles Matlab

experiment.
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(a) Previous final target image K̄(xs,a), used as moving image to estimate inverse

transform

(b) Previous moving image I(y), used as target image to estimate inverse transform

(c) Final Jacobian image |JS|(y,a′) for inverse transform, overlaid with displacement field

Figure 2.17: 2D+t inverse transform qualitative analysis in twin circles Matlab

experiment.
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(a) 2D+t image I(y) = I(ys, t), t ∈ {0, 1, 2, 3}

(b) 2D spatial transform: I(ys, 0) moving image, I(ys, 2) fixed image

(c) 2D spatial transform: I(ys, 2) moving image, I(ys, 0) fixed image

Figure 2.18: 2D spatial transforms acquired by composing forward and inverse

2D+t transforms in twin circles Matlab experiment.
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of tissue within voxels. The radii and intensities of the disks vary with respect to

time but the total “amount of tissue” remained constant. This means the intensity

is inversely proportional to the area of the disk at any time. For example, if the

smallest disk at t = 0 has intensity I1 and area A1, then a disk later in the time series

with area An will have intensity In = A1/An · I1. The synthetic image was blurred by

a Gaussian filter with standard deviation of 1 and Guassian noise was applied with

0 mean and 0.005 variance. Each sub-figure in Figure 2.19 consists of four views.

The upper-left view is the disk at the middle time point. The lower-left and lower-

right views are cross sections of the time series of disks parallel to x-t and y-t plane,

respectively. The upper-right view is a 3D (2D+t) rendering of the synthetic image.

The orientation of the four views of the synthetic image is as shown in Figure 2.19b.

This 2D+t synthetic image is intended to simulate a real 4DCT data set in

the sense that the fraction of tissue within voxels varies periodically throughout the

respiratory cycle but the total amount of tissue is conserved. Using the proposed 4D

SSTVD method, as well as the existing 4D SSD method, we performed registration on

this 2D+t synthetic image and chose the 2D image at t = 0, whose disk-shaped region

has the highest intensity and the smallest radius, as the target image. We used the

same optimization parameters for both 4D SSTVD and 4D SSD methods, with a total

of 8 resolutions in the multi-grid multi-resolution registration framework. Let’s denote

the 2D+t synthetic tissue-volume image as I, and the estimated transforms using 4D

SSTVD and 4D SSD methods as Tr
SSTV D and Tr

SSD, where r ∈ {0, 1, ..., 7} is the

resolution index. Then the deformed 2D+t synthetic tissue-volume image (without
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(a) I (b) Orientation (c) |JT7
SSTV D

| · I(T7
SSTV D)

(d) I(T4
SSTV D) (e) I(T5

SSTV D) (f) I(T7
SSTV D)

(g) I(T4
SSD) (h) I(T5

SSD) (i) I(T7
SSD)

Figure 2.19: Comparison between results from 4D SSTVD and 4D SSD algorithms

to register 2D+t synthetic tissue-volume image I.

Jacobian modification) are I(Tr
SSTV D) and I(Tr

SSD). Through visual observation of

Sub-Figure 2.19d-2.19f, we can see that after resolution r = 4, the 4D SSTVD method

already roughly aligned the time series and at finer resolutions, the results seemed
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to have stabilized. In Sub-Figure 2.19c, we applied proper Jacobian modification

|JT7
SSTV D

| onto the deformed moving image I(T7
SSTV D) to obtain the appropriate

2D+t deformed moving tissue-volume image |JT7
SSTV D

| · I(T7
SSTV D), in which the 2D

deformed moving tissue-volume images at other time points carry similar radius and

intensity value to the target image at t = 0. In comparison, after resolution r = 4,

the 4D SSD method didn’t quite align the time series, as shown in Sub-Figure 2.19d.

And when the 4D SSD registration proceeded to finer resolutions, the registration

process seemed to have collapsed, resulting in biologically infeasible transformations,

as shown in Sub-Figure 2.19h, 2.19i.

2.2.3 Clinical 4DCT Pulmonary Image Experiments

Quantitative experiments were performed on respiratory-gated 4DCT pul-

monary data sets. Specifically, we used the publicly available POPI data set con-

taining 4D landmarks (100 landmarks on each phase) for 3 patients, provided by J.

Vandemeulebroucke et al.[17]. For each patient, the 4DCT image data consisted of

10 phase images (00, 10, 20, 30, 40, 50, 60, 70, 80, 90) corresponding to 10 breathing

phases within the respiratory cycle. We compared the performance of pairwise 3D

SSTVD, 4D SSD and the proposed 4D SSTVD tissue preservation algorithm. For

all the three algorithms, we obtained the 3D spatial transforms from all phases to

the extreme exhale phase. For the pairwise 3D SSTVD registration scheme, the 3D

spatial transforms were acquired by using the extreme exhale phase as an explicit

target image. For the 4D SSD and the proposed 4D SSTVD algorithms, the 3D
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spatial transforms to the extreme exhale phase were obtained by first estimating the

forward and inverse 4D transforms and then composing them, as discussed in the

Method section. Mean landmark error and mean irregularity, as introduced in previ-

ous subsection, were computed and the results are shown in Tables 2.2 and 2.3. The

last row of Table 2.2 consists of the results reported by Vandemeulebroucke el al.[17].

Figures 2.20 and 2.21 show in bar graph the mean landmark error and mean land-

mark irregularity for all POPI data sets using 4D SSTVD, 4D SSD and 3D SSTVD

algorithms. The height of the bars are the mean values while the full length of the

red line segments indicate the standard deviations.

Accuracy
(mm)

POPI
Patient 1

POPI
Patient 2

POPI
Patient 3

Before
Registration

3.44 ± 3.06 6.41 ± 6.09 3.65 ± 3.89

Proposed
4D SSTVD

0.83 ± 0.63 1.11 ± 0.89 0.87 ± 0.77

4D SSD
0.83 ± 0.65 1.43 ± 1.83 1.02 ± 1.09

3D SSTVD
Pairwise

0.80 ± 0.63 1.21 ± 1.29 0.92 ± 0.89

Vandemeule-
broucke et al.

0.96 ± 0.66 1.20 ± 0.96 1.11 ± 1.14

Table 2.2: Registration accuracy measured by average

landmark error (mean ± standard deviation, smaller

is better).
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Figure 2.20: Mean landmark error for all POPI data sets using 4D SSTVD, 4D

SSD, 3D SSTVD algorithms.
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Figure 2.21: Mean landmark irregularity for all POPI data sets using 4D SSTVD,

4D SSD, 3D SSTVD algorithms.
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Irregularity
(mm/phase2)

POPI
Patient 1

POPI
Patient 2

POPI
Patient 3

Proposed
4D SSTVD

0.94 ± 0.59 2.38 ± 2.15 1.52 ± 1.25

4D SSD
0.94 ± 0.57 2.26 ± 1.98 1.45 ± 1.23

3D SSTVD
Pairwise

1.06 ± 0.70 2.67 ± 2.26 1.71 ± 1.34

Table 2.3: Temporal smoothness measured by average

landmark trajectory irregularity (mean ± standard

deviation, smaller is better).

We can see that the proposed 4D SSTVD algorithm achieved better accuracy

than 4D SSD method. At the same time, it achieved better temporal smoothness

compared to 3D pair-wise SSTVD, which is measured by the average magnitude of

acceleration of landmarks when they move along their estimated paths through the

respiratory cycle. It should be noted that the relatively big difference among irregu-

larity values for different data sets might stem from the possibility that landmarks for

different data sets reside in different regions of the lung. For example, there may be

more landmarks located around the diaphragm or other high functioning regions of

the lung in POPI Patient 2 than in POPI Patient 1, causing the landmark irregularity

to be generally higher for the former.

To further illustrate the advantage of 4D SSTVD algorithm over 3D SSTVD

in terms of temporal smoothness, we traced two specific landmarks, i.e., landmark

No.47 and No.65 in POPI Patient 1 data set. For 4D and 3D SSTVD algorithms,
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the mean landmark errors for landmark No.47 are 0.71 mm and 0.61 mm, and the

mean landmark irregularity are 0.72 mm/phase2 and 1.00 mm/phase2. So for this

landmark, the 4D SSTVD algorithm is slightly worse than the 3D SSTVD in terms of

registration accuracy (0.10 mm bigger), but it is better in terms of temporal smooth-

ness (0.28 mm/phase2 smaller). The difference in temporal smoothness can be best

seen in Fig.2.22, where the estimated trajectories of landmark No.47 using 4D and

pairwise 3D SSTVD algorithms are shown. The blue circles indicate estimated land-

mark locations on all phases resulting from the 3D spatial transforms deforming all

the phases to match the extreme exhale phase. The red dashed curves are obtained

by cubic spline interpolation using built-in functions of Matlab. The landmark co-

ordinates are given as in physical/world coordinate system, with units of mm. For

landmark No.65, the mean landmark error for 4D and 3D SSTVD algorithms are 0.64

mm and 0.68 mm, respectively. And the mean landmark irregularity for 4D and 3D

SSTVD are 0.88 mm/phase2 and 0.96 mm/phase2, respectively. 4D SSTVD achieves

both better accuracy and better temporal smoothness for this landmark, and the

difference in temporal smoothness between the 4D and 3D algorithms are shown in

Fig.2.23.

Visual inspection of the 4D SSTVD registration results on all three POPI data

sets are illustrated in Figure 2.24 through 2.26. Before registration, we can see that

for all data sets, the 3D temporal mean of the 4D tissue-volume images were blurry,

especially in regions of vessels and the diaphragm. Accordingly, the 3D temporal

variance images all had high values in those blurry areas. After registration using
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(a) Estimated trajectory of landmark

No.47 using 4D SSTVD.

(b) Estimated trajectory of landmark

No.47 using 3D SSTVD.

Figure 2.22: Estimated trajectories of landmark No.47 in POPI Patient 1 data set

using 4D and 3D SSTVD algorithms. 4D SSTVD gives better temporal smoothness

even though its registration accuracy may be slightly worse than 3D SSTVD.
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(a) Estimated trajectory of landmark

No.65 using 4D SSTVD.

(b) Estimated trajectory of landmark

No.65 using 3D SSTVD.

Figure 2.23: Estimated trajectories of landmark No.65 in POPI Patient 1 data set

using 4D and 3D SSTVD algorithms. 4D SSTVD gives better temporal smoothness

even though its registration accuracy may be slightly worse than 3D SSTVD.
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the proposed 4D SSTVD algorithm, the 3D mean images became a lot sharper and

the 3D variance images grew a lot darker within the lung region, indicating that the

registration indeed made the phase images better aligned. It is also worth noting

that each of the after registration 3D variance images all has a bright stripe near

the bottom of the image, outside the lung region. These areas of high variances

exist because all phase images have been deformed to match the extreme exhale

phase, and their bottom regions were “moved up” by different amounts, resulting in

intensity differences at these regions across time dimension in the deformed moving

tissue-volume image.

4D Jacobian image was also computed from the estimated 4D transform that

deformed all phase images within the original 4D tissue-volume image to match the

extreme exhale phase. 4D masks for the 4DCT data sets were generated using a

4D optimal surface finding (OSF) algorithm proposed by Gerard et al. [18]. The

masks were applied onto the Jacobian images to mask out regions outside the lung,

and the Jacobian values within the lung region would provide relevant information

about pulmonary ventilation behavior. For our experiments on clinical 4DCT data

sets using the proposed 4D SSTVD method, all Jacobian values obtained from the

estimated 4D transform were positive, indicating no folding or collapsing of space was

introduced by the transform and thus the predicted lung motion would be biologically

feasible. In Sub-Figure 2.26c, the temporal mean of 4D Jacobian image was overlaid

on the extreme exhale phase image to qualitatively illustrate the average ventilation

behavior (mostly expansion) of the lung starting from the extreme exhale phase. In
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Sub-Figure 2.26f, the temporal variance of 4D Jacobian image was overlaid on the

extreme exhale phase. Larger values of Jacobian variance indicate bigger differences

among the predicted expansions/contractions from the extreme exhale phase to each

of the other phases. High Jacobian variance regions roughly correspond to the most

blurry regions in Sub-Figure 2.26a.
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(a) Mean before (b) Variance before (c) Jacobian mean

(d) Mean after (e) Variance after (f) Jacobian variance

Figure 2.24: Results of 4D SSTVD for POPI Patient 1, sagittal view. (a) Temporal

mean of 4D tissue-volume image before registration. (b) Temporal variance of 4D

tissue-volume image before registration. (c) Temporal mean of 4D Jacobian image

overlaid on the extreme exhale phase. (d) Temporal variance of 4D tissue-volume

image after registration. (e) Temporal variance of 4D tissue-volume image before

registration. (f) Temporal variance of 4D Jacobian image overlaid on the extreme

exhale phase.
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(a) Mean before (b) Variance before (c) Jacobian mean

(d) Mean after (e) Variance after (f) Jacobian variance

Figure 2.25: Results of 4D SSTVD for POPI Patient 2, sagittal view. (a) Temporal

mean of 4D tissue-volume image before registration. (b) Temporal variance of 4D

tissue-volume image before registration. (c) Temporal mean of 4D Jacobian image

overlaid on the extreme exhale phase. (d) Temporal variance of 4D tissue-volume

image after registration. (e) Temporal variance of 4D tissue-volume image before

registration. (f) Temporal variance of 4D Jacobian image overlaid on the extreme

exhale phase.
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(a) Mean before (b) Variance before (c) Jacobian mean

(d) Mean after (e) Variance after (f) Jacobian variance

Figure 2.26: Results of 4D SSTVD for POPI Patient 3, sagittal view. (a) Temporal

mean of 4D tissue-volume image before registration. (b) Temporal variance of 4D

tissue-volume image before registration. (c) Temporal mean of 4D Jacobian image

overlaid on the extreme exhale phase. (d) Temporal variance of 4D tissue-volume

image after registration. (e) Temporal variance of 4D tissue-volume image before

registration. (f) Temporal variance of 4D Jacobian image overlaid on the extreme

exhale phase.
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CHAPTER 3
4D DATA SETS LANDMARKING SOFTWARE

3.1 Purpose

Identifying point-wise correspondence in 4DCT pulmonary data sets plays an

indispensable role for diagnosis and evaluation of pulmonary cancer and is crucial

for assessing the accuracy and temporal smoothness of registration results, which in

turn provide valuable information to guide radiotherapy. Extending the approach

pioneered by Murphy et al.[12], a GUI landmarking software for 4D data sets was

designed and implemented in Java as an ImageJ plug-in to aid the user to accurately

and efficiently label corresponding landmark points in 4D data sets.

3.2 Usage

The general procedure for using this landmarking software tool can be divided

into three major steps. The first step is to acquire a set of landmarks on one specific

phase image within the 4D data set (preferably on one of the two extreme phases for

pulmonary 4D data sets). This can be achieved by either manually labeling the set of

desired landmarks on that specific phase using this landmarking software, or by using

the automatic landmark detection feature of some other existing software tools, like

the one presented in the work of Murphy et al.[12]. Then, the second step is to use

this landmarking software to label corresponding landmarks on another phase image

within the 4D data set (preferably on the other extreme phase for 4D pulmonary

data sets). During this step, one of the core features of this landmarking software
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will assist the user to take full advantage of already labeled landmark positions and

make the task of selecting further point-wise correspondence progressively easier. The

software will provide more and more accurate suggested locations of the remaining

landmarks for the user to consider as initial guesses. Finally, after all corresponding

landmarks have been labeled on two phases within the 4D data set (preferably on the

two extreme phases for pulmonary 4D data sets), another feature of the software tool

will provide the user with suggested locations for all landmarks on all other phase

images. And the user can then efficiently fine-tune the landmark locations on those

other phases using the convenient 4D volume traversal capabilities of the software.

The main control GUI for the software is as shown in Fig 3.1. The user can

perform actions such as “add landmark”, “remove landmark”, “import landmark from

file”, “export landmark to file”, “perform normalization (registration)”, “perform

landmark location linear interpolation” or “synchronize views in all 3D images” by

clicking the corresponding buttons in the upper left section of the control panel. The

user is able to set focus on any anatomical view (transverse, sagittal or coronal) of

any displayed 3D phase images by either clicking the mouse on the view in the image

display GUI or pressing the user-friendly keyboard shortcuts: “J” and “L” change

focus to different anatomical views within the same 3D volume, “I” and “K” to

traverse among different 3D volumes within the 4D data set in the same anatomical

view. The current anatomical view that is focused on will be indicated by a red

box around it. Within any chosen anatomical view of any 3D volume, the user can

also effortlessly navigate through the 3D volume by either pressing the navigation
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buttons in the upper right section of the control GUI or, better yet, by pressing

user-friendly keyboard shortcuts: “W” to move one voxel up, “S” to move one voxel

down, “A” to move one voxel left, “D” to move one voxel right, “Q” to move one

voxel in, “E” to move one voxel out. Other views of the same 3D volume will be

updated correspondingly. In the middle part of the control panel, the user can choose

which phase images to be shown in the image display GUI and flip the X, Y or Z

orientation of images if necessary. And in the bottom part of the control GUI, all

labeled landmarks are displayed. The user can easily visit any previously labeled

landmark location by clicking the radio button to the left of the landmark. If the

location of some landmark is not yet selected on a certain phase image, the user

will be taken to its suggested location on that phase image. The image display GUI

in which the standard and zoomed anatomical views of selected phase images are

displayed is as shown in Fig 3.2.

During the landmark labeling process, the user can also easily check the dis-

tribution of previously labeled landmark locations, as shown in Figure 3.3, so that

he/she adjust the locations of landmarks to make the overall distribution more uni-

form throughout the 4D data set.

3.3 Features and Mechanisms

Two essential mechanisms corresponding to the second and the third major

steps of usage are at work within the landmarking tool.

The first mechanism kicks in after the user acquires the set of desired land-
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Figure 3.1: 4D landmarking software control panel. The first and last row are the

extreme exhale (0%) and extreme inhale (100%) phase images. The rows in between

are 20%, 40%, 60%, 80% inhalation phase images. The landmarks on 0% and 100%

phase images have been labeled. Suggested landmark locations on the phases in

between are presented through linear interpolation (the red markers at the centers

of view for intermediate phases are the suggested landmark locations).
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Figure 3.2: 4D landmarking software image display panel. The two rows of images

illustrate the standard and zoomed versions of the three anatomical views of the

extreme exhale and the extreme inhale phase images. The centers of view for both

phase images are the corresponding locations of landmark No.104.

marks on one phase and starts to label corresponding landmarks on another phase

(step 2 of usage). At the user’s request, this feature will perform image registration

between the pair of images based on corresponding landmarks that have recently

been labeled by the user. The registration procedure will produce a deformed moving

image that looks more similar to the fixed image, and the suggested landmark loca-

tions provided on the deformed moving image will also be more accurate thanks to

the registration process. Keep repeating this process will make the registration and

the suggested landmark locations increasingly more accurate, and thus drastically

expedites the labeling process. The user will end up taking almost no effort to select

further landmarks.

The specific type of image registration technique being used here is a vari-
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Figure 3.3: 4D landmarking software landmark distribution feature. The user can

easily check the distribution of the previously labeled landmarks.
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ant version of the thin plate spline registration[2], as discussed in the work of Joshi

et al.[7]. Specifically, suppose the user has acquired the full set of landmarks P on

the fixed image If (x), and has labeled landmarks q1,q2, ...,qN on the moving image

that correspond to the subset of landmarks {p1,p2, ...,pN} ⊂ P on the fixed image.

Also denote T : Ωf → Ωm,x 7→ T(x) as the spatial transform deforming the mov-

ing image to the fixed image, which is to be estimated based on the corresponding

landmarks. The estimated transform T will consist of two components: one affine

transform Taffine and another transform Tspline induced by spline interpolation from

the displacements of the landmarks {pi}Ni=1. Then, ∀x ∈ Ωf , T(x) ∈ Ωm would have

expression as shown in Equ. 3.1.

T(x) = Taffine(x) + Tspline(x) = a1x1 + a2x2 + a3x3 + a4 +
N∑
i=1

bi ri(x)T1(x)
T2(x)
T3(x)

 =

a11x1 + a21x2 + a31x3 + a41 + b11r1(x) + ...+ bN1rN(x)
a12x1 + a22x2 + a32x3 + a42 + b12r1(x) + ...+ bN2rN(x)
a13x1 + a23x2 + a33x3 + a43 + b13r1(x) + ...+ bN3rN(x)


=

a11 a21 a31 a41 b11 ... bN1

a12 a22 a32 a42 b12 ... bN2

a13 a23 a33 a43 b13 ... bN3

 · (x1, x2, x3, 1, r1(x), ..., rN(x))T

=

a11 a21 a31 a41

a12 a22 a32 a42

a13 a23 a33 a43

 ·

x1

x2

x3

1

+

b11 ... bN1

b12 ... bN2

b13 ... bN3

 ·
 r1(x)

...
rN(x)

 (3.1)

where r : [0,+∞) → R, ||x − pi|| 7→ r(||x − pi||) , ri(x) is the radial basis function

that depends on the distance between any point x and the ith landmark pi in the

fixed image domain. The functional form of r indicates how the displacement at x

is influenced by the displacement at pi through spline interpolation. This function

will determine the interpolation behavior of the displacements of points around a
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certain landmark. a1, a2, a3, a4 ∈ R3 are vectors containing the affine transform

parameters, while b1, b2, ..., bN ∈ R3 are the weights of the spline interpolation

transform. Altogether, the transform T is parametrized by 12 + 3N parameters,

and we can estimate these parameters using the coordinates of the corresponding

landmarks {pi}Ni=1 and {qi}Ni=1 as shown in Equ. 3.2 and 3.3.

[
Q

04×3

]
=

[
P̄ R

04×4 P̄

]
·
[
A
B

]

qT1
qT2
...
qTN
04×3

 =


p̄T1 r1,1 r1,2 ... r1,N

p̄T2 r2,1 r2,2 ... r2,N
...

...
...

. . .
...

p̄TN rN,1 rN,2 ... rN,N
04×4 p̄1 p̄2 . . . p̄N

 ·



aT1
aT2
aT3
aT4
bT1
bT2
...

bTN




q1,1 q1,2 q1,3

q2,1 q2,2 q2,3
...

...
...

qN,1 qN,2 qN,3
0 0 0
0 0 0
0 0 0
0 0 0


=



p1,1 p1,2 p1,3 1 r1,1 r1,2 ... r1,N

p2,1 p2,2 p2,3 1 r2,1 r2,2 ... r2,N
...

...
...

...
...

...
. . .

...
pN,1 pN,2 pN,3 1 rN,1 rN,2 ... rN,N

0 0 0 0 p1,1 p2,1 . . . pN,1
0 0 0 0 p1,2 p2,2 . . . pN,2
0 0 0 0 p1,3 p2,3 . . . pN,3
0 0 0 0 1 1 . . . 1


·



a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

b11 b12 b13

b21 b22 b23
...

...
...

bN1 bN2 bN3


(3.2)

Taking the inverse of Equ. 3.2, we have:[
A
B

]
=

[
P̄ R

04×4 P̄

]−1

·
[
Q

04×3

]
(3.3)

where p̄i = (pi,1, pi,2, pi,3, 1)T is the augmented coordinates of landmark i in the fixed

image. ||pi − pj|| is the distance between landmarks i and j in the fixed image, and

ri,j = r(||pi − pj||) is the radial basis function centered at landmark pj. Indeed, we
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would want the matrix inversion in Equ. 3.3 to be valid, and what’s more, we want

the initial normalization to roughly align the moving and the fixed image globally.

Therefore, we prefer that the user begins by labeling corresponding landmarks on

the (deformed) moving image that are scattered and close to the corners/boundaries

of the foreground of the image, so that the estimated transform obtained from the

initial normalization would not only exist but also make the moving image to match

the fixed image globally, which will help the user to label more landmarks with less

effort. Under such consideration, we implemented a small functionality in the software

tool that provides the user with recommended indices of landmarks to label, such that

these landmarks are scattered and close to the corners/boundaries of the foreground

of the image. This functionality is shown in Figure 3.4, where the user can pick one

or more landmark indices from each group to label, and the estimated transform will

exist and be global.

The radial basis function we used is the one proposed by Joshi et al.[7] and is

given as in Equ. 3.4.

r(||x− pi||) =

√
2

πc
e−
√
c||x−pi|| (3.4)

where c is a positive constant. In the implementation of this software, we took

c = π
2
≈ 0.64 so that r(||x− pi||) ≈ e−0.8||x−pi||.

The reason of choosing this radial basis instead of the common thin plate spline

radial basis in 3D, r(||x − pi||) = ||x − pi||, is because this radial basis is decaying

exponentially. Therefore, the displacements of points outside of certain distance from

pi will not be influenced by the displacement of pi due to spline interpolation. This



64

Figure 3.4: 4D landmarking software corner landmark detection feature. The

software tool provides the user with scattered and close to boundary landmark

indices to label. And the user can in turn perform initial normalization based on

these landmarks.
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choice of radial basis will tremendously shorten the computation time spent in the

normalization process, especially when the number of labeled landmarks is large. If

we used the thin plate spline radial basis function r(||x−pi||) = ||x−pi||, then during

computing the displacement of any point x in the fixed image, we need to calculate

every r(||x−pi||) term in Equ.3.2, i.e., take into account the influence of every labeled

landmark pi through spline interpolation. By using this variant version of the thin

plate spline with radial basis function as given in Equ. 3.4, we only computed the

terms r(||x−pi||) =
√

2
πc
e−
√
c||x−pi|| for which the landmark pi is close enough to the

point x. Specifically, we can stipulate that once the radial basis function value is less

than 10−3, i.e., e−0.8||x−pi|| ≤ 10−3 ⇐⇒ ||x− pi|| ≥ 8.6, then we would not consider

the influence of pi on the displacement of x through spline interpolation.

The second important mechanism of this software tool is the landmark location

linear interpolation feature. After the user acquires the full set of landmarks on one

phase and finishes labeling the corresponding landmarks on another phase, he/she

can use this mechanism to generate meaningful suggested locations for all landmarks

on all the other phases. The user does not have to perform any more normalization

procedures for any of the other phase images. The effectiveness of this feature is best

illustrated in Figure 3.6 as compared to Figure 3.5. Without the linear interpolation

feature to provide the user with meaningful suggested locations of all landmarks on all

intermediate phases, the user will take some extra endeavor to label the corresponding

landmark locations on these intermediate phases, as seen in Figure 3.5. However, after

using the landmark location linear interpolation feature, the user will only need very
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small amount of effort to label the landmarks on these intermediate phases based on

the initial guesses, as shown in Figure 3.6. Note in Figure 3.5 and 3.6, the first and

last rows represent the two extreme phases, 0% inhale and 100% inhale. The second

through fifth rows show the 20% inhale, 40% inhale, 60% inhale, and 80% inhale phase

images. This feature works in the same way for intermediate exhale phase images.

Combining the above two mechanisms, the user can label landmarks on 4DCT

pulmonary data sets a lot more efficiently compared to using other existing tools for

landmarking. The recommended procedure would be that the user first obtain the full

set of landmarks on the extreme exhale/inhale phase image, then use normalization

mechanism to label corresponding landmarks on the extreme inhale/exhale phase

image, and finally use the landmark location interpolation mechanism to generate

meaningful suggested landmark locations on other intermediate phases and slightly

adjust the landmark locations based on the initial guesses. Figures 3.7 - 3.12 illus-

trated the mechanisms behind this software in great detail.

3.4 Experiments and Results

Landmark labeling is an intrinsically subjective task. Since the image is a

discrete representation of the actual continuous object being imaged, truly corre-

sponding points may not even be present in the image. Observer variability is thus

unavoidable and there is no “absolute truth” to compare to.

Therefore, we carried out independent inter-observer landmark labeling exper-

iments to test the landmarking software’s reliability and repeatability. Specifically,
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Figure 3.5: Suggested landmark locations on intermediate phases without linear

interpolation feature. After the user has labeled corresponding landmarks on two

extreme phases, if the user does not use landmark location interpolation feature, the

suggested landmark locations for the other intermediate phases will all be the same

as the coordinates of landmarks on one of the two already labeled extreme phases.

And thus, the user will take some extra endeavor to find proper positions of

landmarks on these phases.
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Figure 3.6: Suggested landmark locations on intermediate phases with linear

interpolation feature. After the user has labeled corresponding landmarks on two

extreme phases, if the user chooses to use the landmark location interpolation

feature, the software tool will provide much more meaningful suggested locations for

all landmarks on the other intermediate phases. And thus, the user can take very

small amount of effort to pin-point the proper locations of landmarks on these

phases.
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(a) The user acquires a set of desired landmarks pi on the fixed image If (x). The software

uses transform T0 = Id to generate deformed moving image Im(T0(x)) = Im(x).

(b) The software provides suggested landmark locations q̃i,0 = pi on the deformed moving

image, as initial guesses for the user.

Figure 3.7: Illustration of the mechanism of the 4D landmarking software: 1 - 2.
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(a) The user labels landmarks q̃i the deformed moving image, based on the initial guesses

q̃i,0. The software pushes the user-labeled landmarks q̃i from the deformed moving image

to qi = T0(q̃i) on the moving image.

(b) The software estimates transform T1 based on corresponding landmarks qi and pi on

the moving and the fixed images. The software generates the deformed moving image

Im(T1(x)) resulting from transform T1.

Figure 3.8: Illustration of the mechanism of the 4D landmarking software: 3 - 4.
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(a) The software estimates the inverse transform T−1
1 from T1. The software pushes

previously labeled landmarks qi from the moving image to q̃i = T−1
1 (qi) on the deformed

moving image.

(b) The software provides suggested landmark locations q̃i,0 = pi for the remaining

landmarks on the deformed moving image.

Figure 3.9: Illustration of the mechanism of the 4D landmarking software: 5 - 6.
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(a) The user labels more landmarks q̃i on the deformed moving image, based on the initial

guesses q̃i,0. The software pushes newly labeled landmarks q̃i from the deformed moving

image to qi = T1(q̃i) on the moving image.

(b) The software estimates transform T2 based on corresponding landmarks qi and pi on

the moving and the fixed images. The software generates the deformed moving image

Im(T2(x)) resulting from transform T2.

Figure 3.10: Illustration of the mechanism of the 4D landmarking software: 7 - 8.
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(a) The software estimates the inverse transform T−1
2 from T2. The software pushes

previously labeled landmarks qi from the moving image to q̃i = T−1
2 (qi) on the deformed

moving image.

(b) The software provides suggested landmark locations q̃i,0 = pi for the remaining

landmarks on the deformed moving image.

Figure 3.11: Illustration of the mechanism of the 4D landmarking software: 9 - 10.
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(a) The user labels more landmarks q̃i on the deformed moving image, based on the initial

guesses q̃i,0. The software pushes newly labeled landmarks q̃i from the deformed moving

image to qi = T1(q̃i) on the moving image.

(b) All corresponding landmarks on the moving and the fixed images (two extreme

phases) have been labeled. The software uses linear interpolation to provide suggested

landmark locations for all landmarks on all intermediate inhalation/exhalation phases.

Figure 3.12: Illustration of the mechanism of the 4D landmarking software: 11 - 12.
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we used a total of five re-sampled 4DCT pulmonary data sets: PFS-001, PFS-002,

PFS-004, PFS-007, PFS-008, all with image dimension 304 x 304 x 320 x 10 and voxel

physical size 1mm x 1mm x 1mm. Five observers in the project group were trained

on how to use the 4D landmarking software and asked them to label 123, 109, 123,

117, and 110 numbers of landmarks on the five 4DCT data sets based on the locations

of automatically detected landmarks on the extreme inhale phase using iX software

[12]. Due to the time consuming nature of the landmarking task, only one observer

used the full functionalities of the 4D landmarking software and labeled 4D land-

marks on every breathing phase for two out of the five 4DCT data sets. But all the

five observers finished labeling corresponding landmarks on the extreme exhale phase

within the 4DCT data sets using the normalization feature. Therefore the analysis of

the landmarking results is based on the locations of landmarks on the extreme exhale

phases labeled by the 5 observers.

For each landmark in the extreme exhale phase of every data set, we have a

constellation of 5 landmark locations selected by the 5 observers, from which a mean

landmark location can be computed. This mean landmark location will be regarded

as the “true” location for this landmark. Then, for each observer, we can calculate

the Euclidean distance from each of his landmark location to the corresponding mean

location, call this distance the “landmark variation” and treat these distances as

a set of independent identically distributed random variables from that observer’s

perspective. Thus, for each data set and for each observer, we can compute the sample

mean and standard deviation of his/her landmark variation, and use these values
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as a qualitative measure of the repeatability and reliability of the 4D landmarking

software.

Clearly, for each landmark within each data set, the locations labeled by ev-

ery observer will have non-trivial influence on the overall analysis. For example, if 1

observer was inexperienced with the lung anatomy at first or grew tired, impatient

or careless during the tedious landmark labeling process, he/she might end up la-

beling a few, if not many, inaccurate landmark locations within a certain data set.

Consequently, the calculated mean landmark locations in that data set (which we

shall use as the “true” landmark locations) will inevitably be “contaminated” by this

observer’s results and the mean and standard deviation of the landmark variation of

the other 4 observers will become larger even if the 4 of them reached relatively good

consensus for most of the landmark locations. This phenomenon does not occur too

often, but whenever the landmark variation of more than 40 landmarks labeled by a

certain observer in a data set has landmark variation of more than 2.5 mm, we would

exclude that observer’s landmark results for that data set and only use the results

from the remaining observers for the analysis.

Figures 3.13 - 3.17 illustrate the projected locations onto the coronal view of

landmarks labeled by the observers. The mean landmarks locations are represented

by red crosses, while the individual observer-labeled landmarks are shown as small

circles of different colors. There is a disk surrounding each mean landmark location,

whose radius is the maximum value of landmark variation among all observers for

that landmark. Figures 3.18 - 3.22 show the histograms of landmark variation for
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Landmark
Variation

User 1 User 2 User 3 User 4 User 5

PFS-001 0.70±0.31 0.72±0.36 Excluded 0.73±0.32 0.78±0.42
PFS-002 0.63±0.34 0.75±0.39 0.70 ±0.31 0.69±0.34 0.82±0.39
PFS-004 0.73±0.46 0.82±0.45 0.90±0.51 0.87±0.49 0.96±0.52
PFS-007 0.65±0.42 0.73±0.36 0.65±0.34 Excluded 0.68±0.37
PFS-008 0.64±0.34 0.87±0.47 0.82±0.47 0.68±0.34 0.78±0.40

Table 3.1: Sample mean and standard deviation of landmark

variation for all observers on all data sets. The format is Mean ±

Standard Deviation. The unit for all numbers in the table is mm.

The landmark results of User 3 and User 4 were excluded from the

analysis of data set PFS-001 and PFS-007, respectively. This is

because if they were included, then more than 40 of their landmark

variation values would be bigger than 2.5 mm.

each observer on all data sets. Table 3.1 demonstrates the sample mean, standard

deviation and maximum sample value of landmark variation for each observer on all

data sets.

In Fig.3.13-3.17, the small circles tend to concentrate relatively tightly around

the red cross for most landmarks, especially for data sets PFS-002 and PFS-007. This

indicates that the independent observers reached consensus on the location of most

landmarks. From Table 3.1, we can see that, on average, each individual observer

(excluding the outliers) achieves sub-voxel accuracy with respect to the “true” land-

mark locations when using the 4D landmarking software. We also need to keep in
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Figure 3.13: Landmarks labeled by 4 observers on the extreme inhale phase of

PFS-001. Landmarks were projected onto coronal plane. The mean landmarks

locations are represented by red crosses, while the individual observer-labeled

landmarks are shown as small circles of different colors. There is a disk surrounding

each mean landmark location, whose radius is the maximum landmark variation

among all observers for that landmark.
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Figure 3.14: Landmarks labeled by 5 observers on the extreme inhale phase of

PFS-002. Landmarks were projected onto coronal plane. The mean landmarks

locations are represented by red crosses, while the individual observer-labeled

landmarks are shown as small circles of different colors. There is a disk surrounding

each mean landmark location, whose radius is the maximum landmark variation

among all observers for that landmark.
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Figure 3.15: Landmarks labeled by 5 observers on the extreme inhale phase of

PFS-004. Landmarks were projected onto coronal plane. The mean landmarks

locations are represented by red crosses, while the individual observer-labeled

landmarks are shown as small circles of different colors. There is a disk surrounding

each mean landmark location, whose radius is the maximum landmark variation

among all observers for that landmark.
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Figure 3.16: Landmarks labeled by 5 observers on the extreme inhale phase of

PFS-007. Landmarks were projected onto coronal plane. The mean landmarks

locations are represented by red crosses, while the individual observer-labeled

landmarks are shown as small circles of different colors. There is a disk surrounding

each mean landmark location, whose radius is the maximum landmark variation

among all observers for that landmark.
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Figure 3.17: Landmarks labeled by 4 observers on the extreme inhale phase of

PFS-008. Landmarks were projected onto coronal plane. The mean landmarks

locations are represented by red crosses, while the individual observer-labeled

landmarks are shown as small circles of different colors. There is a disk surrounding

each mean landmark location, whose radius is the maximum landmark variation

among all observers for that landmark.
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Figure 3.18: Histograms of landmark variation for each involved observer on

PFS-001.
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Figure 3.19: Histograms of landmark variation for each involved observer on

PFS-002.
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Figure 3.20: Histograms of landmark variation for each involved observer on

PFS-004.
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Figure 3.21: Histograms of landmark variation for each involved observer on

PFS-007.
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Figure 3.22: Histograms of landmark variation for each involved observer on

PFS-008.
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mind that the experiment is the first time for all but one of the 5 observers to la-

bel landmarks on pulmonary CT images. Given more time to practice, they would

develop more familiarity with the anatomy of the lung, as well as the landmarking

software itself and may thus very well achieve higher accuracy using this software.
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CHAPTER 4
CONCLUSION AND DISCUSSION

The 4D tissue preservation algorithm inherits the advantage of 3D SSTVD to

handle registration scenarios where spatially corresponding voxels have varying CT

numbers due to changes in fraction of tissue within voxels while the total tissue volume

is preserved. Meanwhile, the 4D cubic B-spline transformation model and temporally

extended linear elasticity ensure the temporal smoothness of the deformation field.

Comparison results on 4DCT data sets indicate the proposed 4D SSTVD algorithm

strikes a good balance between accuracy and temporal regularity. Without an explicit

target image in the 4D registration framework, all information of the dynamic data

set is considered simultaneously, avoiding bias toward any specific reference image

and increasing robustness against potential outliers caused by artifacts or noise[19].

By incorporating temporal information within 4DCT data sets, the proposed method

can provide more relevant information for motion tracking and ventilation estimation

and thus aid in radiotherapy treatment planning [5],[19]. Another benefit of consid-

ering temporal information is that temporal interpolation can be used to provide an

estimate of lung motion at certain intermediate time points that are not present in

the initial 4DCT data set.

One limitation of this work is the accuracy of estimated 4D inverse transform.

Since B-spline parameterization of the geometric transform does not have closed form

inverse expression, the 4D inverse transform should have been estimated point by

point, without using another B-spline parametric model. But in our implementation
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with the Elastix package, the 4D inverse transform was estimated using a set of

finer B-spline grids than were used to estimate the 4D forward transform. This way,

the inverse transform can have higher degrees of freedom, but this may still lead

to inaccurate estimation of inverse transforms for some 4DCT data sets. Figure

4.1 shows a 3D Jacobian image for PFS-002 4DCT data set. This Jacobian image

corresponds to the estimated 3D spatial transform T0→0 (from the extreme exhale

phase to itself) that is obtained by composing the forward and inverse 4D transforms.

Ideally, we would expect this spatial transform T0→0 to be the identity map, and the

Jacobian value should be 1 across the Jacobian image. But we can vaguely observe

some patterns in Fig.4.1, indicating that the estimated spatial transform T0→0 is

not identity, which in turn suggests that the inverse map is not extremely accurate

because of the B-spline parameterization.

The landmarking software demonstrated its effectiveness and reliability to aid

users to efficiently and accurately label corresponding landmarks on 4D data sets

through the inter-observer experiments. As the users grow more familiar with the

lung anatomy as well as the software itself, we would expect the labeled landmarks

to be even more accurate.

During the implementation of the 4D landmarking software, a design decision

was made to always present the deformed moving image to the user every time after

the normalization feature is used. This would make the extreme inhale phase, on

which the user needs to label corresponding landmarks, to become more and more

aligned with the extreme exhale phase, and provide more accurate suggested locations
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Figure 4.1: Illustration of 4D SSTVD inverse inaccuracy. The

figure illustrates 3D Jacobian image corresponding to 3D spatial

transform T0→0, obtained by composition of 4D forward and

inverse transforms, for data set PFS-002. We can see that the

Jacobian image is not 1 uniformly, indicating the spatial transform

is not identity everywhere.
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for the remaining landmarks. However, the deformed moving image is inevitably less

sharp compared to the original image due to linear interpolation. This blurring effect

may potentially render the user unable to pick the exact corresponding voxel on

the deformed moving image. In the future, after the software is extensively used,

this design decision may need to be revoked based on user feedback. Displaying the

original un-deformed extreme inhale phase image may turn out to be more beneficial

to the user, and we may only need the normalization feature to generate more accurate

suggested landmark locations on the extreme inhale phase image, without actually

deforming it.

Another feature that will bring great convenience to the user is automatic

landmark detection. For now, the user will have to rely on other software tools or

manual labor to obtain landmarks on the extreme exhale phase to initiate the whole

landmarking process. In the future, the automatic landmark detection feature may

be developed to be incorporated into this software, making it a self-contained 4D

landmarking tool by itself.
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APPENDIX A
4D SSTVD ELASTIX/ITK C++ IMPLEMENTATION USER GUIDE



94

Step 0: Preparation 
 

1) Download Elastix 4.8 source code and ITK 4.8.2 source code (not the newest ITK 4.9.0 
because Elastix does not support it yet). 
 

2) Put the three source code folders “SumSquaredTissueVolumeDifferenceMetric4D”, 
“LinearElasticityPenalty4D”, “DisplacementMagnitudePenalty” into Elastix Metrics 
folder, e.g.: XXXXXX/elastix_sources_v4.8/src/Components/Metrics/. Replace existing 
“DisplacementMagnitudePenalty” if prompted. 
 

3)  In Linux server like c-reg, the system clock is sometimes not synced with the internet.  
So you need to input the following command to prevent warnings like “Clock skew 
detected” or “XXX has modification xxx seconds in the future”: 
 

     find XXX/elastix_sources_v4.8/src/Components/Metrics/* -type f -exec touch {} + 
 

where XXX specifies the path leading to “elastix_sourcec_v4.8” from your current 
location.  
 

4)  Ccmake/make/build/compile (whatever the process is called) ITK (in 64 bit version) in 
Release mode with “Module_ITKReview” option selected in Cmake and then 
ccmake/make/build/compile Elastix in Release mode with “USE_ALL_COMPONENTS” 
selected and add “;float” after “short” in “ELASTIX_IMAGE_4D_PIXELTYPES” option. 
 

5) Ccmake/make/build/compile the “PreProcessing” folder in Release mode using Cmake 
to generate an executable named “PreProcessingModule”. 

 
 
Step 1: Data Preprocessing 
 
[Description]: 
This step combines 3D images into 4D, performs intensity preprocessing to transform voxel HU 
intensity into “tissue volume” (fraction of tissue volume within a voxel volume). 
Then this step will combine 3D masks into 4D mask and apply the 4D mask onto the 4D image. 
 
[Usage:] 
In command line interface, type in command like the following: 

“PreProcessingModule 4DImage.nii 4DImagePreProc.nii 4DMask.nii 
4DImagePreProcMasked.nii 3DImage1.nii … 3DImageN.nii 3DMask1.nii … 3DMaskN.nii" 

where you need to specify the paths of the 3D image files and the 3D masks.  
A real example input using SCAN1 data from PFS-002 as well as Sarah’s 4D segmented masks is 
like the following:  
PreProcessingModule 4DImage.nii 4DImagePreProc.nii 4DMask.nii 
4DImagePreProcMasked.nii original_data/BeforeRT_4DCT_0EX_SCAN1.hdr 
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original_data/BeforeRT_4DCT_20IN_SCAN1.hdr 
original_data/BeforeRT_4DCT_40IN_SCAN1.hdr 
original_data/BeforeRT_4DCT_60IN_SCAN1.hdr 
original_data/BeforeRT_4DCT_80IN_SCAN1.hdr 
original_data/BeforeRT_4DCT_100IN_SCAN1.hdr 
original_data/BeforeRT_4DCT_80EX_SCAN1.hdr 
original_data/BeforeRT_4DCT_60EX_SCAN1.hdr 
original_data/BeforeRT_4DCT_40EX_SCAN1.hdr 
original_data/BeforeRT_4DCT_20EX_SCAN1.hdr original_data/mask0EX.hdr 
original_data/mask20IN.hdr original_data/mask40IN.hdr original_data/mask60IN.hdr 
original_data/mask80IN.hdr original_data/mask100IN.hdr original_data/mask80EX.hdr 
original_data/mask60EX.hdr original_data/mask40EX.hdr original_data/mask20EX.hdr 

 
The first 4 files starting with “4D” are the outputs. Specifically, we shall use 
“4DImagePreProc.nii” or “4DImagePreProcMaksed.nii” for registration depending on whether 
we want to use masked image or not. And the “4DImage.nii” can be used to generate deformed 
4D image using the final transform parameters obtained from registration process. 

 
Note: Do not use “4DImage.nii” for 4D SSTVD registration. 
 
 
Step 2: Registration 
 
[Description]: 

This step performs 4D SSTVD (with or without linear elasticity regularization) 
registration on the preprocessed 4D image dataset using the parameters provided in 
files “param.forward.txt” and “param.inverse.txt”. Just use common Elastix registration 
framework.  
Note: You can modify the parameter file and choose to only use 4D SSTVD intensity 
metric without linear elasticity regularization and witness a further improvement in 
running speed. From the results of all my experiments, I haven’t encountered negative 
Jacobians even without regularization. 
 
After making the algorithm support multi-threading, I changed the default optimizer 
from adaptive stochastic gradient descent (ASGD) to quasi-newton LBFGS. This is 
because the ASGD optimizer seems to be non-multi-threaded, while the LBFGS 
optimizer is, which makes ASGD a lot slower than LBFGS despite it being a first order 
optimizer while LBFGS is 2nd order! 
 
You can still choose to use adaptive stochastic gradient descent optimizer, but the 
running time will be more. 

 
 [Usage]: 
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1) Perform registration that deforms the 4D image dataset to an implicit temporal average 
image that is previously unknown and constantly updated throughout the registration 
process. Type in command like: 
 
XXX/bin/elastix –f XXX/4DImagePreProcMasked.nii –m XXX/4DImagePreProcMasked.nii 
–p XXX/param.forward.txt –out elastix_output_forward 
 
where elastix is the compiled executable in your elastix build folder. 
 
Note that fixed and moving images are the same 4D image. You need to create the 
output folder in advance.  

 
You can use options like “-priority high” and/or “-threads XXX” to specify the priority 
and number of threads you want to dedicate to the registration process. 
 

2) Perform another registration to approximate the inverse transform. Type in command 
like: 
 
XXX/bin/elastix –f XXX/4DImagePreProcMasked.nii –m XXX/4DImagePreProcMasked.nii 
–p XXX/param.inverse.txt –t0 elastix_output_forward/TransformParameters.0.txt –out 
elastix_output_inverse 

   
Note that you need to provide transform parameters from the forward transform as 
initial transform using the “-t0” option as shown above. 
 

 
3) Combine forward and inverse transform to get spatial transforms that deform all phases 

to a specific phase you designated. Type in command like: 
 
XXX/combine.py point elastix_output_forward/TransformParameters.0.txt 
elastix_output_inverse/TransformParameters.0.txt combined_transform.0.txt 
combined_transform.1.txt 0 
 
Note that the second word “point” is necessary and the very last 0 indicates we want 
to obtain transforms that deform other phases to phase 0. You can change this 
number to 0,1,2,…,9 to acquire transforms that deform all phases to another specific 
phase. 
 
You can also combine steps 1) and 2) in one command: 
 
XXX/bin/elastix –f XXX/4DImagePreProcMasked.nii –m XXX/4DImagePreProcMasked.nii 
–p XXX/param.forward.txt XXX/param.inverse.txt –out elastix_output 
 
and then combine forward and inverse transform using: 
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XXX/combine.py point elastix_output/TransformParameters.0.txt 
elastix_output/TransformParameters.1.txt combined_transform.0.txt 
combined_transform.1.txt 0 
 
 

Step 3: Transformation/Deformation  
 
[Description]: 
Actually deform all phases within the 4D image to a certain phase. Generate other information 
resulting from the transforms if required. 
 
[Usage]: 
Type in command like: 

XXX/transformix –in XXX/4DImagePreProc.nii –tp combined_transform.1.txt –out 
transformix_output 
 
Note that you need to use combined_transform.1.txt instead of 
combined_transform.0.txt. You can specify options like “-def all”, “-jac all” or “-jacmat 
all” to get displacement vectors, Jacobian values or Jacobian matrices at each voxel for 
analysis. 
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APPENDIX B
4D LANDMARKING SOFTWARE USER GUIDE
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Multi-Volume Landmarking Tool Tutorial 
[Installation of software]: 

[1] Download and install the latest 64bit version of Java JDK in its default path: 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html. 

 

 

 

 

 

 

 

 

 [2] Download ImageJ:  http://rsb.info.nih.gov/ij/download.html. 

 

 

 

 

 

 

 

[3.1] Install ImageJ. Unzip the downloaded ImageJ folder and put it wherever you like. When you first run 
the executable “ImageJ.exe”, the program will try to do some configuration and you may be prompted to 
specify the path of valid Java Virtual Machine on your computer.  

 

 

 

 

 

Accept 

X64 
version 

Download from 
this link  
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Navigate through path “C:\Program Files\Java\jdk1.8.0_31\bin\javaw.exe” to select the JVM executable 
and you will be notified that a configuration file has been generated for ImageJ. It is also possible that the 
location of Java Virtual Machine has been automatically detected and the above prompt window does not 
show up. Note: do not use the javaw.exe in “Program Files (x86)” folder. 

[3.2] Update ImageJ to the newest version by clicking “Help””Update ImageJ”. Then click “OK” in the 
pop-up dialogue. ImageJ will download and install updates and then close itself. You need to reopen it 
manually. 

 

 

 

 

 

 

[4] Open the file “ImageJ.cfg” with Notepad in the ImageJ main folder.  

 

 

 

Change the second line in “ImageJ.cfg” from whatever it is to the following: 

 “C:\Program Files\Java\jdk1.8.0_31\bin\javaw.exe”.  

At the beginning of the third line, change “-Xmx640m” into “-Xmx6400m” (we are actually changing the 
amount of available memory for Java) if you have 8GB of memory and leave the rest of the third line 
unchanged. After editing, the file “ImageJ.cfg” will look similar to this: 

 

 

 

Then save the changes and close the file. 

[5] Download jblas package (for fast matrix calculation):    

http://mikiobraun.github.io/jblas/download.html.  

 

 

 

It doesn’t matter 
if this part is 

different for you. 
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Put the downloaded “jblas-1.2.3.jar” file in directory “…\ImageJ\plugins\jars”. 

[6] Create a new folder in directory “…\ImageJ\plugins\”. Let’s call this new folder “MVL”, for example. 
Then copy the source file “MultiVolLmk.java” into this folder (“…\ImageJ\plugins\MVL\”).  

[7] Copy the file “RemoveShortcuts.txt” into directory “…\ImageJ\macros\” 

[Data Preparation]: 

[1] We want to move all 4D-CT image files, mask files and landmark files into folder 
“…\ImageJ\plugins\MVL\”. For our current inter-observer experiment, we need to grab our image files 
and landmark files from “lungmech” server. Specifically, 

(a) Create subfolders “PFS-001”, “PFS-002”, “PFS-004”, “PFS-007”, “PFS-008”, “PFS-009”, “PFS-010”, “PFS-
011” and “PFS-012” inside folder “…\ImageJ\plugins\MVL\”.  

(b) Go to “lungmech”. In the folder “Du_4DCT_Database”, copy 20 image files: 

“BeforeRT_4DCT_0EX_SCAN1.img”, “BeforeRT_4DCT_0EX_SCAN1.hdr”, 
“BeforeRT_4DCT_20IN_SCAN1.img”, “BeforeRT_4DCT_20IN_SCAN1.hdr”, 
“BeforeRT_4DCT_20EX_SCAN1.img”, “BeforeRT_4DCT_20EX_SCAN1.hdr”,  

… 

“BeforeRT_4DCT_100IN_SCAN1.img”, “BeforeRT_4DCT_100IN_SCAN1.hdr” 

from the “resample” subfolder of each of the 9 patients “PFS-001”, “PFS-002”, “PFS-004”, “PFS-007”, “PFS-
008”, “PFS-009”, “PFS-010”, “PFS-011” and “PFS-012” into our local folders of these patients.  

(c) Copy the landmark files for the 9 patients from “…\Du_4DCT_Database\lmk” folder into our local 
folders of the 9 patients. 

[Note]: The landmark data contain corresponding landmark locations on 0EX and 100IN phase images 
for each patient. The landmarks on 0EX phase image were obtained using iX software’s automatic 
landmark detection feature, and the corresponding landmarks on 100IN phase image were manually 
labeled by Kaifang. We have to bear with the fact that some automatically detected landmarks are not 
as qualified as we expect them to be. 

Download from 
this link  
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For illustrative purpose in this tutorial, we shall focus on patient “PFS-002”. The folder 
“…\ImageJ\plugins\MVL\PFS-002” will look like the following after copying these files from “lungmech”:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[2] To save memory, we convert 16-bit images into 8-bit (through numerous experiments, I found that 
adjusting brightness and contrast would compensate for the seeming loss of information to the extent 
that no visual difference can be noticed between 8-bit and 16-bit images). So now, we convert the 4DCT 
images into 8-bit.  

Run the ImageJ.exe application and the main panel of ImageJ will show up. Click “File”  “Open” and 
then select, for example, the image “BeforeRT_4DCT_0EX_SCAN1.img” in folder “PFS-002”. 

 

 

 

 

 

 

 



103

 

 

 

 

 

 

 

 

 

The image will be loaded. Then, in ImageJ panel, click “Image””Type””8-bit” and the previously 
opened image volume will be converted into 8-bit. 
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Next, save this 8-bit image into folder “…\ImageJ\plugins\MVL\PFS-002” by clicking “File””Save 
As””Analyze 7.5” and give it a new (and simple) name. For example, we call it “00EX.img”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, close the currently opened image “BeforeRT_4DCT_0EX_SCAN1.img”. When you are prompted 
with the following message, choose “No” so that the original 16-bit image will not be overwritten.  
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Repeat the exact same procedure for the other images “BeforeRT_4DCT_20IN_SCAN1.img”, …, 
“BeforeRT_4DCT_100IN_SCAN1.img”, …, “BeforeRT_4DCT_20EX_SCAN1.img” in folder “PFS-002” and 
name the resulting 8-bit image “20IN.img”, “40IN.img”, “60IN.img”, “80IN.img”, “100IN.img”, “80EX.img”, 
“60EX.img”, “40EX.img”, “20EX.img”. 

[2] Since we only need the automatically detected landmarks on 00EX phase, we shall modify the “csv” 
landmark file into a simpler format. Open the original landmark file with Excel. Copy the three columns 
corresponding to coordinates of landmarks on the “fixed image”, i.e., 00EX phase. Paste these three 
columns into an Excel spread sheet and save as “lmk.csv”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original csv file New csv file 

Save as csv file 
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Now, you can delete all 16 bit images and the original landmark file, and the folder 
“…\ImageJ\plugins\MVL\PFS-002” will be left with the following files: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Software usage]: 

There are three major steps when using this 4D landmarking software to label landmarks on 4DCT data 
sets. 

The first step is to acquire automatically detected landmark on one phase image within the 4D data set, 
preferably the extreme exhale phase, 00EX.  

The second step is to use the “normalization” feature multiple times to label corresponding landmarks on 
another phase within the 4D data set, preferably on the extreme inhale phase, 100IN. 

The third step is to use the “landmark location  linear interpolation” feature to label landmarks on all the 
remaining phases (20IN, 40IN, 60IN, 80IN, 80EX, 60EX, 40EX, 20EX). 

What we have done with the landmark file has taken care of the first step. Now we talk about the second 
and the third step in detail.  
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[0] In the ImageJ panel, click “Plugins”  “Macros” ”Install…”. Navigate to “…\ImageJ\macros” and 
select “RemoveShortcuts.txt” and click “Open”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] In the ImageJ panel, click “Plugins”  “Compile and Run…”. Navigate to “…\ImageJ\plugins\MVL” and 
select “MultiVolLmk.java” source file and click “Open”.  
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[2] In the pop-up dialogue box, input the number of volumes we want to label landmarks on. For our 
current step, just input “2”. The “Directory of images” is our folder “…\ImageJ\plugins\MVL\PFS-002\”. 
Note that you need to enter the full path of the folder containing the images and append “\” at the end 
of the path. The “Interpolation method for zooming” shall be set as “Nearest Neighbor” for our purpose. 

Click “OK”. 

 

 

 

 

 

 [3] In the next pop-up dialogue box, input the file names of the 8-bit images and specify the index of the 
fixed image (4DCT images are labeled by indices 0, 1, 2, …, N-1 inside the program. We need specify to the 
index of the image that will be used as fixed image in the registration/normalization feature). In our case, 
we would use “00EX.img” (the extreme exhale phase) as fixed image and “100IN.img” (the extreme inhale 
phase) as moving image, and we shall set the file names accordingly. Then click “OK”. 

 

 

 

 

 

 [4] The control panel and the display window will be generated.  
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Now, select which images we want to display by checking the checkboxes to the left of the image file 
names and click “Display Volumes” to show the images. 

 

 

 

 

 

 

 

 

 

 

 

 

When displaying image volumes, without specific orientation information, different software may use 
different default orientations. And thus, landmarks on a specific image volume acquired using one 
software may have “flipped” coordinates with respect to landmarks obtained using another software on 
the same volume. The “flip x”, “flip y”, “flip z” and “flip lmk” features were implemented to accommodate 
for this difference. For now, these “flip” features will not be used in our inter-observer experiment. 

We can see the images seem pretty dark, which is not helpful for the landmarking task. To improve the 
brightness and contrast of the image, click “Image””Adjust””Brightness/Contrast…” on the imageJ 
panel and a menu called “B&C” will pop-up. Click “Set” in the “B&C” menu. In the pop-up dialogue, set 
the “Maximum displayed value” to be around “70” and check “Propagate to all open Images” and click 
“OK”. 
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The internal structures of the image will become a lot clearer to see.  

 

 

 

 

 

 

 

 

[5] Next, we will load in the landmarks stored in file “lmk.csv”. Click “Import Lmk From csv/dat ”. In the 
pop-up window, input in the file name “lmk.csv ”and click “OK”.  

  

 

 

 

 

 

 

 

 

 

 

In the control panel, we would notice that the landmarks have been loaded.  
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You can click on the radio buttons to view specific landmarks. You can also input the landmark index and 
click “Go To Lmk!” to visit a specific landmark. 

 

 

 

 

 

 

 

 

 

However, as you may have noticed, in the image display panel, the landmark locations seem weird. Some 
of them are not even in the lung region. This is because the software that generated those automatically 
detected landmarks uses a different default orientation compared to the imageJ software. For this specific 
data set, we need to flip the Y orientation of our images to be compatible with the auto-detected 
landmarks. 

 

 

 

 

 

 

 

 

 

Check the “flip Y” checkbox in the control panel and click “Display Volumes” again. 
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The images will now be displayed with their Y dimension flipped to be compatible with the orientation of 
the landmarks. We can check and see that the landmarks make a lot more sense than previously. 

 

 

 

 

 

 

 

 

[6] Now, we can start labeling landmarks on the 8-bit 100IN phase image. Click on “Provide Corner lmks” 
button on the control panel. A message window will pop up, showing us several groups of indices of 
landamarks located around the corners and boundaries on the 00EX image. 
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You are recommended to label one landmark from each of the groups of indices on the 100IN phase image. 
Some landmarks are easier to label than others, so if it’s hard to find correspondence for one landmark in 
a certain group, just try to find the corresponding location for another landmark in the same group.  You 
can start by clicking on the radio button for one of the landmarks in Group 1, say, landmark #26. You will 
be taken to the location of the #26 landmark on the 00EX image and you will be taken to the “suggested” 
location for the corresponding landmark on the 100IN image.  

 

 

 

 

 

 

 

 

At first, the “suggested” landmark locations will be pretty inaccurate, because it will just be the same set 
of coordinates as the landmark on the 00EX phase. But as you label more and more landmarks and use 
the “Normalization” a couple of times, the suggested landmark locations will be more and more accurate. 

But for now, you need to navigate through the 100IN phase image, and try your best to locate the 
corresponding point with respect to landmark #26 on 00EX phase image. You need to have an anatomical 
view that you are currently focused on. Within this view you can easily traverse “up”, “down”, “left”, 
“right”, “in” or “out” by pressing keyboard buttons “w”, ”s”, ”a”, ”d”, “q” or “e” (you can also scroll the 
middle mouse button to go in and out). You can also switch between different anatomical views by 
pressing “i”, ”j”, ”k” and “l”. The currently focused-on view will have a red box around it. 

When trying to find the corresponding landmark locations, be sure to take all three anatomical views into 
account, and also remember to look at both the standard view and the zoomed view for correspondence. 
Most of the times, it would be impossible to have a perfect match in shape for all three views. So you 
must decide which point is the overall best fit. 

After navigating through the 100IN phase image volume, hopefully you will end up with an ideal location 
to be set as the corresponding landmark location on 100IN for landmark #26.   

Note, once you have clicked a radio button to the left of a landmark index or input a landmark index 
and clicked the “Go To Lmk!” button, you will automatically enter the landmark selection mode. This 
means, if you go to any point in whichever image volume in the image display panel and press “Space 
Bar”, that point will be selected as the corresponding landmark point for that landmark index in that 
image volume. If the location of a landmark index has previously been selected in an image volume, 
and you clicked on another position within this volume and pressed “Space Bar”, then that landmark 
index will be updated to have this new location in this volume. If the location for a landmark index has 
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not been chosen in an image volume, clicking on a location within this volume and press “Space Bar” 
will simply set the location for this landmark index in this volume.    

The following is my choice of landmark #26 on 100IN phase image. You can see that this location achieves 
relatively good match on two of the three anatomical views. But in the middle view (coronal), the shape 
does not match too well. But upon further experiment, you will find that any other point will give even 
worse correspondence. So this location would be our choice. 

 

 

 

 

 

 

 

 

 

Now, press “Space Bar” on the keyboard, and this point will be selected as the corresponding point for 
landmark #26 on 100IN phase image. 
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[7] Next, let’s proceed to another landmark within the second group of “corner landmarks”, say #22. Again, 
the suggested landmark location is less than ideal.  

 

 

 

 

 

 

 

 

 

After navigating through the volume 100IN, we can find the best fit, and press “Space Bar” to select it.  
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Repeat this process, until you have labeled one corresponding landmark from each of the groups of 
“corner landmarks”. 

 

[8] Now is when the magic starts to happen. After you have labeled one corner landmark from each group, 
you can click on the “Normalization” button on the control panel. You will be prompted with a message 
saying that the normalization that tries to align 100IN phase with respect to 00EX phase based on the 
landmarks you have labeled will start. Click “OK” 

 

 

 

 

 

 

 

 

 

 

After a short while, you will be notified that the normalization has finished. Click OK. 

 

 

 

Now, if you watch closely, you would find that the 100IN phase image being displayed has changed a little. 
This is because the normalization feature made the 100IN phase image more similar to the 00EX phase 
image. In general, the suggested landmark location for any further landmarks to be labeled will also be a 
little more accurate, which means you will take less effort to find a corresponding point based on the 
suggested landmark locations. 

[9] Repeat the process in step [7], and label another set of landmarks from the groups. Then use the 
“normalization” feature once again to even better align the 100IN phase image to the 00EX phase image. 

After repeating this process of labeling a few landmarks (around 10) and performing normalization based 
on labeled landmarks for 3 to 4 times, the 100IN phase image would look quite similar to the 00EX phase 
image, and the suggested landmark locations would be quite accurate, meaning you only have to navigate 
through the volume a little until you reach an ideal corresponding point. At this stage, you can ignore the 
provided groups of “corner landmarks” and just label whatever landmarks you want. If you feel the 
suggested location is still not accurate enough, you can perform more normalizations once you labeled 
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more landmarks. If you feel the suggested locations are already sufficiently good, you can just keep on 
labeling the remaining landmarks without using normalization any more. We can see in the figure below, 
that the suggested landmark locations are already pretty good, after performing two normalizations. 

 

 

 

 

 

 

 

 

 

During the landmark labeling process, you can store your labeled landmarks at any time. Click the “export 
lmk” button in the control panel, give a name to the landmark file, and save it in “.txt” format. This way, 
you can label some corresponding landmarks, save your progress and return to the landmarking task 
whenever you want.  

 

 

 

 

 

 

 

 

 

 

 

When you want to resume landmarking, just re-open the software, reload and display the images, adjust 
the brightness and contrast, flip the images in Y direction and import your previously label landmarks. To 
do the import, click the “import lmk” button in the control panel, and input the “.txt” landmark file name 
you previously exported and click OK. Note: don’t use “Import Lmk From csv/dat” for this purpose. 
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[10] In the end, you will have labeled all corresponding landmarks on 100IN and 00EX phase images. 
Next, you need to export the landmarks on these two extreme phases into a txt file, e.g. 
“lmk_extremes.txt”. And close the software. 

[11] Now, we shall label landmarks on the intermediate phases. We will first label all the inhale phases 
and then all the exhale phases. So, re-open the software, but this time choose number of images to be 
6.  
 

 

 

 

 

Fill in the image file names and click OK: 
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[12] Display all 6 images, flip the images in Y direction, and adjust brightness and contrast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[13] Manually modify the previously labeled landmark file “lmk_extremes.txt” by changing the volume 
index of 100IN phase image from “1” to “5”, because the internal image volume index for 100IN phase is 
“5” in current stage.  
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Import the landmark file “lmk_extremes.txt” and you will notice in the control panel, all previous 
landmarks are imported.  

 

 

 

 

 

 

 

Now the display image window will look like this: 
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[14] Click the “Lmk Linear Interpolation” button on the control panel, input the corresponding image 
volume indices of 00EX and 100IN phase images, and click OK. Then, the suggested landmark locations on 
the intermediate phases will be generated. 
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We can clearly see that after using the landmark location linear interpolation feature, the suggested 
landmark locations on the intermediate phases become a lot more meaningful. And you only need to fine-
tune the location a little bit to get the ideal correspondence. 

[15] Finish labeling all the landmarks on all the intermediate phases based on the suggested locations. 

[16] Export the landmarks into file, e.g., “lmk_extremes_inhale.txt”. 

[17] Close the program, load in the intermediate exhale phase images and import the “lmk_extreme.txt” 
landmark file again.  

[18] Label all landmarks on the intermediate exhale phases and export the landmarks into file, e.g., 
“lmk_extremes_exhale.txt” 

Congratulations! You are almost done… 

[10.5] As you may have noticed, the accuracy of the 100IN phase landmarks is very important, 
not only for its own sake but also for labeling landmarks on all other intermediate phases. So, 
it’s necessary to make sure that the corresponding landmarks labeled on 100IN phase is as 
accurate as possible.  

 It’s highly recommended that after you finish labeling the landmarks on 100IN phase and export 
the landmarks into “lmk_extremes.txt” file (steps [1] ~ [10]), you clear the already labeled 
landmarks by clicking “Remove All Lmk For A Vol” button in the control panel. Input the image 
index 0 to remove all landmarks on the 00EX phase. Then, click the “Remove All Lmk For A Vol” 
button again and input image index 1 to remove all landmarks on the 100IN phase.  
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Then check the “Display original image” checkbox for 100IN phase image and click “Display Volume”. 

 

 

 

 

 

 

 

 

 

This will void all the previous normalization attempts to make the 100IN phase image look similar 
to the 00EX phase image, and display the 100IN phase image in its vanilla shape. Now, you can 
import the “lmk_extremes.txt” landmark files and re-check the corresponding landmarks you 
labeled on the original un-deformed 100IN phase image. If any landmark needs to be modified, 
just click on the radio button to the left of the landmark index or input the landmark index and 
click the “Go To Lmk!” button. Then click on or navigate to the modified landmark location and 
press “Space Bar” to update the landmark location. 

Landmarks removed 
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