
University of Iowa
Iowa Research Online

Theses and Dissertations

2011

WvFEv3: An FPGA-based general purpose digital
signal processor for space applications
Brian Thomas Mokrzycki
University of Iowa

Copyright 2011 Brian Thomas Mokrzycki

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/3355

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Mokrzycki, Brian Thomas. "WvFEv3: An FPGA-based general purpose digital signal processor for space applications." MS (Master of
Science) thesis, University of Iowa, 2011.
http://ir.uiowa.edu/etd/3355.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F3355&utm_medium=PDF&utm_campaign=PDFCoverPages

1

WvFEv3: AN FPGA-BASED GENERAL PURPOSE

DIGITAL SIGNAL PROCESSOR FOR SPACE APPLICATIONS

by

Brian Thomas Mokrzycki

A thesis submitted in partial fulfillment
of the requirements for the Master of

Science degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

July 2011

Thesis Supervisors: Professor Thomas L. Casavant
Professor Jon G. Kuhl

2

Copyright by

BRIAN THOMAS MOKRZYCKI

2011

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER'S THESIS

This is to certify that the Master's thesis of

Brian Thomas Mokrzycki

has been approved by the Examining Committee
for the thesis requirement for the Master of Science
degree in Electrical and Computer Engineering at the July 2011 graduation.

Thesis Committee: __________________________________
 Thomas L. Casavant, Thesis Supervisor

 Jon G. Kuhl, Thesis Supervisor

 William S. Kurth

 ii

2

To my Dad – If you had not been encouraging me to constantly test the boundaries of
my capabilities I would have never become the person I am today. Thank you.

To my Mom – Your loving support and kind demeanor will continue to be sorely

missed. Rest in peace.

I am now able to say “I’m finally finished”

 iii

3

Jorge Cham
Piled Higher and Deeper - ”Happenings outside”

 iv

4

ACKNOWLEDGMENTS

I have to thank my parents, who have always supported me, provided wisdom,

and helped me overcome numerous obstacles throughout my life. I would have never

been able to achieve what I have without you. From the very bottom of my heart, thank

you.

I’d like to thank the entire UI Radio and Plasma Wave group. It’s been six years

since they offered me a wonderful opportunity to join the team and build space hardware

destined for Jupiter (has it been that long?). Now I can see why you all laughed at me

when I said “Oh, that’s plenty of time.”

 Specifically I would like to thank William Robison, Terry Averkamp, William

Kurth, and Don Kirchner of the Radio and Plasma Wave group. The last six years would

have been far more difficult without you. Your confidence, wisdom, guidance, and

example have taught me far more than you realize.

To Jaimee Carpenter, who has been encouraging me to finish my thesis for years.

Your efforts to keep me focused, especially during these final months, have been crucial

and have not gone unnoticed.

Bio::Neos Inc. founders Mike Smith and Steve Davis. Your friendship and

guidance over the years has been vital. I respect you both very much and wish you a

happy and fulfilling life.

I would also like to thank Dr. Thomas L. Casavant and Dr. Jon Kuhl for their

support, feedback and input. Tom, you saw promise in me, treated me as a friend and

stuck with me through all these years, thank you.

 v

5

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

LIST OF EQUATIONS ... x

CHAPTER

 I. INTRODUCTION AND BACKGROUND ... 1!

Introduction .. 1!
Waves Instrument ... 2!
Field Programmable Gate Arrays ... 7!

 II. PROBLEM STATEMENT .. 11!
 III. METHODS ... 14!

System Architecture ... 14!
WvFEv3 ... 16!

Instruction Set Architecture .. 18!
Control Unit ISA .. 20!
Floating Point Unit ISA ... 20!

Microarchitecture .. 22!
Concurrent Dual Pipelines ... 22!
Cache Architecture ... 24!

Hazards and Programming .. 26!
 IV. RESULTS ... 32!

Physical Resources ... 32!
Performance .. 35!

Critical Path ... 35!
FFT Performance .. 36!
Power Utilization .. 39!

 V. DISCUSSION .. 41!

Space Qualification .. 41!
Performance .. 42!
Flexibility ... 43!
Future Work ... 46!
Conclusion .. 48!

APPENDIX

 A. WVFEV3 INSTRUCTION SET ARCHITECTURE 49!
 B. WVFEV3 SOFTWARE ALGORITHMS .. 63!

 vi

6

BIBLIOGRAPHY ... 80!

 vii

7

LIST OF TABLES

Table 3-1: Series of operations needed by the host processor to configure the WvFE
SoC co-processor for program execution .. 17!

Table 4-1: Profile of the branch prediction and caching scheme performance during
FFT execution. ... 39!

Table 5-1: WvFEv3 supported digital signal processing algorithms 44!
Table 5-2: WvFEv3 supported external core software drivers .. 45!
Table 5-3: WvFEv3 supported software mathematical functions 45!
Table A-1: WvFEv3 assembly constructs for control unit instructions 49!
Table A-2: WvFEv3 assembly constructs for floating point unit instructions 50!
Table A-3: WvFEv3 conditional flags ... 51!
Table A-4: WvFEv3 fault flags .. 52!
Table A-5: WvFEv3 program flow control instructions .. 53!
Table A-6: WvFEv3 condition flag manipulation instructions .. 55!
Table A-7: WvFEv3 load and store instructions .. 56!
Table A-8: WvFEv3 Integer arithmetic instructions .. 57!
Table A-9: WvFEv3 numerical conversion and approximation instructions 59!
Table A-10: WvFEv3 butterfly address calculation instructions 60!
Table A-11: WvFEv3 floating point unit instructions ... 61!

 viii

8

LIST OF FIGURES

Figure 1-1: Simple illustration of the magnetosphere and a geomagnetic tail
reconnection event. ... 4!

Figure 1-2: Dual real FFT processing flow ... 6!
Figure 1-3: FPGA Design flow methodology ... 8!
Figure 2-1: Relative distribution of DSP solutions based on cost, performance, and

flexibility .. 13!
Figure 3-1: Architectural description of a multi-processor DSP system with WvFE

SoC co-processors .. 15!
Figure 3-2: System architecture of the WvFE SoC co-processor 16!
Figure 3-3: Description of WvFEv3 Instruction bundle formats 19!
Figure 3-4: A logical description of the virtual table translation unit 21!
Figure 3-5: Microarchitecture of the pipelined WvFEv3 processor 23!
Figure 3-6: Direct mapped memory block caching scheme .. 25!
Figure 3-7: Read after write hazards of the WvFEv3 pipelines ... 27!
Figure 3-8: Flushed instructions from function calls and returns 28!
Figure 3-9: Flushed instructions from branch prediction .. 29!
Figure 3-10: Write after write hazards of the mismatched WvFEv3 pipelines 30!
Figure 4-1: RTAX2000S R-cell utilization of the WvFE SoC co-processor 33!
Figure 4-2: RTAX2000S C-cell utilization of the WvFE SoC co-processor 33!
Figure 4-3: RTAX2000S internal RAM block utilization of the WvFE SoC co-

processor .. 34!
Figure 4-4: Number of execution cycles utilized by the WvFEv3 processor to

execute a complex FFT of various resolutions ... 36!
Figure 4-5: Execution time for the calculation of a real radix-4 FFT for various

resolutions. .. 38!
Figure 4-6: Power profiles for various modes of processor operation during

program execution. ... 40!
Figure B-1: Complex radix-4 FFT in WvFEv3 assembly .. 63!
Figure B-2: Complex FFT result reversal in WvFEv3 assembly 69!

 ix

9

Figure B-3: Simultaneous real FFT result unscramble in WvFEv3 assembly 73!

 x

10

LIST OF EQUATIONS

Equation 4-1: Equations to calculate the number of cycles needed to perform
various steps in the computation of real FFTs .. 37!

 1

CHAPTER I

INTRODUCTION AND BACKGROUND

Introduction

The Waves instruments aboard the Juno and Radiation Belt Storm Probe (RBSP)

spacecraft represents the next generation of space radio and plasma wave instrumentation

developed by the University of Iowa’s Radio and Plasma Wave group [1, 2]. The

previous generation of such instruments on the Cassini [3] spacecraft utilized several

analog signal-conditioning techniques to compress and condense scientific data.

Compression techniques are necessary because the plasma wave instruments can often

generate significantly more science data than can be transmitted using the narrow

telemetry channel of the hosting spacecraft. The next generation of plasma wave

instrumentation represents a major shift of analog signal conditioning functionality to the

digital domain, drastically reducing the amount of power and mass required by the

instrument while simultaneously further condensing scientific data, increasing the

precision of plasma emission measurements, and adding flexibility.

The digital transition of Waves instruments relies heavily on available integrated

circuit technologies capable of performing signal processing tasks in real time.

Performance is not the only consideration, however, as the digital system must also

operate in a space environment with no atmosphere, wide temperature variations, and

radiation exposure for the lifetime of the mission. Architecturally speaking, the ideal

solution would also be flexible enough to implement a wide variety of digital signal

processing techniques for changing scenarios during space flight with the additional

benefit of potentially using such a system in missions beyond Juno and RBSP.

An attractive solution to these goals is the use of a general-purpose digital signal

processor that combines the programmatic approach of a traditional central processing

 2

unit (CPU) with optimized circuitry/instruction set for signal processing. This approach

has been used numerous times before in commercial products available in the consumer,

military, automotive, and industrial sectors [4-7]. However, due to the rigors of space

flight and qualifications set forth by the National Aeronautics and Space Administration

(NASA) [8], these solutions are not adequate for reliable operation in a space

environment. This has resulted in a lack of adequate options to address the needs of the

radio and plasma wave instruments aboard the Juno and RBSP spacecraft.

The solution presented in this thesis is to utilize a low-cost radiation tolerant field

programmable gate array (FPGA) that serves as a space qualified implementation

platform for a custom designed general-purpose digital signal processor, called the

WvFEv3. The design of the WvFEv3 processor is unique among traditional FPGA

implementations due to its generic processing flow, thus allowing a wide variety of

algorithms to be implemented programmatically without the need to reprogram the FPGA

during a mission. This approach addresses the performance and flexibility needs of the

Waves instruments in its continuing goals to reduce mass and power while

simultaneously increasing the precision and compression ratios of science products.

The realized WvFEv3 processor has met and surpassed the requirements of the

Waves instruments and now resides aboard the Juno and RBSP spacecraft, awaiting

launch to their respective destinations.

Waves Instrument

The Physics and Astronomy Department at the University of Iowa (UI) has been

studying naturally occurring magnetospheric phenomena for over fifty years. Space borne

research first began at the dawn of the space race with instrumentation aboard the United

State’s first satellite, Explorer I, developed by Dr. James Van Allen and his team at the

 3

UI. The 18-pound satellite was responsible for the first major discovery of the Space Age,

the Van Allen radiation belts [9]. These torus regions of energetic particles are the result

of the Earth’s stable magnetosphere trapping charged particles in two distinct belts of

radiation. The inner radiation belt is composed of high concentrations of energetic

protons that are believed to be the result of beta decay of neutrons created by cosmic ray

collisions with atoms in the upper atmosphere [10]. The outer radiation belt is believed to

be largely made up of electrons produced by inward radial diffusion and local

accelerations caused by the energy transfer of whistler mode plasma waves to radiation

belt electrons [11]. Both of these dynamic regions of space produce large exposures of

radiation that could impact space systems and the health of humans traveling through

them.

One future mission, the Radiation Belt Storm Probes (RBSP) [12] will continue

the investigation of the radiation belts to better understand the Earth’s magnetosphere,

processes that generate hazardous space weather and how these processes could impact

space travel. RBSP is part of NASA’s Living with a Star program and is composed of

twin satellites that will travel along an elliptical orbit that repeatedly intersects both

radiation belts throughout their mission. One instrument aiding this investigation is the

UI’s Waves instrument as part of the Electric and Magnetic Field Instrument Suite

(EMFISIS) [2]. The Waves instrument will assistant in the science goals of RBSP by

providing measurements to better understand plasma wave origin.

 4

Figure 1-1: Simple illustration of the magnetosphere and a geomagnetic tail reconnection
event.

The radiation belts are not the only natural phenomenon occurring as the result of

plasmas trapped by the magnetosphere. The aurora borealis, more commonly known as

the northern lights, are thought by some to be the result of geomagnetic tail reconnection

events that accelerate particles along magnetic field lines toward the magnetic poles of

Earth. In the case when the accelerated particles have sufficient velocity parallel to the

magnetic field, the physical location of the magnetic reflection point is pushed into the

ionosphere resulting in the bombardment of the ionosphere’s gas molecules with charged

particles. The result is the emission of light from these molecules in an assortment of

colors known as the aurora borealis. This effect has also been observed at several other

planets in the solar system including Jupiter and Saturn.

Another future NASA mission, Juno, will provide the first possible direct

measurements of these auroral regions at Jupiter. After its launch in 2011, the Juno

spacecraft will cruise to Jupiter over a five-year period and reach orbit along a highly

 5

elliptical orbital path that will pass directly over both poles of the planet. Its primary

science objective is to characterize the formation and internal structure of the planet

through the measurement of multiple natural phenomenon [13]. The Waves instrument

will aid in this objective by providing radio and plasma wave measurements of the

auroras and other plasma wave features, allowing for a better characterization of Jupiter

and its polar magnetosphere [1].

Measuring electromagnetic emissions in space plasmas over a wide range of

frequencies allows for an understanding of the basic properties of the plasmas and

perturbations within them that occur as a result of a wide range of interactions with the

charged particles comprising the plasma. For example, measuring emissions at two

fundamental frequencies, the electron plasma frequency and the electron cyclotron

frequency, provides information about the density of the plasma and the magnetic field in

which it is embedded. Measurements of these fundamental frequencies as well as

emissions at other frequencies are received and conditioned by the radio and plasma

wave instrument through on-board antennas and receivers. In recent implementations of

the instrument, the signal is compressed by either transforming the signal to a coarse

spectrum using analog circuitry or by compressing a digitized representation of the

measured waveform. In either case, compression is a necessary operation due to the high

data volume the instrument can generate relative to the narrow telemetry link of the

spacecraft.

The next generation of radio and plasma instrumentation aboard the Juno and

RBSP spacecraft, known as the Waves instrument in each instance, represents a

significant shift of signal processing functionality towards the digital domain when

compared to previous incarnations found on Voyager 1 & 2, Geotail, and Cassini [3, 14-

16]. One of the most effective methods for reducing the data requirements for

transmitting science data is through spectral analysis. Previous incarnations achieved this

by utilizing analog circuitry to transform the received signal into a coarse power

 6

spectrum. The same result can be achieved in the digital domain by utilizing a digital

processor and the Fourier transform. Several benefits are realized when moving to a

digital solution; mass and power needs of the instrument would be reduced while

simultaneously increasing the precision of the resultant compressed spectrum.

Furthermore, a digital processing solution can also be utilized to implement further signal

processing techniques such as binning and averaging of multiple spectrums to further

compress science data.

The cornerstone of the analog-to-digital processing transition is based upon the

well-understood time to frequency domain transform called the Fourier transform. The

Waves instrument will make heavy use of this operation and any performance advantages

among implementations is highly beneficial. One of the most commonly used Fourier

transform implementations found in digital systems is the radix-4 complex FFT or fast

Fourier transform which extensively exploits the use of common partial products between

point computations to drastically reduce the number of arithmetic operations. A radix-4

complex FFT dataset does make an assumption about the size of the input vector where it

must conform to a base-four number, i.e. 4, 16, 64, 256, etc.

Figure 1-2: Dual real FFT processing flow

To further reduce arithmetic complexity, a second assumption can be made if the signal

input is real only, allowing for the simultaneous transformation of two real signals with a

single complex FFT operation. In this case the performance of the real FFT operation can

 7

be nearly doubled by modifying the input of the complex FFT operation to include two

real signals, one in the real part and the other in the complex part of the input, seen in

Figure 1-2. Once the complex FFT operation is complete, a post-processing step is

required to ‘unscramble’ the real results from one another [17]. The operations needed to

perform signal-processing techniques in the digital domain are all well understood; the

only requirement is a digital processing system capable of performing these operations.

Field Programmable Gate Arrays

Space qualified integrated circuits provide a key technology for enabling the

transition of functionality from the analog domain to the digital domain by providing

high-speed logic components for implementing digital processing systems. The specific

nature of the space environment exposes integrated circuits to non-traditional

environmental extremes in temperature, vacuum, and radiation exposure. High-energy

ions or electro-magnetic radiation striking a sensitive node in an integrated circuit, such

as a flip-flop or memory cell can result in a state change of the logic element called a

single event upset (SEU). SEUs can cause a processor to exhibit peculiar behavior, as the

state of operation is no longer valid leading to unpredictable actions. One part of

qualifying an integrated circuit for spaceflight requires the design to be capable of

mitigating SEUs through gate design and tolerating SEU effects through logic design.

Field programmable gate arrays (FPGAs) provide one possible technique for

implementing integrated circuit designs for spaceflight. FPGAs are a flexible integrated

circuit containing programmable logic components and a hierarchy of reconfigurable

interconnects allowing the logic components to be connected in a wide variety of

configurations. The programmable ‘sea of gates’ allow a designer to implement anything

from a simple logic circuit, to a sequential circuit, to more complex functions such as a

 8

microprocessor. A radiation tolerant FPGA incorporates additional features into the gate

design of the logic components to detect and mitigate SEUs asynchronously [18].

The design and implementation of an FPGA circuit begins with the definition of

the intended function in a high-level hardware description language (HDL) such as

VHDL or Verilog. The HDL provides a definition of the functionality intended, whether

it’s a bus interface, a state machine, or a processor pipeline. The HDL by itself is only

useful for performing a high-level simulation of the intended design and must be

transformed several times before it’s loadable into an FPGA device. The first step, called

synthesis, is the transformation of high-level constructs in HDL to specific resources the

FPGA provides. These can either be basic logic gates such as AND, OR, and XOR gates

or higher-level structures such as 1-bit adders or 2-input multiplexers.

Figure 1-3: FPGA Design flow methodology

Additionally, the synthesis step also connects these resources together to form a net-list

that is logically equivalent to the high-level HDL description. The final step of the design

flow concludes with the ‘place and route’ of the synthesized net-list. Each resource

defined in the net-list is given a location on the FPGA die and then connected together

using the FPGA routing infrastructure. Once this process is complete a programming file

 9

representing the original HDL design is generated and can be used to program the

specific FPGA family and model selected during the design flow.

FPGA designs are typically referred to as intellectual property cores (IP cores),

which are further sub-categorized into three groups, soft IP cores, firm IP cores, and hard

IP cores. A soft IP core is a logic design that is described as HDL source and still needs

to run throughout the entire design flow before being FPGA loadable. A soft IP core

represents the most flexible description of the design as it can be targeted for a wide

variety of FPGA devices; this is analogous with high-level software source code. In the

next level down, the firm IP core is represented by the net-list generated post synthesis.

This definition can be implemented in any device in one FPGA family; this would be

comparable with assembly code for a particular processor family. Finally, a hard IP core

is the product created post ‘place and route’ and represents a hardwired implementation

of the design that is specific to a particular FPGA family and model. The hard IP core

representation is most similar to a pre-compiled software executable where it is very

difficult to reverse engineer the design.

The verification of an FPGA design can be done at several levels throughout the

design flow. The lowest fidelity verification is called functional verification; this is

performed when the high-level HDL description of the design is simulated in a logic

simulator, such as ModelSim or Active-HDL. This level of verification only verifies that

the HDL representation logically represents the function intended. Physical effects such

as wire delays, pad delays and gate delays are not included at this level of simulation. To

achieve this level of detail the design must first pass all the way through the design flow

to ‘place and route’. At this point enough information is known about the gates and

interconnects that delays between various components can be calculated. Since this level

of simulation most accurately represents the physical device it is called physical

simulation. Once functionality has been verified in physical simulation a device may be

programmed and unit level testing is used to continue the verification effort. The most

 10

rigorous of these efforts is thermal vacuum testing where the device is expected to

operate flawlessly while exposed to extreme temperature variations under vacuum.

 11

CHAPTER II

PROBLEM STATEMENT

Digital signal processing (DSP) aboard the Juno and RBSP space exploration

satellites presents a number of unique constraints upon performance, flexibility, and

space qualification where no previously known solution is suitable. To resolve this issue

a novel approach is taken; the design and implementation of a general-propose digital

signal processor targeted for a radiation tolerant field programmable gate array (RT-

FPGA).

Several commercial solutions exist for digital signal processing (DSP)

applications with varying levels of performance and flexibility. The use of an off-the-

shelf general-purpose central processing unit (CPU, provides a high-level of flexibility

through the use of an instruction set to program a wide variety of application programs.

Because such a CPU is general-purpose in nature, it can be used to implement a wide

variety of application programs including DSP algorithms. An assortment of space

qualified CPUs exist for both FPGAs and application specific integrated circuits (ASICs)

[19, 20], however these CPUs typically have inadequate clock rates or instruction flow

inefficiencies that limit DSP performance when compared to contemporary CPUs. As a

result, they cannot meet the minimum performance requirements of the Waves instrument

aboard the twin RBSP satellites where spectral structure is expected on 30 millisecond

time scales. Due to this constraint, the DSP sub-systems in each of these instruments

require a processor capable of calculating, at minimum, ninety-six real 1024-point

Fourier transforms per second in single precision floating-point format, or one every 10.4

milliseconds. No known space qualified CPU is capable of a performance high enough to

meet this requirement.

 12

Application specific logic (ASL) blocks provide another commercial option that

can meet the minimum performance requirement of RBSP. However, their relative

inflexibility when compared to CPUs creates additional obstacles associated with

integration and flight operations. A DSP ASL performs a specific DSP task quickly and

efficiently through the use of a custom circuit inside an FPGA or ASIC [21]. Due to the

highly specialized nature of ASLs they are incapable of performing any other operation

than the specific one they were designed to perform. This typically is not an issue unless

it’s difficult or infeasible to simulate the exact operational environment in which the ASL

is to be deployed, such as with satellites exploring uncharted regions of space. These

unknowns may lead to a situation where the alteration a DSP operation(s) would be

beneficial or even critical; for instance, adaptively cancelling solar panel switching noise.

Although FPGAs are reprogrammable and could potentially alter DSP operations, the

environment of space flight typically restricts this activity resulting in an ASL

implementation that is rigid and static. This static property makes ASL implementations

an unattractive solution for this application.

ASIC designers have already faced the issues of flexibility and provided a

solution through the design of a general-purpose DSP processor (DPU). The DPU

marries the programmatic control of a CPU with specialized instructions and circuits as

seen in ASLs. This solution represents a compromise between performance and

flexibility; a DPU sacrifices a portion of the flexible features of a CPU to gain additional

DSP performance closer to that of an ASL. As seen in Figure 2-1, a vendor supplied DPU

in an ASIC would provide the lowest cost, highest performance acceptable solution, but

no space qualified part was available during the design phase for the missions supported

by this thesis work. A DPU implemented in an FPGA would provide the next logical

solution, but no development effort is known previously to this work that has addressed

this possibility -- space qualified or otherwise.

 13

Figure 2-1: Relative distribution of DSP solutions based on cost, performance, and
flexibility

The central issue is that at the time of design, no space qualified DSP solutions

existed that were able to meet the performance and flexibility goals described. A novel,

cost-conscious approach would be to utilize a radiation tolerant FPGA to implement a

general-purpose DSP processor. This would provide a solution that concurrently

addresses the constraints of performance, flexibility, and space-worthiness. Presented in

this thesis is the WvFEv3 processor, a general-purpose DSP processor targeted for

Actel’s RTAX2000 radiation tolerant FPGA.

 14

CHAPTER III

METHODS

System Architecture

The complexity of autonomously managing tasks, telemetry, and system health in

space systems is substantial. Often, the simplest solution is to utilize a general-purpose

processor coupled with a real-time operating system to form the foundation of the system.

This solution provides the flexibility to alter instrument operations during flight and a

hardware interface to supplement the system with additional resources, such as memory

devices, serial interfaces, data collection systems and co-processors. The WvFE SoC co-

processor is one such example; it extends the host processor’s capabilities with additional

resources to perform data collection and DSP related tasks.

Seen in Figure 3-1, the WvFE SoC co-processor is not just the WvFEv3 processor

core itself, but a complete ‘system on a chip’ (SoC) comprised of several cores and

interfaces. Storage for application code, waveforms, and processed products is provided

via an independent local memory; architected in a manner to isolate the memory

bandwidth needs of the co-processor from the host processor’s bus. The host processor is

able to read and write to the WvFE SoC co-processors internal configuration registers and

the entirety of local memory via the host bridge. Finally, the analog-to-digital (A/D)

controllers in the co-processor provide waveform-capturing capabilities on tight time

boundaries.

Scaling of the system to provide additional computational resources is possible

due to the bus architecture of A/D subsystem and the independent local memories for

each co-processor. Figure 3-1 shows that the co-processor configuration can be replicated

several times until a limitation is either found in the bandwidth of host processor bus or

the A/D subsystem bus. In this configuration, the host processor interfaces to each co-

 15

processor as a separate address mapped resource, and since all co-processors are identical

any of them may be selected to perform the needed operations.

Figure 3-1: Architectural description of a multi-processor DSP system with WvFE SoC
co-processors

From this point forward, the emphasis of discussion will be placed upon the

WvFEv3 processor core. Specific details, such as those related to the peripheral cores and

interconnections of the WvFE SoC co-processor architecture is only described when

needed.

 16

WvFEv3

The WvFEv3 is a synthesizable, programmable processor soft IP core with an

emphasis on performing DSP related tasks quickly and efficiently in IEEE 754 single

precision floating point. The term WvFEv3 refers to ‘Waves FFT Engine’ and represents

a relic of convention that emphasizes a misnomer of the architectures’ capabilities, as the

design is far more capable than performing just FFTs. For this reason the production

release is referred to as WvFEv3, representing the version of release and a shortening of

the ‘Waves FFT Engine’ convention. Superseding version two, the design of the WvFEv3

further optimizes the instruction set architecture (ISA) and microarchitecture while also

implementing fault tolerant features. In additional to these optimizations, the secondary

goal of the ISA and microarchitecture is to keep gate resources minimal when it does not

adversely affect performance, due to resource limitations of the FPGA target.

Figure 3-2: System architecture of the WvFE SoC co-processor

 17

The WvFEv3 processor is a modified Harvard architecture machine, which

logically uses several address spaces for instructions, data, input/output, and ‘virtual

tables’. Each address space utilizes a separate interface for fetching data, therefore

increasing the total amount of potential data bandwidth available to the processor core.

This configuration also makes implementing a caching structure more convenient as each

interface can utilize a different caching scheme depending on its unique accessing

patterns. In the physical implementation, however, the various interfaces are time

multiplexed to a single local memory using external arbitration logic due to pin

limitations of the physical package.

Application code for the WvFEv3 is simple in nature and similar to that of

general-purpose processors. Applications contain a series of consecutive instructions

performing small steps to achieve a larger function. These functions can then be

performed serially using calls from a higher-level main function; such as performing an

A/D capture, then a FFT on the capture, then binning the results. Executing an

application typically follows these operations:

Table 3-1: Series of operations needed by the host processor to configure the WvFE SoC
co-processor for program execution

Step Operation

1 The host processor loads application code into WvFEv3 local memory

2 The host processor writes the start address of the loaded application to WvFEv3’s

program counter

3 WvFEv3 begins fetching and executing instructions until a halt instruction or a fault is

encountered

4 Upon completion, the WvFEv3 signals the host processor

 18

Since the WvFEv3 is considered a co-processor, there has been no attempt to incorporate

features in the ISA to provide operating system support, such as interrupt handling or

context switching.

The next sections of this chapter will discuss details of the instruction set

architecture and microarchitecture in more detail, followed by a discussion of instruction

flow considerations.

Instruction Set Architecture

The WvFEv3 instruction set is an example of an explicitly parallel instruction

computing (EPIC) paradigm, utilizing a very long instruction word or instruction bundle

to group multiple instructions in an attempt to exploit instruction level parallelisms. The

EPIC paradigm gives the programmer or compiler complete control over how

instructions are allocated to the various functional units inside the WvFEv3 core, reducing

complexity during instruction dispatch, but at the cost of added complexity on the

programmer or compiler.

An instruction bundle contains two instructions that are packed into one fixed 64-

bit word, one is allocated to the control unit (CU), fixed at 42-bits long, and the second is

allocated to the floating-point unit (FPU) using the remaining 22-bits. Each instruction

pair is executed lock step and in parallel by each of the logical execution units. Each unit,

the CU and FPU, operate on a unique ‘reduced instruction set computing’ (RISC) like

sub instruction set tailored to the types of operations they are responsible for. Each of the

sub-ISAs perform register to register operations; the CU ISA incorporates full access to

all sixty four 32-bit registers in the register file using 6-bit address fields (Rd, Ra & Rb),

where the FPU ISA has limited visibility by only allowing access to the upper 32

registers with 5-bit address fields (Rz, Rx, & Ry). Since the sub-ISAs share access to the

 19

register file, they are not mutually exclusive data-wise, and scheduling of sub-instructions

must adhere to certain rules to avoid hazards. Other fields in the instruction bundle

include a control unit operation code (Cop), a floating point unit operation code (Fop), a

virtual table address (Vt), and an 18-bit or 24-bit immediate constant (Imm18, Imm24). For

a complete listing and description of all instructions and formats for both execution units

please refer to Appendix A.

Figure 3-3: Description of WvFEv3 Instruction bundle formats

 20

Control Unit ISA

The control unit is a logical execution unit that performs integer based arithmetic

and programmatic operations. Its primary purpose is to move data in and out of the

processor, in an attempt to keep the FPU unit performing useful operations. To this end,

the CU ISA incorporates store/load instructions, various integer arithmetic instructions,

bitwise operators, program control flow instructions, and a handful of special butterfly

address calculation operations specifically designed for FFT execution. Additionally, the

CU ISA also implements instructions for approximating reciprocal and square roots in

floating point, as seed values to Newton-Raphson convergence functions.

The control unit’s role also extends to managing the state of the processor core;

enumerated states include idle, run, sleep, and error. Most of these states are self-

explanatory, with the exception of sleep state, invoked by the ‘sleep’ instruction. It

represents a low power processor state, much like the idle state, but is polling for an

external event to ‘wake’ it up. An event is synonymous with an asynchronous interrupt,

but the response from the processor is primitive in nature, it simply transitions from sleep

to the run state and continues executing where the program counter left off. The sleep

state is useful when the WvFEv3 processor has set up an external activity, such as an A/D

capture, and must wait for the data to become available to execute the next task.

Floating Point Unit ISA

As is obvious from its name, the FPU performs floating-point arithmetic. The

multiply accumulate operation, being particularly well suited to DSP-related tasks, forms

the foundation from which supplemental operations are derived. Addition, subtraction,

 21

multiplication, and multiply-decrement are all implemented through the toggling of

operands into the fused multiply accumulate block via op-code decoding.

In addition to floating-point operations the FPU ISA also incorporates a unique

feature for accessing non-registered data, called virtual tables. A virtual table is a method

of address translation to blocks of local memory with the goal of increasing data

throughput to the FPU and reducing the memory requirements on local memory for

storing pre-computed functions, cyclic ones in particular.

Figure 3-4: A logical description of the virtual table translation unit

At the heart of the virtual table concept is the table address translation unit or

TAU. The TAU reads one of the eight virtual table descriptors and an offset value

referenced by the executing instruction. It then performs a translation on the offset to

 22

fetch the requested piece of data from local memory and apply any transformation on the

data. The virtual table descriptors provide location, size, and orientation of the physical

buffer being referenced and whether the fetched data needs to be altered. Additionally, in

the case of cyclic functions, such as (co)sine, the descriptor also holds function polarity

and fractional representation of the physical buffer. To illustrate the concept of virtual

tables, imagine a full sine wave that is segmented into four equal portions. Any segment

is equivalent to any other, just inverted or rotated, and in essence the entire sine wave can

be represented by just one segment if the appropriate rotations and inversions are applied.

This is exactly the function of the TAU, to perform the conversions necessary to

represent cyclic functions in a fraction of the traditional memory requirements.

Microarchitecture

The WvFEv3 microarchitecture is a direct extension of the duality imposed by the

ISA specification. It employs two execution flows, one representing the control unit and

the other representing the floating-point unit, each operating on their respective sub-ISAs.

Detailing each flow further is a discussion of the pipelined design, followed by a

description of the caching architecture, and finally considerations in instruction flow.

Concurrent Dual Pipelines

As can be seen in Figure 3-5, the microarchitecture is centered about the register

file, with a single pipeline beginning with instruction fetch that eventually diverges into

two execution flows. The left side represents operations defined by the CU ISA and the

right side represents operations defined for the FPU ISA. Also illustrated is the

mismatched depth of each pipeline, CU operations are typically simpler in nature,

 23

requiring fewer stages than the FPU. Physically, the CU is a four-stage pipeline, and the

FPU is a seven-stage pipeline resulting in two instructions executing every machine

cycle.

Instruction execution for both units begins when the next program counter is

calculated in the instruction pre-fetch stage. The program counter is presented to the

instruction interface to fetch the needed instruction. The interface is 64 bits wide resulting

in one instruction bundle fetch per transaction. The fetched instruction bundle is passed to

the operand pre-fetch stage, which decodes the instructions and presents up to six

possible register addresses to the register file. Finally, the register file fetches the

appropriate data and routes it to the next stages of the divergent pipelines.

Figure 3-5: Microarchitecture of the pipelined WvFEv3 processor

The control unit continues execution in the next stage by calculating addresses for

memory and I/O accesses, or performing the first stage of a more sophisticated integer

 24

operation. The following stage finishes the interface access or integer operation and

stores the result, if needed, back to the register file.

The floating-point unit execution follows a similar path, beginning with a table

address calculation. The fetched table values are passed, along with operands from the

table pre-fetch stage to the next stage. The denormalize, multiply, accumulate, and

normalize stages all follow, representing a complete floating point multiply-accumulate

operation. Addition, subtraction, and multiply all follow the same pipeline flow, the only

difference being how operands are selected and manipulated. The final stage is shared

between the normalization step and write back of the result to the register file.

Cache Architecture

The WvFEv3 microarchitecture implements several interfaces for accessing data;

the instruction, table, data, I/O interfaces. Due to the pipelined nature of the design, it is

now theoretically possible to request multiple memory locations per machine clock. The

gains in performance can only be attained when data is provided to the processor core in

a timely manner, otherwise the processor must stall and wait for the data to become

available. To alleviate the demand on local memory, a local cache is used on the

instruction and table interfaces for data items that are repeatedly accessed.

Accessing data items from the table or instruction interface is typically done in a

spatially localized manner. The table interface, for instance, will generate physical

addresses for a virtual table that could be up to 4096 consecutive values in size. While the

instruction interface, in areas of high repetition (common for DSP), will execute code out

of a series of consecutive locations in memory. Since the data accesses are well

understood for the applications intended, a simple but appropriate caching scheme is

adopted, a direct-mapped cache.

 25

The instruction cache (I-cache) is implemented as a 64-bit by 1024 entry direct-

mapped cache utilizing a block size of 128 entries. This allows up to eight different

segments of consecutive code to be cached concurrently. The table cache, logically

shown in Figure 3-6, is larger at 32-bit by 4096 entries and a block size of 512, again this

allows for eight different segments of consecutive table data to be cached concurrently,

reflecting the eight virtual table descriptors available.

The FPGA fabric contains static RAMs that are used to implement the caching

architecture; these internal static RAMs are not protected against SEU effects like the

external local memory. The external local memory is hardened enough against radiation

that SEUs will be very rare in Earth and Jovian orbits [22].

Figure 3-6: Direct-mapped memory block caching scheme

 26

To effectively utilize the FPGA’s static RAMs for cache, a parity check and reload

scheme was adopted. When the processor requests a line of cache, pre-computed parity

bits are verified and if a mismatch is encountered, the processor is stalled while the cache

re-fetches the affected line from local memory. In this way, the processor can continue

executing without having to fault due to an SEU in the cache structure.

Hazards and Programming

Increasing performance through a pipelined microarchitecture, as seen in a

previous section, can drastically increase performance but comes at the cost of added

complexity when scheduling and executing instructions due to various hazards. To

minimize the impact of these hazards, several attempts have been made to partially

alleviate their effects during execution flow.

The first of these hazards is due to the pipeline’s multi-stage separation between

operand fetching and the writing back of results, leading to hazards known as ‘read after

write’ (RAW) hazards. A RAW hazard is the result of data dependent operands in an

instruction being read before these dependencies have been fulfilled by the write back of

results from previous instructions in the program flow. To avoid this hazard the

dependent instruction must read its operands after the results write back from previous

instructions. The CU has effectively two stages separating the operand fetch and write

back stage of the result, leading to a two slot exposure to a RAW hazard. The FPU

suffers the same issue, except the operand fetch and write back stages are separated not

by two stages but by five stages, leading to a five-slot exposure. To partially alleviate the

exposure to RAW hazards, result forwarding is implemented in the register file to route

the results being written back directly to requesting instructions in the operand fetch

stage. This cuts out the cycle needed to commit the result to the register file before

 27

reading it back, resulting in a RAW exposure reduction in the CU to 1 slot and in the

FPU to 4 slots. Avoiding the rest of the RAW hazards is the responsibility of the

programmer. These exposed slots should be filled with useful instructions or if not

possible, NOPs, as seen in Figure 3-7.

Figure 3-7: Read after write hazards of the WvFEv3 pipelines

Control flow instructions such as calls, returns, and branches present their own set

of unique challenges. In the case of a call instruction, the data needed to compute the new

program counter is encoded in the instruction bundle, but this does not become available

until the after the instruction fetch stage. This means that the pipeline has fetched one

invalid instruction directly after the call instruction; this instruction is automatically

!"#$%"&'(#)$ *&"+$)#,'-")#$'(#)$
. !"#$%&'()*""#)%&)+&)(
/ ,$!#)-&$(&'()./!#)0&)1&)2
0
1 ,/3#$0&)-&'1).*4#)5&)-&)6
2
3
4
5
6 789#$1&)5&'%),/3#):&)5&)0

!('789:; . / 0 1 2 3 4 5 6 .< .. ./ .0 .1 .2 .3
!" ;< =>; ?@A =BC ?@A ?@A ?@A ?@A D?E
#" ;< =>; ?@A =BC ?@A ?@A ?@A ?@A D?E

$%&'()(;< =>; ?@A =BC ?@A ?@A ?@A ?@A D?E
*+, ;< =>; ?@A =BC ?@A ?@A ?@A ?@A D?E

*-('789:; . / 0 1 2 3 4 5 6 .< .. ./ .0 .1 .2 .3
!" FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A
#" FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A
-" FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A
./ FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A

(&% FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A
$** FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A
"+, FG<< FHB; ?@A FHGI ?@A ?@A ?@A ?@A F=BC ?@A

FAB#>GJ#K*L*$"
FAB#>GJ#K*L*$"

=9!>?@;'!A!B;

=9!>?@;'!A!B;

-%",%+C'*&"D

8MN 8MN
8MN
8MN
8MN

8MN
8MN
8MN

IB#>GJ#K*L*$"8MN8MN

FAB#>GJ#K*L*$"
FAB#>GJ#K*L*$"

 28

invalidated. The return function induces a larger penalty since the return address has been

saved on the stack and must be fetched from local memory before the new program

counter can be loaded. Due to the additional delay, additional instructions must be

invalidated that follow the return instruction.

Figure 3-8: Flushed instructions from function calls and returns

A branch in a pipelined design is often an expensive operation due to the

unknown state of the branch until a late stage in the pipeline. The processor must stall or

induce NOPs until the condition of the branch is resolved, degrading performance. In the

case of the WvFEv3 processor, a branch would induce three machine clocks of wasted

cycles and could, in the case of tight loops, degrade performance significantly. Branch

!
"
#

$%&&'()
*
+
,
-
. !""#$%&'$%%'$%% ()*+#(%,'(%,'%-

/0(12345 ! " #) * + , - . !6 !! !" !# !) !* !+
!" ./00 /11 230 01 345637 /71 83 200 /11 9/05
#" ./00 78: 230 01 345637 78: 83 78: /11 9/05

$%&'()(./00 78: 230 01 345637 78: 78: 78: /11 9/05
*+, ./00 78: 230 01 345637 78: 78: 78: /11 9/05

%70(12345 ! " #) * + , - . !6 !! !" !# !) !* !+
!" 78: ;<60 ;<60 ;</. 78: ;</. ;<60 ;</. ;/11 78:
#" 78: 78: ;<60 ;</. 78: 78: ;<60 78: ;/11 78:
-" 78: 78: ;<60 ;</. 78: 78: 78: 78: ;/11 78:
./ 78: 78: ;<60 ;</. 78: 78: 78: 78: ;/11 78:

(&% 78: 78: ;<60 ;</. 78: 78: 78: 78: ;/11 78:
$** 78: 78: ;<60 ;</. 78: 78: 78: 78: ;/11 78:
"+, 78: 78: ;<60 ;</. 78: 78: 78: 78: ;/11 78:

=$#$%>'$%%'$%% ()?"#(%&'(%&'(%,
;"?!@AB#CD!E$?+EF=D
;"?!@AB#CD!E$?+EF=D
;"?!@AB#CD!E$?+EF=D

789:8;<(%=9>

"B#$G'H> ()*+#(G'(G'(%I
$AE?$D#$%- D=J
DB#$%I'$%%'$%% ()+#(%%'(%%'(%>

@*"E#?D+ D=J
*BB#I'%'$> (*BB#(I'(%'(>

!$"#$K'L'M ()?"#(K'(L'(M

?3/@AB5(/C/D5

?3/@AB5(/C/D5

/9EF89=(0EGF %=9;FGE:(79GEF(0EGF
+*""#N;88O D=J

 29

prediction, a technique used to guess which execution path should be taken, can be used

regain a portion of the lost performance by filling the wasted slots with, hopefully, useful

instructions. A successfully predicted branch will only incur one pipeline bubble due to

the branch address being unavailable during instruction fetch.

Figure 3-9: Flushed instructions from branch prediction

In the case when a predicted branch is incorrect, the instructions fetched from the false

path must be flushed from the pipeline and the alternate and correct program flow taken.

The WvFEv3 utilizes a simple ‘always taken’ branch prediction scheme due to the

repetitive nature of the target DSP applications

The mismatched pipeline depth of the execution units in the WvFEv3 design has

lead to one additional hazard, a write after write (WAW) hazard. Since the FPU writes its

!
"

#$%%&'(!""#$%&$'&$()!""#)%&)'&)(
)
* *$+#$,&$-&$.)/0+#),&)-&).

+,'-./01 ! " () * 2 3 4 5 !6 !! !" !(!) !*
!" 1234 1234 566 781 1234 566 566 781 729
#" 1234 :;< 566 :;< 1234 :;< 566 781 729

$%&'()(1234 :;< :;< :;< 1234 :;< 566 781 729
*+, 1234 :;< :;< :;< 1234 :;< 566 781 729

$7,'-./01 ! " () * 2 3 4 5 !6 !! !" !(!) !*
!" :;< :;< =566 =781 :;< =566 =566 =781 =>89
#" :;< :;< =566 :;< :;< :;< =566 =781 =>89
-" :;< :;< :;< :;< :;< :;< =566 =781 =>89
./ :;< :;< :;< :;< :;< :;< =566 =781 =>89

(&% :;< :;< :;< :;< :;< :;< =566 =781 =>89
$** :;< :;< :;< :;< :;< :;< =566 =781 =>89
"+, :;< :;< :;< :;< :;< :;< =566 =781 =>89

1$!?@A#<$B"C@D#=!C+

8/+9:;1'+<+=1

7>?@>AB'$C?D

*0E#$F&$G&$H

?IJ
?IJ

)*0E#)F&)G&)H

+?EF>?C',EGF $C?AFGE@'7?GEF',EGF
E$@A#?BK&#L=;;M
E$@A#N?BK&L=;;M

8/+9:;1'+<+=1

 30

results several stages after the control unit, an opportunity arises where the FPU can

overwrite the CU’s result even though the CU instruction came programmatically later

than the FPU’s instruction. An example illustrating the sensitivity to WAW hazards is

shown in Figure 3-10. The processor does not include any detection of such an event,

and the programmer must be aware of this situation when writing applications.

Figure 3-10: Write after write hazards of the mismatched WvFEv3 pipelines

Writing software for the WvFEv3 architecture is made possible by a custom

defined assembly language and a port of the GNU binutil toolset. The assembly language

highlights the parallel nature of the instruction bundles increasing the programmer’s

awareness of instruction scheduling with examples of code shown in Appendix B. The

!
"
#
$
% !"#$%&'() *+,

&'()*+,- ! " # $ % . / 0 1 !2 !!
!" -. -. -. -. -.
#" -. -. -. -. -.

$%&'()(-. -. -. -. -.
*+, -. -. -. -. -.

34'()*+,- ! " # $ % . / 0 1 !2 !!
!" /0.. 123 123 123 123
#" /0.. 123 123 123 123
-" /0.. 123 123 123 123
./ /0.. 123 123 123 123

(&% /0.. 123 123 123 123
$** /0.. 123 123 123 123
"+, /0.. 123 123 123 123

52(6789:89; 4 4 4 $ 0 # 34(< ()

=+&>?@-(&A&B-

=+&>?@-(&A&B-

&789C7D('8E9 3D7F9E8G(47E89('8E9
!"#$%&') $5""#$%&$(&$6 /37#808#95:5;"
!"#$%&'< *+, /37#808#95:5;"
!"#$%&'= *+, /37#808#95:5;"
!"#$%&'(6 *+, /37#808#95:5;"

4C7GCFH(3D7I

 31

GNU binutil toolset, a community supported system software infrastructure, provides the

foundation for an excellent set of tools to develop re-locatable software modules; an

assembler, linker, and disassembler.

 32

CHAPTER IV

RESULTS

An analysis of the physical FPGA resources needed by the WvFE SoC co-

processor is presented. This is followed by the design’s critical path and a detailed

analysis of the execution of the fast Fourier transform algorithm.

Physical Resources

The WvFE SoC co-processor was synthesized, placed and routed for an Actel

RTAX2000S FPGA with the Actel Libero IDE v9.1 toolset. These tools provide

utilization metrics of the various resources needed to implement the design in RTAX

FPGA fabric. Several components described in VHDL make up the WvFEv3 SoC co-

processor, most of these are external cores and interconnects to the WvFEv3 processor

and will not be characterized to a detailed level. The VHDL description of the WvFEv3

processor is sub-divided into several components, a register file, an instruction cache, a

table cache and a WvFEv3 core representing a combined control unit and floating point

unit.

Sequential elements such as flip-flops and latches are categorized as R-cells in the

RTAX FPGA fabric. The total R-cell utilization of the WvFEv3 processor is 42.4% of the

RTAX2000S compliment or 4564 cells total. The register file, as seen in Figure 4-1,

requires the majority of these at 2048, followed closely by the WvFEv3 core at 1823. The

instruction cache and table cache each use a relatively small portion of R-cells at 386 and

307, respectively.

 33

Figure 4-1: RTAX2000S R-cell utilization of the WvFE SoC co-processor

Figure 4-2: RTAX2000S C-cell utilization of the WvFE SoC co-processor

!"#$%

#&'"%

$"(%
$&)%

!))'%

''!'%

!"#$%%&'(%)*+(,-&

%%%%*+,-%./01%2.34,536%

%%%%7189:;10%,9<1%2('=$#6%

%%%%>?:;0@AB/?%.CAD1%2!E=)#6%

%%%%FCG<1%.CAD1%2'E=$(6%

%%%%H;D10%./01:4>?;10A/??1A;:%

%%%%3?@:1I%

!"#$$%

&'''%

#()%

$!)%

'*!*%

&*!&%

!"!#$$%&'$()*'+,%

%%%%+,-.%/012%3/45-647%

%%%%829:;<21%-:=2%3#'>(&7%

%%%%?@;<1ABC0@%/DBE2%3!F>$&7%

%%%%GDH=2%/DBE2%3'F>(#7%

%%%%I<E21%/012;5?@<21B0@@2B<;%

%%%%4@A;2J%

 34

Combinatorial logic or C-cell utilization of the WvFEv3 processor is significantly

higher than that of the R-cells usage. The design’s total, shown in Figure 4-2, is 14477 C-

cells or 67.3% of an RTAX2000S. The majority of these cells, nearly 74%, are required

to implement the control unit and floating point unit. The register file, instruction cache,

and table cache implementations require 2444, 638, and 718 cells respectively.

Figure 4-3: RTAX2000S internal RAM block utilization of the WvFE SoC co-processor

Only two of the WvFEv3 processor sub-components require the use of the on-

board RAM modules, the instruction cache and table cache. The instruction cache uses

sixteen 512x9 RAM blocks to implement a 1Kx72 memory structure. The table cache

uses significantly more at thirty-two 512x9 RAM blocks to create a longer but narrower

4Kx36 memory structure. Total utilization of the design requires 48 RAM block or 75%

of the RTAX2000S complement.

!"#

$%#

!"#

!"#$%&'()*&+,$

####&'()*+,-.'#/0,12#3!456%7#

####809:2#/0,12#3;45$"7#

####<'+(2=#

 35

RTAX cell utilization provides an adequate measure to make comparisons only to

other designs that have been targeted for this FPGA family. Often this is not the case and

an attempt has been made to convert the number of cells to an ASIC gate count. Due to

many factors, it is only possible to calculate an estimate of the number of gates required.

The WvFEv3 processor would require approximately 150,000 to 175,000 gates for an

ASIC implementation.

Performance

The performance characterization of the WvFEv3 processor is provided as a

detailed analysis of several metrics; including the critical path of the design and an

analysis of the execution of the FFT algorithm including cycle counts, branch prediction

accuracy, cache hit accuracy, and power utilization.

Critical Path

The critical path is the longest delay path between two sequential elements in the

same clock domain; this dictates the maximum frequency for which the clock can operate

for reliable operation. The WvFEv3 critical path is the combinatorial path found between

register outputs in control unit’s memory pre-fetch stage, through the external local

memory, to the inputs of registers in the store result stage. The total delay associated with

this path is 73.544 ns, which relates to a maximum clock rate of 13.6 MHz. However,

integrated circuit design rules set forth by Jet Propulsion Laboratory [8] require a de-

rating on the clock frequency, resulting in an conservative operational clock of 10.5

MHz; this metric will be used for all subsequent analyses.

 36

FFT Performance

The Fast Fourier transform (FFT) algorithm is used as a performance benchmark

due to its computational complexity and its direct relevance to performance requirements

needed by RBSP. The algorithm is sub-divided into several steps as discussed in the

background section, the complex radix-4 FFT, the result reversal, and the unscrambling

of real results. This algorithm was executed in simulation to determine the performance

of each step in terms of execution cycles, branch prediction accuracy, and cache hit

accuracy. For a complete WvFEv3 assembly listing of the algorithms implemented for

this benchmark please refer to Appendix B.

Figure 4-4: Number of execution cycles utilized by the WvFEv3 processor to execute a
complex FFT of various resolutions

!" #!!!!!" $!!!!!" %!!!!!" &!!!!!" '!!!!!!" '#!!!!!"

#(%"

'!#$"

$!)%"

'%*&$"

!"#$%&'

#(%" '!#$" $!)%" '%*&$"
+,-./01"234516$"778" 9$))" *9#!'" '9&#%*" &*'(&'"

20:;/<"20=0>:3/" '%##" %$##" #(%##" '!#$##"

?@:A>3-B/0"C203/:C" '#9$" $)##" ')('$" 99&&#"

(()'*%&+$,-+.'/&'!"#$%&'

 37

Figure 4-4 relates the number of cycles needed per step of real FFT execution to

four radix-4 resolutions, the lowest 256 and highest 16384 points. The largest component

of execution is, unsurprisingly, the execution of the complex FFT algorithm with

approximately 80% of the execution cycles spent performing this operation. The number

of cycles to perform each of these steps is deterministic and therefore can be described

with the following equations where N is the resolution of the complex FFT being

calculated.

!"#$%& !"#$%&'!!!" ! !"#! ! !
!
! ! !"!!"!#$% ! !!!"!#$% ! !"!!"!#$%

!"#$%&!!"#$%&!!"#"$!!"!! ! ! !! ! !"!!"!#$% ! !!!!"!#$%!

!"#$%& !"#$%&'()*!!"#$% ! ! !! ! !"!!"!!"# ! !!"!!"!#$%

Equation 4-1: Equations to calculate the number of cycles needed to perform various
steps in the computation of real FFTs

Execution time of the real FFT calculation is calculated by multiplying the

number of cycles needed for computation against the clock period of processor and

dividing the result by two for each real FFT result. The physical implementation of the

WvFEv3 processor uses a clock frequency of 10.5 MHz or 95.24 ns per cycle. Using this

metric as the clock period and dividing by two yields an execution time of a single real

1024-point FFT in 2.312 milliseconds. The execution time the other radix-4 resolutions

are seen in Figure 4-5.

 38

Figure 4-5: Execution time for the calculation of a real radix-4 FFT for various
resolutions.

A useful metric related to performance of a pipelined processor is that of cache hit

and branch prediction accuracies. The higher the accuracy of these functions the fewer

stalls the processor incurs when executing instructions. Table 4-1 depicts accuracies for

the computation of the dual real FFT algorithm after a processor reset. In this scenario,

the caches do not contain any valid data for FFT execution and represent the highest

number of cache misses incurred. This decreases the optimal accuracy from 100% to an

average of 99.9% for both caches. Once the caches have been loaded with valid FFT

computation data any subsequent FFT execution will achieve the optimal 100% accuracy.

The accuracy of the branch prediction method is not dependent on the state of the caches

and as a result will stay static upon repeated FFT executions. The prediction accuracy for

the all steps of the FFT computation averaged is 99.122%.

!"#$%& '"()'&

)!"*(+&

#+")+%&

'%*&)!'#& #!$*&)*(+#&

!!!!"#$%&'!(')&!**+!,-'./01$!+#2'!3245!
)6!789:!;<=!

 39

Table 4-1: Profile of the branch prediction and caching scheme performance during FFT
execution.

Attribute Complex

FFT

Result

Reversal

Unscramble

Reals

Average

Branch Prediction 99.367% 99.481% 98.517% 99.122%

I-Cache Hit Rate 99.996% 99.979% 99.974% 99.983%

T-Cache Hit Rate 99.919% N/A N/A 99.919%

Power Utilization

The power utilization of the WvFE SoC co-processor was calculated through the

execution of the complex FFT algorithm in physical simulation. During simulation

various scenarios of operation were observed, the loading of the instruction cache, the

loading of the table cache and the execution of the FFT algorithm. A waveform for each

scenario was captured and analyzed at the gate level using Actel’s SmartPower tool,

providing cycle accurate power measurements. Figure 4-6 depicts the analysis of each of

these scenarios where the static power utilized by the design is unchanging at 131.14

mW. The static power represents the amount of power the design consumes at idle.

The dynamic power is the additional power needed to perform the operation

associated with each scenario. For instance, the dynamic power associated with loading

of the instruction cache is 192 mW for a total power consumption of 323.6 mW. A slight

increase in power is seen when loading the table cache at 346.4 mW and the power peaks

during FFT execution at 521.2 mW.

 40

Figure 4-6: Power profiles for various modes of processor operation during program
execution.

Finally, one additional scenario is portrayed that characterizes the power profile

of the WvFEv3 during the low power sleep mode. As expected, the dynamic power

utilization for this mode is significantly lower than the other scenarios at 65.364 mW.

The low dynamic power is attributed to the system clock gating to sequential elements

not needed to support the functions of sleep mode in the processor design.

!"!#!$% !"!#!$% !"!#!$% !"!#!$%

&'#"&$%

!()#$*(%)!'#)(+%

"(*#!*"%

*%

!**%

)**%

"**%

$**%

'**%

&**%

,-../%012.% 345678.%9162% :45678.%9162% ;62<=4$%>>:%

!"#$%&'()*+,("-&./01&23&45$%,("-,)&6"7$&

,?6@7% ABC6D<7%

 41

CHAPTER V

DISCUSSION

Space Qualification

The foremost issue in developing any digital design for space flight is tolerating

radiation effects and temperature extremes of the space environment. To address these

issues an Actel RTAX2000S FPGA was chosen as the implementation technology due to

several inherent features that make it well suited for space flight. One feature in

particular, triple module redundancy provides a hardening solution that reduces single

event upsets in sequential elements to less than 10-10 errors/bit-day at geosynchronous

orbit [18]. However, since the number of SEUs is non-zero, several attempts have been

made to further the design’s resilience by detecting and recovering from SEUs. These

features include the hardening of state machines, instruction pipeline parity checking, and

cache line parity checking.

The highest fidelity approach to testing the fault tolerant features of the WvFEv3

processor would be in a temperature-controlled vacuum under radiation exposure,

however the equipment costs make this impractical. A secondary, lower cost method was

employed that utilizes computer simulations to emulation SEUs. During simulation, the

instruction and table cache lines received ‘bit upsets’ by overwriting a single bit in cache

memory that resulted in the invalidation of the cache’s parity bits. Once the processor

tried to fetch one of these corrupted lines, the cache stalled the processor and re-fetched

the appropriate data from local memory. The cache state machine then re-loaded the line

with the new data, re-calculated the parity bits and allowed the processor to continue

operation.

This method successfully verified the cache’s fault tolerance to SEUs but not all

features could be tested in this manner. The effects of radiation are realized at the circuit

 42

level, beyond the resolution of gate level simulations. This disconnect has created a void

where it is not possible to use the same technique to verify flip-flop based upsets, such is

the case in fault tolerance features in state machine and parity checking on executing

instructions. Although every practical attempt has been made to verify the correctness of

the designs’ fault tolerant features, the final verification will only be possible during

space flight.

The combination of the RTAX radiation tolerant features, the WvFEv3 fault

tolerant features, and the verification efforts put forth yield an acceptable design for space

flight.

Performance

The most demanding application intended for the WvFEv3 processor, as described

in the problem statement, is the calculation of a 1024-point real FFT every 10.4 ms. To

achieve this goal, many architectural considerations and trade-offs have been studied to

allow for the efficient computation of various DSP algorithms, including the FFT.

The WvFEv3 computer architecture was designed with the cyclic nature of digital

signal processing algorithms in mind. The very long instruction word allows for up to

two instructions to be executed every clock by the control unit and floating point unit. To

increase the rate of instruction execution, pipelining of each execution unit was

employed. This technique decreased the worst-case delay in the design and subsequently

increased the allowable clock frequency to 10.5 megahertz. The increase in the execution

rate of the processor led to a bandwidth bottleneck to local memory. To alleviate this

issue, a caching architecture based a direct mapping scheme was included into the design

achieving a 98% or better hit accuracy, drastically reducing the number of stalls the

processor encountered during execution. Additional processor stalls caused by instruction

 43

flow branches were removed by utilizing a simple ‘always taken’ branch prediction

scheme. The cyclic nature of DSP algorithms has made this scheme quite successful

having achieved better than 99% accuracy. The incorporation of these design choices has

yielded a processor architecture that is capable of performing a 1024-point real FFT

computation in 24,273 cycles or 2.312 milliseconds at 10.5 MHz achieving a 77.8%

margin on the requirement.

The excessive performance of the design has resulted in various advantages

beyond performance metrics alone. The first is related to the power profile of WvFEv3

processor during execution. Higher clock rates cause the gates in the design to switch

more frequently over a shorter time span, increasing the impulse power utilization. The

performance margin seen above would allow the designs’ clock to be lowered to as low

as 2.33 MHz while still meeting the performance goals. At this clock frequency, the

number of gate transitions is the same but spread out over time, decreasing the impulse

power utilization. Although the decrease in impulse power utilization may be

advantageous in power supply design, the most significant advantage is the availability of

additional execution cycles. These extra cycles can be utilized to perform additional or

more complex DSP operations, increasing the processors’ usefulness and flexibility.

Flexibility

The programmatic nature of the WvFEv3 has led to an implementation that is

quite flexible when dealing with algorithms in digital signal processing and basic data

manipulations. Table 5-1, Table 5-2 and

Table 5-3 reflect a subset of algorithms and functions that have been implemented

in the WvFEv3 instruction set. Although the majority in this list are DSP specific

algorithms, the flexibility of the design allows for additional operations such as the

 44

control of external cores and even higher-level mathematical functions such as a floating

point reciprocal and square root functions.

Table 5-1: WvFEv3 supported digital signal processing algorithms

Algorithm Functional Description

De-spin Removes artifacts from captured waveforms caused by the

rotation of the spacecraft

De-trend Removes a DC to very low frequency linear components in the

sample set.

Windowing Reduce waveform edge effects that result in spectral leakage,

increases in spectral resolution (Hanning Window).

Complex FFT Performs a fast Fourier transform on a complex time domain data

set using the radix-4 butterfly method.

Unscramble real

FFT

Separates and normalizes the results of two simultaneous real

FFTs from one complex FFT operation.

Calibration Flattens the response of the antenna and receiver by applying

frequency dependent magnitude and phase metrics.

Spectral Matrix Calculates auto and cross correlations between several signals.

Binning Reduces the spectral resolution by averaging consecutive

frequency bins either linearly or logarithmically

Adaptive Noise

Cancellation

Adaptively computes the noise transfer function to remove the

noise component from the captured waveforms.

 45

Table 5-2: WvFEv3 supported external core software drivers

Algorithm Functional Description

A/D Capture Software driver to perform waveform captures using the A/D

controller cores, included in the WvFE SoC co-processor.

Rice Compression Software driver to perform waveform compression using the

Rice compression core, included in the WvFE SoC co-processor.

Table 5-3: WvFEv3 supported software mathematical functions

Algorithm Functional Description

Reciprocal Generates an approximate reciprocal of a floating-point number

then converges upon the precise solution using the Newton-

Raphson method.

Square Root Generates an approximate square root of a floating-point number

then utilizes the reciprocal function to converge upon a precise

answer using the Newton-Raphson method.

The Waves instrument aboard the Juno spacecraft provides further testament of

the WvFEv3 processor’s flexibility by allowing for an unconventional solution to an

electromagnetic interference issue discovered at the spacecraft level. The Juno spacecraft

utilizes solar panels where one or more strings of cells are switch on or off depending on

the power generated by the strings and the power needed by the spacecraft. Late in the

design phase, it was discovered that the switching frequency of these panels would

 46

produce electromagnetic interference that would induce noise in signals the Waves’

instrument was designed to measure [23]. In an attempt to mitigate the impact of the

noise on the scientific data, spare processing cycles on the WvFEv3 were tasked to

perform an adaptive noise cancellation algorithm, similar to that found in Bose noise-

cancelling headphone technology. This functionality has been verified to remove noise

from a signal through unit level testing.

The WvFEv3 processor architecture provides a level of flexibility that falls

between that of a general-purpose central processing unit and an application specific

logic implementation. The level of flexibility achieved is appropriate for the DSP

applications intended aboard the Juno and RBSP spacecraft.

Future Work

The development of the WvFEv3 architecture and associated system software

tools has presented several occasions where efforts could be spent to further the designs’

usefulness. First, the most significant effort along these lines would be the development

of a high-level language compiler targeted specifically for the WvFEv3 platform.

Secondly, the adoption of an industry standard bus architecture would allow the WvFEv3

to interface to third party soft cores increasing its ability to be integrated into future

designs.

Several tools exist for developing software for the WvFEv3 architecture but they

rely on the programmer to understand detailed architectural and assembler specifics to

write software. This simple fact increases the amount of time it takes a software

developer to implement code when compared to writing in a high-level language. The

relative ease of learning a high-level language with respect to assembly also increases the

number of software developers capable of implementing software, dramatically

 47

increasing the architecture’s exposure. For these reasons, the development of a high-level

compiler targeted for the WvFEv3 platform would considerably increase its usefulness

and flexibility.

One open source project in particular, the low-level virtual machine (LLVM)

compiler infrastructure, is well suited to providing high-level language compiler support

to new architectures [24]. The premise behind LLVM is the compilation of an assortment

of high-level languages to an intermediary assembly representation targeted for a virtual

RISC-like machine. The intermediary representation is translated by a custom ’backend’

to the processor specific assembly and machine code. The implementation of a WvFEv3

LLVM ‘backend’ would provide platform support for several high-level languages

leading to a simplification in software development and wider adoption among software

engineers.

Additionally, the WvFEv3 processor architecture can be improved by the

replacement of the Wishbone SoC bus interconnect. The Wishbone bus architecture is an

open source specification provided by OpenCores [25] that allows for on-chip

communications between various cores. This interconnect was selected for its low cost

and satisfactory documentation. Although the Wishbone bus has served its purpose well,

it would be advantageous to adopt a bus specification that is widely supported by the

industry to allow the WvFEv3 processor to be integrated with third party cores. The

greatest benefit would come from the adoption of the de facto standard for on-chip

interconnects, ARM’s advanced microcontroller bus architecture specification [26, 27].

This solution is also well documented and low cost with the additional benefit of wide

support in the processor design industry leading to the opportunity to integrate third party

IP cores with the WvFEv3 processor architecture.

 48

Conclusion

The launch of the Juno spacecraft in August 2011 will mark the beginning of the

Waves instrument’s five-year journey to Jupiter. Although it may be the beginning of its

journey, the launch marks the end of a demanding development effort to achieve a goal

that had not been attempted before. This effort, entitled WvFEv3, was to design and

implement a general-purpose digital signal processor targeted for a radiation tolerant

FPGA. The processor is unique for several reasons, the greatest of which is the design’s

emphasis on a small silicon footprint allowing it to be implemented in current generation

FPGAs. While the gate utilization is relatively small, the WvFEv3 achieves substantial

performance for a variety of DSP algorithms while also being flexible enough to

implement additional algorithms programmatically. The implementation of the WvFEv3

processor has surpassed the needs of the Waves instruments aboard Juno and RBSP; both

in performance and flexibility but the final test of the design’s space worthiness will only

be proven in flight. Godspeed and safe travels!

 49

APPENDIX A

WVFEV3 INSTRUCTION SET ARCHITECTURE

General assembler semantics can be found in the GNU binutils assembly

language manual [28] while WvFEv3 specifics are described in this appendix. Please

refer to, Table A-6, Table A-7, Table A-8, Table A-9, and Table A-10 for a complete

listing of control unit supported instructions and assembly formats. Floating point unit

instruction and assembly formats can be found in Table A-11. Finally, valid assembly

values for each instruction field can be found in Table A-1 and Table A-2. For an

example of the assembly format please refer to Appendix B.

Table A-1: WvFEv3 assembly constructs for control unit instructions

Field Valid assembly field values

!!" halt, fault, call, brch, sleep, nop, clr, test,

ld, add, sub, sra, sla, srl, sll, and, or, xor,

log2, fp, int, fsqrta, frcpa, bfly2, bfly4

!! r0 - r31 & f0 - f31

!! r0 - r31 & f0 - f31

!! r0 - r31 & f0 - f31

!"#$%&!!""!" #24-bit signed value, integer or hexadecimal

!! w0, w1, w2, w3

!"#$ unc, zero, neg, par, ovf, bso, bli, pca, fzer,

fneg, fovf, fdze, fing, fexp

 50

Table A-2: WvFEv3 assembly constructs for floating point unit instructions

Field Valid assembly field values

!!" fadd, fsub, fmul, fmac, tbl, nop

!! f0 - f31

!! f0 - f31

!! f0 - f31

!! t0, t1, t2 t3, t4, t5, t6, t7, t8

The following table describes each condition flag individually along with a

reference to the bit location in the flag register.

 51

Table A-3: WvFEv3 conditional flags

Condition Flag Bit Description

unc 0 Unconditional, true during processor execution

zero 1 Integer arithmetic result is zero

neg 2 Integer arithmetic result is negative

par 3 Integer arithmetic parity is even

ovf 4 Integer arithmetic result has overflowed 32-bit representation

 5 Unused

bso 6 Bufferfly seed out of bounds

bli 7 Butterfly increment to next segment

pca 8 Task complete on external core/device1

fzer 9 Floating point result is zero

fneg 10 Floating point result is negative

 11 Unused

fovf 12 Floating point result has overflowed single precision format1

fdze 13 Floating point divided by zero1

finv 14 Invalid floating point operation1

fexp 15 Floating point exception1

1 Denotes a “sticky” flag that once set will continue to be so. These flags must be reset

using the clear instruction or through a processor reset.

 52

Fault flags are not readable by the WvFEv3 processor and cannot be used during

program execution. These flags provide a status to the host processor managing the

WvFEv3.

Table A-4: WvFEv3 fault flags

Fault Flag Bit Description

flt_ins 16 Invalid instruction fault

flt_st 17 Processor state machine fault

flt_wb 18 Wishbone bus interface error

flt_reg 19 Register file interface error

 53

Table A-5: WvFEv3 program flow control instructions

Type Assembly Format Operation(s) Flag(s)

Halt execution

conditionally

halt flag !" !"#$! !"#$!!"#"$! !"#$ unc

halt !flag !" !"#$! !"#$% !!"#"$! !"#$

Halt execution

conditionally with fault

fault flag !" !"#$! !"#$!!"#"$! !""#" None

fault !flag !" !"#$! !!"#$!!"#"$! !""#"

Function call 2 call Rd,LABEL !"#$%& !" ! !"!

!" ! !" ! !"#$!!

!" ! !" ! !

None

call Rd,(LABEL) !"#$%& !" ! !"!

!" ! !"#$!!

!" ! !" ! !

2 Instruction induces a pipeline bubble

 54

Table A-5: Continued

Type Assembly Format Operation(s) Flag(s)

Function return 3 return Rd !" ! !"#$%& !" ! ! None

Conditional branch 24 brch flag, LABEL !" !"#$! !"#$!!" ! !" ! !"#$! None

brch !flag, LABEL !" !"#$! !"#$% !!" ! !" ! !"#$!

brch flag, (LABEL) !" !"#$! !"#$!!" ! !"#$!

brch !flag, (LABEL) !" !"#$! !"#$% !!" ! !"#$!

Sleep Mode 5 sleep !"#$%&&#"!!"#"$! !"##$ None

No Operation nop !"!!"#$%&'!(None

3 Instruction induces a pipeline flush

4 Instruction may induce a pipeline flush

5 The processor will stay in the sleep state until an external event sets the pca condition flag

 55

Table A-6: WvFEv3 condition flag manipulation instructions

Type Assembly Format Operation(s) Flag(s)

Clear flags clr !"#$%&%"# !"" ! !"#$% All

conditionals
clr flag !"#$%&%"#!!"#$! ! !"#$%

Bit test operator 6 test Ra,Rb !! ! !! zer neg par

test Ra,#simm24 !! ! !"#$%&!!""!"

6 Instruction calculates a result but does not store the result, only sets flags

 56

Table A-7: WvFEv3 load and store instructions

Type Assembly Format Operation(s) Flag(s)

Load constants ld Rd,#simm24 !! ! !"#$!"!!""!" None

ld Rd,Ra !! ! !!

Read from memory ld Rd,@(Ra+Rb) !! ! !"#$%&!!! ! !!! None

ld Rd,@(Ra+#simm24) !! ! !"#$%&!!! ! !"#$%&!!""!"!

Write to memory ld @(Rd+Rb),Ra !"#$%&!!! ! !!! ! !! None

ld @(Rd+#simm24),Ra !"#$%&!!! ! !"#$%&!!""!"! ! !!

Read from I/O ld Rd,%(Ra+Rb) !! ! !!!!!! ! !!! None

ld Rd,%(Ra+#simm24) !! ! !!!!!! ! !"#$%&!!""!"!

Write to I/O ld %(Rd+Rb),Ra !!!!!! ! !!! ! !! None

ld %(Rd+#simm24),Ra !!!!!! ! !"#$%&!!""!"! ! !!

 57

Table A-8: WvFEv3 Integer arithmetic instructions

Type Assembly Format Operation(s) Flag(s)

Addition add Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 add Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

Subtraction sub Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 add Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

Arithmetic Shift sra Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 sra Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

 sla Rd,Ra,Rb !! ! !! ! !!

 sla Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

Logical Shift srl Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 srl Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

 sll Rd,Ra,Rb !! ! !! ! !!

 sll Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

 58

Table A-8: Continued

Type Assembly Format Operation(s) Flag(s)

Logical AND and Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 and Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

Logical OR or Rd,Ra,Rb !! ! !! ! !! zer neg ovf

 or Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"

Logic XOR xor Rd,Ra,Rb !! ! !!!!! zer neg ovf

 xor Rd,Ra,#simm24 !! ! !!!!!"#$%&!!""!"

Logarithmic log2 Rd,Ra !" ! !"#! !! zer

 59

Table A-9: WvFEv3 numerical conversion and approximation instructions

Type Assembly Format Operation(s) Flag(s)

Integer to floating point

conversion

fp Rd,Ra,Rb !! ! !"#$% !!! ! !!!! None

fp Rd,Ra,#simm24 !! ! !"#$% !!! ! !!"#$%&!!""!"!

Floating point to integer

conversion7

int Rd,Ra,Rb !! ! !"# !!! ! !!!! None

int Rd,Ra,#simm24 !! ! !"# !!! ! !!"#$%&!!""!"!

Square root

approximation

fsqrta Rd,Ra !
! !! ! !! !

!
! !! finv fexp

Reciprocal

approximation

frcpa Rd,Ra !
!!!

!! ! !! !
!
!!!

!! fdze fexp

7 Rounds to nearest integer

 60

Table A-10: WvFEv3 butterfly address calculation instructions

Type Assembly Format Operation(s) Flag(s)

Radix-2 butterfly

addresses

bfly2 Rd,Ra,Rb,Wn !! ! !"##$%&'(!!! !!! !!!!!!! !! bli bso

Radix-4 butterfly

addresses

bfly4 Rd,Ra,Rb,Wn !! ! !"##$%&'(!!! !!! !!!!!!! !! bli bso

 61

Table A-11: WvFEv3 floating point unit instructions

Type Assembly Format Operation(s) Flag(s)

Addition fadd Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf

fexp fadd Rz,Rx,-Ry !! ! !! ! !!

Subtraction fsub Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf

fexp fsub Rz,Rx,-Ry !! ! !! ! !!

Multiply fmul Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf

fexp fmul Rz,Rx,-Ry !! ! !! ! !!!

 fmul Rz,Rx,@(Vt+Ry) !! ! !! ! !"#$%!!!!!!!!

 fmul Rz,Rx,-@(Vt+Ry) !! ! !! ! !!"#$%!!!!!!!!

Multiply Accumulate fmac Rz,Rx,Ry !! ! !! ! !! ! !! fzer fneg fovf

fexp fmac Rz,Rx,-Ry !! ! !! ! !! ! !!!

 fmac Rz,Rx,@(Vt+Ry) !! ! !! ! !! ! !"#$%!!!!!!!!

 fmac Rz,Rx,-@(Vt+Ry) !! ! !! ! !! ! !!"#$%!!!!!!!!

 62

Table A-11: Continued

Type Assembly Format Operation(s) Flag(s)

Load virtual table

configuration

tbl Vt,Rx,Ry !"#$% !! !!"#$%&'()% ! !! !

!"#$% !! !!"#$%&'!!"#$% ! !!

None

No Operation nop !"!!"#$%&'!(None

 63

APPENDIX B

WVFEV3 SOFTWARE ALGORITHMS

Figure B-1: Complex radix-4 FFT in WvFEv3 assembly

.Title Complex radix-4 FFT

.text

 .include "macro.asm"

 .global _fft_radix4 ; export entry point

_fft_radix4:

 ; First read arguments off stack and shuffle around the

 ; program counter so that the return is nice and clean

 ; In the unused space between pops, fetch the sine/cosine

 ; configuration and load it.

 pop r15,f31 ; Pop the program counter off the stack

 ld f0,(_sine_table) ; Load address of sine table

 64

Figure B-1: Continued

 pop r15,r2 ; Pop the waveform address off the stack

 ld f1,(_sine_config) ; Load pointer to sine configuration

 pop r15,r1 ; Pop the twiddle factor cadence off stack

 ld f2,@(f1+#0) ; Load sine configuration word

 pop r15,r0 ; Pop the size of the waveform off the stack

 ld f3,@(f1+#1) ; Load the sine table overlap value

 push r15,f31 ; Put the program counter back on the stack

 ; Finished with reading in arguments

 ; Load the rest of the table configurations

 or f2,f2,f0

 ld f1,(_cosine_config)

 ld r8,#0

 ld f2,@(f1+#0) || tbl t0,f2,f3

 ld f3,@(f1+#1)

 65

Figure B-1: Continued

 or f2,f2,f0

 add r3,r2,r0

 ; Start calculating butterfly addresses

 bfly4 r4,r0,r8,w0 || tbl t1,f2,f3

 bfly4 r5,r0,r8,w1

 bfly4 r6,r0,r8,w2

 bfly4 r7,r0,r8,w3

 ld f3,@(r4+r2)

 ld f4,@(r5+r2)

 ld f5,@(r6+r2)

 ld f6,@(r7+r2)

 ld f7,@(r4+r3)

 ld f8,@(r5+r3) || fadd f11,f3,f5

 ld f9,@(r6+r3) || fsub f3,f3,f5

 ld f10,@(r7+r3) || fadd f5,f4,f6

 66

Figure B-1: Continued

 add r8,r8,#4 || fadd f12,f7,f9

 log2 r1,r1 || fadd f13,f8,f10

 nop || fsub f8,f8,f10

 ; Main butterfly radix-4 loop

_butterfly4:

 ld r9,r5 || fsub f10,f7,f9

 ld r10,r6 || fsub f7,f4,f6

 ld r11,r7 || fadd f20,f11,f5

 sla f0,r4,r1 || fadd f21,f12,f13

 bfly4 r5,r0,r8,w1 || fadd f14,f3,f8

 sla f1,f0,#1 || fsub f16,f11,f5

 bfly4 r6,r0,r8,w2 || fsub f15,f10,f7

 add f2,f0,f1 || fsub f17,f12,f13

 ld @(r4+r2),f20 || fsub f18,f3,f8

 ld @(r4+r3),f21 || fadd f19,f10,f7

 67

Figure B-1: Continued

 bfly4 r4,r0,r8,w0 || fmul f22,f14,@(t1+f0)

 bfly4 r7,r0,r8,w3 || fmul f23,f15,@(t1+f0)

 add r8,r8,#4 || fmul f24,f16,@(t1+f1)

 ld f3,@(r4+r2) || fmul f25,f17,@(t1+f1)

 ld f4,@(r5+r2) || fmul f26,f18,@(t1+f2)

 ld f5,@(r6+r2) || fmul f27,f19,@(t1+f2)

 ld f6,@(r7+r2) || fmac f22,f15,@(t0+f0)

 ld f7,@(r4+r3) || fmac f23,f14,-@(t0+f0)

 ld f8,@(r5+r3) || fmac f24,f17,@(t0+f1)

 ld f9,@(r6+r3) || fmac f25,f16,-@(t0+f1)

 ld f10,@(r7+r3) || fmac f26,f19,@(t0+f2)

 ld @(r9+r2),f22 || fmac f27,f18,-@(t0+f2)

 ld @(r9+r3),f23 || fadd f11,f3,f5

 ld @(r10+r2),f24 || fsub f3,f3,f5

 ld @(r10+r3),f25 || fadd f5,f4,f6

 ld @(r11+r2),f26 || fadd f12,f7,f9

 68

Figure B-1: Continued

 ld @(r11+r3),f27 || fadd f13,f8,f10

 brch !bli,_butterfly4 || fsub f8,f8,f10 ; level of b-flies complete?

 add r1,r1,#2

 brch !bso,_butterfly4 ; butterfly seed out of range?

 return r15

 .end

 69

Figure B-2: Complex FFT result reversal in WvFEv3 assembly

.Title Complex FFT result reversal

.text

 .psize 56

 .include "macro.asm"

 .global _fft_radix4_descramble ; export entry point

_fft_radix4_descramble:

 pop r15,f31 ; Pop the program counter off the stack

 nop

 pop r15,r12 ; Pop the descramble buffer address off the stack

 nop

 pop r15,r2 ; Pop the scrambled buffer address of the stack

 nop

 pop r15,r0 ; Pop the size of the waveform off the stack

 ld r8,#0

 push r15,f31 ; Put the program counter back on the stack

 70

Figure B-2: Continued

 add r3,r2,r0

 add r13,r12,r0

 bfly4 r4,r0,r8,w0

 bfly4 r5,r0,r8,w1

 bfly4 r6,r0,r8,w2

 bfly4 r7,r0,r8,w3

 add r8,r8,#4

_descramble_butterfly4:

 ld f3,@(r4+r2)

 ld f4,@(r5+r2)

 ld f5,@(r6+r2)

 ld f6,@(r7+r2)

 ld f7,@(r4+r3)

 ld f8,@(r5+r3)

 ld f9,@(r6+r3)

 71

Figure B-2: Continued

 ld f10,@(r7+r3)

 bfly4 r4,r0,r8,w0

 bfly4 r5,r0,r8,w1

 bfly4 r6,r0,r8,w2

 bfly4 r7,r0,r8,w3

 add r8,r8,#4

 ld @(r12+#0),f3

 ld @(r12+#1),f4

 ld @(r12+#2),f5

 ld @(r12+#3),f6

 ld @(r13+#0),f7

 ld @(r13+#1),f8

 ld @(r13+#2),f9

 ld @(r13+#3),f10

 add r12,r12,#4

 add r13,r13,#4

 72

Figure B-2: Continued

 brch !bli,_descramble_butterfly4

 return r15

 .end

 73

Figure B-3: Simultaneous real FFT result unscramble in WvFEv3 assembly

.Title FFT real result unscramble

.text

 .psize 56

 .include "macro.asm"

 .global _fft_unscramble ; export entry point

;

; This program unscrambles the output of a dual FFT. Two real functions

; h(t) and g(t) have been FFT'ed simultaneously by placing one data set (h)

; in the real locations, and the other data set (g) in the imaginary locations.

; Address of data is on stack, size of input data vactor is on stack.

; Second channel is assumed to be stored at Address+size.

; Address of output is on the stack.

.data

_norm_factor:

 .int 0x3A000000 ; 1./(2.*1024.)

 74

Figure B-3: Continued

 .int 0x39000000 ; 1./(2.*4096.)

 .int 0x38000000 ; 1./(2.*16384.)

_half:

 .float 0.5 ; 1./2.

 .int 0

 .int 0

 .int 0

.text

_fft_unscramble:

;

 ; First read arguments off stack and shuffle around the

 ; program counter so that the return is nice and clean.

;

 pop r15,f31 ; Pop the program counter off the stack

 75

Figure B-3: Continued

 nop

 pop r15,r2 ; Pop the output buffer address off the stack

 nop

 pop r15,r1 ; Pop the input buffer address off the stack

 nop

 pop r15,r0 ; Pop the size of the waveform off the stack

 nop

 push r15,f31 ; Put the program counter back on the stack

 ; Finished with reading in arguments

 sra r14,r0,#1 ; r14 = N/2

 ld r6,(_half) ; get pointer to 1./2.

 add r4,r1,#1 ; r4 = SRC_A (starts at BUFFER+1)

 sub r13,r0,#1 ; r13 = N-1 (N_MINUS1)

 add r3,r2,r14 ; 2nd output buffer address (SAVE_B)

 add r8,r1,r13 ; 2nd input buffer (SRC_B)

 76

Figure B-3: Continued

 ld f16,@(r6+#0) ; load the constant f16 = 0.5

 sra r13,r13,#1 ; r13 = (N-1)/2

;

; Figure out the normalization factor, i.e., 1/N

;

 ld r7,(_norm_factor)

 nop

 sub r5,r0,#1024

 brch !zer, next1

 brch unc, found

next1:

 add r7,r7,#1

 nop

 sub r5,r0,#4096

 brch !zer, next2

 brch unc, found

 77

Figure B-3: Continued

next2:

 add r7,r7,#1

 nop

 nop

 nop

found:

 ld f16,@(r7+#0) ; get normalization factor (1/(2*N))

 ld f0,@(r4+#0) ; load data from source buffer1

 ld f1,@(r8+#0)

 ld f4,@(r4+r0)

 ld f5,@(r8+r0)

 nop

 nop

 nop

 ld @(r6+#3),f16

_loop:

 78

Figure B-3: Continued

 add r2,r2,#1 || fmul f2,f0,f16 ; normalize data by 1/(2*N)

 add r3,r3,#1 || fmul f3,f1,f16

 add r4,r4,#1 || fmul f6,f4,f16

 sub r8,r8,#1 || fmul f7,f5,f16

 nop

 nop

 ld f0,@(r4+#0) || fadd f9,f2,f3

 ld f1,@(r8+#0) || fsub f10,f3,f2

 ld f4,@(r4+r0) || fadd f11,f6,f7

 ld f5,@(r8+r0) || fsub f12,f6,f7

 nop

 nop

 ld @(r2+#0),f9 ; store results

 ld @(r3+r0),f10

 ld @(r3+#0),f11

 ld @(r2+r0),f12

 79

Figure B-3: Continued

 sub r13,r13,#1 ; decrement loop counter

 brch !zer, _loop ; done looping?

 return r15

 .end

 80

BIBLIOGRAPHY

[1] W. S. Kurth, D. L. Kirchner, G. B. Hospodarsky, D. A. Gurnett, P. Zarka, R. Ergun
and S. Bolton, "A wave investigation for the juno mission to jupiter," in AGU Fall
Meeting Abstracts, 2008, pp. 1680.

[2] C. A. Kletzing, W. Kurth, M. Acuna, R. Torbert, R. Thorne, V. Jordanova, S. Bounds,
C. Smith, O. Santolik and R. Pfaff, "The electric and magnetic field instrument suite with
integrated science (EMFISIS) on the radiation belt storm probes," in AGU Fall Meeting
Abstracts, 2006, pp. 0332.

[3] D. A. Gurnett, W. S. Kurth, G. B. Hospodarsky, A. M. Persoon, T. F. Averkamp, B.
Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux,
C. Harvey, P. Louarn, R. Bostrom, G. Gustafsson, J. -. Wahlund, M. D. Desch, W. M.
Farrell, M. L. Kaiser, K. Goetz, P. J. Kellogg, G. Fischer, H. -. Ladreiter, H. Rucker, H.
Alleyne and A. Pedersen, "Radio and Plasma Wave Observations at Saturn from Cassini's
Approach and First Orbit," Science, vol. 307, pp. 1255-1259, February 25, 2005.

[4] A. Gatherer, T. Stetzler, M. McMahan and E. Auslander, "DSP-based architectures
for mobile communications: past, present and future," Communications Magazine, IEEE,
vol. 38, pp. 84-90, 2000.

[5] B. Ackland and C. Nicol, "High performance DSPs-what's hot and what's not?" in
Proceedings of the 1998 International Symposium on Low Power Electronics and
Design, 1998, pp. 1-6.

[6] R. Schneiderman, "DSPs Evolving in Consumer Electronics Applications," Signal
Processing Magazine, IEEE, vol. 27, pp. 6-10, 2010.

[7] L. J. Karam, I. AlKamal, A. Gatherer, G. A. Frantz, D. V. Anderson and B. L. Evans,
"Trends in multicore DSP platforms," Signal Processing Magazine, IEEE, vol. 26, pp.
38-49, 2009.

[8] Project Reliability Group. (1990, Jet Propulsion Laboratory D-5703 Reliability
Analysis Handbook (1st ed.).

[9] F. McDonald, J. Naugle, S. Uyeda, M. Kamogawa, K. Alverson, R. Hooper, E.
Foufoula-Georgiou and F. M. Meyer, "Discovering Earth’s Radiation Belts:
Remembering Explorer 1 and 3," EOS, vol. 89, pp. 361–363, 2008.

[10] T. F. Tascione, "Introduction to the Space Environment, 2nd Edition," pp. 1-172,
1994.

[11] S. R. Elkington, M. K. Hudson and A. A. Chan, "Resonant acceleration and
diffusion of outer zone electrons in an asymmetric geomagnetic field," J. Geophys. Res.,
vol. 108, pp. 1116, 03/14, 2003.

 81

[12] G. D. Reeves, "Radiation Belt Storm Probes: A New Mission for Space Weather
Forecasting," Space Weather, vol. 5, pp. S11002, 11/02, 2007.

[13] S. Matousek, "The Juno New Frontiers mission," Acta Astronaut., vol. 61, pp. 932-
939, 2007.

[14] D. A. Gurnett, W. S. Kurth and F. L. Scarf, "Plasma Waves Near Saturn: Initial
Results from Voyager 1," Science, vol. 212, pp. 235-239, April 10, 1981.

[15] D. A. Gurnett, W. S. Kurth and F. L. Scarf, "Plasma Wave Observations Near
Jupiter: Initial Results from Voyager 2," Science, vol. 206, pp. 987-991, November 23,
1979.

[16] J. Seon, L. A. Frank, W. R. Paterson, J. D. Scudder, F. V. Coroniti, S. Kokubun and
T. Yamamoto, "Observations of slow-mode shocks in Earth's distant magnetotail with the
Geotail spacecraft," J. Geophys. Res., vol. 101, pp. 27383-27398, 1996.

[17] E. Brigham 1940-, E. Oran Brigham. and E. O. Brigham, The Fast Fourier
Transform and its Applications. Englewood Cliffs, N.J.: Englewood Cliffs, N.J. : Prentice
Hall, 1988.

[18] M. Berg, J. -. Wang, R. Ladbury, S. Buchner, H. Kim, J. Howard, K. LaBel, A.
Phan, T. Irwin and M. Friendlich, "An Analysis of Single Event Upset Dependencies on
High Frequency and Architectural Implementations within Actel RTAX-S Family Field
Programmable Gate Arrays," Nuclear Science, IEEE Transactions on, vol. 53, pp. 3569-
3574, 2006.

[19] F. Koebel and J. Coldefy, "SCOC3: A space computer on a chip: An example of
successful development of a highly integrated innovative ASIC," in Proceedings of the
Conference on Design, Automation and Test in Europe, Dresden, Germany, 2010, pp.
1345-1348.

[20] R. Berger, A. Dennis, D. Eckhardt, S. Miller, J. Robertson, D. Saridakis, D. Stanley,
M. Vancampen and Q. Nguyen. (2007, 2007). RAD750 SpaceWire-enable flight
computer for lunar reconnaissance orbiter. 1pp. 1.

[21] G. R. Goslin, "A guide to using field programmable gate arrays (FPGAs) for
application-specific digital signal processing performance," Xilinx Inc, 1995.

[22] Honeywell International Inc., "HXSR01608 2M x 8 Static RAM Datasheet," vol.
2011, pp. 11, 11/01, 2009.

[23] K. Blackburn, B. Lessard, D. Kirchner and W. Kurth, "Controlling Low Frequency
Interference from Direct Energy Transfer Spacecraft Power Systems," 2011.

 82

[24] C. Lattner, "LLVM: A compilation framework for lifelong program analysis &
transformation," in 2004, pp. 75-75.

[25] W. D. Peterson, "WISHBONE system-on-chip (SoC) interconnection architecture
for portable IP cores," OpenCores.Org, 2002.

[26] D. Flynn, "AMBA: enabling reusable on-chip designs," Micro, IEEE, vol. 17, pp.
20-27, 1997.

[27] E. Salminen, V. Lahtinen, K. Kuusilinna and T. Hamalainen, "Overview of bus-
based system-on-chip interconnections," in Circuits and Systems, 2002. ISCAS 2002.
IEEE International Symposium on, 2002, pp. II-372-II-375 vol.2.

[28] D. Elsner, "Using as, the GNU assembler. Free Software Foundation," Inc., March,
1993.

	University of Iowa
	Iowa Research Online
	2011

	WvFEv3: An FPGA-based general purpose digital signal processor for space applications
	Brian Thomas Mokrzycki
	Recommended Citation

	BTM - Thesis - Prelim

