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ABSTRACT 

Image segmentation is an important task in computer vision and understanding.  

Graph Cuts have been shown to be useful in image segmentation problems.  Using a criterion 

for segmentation optimality, they can obtain segmentation without relying heavily on a priori 

information regarding the specific type of object.  Discussed here are a few approximations 

to the Normalized Cut criterion, the solving of which has been shown to be an NP-hard 

problem.  Two Normalized Cut algorithms have been previously proposed, and a third is 

proposed here which accomplishes approximation by a similar method as one of the previous 

algorithms.  It is also more efficient than either of the previously proposed Normalized Cut 

approximations. 
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CHAPTER I: INTRODUCTION  
 

Image segmentation is, simply put, the process of finding objects in pictures.  

Image segmentation tasks can range from being as straightforward as drawing an outline 

around a car in a traffic camera photograph, or can be as complex as deriving a three 

dimensional (3D) model of a liver from a computed tomography (CT) scan. While the 

human vision process functions in such a way as to make it relatively easy to decipher the 

existence of objects and information regarding these objects from the field of perception, 

there is a desire to have computers reach similar levels of visual understanding.   

Human segmentation of images is slow and lacks robustness.  Even though 

human vision can understand images quickly, the process of actually delineating the 

borders of an object by hand is arduous.  Computational techniques for computer vision 

suffer from the opposite problem, however.  Given an algorithm for image segmentation, 

a computer can always reproduce its own segmentation.  Such automated, or semi-

automated as the case may be, analysis of images is done within the computational 

framework, and creates robustness by calculating a segmentation based off of measurable 

properties of a given image.  When it comes to object recognition, not simply delineation 

of a possible object, computational methods do not always achieve the desired results, as 

identifying objects from measureable features can be difficult.  The human identification 

of images can be seen as being linked to a hierarchical interpretation of the received 

visual data [1]. This hierarchy leads to an interpretation of minute details within the 

context of these details as members of a larger whole.  For example, a chair behind a desk 

can be recognized as such by a human easily, knowledge of the context and meaning of 

visual information enables the object recognition.  In seeking to do this, algorithms can 

be developed in a few ways.   

 The goal of image segmentation is to bring understanding to bear in the 

computational context.  Some methods seek to give the computer large amounts of a 
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priori knowledge regarding its assigned task.  Many anatomical image segmentation 

methods use techniques in this category.  For example, determining liver boundaries by 

taking a pre-existing liver model and manipulating it to fit actual patient data.  Such 

algorithms are generally preferred when available, because using this knowledge for 

certain types of images, the robustness of computer vision can be combined with the 

understanding of human vision.  This is particularly beneficial in computer vision 

applications which search for segmentations of well understood objects [2].  

 Other methods, such as the ones to be discussed here, use very little or no a priori 

knowledge of the given segmentation problem.  These algorithms seek to obtain the 

solution to the segmentation problem with as little human interaction as possible.  In the 

case of the algorithms presented here, the need for previous knowledge of a specific 

subset of object types within certain imaging applications is attempted to be replaced 

with computational definitions of an object.  Thus the method can seek to find a 

numerically defined optimal solution for object segmentation.  This type of segmentation 

can be particularly useful when the desired object is ill defined, or varies from image to 

image.  In the case of tumor segmentation in CT data, tumors rarely appear in the same 

shape in two separate patients.  It is vital that a valid segmentation can be obtained for the 

purposes of treatment planning.  A computational technique, which could provide a 

decent segmentation in such situations, would be desirable.   

 The algorithms presented here are within a subset of image processing algorithms 

called "graph-cut" algorithms.  Given a network of weighted edges and connecting nodes, 

a graph cut is seen as being division in the graph between two regions, where the capacity 

of the cut is given by the sum of edges intersected by the cut.  The most widely used 

graph-cut algorithms are for deriving the "minimum-cut."  Minimum-cut (also known as 

maximum flow) algorithms find the smallest capacity cut that divides the entire graph in 

two regions.  In order to use graph cuts in image segmentation, images must be 

transformed into graphs.  This is done by choosing the pixels, or voxels in 3D, as nodes, 
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and connecting these nodes with edges.  The capacity of the edges is derived from the 

similarity between nodes.  While solving the minimum-cut problem can in many 

situations produce segmentations of high quality, it will also frequently delineate regions 

of the input image too small for practical use [3,4].  One proposed modification of the 

minimum-cut problem to resolve this difficulty is called "Normalized Cut."  A 

normalized cut is one that seeks to create a cut, which divides the input graph into 

"object-like" regions.  Such a cut minimizes the capacity across the cut, while 

maximizing the capacity within the regions created by the cut.   

Within the proposal by Shi and Malik, solving the normalized cut criterion was 

found to be an NP-hard problem [4].  Therefore, if this criterion is to be used, it is 

necessary to use approximations to the Normalized Cut rather than Normalized Cut itself.  

Otherwise, a given solution algorithm would not be efficient enough to merit its use.  

Thus far, there have been two proposed approximations of the Normalized Cut criterion.  

One has simply been called Normalized Cut, and the other has been referred to as 

Normalized Cut'.  The Normalized Cut algorithm finds an approximation of the entire 

Normalized Cut criterion through the use of eigenvalues of a similarity matrix.  The 

Normalized Cut’ algorithm finds an approximation of the Normalized Cut by minimizing 

only one piece of the Normalized Cut equation.  Here a third approximation is proposed; 

it operates in much the same way as the previous Normalized Cut’ algorithm, in that it 

seeks to minimize one term of the Normalized Cut criterion. 

In [5], Normalized Cut and Normalized Cut’ were compared upon the objective 

standard of having the closest value to the "optimal" when the results were used to 

calculate the normalized cut criterion.  Even though Normalized Cut approximates the 

entire normalized cut criterion and Normalized Cut’ solves for a variant of the criterion, it 

was found that Normalized Cut’ actually arrived at a better result of the normalized cut 

objective. The Normalized Cut algorithm has been evaluated as part of a study in creating 

an image segmentation benchmark.  This study sought to use a large database of images 
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with reasonably clear segmentations as a benchmark of quality in segmentation.  This 

paper seeks to use this segmentation benchmark to evaluate both Normalized Cut and 

Normalized Cut’ over graphs with varying input parameters.  In addition, the analysis has 

been extended to incorporate some precautions taken to insure that the algorithms are run 

on an even playing field, being given the same input graphs and same platform.  The 

proposal and analysis of the new Normalized Cut’ algorithm focuses primarily on run-

time.  Theoretically, it should provide a similar segmentation as the previous Normalized 

Cut’ algorithm. 

Thus far, the first two of these algorithms have been individually evaluated and 

analyzed comparatively.  All of the algorithms here have been found to be of less 

complexity than the Normalized Cut problem itself.  Also, a modified Normalized Cut’ 

algorithm for approximating a Normalized Cut efficiently is proposed here first.  An in 

depth study of these algorithms side by side has not as of yet been accomplished.  Such a 

study would include an analysis of their theoretical advantages and disadvantages as well 

as their effectiveness and efficiency in computing image segmentations.  This thesis has 

sought to accomplish this study and present the results.  
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CHAPTER II: METHODS 
 

For this study, the Normalized Cut and two methods for Normalized Cut’ were 

used. 

Graph Cuts 

A Normalized Cut is an extension of using graph partitioning for the purposes of 

segmentation, or grouping [4].  Graph partitioning can be done by grouping a graph 

G(V,E) into two disjoint sets of vertices.  The grouping is based upon the dissimilarity 

between the two pieces.  This dissimilarity is quantified by a graph cut, 

 
(1)   

!"# !,! =    ! !, ! ,
!∈!,!∈!

 

where S and T are the two regions of the cut, i and j are nodes in the graph 

belonging to S and T respectively, and w is the capacity, or weight, given to an edge.  The 

cut measure then, is the sum of capacities between the two regions under consideration.  

Under only the minimum cut measure, the optimal partitioning of the graph minimizes 

this cut across the whole graph.  Such a cut maximizes the dissimilarity between the 

partitions.  Minimum cuts are used in a variety of applications, and its algorithmic 

solution and efficient implementation have been found and researched thoroughly.  The 

segmentations based off of this approach can be quite good, especially when used with an 

additional optimality criterion.  However, the results of these cuts are generally highly 

dependent on the chosen energy functions.  The energy function being the measure of 

similarity, or dissimilarity, between any given pair of vertices (the E in G(V,E)).  The 

other limitation of this minimum cut criterion is that it tends to find small regions [3,4].  
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The reason for this being that having a strictly minimum cut tends to minimize the 

number of edges across the cut as well. 

Normalized Cut 

Normalized cut was proposed to deal with this limitation of minimum cut. 

As shown in equation (1) [4], 
 

(2)   

!"#$ !,! =   
!"# !,!
!""#$ !,! +   

!"# !,!
!""#$ !,!  

where Ncut(S,T) is the measure of normalized cut between the regions S and T, and 

cut(S,T) is the value of (1) for the two regions S and T, and assoc(S,V) for a subset of 

nodes S and all nodes in the graph V, is defined as, 

(3)   

!""#$ !,! =    !(!, !)
!∈!,!∈!

. 

The goal, is then to minimize not simply the cut(S,T), but to minimize the Ncut(S,T).  

Minimizing the Ncut measure leads to a cut with similarity across a cut minimized, while 

in conjunction maximizing the similarity within the regions on either side of the cut, thus 

encouraging larger cuts [4].  As solving for this directly is an NP-hard problem [4], it is 

necessary to approximate the criterion if it is to be used reasonably.  Shi and Malik 

derived a method using the eigenvectors of the similarity matrix to approximate the 

Normalized Cut.  For the purposes here, the entire derivation will not be recreated, but 

some highlights will be noted to provide context.   

A generalized eigenvalue system, the second smallest eigenvector of which is 

then a real-valued solution to the Normalized Cut approximation problem, can be 
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constructed from the nodes and edges in the graph.  This eigenvalue system is 

represented as, 

(4) 

    ! −! ! = λ!!. 

! is the eigenvalues of the system.  Let N equal the total number of vertices in the graph.  

W is the similarity matrix of the graph; it is a symmetrical N x N matrix where W(i,j) = 

wij. 

(4) also requires the definition of some associated vectors, x and d.  The x vector 

is N dimensional, where 
!! = 1, ! ∈ !
!! =   −1, ! ∉ ! .  

The d vector is also an N dimensional vector.  It is defined such that 

!! = !!"
!

.  

It is the sum of all the connections between the node i and the rest of the graph.  D is an N 

x N diagonal matrix with D(i,i) = di.  That is, d corresponds to the diagonal of D.   

! = 1+ ! − ! 1− ! . 

Where ! = !
!!!

, and ! =
!!!!!!

!!!
 [4].  With this generalized eigenvalue system, Shi and 

Malik [4] derive that the solution to the normalized cut approximation problem is the 

second smallest eigenvector of this system.  The Normalized Cut algorithm then consists 

of four steps [4].   

1. Create a graph G(V,E) from the input image using the similarity information 

from the image to derive the capacity between adjacent nodes. 

2. Solve the system in (4) for its eigenvalues and eigenvectors 

3. Use the second smallest eigenvector to obtain a bipartition of the graph. 
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4. Recursively call steps 1-3 on the partitions if further segmentation is desired. 

The run-time of the Normalized Cut algorithm is largely dependent on the 

computation time of finding the eigenvectors for the similarity matrix.  For a general 

eigenvalue problem, solving for all eigenvectors runs in O(n3) time, where n is the 

number of pixels in the image (nodes in the graph).  However, in practical image 

segmentation problems, similarity matrices are fairly sparse.  For eigenvalue solvers 

taking advantage of this sparsity, this run-time can be greatly improved in the application 

of this algorithm [4]. 

Normalized Cut’ 

The Normalized Cut’ variant of the Normalized Cut criterion seeks to minimize a 

single term Normalized Cut equation.  The original Normalized Cut criterion requires the 

minimization of the sum of two ratios.  In the following algorithms, it is noted that the 

minimization of either term in the equation can lead to an approximation of the entire 

criterion [5].  A single term being, 

 
!"# !,!
!""#$ !,! . 

Two algorithms for accomplishing a Normalized Cut’ on an image are presented here. 

Hochbaum’s Approach 

Hochbaum’s algorithm for minimizing the Normalized Cut’ adapts the parametric 

maximum flow (minimum cut) problem [7, 8]. It uses a variant proposed by Sharon, et al, 

which when minimized also minimizes a single term of Ncut (2) [1].  This variant is the 

one referred to as Normalized Cut’, 

(5) 
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!"#!!(!,!) =   
!"# !,!
!""#$ !, ! . 

Note that this is not actually the same as either term in Ncut (2); however, the proof is as 

follows, 

!"#!!(!,!) =   
!"# !,!

!""#$ !,! − !"#(!,!) 

 

=   
1

!""#$(!,!)
!"#(!,!) − 1

. 

Minimizing Ncut’, then, requires !""#$(!,!)
!"#(!,!)

 to be maximized.  Maximizing the ratio will 

also minimize its reciprocal, !"#(!,!)
!""#$(!,!)

, which is a single term of Ncut. 

Therefore, use of the Normalized Cut’ criterion requires that the Ncut’ value be 

minimized over the given weighted graph.  Such a minimization problem can be rewritten 

as a series of calls to answer a yes or no ! − !"#$%&'( [7].  This question for the Ncut’ 

problem is, 

Does there exist a subset !! ⊂ !, such  that  !"# !,! −   ! ∗ !""#$ !, ! < 0?  

Then an algorithm can search for a suitable !.  A “yes” answer implies that the optimal ! 

value is less than the current !.  A “no” answer implies that the optimal value is either 

equal to or greater than the current !.  This series of calls is then terminated with an 

optimal solution when the resulting value of the ! − !"#$%&'( is equal to zero.  This 

could be solved iteratively using a binary search method.  The method presented here, 

however uses a parametric procedure. 

A more explicit version of the ! − !"#$%&'( for Ncut’ can be written as, 
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!!"
!,!∈!

!!" − !!!"
!,!∈!

!!" < 0, 

where zij=1 if ! ∈ ! and ! ∉ !, and yij=1 if ! ∈ ! and ! ∈ !.  In this formation, the Ncut’ 

problem can be solved through the use of a minimum cut on a modified graph.   

A general graph G can be constructed from an image I.  First, the image, I is 

modeled as a matrix, in our case of two dimensions, I(x,y); each position in this matrix is 

taken to be a vertex in the graph.  Then, a neighborhood, N, must be used during the 

instantiation of the adjacencies.  Generally, a neighborhood is taken as being all of the 

pixels within a Euclidean distance less than a radius, r, to a given center pixel of the 

neighborhood.  All vertices related by the neighborhood are considered to be adjacent in 

the resulting graph.  A directed edge is connected from the center vertex of the 

neighborhood to all adjacent vertices.  Each edge has a capacity related to the similarity 

between the two vertices.  This similarity can be measured using the intensity information 

given in the image.  The costs used were the same as in [4]. 

Using the gadget in Figure 1, a graph G’ is constructed based on G.  G’ has the 

nodes, V’, and edges, E’.  From a directed graph G, additional nodes and edges are added 

as in the gadget.  A single node is added for every adjacency wij.  This node, yij, is 

connected to nodes i and j by edges of infinite capacity.  The additional node is then 

connected the source with an edge of capacity, !!!
!!.  Source seeds are created by 

sinking edges with the source through the use of an infinite capacity edge between the 

source and corresponding added node, !!".  Sink seeds are added by sinking desired 

original graph nodes with the sink with and edge of infinite capacity.  A sample 

transformation from a sample G to a G’ graph is shown in Figure 2. 
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A bipartition of this graph corresponds to a feasible solution of the ! − !"#$%&'( 

for Ncut’ [7].  This can be proved through a look at the capacity of a cut in such a graph 

G’ (Figure 2).  Since it is noted that when the edge wij is included in T’, T’ must also 

include the node yij.  A graph like G’ leads to a cut with capacity defined by cut(S’,T’). 

!"# !′,!′ = !!!
!" + !!"

!∈!!∩!!,!∈!!∩!!!!"∈!!∩!!

, 

which can be altered by observing that the complement of the first term is the summation 

of edges in S’ connecting the source to the graph. 

!"#(!′,!′) =    !!′! − !!′!" +
!!"∈!!∩!!

!!"
!∈!!∩!!,!∈!!∩!!!∈!!

 

This is the same as a constant, !!!, where W’ is equivalent to the sum of edges 

connecting the source to the graph and the value of a feasible solution to the ! −

!"#$%&'(, 

!"#(!′,!′) = !!! +    [ !!" − !!!
!"]

!!"∈!!∩!!!∈!!∩!!,!∈!!∩!!

. 

In terms of the original graph G, this is the same as 

!"#(!′,!′) = !!! +    [!"# !,! − ! ∗ !""#$ !, ! ]. 

As the parameter, !, increases, the capacity of source-adjacent arcs increase 

monotonically.  The change of this parameter causes breakpoints in the graph to occur, 

where a breakpoint is the value at which the source set is changed by even one node due 

to this input capacity change.  Thus, each breakpoint corresponds to a possible solution, 

and these are nested source sets.  Letting the breakpoint values equal !! < !! < ⋯ < !! 

and the corresponding source sets, !! ⊂ !! ⊂ ⋯ ⊂ !! .  These !  and source set values 

are then used to compute the series of calls to the ! − !"#$%&'(  and  also  minimize  (5).  
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The values are searched for the first ! value, which provides a yes answer to the 

! − !"#$%&'(, the corresponding source set and complement of that source set are 

returned as the bipartition of the graph. 

A parametric maximum flow algorithm is used to find all of the breakpoints in a 

graph and thus possible solutions.  Hochbaum used the pseudoflow algorithm to solve the 

parametric maximum flow problem [14].  In order to further test the algorithm, the 

parametric maximum flow formulation was used here [8,13].  The algorithm results in a 

number of possible segmentations corresponding to the breakpoints in the input graph.  

These possible solutions are used as the possible bipartitions and the breakpoints as 

values for !.  Hochbaum’s Normalized Cut’ algorithm consists of 4 steps. 

1. Create a graph G(V,E) from the input image using similarity information. 

2. Create the modified graph G’(V’,E’) by identifying source and sink seeds, 

and adding the edges and nodes as specified by the gadget in Figure 1. 

3. Run a parametric maximum flow/minimum cut solver on the graph G’. 

4. Search the breakpoints for the first ! value that gives a yes answer to the 

! − !"#$%&'( for Ncut’ and return the corresponding minimal source set 

as the bipartition of G, transforming G back into an image for further use.   

The run-time of this algorithm is highly dependent on the parametric maximal 

flow problem, which, depending on the maximal flow algorithm used, has a 

O(nmlog(n2/m)) bound, where n is the number of nodes in the graph, and m is the number 

of adjacencies in the graph.  With the addition of the gadget in Figure 1, it can be seen 

that the number of nodes in the G’ used for Ncut’ is m’=n+m, or O(m).  Since the number 
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of adjacencies is only multiplied by a constant factor, it remains O(m).  Therefore, the 

runtime on a general graph is O(m2log(m)). 

The Proposed Approach 

A novel algorithm proposed here approximates the Normalized Cut criterion via 

the Normalized Cut’ variant.  This algorithm is a modification of Hochbaum’s 

Normalized Cut’ algorithm, eliminating the need for additional nodes and edges required 

by the G’ graph and gadget.  However, knowledge of the source to graph weights from 

Normalized Cut’ is used to assign source adjacent edges intelligently.  This alters the 

objective function, though when it is minimized, is equivalent to the Normalized Cut’.  

The objective function for this formulation is 

(6) 

  
!"# !,!

!""#$ !, ! + 12 !"#(!,!)
. 

It can be shown that minimizing this is accomplishes the same task as minimizing Ncut’; 

that is, when minimized, it also minimizes a single term of Ncut (2). 

=   
!"# !,!

!""#$ !,! − !"# !,! + 12 !"#(!,!)
 

=   
!"# !,!

!""#$ !,! − 12 !"#(!,!)
 

=   
1

!!!"#(!,!)
!"#(!,!) − 12

. 

This demonstrates that a minimization of this new formulation also leads to the 

maximization of a reciprocal of a single term of Ncut, !""#$ !,!
!"# !,!

, which therefore also 
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minimizes a single term of Ncut.  Again, the minimization of a ratio can be written to a 

series of calls to a ! − !"#$%&'(. 

 Does there exist a subset !!! ⊂ !, such  that   

!"# !,! −   ! ∗ [!""#$ !, ! +
1
2 !"# !,! ] < 0? 

This can be more explicitly be written with the edge weights as 

!!"
!∈!,!∈!

− ![ !!" +
1
2!!"

!∈!,!∈!

]
!,!∈!

< 0. 

The reasoning behind the modification is that for a graph G’ as in Figure 2, created from 

a graph G with the gadget (Figure 1) proposed in Hochbaum’s algorithm adds a large 

number of nodes and edges to compute the desired criterion.  This of course increases 

run-time and complexity of the parametric maximal flow problem in need of being 

solved.   

Again starting with an arbitrary graph G constructed in the same method as 

discussed in the Hochbaum approach, a graph G’’ with nodes, V’’, and edges, E’’, can be 

constructed.  The set of nodes is not altered in this process, however, edges from the 

source to each node, i, are added, letting each edge w’i in G’’ be equivalent to !
!
!′!"!∈!  

where N is the neighborhood of i. A sample G’’ constructed from a sample G is shown in 

Figure 4.  This can also be seen as a reduction of a graph like G’ (Figure 2) to be G’’ 

(Figure 4), when the gadget in Figure 1 is altered to be Figure 3.  

It is evident that the parametric maximal flow algorithm would run more 

efficiently on G’’, it is not necessarily intuitive that this reduction still leads to the desired 

minimization of the single term of Ncut, as it is also clear that certain observations which 

lead to the ! − !"#$%&'( for Hochbaum’s approach being computed do not hold in G’’.  
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Specifically that in G’, if an edge wij is included in the cut, its corresponding edge w’ij is 

not included, with the graph G’’ there is no such guarantee.  In fact, using the definition 

of w’i used here, that information is assuredly part of the cut value.  However, it can be 

shown that by using this modification of Ncut’, the criterion is minimized and therefore 

accomplishes the same task as Hochbaum’s Normalized Cut’ algorithm with a more 

efficient run-time.  A graph like G’’ leads to a cut with capacity defined by cut(S’’,T’’). 

!"# !′′,!′′ = !!!
! + !!"

!∈!!!,!∈!!!!∈!!!

. 

Using the definition of w’i this can be rewritten as, 

!"# !′′,!′′ = !!′!" +
!
!
!′!"

!∈!!!,!∈!!!

+ !!"
!∈!!!,!∈!!!!,!∈!!!

 

Then through some similar observations as in the previous proof, and allowing w’ij= wij 

!"# !′′,!′′ = !!!" +
!
2!!"

!∈!!!,!∈!!!

+ !!"
!∈!!!,!∈!!!!,!∈!!!

 

= !!!"
!,!∈!!!

− !!!" − !!!!
!∈!!!,!∈!!!

+
!
2!!"

!∈!!!,!∈!!!

+ !!"
!∈!!!,!∈!!!!,!∈!!!

 

= !!! + !!"
!∈!!!,!∈!!!

− ![ !!" +
1
2!!"

!∈!!!,!∈!!!

]
!,!∈!!!

 

Which is equal to the same constant !!! as in the Normalized Cut’ algorithm added to 

the value of a feasible answer to the ! − !"#$%&'( for this novel approach.  In terms of 

the original graph, 

!"#(!′′,!′′) = !!! +    [!"# !,! − ! ∗ (!""#$ !, ! +
1
2 !"#(!,!)]. 
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Through the same breakpoint searching procedure as in the Normalized Cut’ 

algorithm, the bipartition from the new algorithm is found.  The algorithm consists of 4 

steps. 

1. Create a graph G(V,E) from the input image using similarity information. 

2. Create the modified graph G’’(V’’,E’’) by identifying source and sink 

seeds, and intelligently assigning the source adjacent arcs as in Figure 3. 

3. Run a parametric maximum flow/minimum cut solver on the graph G’’. 

4. Search the breakpoints for the first ! value that gives a yes answer to the 

! − !"#$%&'( and return the corresponding minimal source set as the 

bipartition of G, transforming G back into an image for further use.   

With the elimination of the additional node required by the exact Ncut’ 

formulation of the problem, the run-time is exactly that of a parametric maximal flow 

problem.  Thus, the run-time is O(mnlog(n2/m)), where n is the number of nodes in the 

graph, and m is the number of adjacencies in the graph. 
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CHAPTER III: EXPERIMENTATION 
 

Algorithms were implemented and experiments were run on a Macintosh 

Macbook with a 2.4 GHz Intel Core 2 Duo processor and 4 GB 1067 MHz DDR3 

memory. 

Data 

Most of the data for the experiments performed is the same as in [6].  This is a 

database of 1023 images selected from "real natural images from [the] internet, digital 

photos, and some well known image databases such as Corel" [6].  Each image has the 

ground truth defined for comparison to segmentations.  The images were chosen for the 

clarity of foreground/background relationship, and the ground truth was collaboratively 

defined by a team of computer-science students.  The subjectivity of human segmentation 

of images for the ground truth is then limited by the need for agreement among multiple 

segmenters, and with such a large volume of test data, trends in segmentation quality can 

still be observed, even in the presence of a "human variance" of ground truth quality.  All 

images are fairly small, between the sizes of 80 x 80 and 200 x 200, to facilitate 

reasonable computation time of segmentations of the entire database.  Some additional 

test images of a larger size were fabricated to illustrate the run-time differences amongst 

the algorithms.  Images created had clear foreground and homogeneous background.   

Implementations 

Normalized Cut 

The implementation of the Normalized Cut algorithm used is the version one 

written by Shi and Malik [4].  It is based in the MATLAB platform for easy scripting 

whereas a bulk of the computational work is handled by C implementations through 

MATLABs mexFunction interface for using C programs.   
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Normalized Cut’ 

Hochbaum’s Algorithm 

Hochbaum’s Normalized Cut’ algorithm was implemented for the purposes of this 

comparative study.  Instead of using the pseudoflow algorithm as the basis for the 

implementation, as in [7], the parametric maximal flow algorithm used here was the one 

implemented and used in [8].  This C code was modified to be used in MATLAB using 

the mexFunction interface, as in the Normalized Cut code, so that the algorithms would 

be working on the same platform.   

The Proposed Approach 

The implementation of the novel approach is the same as in Hochbaum’s 

Normalized Cut’, but with the graph modification applied.  The parametric maximal flow 

was used with the mexFunction interface. 

Graph Construction 

In order to ensure a fair comparison, both algorithms need to be run on the same 

input graphs.  For this purpose, graph creation was done separately from the computation 

done by the algorithms.  For 2D image analysis, the graph creation used by Shi and 

Malik's code was mostly adequate.  Their code creates an algorithm based on a given 

radius and sampling rate.  This allowed for graphs using eight-neighborhood, and 

neighborhoods of arbitrary radius greater than two.  The sampling rate helps to cut run-

time, as Shi and Malik noted that the result of the algorithm was largely the same, even 

when a random sampling of edges were deleted from the graph. 

Tests 

A series of tests using the segmentation benchmark data were constructed.  These 

tests can be seen in (Table 1).  The primary parameters changed in the tests were the 

graph related parameters that directly affect both algorithms.  Graph neighborhood size 



19 
 

 
 

was changed and run for both algorithms in the range from 8-Neighborhood to a radius of 

3, with the introduction of sampling as the radius grew larger.  Normalized Cut was run 

alone on some larger graph sizes to see more clearly how graph density affected its 

segmentation quality.  Also, even though Normalized Cut can be recursively called to 

find multiple segmentations, we only call the algorithm once, to find a bi-partition of the 

images.  This is because since Normalized Cut’ finds a foreground and background, in 

order for the comparison to be a fair one, both algorithms need to be searching for the 

same type of segmentation.  

Metrics 

The metric used in the tests run to determine quality of segmentation is known as 

the Jaccard Coefficient [7].  This measure gives no preference to size of output 

segmentation, and simply computes the coinciding of segmentation with the ground truth.  

This is defined as 

(7) 

! !;! =   
! ∩ !
! ∪ ! =   

! ∩ !
! + ! −    ! ∩ !  

(7) computes the area of the intersection between the segmentation region and the 

ground truth divided by the union of the segmentation region and the ground truth.  The 

Jaccard Coefficient is also equivalent to the Dice Coefficient [12], another measure of 

segmentation quality.  The Dice Coefficient is defined as  

 

(8) 

! !;! =   
2 ! ∩ !
! + ! . 

 

The Dice Coefficient can be found from the Jaccard Coefficient as follows, 
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(9) 

! =   
2!
1+ ! 

These coefficients consist of values between zero and one, with a value of one 

being perfect matching between the two regions being compared, and a value of zero 

carrying a meaning that the two regions are disjoint. 

In addition to the ground truth measure using the Jaccard Coefficient, we have 

used the Normalized Cut criterion itself as a measure of quality as well as run-time.   
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CHAPTER IV: RESULTS AND DISCUSSION 

It is noted that the segmentation quality of the novel approach to Normalized Cut’ 

is theoretically very similar to that of Hochbaum’s algorithm, so except for where 

specifically mentioned, its segmentation quality is not discussed here.  It can be assumed 

that otherwise, observations applying to Hochbaum’s Normalized Cut’ algorithm apply to 

the novel approach as well. 

Previous Result 

In Figure 5, the cumulative distribution of segmentation qualities over the 

segmentation benchmark database is shown.  This is the result from [6], for running the 

Normalized Cut algorithm on the image database while only searching for a bi-partition 

of the image.  The average quality found of segmentation using the Jaccard Coefficient 

was 0.3837.   

Validation of Test 

A test was run to recreate the graph from [6].  Figure 6 is the cumulative 

distribution of this test.  The average from this Jaccard Coefficient value from this test 

was 0.3750.  This being similar to the result found in [6], and the plot in Figure 6 

displaying similar properties to those Figure 5, it was determined that the results from 

these two tests show that the implementation of at least Normalized Cut is the same, or 

similar enough and outputs of similar tests were feasible to use in investigating the 

qualities of the two algorithms. 

Quality 

Table 2 shows the average Jaccard Coefficient values from the tests run on the 

segmentation benchmark database.  From the data in Table 2, Normalized Cut’ and 

Normalized Cut give similar quality when run on the same graph.  It would appear that 

relatively, Normalized Cut’ tends to give slightly better segmentations when small 
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neighborhood sizes are used.  Also, the observation from [4] that a graph constructed 

from a random sampling of neighborhood edges as opposed to using the full graph gives 

similar results appears to hold not only for Normalized Cut but also Normalized Cut’.  In 

fact, the results here indicate that Normalized Cut’ segmentation suffers less from this 

information loss than its counterpart.  This result is visualized in Figure 7.  As is noted in 

[6], however, merely looking at average quality does not give the full picture.  A look at 

the cumulative distribution of qualities from the entire dataset can give deeper insight 

into the segmentations provided by these algorithms.  In Figures 8 and 9 are the 

distributions from Normalized Cut and Normalized Cut’ respectively for a graph with a 

neighborhood of size radius 3.  For much of the distribution, it appears as if Normalized 

Cut is performing better than Normalized Cut’, however, the most difference can be seen 

at the right hand side of both distributions.  For the final 10% or so of images, 

Normalized Cut’ has a much higher quality.  So even if the average qualities of each 

algorithm’s segmentations are similar, this indicates that the segmentations themselves 

are rather different.  Due to the nature of the Normalized Cut algorithm, it tends to 

partition the image into equal halves, and so objects, which are actually small, are often 

not segmented correctly.  On the other hand, Normalized Cut’, being based on more of 

the minimum cut procedure directly can in some cases still tend to find small regions or 

suffer from bleeding if the cost function used does not create a large enough difference 

between the foreground and background.  The overall Jaccard coefficients of 

segmentation for this data set are fairly low, however, this is most likely due to the 

general nature of these segmentations, and the naïve approach to picking source and sink 

seeds used.   

Another criterion used to measure the quality of the respective approximations 

was the Normalized Cut criterion itself from (2).  How well the segmentations minimize 

this criterion can give another, objective measure of the segmentation quality.  Table 3 

shows the Normalized Cut value, calculated with (2), for both Normalized Cut and 
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Normalized Cut’ for a selected set of twenty images.  The results in this table confirm the 

results found in [5], where it was found that Normalized Cut’ algorithm actually 

approximated the Normalized Cut criterion better than the  Normalized Cut algorithm. 

User Interaction 

The primary difference in amount of user interaction is the semi-automatic nature 

of Normalized Cut’.  The segmentation requires some user-inputted seeds for the 

foreground and background.  This can be useful when it comes to attempting to influence 

the cut and can for some situations, particularly when the desired object isn’t large, lead 

to a better segmentation by Normalized Cut’.  For the purposes here a set of points at a 

corner of the image were taken for the source seeds and a naïve average of the points 

defining the ground truth was used for the sink seeds.  

Run-time 

The run time of the algorithms presented here is of particular interest since the 

Normalized Cut problem itself is known to be NP-complete.  As stated in the Methods 

chapter, the run time for the Normalized Cut algorithm is O(n3), the run time for 

Normalized Cut’ using Hochbaum’s algorithm is O(m2log(m)), the run time for the 

proposed algorithm is O(mnlog(n2/m)), with m equaling the number of adjacencies in the 

graph, and n equaling the number of nodes in the graph.  This means that for large input 

images, Hochbaum’s Normalized Cut’ will run faster than Normalized Cut, and the 

proposed approach will always run faster than Hochbaum’s approach.  In a practical 

sense, since Normalized Cut uses an Eigen solver that takes advantage of graph 

sparseness, it runs more efficiently in general than O(n3).  Figure 10 shows the actual run 

time in seconds of the three algorithms as image size increases.  This chart demonstrates 

that the actual run time seen by these methods does reflect this relationship.  For 

relatively small images, this relationship is less clear, and in fact, with higher graph 

density Normalized Cut was seen to run more efficiently.  Figure 11 shows this 
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relationship for Normalized Cut and Hochbaum’s Normalized Cut’.  Intuitively, one can 

look at the theoretical run times provided and note that Normalized Cut’ relies more 

heavily on the neighborhood size, and in Figure 11, its run time is more heavily affected 

by neighborhood than in Normalized Cut.  This relationship between neighborhood size 

and the relative efficiency of the algorithms’ run times can be seen in the theory as well.   

The intersection of run times can be found where the theoretical run times are equivalent, 

where  

!! = !! ∗ log ! . 
Noting that the number of adjacencies m can be approximated as the number of nodes 

multiplied by the number of adjacencies for a single node in the middle of the graph, that 

is, the neighborhood size, N.  Letting, m≅n*N, we have 

!! = !! ∗ !! log ! ∗ ! , 

! = !! log(!"). 

!! = !!!!". 

This gives 

(10) 

!!

! = !"!! . 

 

 

Figure 12 visualizes the relationship between these terms and their contribution to run-

time when N is held constant.  This shows that Normalized Cut will run more efficiently 

for relatively small graph sizes compared to the neighborhood size.  Figure 13 shows that 

the proposed method runs more efficiently than Hochbaum’s method for Normalized 
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Cut’ no matter the neighborhood size, but both are still more heavily impacted by graph 

density than Normalized Cut.     

Sample Results 

Figures 14, 15, 16, and 17 show sample results from the use of the algorithms 

presented.  These can be used to gain intuition about the tendencies of these algorithms.  

In Figure 15 a), an original image is shown, and even though it is the desired foreground, 

Normalized Cut, Figure 15 b), tends to bi-partition an image in two geometrically equal 

pieces, so since there is not a large variation in grayscale values, it is seen that the 

segmentation basically splits the image in half, though it does follow along the shadow at 

the bottom of the image, and roughly follows one side of the foreground object.  

Normalized Cut’; however, appears to give a more desirable segmentation.  This is 

perhaps because even though it has similar tendencies to Normalized Cut, these are not as 

strong, and tempered by the use of source and sink seeds.  In Figure 16, this cut balancing 

tendency is displayed by both segmentations.  It is interesting to note that in these results, 

even in images with some large variance in grayscale values within the desired region, a 

segmentation enclosing the desired region can be achieved, the Normalizing of a cut 

giving way to some additional robustness in segmentation.  For further robustness of 

segmentation, it could be beneficial to complement Normalized Cut procedures with 

some fuzzy connectivity information, by using synergistic arc-weight estimation [15]. 
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CHAPTER V: CONCLUSION 
 

The Normalized Cut criterion is one that can measure the optimality of a cut 

based on a definition of what makes a good object.  If this criterion is appropriately 

minimized, valuable image segmentations can be achieved.  However, with the solution 

of the problem exactly being NP-hard, it is necessary to approximate its solution.  The 

Normalized Cut approximation introduced by Shi and Malik is generally seen as a bit 

slow and a newer approximation, known as Normalized Cut’, can be solved reasonably 

faster and provides for a similar quality of segmentation, and in some cases a better 

quality.  A novel modification of the Normalized Cut’ algorithm proposed here finds a 

similar segmentation with a much improved run time.  It has been demonstrated here that 

a good approximation of the Normalized Cut criterion can be made in polynomial time, 

and with the use of the approach proposed here, this approximation is accomplished in 

exactly the run time of an ordinary parametric maximal flow problem. 
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Table 1:    Tests Run 

 
 

Test 
Number 

Radius sampling sampling rate Graph dataset 

1 8N yes 0.9 Ncut Segmentation 
Benchmark 

2 8N no  Ncut Segmentation 
Benchmark 

3 2 no  Ncut Segmentation 
Benchmark 

4 2 yes 0.5 Ncut Segmentation 
Benchmark 

5 3 no  Ncut Segmentation 
Benchmark 

6 3 yes 0.5 Ncut Segmentation 
Benchmark 

7 5 yes 0.5 Ncut Segmentation 
Benchmark 

8 10 yes 0.5 Ncut Segmentation 
Benchmark 

 
 

Table 2:    Tests Results 

Test 
Number Radius sampling sampling 

rate 
Ncut Avg 
Quality 

Ncut’ Avg 
Quality 

1 8N no  0.3064 0.3143 
2 8N yes 0.9 0.2956 0.3285 
3 2 no  0.3216 0.3002 
4 2 yes 0.5 0.3041 0.3288 
5 3 no  0.3298 0.3197 
6 3 yes 0.5 0.3176 0.3216 
7 5 yes 0.5 0.3395  
8 10 yes 0.5 0.3750  
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Table 3:    Normalized Cut Criterion Results for Selected Images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image Ncut Ncut’ 
100040.pgm 0.0351 4.50E-04 
90.pgm 0.0224 0.0022 

Test_100_100.tif 3.96E-06 3.96E-06 
2.pgm 1.28E-07 4.07E-09 
1.pgm 0.0268 4.17E-04 
4.pgm 0.0185 9.65E-04 
5.pgm 0.0018 1.05E-04 
6.pgm 0.0157 0.0010 
7.pgm 0.0204 0.0039 
8.pgm 0.0074 3.17E-05 
9.pgm 0.0719 0.0011 
10.pgm 0.0372 3.44E-04 
11.pgm 0.0345 2.26E-04 
12.pgm 0.0080 3.63E-04 
13.pgm 0.0061 0.0028 
14.pgm 0.0183 5.26E-04 
15.pgm 0.0399 0.0016 
16.pgm 0.0292 9.21E-04 
17.pgm 0.0258 6.42E-04 
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Figure 1: Gadget for Constructing G’ [7] 

 

 

 

Figure 2: Sample G’ from sample G [7] 
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Figure 3: Reduction of Gadget from Figure 1 

 

 

 

 

 

Figure 4: Sample G’’ from G 
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Figure 5: Normalized Cut Result from [6] 

 

 

 

 

 

 

 

 

 

 

Figure 6: Normalized Cut Result for Default Settings 
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Figure 7: Neighborhood Size vs. Jaccard Value 

 

 

 

 

 

 

 

Figure 8: Normalized Cut Result for Radius 3 with Sampling 
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 Figure 9: Normalized Cut Result for Radius 3 with Sampling 

 

 

 

 

 

 

Figure 10: Number of Pixels in an Image vs. Run-Time in seconds  

 

 

 

 

 

 

 

 

 

 

 

 

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

Ti
m
e	
  
(i
n	
  
se
co
nd
s)
	
  

Number	
  of	
  Pixels	
  

Ncut	
  

Hochbaum's	
  Algo	
  

The	
  Proposed	
  
Method	
  



34 
 

 
 

Figure 11: Neighborhood Size vs. Run-Time for Ncut and Ncut’ 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Graph Size vs. Run-Time Contribution due to the Terms in Equation 10 

Where N is Held Constant.  
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Figure 13: Neighborhood Size vs. Run-Time for Ncut’ using both approaches 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Sample result, a) Original image, b) Normalized Cut c) Normalized Cut’ 
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Figure 15: Sample result, a) Original image, b) Normalized Cut c) Normalized Cut’ 

 

 

 

 

 

 
Figure 16: Sample result, a) Original image, b) Normalized Cut c) Normalized Cut’ 

 

 

 

 

 

 
Figure 17: Sample result, a) Original image, b) Normalized Cut c) Normalized Cut’ 
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