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ABSTRACT

A novel method called LOGISMOS – Layered Optimal Graph Image Segmentation

of Multiple Objects and Surfaces – for simultaneous segmentation of multiple inter-

acting surfaces belonging to multiple interacting objects is reported. The approach is

based on representation of the multiple inter-relationships in a single n-dimensional

graph, followed by graph optimization that yields a globally optimal solution.

Three major contributions for LOGISMOS are made and illustrated in this thesis:

1) multi-object multi-surface optimal surface detection graph design, 2) implemen-

tation of a novel and reliable cross-object surface mapping technique and 3) pattern

recognition-based graph cost design.

The LOGISMOS method’s utility and performance are demonstrated on a knee-

joint bone and cartilage segmentation task. Although trained on only a small number

of nine example images, this system achieved good performance as judged by Dice

Similarity Coefficients (DSC) using a leave-one-out test, with DSC values of 0.84 ±

0.04, 0.80±0.04 and 0.80±0.04 for the femoral, tibial, and patellar cartilage regions,

respectively. These are excellent values of DSC considering the narrow-sheet character

of the cartilage regions. Similarly, very low signed mean cartilage thickness errors were

observed when compared to manually-traced independent standard in 60 randomly

selected 3D MR image datasets from the Osteoarthritis Initiative database – 0.11 ±

0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage

thickness, respectively. The average signed surface positioning error for the 6 detected

surfaces ranged from 0.04±0.12 mm to 0.16±0.22 mm, while the unsigned surface

positioning error ranged from 0.22±0.07 mm to 0.53±0.14 mm.

The reported LOGISMOS framework provides robust and accurate segmentation

of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a

general segmentation tool, the developed framework can be applied to a broad range

of multi-object multi-surface segmentation problems.
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Following the LOGISMOS-based cartilage segmentation, a fully automated menis-

cus segmentation system was build using pattern recognition technique. The leave-

one-out test for the nine training images showed very good mean DSC 0.80 ± 0.04.

The signed and unsigned surface positioning error when compared to manually-traced

independent standard in the 60 randomly selected 3D MR image datasets is 0.65±0.20

and 0.68 ± 0.20 mm respectively.
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CHAPTER 1

MULTI-SURFACE MULTI-OBJECT SEGMENTATION PROBLEM

Medical image segmentation is a continuously evolving field. Due to the anatom-

ical complexity and possible presence of pathologies, segmentation tools for general

purpose tasks are difficult to derive. The medical image analysis objects of interest are

typically three-dimensional, and they frequently consist of 3D regions separated by

interacting surfaces, e.g., endo- and epicardial heart surfaces (Fig. 1.1a), multi-layer

structure of human retina (Fig. 1.1b), inner and outer vascular walls (Fig. 1.1c), etc.

These are intra-object interactions.

(a) (b)

(c)

Figure 1.1: Intra-object interaction examples: (a) Endo- and epicardial ventricular
surfaces (b) Multi-layer retinal structure (c) Inner and outer vascular walls
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Similarly, organs typically occur in pre-specified anatomical relationships and it

seems advantageous to consider such relationships when segmenting the medical im-

ages, e.g., the mutual positions of left and right cardiac ventricles (Fig. 1.2a), of the

prostate and bladder (Fig. 1.2b), of the femoral and tibial knee cartilages (Fig. 1.2c),

etc. These are inter-object relationships.

(a) (b)

(c)

Figure 1.2: Inter-object relationship examples: (a) Mutual positions of left and right
cardiac ventricles (b) Mutual positions of the prostate and bladder (c) Mutual posi-
tions of the femoral and tibial cartilages

Yet, most of the contemporary methods – even if they are increasingly frequently

working inherently in 3D – concentrate on segmenting a single surface of individual

organs or objects of interest [85,86]. We argue that whenever the anatomic structures
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are inter-related, by intra-object or inter-object relations, a segmentation system can

benefit from incorporation of the interacting information.

In the first chapter of my dissertation, I will review the contemporary related

works of n-dimensional multi-surface and multi-object segmentation methods.

1.1 Multi-Surface Segmentation Algorithms

Multi-surface segmentation is commonly used for measuring the thickness of the

vescular walls for aorta, or measuring the thickness of knee or ankle cartilage. In these

cases, the intra-object surfaces are highly inter-related. If a single surface detection

algorithm is used to segment desired surfaces one-by-one, the previous segmentation

error may be accumulated to the consequent segmentations.

The multi-surface segmentation algorithms consider the intra-object relationship

of multiple surfaces. The most popular multi-surface segmentation algorithms include

Active Shape Model (ASM) [10]/Active Appearance Model (AAM) [9] and optimal

surface detection [62].

1.1.1 ASM and AAM for multi-surface detection

1.1.1.1 Active shape model (ASM) segmentation

The basic idea of active shape model is to describe a shape by a trained mean

shape plus variants for each mode on the shape:

S = S̄ + Φsbs (1.1)

where S is a new shape vector composed by N n-dimensional points: S =

[X1,X2, ...XN ]T . Similarly, the mean shape S̄ = [X̄1, X̄2, . . . , X̄N ]T . Φsbs is the

mode vector between S and S̄. For example, Φs can be a N × N identity matrix,

then bs will be a position displacement vector bs = [b1, b2, . . . , bN ]T . However, a

full size bs is not useful to simplify the relationship between a new shape with prior

knowledge S̄. In that case, a N ×M (N ≫ M) matrix Φ̃s and a M vector b̃s is used
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to approximate S:

S̃ = S̄ + Φ̃sb̃s (1.2)

The solution can be reduced to answer the following two questions:

• How to compute S̄ and φs before a new shape is given?

• How to compute b̃s after a new shape is given?

S̄ and φs are computed from a group of existing shape datasets. The process is called

training process and the shape dataset is called training dataset. After aligning these

training shapes – e.g. by Procrustes analysis [38] – the average point locations for

these aligned shapes form the mean shape.

Principal Component Analysis (PCA) [48], which is very suitable for shape analy-

sis, is a powerful tool to keep the most important information from a dataset according

to its variants . Φ̃s can be designed as M eigenvectors which correspond to the first

M largest variances. Then the new shape can be synthesized by finding a vector bs

to control S̄ at M orthogonal directions with largest variances. So that

S ≈ S̄ + Φ̃sb̃s (1.3)

If given a new shape S, b̃s can be easily computed by

b̃s = Φ̃−1
s (S − S̄) (1.4)

1.1.1.2 Active appearance model (AAM) segmentation

Although ASM is relatively fast and simple, it does not incorporate regional in-

tensity/texture information in parameters. As a result, it is not robust and may not

converge to a good solution.

A model combining these variables, similar as ASM, may be analyzed by PCA,
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so that:

g ≈ ḡ + Φgbg (1.5)

Where g represents regional information vector. If we concatenate formulas 1.4 and

1.5 with a weighting matrix W, we can use all information in one model and reduce

the parameters.

b =







WsΦ
T
s (S − S̄)

ΦT
g (g − ḡ)






(1.6)

The AAM is given by a PCA of b

Reference [104] provides an overview of ASM and AAM methods. The author

also provides an application of using AAM to segment 4D cardiac MR images. In

that work, the algorithm created a left ventricle model with inner and outer surfaces

and it detected two surfaces simultaneously.

1.1.2 Optimal multi-surface detection

The idea of optimal surface detection comes from finding optimal net surface

problem in a proper ordered graph [95] which is further implemented to solve surface

segmentation problem in medical image applications. Use of this method in the

medical image segmentation area closely followed to solve multiple coupled surface

segmentation problems [34,41,60–62,106].

Out of these publications, [62] is considered a pioneering paper in which Li et al.

explained and verified how to optimally segment single and multiple coupled flat sur-

faces represented by a volumetric graph structure. This work was further extended

to optimally segment multiple coupled closed surfaces of a single object [61]. Later,

Garvin et al. introduced in-region cost concept [41] and applied it to 8-surface seg-

mentation of retinal layers from OCT images [34]. Lee et al. utilized this concept

for 3D dual-surface inner/outer aortic wall segmentation [59]. The rationale and

extensions of this algorithm will be described in detail in Chapter 4 and 5.
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1.2 Multi-Object Segmentation Algorithms

Multiple object segmentations include intra-object segmentations and inter-object

segmentations. In intra-object segmentation, the subjects concerned are from one

source, usually 3D volumetric data plus time forming 4D data. The example is like

different phases of cardiac pulsation. Most n-dimension segmentation algorithms can

be applied in this situation.

Here we are focusing on inter-object segmentation. In this case, the subjects are

from different sources and they are related in 3D space. Similar to multi-surface

segmentation, the segmentation result will not be optimal if these objects are seg-

mented individually without considering their interacting relationships. Multi-object

segmentation algorithms can be summarized into the following categories: deformable

model segmentation, atlas-based segmentation, multi-agent approach and statistical

classification.

1.2.1 Deformable model segmentation

As indicated by its name, this segmentation method starts with a deformable

initial model. The segmentation result is generated by the evolvement of the model’s

boundary. A widely used technique for the model evolvement is to minimize an

energy term, which is composed by internal energy and external energy. The internal

energy penalizes the shape variance between the new shape and the priori shape

knowledge, while the external energy attracts the model to the shape information

independent location. For instance, Lorenz et al. built a comprehensive deformable

model [66] which included the four cardiac chambers and the trunks of the connected

vasculature, as well as the coronary arteries and a set of cardiac landmarks. Litvin

et al. incorporated relative inter-object distances as a feature for the model, so that

their models can segment well-trained coupled multiple objects [64].
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1.2.2 ASM & AAM

The theories of ASM and AAM have been introduced in Section 1.1. If multiple

objects are positioned with relatively fixed positions, it may be plausible to create one

combined AAM model and segment the objects together. Freedman et al. had a com-

bined prostate and rectum wall AAM [27,28]. They matched the overlapping blocks

between initial guess and true objects by histogram distribution. The appearance

information was extracted from histogram distribution of these overlapping blocks.

Bruijne and Nielsen designed a shape particle model based on ASM for ribs [7].

They randomly permuted and perturbed the particle on the 2D chest X-ray images.

The algorithm will converge when the maximum posteriori probability of a shape set

given by an image is reached, so that all rib segmentation is done. Detecting similar

objects with unknown number is the major contribution of their work. Although the

work was applied in 2D, it could be easily extended in 3D.

1.2.3 Atlas-based segmentation

Atlas segmentation maps a gray-level image I to a labeled image A by a trans-

former T . The label on A is called atlas. Unlike deformable models, the atlas

changes its shape under T , which is usually retrieved by an image-to-image regis-

tration method. Manual labeling by experts is a common way to get the original

atlas. The experiments of Rohlfing et al. showed that using multiple atlas classifiers

was better than a single atlas classifier [80]. Although their experiments segmented

22 anatomical structures for bee brains in confocal microscopy images, as well as 43

anatomical structures for human brain MR images, the creation of their initial atlas

was really time consuming and tedious.

1.2.4 Multi-agent approach

Fleureau et al. proposed a novel technique for segmenting n-dimensional multi-

object images in a semi-interactive way. They called it a multi-agent approach [22,23].
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In this framework, two kinds of agents are defined, which are situated agents

(workers) initialized by interactive selection from users and communicating agents

(controllers) which decide if a region should be acquired by any one of the workers.

The situated agents learn local information of intensity and texture and request to

acquire neighboring pixels if certain criteria are met. The communicating agents

judge the request by segmentation map and travel map [22,23].

The authors used this method to extract cardiac structures in multi-slice computed

tomography images. The results are promising but yet to be fully verified.

The initialization process of multi-agent approach is similar to the graph cuts [4]

and random walks [39] approaches. All of these approaches require user selecting

multiple training points for each objects in question, although the final optimization

processes are quite different.

1.2.5 Statistical classification

Multi-object segmentation and delineation problems can be nicely solved by statis-

tical classifiers. For instance, Folkesson’s fully automatic voxel classification method

used two KNN classifiers to distinguish femoral and tibial cartilages [24]. The major

drawback of the statistical methods is the computational complexity needed to ex-

tract features and classify each voxel in a 3D image. Dam accelerated the classification

process [13]. His method required about 15 minutes to segment femoral and tibial

cartilages in a 170×170×110 MR image with sample-expand and sample-surround

algorithms.

1.3 Chapter Summary

Although every method proved to be successful in one specific multi-object or

multi-surface segmentation application, few methods showed their generality for a

“multiple surfaces on multiple objects segmentation” problem. A good example of

this problem is from cartilage segmentation of a knee joint. As seen in Fig. 1.3, a
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knee joint includes femur, tibia, patella, some ligaments, meniscus, muscle, synovial

fluid, etc. Overall, it is a very complex structure.

Figure 1.3: The anatomy of a knee joint. From www.AthleticAdvisor.com

In order to segment bone and cartilage surfaces from this structure, we may benefit

from incorporating interacting bone and cartilage relationships (intra-object interac-

tion). Furthermore, the adjacent cartilages could be contacted, resulting in no obvious

boundary information under any medical imaging modalities (CT, MR, etc.). Under

this circumstance, if the inter-object relationship between adjacent cartilage surfaces

is not considered, the segmentation result will not be accurate.

The same argument can be equally applied to other interacting bone-cartilage
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structures, like ankle joint, hand, etc.

In order to design a general multi-object multi-surface segmentation system, the

possible extensions for the methods outlined in this chapter were considered. However,

most of them are quite difficult for the extension.

While ASM/AAM proved to be suitable for either multi-object or multi-surface

segmentation, it is difficult to design a general multi-object multi-surface segmen-

tation system based on ASM/AAM due to the large training set size requirements

in higher-dimensional spaces. The atlas-based segmentation needs a powerful reg-

istration method both for overall labeled template set as well as individual labeled

template in the set. Since this registration is hard to derive, the atlas-based seg-

mentation for general objects cannot be expected to be accurate. The multi-agent

approach seems still immature. Despite lack of sufficient validation, the large amount

of user interaction and difficulty to incorporate priori shape information are also a big

concern for us. The same thing is also true for the similar approaches like graph cuts

segmentation and random walks segmentation. The statistical classification methods,

in theory, can segment as many objects as possible. However, the drawbacks for long

computation time and no global shape information incorporated are also prominent.

The optimal surface detection based on graph search approach is most promising.

A framework for multiple closed surfaces on single object was designed and proved

to be successful [61]. The challenge for incorporating inter-object interaction is how

to find and connect corresponding graph columns between interacting pre-segmented

surfaces. In the following chapters, I will propose a possible solution to map two

adjacent surfaces and generate a general n-D multi-object multi-surface segmentation

framework. This framework will be applied for a 3D knee bone-cartilage surface

delineation application. Finally, based on cartilage segmentation result, a meniscus

segmentation system is designed, implemented and validated.
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CHAPTER 2

KNEE OSTEOARTHRITIS STUDY USING MEDICAL IMAGING

2.1 Osteoarthritis

Knee osteoarthritis(OA) is a group of knee diseases and mechanical abnormalities

which causes joint degradation. In the United States, there are about 27 million

people being affected by OA, and about 80% of the US population will have OA by

age 65. Furthermore, hospitalizations for OA had rised to 0.7 million in 2006.

OA incurs knee cartilage losses and serious pain to the patient. Although many

pharmaceutical companies involved in OA treatment drug research, so far, there is

no disease modifying OA drug obtained regulatory approval. In severe cases, joint

replacement surgery may be required.

2.2 Imaging Techniques and Osteoarthritis Initiative

Evaluation of cartilage degeneration is important in the orthopedic surgery be-

cause the degeneration usually occurs first before the pain in knee is felt. Cartilage

volume, cartilage thickness and cartilage surface area are most commonly measured

parameters to evaluate joint cartilage degeneration. Medical imaging technique pro-

vides a precise and non-invasive methods to evaluate these parameters. While in

computed tomography (CT) images, bone structure can be better depicted, the soft

tissues including knee cartilage are clearer in magnetic resonance (MR) images.

In order to create a public resource for identifying, characterizing and validating

knee OA biomarkers, the National Institutes of Health (NIH) sponsored a research

project called Osteoarthritis Initiative (OAI) [73], which is available for public access

at http://www.oai.ucsf.edu/. There are a total of 4796 men and women, aged 45

to 79 years, who either have or are at increased risk of developing knee OA being

enrolled in the project. All participants have annual radiography and MR imaging

(MRI) of the knee and clinical assessments of disease activity available over a period

of four years. As the MRI acquisition time increases exponentially with the increase
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of spatial resolution, the total acquisition time for each clinical visit is limited to 75

mins. Among all the acquired MRI protocols, 3 Tesla (T) sagittal 3D DESS (dual

echo steady state) WE (water-excitation) sequences spent the most time (about 21.2

mins for both knees) and have highest spatial resolution (0.7 mm slice thickness ×

0.37 mm × 0.46 mm). These are many reasons to elect this protocol. For example,

3T may offered better signal level which could be traded for increased signal-to-noise

ratio (SNR), spatial resolution or imaging speed when compared with 1.5T although

the latter is more routinely available in clinical and research settings. Unlike true

T2 and T1 weighted images, the contrast of DESS is quite unique. It is found that

3D DESS with selective WE provides better cartilage delineation for morphological

measurements (e.g. total joint cartilage thickness and volume) and faster acquisition

speed than 3D fat-suppressed 3D fast low-angle shot (FLASH) or 3D spoiled gradient-

recalled echo (SPGR) with equivalent image contrasts, although FLASH and SPGR

had been more extensively evaluated for quantitative cartilage measurements [73].

Fig. 2.2 shows a example slice of a 3D sagittal DESS MR volume where we can clearly

see the cartilage-capsule and cartilage-cartilage interfaces (which are usually difficult

to discriminate with 3D FLASH WE), as well as the interfaces between cartilage and

adipose, bone and meniscus.

2.3 Previous Knee Cartilage Segmentation Works

Delineate cartilage directly on medical images by radiologists is tedious and time-

consuming especially in 3D. Automated segmentation of articular cartilage in the knee

has been researched for decades. Many MR image analysis approaches have been

developed with varying levels of automation. An excellent overview of previously

reported approaches to articular cartilage MR image acquisition and quantitative

analysis is given in [20].

Lynch used region growing segmentation with manual initialization [67,68]. Carballido-

Gamio developed a semi-automated approach based on Bezier splines [33]. Similarly,
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Figure 2.1: A sample slice of a 3D sagittal DESS WE volume. The interfaces of
cartilage-cartilage, cartilage-capsule (arrow), cartilage-bone (B), cartilage-meniscus
(M) and cartilage-adipose (F) are clearly imaged.

Raynauld and König both selected active contour approaches [55, 79]. These meth-

ods generally depend upon user interactive processes to select initial contours and

frequently require human-expert correction of the final results.

A higher level of automation has been achieved using Statistical Shape Models

(SSM) or Active Shape Models (ASM). For instance, Solloway reported cartilage seg-

mentation based on ASM [82, 83]. Kapur adopted the strategy to first segment the

more easily identifiable femur and tibia bones by region growing, and then detect

cartilage voxels using a Bayesian classifier [50]. Pirnog combined ASM and Kapur’s

strategy to produce a fully automated segmentation of patellar cartilage [75].

Fripp designed an automated segmentation system based on SSM [31]. In this

work, when given a pre-segmented bone-cartilage interfaces, it took about an hour

to segment the cartilage surface on an MR image with size 512×512×70. More

recently, Fripp et al. [32] employed atlas-based bone registration and bone-cartilage

interfaces (BCI) were segmented by Active Shape Models. The cartilage surfaces
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were detected along BCIs using active surface models. This system achieved very

good segmentation results but required optimization of a large set of parameters and

suffered from long segmentation times. Based on similar statistical shape modeling

principles, a method for defining anatomical correspondence enabling regional analysis

of cartilage morphology was reported in [93].

Folkesson’s fully automatic voxel classification method used two KNN classifiers

to distinguish femoral and tibial cartilage regions [24]. The results established that

multiple binary classifiers performed better than a multiple-class classifier, and it il-

lustrated the importance of different features for cartilage segmentation. However,

like other pure pattern recognition based segmentation systems, their method suffered

from slow performance. Dam et al. accelerated the process with sample-expand and

sample-surround algorithms [13]. His method required about 15 minutes to segment

femoral and tibial cartilages in a 170×170×110 MR image with so called sample-

expand and sample-surround algorithms. Warfield’s template moderated (ATM),

spatially varying statistical classification (SVC) algorithm combined nonlinear regis-

tration and KNN classification [92]. Other employed approaches include Watershed

Transform by Grau or Ghosh [36,40].

An excellent overview of previously reported approaches to articular cartilage MR

image acquisition and quantitative analysis is given in [20].

2.4 Chapter Summary

Knee cartilage segmentation as a clinically relevant segmentation problem is gain-

ing considerable importance in recent years. The segmentation result can provide

quantification of cartilage deterioration for the diagnosis of OA and optimization

for surgical planning of knee implants. Although most previous knee segmentation

works were performed on 1.5T FLASH and SPGR MR images, it was suggested from

OAI dataset to use 3T DESS MR images instead. The sagittal 3D 3T DESS WE

images in OAI have high-resolution, good delineation of articular cartilage, fast ac-
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quisition time and high SNR. Considering the complimentary image sources for over

four thousand participates with baseline and four year’s follow-up radiographs and

MR images as well as continuous support from NIH and contributions of biomarkers

from other researchers, we believe that it is important and progressive to set up our

knee segmentation experiments on the sagittal 3D 3T DESS WE images in OAI.
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CHAPTER 3

AIMS AND CONTRIBUTIONS

Substantial effort has been devoted to developing automated or semi-automated

image segmentation techniques in 3D [86]. Recently, we have reported a layered

graph approach for optimal segmentation of single and multiple interacting surfaces

of a single n-dimensional object [62, 95]. Despite a pressing need to solve multi-

object segmentation tasks that are common in medical imaging (e.g., multiple organ

segmentations), the literature discussing such methods is very limited.

We report a novel approach called LOGISMOS, or Layered Optimal Graph Im-

age Segmentation of Multiple Objects and Surfaces. While our method is motivated

by the clinical need to accurately segment multiple bone and cartilage surfaces in

osteoarthritic joints, including knees, ankles, hips, etc., the LOGISMOS approach is

very general, and its applicability is much broader than solely orthopaedic applica-

tions. Therefore, the dissertation first introduces the LOGISMOS method in general

terms while avoiding application-specific details. This is followed by the example

application of knee joint cartilage segmentation, in which detailed description is pro-

vided of all aspects that need to be considered when using LOGISMOS for a specific

segmentation task. In the orthopaedic application, a typical scenario includes the

need to segment surfaces of the periosteal and subchondral bone and of the overlying

articular cartilage from MRI scans with high accuracy and in a globally consistent

manner (Fig. 3.1). Other examples include simultaneous segmentation of the prostate

and bladder surfaces for radiation oncology guidance [84], segmentation of two or more

cardiac chambers from volumetric image data, or other segmentation tasks requiring

segmentation of multiple objects positioned in close proximity, each of the objects

possibly exhibiting more than one surfaces of interest.

In addition, to better assist radiologist to research OA, a pattern recognition based

meniscus segmentation approach is described as an extension of LOGISMOS-based
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Figure 3.1: Human knee. (a) Example MR image of a knee joint – femur, patella,
and tibia bones with associated cartilage surfaces are clearly visible. FB = femoral
bone, TB = tibial bone, PB = patellar bone, FC = femoral cartilage, TC = tibial
cartilage, PC = patellar cartilage. (b) Schematic view of knee anatomy; adapted from
http://www.ACLSolutions.com.

knee bone-cartilage segmentation.

3.1 Aims of the Work

Considering the pressing need for segmenting multiple surfaces belonging to mul-

tiple coupled objects as well as the need from knee OA research, we listed the aims

of our research below.

1. Develop and implement a general segmentation framework, which can incor-

porate both inter-surface and inter-object information in the solution finding

process.

2. Develop a method for knee bone/cartilage segmentation from 3D MR images

based on the general segmentation framework.

3. Develop a method for segmentation of menisci as an extension of the bone/car-

tilage segmentation.
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4. In a medium-size study using MR knee images from the Osteoarthritis Initiative

dataset, assess performance of the developed methods.

3.2 Contributions of the Work

As stated before, the optimal surface detection algorithm had been successfully

utilized for segmenting multiple coupled surfaces belonging to one object [61]. The

idea is suitable to be extended to segment multiple surfaces belonging to multiple

mutually interacted objects. In order to achieve our aims, the following contributions

were made.

1. Multi-object graph arcs were formulated and the arcs to incorporate inter-object

information were built between adjacent knee cartilage surfaces.

2. A novel non-intersected search direction along electric lines of force motivated

path to avoid graph column intersection problem was developed and this direc-

tion was implemented for knee bone pre-segmentation.

3. A constraint-point cross-object surface mapping technique was designed to gen-

erate one-to-one and all-to-all corresponding vertex pairs in the interacting re-

gions between mutually coupled objects and the vertex pairs between adjacent

knee bone pre-segmented surfaces were successfully found.

4. The way to directly embed pattern recognition techniques into graph cost was

illustrated and the costs for bone and cartilage detection graphs were assigned

by the inverse of probabilities provided by classifiers trained by problem-specific

features collected in a training dataset.

5. An automated 3D knee bone volume of interest detection method was imple-

mented by extending Viola and Jones well-known face recognition work.

6. A graph structure to segment different number of surfaces at different regions
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was designed and knee cartilage/non-cartilage regions were effectively detected

and applied to this graph.

7. A general multi-surface, multi-object segmentation framework – LOGISMOS

(Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces)

as well as a LOGISMOS-based fully-automated knee bone-cartilage segmenta-

tion system for 3D MR images were developed and implemented.

8. An automatic meniscus segmentation system for 3D MR images was imple-

mented as an extension of our bone-cartilage segmentation.

9. The performance assessment of our bone-cartilage and meniscus segmentation

systems was provided in a medium-size study using MR knee images from the

Osteoarthritis Initiative dataset.

The listed contributions are novel and constitute a non-trivial extension of the pre-

viously reported method [61]. So far, to the best of our knowledge, the contributions

listed here have not been reported by other researches.
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CHAPTER 4

LOGISMOS – LAYERED OPTIMAL GRAPH IMAGE

SEGMENTATION OF MULTIPLE OBJECTS AND SURFACES

The reported multi-object multi-surface segmentation method is a general ap-

proach for optimally segmenting multiple surfaces that mutually interact within in-

dividual objects and/or between objects. The problem is modeled by a complex

multi-layered graph in which solution-related costs are associated with individual

graph nodes. Intra-surface, inter-surface, and inter-object relationships are repre-

sented by context-specific graph arcs. The multi-object multi-surface segmentation

reported here is a non-trivial extension of our previously reported method for optimal

segmentation of multiple interacting surfaces [62].

The LOGISMOS approach starts with an object pre-segmentation step, after

which a single graph holding all relationships and surface cost elements is constructed,

and in which the segmentation of all desired surfaces is performed simultaneously in

a single optimization process. While the description given below specifically refers

to 3D image segmentation, the LOGISMOS method is fundamentally n-dimensional.

Fig. 4.1 shows a flowchart of LOGISMOS framework.

4.1 Object Pre-Segmentation

The LOGISMOS method begins with a coarse pre-segmentation of the image

data, but there is no prescribed method that must be used. The only requirement is

that pre-segmentation yields robust approximate surfaces of the individual objects,

having the same (correct) topology as the underlying objects and being sufficiently

close to the true surfaces. The definition of “sufficiently close” is problem-specific and

needs to be considered in relationship with how the layered graph is constructed from

the approximate surfaces. Note that it is frequently sufficient to generate a single

pre-segmented surface per object, even if the object itself exhibits more than one mu-

tually interacting surfaces of interest. Depending upon the application, level sets, de-
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Figure 4.1: The flowchart of LOGISMOS framework.
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formable models, active shape/appearance models, or other segmentation techniques

can be used to yield object pre-segmentations.

4.2 Construction of Object-Specific Graphs

To represent a single or multiple interacting surface segmentation as a graph

optimization problem, the resulting graph must be a properly-ordered multi-column

graph, so that the segmentation task can be represented as a search for a V-weight

net surface as defined in [95].

A graph G = (V,E) is a collection of vertices V and arcs E. If an arc e1 ∈ E

connects a vertex v1 ∈ V with v2 ∈ V , v1 and v2 are called adjacent and the arc can

be written as < v1, v2 >. In a graph with undirected arcs, < v1, v2 > and < v2, v1 >

are equivalent.

In a multi-column graph, an undirected graph B = (VB, EB) in (d−1)-D is called

the base graph and represents the graph search support domain. An undirected graph

G = (V,E) in d-D is generated by B and a positive integer K, where each vertex

vi ∈ VB has a set Vi of K vertices in V . Vi is also called the i-column of G. An i-

column and a j-column are adjacent if vi and vj are adjacent in B. If each node in G

was assigned a cost value, then finding a net with minimum cost is called a V-weight

net problem. The construction of a directed graph G̃ = (Ṽ , Ẽ) from G was reported

in [95], where lemmas were presented showing that a V-weight net N in G corresponds

to a non-empty closed set S in G̃ with the same weight. An example of this process

can be seen in Fig. 4.2. Here, G and G̃ have the same graph structure. The cost on

a vertex in G is converted to a cost on correspondent vertex in G̃ by subtracting the

vertex cost immediate below. This is called cost translation [62]. Consequently, an

optimal surface segmentation problem can be converted to solving a minimum closed

set problem in G̃. Since any vertex in a closed set should not have directed edges

pointing to another vertex outside the set, the directed graph arcs between two graph

columns constrain the vertical distance of the vertices belonging to adjacent columns
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on N . Because S in G̃ has global minimum sum of cost, the corresponding N in G

guarantees global optimality. When N represents a surface in image segmentation

application, the approach is called optimal surface detection [62]. Finding a minimum

closed set in G̃ can be performed by a minimum s-t algorithm [11]. Especially, when

G is properly-ordered, the optimal V-weight net in G can be computed in T (n,mBK),

where n is the number of vertices in V , mB is the number of arcs in E, and T is the

time for finding a minimum s-t cut in an edge-weighted directed graph.

Figure 4.2: The process of converting finding V-weight net N in G problem into finding
non-empty closed set S in G̃ with the same weight. Here K = 4.

As stated before, the inter-column graph arcs can constrain the vertical distance

between two vertices belonging to adjacent graph columns. If columns i and j are used

to detect adjacent positions of one surface, these inter-column graph arcs control the

surface smoothness. If these two columns represents location detection for different

surfaces, then the inter-column graph arcs are also called inter-surface arcs [62],

which define the separation constraint between the two coupled surfaces. The details

of how to build optimal surface detection graph in image segmentation applications

are discribed in Chapter 5.
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If the object-specific graph is constructed from a result of object pre-segmentation

as described above, the approximate pre-segmented surface may be meshed and the

graph columns constructed as normals to individual mesh faces. The lengths of the

columns are then derived from the expected maximum distances between the pre-

segmented approximate surface and the true surface, so that the correct solution can

be found within the constructed graph. The present approach to multi-surface graph

construction for multiple closed surfaces was introduced in [61]. Maintaining the

same graph structure for individual objects, the base graph is formed using the pre-

segmented surface mesh M. VB is the vertex set on M and EB is the edge set. A graph

column is formed by equally sampling several nodes along normal direction of a vertex

in VB. The base graph is formed by connecting the bottom nodes by the connection

relationship of EB. In the multiple closed surface detection case, this base graph is

duplicated each time when searching for an additional surface. The duplicated base

graphs are connected by undirected arcs to form a new base graph which ensures that

the interacting surfaces can be detected simultaneously. Additional directed intra-

column arcs, inter-column arcs and inter-surface arcs incorporate surface smoothness

∆ and surface separation δ constraints into the graph.

4.3 Multi-Object Interactions

When multiple objects with multiple surfaces of interest are in close apposition,

a multi-object graph construction is adopted. This begins with considering pairwise

interacting objects, with the connection of the base graphs of these two objects to form

a new base graph. Note however, that more than one surface may need to be detected

on each object, with such surfaces being mutually interacting as described above.

Object interaction is frequently local, limited to only some portions of the two objects’

surfaces. Here we will assume that the region of pairwise mutual object interaction is

known. A usual requirement may be that surfaces of closely-located adjacent objects

do not cross each other, that they are at a specific maximum/minimum distance, or
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similar. Object-interacting surface separation constraints are implemented by adding

inter-object arcs at the interacting areas. Inter-object surface separation constraints

are also added to the interacting areas to define the separation requirements that

shall be in place between two adjacent objects. The inter-object arcs are constructed

in the same way as the inter-surface arcs. The challenge in this task is that no one-to-

one correspondence exists between the base graphs (meshes) of the interacting object

pairs. To address this challenge, corresponding columns i and j need to be defined

between the interacting objects. The corresponding columns should have the same

directions. Considering signed distance offset d between the vertex sets Vi and Vj

of the two objects, inter-object arcs Ao between two corresponding columns can be

defined as:

Ao = {〈Vi(k), Vj(k − d + δl)〉|∀k :

max (d − δl, 0) ≤ k ≤ min (K − 1 + d − δl, K − 1)}

∪ {〈Vj(k), Vi(k + d − δu)〉|∀k :

max (δu − d, 0) ≤ k ≤ min (K − 1 + d − δu, K − 1)} (4.1)

where k is the vertex index number; δl and δu are inter-object separation constraints

with δl ≤ δu.

Nevertheless, it may be difficult to find corresponding columns between two re-

gions of different topology. The approach presented in Chapter 6 offers one possible

solution. Since more than two objects may be mutually interacting, more than one

set of pairwise interactions may co-exist in the constructed graph.

4.4 Cost Function and Graph Optimization

The resulting segmentation is driven by the cost functions associated with the

graph vertices. Design of vertex-associated costs is problem-specific and costs may
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reflect edge-based, region-based, or combined edge–region image properties [35, 41].

After the step of cost translation [62], the constructed interacting graph reflecting

all surface and object interactions is a directed graph G̃ derived from a properly-

ordered multi-column graph G. As stated before, a V-weight net problem in G can

be converted to finding the minimum non-empty closed set in G̃. This can be done by

an s-t cut algorithm, e.g. [4]. As a result of the single optimization process, a globally

optimal solution provides all segmentation surfaces for all involved interacting objects

while satisfying all surface and object interaction constraints.

4.5 Chapter Summary

We designed a multi-object multi-surface segmentation method based on graph

search based optimal surface detection algorithm. We call that LOGISMOS approach

which is a general approach for optimally segmenting multiple surfaces that mutually

interact within individual objects or between objects. We provided the theory of

LOGISMOS in this chapter. However, when implement this theory into real applica-

tions, the following things need to be done: 1) Build a graph structure to incorporate

multi-surface and multi-object relationships in medical image segmentation tasks. 2)

Find corresponding graph columns at interacting regions between mutually coupled

object pairs. 3) Design robust graph cost. In the following three chapters, I will show

how these three tasks were achieved.
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CHAPTER 5

OPTIMAL SURFACE DETECTION IN IMAGE SEGMENTATION

The key segmentation technique in LOGISMOS is graph-search based optimal

surface detection approach with embedded prior shape information. Graph-search

based optimal surface detection algorithm has been successfully implemented in many

medical image segmentation applications ranging from 2D to 4D (3D+time) [35, 59,

61,84,101,105].

The theory of the optimal surface detection algorithm has been introduced in the

Chapter 4. Here, we will show some examples explaining how to create optimal surface

detection graphs for single surface, multiple surface, closed surface and multiple object

detection in image segmentation applications. Although the examples are in 2D, the

logic behind them can be easily extended into n-dimensional.

5.1 Single Surface Detection Graph

To detect black (pixel value: 0) and white (pixel value: 1) boundary in a 4×4

image (Fig. 5.1a), an optimal graph can be build as shown in Fig. 5.1b with each pixel

as a graph node. The base graph is formed by the bottom row of pixels in the image.

The pixel columns form graph columns and the inter-column graph links constrain

the solution boundary smoothness [62]. In this case, the smoothness constraint is two,

which reflects the maximum boundary changes between adjacent graph columns. The

graph node cost is computed as C = e−|∇I|/2 where ∇I is the gradient of the pixel

value I. After cost translation and graph optimization [62], the graph finds the black-

white boundary (red) which has globally minimum cost.

When we perform optimal region delineation between black and white regions,

the node costs are assigned as the differences of the unlikeness probabilities for lower

(black) and upper (white) regions (Fig. 5.2c). The computation of unlikeness proba-

bilities for black changes all black pixels to have cost 0 and all white pixels to have

cost 1 (Fig. 5.2a). On the contrary, the computation of unlikeness probabilities for
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(a) (b)

Figure 5.1: The graph structure for optimal single surface detection with surface cost
in an image. (a) A 2D example image with clear black-white boundary. (b) The
single surface detection graph with gradient-based surface cost is built to detect red
black-white boundary with globally minimum cost.

white changes all black pixels to have cost 1 and all white pixels to have cost 0 (Fig.

5.2b). The global optimal black-white region delineation is performed by directly

finding minimum-cost closed set in the graph in Fig. 5.2c. This is an optimal region

delineation approach using regional cost [35].

5.2 Multi-Surface Detection Graph

Optimal surface detection algorithm is suitable to detect multiple coupled surfaces

[62]. In that case, two subgraphs are built and they are connected by inter-subgraph

(inter-surface) graph edges between corresponding columns to constrain minimum

and maximum distances between the coupled surfaces detected in each subgraph.

As an example shows in Fig. 5.3a where the gradient-based costs have been com-

puted and assigned to each pixel. In order to simultaneously detect the two coupled

black-white boundaries, we build two sub-graphs and constrain the distances be-

tween the solution surfaces by inter-surface graph arcs (pink and green arrows) at the

corresponding graph columns. The new graph will detect the two desired surfaces
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(a) (b)

(c)

Figure 5.2: The graph structure for optimal region delineation with regional cost in an
image.(a) Graph cost assigned as unlikeness probabilities for lower (black) region. (b)
Graph cost assigned as unlikeness probabilities for upper (white) region. (c) Black-
white region delineation performed by finding minimum-cost closed set on a graph
with cost assigned as cost difference between (a) and (b).
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simultaneously and optimally.

(a) (b)

Figure 5.3: The graph structure for optimal multiple coupled surface detection in
an image. (a) An image with two black-white boundaries and the gradient-based
costs have been assigned to each pixel. (b) The two boundaries are simultaneously
detected. The distances between them are constrained by inter-surface graph arcs.

5.3 Closed Surface Detection Graph

In shape model based variant of this technique, a graph is built to mimic the initial

shape: the graph nodes on each column are search points along each search direction;

and the graph column adjacency is equal to the vertex neighboring relationships of the

initial shape [61]. The graph edges between the graph columns constrain the solution

surface smoothness according to the initial shape thus preserving the a priori shape

information. With different surface or regional cost function design, this graph can
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be used for globally minimum-cost surface detection [62] or globally minimum-cost

region delineation [35] under the smoothness constraints (Fig. 5.4).

Figure 5.4: A graph was constructed along the red initial shape and the optimal
search resulted in the green solution surface considering the blue candidate locations.

5.4 Multi-Object Detection Graph

In order to constrain surfaces on multiple coupled objects, the corresponding graph

columns based on different initial shapes must be found, and the inter-object graph

arcs (equation 4.1) can be used to constrain the distances of the solution surfaces

[101]. As seen in Fig. 5.5 two subgraphs are build based on the two solid surfaces

respectively, the overlapping problem between the two dotted solution surfaces are

avoided by building inter-object graph edges between the two subgraphs. This kind

of structure proved to be successful to constrain coupled objects for knee cartilage
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segmentation [101–103] and bladder-prostate segmentation [84].

Figure 5.5: The overlapping problem of the interacted solution surfaces is avoided by
inter-object graph edges.

5.5 Chapter Summary

Recently, Li et al. added elasticity constraint for 3D liver tumors segmenta-

tion [60]. The optimal surface detection algorithms were also embedded into a ASM

framework for 3D soft tissue segmentation [45]. Interestingly, despite the successful

usage in medical image segmentation, the graph structure had also proved to be help-

ful for image/video resizing [42] and solving optimal matrix orthogonal decomposition

problem in intensity-modulated radiation therapy [96].

The solution of the graph search guarantees global optimality given the graph

constraints and cost functions. The optimal solution can be computed via finding

minimum-cost closed set by a s-t cut algorithm. Currently, push-relabel [8, 37], aug-

menting path [25] and Boykov’s graph cut method [4] are widely used for s-t cut

computation. Our experiment showed that the Boykov’s graph cut method was the

fastest to perform s-t cut under the graph structure.
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While multi-surface detection graph is very suitable to incorporate coupling in-

formation between multiple highly correlated surfaces (e.g. inner and outer vescular

walls), multi-object detection graph can constrain the distances between coupled ob-

jects (e.g. bladder and prostate). If we combine both of these structures into one

graph and use it for knee cartilage segmentation, the new graph will have the strength

to incorporate correlation relationship between coupled bone and cartilage surfaces as

well as avoid adjacent cartilage surface overlapping. Nevertheless, it may be difficult

to find corresponding columns between two regions of coupled objects with different

topologies. Finding corresponding columns by nearest distance criteria [101] may

help, but it cannot guarantee one-to-one and all-to-all column mapping at interact-

ing regions since nearest distance is not robust for local shape changes. In the next

chapter, I will introduce a more robust mapping technique called constraint-point

cross-object surface mapping technique [100]. The idea is inspired by electric field

theory.



34

CHAPTER 6

ELECTRIC FIELD THEORY BASED APPROACH TO

SEARCH-DIRECTION LINE DEFINITION IN IMAGE

SEGMENTATION

Many shape-based image segmentation techniques identify final segmentation so-

lution along normals constructed from a preliminary segmentation. Examples include

shape-based deformable model segmentation [70,81,91], atlas registration-based seg-

mentation [97], graph-search based optimal closed surface segmentation [61,62,65,84,

101,105], etc.

While the solution-finding processes of these approaches differ significantly, all of

them may suffer from the sensitivity of the employed normal directions to the local

surface shapes, especially in areas of rapid shape changes. Due to the lack of their

directional robustness, surface normals may intersect. As a result, the segmentation

solution may warp and result in segmentation failure. Some techniques were adopted

to handle this problem, for example, checking collision for each vertex [81], search-

ing along maximum distance descendant directions or medial axes based resampling

directions [65]. However, each of these methods has its own limitations.

We present a general solution to this problem based on an electric field motivated

construction of lines, along which the search for the final segmentation solution shall

be performed. This approach guarantees that such lines will not intersect and can thus

replace the normal searching directions for many segmentation approaches. Utilizing

optimal graph search approach as a sample segmentation strategy, the usage of the

approach for graph construction and cross-object surface mapping for coupled-surface

segmentation is reported and its value shown for a broad range of applications ranging

from a relatively simple single-surface detection to very complex multi-surface multi-

object graph based image segmentation.
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6.1 Method

Starting with the initial shape, the search direction along which the final seg-

mentation solution is identified must be defined for each location along the initial

segmentation instance. Our method uses electric field theory for robust and very

general definition of such search direction lines.

6.1.1 A new search direction

Recall the Coulomb’s law in basic physics

Ei =
1

4πε0

Q

r2
r̂ , (6.1)

where Ei is the electric field at point i. Q is the charge of point i; r is the distance

from point i to the evaluation point; r̂ is the unit vector pointing from the point i to

the evaluation point. ε0 is the vacuum permittivity.

Since the total electric field E is the sum of Ei’s

E =
∑

i

Ei , (6.2)

the electric field has the same direction as the electric line(s) of force (ELF).

When multiple source points are forming an electric field, the electric lines of force

exhibit a non-intersection property, which is of major interest in the context of our

research task.

When computing ELF for a computer generated 3D triangulated surface, two

things need to be considered: the surface is composed of a limited number of vertices

and the vertices of the surface are usually not uniformly distributed. These two

conditions may greatly reduce the effect of charges with short distances. In order to

compensate, we assigned different positive charge Qi to each vertex vi. The value of

Qi is determined by the area sum of triangles tj where vi ∈ tj. Note that if we change
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r2 to rm (m > 2), the non-intersection property still holds. The difference is that

the vertices with longer distances will be penalized in ELF computing. Therefore, a

slightly larger m will increase the robustness of local ELF computation. Discarding

the constant term, we defined our electric field as

Ê =
∑

i

∑

j AREA(tj)

ri
m

r̂i , (6.3)

with vi ∈ tj and m > 2.

Assuming there is a closed surface in an n-D space, the point having a zero electric

field is the solution of equation Ê = 0. In an extreme case, the closed surface will

converge to the solution points when searching along the ELF. Except for these points,

the non-intersecting ELF will expand to any positions in the space that potentially

avoid mis-segmentation of any object due to the searching direction.

Since ELF are non-intersected, it is easy to interpolate ELF at non-vertex loca-

tions on a surface. The interpolation can greatly reduce total ELF computation load

when upsampling a surface. In 2D surface, linear interpolation from two neighboring

vertices and their corresponding ELF can be implemented. In 3D, use of barycentric

coordinates is better to interpolate points within triangles.

When ELF are computed from a closed surface, the iso-electric-potential surfaces

can be found. Except for the solution points for equation Ê = 0, any other point

belongs to one iso-electric-potential surface, so the ELF path passing through this

point can be easily interpolated. The interpolated ELF also intersects the initial

closed surface. This technique can be used to create connection between a point

in space to a closed surface. Therefore it leads to another important usage of ELF

direction: cross-object surface mapping.
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6.1.2 Cross-object surface mapping

The non-intersection property of ELF is very useful to map multiple objects with

different surface topologies. The mapping can be used for optimal multi-object seg-

mentation [49,102]. We have identified two kinds of behavior to compute interrelated

ELF of two coupled surfaces:

• Push forward: This is a regular ELF path computation using Equation (6.3)

for an individual object.

• Trace back: This is an interpolation process to form an ELF path from a point

in space to a closed surface. This method has been outlined in the previous

section.

Fig. 6.1a shows ELF pushed forward from a surface and traced back from a point

to that surface.

The general idea of mapping two coupled surfaces using ELF include 5 steps as

shown in Fig. 6.1b. They are:

1. Pushing forward ELF: green and red ELF are pushed forward from surface 1

and 2, respectively.

2. Checking medial points: the intersections between the green ELF and medial

separating sheet projects the orange triangle on surface 1 as a blue triangle

on medial separating sheet and the intersection between red ELF and medial

separating sheet is a point.

3. Tracing back ELF from medial points to the opposite surface: The red point is

traced back along dotted red line to surface 1.

4. Generating constraint point on the opposite surface: when the dotted red line

intersects surface 1, it forms a light-blue constraint point on surface 1.
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5. Connecting the constraint point with other vertices at the opposite surface: the

constraint point is connected at surface 1 by yellow edges.

This technique is called constraint-point mapping [99]. Fig. 6.1b shows an example

of mapping two coupled surfaces in 3D.

(a) (b)

Figure 6.1: Cross-object surface mapping by ELF (a) The ELF (blue lines) are pushed
forward from a surface composed of black vertices. The dashed black surfaces indicate
the location of iso-electric-potential contours. The red-dashed ELF is the traced-back
line from a green point to the solid black surface. The traced-back line is computed
by interpolating two neighboring pushed-forward ELF. (b) Constraint-point mapping
of coupled 3D surfaces.

Note that each vertex in the contact area can therefore be used to create a con-

straint point affecting the coupled surface. Importantly, the corresponding pairs of

vertices (the original vertex and its constraint point) from two interacting objects

in the contact area identified using the ELF are guaranteed to be in a one-to-one

relationship and all-to-all mapping, irrespective of surface vertex density. As a re-

sult, the desirable property of maintaining the previous surface geometry (e.g., the

orange triangle in Fig. 6.1b) is preserved. Therefore, the mapping procedure avoids

surface regeneration and merging [49] (which is usually difficult) and enhances robust-
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ness regarding to local roughness of the surface when comparing with our previously

introduced nearest point based mapping techniques [101,102].

In the following section, we will show how the properties of ELF can be used

for bifurcation detection, inter-surface mapping and multiple surfaces on multiple

coupled objects segmentation.

6.2 Application

6.2.1 3D bifurcation detection

In airway segmentation, measuring the thickness of airway wall is desired. In CT

images, the contrast of inner airway wall boundary is usually much higher than that of

the outer boundary. A reasonable approach is to segment inner boundary first which

is called pre-segmentation. The final segmentation can detect outer boundary based

on the pre-segmented inner boundary [65, 81]. However, because of the topological

complexity, segmentation along normal directions may cause surface self-intersections

and therefore lead to segmentation failures at bronchial airway bifurcations.

Non-intersected ELF won’t have that problem. We created an airway bifurcation

phantom with inner and outer boundaries in a 3D image and we provided a perfect

pre-segmented inner boundary surface. The center slice of the image with the pre-

segmented surface is shown in Fig. 6.2a. Based on the pre-segmented surface, we

used graph-search based optimal surface detection algorithm [61, 62] to identify the

outer boundary. The graph search along the surface-normal direction will corrupt

the surface due to the sharp corner as shown in Fig. 6.2b. However, when employing

the directionality constraints specified by ELF, the directionality of the “normal”

lines along the surface is orderly and the search can avoid the otherwise inevitable

corruption of the surface solution (Figs. 6.2c, 6.2d, 6.2e).

We note that other techniques like checking collision for each vertex [81], searching

along the maximum distance descendant directions, or medial axes based resampling

directions [65] are also possible to avoid surface self-intersection. However, except for
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(a) (b) (c)

(d) (e)

Figure 6.2: 3D bifurcation model demonstrating segmentation of the outer surface.
Note that the bifurcating object consists of a tubular structure with inner and outer
surfaces. (a) Pre-segmentation (red line) of the inner boundary surface is used to
guide segmentation of the outer border; the center slice is shown. (b) The center slice
view of graph searching result (green line) performed along normal directions of the
pre-segmentation surface using our previous approach – notice the severe corruption of
the surface along inner area of the bifurcation. The zoomed bifurcation part is shown
at the bottom right corner. (c) The center slice view of graph searching result (green
line) using graph constructed along ELF directions shows that no surface corruption
is present. The zoomed bifurcation part is shown at the bottom right corner. (d) 3D
view of the pre-segmented inner surface (red) and the final-segmented non-intersected
outer surface (green). (e) The enlarged bifurcation part on the outer surface.
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ELF search direction, these techniques may have difficulties when the initial mesh

has locally concave shape as indicated in the following example.

6.2.2 Inter-surface mapping

Similar to the previous example, we search for a 3D sphere outer surface from an

internal initial shape as shown in Figs. 6.3a and 6.3e. Here, the initial shape phantom

marked in red color has both concave and convex local shapes which simulate shape

variances of some organ structures (e.g. human eyes, bone condyle, etc). Fig. 6.3b

shows searching along the normal directions that will cause a segmentation failure.

This problem cannot be solved by searching along distance directions as indicated in

Fig. 6.3c, because distance transform and medial-axis-based directions will be trapped

in concave shapes. In contrary, the ELF direction does not have that problem (Figs.

6.3d and 6.3f). One-to-one vertex mapping of a 3D shape to a sphere as in Figs. 6.3e

and 6.3f is also called surface parametrization which has many medical applications,

for example, describing brain shapes [57] or visualizing protein surface properties [77].

Interestingly, if the sphere has its own topology, applying the trace-back idea, this

topology can be mapped back to the initial shape as shown in Fig. 6.3g and Fig. 6.3h.

This can be potentially used for automated landmarking, texture mapping and shape

motion analysis [53].

6.2.3 Graph based knee cartilage delineation in 3D

The last example is a much more complicated 3D multi-object multi-surface graph

search segmentation of mutually interacting femoral and tibial cartilage as well as

femoral and patellar cartilage. The results of our previous attempt to solve this task

were reported in 2009 [101]. We introduced a general framework to solve so-called

multi-object multi-surface segmentation problem. This framework includes: 1) Model

formation, 2) bone pre-segmentation, 3) cross-object surface mapping, and 4) final

bone-cartilage segmentation. Here we will show how the ELF theory can be utilized in
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(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 6.3: Inter-surface mapping examples. (a) Pre-segmentation (red line) of the
initial shape lies within a sphere. (b) Graph searching result (green line) performed
along normal directions of the pre-segmentation surface. Segmentation failure occurs.
(c) Graph searching result (green line) using graph constructed along distance direc-
tions. It still cannot provide correct segmentation. (d) Graph searching result (green
line) using graph constructed along ELF directions shows a good estimation of the
outer sphere boundary. (e) The initial shape with its topology in 3D. (f) One-to-one
vertex mapping the initial shape in (e) to outer sphere along ELF directions results
in the outer sphere surface having the same topology as the initial shape. (g) A outer
sphere having independent topology. (h) The topology of sphere in (g) can be traced
back to the initial shape, resulting in a new topology for the initial shape.
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this framework, specifically, in the steps of pre-segmentation and cross-object surface

mapping.

The purpose of model formation is to create mean-shape models of each bone and

identify cartilage, non-cartilage and transitional regions on them. There are about

2000 vertices for each mean shape model. In addition, we collected cartilage statistic

information by training a Random Forest classifier [6] based on intensity, gradient,

distance to the bone, eigenvalue and corresponding local model coordinate features

for each cartilage voxel in nine training images.

For the bone pre-segmentation, a 3D bounding box containing bone and cartilage

for each femur, tibia and patella is first specified by users. After that, the correspond-

ing mean shape model is fitted to the image according to the user-selected bounding

boxes. The robust optimal closed surface detection algorithm with ELF searching

direction was then applied iteratively yielding the pre-segmented bone surfaces. The

details of graph construction for optimal closed surface detection can be found in [61].

Searching along ELF can achieve high robustness for this initial pre-segmentation

step. For instance, in Fig. 6.4a, an initial tibia mean shape is positioned on a 3D

image of human tibial bone. The initial mean shape may not be well positioned and

after several iterations along normal directions, the solution wraps around itself near

the tibial cartilage. If we want to segment cartilage based on this pre-segmentation

result, a segmentation failure will likely result. Incorporating ELF paradigm in the

graph construction overcomes this problem and substantially increases the robustness

of the pre-segmentation step (Fig. 6.4c).

After pre-segmentation, one more vertex with ELF is interpolated at the middle

of each edge on femoral and tibial bone surfaces, which up-sampled these two surfaces

to about 8000 vertices each. Then, one-to-one and all-to-all correspondent pairs are

generated between femur-tibia contact area as well as femur-patella contact area by

constraint-point mapping technique. The correspondent pairs and their ELF direc-
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(a) (b) (c)

Figure 6.4: Tibia bone-cartilage interface segmentation in 3D performed using iter-
ative graph searching. (a) An initial 3D contour (red line) placed on the 3D MR
image of human tibia. (b) Iterative volumetric graph searching result (red line) per-
formed along normal directions, notice the surface wrapping near the tibial cartilage
that is detrimental to consequent cartilage segmentation. (c) Iterative volumetric
graph searching result (red line) performed along ELF directions, no surface wrap-
ping present – using the same initialization and the same number of iterations.

tion connections are used for inter-object graph link construction [101,102]. For graph

cost design, we use gradient information as surface cost at non-cartilage region and

Random Forest output unlikeness as regional cost [41] at transitional and cartilage

regions. The global minimum cost solution for this graph gives optimal bone-cartilage

delineation for all bones simultaneously. If no cross-object relationships are consid-

ered, the final-segmented femoral and tibial as well as femoral and patellar cartilage

may overlap as shown in Fig. 6.5a and 6.5b respectively. As a comparison, Fig. 6.5c

and 6.5d show the result when the proposed surface mapping is applied.

6.3 Chapter Summary

The presented method is not free of several limitation. The most significant is

that the ELF definition is computationally demanding for surfaces with high vertex

density. In our experiment, computing 40 points along each ELF for 2000 vertices

consumes 13 seconds on our PC, which is comparable to computing Danielsson dis-

tance transform [14] for a 200× 200× 200 volume. However, ELF computation time

increases exponentially with the increase in the numbers of vertices. One of the pos-

sibilities is to merge multiple far-away vertex charges to one “larger” vertex charge
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(a) (b)

(c) (d)

Figure 6.5: Graph-based femur-tibia-patella cartilage delineation in 3D. (a) and (b)
Graph searching result not utilizing corresponding vertex pairs. Note the intersection
of the identified surfaces. (c) and (d) Graph searching result using the constraint-
point corresponding vertex pairs.

when computing local ELF, which will greatly decrease the total amount of vertices

involved in the computation.

We have reported a new method for multiple object/multiple surface image seg-

mentation and graph construction. In this approach, the solution-searching directions

are defined according to the directions identified by the electric line field paradigm.

Consequently, the search columns are formed for which the non-intersection prop-

erty of the ELF guarantees non-wrapping surface segmentation outcome even when

dealing with complex local surface shapes or rapid shape changes. Based on the

non-intersection property, a constraint point cross-surface mapping technique was

designed not requiring surface merging and preserving the surface geometry. Conse-

quently, one-to-one and all-to-all mapping is obtained for the coupled-surface contact

area. This property makes our mapping technique superior to those previously pre-

sented [49,101,102].
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After successfully defined a non-intersected search direction as well as a one-to-

one, all-to-all vertex mapping technique, a multi-object, multi-surface graph can be

build with the graph columns along proposed ELF direction and inter-object graph

arcs connecting corresponding vertex pairs acquired from constrained-point surface

mapping. However, our work doesn’t finish here. We need to design good graph cost

to get accurate graph opimazation solutions.
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CHAPTER 7

PATTERN RECOGNITION TECHNIQUES FOR GRAPH COST

DESIGN

In graph-search based image segmentation tasks, the graph solution is driven by

the cost function design. Gradient information based cost and intensity Gaussian

model based cost were frequently used in the previous optimal surface detection ap-

plications [35, 84, 105]. However, notice that the anatomic structure under the same

scanning protocol usually has same texture information. Using the texture infor-

mation in a pattern recognition framework can greatly increase the robustness and

performance of the segmentation.

7.1 Pattern Recognition Techniques

Extracting features containing desired object information to train classifiers from

ground-truth-available images and using the trained classifiers to segment new images

are the ideas of supervised-learning pattern recognition. This technique is widely used

in medical image segmentation, because well tuned classifiers can provide robust pre-

diction for new patterns. The classifiers can learn different kind of information from

training features by combining them in a reasonable way. Moreover, the segmentation

process can be fully automatic.

7.1.1 Feature collection

Theoretically, any useful information which can be evaluated quantitatively can

be used as a feature. Here we introduce some typically used features in image analysis

field.

7.1.1.1 Intensity-based texture features

Original image intensity, or intensities from different Gaussian kernel smoothed

images contains local object appearance and texture information in different scales.

Intensity information can be simply converted into local histogram measurements
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and local standard deviation or other higher order of deviations (e.g. skewness or

kurtosis) measurements. Gray-Level Co-occurrence Matrices (GLCM) features [43]

can be also derived from local histograms.

Haar wavelet feature is defined as the differences of area intensity sums in different

directions, which can be easily computed from “integral” images [90]. Due to the

computation efficiency, Haar feature is successfully utilized in real-time face tracking

applications [90]. Local Binary Pattern (LBP) also proved to be a useful feature for

texture classification. The idea of LBP is to compare the intensity of a pixel with

other pixels around a pre-defined circle and use the comparison code sequence (e.g.

no less than: 1, less than 0) to create a rotation invariant codeword. The codeword

works as a feature [71].

Gradient and other higher-order of derivatives of an image are well known oper-

ators to compute textures such as edges. Zheng et al. introduced steerable features

which include a set of local intensity and gradient based features under a steerable

sampling pattern [107].

7.1.1.2 Local shape-based measurements

Other commonly used features include principal components (λ values) of a Hes-

sian image which describes local object shape appearances. For example, in 3D

images, if the principle components are ordered as |λ1| ≤ |λ2| ≤ |λ3|, then a blob-like

structures may have large values of all the λ’s; tubular structures have a small value

for λ1 but large values for λ2 and λ3; plate-like structures have small values for both

λ1 and λ2 but a large value for λ3. Furthermore, with different signs of λ’s, the above

patterns can be defined with bright objects and dark objects measurement. Based on

the observation, Frangi et al. combine the λ values to enhance specific structures [26].

Here, a measurement RB is used to accounts for the deviation of a blob-like structure
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and distinguish it from a line- and a plate-like pattern:

RB =
|λ1|

√

|λ2λ3|
(7.1)

The radio of λ2 and λ3 is essential for distinguishing between plate-like and line-

like structures:

RA =
|λ2|

|λ3|
(7.2)

Finally, the normal of a Hessian matrix is helpful to eliminate background pixels:

S =
√

λ2
1 + λ2

2 + λ2
3 (7.3)

Combining RA, RB and S into a probability-like estimation in a specific scale s

may result a formula as follows:

v(s) = (1 − exp (−
R2

A

2α2
)) exp (−

R2
B

2β2
)(1 − exp(−

S2

2c2
)) (7.4)

where α, β and c are thresholds to adjust the sensitivity to measure RA, RB and S,

thus to discriminate blob-like, line-like and plate-like structures. Note that v(s) will

be set to zero if λ2 > 0 or λ3 > 0 when measuring bright objects and if λ2 < 0 or

λ3 < 0 when measuring dark objects.

v(s) can be evaluated in a scaling range between smin to smax, the largest responds

V is a good feature for specific local shape representation across a range of scales:

V = max
smin≤s≤smax

v(s) (7.5)

7.1.1.3 Global shape-based features

While global shape information is crucial for object-oriented medical image seg-

mentation, most features are designed to retrieve local image properties. Defining
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global shape information and quantitatively assigning it to single pixel or voxel are

usually not easy things. Some of the following features may carry some global shape

information.

If an object is properly aligned and positioned in an image, the n-dimensional

physical positions of each pixel/voxel from a set of such images contain the expansion

range information of the object. As a similar feature, the voxel location is proved

to be useful for cartilage segmentation [24]. If a reference object is available in an

image, then the distance from a pixel/voxel to the object reflects the deviation to

the reference. Still in cartilage segmentation, the reference objects can be chosen

as the pre-segmented bone surfaces [32]. In deformable mesh based segmentation, if

segmented meshes can be mapped to a global common reference mesh (which could be

a mean shape or a unit sphere), then the corresponding coordinate on the mean shape

supports local appearance discrimination ability under different global positions [63].

7.1.2 Classifier design

After collecting features, the next step for pattern recognition is to select and

train classifiers. Machine learning is a very active research area in recently years.

Many researchers contribute different kinds of classifier design. Some commonly used

classifiers may include: K-means [69], K-nearest neighbors [12], decision trees [76],

neural networks [74], naive bayes [17], support vector machine [18], Adaboost [29] and

Random Forest [6].

When choosing classifiers from them, we should consider the characteristics of 3D

medical image segmentation tasks:

1. The number of features collected from an image is usually between 10 to 20.

2. The number of manually labeled samples in a 3D image can be in a level of one

to several million.

3. Fast online testing time is desired, while the offline training time is usually not
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concerned.

4. Outliers exist in the training data due to the limitation of manual tracing ac-

curacy.

5. The classifiers should provide good and robust classification/regression result.

In short, we should select classifiers which can handle large training dataset, ro-

bust, accurate and with fast testing speed. Adaboost and Random Forest are two

classifiers satisfying the above requirements.

7.1.2.1 Adaboost classifier

The Adaboost classifier [29] is composed of a set of weak classifiers (e.g. one node

decision tree – Decision Stumps [76]). In training process, the training samples are

initialized with the same weights. The weak classifiers are trained one-by-one by

finding the minimum weighted error. The weights for samples are adjusted after each

weak classifier is trained, so that the next weak classifier will more concentrate on the

wrongly segmented samples. In testing process, the output of an Adaboost classifier

is a weighted sum of each weak classifier’s output. Algorithm 1 shows the training

and testing process of Adaboost. The Adaboost classifier can efficiently decrease

generalization errors for training samples and generate robust and fast estimations.

Furthermore, the Adaboost classifier can process large amount of training samples;

and it provides feature selection result by avoiding correlations between features. The

number of weak classifiers is the only parameter needed to be determined during the

classifier design. However, because Adaboost does not tend to be over-trained with

the increase of weak classifiers, the selection of this parameter is robust.

7.1.2.2 Random Forest classifier

Random Forest [6] is a more sophisticated classifier design. It uses Decision

Tree [76] as weak classifiers. Each tree is trained by a new training set generated
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Algorithm 1 Adaboost training and testing process

Adaboost Training:

Input: training samples S = {(x1, y1) . . . (xN , yN)} where xn is feature, yn ∈
{−1, +1} is label, number of iterations T

Initialization: sample weight d
(1)
n = 1/N for all n = 1, 2 . . . N

for t = 1 to T do

Train a weak classifier with respect to the weighted sample set {S, dt} and obtain
classification rules ht, h(x) ∈ {−1, +1}
Calculate the weighted training error zt for ht:

zt =
N

∑

n=1

d(t)
n for all ht(x) 6= yn

Break if zt = 0 or zt ≥ 1/2 and set T = t − 1
Set weak classifier weight αt:

αt =
1

2
log

1 − zt

zt

Update sample weight:

d(t+1)
n = d(t)

n exp (−αtynht(xn))

Normalize sample weights such that
∑N

n=1 d
(t+1)
n = 1

end for

Adaboost Testing:

Input: testing feature x
Output: estimation ŷ =

∑T
(t=1)

αt
∑

T

t=1
αt

ht(x)
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by uniformly sampling the original training set with replacement (samples in original

training set allowed to be selected multiple times). The generated new training set

has the same number of samples as the original training set. This is called a Bootstrap

aggregating (Bagging) [6] process. The Bagging process can increase the stability and

robustness and decrease the variance and overfitting of the global classifier. More-

over, each leaf of a tree is trained by a number of randomly selected features and the

whole tree is trained without pruning. The output of a Random Forest is the average

of the total decision tree’s outputs. The training and testing processes are shown in

Algorithm 2. This classifier can also handle large training dataset and produce ro-

bust estimation. In certain medical image segmentation applications, Random Forest

classifier performs better than other classifiers [98]. There are two parameters to be

determined: the number of trees and the number of features to train each leaf. Similar

with Adaboost, the number of trees is a robust parameter regarding to overfitting;

and the number of features can be selected in a large range, usually as a square root

of total features for probability predication Random Forest.

Algorithm 2 Random Forest training and testing process

Random Forest Training:

Input: training samples S = {(x1, y1) . . . (xN , yN)} where xn is feature, yn ∈
{−1, +1} is label, number of trees T , number of features m to train each leaf
on a tree.
for t = 1 to T do

Uniformly sampling original training set with replacement to generate new train-
ing set.
Train a binary decision tree with generated training set and without pruning.
Each leaf of the tree is trained only by randomly selected m features.

end for

Random Forest Testing:

Input: testing feature x
Output: the average of all T decision tree output
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7.2 Chapter Summary

Although quite powerful, pattern recognition technique also has bottleneck in

incorporating global shape information and suffers slow speed for voxel-based classi-

fication in medical image segmentation applications. As a solution, many researchers

design classifier outputs as the external force for shape model-based segmentation.

Due to the flexibility of cost design, the inverse of the probability provided by

classifiers can be directly embedded into a graph-search based optimal surface de-

tection framework to perform globally optimal surface and region detection under a

priori shape constrain. In the next chapter, I will show how to use this idea as well as

LOGISMOS utility to build a fully automated knee cartilage segmentation system.
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CHAPTER 8

LOGISMOS-BASED SEGMENTATION OF CARTILAGES FOR ALL

BONES IN THE KNEE JOINT

Following the general outline of our LOGISMOS approach, a method for simul-

taneous segmentation of bone and cartilage surfaces in the femur, tibia, and patella,

which all articulate in the knee joint, is reported. Problem-specific details of the

individual processing steps outlined above are given in the next sections.

Three bones articulate in the knee joint: the femur, the tibia, and the patella.

Each of these bones is partly covered by cartilage in regions where individual bone

pairs slide over each other during joint movements. For assessment of the knee joint

cartilage health, it is necessary to identify six surfaces: femoral bone, femoral carti-

lage, tibial bone, tibial cartilage, patellar bone, and patellar cartilage. In addition to

each connected bone and cartilage surface mutually interacting on a given bone, the

bones interact in a pairwise manner – cartilage surfaces of the tibia and femur and of

the femur and patella are in close proximity (or in frank contact) for any given knee

joint position. Clearly, the problem of simultaneous segmentation of the six surfaces

belonging to three interacting objects is well suited for application of the LOGISMOS

method.

8.1 Method

8.1.1 Bone pre-segmentation

Fig. 8.1 shows the flowchart of our method. As the first step, the volume of

interest (VOI) of each bone, together with its associated cartilage, is identified using

an Adaboost approach in 3D MR images (Fig. 8.1a). Following application of a 3D

median filter (radius one voxel) to remove local noise, image intensities are normalized

as suggested in [32]. Inspired by the facial recognition work of Viola and Jones [90],

their idea was extended to 3D. Nine types of 3D Haar-like features were designed as

shown in Fig. 8.2, in which the total voxel intensity sum in the white area is subtracted
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Figure 8.1: The flowchart of LOGISMOS based segmentation of articular cartilage for
all bones in the knee joint. (a) Detection of bone volumes of interest using Adaboost
approach. (b) Approximate bone segmentation using single-surface graph search.
(c) Generation of multi-surface interaction constraints. (d) Construction of multi-
object interaction constraints. (e) LOGISMOS-based simultaneous segmentation of
6 bone & cartilage surfaces in 3D.
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from the total voxel intensity sum in the gray area. It is efficient to compute these

features in an integral image [90] using 12, 16, and/or 18 index references (types a ∼ c,

d ∼ f , and g ∼ i, respectively). Furthermore, computing the Haar-like features in

multiple resolutions can be achieved by rescaling the box sizes shown in Fig. 8.2, which

avoids re-sampling the entire image and thus leads to a single cross-scale classification

process. The goal of the bone localization is to determine three VOIs per knee joint

image within which the individual bones (femur, tibia, patella) are located.

Figure 8.2: Nine types of 3D Haar-like features, employed in a multi-scale manner.

To learn VOI-related 3D Haar-like features from a training set of images, example

VOIs were manually identified in a TRAIN-1 dataset (Section 8.2.2) that was com-

pletely separate from any testing image sets used later. The example VOIs included

the femoral, tibial, and patellar bone and cartilage structures (Fig. 8.1a). After scal-

ing to the mean size for each bone, the bone VOIs were used as representative bone

class (foreground) samples. A large number of 3D Haar-like features (∼150,000) of

different types and scales were computed inside the foreground VOI location in each
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training image. The mean±standard deviation (std) of the VOI sizes were computed

for each bone, as well. To determine VOI-related features for non-bone (background)

VOI locations, these VOI positions were perturbed – randomly shifted nine times for

each axis and each training image within an experimentally set 2.8 – 21 mm range – to

produce background class samples. In the course of Adaboost training, the 500 most

appropriate features were identified. Three Adaboost classifier results were obtained

separately for each of the three bones.

To detect the femur, tibia, and patella bones in 3D MR images, the selected

500 features are computed within each VOI in all possible VOI positions in a multi-

resolution fashion (VOI sizes ranging within mean±3 std of the learned VOI size).

Detection of the three bones is sequential and starts with the femur, since it has the

most recognizable appearance. The tibia is then localized as inferior of the femur,

and the patella to the anterior of the femur as shown in Fig. 8.1a.

After localizing the object VOIs, approximate surfaces of the individual bones

must be obtained (Fig. 8.1b). For the purpose of accurate delineation of knee bone

and cartilage structures as imaged by MR, the bone surfaces alone provide an ini-

tial approximation of the pair of inter-related bone and cartilage surfaces. Using a

separate training set TRAIN-2 (Section 8.2.2) for which complete manual tracings

of all three bones were available in all image slices, mean shapes of the three bones

were constructed and represented as closed surfaces, of about 2000 mesh vertices

each. Using the volumetric bone surface meshes, a random forest classifier [6] was

trained to distinguish the bone surface from the rest of the image. The utilized

features included intensity, intensity gradient, and second order intensity derivatives

calculated in Gaussian-smoothed images constructed using 0.5 mm, 1.0 mm, and

2.0 mm smoothing kernels. Additional features were derived from the distances be-

tween the geometric center of the bone VOI and the true bone surface, and served as

shape-bearing information. All these features formed the input to the random forest
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classifier.

The approximate bone surfaces were identified in previously unseen images by

first roughly fitting the mean bone shape models obtained from the TRAIN-2 train-

ing set directly to the automatically-identified VOIs (upper panels of Fig. 8.1b). A

single surface detection graph was constructed based on the fitted mean shapes –

graph columns were built along non-intersecting electric lines of force to increase the

robustness of the graph construction (Chapter 6). The surface costs were associated

with each graph node based on the inverted surface likelihood probabilities provided

by the random forest classifiers. After repeating this step iteratively until convergence

(usually 3–5 iterations were needed), the approximate surfaces of each bone were au-

tomatically identified, without considering any bone-to-bone context, see lower panel

of Fig. 8.1b.

8.1.2 Multi-surface interaction constraints

Image locations adjacent to and outside of the bone may belong to cartilage,

meniscus, synovial fluid, or other tissue, and they thus exhibit different image ap-

pearance (Fig. 8.1c). For example, the cartilage and non-cartilage regions along

the knee bone surface differ dramatically in texture. Features utilized in a respective

cartilage/non-cartilage tissue classifier include those used previously (intensity, inten-

sity gradient, and second order derivatives of Gaussian-smoothed images). Additional

features were added, including the physical distances of a location from the bone sur-

face [32] and three eigenvalues of the Hessian image. To reveal the cartilage shape

properties in different locations, each graph node was mapped back to the mean

bone shape along a given search direction. The original vertex coordinates of the

corresponding vertex on the mean bone shape were used as yet another feature [63].

Using the cartilage features collected from the training dataset TRAIN-2 for all

cartilage/non-cartilage locations, a new Adaboost classifier was trained for each bone.

When segmenting the bone surface, these Adaboost classifiers quickly classify the
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graph nodes into one of the cartilage/non-cartilage classes. If any node along a search

direction is identified as cartilage, the search path is identified as passing through the

cartilage region.

The overall goal of this work is to extract from MR images the bone and carti-

lage surfaces of each of the three bones forming the knee joint (6 surfaces in total).

Since the cartilage generally covers only those parts of the respective bones which

may articulate with another bone, two surfaces (cartilage & bone) are defined only

at those locations, while single (bone) surfaces are to be detected in non-cartilage

regions. This also reflects the distinction between truly external bone surfaces versus

the subchondral bone surface, which marks the interface between bone and cartilage

where they are joined. To facilitate a topologically robust problem definition across

a variety of joint shapes and cartilage disease stages, two surfaces are detected for

each bone, and the single–double surface topology differentiation reduces into differ-

entiation of zero and non-zero distances between the two surfaces. In this respect,

the non-cartilage regions along the external bone surface were identified as regions in

which zero distance between the two surfaces was enforced so that the two surfaces

collapsed onto each other, effectively forming a single bone surface. In the cartilage

regions, the zero-distance rule was not enforced, providing for both a subchondral

bone and articular cartilage surface segmentation.

8.1.3 Multi-object interaction constraints

In addition to dual-surface segmentation that must be performed for each indi-

vidual bone, the bones of the joint interact in the sense that cartilage surfaces from

adjacent bones cannot intersect each other, cartilage and bone surfaces must coin-

cide at the articular margin, the maximum anatomically feasible cartilage thickness

shall be observed, etc. The regions in which adjacent cartilage surfaces come into

contact are considered the interacting regions (Fig. 8.1d). In the knee, such interact-

ing regions exist between the tibia and the femur (tibiofemoral joint) and between
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the patella and the femur (patellofemoral joint). It is also desirable to find these

interacting regions automatically.

For this purpose, an iso-distance medial separation sheet is identified in the global

coordinate system midway between adjacent pre-segmented bone surfaces. If a vertex

is located on an initial surface while having a search direction intersecting the sheet,

the vertex is identified as belonging to the region of surface interaction. The sepa-

ration sheet can be identified using signed distance maps even if the initial surfaces

intersect. Following the ELF approach described above, femoral and tibial initial sur-

faces were up-sampled to approximately 8,000 vertices each in order to increase the

surface resolution. Then, one-to-one and all-to-all corresponding pairs are generated

between femur-tibia contact area as well as femur-patella contact area by constraint-

point mapping technique. The corresponding pairs and their ELF connections are

used for inter-object graph link construction [101,102].

8.1.4 Knee joint bone-cartilage segmentation

After completion of the above steps, the segmentation of multiple surfaces of mul-

tiple mutually interacting objects can be solved as previously presented in [101]. Con-

sequently, all surfaces are segmented simultaneously and globally optimally subject

to the interaction constraints (Fig. 8.1e). Specifically, double surface segmentation

graphs were constructed individually for each bone using that bone’s initial surface.

The three double surface graphs were further connected by inter-object graph arcs

between the corresponding columns identified during the previous step as belonging

to the region of close-contact object interaction. The minimum distance between the

interacting cartilage surfaces from adjacent bones was set to zero to avoid cartilage

overlap.

After the step of cost translation [62], the constructed interacting graph is a

directed graph G̃ derived from a properly-ordered multi-column graph G. As stated

before, a V-weight net problem in G can be converted to finding the minimum non-
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empty closed set in G̃. This can be done by an s-t cut algorithm, e.g. [4], as a result

of which all six surfaces (femoral bone-cartilage, tibial bone-cartilage and patellar

bone-cartilage) are detected simultaneously.

8.1.5 Cost functions

Pattern recognition can substantially aid image segmentation. Due to the flex-

ibility of the cost function design, pattern recognition techniques can be embedded

directly in the optimal surface detection framework.

Inspired by the work of Folkesson and Fripp [24, 32], a random forest classi-

fier [6] was trained for each bone using voxels surrounding the corresponding bone

boundaries. Intensity, gradient and second order intensity derivatives under Gaus-

sian smoothed images with 0.5 mm, 1.0 mm, 2.0 mm smoothing kernels were used

as features. Furthermore, 3D distances from the center of the VOI were utilized as

shape-information-bearing features, yielding a more robust behavior than using global

3D location as features [24]. All these features have already been described in Section

8.1.1. The surface cost was associated with each graph node based on the inverted

surface probabilities provided by the Random Forest classifiers.

Three additional binary Random Forest classifiers were trained based on the train-

ing samples (labeled as either cartilage or other). For this training, only samples from

the cartilage-present bone regions were utilized, obtained from the TRAIN-2 set. The

same features as previously used for cartilage/non-cartilage detection were used (Sec-

tion 8.1.2).

Once trained and applied to previously unseen to-be-segmented images, the clas-

sifiers provide localized information for each location of the graph nodes about the

likelihood that this location belongs to a given tissue class (cartilage or other). In-

verted tissue probabilities are therefore associated with each graph node and represent

regional cost terms.
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8.2 Experimental Methods

8.2.1 Image data

The goal of the performance assessment was to determine the surface segmentation

accuracy obtained when simultaneously segmenting 6 bone and cartilage surfaces in

the knee joint (femoral bone and cartilage, tibial bone and cartilage, patellar bone and

cartilage) in full 3D. MR images utilized in this study were randomly selected from

the publicly available Osteoarthritis Initiative (OAI) database, which is available for

public access at http://www.oai.ucsf.edu/.

The knees of subjects in the OAI study exhibit differing levels of joint degenera-

tion. By study design, subjects are enrolled into one of two cohorts, based on whether

they have symptomatic knee osteoarthritis (OA) at the time of entry into the study

(progression cohort) or they do not (incidence cohort). The MR images used were ac-

quired with a 3T scanner following a standardized procedure. A sagittal 3D dual-echo

steady state (DESS) sequence with water-excitation and the following imaging pa-

rameters: image stack of 384×384×160 voxels, with voxel size 0.365×0.365×0.70 mm.

8.2.2 Independent standard

The initial bone segmentation relied upon the TRAIN-1 training set, which con-

sisted of 25 randomly selected OAI image datasets in which bone VOIs were manually

identified. The remaining training steps were performed using a training set (TRAIN-

2) that consisted of 9 image datasets, taken from the incidence cohort (4 subjects)

and from the progression cohort (5 subjects). Complete volumetric bone and car-

tilage tracing was manually performed for the three bones of the knee joint in the

TRAIN-2 datasets. The performance of the LOGISMOS method was tested in the

TEST dataset of 60 OAI subjects for which volumetric tracings were available either in

coronal orientation (1618 traced slices, 40.5±4.7 traced slices per dataset), or in sagit-

tal orientation (2266 traced slices, 113.3±9.8 per dataset). In 20 of the 60 datasets,
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the femoral, tibial and patellar bone and cartilage borders were expert-traced in all

sagittal-view slices by one observer. In the remaining 40 datasets, femoral and tibial

bone and cartilage borders were expert-traced in all of the coronal-view slices by two

other observers. The independent standard thus resulted from fully manual tracing

with no automated or semi-automated segmentation tool assistance, and expected

inter-observer variability.

8.2.3 Parameters of the method

For preliminary segmentation, the surface smoothness was set as ∆ = 3 vertices.

Due to anisotropic voxel sizes, ∆ ranged from 1.04 to 2.1 mm based on the direction

in the 3D volume. Similar directionality-caused ranges apply to other parameters.

Following the bone pre-segmentation, the femoral and tibial surfaces were upsampled

from about 2000 vertices to 8000 vertices each.

For the final-segmentation graph construction, vertices were sampled in a nar-

row band of [-5,20] voxels (-3.5 – 14 mm) along the ELF direction around the pre-

segmented surface (upsampled to K = 51). The surface smoothness parameters were

set to ∆ = 3 vertices (1.04–2.1 mm) for both the bone and cartilage surfaces. During

the ELF computation, m = 4 was used in Equation (6.3). The inter-surface distance

constraint values were set to δlower = 0 to allow for denuded bone and δupper = 0 at

non-cartilage area to create coincident bone and cartilage surfaces. The inter-object

surface smoothness parameter was δl = 0 to prevent cartilage surface overlapping.

8.2.4 Quantitative assessment indices

To provide a detailed assessment of the cartilage segmentation accuracy, signed

and unsigned surface positioning errors were assessed in each of the 60 images from

the TEST set, and they are reported as mean ± standard deviation in millimeters.

Surface positioning errors were defined as the shortest 3D distances between the

independent standard and computer-determined surfaces. Similarly, local cartilage
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thickness was measured as the closest distance between the cartilage and bone surfaces

and compared to the independent standard.

To determine Dice Similarity Coefficients (DSC) [15] of cartilage segmentation

performance, complete volumetric tracings of the entire joint must be available, as

in the TRAIN-2 dataset. Therefore, DSC analysis of the cartilage volume was per-

formed in the TRAIN-2 dataset following a leave-one-out training/testing strategy to

maintain full training/testing separation.

8.3 Results

All testing datasets were segmented using the described fully automated frame-

work. No user-interaction was allowed in any of the segmentation steps and no result-

ing surfaces were manually edited. The segmentation required roughly 20 minutes on

average to segment one knee joint dataset, on a PC with Intel Core 2 Duo 2.6 GHz

processor and 4 GB of RAM (single thread). Out of the 20 minutes, the bone VOI

locating process takes about 6 minutes per dataset on average (all three bones) with

no location errors observed. The subsequent step of pre-segmenting one bone surface

requires about 2 minutes each and can be performed in parallel. All remaining steps

of the multi-object multi-surfaces simultaneous segmentation need about 8 minutes

to complete. Fig. 8.3 shows an example of a knee joint contact area slice from the 3D

MR dataset. Note the contact between the femoral and tibial cartilage surfaces, as

well as the contact between the femoral and patellar cartilage surfaces. Furthermore,

there is an area of high intensity synovial fluid adjacent to the femoral cartilage that is

not part of the cartilage tissue and should not be segmented as such. The right panel

of Fig. 8.3 shows the resulting segmentation demonstrating very good delineation of

all six segmented surfaces and correct exclusion of the synovial fluid from the cartilage

surface segmentations. Since the segmentations are performed simultaneously for all

6 bone and cartilage surfaces in the 3D space, computer segmentation directly yields

the 3D cartilage thickness for all bone surface locations. Typical segmentation results
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are given in Fig. 8.10 and 8.11.

Figure 8.3: MR image segmentation of a knee joint – a single contact-area slice from a
3D MR dataset is shown. Segmentation of all 6 surfaces was performed simultaneously
in 3D. (left) Original image data with expert-tracing overlaid. (right) Computer
segmentation result. Note that the double-line boundary of tibial bone is caused by
intersecting the segmented 3D surface with the image plane.

The signed and unsigned surface positioning errors of the obtained cartilage seg-

mentations were quantitatively measured over the cartilage regions, and they are pre-

sented in Table 8.3. For these results, the femoral bone and cartilage errors, as well

as tibial bone and cartilage errors, were evaluated in each of the 60 testing datasets.

The patellar bone and cartilage errors were evaluated in the 20 testing datasets for

which sagittal patellar tracings were available. The average signed surface position-

ing errors for the 6 detected surfaces ranged from 0.04 to 0.16 mm, while the average
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unsigned surface positioning error ranged from 0.22 to 0.53 mm. The close-to-zero

signed positioning errors attest to a very small bias of surface detection. The un-

signed positioning errors show that the local fluctuations around the correct location

are much smaller than the 3D diagonal of the MR image voxel (0.87 mm). Our results

therefore show virtually no surface positioning bias and subvoxel local accuracy for

each of the 6 detected surfaces. Signed positioning error maps for femoral and tibial

bone and cartilage surfaces and for calculated cartilage thickness are shown in Fig.

8.15 demonstrating that the mean errors are small for all three cartilage areas across

all central regions of greatest functional significance. The detailed surface positioning

errors for all six surfaces in each dataset are plotted in Fig. 8.4 to 8.9.

Table 8.1: Mean signed and unsigned errors of computer segmentation in compar-
ison with the independent standard in mm.

Signed Signed Unsigned Unsigned Signed Mean
ERRORS Bone Cartilage Bone Cartilage Cartilage

(mm) Positioning Positioning Positioning Positioning Thickness
Femur 0.04 ± 0.12 0.16 ± 0.22 0.22 ± 0.07 0.45 ± 0.12 0.11 ± 0.24
Tibia 0.05 ± 0.12 0.10 ± 0.19 0.23 ± 0.06 0.53 ± 0.11 0.05 ± 0.23

Patella 0.09 ± 0.09 0.12 ± 0.21 0.23 ± 0.11 0.53 ± 0.14 0.03 ± 0.17

When assessing the performance using Dice coefficients, the obtained DSC val-

ues were 0.84, 0.80 and 0.80 for the femoral, tibial and patellar cartilage surfaces,

respectively, as shown in Table 8.2. The detailed assessments for femoral, tibial and

patellar cartilages for each dataset are in Fig. 8.12, 8.13 and 8.14 respectively.

8.4 Chapter Summary

In this section, we focus on three issues associated with the reported multi-object

multi-surface segmentation framework: overall properties, novelty and generality of
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Figure 8.4: Charts for individual femoral bone surface positioning error measurements
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Figure 8.5: Charts for individual femoral cartilage surface positioning error measure-
ments
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Figure 8.6: Charts for individual tibial bone surface positioning error measurements
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Figure 8.7: Charts for individual tibial cartilage surface positioning error measure-
ments
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Figure 8.8: Charts for individual patellar bone surface positioning error measurements
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Figure 8.9: Charts for individual patellar cartilage surface positioning error measure-
ments
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Table 8.2: Volume measurement in comparison with the
independent standard.

DSC Sensitivity Specificity
Femoral cartilage 0.84 ± 0.04 0.80 ± 0.07 1.00 ± 0.00
Tibial cartilage 0.80 ± 0.04 0.75 ± 0.08 1.00 ± 0.00

Patellar cartilage 0.80 ± 0.04 0.76 ± 0.08 1.00 ± 0.00

(a) (b)

(c) (d)

Figure 8.10: 3D segmentation of knee cartilages. Images from a knee minimally af-
fected by osteoarthritis shown on the left. Severe cartilage degeneration shown on the
right. (a,b) Original images. (c,d) The same slice with bone/cartilage segmentation.



75

(a) (b)

(c) (d)

(e) (f)

Figure 8.11: 3D segmentation of knee cartilages. Images from a knee minimally af-
fected by osteoarthritis shown on the left. Severe cartilage degeneration shown on the
right. (a,b) Original images. (c,d) The same slice with bone/cartilage segmentation.
(e,f) Cartilage segmentation shown in 3D, note the cartilage thinning and “holes” in
panel (f).
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Figure 8.12: Charts for individual femoral cartilage volume measurements
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Figure 8.13: Charts for individual tibial cartilage volume measurements



78

Figure 8.14: Charts for individual patellar cartilage volume measurements
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.15: Distribution of mean signed surface positioning errors superimposed
on mean shapes of the three bones forming the knee joint. In all panels, blue color
corresponds to bone areas not covered by cartilage when mapped to mean shape. The
range of colors from green to red corresponds to surface positioning errors ranging
from -1 to +1 mm. Panels (a)–(c) show bone surface positioning errors, (d)–(f)
show cartilage surface positioning errors, and (g)–(i) mean signed errors of computed
cartilage thickness. Note that the yellowish color corresponds with zero error, visually
demonstrating only a very small systematic segmentation and thickness assessment
bias across all cartilage regions.
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the presented method; its limitations; and causes and locations of errors in the knee

cartilage segmentation.

8.4.1 Method properties, novelty and generality

To the best of our knowledge, this is the first paper in the archival literature

to report the simultaneous segmentation of multiple objects with multiple surfaces

per object. In the present application, the framework was applied to segment knee

joint cartilage via simultaneous segmentation of the bone and cartilage surfaces of

the femur, tibia, and patella. We have previously reported a general outline of this

approach which required interactive initialization, used simplified cost functions, and

lacked any validation [103]. The method is based on a layered-graph optimal image

segmentation [62] that was extended to handle multiple interacting objects. This is a

non-trivial extension that facilitates utilization of the optimal layered graph approach

for segmentation of multiple objects for which the interaction properties may be based

on surface proximity (as in the present application) as well as on any other general

mutual relationships (e.g., relative distances of object centroids, orientation of the

interacting objects in space, relative orientation of the interacting surfaces, etc.).

The method can be directly extended to n-D, and the inter-object relationships can

include higher-dimensional interactions, e.g., mutual object motion, interactive shape

changes over time, and similar. Overall, the presented framework is very general and

represents a new level of complexity that can be addressed using the layered surface

graph optimization paradigm.

8.4.2 Limitations of the reported approach

While very general, our framework is not free of limitations. First, optimal layered

surface graph segmentation approaches require availability of a meaningful prelimi-

nary segmentation (or localization) of the objects of interest prior to the optimal

segmentation (or accurate delineation) step. Clearly, the quality of pre-segmentation
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can affect the ability of the final graph-search segmentation to identify the desired

borders. For example, if the pre-segmentation surfaces are too distant from the de-

sired surfaces, their shape is inappropriate, or if the pre-segmentation fails for a

variety of other reasons, the final graph may not contain the desired solution. In the

multiple interacting object case, the pre-segmentation must be reasonable for all mu-

tually interacting objects since it affects the cross-object context incorporated in the

framework. Note however, that the reasonability requirement may allow substantial

inaccuracy. For example, if segmenting 3D objects, all that may be required as a pre-

segmentation result may be a topologically correct surface that is positioned within a

range of possible distances from this pre-segmentation surface to the desired surface.

As long as the desired surface occurs within the overall graph constructed from the

pre-segmentation surfaces, the final simultaneous segmentation step may still yield

the correct final segmentation – although with a dependency on the quality of the

employed cost functions, surface smoothness constraints, possible shape priors, etc.

In our knee joint segmentation application, the Adaboost localization followed by an

iterative graph search approach for pre-segmentation of the individual bone surfaces

was sufficiently robust and performed without any need for interaction or editing.

While ably solving the column-crossing problem, the ELF calculation utilized is

computationally demanding for surfaces with high vertex density [99]. In our experi-

ment, computing 40 points along each ELF for 2000 vertices consumed 13 seconds on

our PC, which is comparable to computing Danielsson distance transform [14] for a

200×200×200 volume. However, ELF computation time increases exponentially with

the increase in the numbers of vertices. One possible way to address this potential

limitation would be to merge multiple distant vertex charges to one “larger” vertex

charge when computing local ELF, thereby greatly decreasing the total amount of

vertices involved in the computation.
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8.4.3 Cartilage segmentation errors

Complete 3D cartilage segmentation is a difficult problem. Our current method,

while performing very well overall, exhibited local surface positioning inaccuracies as

reflected in the reported unsigned surface positioning errors (Fig. 8.15). The difficult

character of the cartilage MR segmentation task can be appreciated when assessing

the inter-observer variability of bone and cartilage surface definition by human experts

– manual tracings suffered from inter-observer variability of 0.5± 0.5mm assessed on

a set of 16 MR 3D datasets, with 10 slices manually traced per dataset by each of four

expert observers. The inter-observer variability of cartilage thickness was 1.0±0.8mm.

Clearly, the performance of the presented segmentation system compares well with

the inter-observer variability and is generally the same for all three bone and cartilage

surfaces.

When considering the segmentation inaccuracy with respect to its location and

underlying cause, a clear pattern can be observed, with errors mostly contained within

the non-cartilage regions and therefore of less functional importance. Short of imple-

menting better MR imaging sequences, interactive user guidance may be incorporated

resulting in semi-automated multi-object multi-surface layered surface graph segmen-

tation.

When assessing segmentation performance, it may be difficult to compare DSC-

based segmentation performance directly with published results of others, since each

study uses different images, training data sizes, and disease conditions. Note that the

OA images are substantially more difficult to segment than images of healthy joints

utilized in most published cartilage segmentation studies. The presented method

obtains the segmentation relatively quickly and is much faster compared to the two

previously reported methods of Dam and Fripp [13, 32]. Our approach required 20

minutes, compared with one to several hours of the earlier approaches on a compa-

rable hardware when images of the same size are considered. Importantly, our novel
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approach offers comparable if not better performance than the earlier approaches. For

example, Folkesson achieved DSC values of 0.78 and 0.81 for the femoral and tibial

cartilage based on 51 healthy and 63 OA low-field MR images [24]. Fripp reported

DSC values of 0.85, 0.83 and 0.83 for the femoral, tibial and patellar cartilages from

20 healthy SPGR MR images [32].

The embedding of pattern recognition techniques within an optimal surface detec-

tion framework is the key new contribution of the presented methods. Notably, the

presented approach has only one sensitive parameter to be determined – the surface

smoothness constraint, and the selection of this parameter is very intuitive. Too-

small constraint values will make the algorithm insensitive to sharp discontinuities

of bone and cartilage surfaces while too-large values will contribute to surface noise,

roughness, and loss of the a priori shape information. In the work reported here,

a smoothness constraint of 3 voxels was utilized, based on empirical determination.

Although trained only on a small training set, the algorithm segmented complicated

knee bone and cartilage structures well. As more training data becomes available in

the future, we believe that the performance of the system can be expected to further

improve.
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CHAPTER 9

MENISCUS SEGMENTATION: A PATTERN RECOGNITION

APPROACH

The menisci of the knee has crescent shape which support and protect every

healthy knee by minimizing contact stress within the tibiofemoral joint. Fig. 1.3

shows anatomic structure of meniscus. In OAI sagittal DESS MR WE images, it

usually appears as dark regions between adjacent bright femoral and tibial cartilage

(see Fig. 2.2.)

Many studies showed the association of meniscal pathology changes with cartilage

loss in symptomatic knee osteoarthritis [1,2,16,47], which has raised questions about

meniscus segmentation. After comparison between specimen’s meniscal volume mea-

sured in 3T MR images with those measured by water displacement, Bowers et al.

indicated that 3D MR image is reliable for meniscal volume measurement [3].

Some fully- or semi-automated meniscal region segmentation approaches were re-

ported. Out of them, some approaches were served as the first step to detect meniscal

tears. For example, Köse et al. used a histogram-based method with edge detection

filtering and statistical segmentation-based methods to locate the menisci at the knee

joint in 2D MR images. After that, the menisci were extracted by a template matching

technique [56]. Hata et al. registered T1-weighted and T2-weighted images manually,

then determined meniscal region by fuzzy if-then rules in three 3D MR datasets [44].

Ramakrishna et al. extracted meniscal region by a 3-step process: cropping, thresh-

olding and application of morphology constraints [78]. When evaluated for the 2D

sagittal T1-weighted MR imaging sequences of the knee in 28 patients with diagnoses

of meniscal tears, their automated meniscal tears CAD (Computer Aided Diagnosis)

system showed promising result. However, the above works, in somehow, treated

menisci segmentation as a pre-segmentation step for meniscal tear detection. A quite

accurate estimation of meniscal region is usually not required; thus no detailed menis-

cal volume measurement was provided.
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There were several works concentrating on meniscal volume assessment. Tamez-

Pena et al. segmented femur, tibia and menisci using a region growing algorithm

followed by region splitting and region merging rules [89]. Swanson et al. developed

a semi-automated meniscal segmentation approach. In their approach, a Gaussian

model was fitted according to manually selected meniscal seeds. Then the menis-

cal segmentation was performed using thresholding approach based on the Gaussian

model. The segmentation results were further processed by conditional dilation and

post-processing operations to increase accuracy [87]. The total segmentation time

including user interaction is 2 to 4 mins for each of 3D volumes. Fripp et al. first

found meniscus VOI from femoral and tibial cartilage surface segmentation results.

Then, they estimated intensity distributions of meniscus and ligaments-synovial to

form a Gaussian Mixture Model (GMM). After that, lateral and medial meniscal

shape models were fitted to the image and the model-based segmentation process

were implemented iteratively based on the estimated GMM. Their method got good

DSC using 14 fat suppressed SPGR MR images [30].

9.1 Meniscus Segmentation Method

Although using shape models can easily incorporate shape information, the narrow

sheet character of menisci may be sensitive to positioning errors from automated

model localization. This would decrease robustness of the system. Furthermore,

GMM seems not sufficient to capture all the texture and position information for

menisci segmentation. In favor of our cartilage segmentation work, we decided to use

pattern recognition technique to find meniscal region in a local and narrow rectangular

meniscus VOI. The detailed processes are as follows:

9.1.1 VOI detection

We only detect possible meniscal region within 14 mm away from both segmented

femoral and tibial cartilages. The candidate locations were restricted in a narrow
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bounding box VOI as shown in Fig. 9.1.

Figure 9.1: Volumetric region (in orange) of possible meniscal occurrence

9.1.2 Feature collection

The feature set included intensities and gradients from images smoothed by dif-

ferent Gaussian filters as local texture features. Principal components and blob-,

line- and plate-like features were also included as local shape features. Finally, local

physical positions, distance to the reference femoral and tibial cartilage surfaces were

added global shape features were added as global shape features. These features have

been illustrated in Chapter 7.

9.1.3 Classifier training

Again, Random Forest classifier described in Chapter 7 is also suitable for menis-

cus segmentation task. Instead of output probability, the trained classifier directly

outputs classification result.
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9.2 Experimental Method & Results

The meniscus volumns for all the nine images in TRAIN-2 set (Section 8.2.2) were

manually labeled. We collected training samples from these images. In leave-one-out

test, these manually labeled volumns are also independent standard. Furthermore,

in the TEST set, meniscal boundaries for all the 60 images were traced by three

observers. The detailed description of the datasets with independent standard can

be found in Section 8.2.2. We used the same methods as described in Section 8.2.4

to assess DSC from TRAIN-2 set and signed and unsigned surface positioning errors

from TEST set.

A typical meniscus segmentation result is shown in Fig. 9.2. Tab. 9.1 shows

leave-one-out measurement from TRAIN-2 (Section 8.2.2). The detailed assessment

for each dataset is shown in Fig. 9.3. Tab. 9.2 shows signed and unsigned surface

positioning errors from TEST (Section 8.2.2) with details in Fig. 9.4.

(a) (b)

Figure 9.2: 3D meniscus segmentation result. (a) Sample slice from a 3D segmentation
result. (b) The segmentation result shown in 3D.
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Figure 9.3: Charts for individual meniscus volume measurements



89

Figure 9.4: Charts for individual meniscus surface positioning error measurements
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Table 9.1: Volume measurement in comparison with
the independent standard.

DSC Sensitivity Specificity
Meniscus 0.80 ± 0.04 0.79 ± 0.06 1.00 ± 0.00

Table 9.2: Mean signed and unsigned error of computer segmen-
tation in comparison with the independent standard in mm.

ERRORS (mm) Signed Positioning Unsigned Positioning
Meniscus 0.65 ± 0.20 0.68 ± 0.20

9.3 Chapter Summary

Based on the fully automated cartilage segmentation results, we designed a pattern

recognition technique based automated segmentation system for meniscus segmenta-

tion. In this work, we narrowed menisci searching range into a narrow bounding box

VOI. Within the VOI, we selected a set of useful features and used them to train

a Random Forest classifier. The output of this meniscus segmentation system was

provided directly from the classifier.

The average time to segment one 3D meniscus volume in a 3D sagittal DESS MR

image is about 1.5 mins. When tested in the TRAIN-2 set (which contains four images

from incident cohort, and five images from progressive cohort in OAI) by leave-one-out

strategy, our system outperformed other previously reported segmentation systems

in DSC. For example, Tamez-Pena’s approach got overlaps 53.73% and 59.1% for

lateral and medial menisci respectively [89]. Swanson’s semi-automated segmentation

system resulted DSC 0.8 for 10 normal participants and 0.64 to 0.75 for 14 participants

with established knee OA [87]. The images in his experiment were also from OAI.
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Fripp’s shape model based automated segmentation system reported DSC 0.75 and

0.77 for medial and lateral menisci respectively based on 14 healthy knee SPGR MR

images [30].

The meniscus segmentation performance is highly related to the accuracy of carti-

lage segmentation result. Under-segmented cartilage surfaces may cause the meniscus

classifier classify part of cartilage as menisci thus increasing false positive rate and

over-segmented cartilage may reduce the possible meniscal occurrence region thus

increasing false negative rate. An example of such error is shown in Section 10.2.
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CHAPTER 10

CONCLUSION, ERROR ANALYSIS AND FUTURE WORK

10.1 Conclusion

The proposed aims of our research in Chapter 3 were fulfilled.

For aim 1: We reported a general multi-object multi-surface segmentation ap-

proach for optimally segmenting multiple surfaces that mutually interact within in-

dividual objects or between objects. The problem is modeled by a complex multi-

layered graph in which solution-related costs are associated with individual graph

nodes. Intra-surface, inter-surface, and inter-object relationships are represented by

context-specific graph arcs. This method is called LOGISMOS–Layered Optimal

Graph Image Segmentation of Multiple Objects and Surfaces and it includes four

steps: (1) Object pre-segmentation (2) Construction of object-specific graphs (3)

Incorporation of multi-object interactions and (4) Assignment of cost function and

optimization of the graph.

For aim 2: Following the general outline of our LOGISMOS approach, a method

for simultaneous segmentation of cartilages in the femur, tibia, and patella bones

forming the knee joint is reported. Specifically, we extended Viola and Jones well-

known face recognition work to 3D to detect VOI for each bone. Then single surface

detection graphs were built and implemented iteratively yielding bone pre-segmentation

surfaces. Based on the surfaces, we built multi-surface sub-graphs by incorporating

bone-cartilage correlation relationship. The multi-object interaction information be-

tween adjacent surfaces were provided by constraint-point surface mapping technique.

The information was incorporated into a global graph by connecting individual sub-

graphs. The graph costs were designed by inverted probabilities provided by classi-

fiers trained from a training dataset, and the graph optimization process segmented

all six surfaces (femoral bone, femoral cartilage, tibial bone, tibial cartilage, patellar

bone and patellar cartilage) simultaneously and global optimally. The experiment
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and results showed that this fully-automated cartilage system was fast, robust and

accurate.

For aim 3: Based on the cartilage segmentation, a pattern recognition based

meniscus segmentation system was designed. The validation results also proved good

performances of this system.

For aim 4: We assessed our bone-cartilage as well as meniscus segmentation sys-

tems by DSC and surface positioning errors from nine and 60 MR images from OAI

dataset respectively. The reported measurement demonstrated very good perfor-

mance of these two systems.

As a non-trivial extension of the previously reported method for optimal segmen-

tation of multiple interacting surfaces [62], the following specific contributions were

made beside the ones illustrated above.

Inter-object graph arcs were introduced for the first time to incorporate mutual in-

teracting relationship between multiple objects by constraining the distances between

them.

In order to avoid graph column intersection problem and find corresponding graph

column pairs in the interacting regions between mutually interacted objects, we intro-

duced a new search direction definition along ELF directions. The proposed search

direction has non-intersection property and it can generate a robust one-to-one and

all-to-all vertex pair mapping at interacting regions between objects when applied

into a constraint-point cross-object surface mapping technique.

Due to the flexibility of cost design, pattern recognition technique was directly

embedded into a graph-search based optimal surface detection framework to perform

globally optimal surface and region detection under a priori shape constrain. A set

of problem-specific features were collected for bone surface segmentation, cartilage

region delineation and meniscus volume detection.

Comparing the cartilage segmentation performance presented in our SPIE pa-
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per [101] and also showed in my proposal one year ago, we achieved similar mean

errors but greatly decreased standard deviation (from 0.6 to 0.2 mm). Note that

the independent standard used in SPIE and proposal only covered central cartilage

regions which as shown in Fig. 8.15 has much smaller errors compared with an overall

cartilage region measurement. Furthermore, the previous approach is semi-automated

which requires users to select VOIs, while the approach presented here is fully auto-

mated. We also substantially increased the independent standard from 160 slices to

about 4000 slices and adopted more robust pattern recognition technique based graph

cost compared with simple Gaussian model based cost. Considering all of the above,

we believe the approach presented here is more automated, robust and accurate than

the one invented one year before.

10.2 Analysis of Segmentation Error

As stated before, our segmentation systems are not free of limitations. Here we

will show some segmentation errors in slices. The MR images used here were picked

from TEST dataset (Section 8.2.2) according to the individual error measurement

results (Fig. 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 and 9.4 ).

Slices in Fig. 10.1 are from image No.43 in TEST dataset. From Fig. 8.5 and

8.7 we can see the segmentation errors for this MR image for femoral and tibial

cartilage surfaces are relatively larger than most others. This is because the patient

has much thicker cartilage at some locations (as the femoral cartilage in Fig. 10.1a

and tibial cartilage in Fig. 10.1b). These thickness variations were not captured by

cartilage classifiers from the TRAIN-2 (Section 8.2.2) dataset. Including more MR

images with different cartilage thickness in training dataset can help to overcome

this problem. Furthermore, we may notice that the image quality can also affect

the segmentation performance as the dark region in femoral cartilage in Fig. 10.1a

resulted under-segmentation in Fig. 10.1c.

Slices in Fig. 10.2 are from image No.44 in TEST dataset. We see that the Ad-
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(a) (b)

(c) (d)

Figure 10.1: Segmentatation error generated from No.43 in TEST dataset. (a,b) Orig-
inal images. (c,d) The same slice with bone/cartilage segmentation.
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aboost cartilage/non-cartilage region classifers may generate some errors which caused

over-segmentation of some synovial fluid and under-segmentation of the cartilage in

the other side as in Fig. 10.2c. Some prior knowledge of the cartilage location may

be helpful for solving this problem. Fig. 10.2d shows the inaccuracies of the tibial

pre-segmented bone surface led to part of the tibial cartilage not segmented.

(a) (b)

(c) (d)

Figure 10.2: Segmentatation error generated from No.44 in TEST dataset. (a,b) Orig-
inal images. (c,d) The same slice with bone/cartilage segmentation.
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The major error for meniscus segmentation is from lateral boundary slices as

shown in Fig. 10.3. The image is from the MR volume No. 48 in TEST dataset

which has the largest surface positioning error. The causes of under-segmentation of

menisci as shown in Fig. 10.3c is partly from the inaccurate cartilage segmentation

as in Fig. 10.3b and varied intensity distributions of menisci in MR images.

(a) (b) (c)

Figure 10.3: Segmentatation error generated from No.48 in TEST dataset. (a) Orig-
inal images. (b) Cartilage segmentation result at lateral part with some error.
(c) Meniscus segmentation result.

Regarding to some of the errors shown in this section, we will propose solutions

to reduce them in the next section.

10.3 Future Work

Although overall quite successful, the system design and validation methods may

still have some room for meaningful improvement.

For example, a weak classifier cascade strategy [90] in AdaBoost can efficiently

reject a vast number of background samples using a small number of weak classifiers.

That will increase the speed of our system in bone VOI location and cartilage/non-

cartilage region detection steps.

We believe more training datasets can substantially further increase the segmen-

tation performance. A validation result based on more independent standard released
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by OAI would be more convincing. Moreover, providing measurement on different

pre-defined cartilage regions [19] would provide useful information for radiologists.

The region definition process can be automated [88]. Dividing test samples according

to different OA symptoms are also desired. OAI dataset provides such evaluation

into Incidence and Progression cohorts. More detailed analysis may be helpful (e.g.

WORMS scoring [72], joint space narrowing [47], K-L grade [51]). Furthermore, build-

ing a segmentation system which can perform reliable progressive study (baseline v.s.

n-year follow up) of OA in OAI might provide another interesting research tool for

orthopedists [21,46,94].

Pattern recognition based meniscus segmentation may generate “small islands”

false positives. If needed, a post-processing step will be helpful to remove these

“islands”. The post-processing may be as simple as a binary morphology operation

(e.g. opening). A more reliable approach is by building Markov Random Field [52]

or Conditional Random Field [58] based on the probability of each voxel provided by

the Random Forest classifier and finding the global minimum energy solution using a

graph cut segmentation approach [5, 54].

For large previously unseen dataset segmentation, the major errors of the cartilage

segmentation system usually come from the inaccurate locating of VOIs, inaccurate

detecting of bone pre-segmentation and inaccurate final bone-cartilage segmentation.

The inaccurate VOI locating usually incurs low matching probabilities from AdaBoost

VOI detection classifiers. An early warning procedure can be build regarding to the

low matching probabilities, so that the user can manually correct the VOIs before

the segmentation process. For the local errors produced in pre-segmentation or final

segmentation, the local properties on the surface can be compared with the local

properties around the surface. If cartilage properties are not presented on the surface

but a distance away from the surface, the system can provide a local warning on the

surface (e.g. mark the result surface into different colors). Currently there is no mesh
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editting function in the system, but it is important to let user modify local errors

after inspection.
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