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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Introduction 

 

The Waves instruments aboard the Juno and Radiation Belt Storm Probe (RBSP) 

spacecraft represents the next generation of space radio and plasma wave instrumentation 

developed by the University of Iowa’s Radio and Plasma Wave group [1, 2]. The 

previous generation of such instruments on the Cassini [3] spacecraft utilized several 

analog signal-conditioning techniques to compress and condense scientific data. 

Compression techniques are necessary because the plasma wave instruments can often 

generate significantly more science data than can be transmitted using the narrow 

telemetry channel of the hosting spacecraft. The next generation of plasma wave 

instrumentation represents a major shift of analog signal conditioning functionality to the 

digital domain, drastically reducing the amount of power and mass required by the 

instrument while simultaneously further condensing scientific data, increasing the 

precision of plasma emission measurements, and adding flexibility. 

The digital transition of Waves instruments relies heavily on available integrated 

circuit technologies capable of performing signal processing tasks in real time. 

Performance is not the only consideration, however, as the digital system must also 

operate in a space environment with no atmosphere, wide temperature variations, and 

radiation exposure for the lifetime of the mission. Architecturally speaking, the ideal 

solution would also be flexible enough to implement a wide variety of digital signal 

processing techniques for changing scenarios during space flight with the additional 

benefit of potentially using such a system in missions beyond Juno and RBSP. 

An attractive solution to these goals is the use of a general-purpose digital signal 

processor that combines the programmatic approach of a traditional central processing 
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unit (CPU) with optimized circuitry/instruction set for signal processing. This approach 

has been used numerous times before in commercial products available in the consumer, 

military, automotive, and industrial sectors [4-7]. However, due to the rigors of space 

flight and qualifications set forth by the National Aeronautics and Space Administration 

(NASA) [8], these solutions are not adequate for reliable operation in a space 

environment. This has resulted in a lack of adequate options to address the needs of the 

radio and plasma wave instruments aboard the Juno and RBSP spacecraft. 

The solution presented in this thesis is to utilize a low-cost radiation tolerant field 

programmable gate array (FPGA) that serves as a space qualified implementation 

platform for a custom designed general-purpose digital signal processor, called the 

WvFEv3. The design of the WvFEv3 processor is unique among traditional FPGA 

implementations due to its generic processing flow, thus allowing a wide variety of 

algorithms to be implemented programmatically without the need to reprogram the FPGA 

during a mission. This approach addresses the performance and flexibility needs of the 

Waves instruments in its continuing goals to reduce mass and power while 

simultaneously increasing the precision and compression ratios of science products.   

The realized WvFEv3 processor has met and surpassed the requirements of the 

Waves instruments and now resides aboard the Juno and RBSP spacecraft, awaiting 

launch to their respective destinations. 

 

Waves Instrument 

 

The Physics and Astronomy Department at the University of Iowa (UI) has been 

studying naturally occurring magnetospheric phenomena for over fifty years. Space borne 

research first began at the dawn of the space race with instrumentation aboard the United 

State’s first satellite, Explorer I, developed by Dr. James Van Allen and his team at the 
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UI. The 18-pound satellite was responsible for the first major discovery of the Space Age, 

the Van Allen radiation belts [9]. These torus regions of energetic particles are the result 

of the Earth’s stable magnetosphere trapping charged particles in two distinct belts of 

radiation. The inner radiation belt is composed of high concentrations of energetic 

protons that are believed to be the result of beta decay of neutrons created by cosmic ray 

collisions with atoms in the upper atmosphere [10]. The outer radiation belt is believed to 

be largely made up of electrons produced by inward radial diffusion and local 

accelerations caused by the energy transfer of whistler mode plasma waves to radiation 

belt electrons [11]. Both of these dynamic regions of space produce large exposures of 

radiation that could impact space systems and the health of humans traveling through 

them. 

One future mission, the Radiation Belt Storm Probes (RBSP) [12] will continue 

the investigation of the radiation belts to better understand the Earth’s magnetosphere, 

processes that generate hazardous space weather and how these processes could impact 

space travel. RBSP is part of NASA’s Living with a Star program and is composed of 

twin satellites that will travel along an elliptical orbit that repeatedly intersects both 

radiation belts throughout their mission. One instrument aiding this investigation is the 

UI’s Waves instrument as part of the Electric and Magnetic Field Instrument Suite 

(EMFISIS) [2]. The Waves instrument will assistant in the science goals of RBSP by 

providing measurements to better understand plasma wave origin. 
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Figure 1-1: Simple illustration of the magnetosphere and a geomagnetic tail reconnection 
event. 

The radiation belts are not the only natural phenomenon occurring as the result of 

plasmas trapped by the magnetosphere. The aurora borealis, more commonly known as 

the northern lights, are thought by some to be the result of geomagnetic tail reconnection 

events that accelerate particles along magnetic field lines toward the magnetic poles of 

Earth. In the case when the accelerated particles have sufficient velocity parallel to the 

magnetic field, the physical location of the magnetic reflection point is pushed into the 

ionosphere resulting in the bombardment of the ionosphere’s gas molecules with charged 

particles. The result is the emission of light from these molecules in an assortment of 

colors known as the aurora borealis. This effect has also been observed at several other 

planets in the solar system including Jupiter and Saturn. 

Another future NASA mission, Juno, will provide the first possible direct 

measurements of these auroral regions at Jupiter. After its launch in 2011, the Juno 

spacecraft will cruise to Jupiter over a five-year period and reach orbit along a highly 
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elliptical orbital path that will pass directly over both poles of the planet. Its primary 

science objective is to characterize the formation and internal structure of the planet 

through the measurement of multiple natural phenomenon [13]. The Waves instrument 

will aid in this objective by providing radio and plasma wave measurements of the 

auroras and other plasma wave features, allowing for a better characterization of Jupiter 

and its polar magnetosphere [1]. 

Measuring electromagnetic emissions in space plasmas over a wide range of 

frequencies allows for an understanding of the basic properties of the plasmas and 

perturbations within them that occur as a result of a wide range of interactions with the 

charged particles comprising the plasma. For example, measuring emissions at two 

fundamental frequencies, the electron plasma frequency and the electron cyclotron 

frequency, provides information about the density of the plasma and the magnetic field in 

which it is embedded. Measurements of these fundamental frequencies as well as 

emissions at other frequencies are received and conditioned by the radio and plasma 

wave instrument through on-board antennas and receivers. In recent implementations of 

the instrument, the signal is compressed by either transforming the signal to a coarse 

spectrum using analog circuitry or by compressing a digitized representation of the 

measured waveform. In either case, compression is a necessary operation due to the high 

data volume the instrument can generate relative to the narrow telemetry link of the 

spacecraft. 

The next generation of radio and plasma instrumentation aboard the Juno and 

RBSP spacecraft, known as the Waves instrument in each instance, represents a 

significant shift of signal processing functionality towards the digital domain when 

compared to previous incarnations found on Voyager 1 & 2, Geotail, and Cassini [3, 14-

16]. One of the most effective methods for reducing the data requirements for 

transmitting science data is through spectral analysis. Previous incarnations achieved this 

by utilizing analog circuitry to transform the received signal into a coarse power 
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spectrum. The same result can be achieved in the digital domain by utilizing a digital 

processor and the Fourier transform. Several benefits are realized when moving to a 

digital solution; mass and power needs of the instrument would be reduced while 

simultaneously increasing the precision of the resultant compressed spectrum. 

Furthermore, a digital processing solution can also be utilized to implement further signal 

processing techniques such as binning and averaging of multiple spectrums to further 

compress science data. 

The cornerstone of the analog-to-digital processing transition is based upon the 

well-understood time to frequency domain transform called the Fourier transform. The 

Waves instrument will make heavy use of this operation and any performance advantages 

among implementations is highly beneficial. One of the most commonly used Fourier 

transform implementations found in digital systems is the radix-4 complex FFT or fast 

Fourier transform which extensively exploits the use of common partial products between 

point computations to drastically reduce the number of arithmetic operations. A radix-4 

complex FFT dataset does make an assumption about the size of the input vector where it 

must conform to a base-four number, i.e. 4, 16, 64, 256, etc.  

 

Figure 1-2: Dual real FFT processing flow 

To further reduce arithmetic complexity, a second assumption can be made if the signal 

input is real only, allowing for the simultaneous transformation of two real signals with a 

single complex FFT operation. In this case the performance of the real FFT operation can 
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be nearly doubled by modifying the input of the complex FFT operation to include two 

real signals, one in the real part and the other in the complex part of the input, seen in 

Figure 1-2. Once the complex FFT operation is complete, a post-processing step is 

required to ‘unscramble’ the real results from one another [17]. The operations needed to 

perform signal-processing techniques in the digital domain are all well understood; the 

only requirement is a digital processing system capable of performing these operations. 

 

Field Programmable Gate Arrays 

 

Space qualified integrated circuits provide a key technology for enabling the 

transition of functionality from the analog domain to the digital domain by providing 

high-speed logic components for implementing digital processing systems. The specific 

nature of the space environment exposes integrated circuits to non-traditional 

environmental extremes in temperature, vacuum, and radiation exposure. High-energy 

ions or electro-magnetic radiation striking a sensitive node in an integrated circuit, such 

as a flip-flop or memory cell can result in a state change of the logic element called a 

single event upset (SEU). SEUs can cause a processor to exhibit peculiar behavior, as the 

state of operation is no longer valid leading to unpredictable actions. One part of 

qualifying an integrated circuit for spaceflight requires the design to be capable of 

mitigating SEUs through gate design and tolerating SEU effects through logic design. 

Field programmable gate arrays (FPGAs) provide one possible technique for 

implementing integrated circuit designs for spaceflight. FPGAs are a flexible integrated 

circuit containing programmable logic components and a hierarchy of reconfigurable 

interconnects allowing the logic components to be connected in a wide variety of 

configurations. The programmable ‘sea of gates’ allow a designer to implement anything 

from a simple logic circuit, to a sequential circuit, to more complex functions such as a 
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microprocessor. A radiation tolerant FPGA incorporates additional features into the gate 

design of the logic components to detect and mitigate SEUs asynchronously [18]. 

The design and implementation of an FPGA circuit begins with the definition of 

the intended function in a high-level hardware description language (HDL) such as 

VHDL or Verilog. The HDL provides a definition of the functionality intended, whether 

it’s a bus interface, a state machine, or a processor pipeline. The HDL by itself is only 

useful for performing a high-level simulation of the intended design and must be 

transformed several times before it’s loadable into an FPGA device. The first step, called 

synthesis, is the transformation of high-level constructs in HDL to specific resources the 

FPGA provides. These can either be basic logic gates such as AND, OR, and XOR gates 

or higher-level structures such as 1-bit adders or 2-input multiplexers. 

 

Figure 1-3: FPGA Design flow methodology 

Additionally, the synthesis step also connects these resources together to form a net-list 

that is logically equivalent to the high-level HDL description. The final step of the design 

flow concludes with the ‘place and route’ of the synthesized net-list. Each resource 

defined in the net-list is given a location on the FPGA die and then connected together 

using the FPGA routing infrastructure. Once this process is complete a programming file 
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representing the original HDL design is generated and can be used to program the 

specific FPGA family and model selected during the design flow. 

FPGA designs are typically referred to as intellectual property cores (IP cores), 

which are further sub-categorized into three groups, soft IP cores, firm IP cores, and hard 

IP cores. A soft IP core is a logic design that is described as HDL source and still needs 

to run throughout the entire design flow before being FPGA loadable. A soft IP core 

represents the most flexible description of the design as it can be targeted for a wide 

variety of FPGA devices; this is analogous with high-level software source code. In the 

next level down, the firm IP core is represented by the net-list generated post synthesis. 

This definition can be implemented in any device in one FPGA family; this would be 

comparable with assembly code for a particular processor family. Finally, a hard IP core 

is the product created post ‘place and route’ and represents a hardwired implementation 

of the design that is specific to a particular FPGA family and model. The hard IP core 

representation is most similar to a pre-compiled software executable where it is very 

difficult to reverse engineer the design. 

The verification of an FPGA design can be done at several levels throughout the 

design flow. The lowest fidelity verification is called functional verification; this is 

performed when the high-level HDL description of the design is simulated in a logic 

simulator, such as ModelSim or Active-HDL. This level of verification only verifies that 

the HDL representation logically represents the function intended. Physical effects such 

as wire delays, pad delays and gate delays are not included at this level of simulation. To 

achieve this level of detail the design must first pass all the way through the design flow 

to ‘place and route’. At this point enough information is known about the gates and 

interconnects that delays between various components can be calculated. Since this level 

of simulation most accurately represents the physical device it is called physical 

simulation. Once functionality has been verified in physical simulation a device may be 

programmed and unit level testing is used to continue the verification effort. The most 
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rigorous of these efforts is thermal vacuum testing where the device is expected to 

operate flawlessly while exposed to extreme temperature variations under vacuum.  
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CHAPTER II 

PROBLEM STATEMENT 

 

Digital signal processing (DSP) aboard the Juno and RBSP space exploration 

satellites presents a number of unique constraints upon performance, flexibility, and 

space qualification where no previously known solution is suitable. To resolve this issue 

a novel approach is taken; the design and implementation of a general-propose digital 

signal processor targeted for a radiation tolerant field programmable gate array (RT-

FPGA). 

Several commercial solutions exist for digital signal processing (DSP) 

applications with varying levels of performance and flexibility.  The use of an off-the-

shelf general-purpose central processing unit (CPU, provides a high-level of flexibility 

through the use of an instruction set to program a wide variety of application programs. 

Because such a CPU is general-purpose in nature, it can be used to implement a wide 

variety of application programs including DSP algorithms. An assortment of space 

qualified CPUs exist for both FPGAs and application specific integrated circuits (ASICs) 

[19, 20], however these CPUs typically have inadequate clock rates or instruction flow 

inefficiencies that limit DSP performance when compared to contemporary CPUs. As a 

result, they cannot meet the minimum performance requirements of the Waves instrument 

aboard the twin RBSP satellites where spectral structure is expected on 30 millisecond 

time scales. Due to this constraint, the DSP sub-systems in each of these instruments 

require a processor capable of calculating, at minimum, ninety-six real 1024-point 

Fourier transforms per second in single precision floating-point format, or one every 10.4 

milliseconds. No known space qualified CPU is capable of a performance high enough to 

meet this requirement. 
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Application specific logic (ASL) blocks provide another commercial option that 

can meet the minimum performance requirement of RBSP. However, their relative 

inflexibility when compared to CPUs creates additional obstacles associated with 

integration and flight operations. A DSP ASL performs a specific DSP task quickly and 

efficiently through the use of a custom circuit inside an FPGA or ASIC [21]. Due to the 

highly specialized nature of ASLs they are incapable of performing any other operation 

than the specific one they were designed to perform. This typically is not an issue unless 

it’s difficult or infeasible to simulate the exact operational environment in which the ASL 

is to be deployed, such as with satellites exploring uncharted regions of space. These 

unknowns may lead to a situation where the alteration a DSP operation(s) would be 

beneficial or even critical; for instance, adaptively cancelling solar panel switching noise.  

Although FPGAs are reprogrammable and could potentially alter DSP operations, the 

environment of space flight typically restricts this activity resulting in an ASL 

implementation that is rigid and static.  This static property makes ASL implementations 

an unattractive solution for this application. 

ASIC designers have already faced the issues of flexibility and provided a 

solution through the design of a general-purpose DSP processor (DPU).  The DPU 

marries the programmatic control of a CPU with specialized instructions and circuits as 

seen in ASLs.  This solution represents a compromise between performance and 

flexibility; a DPU sacrifices a portion of the flexible features of a CPU to gain additional 

DSP performance closer to that of an ASL. As seen in Figure 2-1, a vendor supplied DPU 

in an ASIC would provide the lowest cost, highest performance acceptable solution, but 

no space qualified part was available during the design phase for the missions supported 

by this thesis work. A DPU implemented in an FPGA would provide the next logical 

solution, but no development effort is known previously to this work that has addressed 

this possibility -- space qualified or otherwise. 
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Figure 2-1: Relative distribution of DSP solutions based on cost, performance, and 
flexibility 

The central issue is that at the time of design, no space qualified DSP solutions 

existed that were able to meet the performance and flexibility goals described.  A novel, 

cost-conscious approach would be to utilize a radiation tolerant FPGA to implement a 

general-purpose DSP processor. This would provide a solution that concurrently 

addresses the constraints of performance, flexibility, and space-worthiness. Presented in 

this thesis is the WvFEv3 processor, a general-purpose DSP processor targeted for 

Actel’s RTAX2000 radiation tolerant FPGA. 
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CHAPTER III 

METHODS 

System Architecture 

 

The complexity of autonomously managing tasks, telemetry, and system health in 

space systems is substantial. Often, the simplest solution is to utilize a general-purpose 

processor coupled with a real-time operating system to form the foundation of the system. 

This solution provides the flexibility to alter instrument operations during flight and a 

hardware interface to supplement the system with additional resources, such as memory 

devices, serial interfaces, data collection systems and co-processors. The WvFE SoC co-

processor is one such example; it extends the host processor’s capabilities with additional 

resources to perform data collection and DSP related tasks. 

Seen in Figure 3-1, the WvFE SoC co-processor is not just the WvFEv3 processor 

core itself, but a complete ‘system on a chip’ (SoC) comprised of several cores and 

interfaces. Storage for application code, waveforms, and processed products is provided 

via an independent local memory; architected in a manner to isolate the memory 

bandwidth needs of the co-processor from the host processor’s bus. The host processor is 

able to read and write to the WvFE SoC co-processors internal configuration registers and 

the entirety of local memory via the host bridge. Finally, the analog-to-digital (A/D) 

controllers in the co-processor provide waveform-capturing capabilities on tight time 

boundaries. 

Scaling of the system to provide additional computational resources is possible 

due to the bus architecture of A/D subsystem and the independent local memories for 

each co-processor. Figure 3-1 shows that the co-processor configuration can be replicated 

several times until a limitation is either found in the bandwidth of host processor bus or 

the A/D subsystem bus. In this configuration, the host processor interfaces to each co-
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processor as a separate address mapped resource, and since all co-processors are identical 

any of them may be selected to perform the needed operations. 

 

Figure 3-1: Architectural description of a multi-processor DSP system with WvFE SoC 
co-processors 

From this point forward, the emphasis of discussion will be placed upon the 

WvFEv3 processor core.  Specific details, such as those related to the peripheral cores and 

interconnections of the WvFE SoC co-processor architecture is only described when 

needed. 
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WvFEv3 

 

The WvFEv3 is a synthesizable, programmable processor soft IP core with an 

emphasis on performing DSP related tasks quickly and efficiently in IEEE 754 single 

precision floating point. The term WvFEv3 refers to ‘Waves FFT Engine’ and represents 

a relic of convention that emphasizes a misnomer of the architectures’ capabilities, as the 

design is far more capable than performing just FFTs. For this reason the production 

release is referred to as WvFEv3, representing the version of release and a shortening of 

the ‘Waves FFT Engine’ convention. Superseding version two, the design of the WvFEv3 

further optimizes the instruction set architecture (ISA) and microarchitecture while also 

implementing fault tolerant features. In additional to these optimizations, the secondary 

goal of the ISA and microarchitecture is to keep gate resources minimal when it does not 

adversely affect performance, due to resource limitations of the FPGA target.  

 

Figure 3-2: System architecture of the WvFE SoC co-processor 
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The WvFEv3 processor is a modified Harvard architecture machine, which 

logically uses several address spaces for instructions, data, input/output, and ‘virtual 

tables’. Each address space utilizes a separate interface for fetching data, therefore 

increasing the total amount of potential data bandwidth available to the processor core. 

This configuration also makes implementing a caching structure more convenient as each 

interface can utilize a different caching scheme depending on its unique accessing 

patterns. In the physical implementation, however, the various interfaces are time 

multiplexed to a single local memory using external arbitration logic due to pin 

limitations of the physical package. 

Application code for the WvFEv3 is simple in nature and similar to that of 

general-purpose processors.  Applications contain a series of consecutive instructions 

performing small steps to achieve a larger function.  These functions can then be 

performed serially using calls from a higher-level main function; such as performing an 

A/D capture, then a FFT on the capture, then binning the results. Executing an 

application typically follows these operations: 

Table 3-1: Series of operations needed by the host processor to configure the WvFE SoC 
co-processor for program execution 

Step Operation 

1 The host processor loads application code into WvFEv3 local memory 

2 The host processor writes the start address of the loaded application to WvFEv3’s 

program counter 

3 WvFEv3 begins fetching and executing instructions until a halt instruction or a fault is 

encountered 

4 Upon completion, the WvFEv3 signals the host processor 
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Since the WvFEv3 is considered a co-processor, there has been no attempt to incorporate 

features in the ISA to provide operating system support, such as interrupt handling or 

context switching. 

The next sections of this chapter will discuss details of the instruction set 

architecture and microarchitecture in more detail, followed by a discussion of instruction 

flow considerations. 

 

Instruction Set Architecture 

 

The WvFEv3 instruction set is an example of an explicitly parallel instruction 

computing (EPIC) paradigm, utilizing a very long instruction word or instruction bundle 

to group multiple instructions in an attempt to exploit instruction level parallelisms. The 

EPIC paradigm gives the programmer or compiler complete control over how 

instructions are allocated to the various functional units inside the WvFEv3 core, reducing 

complexity during instruction dispatch, but at the cost of added complexity on the 

programmer or compiler. 

An instruction bundle contains two instructions that are packed into one fixed 64-

bit word, one is allocated to the control unit (CU), fixed at 42-bits long, and the second is 

allocated to the floating-point unit (FPU) using the remaining 22-bits. Each instruction 

pair is executed lock step and in parallel by each of the logical execution units. Each unit, 

the CU and FPU, operate on a unique ‘reduced instruction set computing’ (RISC) like 

sub instruction set tailored to the types of operations they are responsible for. Each of the 

sub-ISAs perform register to register operations; the CU ISA incorporates full access to 

all sixty four 32-bit registers in the register file using 6-bit address fields (Rd, Ra & Rb), 

where the FPU ISA has limited visibility by only allowing access to the upper 32 

registers with 5-bit address fields (Rz, Rx, & Ry). Since the sub-ISAs share access to the 
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register file, they are not mutually exclusive data-wise, and scheduling of sub-instructions 

must adhere to certain rules to avoid hazards. Other fields in the instruction bundle 

include a control unit operation code (Cop), a floating point unit operation code (Fop), a 

virtual table address (Vt), and an 18-bit or 24-bit immediate constant (Imm18, Imm24). For 

a complete listing and description of all instructions and formats for both execution units 

please refer to Appendix A. 

 

Figure 3-3: Description of WvFEv3 Instruction bundle formats 
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Control Unit ISA 

 

The control unit is a logical execution unit that performs integer based arithmetic 

and programmatic operations. Its primary purpose is to move data in and out of the 

processor, in an attempt to keep the FPU unit performing useful operations. To this end, 

the CU ISA incorporates store/load instructions, various integer arithmetic instructions, 

bitwise operators, program control flow instructions, and a handful of special butterfly 

address calculation operations specifically designed for FFT execution. Additionally, the 

CU ISA also implements instructions for approximating reciprocal and square roots in 

floating point, as seed values to Newton-Raphson convergence functions. 

The control unit’s role also extends to managing the state of the processor core; 

enumerated states include idle, run, sleep, and error. Most of these states are self-

explanatory, with the exception of sleep state, invoked by the ‘sleep’ instruction. It 

represents a low power processor state, much like the idle state, but is polling for an 

external event to ‘wake’ it up. An event is synonymous with an asynchronous interrupt, 

but the response from the processor is primitive in nature, it simply transitions from sleep 

to the run state and continues executing where the program counter left off. The sleep 

state is useful when the WvFEv3 processor has set up an external activity, such as an A/D 

capture, and must wait for the data to become available to execute the next task. 

 

Floating Point Unit ISA 

 

As is obvious from its name, the FPU performs floating-point arithmetic. The 

multiply accumulate operation, being particularly well suited to DSP-related tasks, forms 

the foundation from which supplemental operations are derived. Addition, subtraction, 
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multiplication, and multiply-decrement are all implemented through the toggling of 

operands into the fused multiply accumulate block via op-code decoding. 

In addition to floating-point operations the FPU ISA also incorporates a unique 

feature for accessing non-registered data, called virtual tables. A virtual table is a method 

of address translation to blocks of local memory with the goal of increasing data 

throughput to the FPU and reducing the memory requirements on local memory for 

storing pre-computed functions, cyclic ones in particular. 

 

Figure 3-4: A logical description of the virtual table translation unit 

At the heart of the virtual table concept is the table address translation unit or 

TAU. The TAU reads one of the eight virtual table descriptors and an offset value 

referenced by the executing instruction. It then performs a translation on the offset to 
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fetch the requested piece of data from local memory and apply any transformation on the 

data. The virtual table descriptors provide location, size, and orientation of the physical 

buffer being referenced and whether the fetched data needs to be altered. Additionally, in 

the case of cyclic functions, such as (co)sine, the descriptor also holds function polarity 

and fractional representation of the physical buffer. To illustrate the concept of virtual 

tables, imagine a full sine wave that is segmented into four equal portions. Any segment 

is equivalent to any other, just inverted or rotated, and in essence the entire sine wave can 

be represented by just one segment if the appropriate rotations and inversions are applied. 

This is exactly the function of the TAU, to perform the conversions necessary to 

represent cyclic functions in a fraction of the traditional memory requirements. 

 

Microarchitecture 

 

The WvFEv3 microarchitecture is a direct extension of the duality imposed by the 

ISA specification. It employs two execution flows, one representing the control unit and 

the other representing the floating-point unit, each operating on their respective sub-ISAs.  

Detailing each flow further is a discussion of the pipelined design, followed by a 

description of the caching architecture, and finally considerations in instruction flow. 

 

Concurrent Dual Pipelines 

 

As can be seen in Figure 3-5, the microarchitecture is centered about the register 

file, with a single pipeline beginning with instruction fetch that eventually diverges into 

two execution flows. The left side represents operations defined by the CU ISA and the 

right side represents operations defined for the FPU ISA. Also illustrated is the 

mismatched depth of each pipeline, CU operations are typically simpler in nature, 
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requiring fewer stages than the FPU. Physically, the CU is a four-stage pipeline, and the 

FPU is a seven-stage pipeline resulting in two instructions executing every machine 

cycle. 

Instruction execution for both units begins when the next program counter is 

calculated in the instruction pre-fetch stage. The program counter is presented to the 

instruction interface to fetch the needed instruction. The interface is 64 bits wide resulting 

in one instruction bundle fetch per transaction. The fetched instruction bundle is passed to 

the operand pre-fetch stage, which decodes the instructions and presents up to six 

possible register addresses to the register file. Finally, the register file fetches the 

appropriate data and routes it to the next stages of the divergent pipelines. 

 

Figure 3-5: Microarchitecture of the pipelined WvFEv3 processor 

The control unit continues execution in the next stage by calculating addresses for 

memory and I/O accesses, or performing the first stage of a more sophisticated integer 
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operation. The following stage finishes the interface access or integer operation and 

stores the result, if needed, back to the register file. 

The floating-point unit execution follows a similar path, beginning with a table 

address calculation. The fetched table values are passed, along with operands from the 

table pre-fetch stage to the next stage. The denormalize, multiply, accumulate, and 

normalize stages all follow, representing a complete floating point multiply-accumulate 

operation. Addition, subtraction, and multiply all follow the same pipeline flow, the only 

difference being how operands are selected and manipulated. The final stage is shared 

between the normalization step and write back of the result to the register file. 

 

Cache Architecture 

 

The WvFEv3 microarchitecture implements several interfaces for accessing data; 

the instruction, table, data, I/O interfaces. Due to the pipelined nature of the design, it is 

now theoretically possible to request multiple memory locations per machine clock. The 

gains in performance can only be attained when data is provided to the processor core in 

a timely manner, otherwise the processor must stall and wait for the data to become 

available. To alleviate the demand on local memory, a local cache is used on the 

instruction and table interfaces for data items that are repeatedly accessed. 

Accessing data items from the table or instruction interface is typically done in a 

spatially localized manner. The table interface, for instance, will generate physical 

addresses for a virtual table that could be up to 4096 consecutive values in size. While the 

instruction interface, in areas of high repetition (common for DSP), will execute code out 

of a series of consecutive locations in memory. Since the data accesses are well 

understood for the applications intended, a simple but appropriate caching scheme is 

adopted, a direct-mapped cache. 
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The instruction cache (I-cache) is implemented as a 64-bit by 1024 entry direct-

mapped cache utilizing a block size of 128 entries.  This allows up to eight different 

segments of consecutive code to be cached concurrently. The table cache, logically 

shown in Figure 3-6, is larger at 32-bit by 4096 entries and a block size of 512, again this 

allows for eight different segments of consecutive table data to be cached concurrently, 

reflecting the eight virtual table descriptors available. 

The FPGA fabric contains static RAMs that are used to implement the caching 

architecture; these internal static RAMs are not protected against SEU effects like the 

external local memory. The external local memory is hardened enough against radiation 

that SEUs will be very rare in Earth and Jovian orbits [22]. 

 

Figure 3-6: Direct-mapped memory block caching scheme 
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To effectively utilize the FPGA’s static RAMs for cache, a parity check and reload 

scheme was adopted. When the processor requests a line of cache, pre-computed parity 

bits are verified and if a mismatch is encountered, the processor is stalled while the cache 

re-fetches the affected line from local memory. In this way, the processor can continue 

executing without having to fault due to an SEU in the cache structure. 

 

Hazards and Programming 

 

Increasing performance through a pipelined microarchitecture, as seen in a 

previous section, can drastically increase performance but comes at the cost of added 

complexity when scheduling and executing instructions due to various hazards. To 

minimize the impact of these hazards, several attempts have been made to partially 

alleviate their effects during execution flow. 

The first of these hazards is due to the pipeline’s multi-stage separation between 

operand fetching and the writing back of results, leading to hazards known as ‘read after 

write’ (RAW) hazards.  A RAW hazard is the result of data dependent operands in an 

instruction being read before these dependencies have been fulfilled by the write back of 

results from previous instructions in the program flow. To avoid this hazard the 

dependent instruction must read its operands after the results write back from previous 

instructions. The CU has effectively two stages separating the operand fetch and write 

back stage of the result, leading to a two slot exposure to a RAW hazard. The FPU 

suffers the same issue, except the operand fetch and write back stages are separated not 

by two stages but by five stages, leading to a five-slot exposure. To partially alleviate the 

exposure to RAW hazards, result forwarding is implemented in the register file to route 

the results being written back directly to requesting instructions in the operand fetch 

stage. This cuts out the cycle needed to commit the result to the register file before 



 27 

reading it back, resulting in a RAW exposure reduction in the CU to 1 slot and in the 

FPU to 4 slots.  Avoiding the rest of the RAW hazards is the responsibility of the 

programmer.  These exposed slots should be filled with useful instructions or if not 

possible, NOPs, as seen in Figure 3-7. 

 

Figure 3-7: Read after write hazards of the WvFEv3 pipelines 

Control flow instructions such as calls, returns, and branches present their own set 

of unique challenges. In the case of a call instruction, the data needed to compute the new 

program counter is encoded in the instruction bundle, but this does not become available 

until the after the instruction fetch stage. This means that the pipeline has fetched one 

invalid instruction directly after the call instruction; this instruction is automatically 
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invalidated. The return function induces a larger penalty since the return address has been 

saved on the stack and must be fetched from local memory before the new program 

counter can be loaded. Due to the additional delay, additional instructions must be 

invalidated that follow the return instruction. 

 

 

Figure 3-8: Flushed instructions from function calls and returns 

A branch in a pipelined design is often an expensive operation due to the 

unknown state of the branch until a late stage in the pipeline.  The processor must stall or 

induce NOPs until the condition of the branch is resolved, degrading performance. In the 

case of the WvFEv3 processor, a branch would induce three machine clocks of wasted 

cycles and could, in the case of tight loops, degrade performance significantly. Branch 
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prediction, a technique used to guess which execution path should be taken, can be used 

regain a portion of the lost performance by filling the wasted slots with, hopefully, useful 

instructions. A successfully predicted branch will only incur one pipeline bubble due to 

the branch address being unavailable during instruction fetch. 

 

Figure 3-9: Flushed instructions from branch prediction 

In the case when a predicted branch is incorrect, the instructions fetched from the false 

path must be flushed from the pipeline and the alternate and correct program flow taken. 

The WvFEv3 utilizes a simple ‘always taken’ branch prediction scheme due to the 

repetitive nature of the target DSP applications 

The mismatched pipeline depth of the execution units in the WvFEv3 design has 

lead to one additional hazard, a write after write (WAW) hazard. Since the FPU writes its 
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results several stages after the control unit, an opportunity arises where the FPU can 

overwrite the CU’s result even though the CU instruction came programmatically later 

than the FPU’s instruction.  An example illustrating the sensitivity to WAW hazards is 

shown in Figure 3-10.  The processor does not include any detection of such an event, 

and the programmer must be aware of this situation when writing applications. 

 

Figure 3-10: Write after write hazards of the mismatched WvFEv3 pipelines 

Writing software for the WvFEv3 architecture is made possible by a custom 

defined assembly language and a port of the GNU binutil toolset.  The assembly language 

highlights the parallel nature of the instruction bundles increasing the programmer’s 

awareness of instruction scheduling with examples of code shown in Appendix B.  The 
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GNU binutil toolset, a community supported system software infrastructure, provides the 

foundation for an excellent set of tools to develop re-locatable software modules; an 

assembler, linker, and disassembler. 
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CHAPTER IV 

RESULTS 

 

An analysis of the physical FPGA resources needed by the WvFE SoC co-

processor is presented.  This is followed by the design’s critical path and a detailed 

analysis of the execution of the fast Fourier transform algorithm. 

 

Physical Resources 

 

The WvFE SoC co-processor was synthesized, placed and routed for an Actel 

RTAX2000S FPGA with the Actel Libero IDE v9.1 toolset. These tools provide 

utilization metrics of the various resources needed to implement the design in RTAX 

FPGA fabric. Several components described in VHDL make up the WvFEv3 SoC co-

processor, most of these are external cores and interconnects to the WvFEv3 processor 

and will not be characterized to a detailed level. The VHDL description of the WvFEv3 

processor is sub-divided into several components, a register file, an instruction cache, a 

table cache and a WvFEv3 core representing a combined control unit and floating point 

unit. 

Sequential elements such as flip-flops and latches are categorized as R-cells in the 

RTAX FPGA fabric. The total R-cell utilization of the WvFEv3 processor is 42.4% of the 

RTAX2000S compliment or 4564 cells total. The register file, as seen in Figure 4-1, 

requires the majority of these at 2048, followed closely by the WvFEv3 core at 1823. The 

instruction cache and table cache each use a relatively small portion of R-cells at 386 and 

307, respectively. 

 



 33 

 

Figure 4-1: RTAX2000S R-cell utilization of the WvFE SoC co-processor 

 

Figure 4-2: RTAX2000S C-cell utilization of the WvFE SoC co-processor 
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Combinatorial logic or C-cell utilization of the WvFEv3 processor is significantly 

higher than that of the R-cells usage. The design’s total, shown in Figure 4-2, is 14477 C-

cells or 67.3% of an RTAX2000S. The majority of these cells, nearly 74%, are required 

to implement the control unit and floating point unit. The register file, instruction cache, 

and table cache implementations require 2444, 638, and 718 cells respectively. 

 

Figure 4-3: RTAX2000S internal RAM block utilization of the WvFE SoC co-processor 

Only two of the WvFEv3 processor sub-components require the use of the on-

board RAM modules, the instruction cache and table cache. The instruction cache uses 

sixteen 512x9 RAM blocks to implement a 1Kx72 memory structure. The table cache 

uses significantly more at thirty-two 512x9 RAM blocks to create a longer but narrower 

4Kx36 memory structure. Total utilization of the design requires 48 RAM block or 75% 

of the RTAX2000S complement. 
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RTAX cell utilization provides an adequate measure to make comparisons only to 

other designs that have been targeted for this FPGA family. Often this is not the case and 

an attempt has been made to convert the number of cells to an ASIC gate count. Due to 

many factors, it is only possible to calculate an estimate of the number of gates required. 

The WvFEv3 processor would require approximately 150,000 to 175,000 gates for an 

ASIC implementation. 

 

Performance 

 

The performance characterization of the WvFEv3 processor is provided as a 

detailed analysis of several metrics; including the critical path of the design and an 

analysis of the execution of the FFT algorithm including cycle counts, branch prediction 

accuracy, cache hit accuracy, and power utilization. 

 

Critical Path 

 

The critical path is the longest delay path between two sequential elements in the 

same clock domain; this dictates the maximum frequency for which the clock can operate 

for reliable operation. The WvFEv3 critical path is the combinatorial path found between 

register outputs in control unit’s memory pre-fetch stage, through the external local 

memory, to the inputs of registers in the store result stage. The total delay associated with 

this path is 73.544 ns, which relates to a maximum clock rate of 13.6 MHz. However, 

integrated circuit design rules set forth by Jet Propulsion Laboratory [8] require a de-

rating on the clock frequency, resulting in an conservative operational clock of 10.5 

MHz; this metric will be used for all subsequent analyses. 
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FFT Performance 

 

The Fast Fourier transform (FFT) algorithm is used as a performance benchmark 

due to its computational complexity and its direct relevance to performance requirements 

needed by RBSP.  The algorithm is sub-divided into several steps as discussed in the 

background section, the complex radix-4 FFT, the result reversal, and the unscrambling 

of real results. This algorithm was executed in simulation to determine the performance 

of each step in terms of execution cycles, branch prediction accuracy, and cache hit 

accuracy. For a complete WvFEv3 assembly listing of the algorithms implemented for 

this benchmark please refer to Appendix B. 

 

Figure 4-4: Number of execution cycles utilized by the WvFEv3 processor to execute a 
complex FFT of various resolutions 
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Figure 4-4 relates the number of cycles needed per step of real FFT execution to 

four radix-4 resolutions, the lowest 256 and highest 16384 points.  The largest component 

of execution is, unsurprisingly, the execution of the complex FFT algorithm with 

approximately 80% of the execution cycles spent performing this operation.  The number 

of cycles to perform each of these steps is deterministic and therefore can be described 

with the following equations where N is the resolution of the complex FFT being 

calculated. 

!"#$%& !"#$%&'!!!" ! !"#! ! !
!
! ! !"!!"!#$% ! !!!"!#$% ! !"!!"!#$% 

!"#$%&!!"#$%&!!"#"$!!"!! ! ! !! ! !"!!"!#$% ! !!!!"!#$%! 

!"#$%& !"#$%&'()*!!"#$% ! ! !! ! !"!!"!!"# ! !!"!!"!#$% 

Equation 4-1: Equations to calculate the number of cycles needed to perform various 
steps in the computation of real FFTs 

Execution time of the real FFT calculation is calculated by multiplying the 

number of cycles needed for computation against the clock period of processor and 

dividing the result by two for each real FFT result. The physical implementation of the 

WvFEv3 processor uses a clock frequency of 10.5 MHz or 95.24 ns per cycle. Using this 

metric as the clock period and dividing by two yields an execution time of a single real 

1024-point FFT in 2.312 milliseconds. The execution time the other radix-4 resolutions 

are seen in Figure 4-5.   
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Figure 4-5: Execution time for the calculation of a real radix-4 FFT for various 
resolutions. 

A useful metric related to performance of a pipelined processor is that of cache hit 

and branch prediction accuracies. The higher the accuracy of these functions the fewer 

stalls the processor incurs when executing instructions. Table 4-1 depicts accuracies for 

the computation of the dual real FFT algorithm after a processor reset. In this scenario, 

the caches do not contain any valid data for FFT execution and represent the highest 

number of cache misses incurred. This decreases the optimal accuracy from 100% to an 

average of 99.9% for both caches. Once the caches have been loaded with valid FFT 

computation data any subsequent FFT execution will achieve the optimal 100% accuracy. 

The accuracy of the branch prediction method is not dependent on the state of the caches 

and as a result will stay static upon repeated FFT executions. The prediction accuracy for 

the all steps of the FFT computation averaged is 99.122%. 
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Table 4-1: Profile of the branch prediction and caching scheme performance during FFT 
execution. 

Attribute Complex 

FFT 

Result 

Reversal 

Unscramble 

Reals 

Average 

Branch Prediction 99.367% 99.481% 98.517% 99.122% 

I-Cache Hit Rate 99.996% 99.979% 99.974% 99.983% 

T-Cache Hit Rate 99.919% N/A N/A 99.919% 

 

Power Utilization 

 

The power utilization of the WvFE SoC co-processor was calculated through the 

execution of the complex FFT algorithm in physical simulation. During simulation 

various scenarios of operation were observed, the loading of the instruction cache, the 

loading of the table cache and the execution of the FFT algorithm. A waveform for each 

scenario was captured and analyzed at the gate level using Actel’s SmartPower tool, 

providing cycle accurate power measurements. Figure 4-6 depicts the analysis of each of 

these scenarios where the static power utilized by the design is unchanging at 131.14 

mW.  The static power represents the amount of power the design consumes at idle. 

The dynamic power is the additional power needed to perform the operation 

associated with each scenario.  For instance, the dynamic power associated with loading 

of the instruction cache is 192 mW for a total power consumption of 323.6 mW. A slight 

increase in power is seen when loading the table cache at 346.4 mW and the power peaks 

during FFT execution at 521.2 mW. 
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Figure 4-6: Power profiles for various modes of processor operation during program 
execution. 

Finally, one additional scenario is portrayed that characterizes the power profile 

of the WvFEv3 during the low power sleep mode. As expected, the dynamic power 

utilization for this mode is significantly lower than the other scenarios at 65.364 mW.  

The low dynamic power is attributed to the system clock gating to sequential elements 

not needed to support the functions of sleep mode in the processor design. 
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CHAPTER V 

DISCUSSION 

Space Qualification 

 

The foremost issue in developing any digital design for space flight is tolerating 

radiation effects and temperature extremes of the space environment. To address these 

issues an Actel RTAX2000S FPGA was chosen as the implementation technology due to 

several inherent features that make it well suited for space flight. One feature in 

particular, triple module redundancy provides a hardening solution that reduces single 

event upsets in sequential elements to less than 10-10 errors/bit-day at geosynchronous 

orbit [18]. However, since the number of SEUs is non-zero, several attempts have been 

made to further the design’s resilience by detecting and recovering from SEUs. These 

features include the hardening of state machines, instruction pipeline parity checking, and 

cache line parity checking.   

The highest fidelity approach to testing the fault tolerant features of the WvFEv3 

processor would be in a temperature-controlled vacuum under radiation exposure, 

however the equipment costs make this impractical. A secondary, lower cost method was 

employed that utilizes computer simulations to emulation SEUs. During simulation, the 

instruction and table cache lines received ‘bit upsets’ by overwriting a single bit in cache 

memory that resulted in the invalidation of the cache’s parity bits. Once the processor 

tried to fetch one of these corrupted lines, the cache stalled the processor and re-fetched 

the appropriate data from local memory. The cache state machine then re-loaded the line 

with the new data, re-calculated the parity bits and allowed the processor to continue 

operation. 

This method successfully verified the cache’s fault tolerance to SEUs but not all 

features could be tested in this manner. The effects of radiation are realized at the circuit 
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level, beyond the resolution of gate level simulations. This disconnect has created a void 

where it is not possible to use the same technique to verify flip-flop based upsets, such is 

the case in fault tolerance features in state machine and parity checking on executing 

instructions. Although every practical attempt has been made to verify the correctness of 

the designs’ fault tolerant features, the final verification will only be possible during 

space flight. 

The combination of the RTAX radiation tolerant features, the WvFEv3 fault 

tolerant features, and the verification efforts put forth yield an acceptable design for space 

flight. 

 

Performance 

 

The most demanding application intended for the WvFEv3 processor, as described 

in the problem statement, is the calculation of a 1024-point real FFT every 10.4 ms. To 

achieve this goal, many architectural considerations and trade-offs have been studied to 

allow for the efficient computation of various DSP algorithms, including the FFT. 

The WvFEv3 computer architecture was designed with the cyclic nature of digital 

signal processing algorithms in mind. The very long instruction word allows for up to 

two instructions to be executed every clock by the control unit and floating point unit.  To 

increase the rate of instruction execution, pipelining of each execution unit was 

employed.  This technique decreased the worst-case delay in the design and subsequently 

increased the allowable clock frequency to 10.5 megahertz. The increase in the execution 

rate of the processor led to a bandwidth bottleneck to local memory. To alleviate this 

issue, a caching architecture based a direct mapping scheme was included into the design 

achieving a 98% or better hit accuracy, drastically reducing the number of stalls the 

processor encountered during execution. Additional processor stalls caused by instruction 
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flow branches were removed by utilizing a simple ‘always taken’ branch prediction 

scheme. The cyclic nature of DSP algorithms has made this scheme quite successful 

having achieved better than 99% accuracy.  The incorporation of these design choices has 

yielded a processor architecture that is capable of performing a 1024-point real FFT 

computation in 24,273 cycles or 2.312 milliseconds at 10.5 MHz achieving a 77.8% 

margin on the requirement. 

The excessive performance of the design has resulted in various advantages 

beyond performance metrics alone.  The first is related to the power profile of WvFEv3 

processor during execution. Higher clock rates cause the gates in the design to switch 

more frequently over a shorter time span, increasing the impulse power utilization. The 

performance margin seen above would allow the designs’ clock to be lowered to as low 

as 2.33 MHz while still meeting the performance goals. At this clock frequency, the 

number of gate transitions is the same but spread out over time, decreasing the impulse 

power utilization. Although the decrease in impulse power utilization may be 

advantageous in power supply design, the most significant advantage is the availability of 

additional execution cycles. These extra cycles can be utilized to perform additional or 

more complex DSP operations, increasing the processors’ usefulness and flexibility. 

 

Flexibility 

 

The programmatic nature of the WvFEv3 has led to an implementation that is 

quite flexible when dealing with algorithms in digital signal processing and basic data 

manipulations.  Table 5-1, Table 5-2 and  

Table 5-3 reflect a subset of algorithms and functions that have been implemented 

in the WvFEv3 instruction set. Although the majority in this list are DSP specific 

algorithms, the flexibility of the design allows for additional operations such as the 
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control of external cores and even higher-level mathematical functions such as a floating 

point reciprocal and square root functions. 

Table 5-1: WvFEv3 supported digital signal processing algorithms 

Algorithm Functional Description 

De-spin Removes artifacts from captured waveforms caused by the 

rotation of the spacecraft 

De-trend Removes a DC to very low frequency linear components in the 

sample set. 

Windowing Reduce waveform edge effects that result in spectral leakage, 

increases in spectral resolution (Hanning Window). 

Complex FFT Performs a fast Fourier transform on a complex time domain data 

set using the radix-4 butterfly method. 

Unscramble real 

FFT 

Separates and normalizes the results of two simultaneous real 

FFTs from one complex FFT operation. 

Calibration Flattens the response of the antenna and receiver by applying 

frequency dependent magnitude and phase metrics. 

Spectral Matrix Calculates auto and cross correlations between several signals. 

Binning Reduces the spectral resolution by averaging consecutive 

frequency bins either linearly or logarithmically 

Adaptive Noise 

Cancellation 

Adaptively computes the noise transfer function to remove the 

noise component from the captured waveforms. 
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Table 5-2: WvFEv3 supported external core software drivers 

Algorithm Functional Description 

A/D Capture Software driver to perform waveform captures using the A/D 

controller cores, included in the WvFE SoC co-processor. 

Rice Compression Software driver to perform waveform compression using the 

Rice compression core, included in the WvFE SoC co-processor. 

 

Table 5-3: WvFEv3 supported software mathematical functions 

Algorithm Functional Description 

Reciprocal Generates an approximate reciprocal of a floating-point number 

then converges upon the precise solution using the Newton-

Raphson method. 

Square Root Generates an approximate square root of a floating-point number 

then utilizes the reciprocal function to converge upon a precise 

answer using the Newton-Raphson method. 

 

The Waves instrument aboard the Juno spacecraft provides further testament of 

the WvFEv3 processor’s flexibility by allowing for an unconventional solution to an 

electromagnetic interference issue discovered at the spacecraft level. The Juno spacecraft 

utilizes solar panels where one or more strings of cells are switch on or off depending on 

the power generated by the strings and the power needed by the spacecraft. Late in the 

design phase, it was discovered that the switching frequency of these panels would 
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produce electromagnetic interference that would induce noise in signals the Waves’ 

instrument was designed to measure [23]. In an attempt to mitigate the impact of the 

noise on the scientific data, spare processing cycles on the WvFEv3 were tasked to 

perform an adaptive noise cancellation algorithm, similar to that found in Bose noise-

cancelling headphone technology. This functionality has been verified to remove noise 

from a signal through unit level testing. 

The WvFEv3 processor architecture provides a level of flexibility that falls 

between that of a general-purpose central processing unit and an application specific 

logic implementation. The level of flexibility achieved is appropriate for the DSP 

applications intended aboard the Juno and RBSP spacecraft. 

 

Future Work 

 

The development of the WvFEv3 architecture and associated system software 

tools has presented several occasions where efforts could be spent to further the designs’ 

usefulness. First, the most significant effort along these lines would be the development 

of a high-level language compiler targeted specifically for the WvFEv3 platform.  

Secondly, the adoption of an industry standard bus architecture would allow the WvFEv3 

to interface to third party soft cores increasing its ability to be integrated into future 

designs. 

Several tools exist for developing software for the WvFEv3 architecture but they 

rely on the programmer to understand detailed architectural and assembler specifics to 

write software. This simple fact increases the amount of time it takes a software 

developer to implement code when compared to writing in a high-level language. The 

relative ease of learning a high-level language with respect to assembly also increases the 

number of software developers capable of implementing software, dramatically 
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increasing the architecture’s exposure. For these reasons, the development of a high-level 

compiler targeted for the WvFEv3 platform would considerably increase its usefulness 

and flexibility.   

One open source project in particular, the low-level virtual machine (LLVM) 

compiler infrastructure, is well suited to providing high-level language compiler support 

to new architectures [24]. The premise behind LLVM is the compilation of an assortment 

of high-level languages to an intermediary assembly representation targeted for a virtual 

RISC-like machine. The intermediary representation is translated by a custom ’backend’ 

to the processor specific assembly and machine code. The implementation of a WvFEv3 

LLVM ‘backend’ would provide platform support for several high-level languages 

leading to a simplification in software development and wider adoption among software 

engineers. 

Additionally, the WvFEv3 processor architecture can be improved by the 

replacement of the Wishbone SoC bus interconnect. The Wishbone bus architecture is an 

open source specification provided by OpenCores [25] that allows for on-chip 

communications between various cores. This interconnect was selected for its low cost 

and satisfactory documentation. Although the Wishbone bus has served its purpose well, 

it would be advantageous to adopt a bus specification that is widely supported by the 

industry to allow the WvFEv3 processor to be integrated with third party cores. The 

greatest benefit would come from the adoption of the de facto standard for on-chip 

interconnects, ARM’s advanced microcontroller bus architecture specification [26, 27]. 

This solution is also well documented and low cost with the additional benefit of wide 

support in the processor design industry leading to the opportunity to integrate third party 

IP cores with the WvFEv3 processor architecture. 
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Conclusion 

 

The launch of the Juno spacecraft in August 2011 will mark the beginning of the 

Waves instrument’s five-year journey to Jupiter.  Although it may be the beginning of its 

journey, the launch marks the end of a demanding development effort to achieve a goal 

that had not been attempted before. This effort, entitled WvFEv3, was to design and 

implement a general-purpose digital signal processor targeted for a radiation tolerant 

FPGA. The processor is unique for several reasons, the greatest of which is the design’s 

emphasis on a small silicon footprint allowing it to be implemented in current generation 

FPGAs. While the gate utilization is relatively small, the WvFEv3 achieves substantial 

performance for a variety of DSP algorithms while also being flexible enough to 

implement additional algorithms programmatically. The implementation of the WvFEv3 

processor has surpassed the needs of the Waves instruments aboard Juno and RBSP; both 

in performance and flexibility but the final test of the design’s space worthiness will only 

be proven in flight.  Godspeed and safe travels! 
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APPENDIX A 

WVFEV3 INSTRUCTION SET ARCHITECTURE 

 

General assembler semantics can be found in the GNU binutils assembly 

language manual [28] while WvFEv3 specifics are described in this appendix.  Please 

refer to, Table A-6, Table A-7, Table A-8, Table A-9, and Table A-10 for a complete 

listing of control unit supported instructions and assembly formats. Floating point unit 

instruction and assembly formats can be found in Table A-11. Finally, valid assembly 

values for each instruction field can be found in Table A-1 and Table A-2.  For an 

example of the assembly format please refer to Appendix B. 

Table A-1: WvFEv3 assembly constructs for control unit instructions 

Field Valid assembly field values 

!!" halt, fault, call, brch, sleep, nop, clr, test, 

ld, add, sub, sra, sla, srl, sll, and, or, xor, 

log2, fp, int, fsqrta, frcpa, bfly2, bfly4 

!! r0 - r31 & f0 - f31 

!! r0 - r31 & f0 - f31 

!! r0 - r31 & f0 - f31 

!"#$%&!!""!" #24-bit signed value, integer or hexadecimal 

!! w0, w1, w2, w3 

!"#$ unc, zero, neg, par, ovf, bso, bli, pca, fzer, 

fneg, fovf, fdze, fing, fexp 
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Table A-2: WvFEv3 assembly constructs for floating point unit instructions 

Field Valid assembly field values 

!!" fadd, fsub, fmul, fmac, tbl, nop 

!! f0 - f31 

!! f0 - f31 

!! f0 - f31 

!! t0, t1, t2 t3, t4, t5, t6, t7, t8 

 

The following table describes each condition flag individually along with a 

reference to the bit location in the flag register. 
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Table A-3: WvFEv3 conditional flags 

Condition Flag Bit Description 

unc 0 Unconditional, true during processor execution 

zero 1 Integer arithmetic result is zero 

neg 2 Integer arithmetic result is negative 

par 3 Integer arithmetic parity is even 

ovf 4 Integer arithmetic result has overflowed 32-bit representation 

 5 Unused 

bso 6 Bufferfly seed out of bounds 

bli 7 Butterfly increment to next segment 

pca 8 Task complete on external core/device1 

fzer 9 Floating point result is zero 

fneg 10 Floating point result is negative 

 11 Unused 

fovf 12 Floating point result has overflowed single precision format1 

fdze 13 Floating point divided by zero1 

finv 14 Invalid floating point operation1 

fexp 15 Floating point exception1 

 

 
1 Denotes a “sticky” flag that once set will continue to be so.  These flags must be reset 

using the clear instruction or through a processor reset. 
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Fault flags are not readable by the WvFEv3 processor and cannot be used during 

program execution.  These flags provide a status to the host processor managing the 

WvFEv3. 

Table A-4: WvFEv3 fault flags 

Fault Flag Bit Description 

flt_ins 16 Invalid instruction fault 

flt_st 17 Processor state machine fault 

flt_wb 18 Wishbone bus interface error 

flt_reg 19 Register file interface error 
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Table A-5: WvFEv3 program flow control instructions 

Type Assembly Format Operation(s) Flag(s) 

Halt execution 

conditionally 

halt flag !" !"#$ ! !"#$ !!"#"$ ! !"#$ unc 

halt !flag !" !"#$ ! !"#$% !!"#"$ ! !"#$ 

Halt execution 

conditionally with fault 

fault flag !" !"#$ ! !"#$ !!"#"$ ! !""#" None 

fault !flag !" !"#$ ! !!"#$ !!"#"$ ! !""#" 

Function call 2 call Rd,LABEL !"#$%& !" ! !"!

!" ! !" ! !"#$!!

!" ! !" ! ! 

None 

call Rd,(LABEL) !"#$%& !" ! !"!

!" ! !"#$!!

!" ! !" ! ! 

 

 
2 Instruction induces a pipeline bubble 
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Table A-5: Continued 

Type Assembly Format Operation(s) Flag(s) 

Function return 3 return Rd !" ! !"#$%& !" ! !  None 

Conditional branch 24 brch flag, LABEL !" !"#$ ! !"#$ !!" ! !" ! !"#$! None 

brch !flag, LABEL !" !"#$ ! !"#$% !!" ! !" ! !"#$! 

brch flag, (LABEL) !" !"#$ ! !"#$ !!" ! !"#$! 

brch !flag, (LABEL) !" !"#$ ! !"#$% !!" ! !"#$! 

Sleep Mode 5 sleep !"#$%&&#"!!"#"$ ! !"##$ None 

No Operation nop !"!!"#$%&'!( None 

 
  

 
3 Instruction induces a pipeline flush 

4 Instruction may induce a pipeline flush 

5 The processor will stay in the sleep state until an external event sets the pca condition flag 
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Table A-6: WvFEv3 condition flag manipulation instructions 

Type Assembly Format Operation(s) Flag(s) 

Clear flags clr !"#$%&%"# !"" ! !"#$% All 

conditionals 
clr flag !"#$%&%"#!!"#$! ! !"#$% 

Bit test operator 6 test Ra,Rb !! ! !! zer neg par 

test Ra,#simm24 !! ! !"#$%&!!""!" 

 
  

 
6 Instruction calculates a result but does not store the result, only sets flags 
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Table A-7: WvFEv3 load and store instructions 

Type Assembly Format Operation(s) Flag(s) 

Load constants ld Rd,#simm24 !! ! !"#$!"!!""!" None 

ld Rd,Ra !! ! !! 

Read from memory ld Rd,@(Ra+Rb) !! ! !"#$%&!!! ! !!! None 

ld Rd,@(Ra+#simm24) !! ! !"#$%&!!! ! !"#$%&!!""!"! 

Write to memory ld @(Rd+Rb),Ra !"#$%&!!! ! !!! ! !! None 

ld @(Rd+#simm24),Ra !"#$%&!!! ! !"#$%&!!""!"! ! !! 

Read from I/O ld Rd,%(Ra+Rb) !! ! !!!!!! ! !!! None 

ld Rd,%(Ra+#simm24) !! ! !!!!!! ! !"#$%&!!""!"! 

Write to I/O ld %(Rd+Rb),Ra !!!!!! ! !!! ! !! None 

ld %(Rd+#simm24),Ra !!!!!! ! !"#$%&!!""!"! ! !! 
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Table A-8: WvFEv3 Integer arithmetic instructions 

Type Assembly Format Operation(s) Flag(s) 

Addition add Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 add Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

Subtraction sub Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 add Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

Arithmetic Shift sra Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 sra Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

 sla Rd,Ra,Rb !! ! !! ! !!  

 sla Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

Logical Shift srl Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 srl Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

 sll Rd,Ra,Rb !! ! !! ! !!  

 sll Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  
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Table A-8: Continued 

Type Assembly Format Operation(s) Flag(s) 

Logical AND and Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 and Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

Logical OR or Rd,Ra,Rb !! ! !! ! !! zer neg ovf 

 or Rd,Ra,#simm24 !! ! !! ! !"#$%&!!""!"  

Logic XOR xor Rd,Ra,Rb !! ! !!!!! zer neg ovf 

 xor Rd,Ra,#simm24 !! ! !!!!!"#$%&!!""!"  

Logarithmic log2 Rd,Ra !" ! !"#! !! zer 
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Table A-9: WvFEv3 numerical conversion and approximation instructions 

Type Assembly Format Operation(s) Flag(s) 

Integer to floating point 

conversion 

fp Rd,Ra,Rb !! ! !"#$% !!! ! !!!! None 

fp Rd,Ra,#simm24 !! ! !"#$% !!! ! !!"#$%&!!""!"!  

Floating point to integer 

conversion7 

int Rd,Ra,Rb !! ! !"# !!! ! !!!! None 

int Rd,Ra,#simm24 !! ! !"# !!! ! !!"#$%&!!""!"!  

Square root 

approximation 

fsqrta Rd,Ra !
! !! ! !! !

!
! !! finv fexp 

Reciprocal 

approximation 

frcpa Rd,Ra !
!!!

!! ! !! !
!
!!!

!! fdze fexp 

 
  

 
7 Rounds to nearest integer 
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Table A-10: WvFEv3 butterfly address calculation instructions 

Type Assembly Format Operation(s) Flag(s) 

Radix-2 butterfly 

addresses 

bfly2 Rd,Ra,Rb,Wn !! ! !"##$%&'(!!! !!! !!!!!!! !! bli bso 

Radix-4 butterfly 

addresses 

bfly4 Rd,Ra,Rb,Wn !! ! !"##$%&'(!!! !!! !!!!!!! !! bli bso 

 
  



 61 

Table A-11: WvFEv3 floating point unit instructions 

Type Assembly Format Operation(s) Flag(s) 

Addition fadd Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf 

fexp  fadd Rz,Rx,-Ry !! ! !! ! !! 

Subtraction fsub Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf 

fexp  fsub Rz,Rx,-Ry !! ! !! ! !! 

Multiply fmul Rz,Rx,Ry !! ! !! ! !! fzer fneg fovf 

fexp  fmul Rz,Rx,-Ry !! ! !! ! !!! 

 fmul Rz,Rx,@(Vt+Ry) !! ! !! ! !"#$%!!!!!!!!  

 fmul Rz,Rx,-@(Vt+Ry) !! ! !! ! !!"#$%!!!!!!!!  

Multiply Accumulate fmac Rz,Rx,Ry !! ! !! ! !! ! !! fzer fneg fovf 

fexp  fmac Rz,Rx,-Ry !! ! !! ! !! ! !!! 

 fmac Rz,Rx,@(Vt+Ry) !! ! !! ! !! ! !"#$%!!!!!!!!  

 fmac Rz,Rx,-@(Vt+Ry) !! ! !! ! !! ! !!"#$%!!!!!!!!  
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Table A-11: Continued 

Type Assembly Format Operation(s) Flag(s) 

Load virtual table 

configuration 

tbl Vt,Rx,Ry !"#$% !! !!"#$%&'()% ! !! !

!"#$% !! !!"#$%&'!!"#$% ! !! 

None 

No Operation nop !"!!"#$%&'!( None 
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APPENDIX B 

WVFEV3 SOFTWARE ALGORITHMS 

Figure B-1: Complex radix-4 FFT in WvFEv3 assembly 

.Title Complex radix-4 FFT   

.text 

 .include "macro.asm" 

 .global _fft_radix4   ; export entry point  

 

_fft_radix4: 

 ; First read arguments off stack and shuffle around the  

 ; program counter so that the return is nice and clean 

 ; In the unused space between pops, fetch the sine/cosine 

 ; configuration and load it. 

 

 pop r15,f31    ; Pop the program counter off the stack 

 ld f0,(_sine_table)  ; Load address of sine table 
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Figure B-1: Continued 

 pop r15,r2    ; Pop the waveform address off the stack  

 ld f1,(_sine_config)  ; Load pointer to sine configuration  

 pop r15,r1    ; Pop the twiddle factor cadence off stack 

 ld f2,@(f1+#0)   ; Load sine configuration word  

 pop r15,r0    ; Pop the size of the waveform off the stack 

 ld f3,@(f1+#1)   ; Load the sine table overlap value 

 push r15,f31    ; Put the program counter back on the stack 

 

 ; Finished with reading in arguments 

 ; Load the rest of the table configurations 

 

 or f2,f2,f0 

 ld f1,(_cosine_config) 

 ld r8,#0 

 ld f2,@(f1+#0)  || tbl t0,f2,f3 

 ld f3,@(f1+#1) 
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Figure B-1: Continued 

 or f2,f2,f0 

 add r3,r2,r0 

 

 ; Start calculating butterfly addresses 

 bfly4 r4,r0,r8,w0  || tbl t1,f2,f3 

 bfly4 r5,r0,r8,w1 

 bfly4 r6,r0,r8,w2 

 bfly4 r7,r0,r8,w3 

 ld f3,@(r4+r2) 

 ld f4,@(r5+r2) 

 ld f5,@(r6+r2) 

 ld f6,@(r7+r2) 

 ld f7,@(r4+r3) 

 ld f8,@(r5+r3)   || fadd f11,f3,f5 

 ld f9,@(r6+r3)   || fsub f3,f3,f5 

 ld f10,@(r7+r3)   || fadd f5,f4,f6 
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Figure B-1: Continued 

 add r8,r8,#4    || fadd f12,f7,f9 

 log2 r1,r1    || fadd f13,f8,f10 

 nop      || fsub f8,f8,f10 

  

 ; Main butterfly radix-4 loop 

_butterfly4: 

 ld r9,r5    || fsub f10,f7,f9 

 ld r10,r6    || fsub f7,f4,f6 

 ld r11,r7    || fadd f20,f11,f5 

 sla f0,r4,r1    || fadd f21,f12,f13 

 bfly4 r5,r0,r8,w1  || fadd f14,f3,f8 

 sla f1,f0,#1    || fsub f16,f11,f5 

 bfly4 r6,r0,r8,w2  || fsub f15,f10,f7 

 add f2,f0,f1    || fsub f17,f12,f13 

 ld @(r4+r2),f20   || fsub f18,f3,f8 

 ld @(r4+r3),f21   || fadd f19,f10,f7 



 67 

Figure B-1: Continued 

 bfly4 r4,r0,r8,w0  || fmul f22,f14,@(t1+f0) 

 bfly4 r7,r0,r8,w3  || fmul f23,f15,@(t1+f0) 

 add r8,r8,#4    || fmul f24,f16,@(t1+f1) 

 ld f3,@(r4+r2)   || fmul f25,f17,@(t1+f1) 

 ld f4,@(r5+r2)   || fmul f26,f18,@(t1+f2) 

 ld f5,@(r6+r2)   || fmul f27,f19,@(t1+f2) 

 ld f6,@(r7+r2)   || fmac f22,f15,@(t0+f0) 

 ld f7,@(r4+r3)   || fmac f23,f14,-@(t0+f0) 

 ld f8,@(r5+r3)   || fmac f24,f17,@(t0+f1) 

 ld f9,@(r6+r3)   || fmac f25,f16,-@(t0+f1) 

 ld f10,@(r7+r3)   || fmac f26,f19,@(t0+f2) 

 ld @(r9+r2),f22   || fmac f27,f18,-@(t0+f2) 

 ld @(r9+r3),f23   || fadd f11,f3,f5 

 ld @(r10+r2),f24   || fsub f3,f3,f5 

 ld @(r10+r3),f25   || fadd f5,f4,f6 

 ld @(r11+r2),f26   || fadd f12,f7,f9 
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Figure B-1: Continued 

 ld @(r11+r3),f27   || fadd f13,f8,f10 

 brch !bli,_butterfly4  || fsub f8,f8,f10 ; level of b-flies complete? 

 add r1,r1,#2 

 brch !bso,_butterfly4 ; butterfly seed out of range? 

 return r15 

 .end 
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Figure B-2: Complex FFT result reversal in WvFEv3 assembly 

.Title Complex FFT result reversal   

.text 

 .psize 56 

 .include "macro.asm" 

 .global _fft_radix4_descramble  ; export entry point 

 

_fft_radix4_descramble: 

 pop r15,f31    ; Pop the program counter off the stack 

 nop 

 pop r15,r12    ; Pop the descramble buffer address off the stack  

 nop 

 pop r15,r2    ; Pop the scrambled buffer address of the stack  

 nop  

 pop r15,r0    ; Pop the size of the waveform off the stack 

 ld r8,#0 

 push r15,f31    ; Put the program counter back on the stack 
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Figure B-2: Continued 

 add r3,r2,r0 

 add r13,r12,r0 

 bfly4 r4,r0,r8,w0 

 bfly4 r5,r0,r8,w1 

 bfly4 r6,r0,r8,w2 

 bfly4 r7,r0,r8,w3 

 add r8,r8,#4 

 

_descramble_butterfly4: 

 ld f3,@(r4+r2) 

 ld f4,@(r5+r2) 

 ld f5,@(r6+r2) 

 ld f6,@(r7+r2) 

 ld f7,@(r4+r3) 

 ld f8,@(r5+r3) 

 ld f9,@(r6+r3) 



 71 

Figure B-2: Continued 

 ld f10,@(r7+r3) 

 bfly4 r4,r0,r8,w0 

 bfly4 r5,r0,r8,w1 

 bfly4 r6,r0,r8,w2 

 bfly4 r7,r0,r8,w3 

 add r8,r8,#4 

 ld @(r12+#0),f3 

 ld @(r12+#1),f4 

 ld @(r12+#2),f5 

 ld @(r12+#3),f6 

 ld @(r13+#0),f7 

 ld @(r13+#1),f8 

 ld @(r13+#2),f9 

 ld @(r13+#3),f10 

 add r12,r12,#4 

 add r13,r13,#4 
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Figure B-2: Continued 

 brch !bli,_descramble_butterfly4 

 return r15 

 .end 
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Figure B-3: Simultaneous real FFT result unscramble in WvFEv3 assembly 

.Title FFT real result unscramble   

.text   

 .psize 56 

 .include "macro.asm" 

 .global _fft_unscramble  ; export entry point  

; 

; This program unscrambles the output of a dual FFT. Two real functions 

; h(t) and g(t) have been FFT'ed simultaneously by placing one data set (h) 

; in the real locations, and the other data set (g) in the imaginary locations. 

; Address of data is on stack, size of input data vactor is on stack. 

; Second channel is assumed to be stored at Address+size. 

; Address of output is on the stack. 

 

.data 

_norm_factor: 

 .int 0x3A000000     ; 1./(2.*1024.) 
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Figure B-3: Continued 

 .int 0x39000000     ; 1./(2.*4096.) 

 .int 0x38000000     ; 1./(2.*16384.) 

_half: 

 .float 0.5      ; 1./2. 

 .int 0 

 .int 0 

 .int 0 

 

.text 

 

_fft_unscramble: 

; 

 ; First read arguments off stack and shuffle around the  

 ; program counter so that the return is nice and clean. 

; 

 pop r15,f31    ; Pop the program counter off the stack 
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Figure B-3: Continued 

 nop 

 pop r15,r2    ; Pop the output buffer address off the stack 

 nop 

 pop r15,r1    ; Pop the input buffer address off the stack 

 nop 

 pop r15,r0    ; Pop the size of the waveform off the stack 

 nop 

 push r15,f31    ; Put the program counter back on the stack 

 

 ; Finished with reading in arguments 

 sra r14,r0,#1    ; r14 = N/2 

 ld r6,(_half)   ; get pointer to 1./2. 

 add r4,r1,#1    ; r4 = SRC_A (starts at BUFFER+1) 

 sub r13,r0,#1    ; r13 = N-1 (N_MINUS1) 

 add r3,r2,r14    ; 2nd output buffer address (SAVE_B) 

 add r8,r1,r13    ; 2nd input buffer (SRC_B) 
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Figure B-3: Continued 

 ld f16,@(r6+#0)   ; load the constant f16 = 0.5 

 sra r13,r13,#1   ; r13 = (N-1)/2   

; 

; Figure out the normalization factor, i.e., 1/N 

; 

 ld r7,(_norm_factor) 

 nop 

 sub r5,r0,#1024 

 brch !zer, next1 

 brch unc, found 

next1: 

 add r7,r7,#1 

 nop 

 sub r5,r0,#4096 

 brch !zer, next2 

 brch unc, found 
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Figure B-3: Continued 

next2: 

 add r7,r7,#1 

 nop 

 nop 

 nop 

found: 

 ld f16,@(r7+#0)     ; get normalization factor (1/(2*N)) 

 ld f0,@(r4+#0)     ; load data from source buffer1 

 ld f1,@(r8+#0) 

 ld f4,@(r4+r0) 

 ld f5,@(r8+r0) 

 nop 

 nop 

 nop 

 ld @(r6+#3),f16 

_loop: 
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Figure B-3: Continued 

 add r2,r2,#1   || fmul f2,f0,f16 ; normalize data by 1/(2*N) 

 add r3,r3,#1   || fmul f3,f1,f16 

 add r4,r4,#1   || fmul f6,f4,f16 

 sub r8,r8,#1   || fmul f7,f5,f16 

 nop 

 nop 

 ld f0,@(r4+#0)  || fadd f9,f2,f3 

 ld f1,@(r8+#0)  || fsub f10,f3,f2 

 ld f4,@(r4+r0)  || fadd f11,f6,f7 

 ld f5,@(r8+r0)  || fsub f12,f6,f7 

 nop 

 nop 

 ld @(r2+#0),f9     ; store results 

 ld @(r3+r0),f10 

 ld @(r3+#0),f11 

 ld @(r2+r0),f12 
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Figure B-3: Continued 

 sub r13,r13,#1     ; decrement loop counter 

 brch !zer, _loop     ; done looping? 

 return r15 

 .end 
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