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CHAPTER 1
INTRODUCTION

1.1 Motivation and Background

Image registration is important for many medicine applications, such as im-

age segmentation, multi-modality fusion, functional brain mapping, deformable atlas

registration and image guided surgery. Non-rigid image registration is a more general

approach than the widely used rigid methods, but requires more complex methodology

and computational effort to implement [9]. Various non-rigid registration algorithms

are developed by research community today, yet the performance is difficult to assess.

Evaluation of the performance is important as it helps to clarify the potential clinical

application that a algorithm might serve [23]. However, evaluating the performance of

non-rigid image registration algorithms is a hard task since point-wise correspondence

from one image to another is not unique, i.e., there is rarely if ever a “Gold Stan-

dard” or ground truth correspondence map to judge the performance of a registration

algorithm [9]. Comparison of performance of different medical imaging processing al-

gorithms requires the use of standardized or at least rigorous terminology and common

methodology for the validation process. And creating test data sets and evaluation

statistics enable generalizable conclusions to be drawn [23]. As we know, no registra-

tion algorithm will perform the same for all types of input images [21], for example,

one algorithm may perform very well for MR registration but poorly for CT. And

in general no algorithm will perform best on all evaluation statistics. Thus, different
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evaluation databases and evaluation statistics (methods) are needed. An increasing

number of researchers are developing evaluation databases and evaluation statistics

for evaluating image registration algorithms. The website (http://www.vmip.org/)

set up by Pierre Jannine directs people to papers and references about validation

and evaluation in medical imaging processing, and a list of validation data sets. The

subjects discussed on this website are not only for image registration, but for all

medical image processing methods. When it comes to evaluation of medical image

registration, many evaluation statistics have been developed and widely used. As the

number of all statistics are too large to quote them all, we refer readers to [32], [40],

and [17] for an overview on them. These papers list and summarize many currently

available image registration performance evaluation methods. Generally speaking,

evaluation statistics can be divided to two goups. One kind is the similarity-based

statistics which measures how similar two images are. There are some examples: (1)

Overlap. This kind of statistics all measure how well the labeled volumes or surfaces

of source image and target image are agree or disagree to each other before and after

registration. For more information about overlap measures, see the paper by Crum

et al. [16]. Some overlap statistics are listed here: relative overlap (included in this

work), DICE coefficient, target overlap ([26]); (2) Landmark error. These statistics

measure the distance between deformed landmarks and corresponding target land-

marks. Distance between two point sets can be measured using Euclidean distance,

Hausdorff distance, closest distance or any other suitable metric. Readers can see dis-

tance error in [26] as an example; (3) Intensity based error. These measure intensity



3

difference between deformed and target intensity images. Examples of these errors in-

clude intensity variance, mutual information and average volume method ([22]). And

the other kind of evaluation statistics is the transformation based statistic related to

transformation properties. The transformation (deformation field) error, for example.

is modeled to measure different properties of the deformation field. Examples of these

statistics include inverse consistency error, transitivity error and the Jacobian of the

transformation ([11]) which characterizes the possible singularities of the deformation

field especially zero-crossing([22]).

Further, there have been a few attempts made to objectively evaluate and

compare the performance of image registration algorithms using standard evaluation

databases and statistics [6]. Several significant prior studies should be mentioned

here. A recent work is conducted by Yassa and Stark [39], who analyzed how accu-

rate cross-participant alignment was used for evaluation within the medial temporal

lobe (MTL). Twenty structural MRI data sets were collected in this study. They

evaluated the performance of three fully non-rigid registration algorithms and two

evaluation statistics were used to assess the performance of each algorithm. Klein et

al. [26] evaluated non-rigid registration algorithms performance using human brain

MRI. This study is the largest evaluation of nonlinear deformation algorithms applied

to brain image registration conducted to date. Fourteen algorithms from laboratories

around the world were evaluated using 8 different error measures. Other research

groups provide the community with images to register and then evaluate the results.

The “Retrospective Image Registration and Evaluation Project” [37] led by Jay West
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Fitzpatrick of Vanderbilt University took this approach to evaluate inter-modality

registration algorithms. A common set of images were used to evaluate the perfor-

mance of registration algorithms. Researchers registered the images with their own

registration algorithms and then send an ASCII file containing the original and trans-

formed points back to Vanderbilt. Registration algorithms were evaluated using the

target registration error. Another non-rigid registration evaluation project entitled

“Retrospective Evaluation of Inter-subject Brain Registration” [22] led by P. Hel-

lier of IRISA/INRIA-CNRS Rennes, France evaluate 6 registration algorithms using

18 brain image volumes. The evaluation statistics (measures) used were divided to

global measures and local measures. People around the world participated in this

projects by registering the images with their own registration algorithms and send-

ing the resulting transformations back to the home site for analysis. They chose an

arbitrary subject as the reference subject and compared results of registration by

registering other images to this target image. Castillo et al. [8] evaluated deformable

image Registration (DIR) spatial accuracy using large sets of expert-determined land-

mark point pairs. Each of their data sets has associated with it a coordinate list of

anatomical landmark point sets which serve as a reference of evaluating DIR spa-

tial accuracy within the lung. They provide published DIR spatial accuracy results

on their website (http://www.dir-lab.com). Results are reported as mean 3D Eu-

clidean magnitude distance between calculated and reference landmarks. Castillo et

al. mentioned the need for actual patient image data for evaluation since other kinds

of reference standards like synthetic images [28] and phantoms [36] lack sufficient
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realism to provide credible validation of registration spatial accuracy for use in the

clinical setting. Besides these image registration evaluation studies, another impor-

tant project is the VALMET software tool for assessing and improving segmentation

developed by Guido Gerig et al. [20] (www.ia.unc.edu/public/valmet/). The VAL-

MET software is a software tool for measuring and visualizing the differences between

multiple corresponding medical image segmentations over four statistics.

The Non-rigid Image Registration Evaluation Project (NIREP) [9] was started

to develop a standardized set of common databases, evaluation statistics and software

tool for performance evaluation of non-rigid image registration algorithms. NIREP

provides new statistics for evaluating registration performance as well as well-known

statistics involved in previous projects. Under our model, NIREP software users can

evaluate the performance of different non-rigid registration algorithms on NIREP

database downloaded from NIREP website. This model has the advantage of stan-

dardizing the evaluation database and distributing the evaluation results. It provides

researchers with a tool to compare the performance of multiple registration algorithms

so they can make an informed decision regarding the best algorithm for their specific

application. The results and analysis will be disseminated through publications and

a central web site (http://www.nirep.org). The goal of the work in this paper is to

build up common image databases for rigorous testing of non-rigid image registration

algorithms, and compare their performance by a diverse set of evaluation statistics

on our multiple well documented image databases. The well documented databases

as well as new evaluation statistics have been and will be released to public research
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community. The tests in this paper were used to evaluate the performance of image

registration algorithms following NIREP framework with respect to their transforma-

tion properties, agreement with human experts, and other indirect performance tests.

This paper provides a complete and accurate reporting of evaluation tests so that

others are able to get access to these results and make a comparison of registration

algorithms they concerned in their specific use. Moreover, this work followed the

recommendations of the Standards for Reporting of Diagnostic Accuracy (STARD)

initiative to disclose all relevant information for each non-rigid registration validation

test.

The work in this thesis is built upon these earlier projects mentioned above

and has the following important features: (1) our experiments were conducted using

multiple well characterized databases. This helps to show whether the performance

of different registration algorithms are affected by the choice of subject populations

with respect to different statistics; (2) Instead of choosing an arbitrary subject as

the reference subject, our study used all the images as the reference subject. This

helped avoid the influence of the choice of the reference subject [37]; (3) This thesis

provides a detailed description of the NIREP evaluation framework, which is general-

izable to new subject populations, new registration algorithms and new statistics; (4)

We investigated using fMRI data to evaluate how well registration algorithms regis-

tered anatomical MR images. We also discussed the impact of non-rigid anatomical

registration on the variability of the functional data. The “Retrospective Evaluation

of Inter-subject Brain Registration” [22] also mentioned that they plan to focus on
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functional data to see what the impact of non-rigid anatomical registration has on

the variability of the functional data; (5) We are building an exportable software

tool that will have the non-rigid image registration evaluation statistics built into

it. This is in contrast to these previous projects that collected registration transfor-

mations from external participants and performed the analysis internally. (6) The

model of STARD documentation is followed to describe all relevant information for

each non-rigid registration evaluation test. This meets the need to archive registra-

tion algorithm performance so that people can choose the best registration algorithm

based on their own needs in the future. Archiving registration results can help drive

future innovation in non-rigid image registration.

1.2 Outline

This thesis consists the following parts. Chapter 2 describes the NIREP frame-

work, the two evaluation databases developed for this project, five non-rigid image

registration algorithms, the statistics used to evaluate registration algorithms, and

the STARD documentation.

Chapter 3 describes evaluation results, discusses the evaluation result by fMRI,

and presents the STARD documentation for the evaluation result.

Chapter 4 discusses and analyzed the evaluation results obtained from this

work. Chapter 5 summarizes this thesis work. Finally, chapter 6 states some problems

encountered and explores future extensions.
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CHAPTER 2
METHODS

2.1 NIREP framework

Figure 2.1 shows the NIREP framework for evaluating registration perfor-

mance. The evaluation framework consists of the following steps: (0) Obtain a

non-rigid image registration algorithm to evaluate. (1) Download the evaluation

database, the evaluation software, STARD documentation describing the evaluation

database, and pre-computed results from NIREP website. (2) Register images from

the NIREP evaluation database using the registration algorithm to evaluate and store

the computed transformations for analysis. (3) (Optional) Apply transformations to

evaluation database to generate deformed images (MRI, CT, fMRI, DTI etc.), seg-

mentations, point sets (e.g., landmarks) etc. (4) Use NIREP software to evaluate

registration performance using multiple evaluation statistics. (5) Compare registra-

tion performance to that of other algorithms using data downloaded from web site.

(6) Document results of analysis by completing STARD documentation. (7) (Op-

tional) Upload results and STARD documentation to NIREP website to share with

other investigators.

The thesis presents an example registration evaluation by common databases

using this framework to evaluate non-rigid image registration algorithms. Two NIREP

neuroanatomical evaluation databases were established in this work. 22 MR data

sets from these two databases, 6 registration algorithms (1 rigid and 5 non-rigid), 6
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Figure 2.1: NIREP framework.

evaluation statistics were used as a baseline result of NIREP.

2.2 Database Acquisition and Distribution

2.2.1 NIREP NA0

Databbase Acquisition

The initial evaluation database consists of a population of 16 richly annotated

3D MR image volumes corresponding to 8 normal adult males and 8 females. These

data sets were selected from a database of healthy right-handed individuals housed

in the Human Neuroanatomy and Neuroimaging Laboratory. The demographics of

these data sets are shown in Table 2.1. The males have a mean age of 32.5 years,

standard deviation of 8.4 years and range in age from 25 to 48. The females have a
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Table 2.1: Clinical demographic characteristics of the
study population of NA0.

Label Age Gender Race Ethnic Category Handedness
na01 43 Male White Non Hispanic +95
na02 48 Male White Non Hispanic +95
na03 28 Male White Non Hispanic +85
na04 28 Male Asian Non Hispanic +100
na05 32 Male Unknown Hispanic +100
na06 27 Male White Non Hispanic +80
na07 29 Male White Non Hispanic +65
na08 25 Male White Non Hispanic +100
na09 26 Female White Non Hispanic +100
na10 27 Female Asian Non Hispanic +100
na11 36 Female White Non Hispanic +95
na12 26 Female White Non Hispanic +85
na13 24 Female Unknown Hispanic +100
na14 28 Female White Non Hispanic +80
na15 30 Female Black Non Hispanic +100
na16 41 Female White Non Hispanic +100

mean age of 29.8 years, standard deviation of 5.8 and range in age from 24 to 41.

Figure 2.2 shows an example of T1 image and the segmentations associated

with the MR data sets.

The 16 MR data sets of the NA0 database were segmented into 32 Region of

Interests (ROIs). Fig 2.3 shows an example of the segmentations of these MR data

sets generated by this project. Table 2.2 associates a label with each ROI. Note that

odd and even numbered objects correspond to ROIs on the left and right side of the

brain, respectively.

Some of these data sets and their segmentations appear in a new atlas by
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(a)

(b)

(c)

Figure 2.2: The na01 data set from NIREP NA0 database. Shown are the T1 image
(left column), the segmentation image associated with the na01 data set (Middle
column), and the segmentation overlapped on the T1 image (right column) viewed in
(a) transverse, (b) coronal and (c) sagital slices.
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Table 2.2: Regions of Interest (ROI) in the NA0 evaluation
database. The average volume for each ROI is reported in units
of voxels.

ave ave
ROI volume ROI volume

×105 ×105

1 L occipital lobe 0.87 2 R occipital lobe 0.93
3 L cingulate gyrus 0.42 4 R cingulate gyrus 0.45
5 L insula gyrus 0.22 6 R insula gyrus 0.21
7 L temporal pole 0.28 8 R temporal pole 0.31
9 L superior temporal 0.45 10 R superior temporal 0.39

gyrus gyrus
11 L infero temporal 1.0 12 R infero temporal 1.0

region region
13 L parahippocampal 0.35 14 R parahippocampal 0.34

gyrus gyrus
15 L frontal pole 0.17 16 R frontal pole 0.18
17 L superior frontal 0.79 18 R superior frontal 0.78

gyrus gyrus
19 L middle frontal 0.67 20 R middle frontal 0.64

gyrus gyrus
21 L inferior gyrus 0.30 22 R inferior gyrus 0.32
23 L orbital frontal 0.46 24 R orbital frontal 0.4

gyrus gyrus
25 L precentral gyrus 0.62 26 R precentral gyrus 0.62
27 L superior parietal 0.64 28 R superior parietal 0.60

lobule lobule
29 L inferior parietal 0.78 30 R inferior parietal 0.82

lobule lobule
31 L postcentral gyrus 0.45 32 R postcentral gyrus 0.42
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Dr. Hanna Damasio that illustrates the normal neuroanatomy of the human brain,

and have been used in several publications about the morphometric analysis of the

normal human brain [18]. Dr. Thomas J. Grabowski re-examine the segmentations

and approve the anatomical definitions. The criteria for inclusion and exclusion are

documented using the STARD documentation.

Figure 2.3: The segmentations avaliable in NIREP NA0 (Detail of figure 2 of chapter
2, H. Damasio, “Human Brain Anatomy in Computerized Images,” 2nd ed., 2004,
Oxford University Press, In press). Shown are typical segmentations available to
this project and include: Cerebrum: The cerebellum, hypothalamus, and brain stem
are not segmented; Left and right hemispheres: Frontal Lobe: Frontal Pole, Supe-
rior Frontal Gyrus, Middle Frontal Gyrus, Inferior Frontal Gyrus, Orbital Frontal
Gyrus, Precentral Gyrus; Parietal Lobe: Postcentral Gyrus, Superior Parietal Lob-
ule, Inferior Parietal Lobule; Temporal Lobe: Temporal Pole, Superior Temporal
Gyrus (including Heschl’s Gyrus (Primary Auditory Cortex) and Planum Tempo-
rale), Infero-Temporal Region, Parahippocampal Gyrus (including the Amygdala and
Hippocampus); Occipital Lobe; Cingulate Gyrus; Insula.

Tissue segmentation was performed by Joel Bruss BA, under the supervision
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of neurologist Dr. Grabowski.Cortical parcellation was performed by Joel Bruss BA

and John Allen PhD, under the supervision of neurologists Hanna Damasio MD

and Thomas J. Grabowski, MD. Combination of tissue segmentation and cortical

parcellation was performed by doctoral student Xiujuan Geng, and research asistant

Joel Bruss BA, under the supervision of Thomas J. Grabowski, MD.

2.2.2 NIREP NA1 Database Acquisition

2.2.2.1 Database Description

NIREP NA1 database consists of a population of 18 MRI data sets consisting

of 9 normal adult males and 9 females. These data sets were acquired in the Human

Neuroanatomy and Neuroimaging (HNN) Laboratory, The University of Iowa. The

demographics of these data sets are shown in Table 2.3. All the subjects here are

right handed and native English speakers. This database consists of structural and

functional MRI and 57 segmented regions of interests.

The study population was a consecutive series of participants recruited from:

(1) The University Hospital setting, recruited through local advertising; (2) Local

communities in Iowa, recruited through newspaper advertising (and with special tar-

geting of minority populations); (3) A dataset of approximately 80 normal control

subjects who agree to be contacted for future studies under IRB# 2000303002 - Mech-

anisms of Perimetric Variability - Michael Wall, PI. and (4) College students at the

University of Iowa, through local advertising; (5) Referral from colleague - Patients

of Michael Wall, MD. Dept. of Neurology, who is a co-investigator on this project;

(6) Other-Word of mouth. The inclusion/exclusion criteria for MRI included in this
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Table 2.3: Clinical demographic character-
istics of the study population of NA1.

Label Age Gender Race Handedness
3065 35 Male White +100
3362 23 Male White N/A
3368 26 Male White N/A
3402 23 Male Hispanic +100
3403 32 Male African Am. +95
3407 28 Female White +100
3413 26 Female White +100
3414 31 Male African Am. +90
3424 24 Female White +100
3425 23 Male White +95
3463 24 Male White +90
3468 36 Female White +100
3474 30 Female White +100
3479 29 Female White +80
3481 39 Male White +95
3489 56 Female Asian/Pacific +100
3491 27 Female Islander +100
3493 22 Female African Am. +95
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database are: (1) Age > 18years; (2) No history of developmental, neurological or

psychiatric disease; (3) Normal visual acuity (can read text in a book at arms length

without glasses); (4) No history of medical disease or medication which might affect

cerebral blood flow; (5) No factor which contraindicates MR scanning, including pace-

maker, pacemaker wires, implanted cardiac defibrillator, Neurostimulator, aneurysm

clip, or any electronic implant, inner ear surgery, weight over 136 kg (300lb), metal

embedded in soft tissue or in the eye, prosthetic eye, or claustrophobics; (6) Not preg-

nant; (7) Not non-English speaker; (8) Do not smoke tobacco; (9) No non-removable

body piercing; (10) No neurological conditions of any of the following: stroke, severe

head trauma (motor vehicle accident, loss of consciousness, alteration of consciousness

or memory loss), tumor, meningitis, encephalitis, seizure disorder, severe migraine,

dementia, epilepsy, any other neurological condition which may contribute to cogni-

tive impairment; (11) No developmental disabilities, including dyslexia and a learning

disability; (12) No medical conditions of the following: severe hypertension, severe

thyroid dysfunction, severe anemia and/or sickle cell disease, renal failure, heart dis-

ease, diabetes; (13) Not use anti-depressants; (14) No history of depression; (15) No

regular use of antihistamine; (16) Not an employee of the Neurology Department or

a medical students rotating in Neurology; (17) No conditions of any of the following:

employee of the PI or employee of a research team member, individual supervised

by PI or supervised by member of research team, individual subordinate to the PI

or subordinate to any member of the research team, student or trainee under the

direction of the PI or under the direction of a member of the research team; (18) Not
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incompetent or have limited decision-making capacity on initial enrollment into the

study; (19) No change of capacity to consent over the course of the study; (20) Not

prisoner.

2.2.2.2 Data Segmentation

In the NA1 database, 18 MR datasets were segmented into 57 gray matter

regions of interest(ROI). Figure 2.4 shows an example of the segmentations associated

with the MR datasets.

(a) (b) (c)

Figure 2.4: The 3065 data set from NIREP NA1 database. Shown is the segmentation
image (color) overlapped on the T1 image (gray intensity) viewed in (a) transverse,
(b) coronal and (c) sagital slices.

Table 2.4 associates a label with each ROI in NA1 database.

Gray matter parcels were taken from the output of FreeSurfer (FS) (Based on

what it interprets to be GM). Specifically, the Desikan-Killiany atlas was used [18].

The final parcel mask was produced by hand editing the result parcel produced by
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Table 2.4: Regions of Interest (ROI) in the NA1 evaluation database.
“ROI number” refers to the value of each ROI in the segmentation.
“name” (e.g. Lcun) refers to the name of each ROI.

ROI ROI ROI ROI
number name number name
0 Background 1 Still unsigned regions
2 Left Cuneus 3 Right Cuneus
4 Left Lateral Occipital Gyrus 5 Right Lateral Occipital Gyrus
6 Left Lingual Gyrus 7 Right Lingual Gyrus
8 Left Calcarine 9 Right Calcarine

(pericalcarine) Region (pericalcarine) Region
10 Left Cingulate Gyrus 11 Right Cingulate Gyrus
12 Left Insular Cortex 13 Right Insular Cortex
14 Left Temporal Pole 15 Right Temporal Pole
16 Left Superior Temporal Gyrus 17 Right Superior Temporal Gyrus
18 Left Heschl’s Gyrus 19 Right Heschl’s Gyrus
20 Left Middle Temporal Gyrus 21 Right Middle Temporal Gyrus
22 Left Inferior Temporal Gyrus 23 Right Inferior Temporal Gyrus
24 Left Fusiform Gyrus 25 Right Fusiform Gyrus
26 Left Entorhinal Cortex 27 Right Entorhinal Cortex
28 Left Parahippocampal Gyrus 29 Right Parahippocampal Gyrus
30 Left Frontal Pole 31 Right Frontal Pole
32 Left Superior Frontal Gyrus 33 Right Superior Frontal Gyrus
34 Left Middle Frontal Gyrus 35 Right Middle Frontal Gyrus
36 Left Inferior Frontal Gyrus 37 Right Inferior Frontal Gyrus
38 Left Orbital Gyri 39 Right Orbital Gyri
40 Left Paracentral Lobule 41 Right Paracentral Lobule
42 Left Precentral Gyrus 43 Right Precentral Gyrus
44 Left Postcentral Gyrus 45 Right Postcentral Gyrus
46 Left Superior Parietal Lobule 47 Right Superior Parietal Lobule
48 Left Inferior Parietal Lobule 49 Right Inferior Parietal Lobule
50 Left Precuneus 51 Right Precuneus
52 Caudate. 53 Putamen.
54 Globus Pallidus. 55 Nucleus Accumbens
56 Thalamus 57 Lateral Ventricles
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FS. For Thalamus, the FS output was edited by hand to fix mistakes. The Insulas

were traced by hand and then subtracted from the FS parcel ctx-“hemi”-unknown.

After the Insula, Thalamus, and Ventricle were traced, the sum total was subtracted

from the ctx-“hemi”-unknown of the FS output parcel. The remainder of this parcel

was assigned ROI name as “ctx-lh-unknown, ctx-rh-unknown”.

(a) (b) (c)

Figure 2.5: The graymatter image and the parcel image used to generate segmenta-
tions for NIREP NA1. (a) The graymatter image is overlayed by graymatter mask
(threshold=0.7). Yellow color refers to the graymatter mask. We can see that the
floating points in the graymatter image which have values less than 0.7 are not in-
cluded in the graymatter mask. (b) Parcels which combine the results from FreeSurfer
and work by hand (c) parcels overlapped by graymatter mask. This shows some parcel
points(with color) but not graymatter(white) need to be deleted.

After the final parcel mask was produced, next task was to dilate the labeled

segmentation produced by FS to match the “true” GM (> 0.7) to get the final

segmentations. It was decided to leave ROI labeled 52-57 (basal gray regions and

ventricles) alone, but to expand all other ROI (including “Unassigned Gray”) and

to add these regions back later. That means, 51 ROI were considered here, 25 in

left and 25 in right, plus unassigned gray. To expand a parcel to the graymatter
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mask, points in the parcel image which were not in graymatter mask (detected by

overlapping graymatter image on parcel image) were first deleted. Second, each ROI

was extracted and graymatter points which had not been assigned any ROI value

yet were extracted too. Then the distance from each selected graymatter point to

each ROI was calculated and the nearest ROI’s value was assigned to the point. The

threshold of the distance was 6. If the distance from a graymatter point to any

ROI was larger than 6, no value was assigned to it. Figure 2.6 shows the procedure

described above to generate the segmentations for NIREP NA1 database.

(a) (b) (c)

Figure 2.6: The procedure to generate the segmentations for NIREP NA1 (a) shows
a general view of the overlap of colored parcel image(after delete some redundant
points) and graymatter image(white). Parcel image is above graymatter image.We
can see here are lots of white points, which are graymatter without any ROI value yet;
(b)shows the overlap of colored parcel image and graymatter image after processing.
Here we can see most points have been assigned a ROI value and have a color now; As
52-57 ROI have not been considered this time, near the center of the brain still have
some unsigned graymatter; (c) shows the overlap of three images from top to bottom:
colored parcel image(before processing), light colored parcel image(after processing),
and graymatter image; This can easily see those points assigned a ROI’s value by this
program processing.
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2.2.2.3 Functional MRI Acquisition

Blood-oxygen-level dependent (BOLD) is the MRI contrast of blood deoxy-

hemoglobin first discovered in 1990 by Dr. Seiji Ogawa [30] who also recognized the

potential importance of BOLD for functional brain imaging with MRI. Almost all

fMRI research use BOLD as the method for determining where activity occurs in the

brain as the result of various experiences. Since BOLD-weighted fMRI can be used

to show regions of brain activity, it can also be used to map regions of the visual

cortex, that is, retinotopy. Retinotopy allows stimulation of areas in the visual field

to correspond to specific areas of the striate cortex, which is detectable by BOLD-

fMRI. Therefore stimulation across the visual field will create a detectable pattern of

stimulation across the primary visual cortex.

In NA1 database, T1-weighted structural MRI data were accompanied by

fMRI data for each data set. fMRI data were collected for this project and used

to evaluate registration performance by correlating structural-functional correspon-

dence. To collect fMRI data, retinotopic experiments were performed. Stimulation

in retinotopic experiment here consisted of both expanding rings and rotating wedges

composed of black and white stripes that moved laterally in a flowing movement and

reversed direction periodically. A fixation point for the subject was located in the

center of patients visual field. The fixation point was a small dot that reversed colors

between red and green and the subjects were asked to count the number of times the

fixation dot changed color in each run and try to figure out how many times the dot

changed color on average. These two experiments are shown in Figure 2.7.
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(a) (b)

Figure 2.7: Retino experiment. (a) eccentricity (b) polar angle.

2.2.2.4 Registration Preprocessing

Several preprocessing steps were performed on NA1 database after data sets

were collected. The first preprocessing step was reorientation of image data. ITK

needs to specify the orientation of the output image if they are stored in Analyze

format. Analyze 7.5 only supports three types of orientation: RPI, RIP, and PIR.

The orientation used here was RPI- voxels ordered from right to left stored a row,

rows ordered from posterior to anterior stored a slice, and slices stored from inferior

to superior stored a volume, as shown in Figure 2.8:

The second step was histogram normalization. As in practice, MRI images

require intensity normalization to equalize the intensities of the image, while CT

images do not [11]. Figure 2.9 shows the histogram of all original NA1 T1 images

before histogram normalization. We can see there is a shift among the maximum of

white matter of subjects.

A simple but effective method to intensity normalization MRI data is to com-
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(a) (b) (c)

Figure 2.8: The orientation problem with the data sets images(a) coordinates in
Analyze 8.1 (b) data sets images before rotation (c)data sets images after rotation

Figure 2.9: Histogram of the original NA1 T1 images before histogram normalization.
The x axis is the voxel intensity, and the y axis is the number of voxels. Notice that
there is a shift in the tail of the histogram as mentioned before. Notice that the
maximum of the white matter of the leftmost histogram and rightmost histogram has
a shift of 30 (maximum of WM of leftmost’s intensity is 200, and that of rightmost’s
intensity is 230).
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pute the histogram of the two images. Here the axis of one histogram was scaled so

that the gray and white matter maximums match those of the other histogram. And

then scaled histogram was applied to the image. All data sets in NA1 were normalized

using GM mean = 130 and WM mean = 200. Histograms of normalized T1 images

are shown in Figure 2.10, and T1 images before and after histogram normalization

are shown in Figure 2.11.

Figure 2.10: Histograms of Normalized T1 images

We also applied histogram normalization on the T2 images. In NIREP NA1

database, T2 Axial (70 slice) volumes, normalized for Gray/White peaks (similar to

what was done for the T1 volumes), were saved as 8-bit images. After masking for

the cerebrum, a histogram of the T2 data was calculated. Using Gnuplot we chose

the peak for the GM and WM (the first two peaks of the histogram) and normalized

the output. In most cases, the two peaks were well separated and easy to identify
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(a)

(b)

Figure 2.11: Normalized T1 images: 3403 (left) and 3474 (right) from NA1
database.(a) before normalized (b) after normalized.
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but, in a few cases, the peaks were pushed together and more difficult to determine.

Histograms of normalized T2 images are shown in Figure 2.12, and T2 images before

and after histogram normalization are shown in Figure 2.13.

Figure 2.12: Histograms of Normalized T2 images

The third step was to determine the AC location. The reference location in

the target space of the AC point was :( 126,103,116). And the AC point of every data

set was moved to this location.

2.2.3 XNAT for NIREP Data Distribution

XNAT central is a database for sharing neuroimaging and related data with

select collaborators or the general community through the world wide web [29]. XNAT

Central is a service of the Neuroinformatics Research Group at Washington University

School of Medicine. It is built using the XNAT data management platform. In XNAT

central, in addition to downloading the data sets, people are able to view description
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(a)

(b)

Figure 2.13: Normalized T2 images: 3403 (left) and 3474 (right) from NA1
database.(a) before normalized (b) after normalized.
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of image database and demographic related to each data set too. Thus XNAT central

is a powerful tool for database distribution.

NIREP NA0 database has already been released and distributed through

XNAT central. NA0 can be downloaded at http://central.xnat.org/. Here, we

have built up a project named “Non-rigid Image Registration Evaluation Project

(NIREP)”. People who want NA0 database for their research just need to register at

XNAT central and request to get access to the NIREP project. After receiving their

request, we add them as collaborators of NIREP project. That means, they can read,

download and use project, subject and experiment data, but cannot edit or delete

any content. Under XNAT NIREP project, people can find: (1) Image data. There

are 16 MR sessions under the project, which refer to 16 datasets of NIREP NA0

database; (2) Description of the image data. At the top of the NIREP project page,

a short introduction of NIREP can be found, as well as which images are included in

each dataset; (3) Demographics of each subject. For each subject, its demographics

can be found, such as age, gender, hand, race etc. Also under each MR session, more

detail information of the MR images of each subject can be found too.

Figure 2.14 shows the XNAT central website and steps to download NA0

database. Dozens of researchers from around the world have downloaded NA0 for

their research. XNAT central has been proved to be a useful way to release our

database to general community.
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(a) (b)

(c) (d)

Figure 2.14: Snapshots of XNAT central and steps to download NA0 database (a)In
the “project” table, click “NIREP” project. There are 16 MR sessions under the
project. (b) Clicking on any of the subjects will allow people to see its MR session.
(c) Click that MR session, MR images for that subject can be found. (d) To download
the images, click “download images”. Then there will be a download page, including
“Scans” and “Additional resources”.
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2.3 Image Registration Methods

2.3.1 Introduction to Image Registration

Image registration has many uses in medical fields such as multi-modality fu-

sion, image segmentation, deformable atlas registration, functional brain mapping,

image guided surgery, and measuring growth and modeling motion. An image can

be considered as a function taking from its domain, usually two-dimensional (2D) or

three-dimensional (3D), which maps points in its coordinate system to intensity val-

ues, G = [0, 255], for instant. These images are collected from imaging devices such

as CT, MRI, cryosectioning, etc. Image registration is the process of geometrically

aligning of two or more anatomical images and defining a meaningful correspondence

mapping between them. The result transformation of the registration, which in gen-

eral is a deformation field, is used to project data from one subject to another.

Figure 2.15: An illustration of the notation used to describe the image registration
problem

Figure 2.15 illustrates some notation used to describe the image registration
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problem. Given two images called source T1 and target T2, the goal of image registra-

tion is to find the optimal correspondence mapping or transformation which deforms

T1 to T2. Let y denotes voxels in the coordinate system of T1 and x denotes voxels

in the coordinate system of T2. We assume that both images are defined on the

domain Ω ⊂ R3. The point-wise transformation from one image to the other can

be represented by both Eulerian and Lagrangian reference systems. In an Eulerian

reference system, a transformation defines a mapping from the initial location y to

the destination location x as a function of the destination location x. In the a La-

grangian reference system, a transformation defines the mapping from initial location

y to the destination location x as a function of the initial location y. The notation

h is used to denote an Eulerian transformation and g is used to denote a Lagrangian

transformation. The Eulerian transformation h12 : Ω → Ω maps a voxel x ∈ Ω to

a voxel y ∈ Ω and h21 : Ω → Ω maps a voxel y ∈ Ω to a voxel x ∈ Ω. The La-

grangian transformations g12 : Ω → Ω and g21 : Ω → Ω are related to the Eulerian

transformations by the relationships h12 = g21 and h21 = g12, respectively.

There are different similarity functions used for image registration, like mini-

mizing the relative overlap, maximizing the mutual information between two images,

minimizing the distance between corresponding points of interest called landmarks,

etc. All the similarity functions are designed to find the best correspondence mapping

to match image T1 to T2.
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2.3.2 Affine Registration

An affine transformation is any transformation that preserves co-linearity (i.e.,

all points lying on a line initially still lie on a line after transformation) and ratios of

distances (e.g., the midpoint of a line segment remains the midpoint after transfor-

mation) [15]. Translation, rotation, rescaling, skewing are all affine transformations,

as well as their combinations. To represent affine transformations with matrices, we

must use homogeneous coordinates. This means representing a 3-vector (x, y, z) as a

4-vector (x, y, z, 1). The affine transformation, represented by a homogenous trans-

formation equation for mapping the three dimensional coordinate (x,y,z) in target file

to the three-dimensional coordinate (x’, y’, z’) in template file is:



x
′

y
′

z
′

1


=



a b c d

e f g h

i j k m

0 0 0 1


∗



x

y

z

1


(2.1)

where a, b, c, d, e, f, g, h, i, j, k and m are independent parameters. This Affine

registration model is called 3D affine 12 parameter model.

The Automated Image Registration (AIR 5.2.5) software was used to perform

affine registration. This software can be downloaded at http://bishopw.loni.ucla.edu/AIR5/.

2.3.3 Automatic Image Registration

Automated Image Registration (AIR) [38] was developed by Roger Woods at

the David Geffen School of Medicine at UCLA, CA. AIR is performed using both
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linear and nonlinear models to register 3D (and 2D) images within and across sub-

jects and within and sometimes across imaging modalities. AIR registers the source

image to target image by minimizing the mean squared difference between these two

images. Registration begins with the first order polynomial (i.e., 3D affine transfor-

mation) and the order is incremented until the order specified by the user is reached.

Usually the final nonlinear polynomial spatial transformation is 3D fifth order nonlin-

ear 168 parameters model. All transformations are stored as fifth order polynomials.

For mapping the three dimensional coordinate (x, y, z) in target file to the three-

dimensional coordinate (x’, y’, z’) in template file, the array e computed by AIR

is:

x
′

= e [0] [0] + e [1] [0]x+ e [2] [0] y + e [3] [0] z + e [4] [0] ∗ x2 + · · ·+

e [10] [0] ∗ x3 + · · ·+ e [35] [0] ∗ x5 + · · ·+ e [55] [0] ∗ z5,

y
′

= e [0] [1] + e [1] [1]x+ e [2] [1] y + e [3] [1] z + e [4] [1] ∗ x2 + · · ·+

e [10] [1] ∗ x3 + · · ·+ e [35] [1] ∗ x5 + · · ·+ e [55] [1] ∗ z5, (2.2)

z
′

= e [0] [2] + e [1] [2]x+ e [2] [2] y + e [3] [2] z + e [4] [2] ∗ x2 + · · ·+

e [10] [2] ∗ x3 + · · ·+ e [35] [2] ∗ x5 + · · ·+ e [55] [2] ∗ z5.

The AIR5.2.5 software package was used to register images with a 5th order

polynomial registration.
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2.3.4 Demons Registration

Thirion’s Demons algorithm [33, 34] is another common method used to de-

formably register two images to produce a non-rigid spatial transformation [35]. This

method alternates between the computation of warping forces inspired from optical

flow theory and the regularization of these forces by a simple Gaussian smoothing.

The Insight Toolkit (ITK) provides an implementation of Thirion’s “demons” algo-

rithm [27], which is implemented as part of the finite difference solver (FDS) frame-

work. In this implementation, each image is viewed as a set of iso-intensity contours.

The main idea is that a regular grid of forces deforms an image by pushing the con-

tours in the normal direction. The displacement or optical flow D(X) between the

fixed image (i.e., target image) f(X) and the moving image (i.e., source image) m(X)

is:

D(X) = − (m(X)− f(X))∇f(X)

‖∇f‖2 + (m(X)− f(X))2/K
(2.3)

where K is a normalization factor that accounts for the units imbalance between in-

tensities and gradients. Starting with an initial deformation field D0(X), the demons

algorithm iteratively updates the fields using Equation 2.3. An option to solve for

the field uniquely is to enforce an elastic-like behavior, smoothing the deformation

field with a Gaussian filter between iterations.

To improve the speed, registration using multi-resolution is used here. The

basic idea is that registration is first performed at a coarse scale where the images

have fewer pixels. The spatial mapping determined at the coarse level is then used to
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initialize registration at the next finer scale. This process is repeated until it reaches

the finest possible scale [8]. ITK offers a multi-resolution registration framework that

is directly compatible with all the registration framework components.

Demons registration with multi-resolution was applied using the ITK software

as discussed above.

2.3.5 SICLE

Small deformation inverse consistent linear elastic (SICLE) image registration

algorithm was developed by Gary E. Christensen et. al [10, 11, 12, 25]. SICLE is

a registration algorithm that jointly estimates the forward and reverse transforma-

tions between two images while minimizing the inverse consistency error between

these transformations. Suppose S and T represent the source and the target images

which are three-dimensional image volumes [7], and Ωd is the discrete voxel lattice

coordinates and let Ωc be the corresponding continuous domain. Let h and g denote

the forward transformation and reverse transformation respectively. SICLE image

registration algorithm can be defined by minimizing the cost function:

C = σ

∫
Ωc

|Sc(h(x))− Tc(x)|2 + |Tc(g(x))− Sc(x)|2dx

+ χ

∫
Ωc

||hc(x)− g−1
c (x)||2 + ||gc(x)− h−1

c (x)||2dx

+ ρ

∫
Ωc

||Lcuc(x)||2dx+

∫
Ω

||Lcwc(x)||2dx

(2.4)

where the vector-valued functions u, w are called displacement fields since they de-

fine the transformation in terms of a displacement from a location x, Lc is the linear



36

elasticity operator, and the constants σ, χ and ρ are used to balance the constraints.

The first integral of the cost function defines the cumulative intensity squared error

(shape differences) between the deformed image S ◦ h and target image T and the

differences between the deformed image T ◦ g and source image S. The second in-

tegral defines the inverse consistency error and is minimized when h = g−1. This

constraint couples the estimation of h and g together and penalizes transformations

that are not inverses of each other, i.e., minimizing the inverse consistency error de-

scribed in following section. The third intergral is a linear elastic constraint [13, 14]

to ensure that the transformations maintain the topology of the images T and S.

This term is used to regularize the forward and reverse displacement fileds so that

they are smooth and continuous by penalizing large derivatives of the displacement

fields. A 3D Fourier series representation [3] is used to parameterize the forward and

reverse transformations. The Fourier series parameterization used in the consistent

registration algorithm is described by Christensen and Johnson [11, 24] in detail.

Multi-resolution method descibed in last section is taken in both frequency and spa-

tial domains to estimate the Fourier Series coefficients by first estimating the low

frequency components and then increasing the number of harmonics [26].

SICLE registration is applied by the program developed by Gary E. Chris-

tensen and others at the University of Iowa.

2.3.6 SLE

Small deformation linear elastic (SLE) image registration algorithm corre-

sponds to SICLE image registration algorithm when σ 6= 0, ρ 6= 0 and χ = 0.
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That means there is no inverse consistent constraint in SLE cost function, and its

cost function is equal to Equation 2.4 without the second integral.

SLE image registration is also applied by the program developed by Gary E.

Christensen and others at the University of Iowa.

2.4 Registration Evaluation Methods

2.4.1 Average Relative Overlap

The alignment of objects, structures, organs, regions of interests (ROIs) is a

good indicator of how well two images are registered. The relative overlap (RO) of

segmentations is a measure of how well two corresponding segmented regions agree

with each other. Here RO is computed for each ROI and this can measure how well

two corresponding ROIs agree with each other. The RO for the kth ROI of both

Image Ii and Image Ij registered to Image Ii is given by:

ROk
ij =

∑M
x=1ROI

k
i (x) ∩ROIk

j (hji(x))∑M
x=1ROI

k
i (x) ∪ROIk

j (hji(x))
, (2.5)

where hji is the transformation to register Image Ij to Image Ii, ROI
k
i (x) returns 1

if x is in the kth ROI in Ii, and returns 0 if is not, and M is the number of voxels.

Thus,
∑M

x=1ROI
k
i (x)∩ROIk

j (hji(x)) defines the number of voxels in the intersection

of two corresponding ROIs and
∑M

x=1ROI
k
i (x)∩ROIk

j (hji(x)) is the number of voxels

in the union.
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Then ARO of the kth ROI is defined as:

AROk =
1

N

N∑
i=1

1

N − 1

N∑
j=1,j 6=i

∑M
x=1ROI

k
i (x) ∩ROIk

j (hji(x))∑M
x=1ROI

k
i (x) ∪ROIk

j (hji(x))
. (2.6)

where N is the total number of images in the database, and hji is still the transfor-

mation to register Image Ij to Image Ii.

2.4.2 Normalized ROI Overlap

Normalized ROI overlap is the voxel-wise overlap generated by overlapping the

ROIs from source image to the target image [19]. Suppose Pi is the target segmenta-

tion image, and the other N−1 source segmentation images Pj are deformed to Pi by

transformation hji, the voxel-wise normalized ROI overlap to the target coordinate

system is defined as:

ROi(x) =
1

N − 1

N−1∑
j=1

δ[Pj(hji(x)), Pi(x)] (2.7)

where

δ(x, y) =


1 ifx = y

0 otherwise,

(2.8)

Visualization of the ROI overlap can easily show the number of corresponding ROIs

among source images that agree with the ROI in target image.
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(a)

(b)

Figure 2.16: Calcarine Sulcus (a) left Calcarine sulcus of 6 datasets from NA1.(b)right
Calcarine sulcus of 6 datasets from NA1.

2.4.3 Alignment of Calcarine Sulci

The calcarine sulcus is where the primary visual cortex is concentrated. As

visual functional response is involved in our study, the alignment of calcarine sulci is

a useful tool to show how the registration algorithm works and the evaluation result

gives a good comparison baseline with evaluation by fMRI. In this study, the posterior

portion of the calcarine sulcus was concerned. The posterior portion of the calcarine

sulcus begins near the occipital pole and runs forward to a point a little below the

splenium of the corpus callosum where it is joined at an acute angle by the medial

part of the parietooccipital fissure. Due to complexity of the shape of the calcarine

sulcus, it is a hard task to say how the pair-wise corresponding relationship between

two calcarine sulci should be. Figure 2.16 shows the variability of calcarine sulci of 6

data sets of NA1 database.

To evaluate the alignment of calcarine sulci between target and source images,
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(a) (b)

Figure 2.17: The pointset of Calcarine Sulcus shown in MRI of NA1. The White line
here is refer to Calcarine Sulcus.(a) cornal. (b) sagital.

the calcarine sulci were first outlined as point sets. The Calcarine Sulci point sets (in

Figure 2.17 ) of all the data sets in NA1 were created by master student Elizabeth

K Broeder under the supervision of Joel Bruss. Then transformations calculated by

five non-rigid registration algorithms were applied to these point sets and we got the

deformed point sets.

Finally, Hausdorff distance was used for evaluation. Hausdorff distance mea-

sures how far two non-empty subsets are from each other. Here, we define average

Hausdorff distance of two calcarine sulcus point sets A and B as:

H(A,B) =
1

2
(h(A,B) + h(B,A)) (2.9)

where

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (2.10)

Informally, two sets are close in the Hausdorff distance if every point of either set is

close to some point of the other set. So that the algorithm with minimal Hausdorff
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distance between deformed calcarine sulcus and target one, can be considered the

best algorithm with respect to this statistic evaluation.

2.4.4 Intensity Variance

A common method used to measure image registration performance is to reg-

ister a population of images with a target image and average the intensities of the

registered images. The idea is that the better the registration algorithm is, the closer

each registered image looks to the target image and the sharper the intensity aver-

age image. One way to measure the sharpness of the intensity average image is to

compute the variance of the registered intensity images.

The voxel-wise intensity variance (IV) of a population of M images registered

to image j is computed as:

IVj(x) =
1

M − 1

M∑
i=1

(Ti(hij(x))− avej(x))2 (2.11)

where

avej(x) =
1

M

M∑
i=1

Ti(hij(x)) (2.12)

Ti is the ith image of the population and hij(x) is the transformation from image i

to j with respect to a Eulerian coordinate system.

2.4.5 Inverse Consistensy Error

Inverse consistency and transitivity consistency evaluate registration perfor-

mance based on desired transformation properties [11, 12, 25].In image registration,
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it is often assumed that the correspondence mapping between two anatomical images

is one-to-one, i.e., each point in source image S is mapped to only one point in target

image T and vice versa. However, the forward mapping from S to T and the re-

verse mapping from T to S resulted from many image registration techniques are not

inverses of each other. This inconsistency is a result from the inability to uniquely de-

scribe correspondence between two images in the registration process [7]. Figure 2.18

illustrates the inverse consistency error (ICE) involved in the image registration. The

ICE is the difference between h12(h21(y)) and y, i.e., transform a point from brain 1

to brain 2, then from brain 2 to brain 1 should return to the original point.

Figure 2.18: An illustration of the mapping ambiguity problem and the inverse con-
sistency error in the image registration of two images.

As shown in Figure 2.18, the inverse consistency error statistic measures the

error between a forward and reverse transformation between two images. Ideally,

the forward transformation equals the inverse of the reverse transformation implying
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a consistent definition of correspondence between two images, i.e., correspondence

defined by the forward transformation should be the same as that defined by the

reverse transformations. Thus, composing the forward and reverse transformations

together produces the identity map when there is no inverse consistency error. The

inverse consistency error is defined as the difference between the composition of the

forward and reverse transformations and the identity mapping.

The voxel-wise inverse consistency error with respect to source image j is

computed as

ICEj(y) =
1

M

M∑
i=1

||hji(hij(y))− y|| (2.13)

where h21 is the transformation from image 2 to 1, M is the number of images in the

evaluation population and || · || is the standard Euclidean norm. And ICE can be

represented as an image, that map points in source coordinate system to ICE values.

Another way to calculate inverse consistency error which is mapped in target

coordinate system is defined as:

ICEi(x) =
1

M

M∑
j=1

||hji(x)− h−1
ij (x)|| (2.14)

where h−1
ij is the inverse of transformation hij which maps x in target image to y

in source image, M is the number of images in the evaluation population and || · ||

is the standard Euclidean norm. ICE defined by Equation 2.13 was applied in this

work, as the computation of inverse of transformation (as in Equation 2.14) is time

consuming.
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2.4.6 Transitivity Error

The transitivity error (TE) statistic evaluates how well pair-wise registrations

of the image population satisfy the transitivity property [11, 12, 25]. The transitivity

property is important to minimize inconsistency error when two transformations are

composed together to represent one transformation. Figure 2.19 illustrates the tran-

sitivity error involved in image registration. The transitivity error is the difference

between h12(h23(h31(y)) and y, i.e., transforming a point from brain 1 to 3, then from

3 to 2, and then from 2 to 1 should return to the original point. Any difference

between the starting point and ending point is defined as the transitivity error.

Figure 2.19: An illustration of the transitivity error in the image registration of two
images.

Ideally, transformations that define correspondences among three images should

project a point from image T1 to T2 to T3, and to T1 back to the original position.

The transitivity error for a set of transformations is defined as the error difference be-

tween the composition of the transformations between three images and the identity
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map.

The voxel-wise transitivity error with respect to source image i is computed

as:

TEi(y) =
1

(M − 1)(M − 2)

M∑
j=1
j 6=i

M∑
k=1
k 6=j
k 6=i

||hij(hjk(hki(x)))− x||. (2.15)

where i is the image T1 shown is Figure 2.19, j is the image T2 shown in Figure 2.19,

k is the image T3 shown in Figure 2.19, M is the number of images in the evaluation

population and || · || is the standard Euclidean norm.

TE defined in Equation 2.15 requires a lot of computations because all combi-

nations of pair-wise transformations defining correspondences in a population must be

composed together. We used another way to calculate transitivity error that requires

less computation in this work. It is defined as:

TEk(x) =
1

(M − 1)(M − 2)

M∑
i=1
i6=k

M∑
j=1
j 6=i
j 6=k

||(hij(hjk(x))− hik(x)||. (2.16)

Because this equation just requires transform the transformation once, whereas Equa-

tion 2.15 does twice. We plan to investigate ways to reduce this computation burden

such as using smaller population sizes and computing the TE at a small number of

randomly selected points in the image domain.
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2.4.7 Discussion of registration evaluation by fMRI

2.4.7.1 MRI with functional markers for registration evaluation

The cerebral cortex is the largest graymatter structure in the nervous system

and widely agreed to be differentiated into functional components supporting key

aspects of sensory, motor, and higher function.

We proposed here an approach to evaluate registration algorithms by exploit-

ing functional properties of visual-related cortex in the occipital lobes. The primary

visual cortex bears a close relationship to the calcarine sulcus, which is present in

the mesial occipital lobe of all human brains. Certain basic structural-functional re-

lationships are reliable: the right visual hemifield maps to the left calcarine region,

and the left hemifield to the right calcarine region; the horizontal meridia are repre-

sented in the fundi of the calcarine sulci; the superior quadrants are represented in the

lower banks of the calcarine sulci and adjacent inferocalcarine occipital lobe, and the

inferior quadrants on the superior bank and supracalcarine occipital lobe. The eccen-

tricity axis of the visual field also has a principled relationship to anatomy: central

vision is represented posteriorly, on the occipital pole, while the peripheral fields are

represented anteriorly. Secondary visual areas (V2, V3, etc.) are also retinotopically

mapped. The visual field “sign”, or polarity, of the visual field representation is either

similar to the actual visual field geometry or mirror symmetrical to it. The field sign

typically reverses between adjacent visual areas, and the line of reversal is therefore

a functional fiducial for areal boundaries [31].

Figure 2.20 shows an example of the visual stimulation fMRI and the retino-
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topic maps of visual areas with the corresponding eccentricity and polar-angle axis.

(a)

(b)

Figure 2.20: Polar coordinate retinotopic mapping with fMRI, polar angle and ec-
centricity phase maps are presente in which the voxel color corresponds to the polar
angle wedges and eccentricity annuli shown in the keys on the right. (a) eccentricity
(b) polar angle

We use these reliable aspects of structural-functional correspondences to eval-

uate whether a particular anatomical transformation improves the functional corre-

spondence between two brains, and in turn to evaluate the performance of registration

algorithms. In this work, 6 datasets from NA1 were involved and they were: 3065,

3362, 3368, 3402, 3407, 3413. T1 images of these 6 datasets were registered by

different registration algorithms and their performance were compared by mapping
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segmentations and fMRI through computed transformations. The functional images

(as shown in Figure 2.20) used here represented phase value of response under eccen-

tricity stimulation, in the whole occipital region, i.e., response in graymatter as well

as whitematter and csf.

2.4.7.2 Evaluation method 1: Normalized Cross Correlation in whole occipital region

Normalized Cross Correlation (NCC) is calculated in the intersection area (as

shown in Figure 2.21) of two fMRIs in the whole occipital region.

Figure 2.21: Intersection area (the yellow region within the blue curves) of two func-
tional response (one is shown as red area and the other is green).

NCC is defined as:

NCCij =
1

n− 1

∑
x∈Ωk

(Fi(x)− F̄i)(Fj(x)− F̄j)

σiσj

(2.17a)

σi =

√
1

n− 1

∑
x∈Ωk

(Fi(x)− F̄i)2 (2.17b)

F̄i =
1

n

∑
x∈Ωk

Fi(x) (2.17c)

where Ωk is the intersection area of two fMRIs Fi and Fj , and n is the total number
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of voxels in Ωk.

If Fj is deformed to target Fi, NCC of Fi and deformed fMRI Fji should be:

NCCij =
1

n− 1

∑
x∈Ωk

(Fi(x)− F̄i)(Fj(hji(x))− F̄ji)

σiσji

(2.18a)

σji =

√
1

n− 1

∑
x∈Ωk

(Fj(hji(x))− F̄ji)2 (2.18b)

F̄ji =
1

n

∑
x∈Ωk

Fj(hji(x)) (2.18c)

where hji is the computed transformation to register Fj to target Fi to get the de-

formed functional image Fji, and Ωk is the intersection area of two functional MRI

Fi and Fji , and n is the total number of voxels in Ωk.

6 datasets were included so far, so that there were 6 fMRIs and 30 pair-wise

registration results. Averaged NCC (ANCC) is defined as:

ANCC =
1

N

N∑
i=1

1

N − 1

N∑
j=1,j 6=i

NCCij (2.19)

where N is equal to 6 in this work.

2.4.7.3 Evaluation method 2: Normalized Cross Correlation in Region of Interests

(ROIs)

Furthermore, NCC was calculated in different ROIs separately. As functional

response here just occurred in occipital region, just 8 ROIs were considered here.

These 8 ROIs (4 in left brain and 4 in right brain) are:
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Occipital region (as shown in Figure 2.22.)

Lcun: Left Cuneus;

Llocci: Left Lateral Occipital Gyrus;

Lling: Left Lingual Gyrus;

Lcalc: Left Calcarine (pericalcarine) Region;

Rcun: Right Cuneus;

Rlocci: Right Lateral Occipital Gyrus;

Rling: Right Lingual Gyrus;

Rcalc: Right Calcarine (pericalcarine) Region;

(a) (b)

Figure 2.22: Occipital Regions (a)left (b)right

NCC is calculated in the intersection area of two fMRIs within the intersection

of two corresponding ROIs of two segmentation images (shown in Figure 2.23).
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Figure 2.23: Statistic value is calculated in intersection area of two functional response
(yellow region in blue curves) in each ROI (black curves).

NCC in ROI R is defined as:

NCCR
ij =

1

n− 1

∑
x∈ΩR

k

(Fi(x)− F̄R
i )(Fj(x)− F̄R

j )

σiσj

(2.20a)

σi =

√√√√ 1

n− 1

∑
x∈ΩR

k

(Fi(x)− F̄R
i )2 (2.20b)

F̄R
i =

1

n

∑
x∈ΩR

k

Fi(x) (2.20c)

where ΩR
k is the intersection area of two fMRIs Fi and Fj in ROI R, and n is the total

number of voxels in ΩR
k .

If Fj is deformed to target Fi, NCC of Fi and deformed functional image Fij
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in ROI R should be:

NCCR
ij =

1

n− 1

∑
x∈ΩR

k

(Fi(x)− F̄R
i )(Fj(hji(x))− F̄R

ji )

σiσji

(2.21a)

σji =

√√√√ 1

n− 1

∑
x∈ΩR

k

(Fj(hji(x))− F̄R
ji )

2 (2.21b)

F̄R
ji =

1

n

∑
x∈ΩR

k

Fj(hji(x)) (2.21c)

where hji is the computed transformation to register Fj to target Fi to get the de-

formed fMRI Fji, and Ωk is the intersection area of two fMRIs Fi and Fji in ROI R,

and n is the total number of voxels in Ωk.

2.5 STARD Documentation for NIREP work

The STARD (Standards for Reporting of Diagnostic Accuracy) statement was

developed by a group of scientists and editors to improve the accuracy and com-

pleteness of reporting of studies of diagnostic accuracy. This statement consists of

a checklist of 25 items and a flow diagram to ensure that all relevant information

of a diagnostic accuracy study is present. It also helps readers to better understand

diagnostic reports, assess their quality, assess the potential for bias in the study, and

evaluate the generalization of the study [4, 5]. Our study follows the model of the

STARD statement to disclose all relevant information for each non-rigid registra-

tion evaluation test, as one goal of NIREP is to accurately report the registration

evaluation results so that other investigators can get access to all the details of the

experiments preformed and they do not need to repeat the work. The STARD doc-
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umentation in this work described each checklist item recommended in the STARD

statement and gave the required documentation for the NA0 database of 16 MRIs

with 32 ROIs and NA1 database of 18 MRIs with 57 ROIs and the evaluation statis-

tics performance of different registration algorithms involved in this work. One big

benefit of this documentation is that people who evaluate their own new registration

algorithms with these two databases can refer back to this STARD documentation of

NIREP and only have to change the items that are different to complete their own

STARD documentation and then report to research community.
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CHAPTER 3
RESULTS

Five non-rigid registration algorithms were evaluated using common databases.

Rigid registration during preprocessing steps was used as the starting point for all

non-rigid registration algorithms. It did not appear to be evaluated, yet was included

to serve as a comparison baseline for some statistics in our study.

All 16 data sets of NA0 and 6 data sets of NA1 were involved in this work

while other NA1 data sets will be involved in the future. This is to reduce the compu-

tation work and enough to show an example to evaluate performance of registration

algorithms.

The statistical significance of the differences in the evaluation statistics were

assessed using Student’s t-test. For each statistic, the t-test was applied for each

region of interest (32 ROIs for NA0 and 57 ROIs for NA1), for each two registration

algorithms under each evaluation statistic, and for both NA0 and NA1 respectively.

Alpha was set equal to 0.05. A two-tailed two-sample equal variance t-test was used

for relative overlap and intensity variance. A two-tailed paired t-test was used for

inverse consistency error and transitivity error. A significant difference between two

registration algorithms was reported if the p value was less than 0.05 (Alpha).
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Table 3.1: Averaged
Relative Overlap of
NA0

Registration Averaged ARO
Algorithms in 32 ROIs

Rigid 0.2643
Affine 0.3241
AIR 0.3578

Demons 0.5029
SLE 0.3891

SICLE 0.3814

3.1 Evaluation Results for ARO

3.1.1 NA0 database

The ARO performance for five non-rigid registration algorithms with respect

to NA0 database are shown in Figure 3.1. ARO of rigid registration is also shown in

this graph as a benchmark for non-rigid registration algorithms. The ARO statistic

values were computed for each of the 32 ROI. As each pair-wise registration had a

statistic value, the statistic calculation program sorted these statistic values in an

ascending order. The data file recorded different percentile ranges for this order.

Figure 3.1 shows the mean and the 05, 25, 75 and 95 percentile ranges for each

algorithm. Each candlestick records different percentile ranges for this order. The

values of ARO averaged over all of the 32 ROIs for each registration algorithm are

shown in Table 3.1.2.

By applying Student’s t-test, we found under the significant level 0.05: with re-

spect to rigid registration, all 5 non-rigid registration algorithms provide significantly

different, i.e., smaller ARO values of all the 32 regions than it; Also, 31 out of 32
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Figure 3.1: Graphs of average relative overlap (ARO) of 16 NA0 datasets, 240 trans-
formations. Each measurement corresponds to the ARO computed with respect to a
differnt template.

regions have significant difference between Affine and AIR using ARO; SLE, SICLE,

and Demon have significantly different, i.e., smaller ARO over all the 32 regions than

Affine; for AIR, 25 out of 32 regions have significant difference between it and SLE,

and 23 out 32 between it and SICLE; the ARO for just 4 out of 32 have significant

difference between SICLE and SLE; and Demons provides significantly different, i.e.,

smaller ARO of all the 32 regions than all the other registration algorithms.

3.1.2 NA1 database

The ARO performance for five non-rigid registration algorithms with respect

to NA1 database are shown in Figure 3.2. ARO of rigid registration is also shown in

this graph as a benchmark for non-rigid registration algorithms. The ARO statistic
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Table 3.2: Averaged
Relative Overlap 0f
NA1

Registration Averaged ARO
Algorithms in 57 ROIs

RIgid 0.2202
Affine 0.2542
AIR 0.2874

Demons 0.4033
SLE 0.3441

SICLE 0.3302

values were computed for each of the 57 ROI. As each pair-wise registration had a

statistic value, the statistic calculation program sorted these statistic values in an

ascending order. The data file recorded different percentile ranges for this order.

Figure 3.2 shows the mean and the 05, 25, 75 and 95 percentile ranges for each

algorithm. Each candlestick records different percentile ranges for this order. The

values of ARO averaged over all of the 57 ROIs for each registration algorithm are

shown in Table 3.1.2.

By applying Student’s t-test, we found under the significant level 0.05: with

respect to rigid registration, 53 out of 57 regions have significant difference between

it and Affine using ARO; all other 4 non-rigid registration algorithms provide signif-

icantly different, i.e., smaller ARO values of all the 57 regions than original; 56 out

of 57 regions have significant difference between Affine and AIR using ARO; SLE,

SICLE, Demons have significant difference, i.e., smaller ARO over all the 57 regions

than Affine; for AIR, 49 out of 57 regions have significant difference between it and

SLE, and 55 out of 57 between it and SICLE; the ARO for just 1 out of 57 have signifi-
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(a)

(b)

Figure 3.2: Graphs of average relative overlap (ARO) of 6 NA1 datasets, 30 trans-
formations. Each measurement corresponds to the ARO computed with respect to
a differnt template. (a)ARO computed for Region of Interest Identifier from 1 to 27
(b)ARO computed for Region of Interest Identifier from 28 to 57.



59

cant difference between SICLE and SLE; and Demons provides significantly different,

i.e., smaller ARO of all 57 regions than all the other registration algorithms.

3.2 Evaluation Results for Normalized ROI overlap

3.2.1 NA0 database

Figure 3.3 shows the voxel-wise ROI overlap generated by overlapping the

ROIs from 15 other segmentation images of NA0 to the target segmentation image

na01 of NA0. The reference coordinate system is the target’s coordinate system. The

other 15 images have similar ROIs that were mapped to the reference coordinate

system. The numbers of corresponding ROIs that agree with the ROI of the target

image after registration by different algorithms are shown in Figure 3.3 of NA0.

3.2.2 NA1 database

Figure 3.4 shows the voxel-wise ROI overlap generated by overlapping the

ROIs from 5 other segmentation images of NA1 to the target segmentation image

3065 of NA1. The reference coordinate system is the target’s coordinate system.

The other 5 images have similar ROIs that were mapped to the reference coordinate

system. The numbers of corresponding ROIs that agree with the ROI of the target

image after registration by different algorithms are shown in Figure 3.4 of NA1.

3.3 Evaluation Results for Alignment of calcarine sulci

The transformations calculated by five non-rigid registration algorithms as well

as rigid registration were applied to those 6 calcarine sulci point sets of NA1, and

then the relative overlap (RO) statistic was calculated after registration by different



60

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.3: Normalized voxel ROI overlap of NA0 (a)Rigid (b)affine (c)AIR (d)SICLE
(e)SLE (f)Demons (g)colorbar.The images are ordered from worst performance (left
and top) to best performance (right and bottom).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.4: Normalized voxel RO of NA1 (a)Rigid (b)affine (c)AIR (d)SICLE (e)SLE
(f)Demons (g)colorbar. The images are ordered from worst performance (left and
top) to best performance (right and bottom)
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Table 3.3: Average Hausdorff distance 0f NA1 database

Registration Averaged Hausdorff distance Averaged Hausdorff distance
Algorithms of left calcarine sulci of right calcarine sulci

Rigid 5.25 6.90
Affine 4.403 5.717
AIR 3.734 4.302

Demons 3.037 3.376
SLE 3.372 4.06

SICLE 3.376 4.25

algorithms. Figure 3.5 shows the closer of calcarine sulci after non-rigid registration

than rigid registration. All the slices in Figure 3.5 refer to of slice y=67 of subject

3065, which served as reference coordinate system here. Each color represents cal-

carine sulcus of one subject. And both left and right calcarine sulci are shown in

these images. Yellow represents the target subject 3065.

Table 3.3 shows the average Hausdorff distance of 6 calcarine sulci point sets

of NA1 database.

3.4 Evaluation Results for IV

3.4.1 NA0 database

The graph in Figure 3.6 plots the statistic value of the IV for each ROI among

all the five non-rigid registration algorithms as well as original rigid registration. Table

3.4.1 shows the averaged value of IV over all 32 ROIs for each registration algorithm.

By applying Student’s t-test, we found under the significant level 0.05: with

respect to rigid registration, all other 5 non-rigid registration algorithms provide
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Alignment of Calcarine Sulcus (a)rigid (b)affine (c)AIR (d)SICLE (e)SLE
(f)Demons. The images are ordered from worst performance (left and top) to best
performance (right and bottom).
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Figure 3.6: Graphs of average Intensity Variance (IV) of 16 NA0 datasets, 240 trans-
formations. Each measurement corresponds to the IV computed with respect to a
differnt template.

Table 3.4: Averaged Intensity Variance(IV) of
NA0

Registration Average IV IV standard diviation
Algorithms in 32 ROIs in 32 ROIs

Rigid 1103.14 169.06
Affine 738.59 97.95
AIR 598.33 70.66

Demons 230.24 43.88
SLE 505.81 47.31

SICLE 530.78 53.27
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Table 3.5: Averaged Intensity Variance(IV) of
NA1

Registration Average IV IV stadard diviation
Algorithms in 57 ROIs in 57 ROIs

rigid 1540 367.593
Affine 1129.45 250.607
AIR 849.763 184.766

Demons 398.876 123.155
SLE 704.044 145.57

SICLE 722.688 148.785

significantly different, i.e., smaller IV values of all the 32 regions than it; 17 out

of 32 regions have significant difference between Affine and AIR using IV; 31 out

of 32 regions have significant difference between Affine and SICLE, and the same

situation between SLE and Affine; Demons has significantly different, i.e., smaller

IV over all the 32 regions than Affine; for AIR, 15 out of 32 regions have significant

difference between it and SICLE, and 24 out of 32 between it and SLE; the IV for

all 32 regions have no significant difference between SICLE and SLE; and Demons

provides significantly different, i.e., smaller IV of all the 32 regions than all the other

registration algorithms.

3.4.2 NA1 database

The graph in Figure 3.7 plots the statistic value of the IV for each ROI among

all the five non-rigid registration algorithms as well as original rigid registration.

Table 3.4.2 shows the averaged value of IV over all 57 ROIs for each registration

algorithm.

By applying Student’s t-test, we found under the significant level 0.05: with
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(a)

(b)

Figure 3.7: Graphs of average Intensity Variance (IV) of 6 NA1 datasets, 30 trans-
formations. Each measurement corresponds to the IV computed with respect to a
differnt template. (a)IV computed for Region of Interest Identifier from 1 to 27 (b)IV
computed for Region of Interest Identifier from 28 to 57.
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respect to rigid registration, 47 out of 57 regions have significant difference between it

and Affine using IV; 55 out of 57 regions have significant difference between rigid and

AIR using IV; SICLE, SLE and Demons provide significantly different, i.e., smaller

IV values of all the 57 regions than rigid registration; 50 out of 57 regions have

significant difference between Affine and AIR using IV; SLE, SICLE, Demons have

significantly different, i.e., smaller IV over all the 57 regions than Affine; for AIR,

30 out of 57 regions have significant difference between it and SICLE, and 25 out 57

between it and SICLE; the IV for just 2 out of 57 regions have significant difference

between SICLE and SLE; and Demons provides 56 out of 57 significantly different,

i.e., smaller IV than SICLE and SLE.

3.5 Evaluation Results for ICE

3.5.1 NA0 database

Figure 3.8 shows the inverse consistency error (ICE) for five non-rigid registra-

tion algorithms. The ICE is shown for the transformation from data set na01 to na03

concatenated with the transformation from na03 to na01. In (a)-(e) of Figure 3.8,

the locations of ICE are shown by superimposing the ICE image on top of the target

T1 image na01. The error images are visualized using a pseudo color scale. These

images are important to visualize the errors besides computing summary statistics.

The localization of the errors can be analyzed and used to develop new improved

algorithms.

The graph in Figure 3.9 plots ICE for all 5 non-rigid registration algorithms.

ICE were computed for each of the 32 ROIs, and generated from all 240 pair-wise
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(a)

(b)

(c)

(d)

(e)

Figure 3.8: An example showing Inverse Consistency Error(color-coded map on top)
superimposed on MRI image of NA0. The Target MRI image here is na01. (a)ICE
for AIR (b)ICE for Demons (c)ICE for SLE (d)ICE for SICLE (e)ICE for Affine.The
images are ordered from worst performance (top) to best performance (bottom).
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Figure 3.9: Graphs of average Inverse Consistency Error(ICE) of 16 NA0 datasets,
computed for 240 transformations from five registration algorithms. Each measure-
ment corresponds to the ICE computed with respect to a different template.

transformations of 16 T1 images in the NA0 database. In each ROI, minimum,

maximum and mean voxel-wise ICE values were selected and averaged over all mea-

surements. The value of minimum, maximum and mean ICE values in each ROI were

then averaged over all ROIs, and the values are shown in table 3.6. These present

the different performance of registration algorithms.

By applying Student’s t-test as described, we found under the significant level

0.05: with respect to Affine, all other 4 non-rigid registration algorithms provide

significantly different, i.e., bigger ICE values of all the 32 regions than it; SLE, AIR,

and Demons have significantly different, i.e., bigger ICE over all the 32 regions than

SICLE; for SLE, all of 32 regions have significant difference between it and Demons,
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Table 3.6: Inverse Consistency Error of NA0

Registration Averaged min ICE Averaged max ICE Averaged average ICE
Algorithms in 32 ROIs in 32 ROIs in 32 ROIs

Affine 0.000069 0.00021 0.00014
AIR 0.3114 7.8798 2.9987

Demons 0.0321 8.2797 2.0102
SLE 0.0321 2.04 0.752

SICLE 0.0010 0.217 0.0496

as well as AIR; the ICE for 29 out of 32 have significant difference between Demons

and AIR.

3.5.2 NA1 database

Figure 3.10 shows the inverse consistency error (ICE) for five non-rigid reg-

istration algorithms. The ICE is shown for the transformation from data set 3065

to 3362 concatenated with the transformation from 3362 to 3065. In (a)-(e) of Fig-

ure 3.10, the locations of ICE are shown by superimposing the ICE image on top

of the target T1 image 3065. The error images are visualized using a pseudo color

scale. These images are important to visualize the errors besides computing summary

statistics. The localization of the errors can be analyzed and used to develop new

improved algorithms.

The graph in Figure 3.11 plots the ICE for all the 5 non-rigid registration

algorithms. ICE were computed for each of the 57 ROIs, and generated from all

30 pair-wise transformations of 6 T1 images in the NA1 database. In each ROI,

minimum, maximum and mean voxel-wise ICE values were selected and averaged

over all measurements. The value of minimum, maximum and mean ICE values in
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(a)

(b)

(c)

(d)

(e)

Figure 3.10: An example showing Inverse Consistency Error(color-coded map on top)
superimposed on MRI image of NA1. The Target MRI image here is 3065. (a)ICE
for AIR (b)ICE for Demons (c)ICE for SLE (d)ICE for SICLE (e)ICE for Affine.The
images are ordered from worst performance (top) to best performance (bottom).
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Table 3.7: Inverse Consistency Error 0f NA1

Registration Averaged min ICE Averaged max ICE Averaged average ICE
Algorithms in 57 ROIs in 57 ROIs in 57 ROIs

Affine 0.000294 0.00189 0.000624
AIR 0.3694 4.8127 1.8678

Demons 0.0580 4.8000 1.4566
SLE 0.0389 1.4124 0.4738

SICLE 0.0017 0.1487 0.0383

each ROIs were then averaged over all ROIs, and values are shown in table 3.7.

By applying Student’s t-test, we found under the significant level 0.05: with

respect to Affine, all other 4 registration algorithms provide significantly different,

i.e., bigger ICE values of all the 57 regions than it; SLE, AIR, and Demons have

significant different, i.e., bigger ICE over all the 57 regions than SICLE; for SLE, all

of 57 regions have significant difference between it and Demons, as well as AIR; the

ICE for 37 out of 57 regions have significant difference between Demons and AIR.

3.6 Evaluation Results for TE

3.6.1 NA0 database

Figure 3.12 shows the transitivity error (TE) for five non-rigid registration

algorithms. TE is shown for the transformation from na09 to na04 concatenated

with the transformation from na04 to na01 concatenated with the transformation

from na01 to na09. In (a)-(e) of Figure 3.14, the locations of TE are shown by

superimposing the TE error image on top of the target T1 image 3368. The error

images are visualized using a pseudo color scale.

The graph in Figure 3.13 plots TE for all the 5 non-rigid registration algo-
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(a)

(b)

Figure 3.11: Graphs of average Inverse Consistency Error(ICE) of 6 NA1 datasets,
computed for 30 transformations from five registration algorithms. Each measure-
ment corresponds to the ICE computed with respect to a different template. (a)ICE
computed for Region of Interest Identifier from 1 to 24 (b)ICE computed for Region
of Interest Identifier from 25 to 57.
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: An example showing Inverse Consistency Error(color-coded map on top)
superimposed on MRI image of NA0. The Target MRI image here is na01. (a)ICE
for AIR (b)ICE for Demons (c)ICE for SLE (d)ICE for SICLE (e)ICE for Affine.The
images are ordered from worst performance (top) to best performance (bottom).
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Figure 3.13: Graphs of average Transitivity Error(TE) of 16 NA0 datasets, com-
puted for 32 ROIs and 160 transformations from five registration algorithms. This
measurement correspond to TE computed with respect to different templates.

rithms. TE values were computed for each of the 32 ROIs, 16 data sets, and randomly

selected 160 transformations. In each ROI, minimum, maximum and mean TE values

were selected and averaged over all measurements. The values of minimum, maxi-

mum and mean TE in each ROI were then averaged over all ROIs, and the values are

shown in Table 3.8.

By applying Student’s t-test, we found under the significant level 0.05: with

respect to Affine, 24 out of 32 regions have significant difference between it and

SICLE using TE; all other 3 registration algorithms provide significantly different,
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Table 3.8: Transitivity Error of NA0

Registration Averaged min TC Averaged max TC Averaged average TC
Algorithms in 32 ROIs in 32 ROIs in 32 ROIs

Affine 0.4436 1.2480 0.8457
AIR 0.4695 11.5922 4.0823

Demons 0.0478 14.0076 3.5942
SLE 0.0591 5.7668 1.7900

SICLE 0.0496 4.2496 1.2972

i.e., bigger TE values of all the 32 regions than it; SLE, AIR, and Demons have

significant difference over all the 32 regions than SICLE using TE; for SLE, all of 32

regions have significant difference between it and Demons, as well as AIR; the ICE

for 21 out of 32 have significant difference between Demons and AIR.

3.6.2 NA1 database

Figure 3.14 shows the transitivity error (TE) for five non-rigid registration

algorithms. TE is shown for the transformation from 3065 to 3362 concatenated with

the transformation from 3362 to 3368 concatenated with the transformation from 3368

to 3065. In (a)-(e) of Figure 3.14, the locations of TE are shown by superimposing

the TE image on top of the target T1 image 3368. The error images are visualized

using a pseudo color scale.

The graph in Figure 3.15 plots TE for all the 5 registration algorithms. TE

were computed for each of the 57 ROIs, and generated from all 30 pair-wise transfor-

mations among those 6 data sets of NA1 database. In each ROI, minimum, maximum

and mean voxel-wise TE values were selected and averaged over all measurements.

By applying Student’s t-test, we found under the significant level 0.05: with
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(a)

(b)

(c)

(d)

(e)

Figure 3.14: An example showing Transitivity Error(color-coded map on top) super-
imposed on MRI image of NA1. The Target MRI image here is 3065. (a)TC for Affine
(b)TC for AIR (c)TC for Demons (d)TC for SLE (e)TC for SICLE. The images are
ordered from worst performance (top) to best performance (bottom).
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(a)

(b)

Figure 3.15: Graphs of average Transitivity Error(TE) of 6 NA1 datasets, computed
for 20 transformations from five registration algorithms. This measurement corre-
spond to TE computed with respect to different templates. (a)TE computed for
Region of Interest Identifier from 1 to 24 (b)TE computed for Region of Interest
Identifier from 25 to 57.
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Table 3.9: Transitivity Error of NA1

Registration Averaged min TC Averaged max TC Averaged average TC
Algorithms in 57 ROIs in 57 ROIs in 57 ROIs

Affine 2.0429 4.8407 3.3822
AIR 0.5584 6.6383 2.6680

Demons 0.0698 7.0379 1.9376
SLE 0.2252 5.6020 2.1616

SICLE 0.1254 3.8082 1.3979

respect to SICLE, all other 4 registration algorithms provide significantly different,

i.e., bigger TE values of all the 57 regions than it; for SLE, 33 out of 57 regions have

significant difference between it and Demons; SLE provides significant difference for

42 out of 57 regions than AIR using TE, and 40 out of 57 regions than Affine using

TE; More, the ICE for 41 out of 57 have significant difference between Demons and

AIR; and Demons provides significant difference for 39 out of 57 regions than Affine

using TE; 35 out of 57 regions have significant different TE between Affine and AIR.

3.7 Evaluation through fMRI

3.7.1 Variability of functional response under eccentricity stimulation

Figure 3.16 shows screen shots for the functional response of 6 data sets of NA1.

These functional images show us the phase of eccentricity response in occipital re-

gion. This figure gives us a general overview of the variability of structural-functional

corresponding relationship among subjects.
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(a)

(b)

Figure 3.16: Variance of functional response among different subjects(a) phase of
eccentricity in left occipital region; (b)phase of eccentricity in right occipital region.

3.7.2 Result of Method 1

The result of Averaged Normalized Cross Correlation (ANCC) is shown in

Table 3.10. Here ANCC of original fMRI data sets, i.e. rigid registration, was also

calculated for comparison.

Note: what also shown in Table 3.10 is relative overlap of two functional

response area:

RO =
Fi ∩ Fj

Fi ∪ Fj

(3.1)

where Fi∩Fj defines intersection area of two functional image Fi and Fj, and Fi∪Fj

define is the union area of this two functional image.

And if Fj is deformed to target Fi, RO of Fi and deformed functional imageFji
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Table 3.10: Averaged NCC in whole occipital region

Registration Method ROFi
RO NCC

Original(WIthout any registration) 47% 30% 0.603
Affine 64% 39% 0.486
AIR 73% 48% 0.498

Demons 76% 49% 0.505
SICLE 74% 47% 0.485
SLE 78% 54% 0.504

should be:

RO=
Fi ∩ Fji

Fi ∪ Fji

(3.2)

If we just consider the percentage of the intersection area in target image Fi,

relative overlap is:

ROFi
=
Fi ∩ Fji

Fi

(3.3)

3.7.3 Result of Method 2

We just calculated NCC between fMRIs of 3362 and 3065, as well as deformed

fMRI from 3362 to 3065 by different registration algorithms. Just one pair-wise

registration result was evaluated, yet problems already came up.

Remind the ROI number first:

l2: left Cuneus;

l4: left Lateral Occipital Gyrus;

l6: left Lingual Gyrus;

l8: left Calcarine (pericalcarine) Region.
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Table 3.11: Relative overlap of each ROI in anatomy MRI

registration method
relative overlap of each ROI

l2 l4 l6 l8 r3 r5 r7 r9
Original 0.142 0.164 0.146 0.121 0.096 0.178 0.189 0.140
Affine 0.146 0.204 0.201 0.155 0.092 0.185 0.208 0.140
AIR 0.175 0.253 0.248 0.183 0.170 0.238 0.264 0.203

Demons 0.259 0.344 0.333 0.250 0.228 0.314 0.367 0.278
SICLE 0.197 0.277 0.281 0.201 0.153 0.250 0.299 0.213
SLE 0.211 0.292 0.303 0.220 0.178 0.259 0.306 0.235

r3: right Cuneus;

r5: right Lateral Occipital Gyrus;

r7: right Lingual Gyrus;

r9: right Calcarine (pericalcarine) Region.

3.7.3.1 Relative overlap of each ROI

First the result of relative overlap of 8 ROIs respectively in anatomy MRI is

shown in Table 3.11. This shows how two corresponding ROIs are aligned to each

other by different algorithms. We also knew how large the intersection area of two

corresponding ROIs from two fMRIs is, as we calculated statistics only with those

functional responses in the intersection area.

3.7.3.2 Functional response

Then let us see how much response of fMRI falls in graymatter (ROI just

include graymatter) of each subject, respectively, which shown in Table 3.12.

Note: Image size is 256 ∗ 256 ∗ 208.
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Table 3.12: Functional response

subjects
Response in whole occipital region response in graymatter
(number of voxels) (number of voxels/percentage)

3065 40008 23973/59.9%
3362 49858 27430/55.0%

Table 3.13: Intersection response area

registration

union intersection intersection of response in each ROI
method of response of response (number of voxels)

in all ROIs in all ROIs
(number of voxels) (number of voxels) l2 l4 l6 l8 r3 r5 r7 r9

Original 10658 5317 42 1638 636 215 72 1202 982 530
Affine 11334 5437 17 1693 746 134 59 1148 1176 464
AIR 15113 7333 10 2310 787 205 152 1910 1262 697

Demons 17684 8723 21 2794 1115 300 130 2103 1525 735
SICLE 15375 7751 25 2546 990 382 155 1782 1231 640
SLE 15718 7869 22 2739 944 418 152 1709 1218 667

3.7.3.3 Intersection of functional response

in the intersection area

Third, the values of how much response in intersection area falls in these 8

ROIs together and separately, are shown in Table 3.13. Note that many numbers are

too small here, and image size is 256 ∗ 256 ∗ 208.
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Table 3.14: NCC in each ROI

registration
NCC NCC in each ROI

in all 8 ROIs l2 l4 l6 l8 r3 r5 r7 r9
Original 0.686 -0.693 0.635 0.444 0.654 0.148 0.702 0.678 0.113
Affine 0.501 -0.098 0.310 0.351 0.541 0.018 0.386 0.552 -0.220
AIR 0.584 0.160 0.309 0.303 0.670 -0.087 0.250 0.719 0.601

Demons 0.571 -0.575 0.22 0.348 0.740 0.425 0.442 0.663 0.574
SICLE 0.574 0.322 0.297 0.386 0.750 0.068 0.285 0.700 0.582
SLE 0.602 0.449 0.310 0.304 0.786 0.151 0.303 0.706 0.541

3.7.3.4 NCC in each ROI

Finally, let us see the NCC values in 8 ROIs together and in each ROI respec-

tively, which shown in Table 3.14.

3.8 STARD Documentation

3.8.1 STARD Documentation of NA0

The following is a checklist of the 25 items that were reported when document-

ing evaluation results of registration algorithms for the NIREP NA0 database. The

list describes each checklist item and then gives the required documentation for NA0

database of 16 MRI images with 32 ROIs and the evaluation statistic performance

of five non-rigid registration algorithms. Investigators that evaluate new registration

algorithms with the NA0 database can refer back to this STARD documentation and

only have to complete the items that are different. Note that not all 25 items of the

STARD documentation are applicable for reporting NIREP registration results.

Item 1. Describe the purpose of this work.
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This is a study of the diagnostic accuracy of non-rigid image registration algo-

rithms.

Item 2. Describe the study aim.

The goal of this study is to establish, maintain, and endorse a standardized set of

relevant benchmarks and metrics for performance evaluation of nonrigid image

registration algorithms.

Item 3. Describe how the database images were selected for the evaluation popula-

tion including the inclusion and exclusion criteria.

Eight male and eight female subjects were drawn at random from 240 normal

volunteers who participated in functional imaging experiments of language or

emotion conducted with positron emission tomography (PET) at the University

of Iowa Department of Neurology. Afterward, three of these subjects were re-

moved, at random, and replaced by three additional subjects of the same sex from

ethnic minority groups who were underrepresented in the original sample. The

inclusion/exclusion criteria for the functional imaging experiments were: 1)

age >= 18; 2) right-handed. Only subjects with scores between +85 and +100,

inclusive, were included; 3) native English speaker; 4) Average intelligence or

higher (estimated verbal IQ >= 90 according to the National Adult Reading

Test-Revised (NART-R)); 5) free of neurological and psychiatric disease, and

of development disabilities, based on interviews by a neurologist and neuropsy-

chologist to determine neurological and psychiatric history; 6) Other medical
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exclusions include severe hypertension or coronary artery disease, anemia, re-

nal disease, thyroid dysfunction, and medications which affect cerebral blood

flow; 6) Normal visual acuity (20/20 or corrected to 20/20); 7) No factor which

contraindicates MR scanning, including pacemaker, pacemaker wires, aneurysm

clip, or any electronic implant, inner ear surgery, weight over 136kg(300lb),

metal embedded in soft tissue or in the eye, prosthetic eye, pregnancy (as noted

in #6 above), or claustrophobia; 9) No participation in research within the past

year involving exposure to ionizing radiation; 10) No exposure in his or her daily

activity, to ionizing radiation (e.g. CT or PET technicians, etc.).

Item 4. Describe how the participants imaged in the evaluation population were

recruited.

Subjects were recruited from the Iowa City community at large, the University

of Iowa Hospitals setting, and the University of Iowa using newspaper and other

local advertising.

Item 5. Describe the participant sampling, i.e., was the study population a consec-

utive series of participants defined by the selection criteria in items 3 and 4 or

not.

The study population was not a consecutive series, but a sample drawn from a

consecutive series of 240 normal volunteers who were recruited for functional

imaging studies mentioned above.

Item 6. Describe the data collection procedure.
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This is a retrospective study. The MRI data was collected for a previous project.

See the papers [1, 2] for the details.

Item 7. Describe each evaluation statistics in detail and motivate in what context

each makes sense.

See Section 2.4.1, Section 2.4.2, Section 2.4.4, Section 2.4.5, and Section 2.4.6.

Item 8. Describe the technical specifications of the registration algorithm including

all parameters used to generate the results. The executable program used to

generated the results will be made available if possible.

See Section 2.3.

Item 9. Describe the definition of and rationale for the units, cutoffs and categories

used to report the results will be fully described.

Not Applicable. There is no reference standard. Parameters and cutoffs are

chosen to maximize the performance of the registration algorithm. Alternatively,

the registration results produced using different parameters and cutoffs can be

compared with the NIREP framework.

Item 10. Describe the number, training and expertise of the personal segmenting

and approving segmentations and labellings for the evaluation database.

Tissue segmentation was performed by Joel Bruss BA, research assistant II, un-

der the supervision of neurologist Thomas J. Grabowski, MD. Mr. Bruss has

more than five years of experience with anatomical analysis and structural image
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processing. Dr. Grabowski is Associate Professor of Neurology and Radiology,

and has extensive expertise in neuroanatomy, neuroimaging, and image pro-

cessing. Cortical parcellation was performed by Joel Bruss BA and John Allen

PhD, under the supervision of neurologists Hanna Damasio MD and Thomas J.

Grabowski, MD. Combination of tissue segmentation and cortical parcellation

was performed by predoctoral studient Xiujuan Geng, and research assistant II

Joel Bruss BA, under the supervision of Thomas J. Grabowski, MD.

Item 11. Describe whether or not the readers of the index tests and reference stan-

dard blinded to the results of the other tests.

All test statistics are performed by the NIREP software and applied to each reg-

istration method the same way. Therefore the tests are blinded to the outcomes

of other tests.

Item 12. Describe the statistical methods used to quantify the uncertainty, i.e., the

criteria used to denote statistically significant differences between registration

algorithms will be described.

The statistical significance of the differences in the evaluation metrics were as-

sessed using Students t-test. For each metric, the t-test was applied for each

region of interest. Alpha was set equal to 0.05. A two-tailed equal variance

t-test was used for relative overlap and intensity variance. A two-tailed paired

t-test was used for inverse consistency error and transitivity error. A significant

difference was reported if the p value was less than 0.05.
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Item 13. Describe the methods for calculating test reproducibility.

No reproducibility studies were done for the experiments reported in this paper.

Item 14. Report the dates that the study was done.

The SICLE registrations were started on October 27, 2005 and were completed

on March 21, 2005. The SLE registrations were started on February 3, 2006 and

were completed on February 12, 2006. The AIR resgistrations were started on

October 30, 2007 and completed on December 20, 2007. Demons registrations

were started on March, 2008 and completed on May, 2008. Affine registrations

were started on October, 2008 and completed November,2008.

Item 15. Report the clinical and demographic characteristics of the study popu-

lation (e.g., age, sex, spectrum of presenting symptoms, comorbidity, current

treatments, recruitment centers).

See Section 2.2.1.

Item 16. Describe the number of data sets that satisfied the criteria for inclusion

that were or were not included in the evaluation metrics. For example, it is

possible that some registrations may be excluded from analysis if an algorithm

fails to produce a satisfactory registration.

No data sets were excluded from this analysis.

Item 17. Report the time interval from the index tests to the reference standard,

and any treatment administered between them.
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Not Applicable. The MRI scans were collected once per subject. Thus, there

was no treatment administered between them.

Item 18. Report the distribution and severity of any disease (define criteria) in the

evaluation population.

Only normal subjects participated in this experiment.

Item 19. Report a cross tabulation/sorted-graph of the results of the evaluation

metrics with respect to each segmented/labeled region in the reference/template

image volume.

See Section3.1.1,Section3.2.1, Section3.4.1, Section3.5.1 and Section3.6.1.

Item 20. Report any adverse events from performing the index tests or the reference

standard.

Not applicable for the NA0 evaluation database.

Item 21. Report the estimates of diagnostic accuracy and measures of statistical

uncertainty of the evaluation metrics (e.g., 95% confidence intervals).

See Section3.1.1,Section3.2.1, Section3.4.1, Section3.5.1 and Section3.6.1.

Item 22. Describe how indeterminate results, missing responses and outliers of the

index tests were handled.

The evaluation metrics were applied to all the data sets and all results were

used.
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Item 23. Report estimates of variability of diagnostic accuracy between subgroups

of participants, readers or centers, if done.

Not applicable to the current study.

Item 24. Report estimates of test reproducibility, if done.

The evaluation metrics were fixed and give the same answer each time they are

applied.

Item 25. Report the clinical applicability of the study findings.

Colocalization of cortical anatomy is an essential prerequisite to computational

neuroanatomical studies, e.g. those that seek to identify structural brain cor-

relates of conditions that are not associated with overt pathology (e.g. devel-

opmental dyslexia), or those that seek to identify structural brain correlates of

genetic factors. Colocalization of cortical anatomy across normal individuals is

also an important prerequisite to studies of brain function, such as functional

MRI studies of cognition.

3.8.2 STARD Documentation of NA1

The following is a checklist of the 25 items that were reported when document-

ing evaluation results of registration algorithms for the NIREP. The list describes

each checklist item and then gives the required documentation for NA1 database of

18 MRI images with 57 ROIs and the evaluation statistic performance of five non-

rigid registration algorithms described in Section2.3. Investigators that evaluate new

registration algorithms with the NA1 database can refer back to this STARD docu-
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mentation and only have to complete the items that are different. Note that not all 25

items of the STARD documentation are applicable for reporting NIREP registration

results.

Item 1. Describe the purpose of this work.

This is a study of the diagnostic accuracy of non-rigid image registration algo-

rithms.

Item 2. Describe the study aim.

The goal of this study is to establish, maintain, and endorse a standardized set of

relevant benchmarks and metrics for performance evaluation of nonrigid image

registration algorithms.

Item 3. Describe how the database images were selected for the evaluation popula-

tion including the inclusion and exclusion criteria.

See Section2.2.2.1.

Item 4. Describe how the participants imaged in the evaluation population were

recruited.

These 18 subjects will be recruited from 1) the University Hospital setting,

recruited through local advertising; 2) local communities; in Iowa, recruited

through newspaper advertising ( and with special targeting of minority popu-

lations); 3)a dataset of approximately 80 normal control subjects who agree to

be contacted for future studies under IRB# 2000303002 - Mechanisms of Peri-

metric Variability - Michael Wall, PI. 4) college students at the University of
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Iowa, through local advertising; 5) Referral from colleague - Patients of Michael

Wall, MD. Dept. of Neurology, who is a coinvestigator on this project; 6) Other-

Word of mouth.

Item 5. Describe the participant sampling, i.e., was the study population a consec-

utive series of participants defined by the selection criteria in items 3 and 4 or

not.

Yes, the study population was a consecutive series of participants defined by the

selection creteria in item 3 and 4.

Item 6. Describe the data collection procedure.

This is a prospective study.

Item 7. Describe each evaluation statistics in detail and motivate in what context

each makes sense.

See Section2.4.1, Section2.4.2, Section2.4.4, Section2.4.3, Section2.4.5, and

Section2.4.6.

Item 8. Describe the technical specifications of the registration algorithm including

all parameters used to generate the results. The executable program used to

generated the results will be made available if possible.

See Section 2.3.

Item 9. Describe the definition of and rationale for the units, cutoffs and categories

used to report the results will be fully described.
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Not Applicable. There is no reference standard. Parameters and cutoffs are

chosen to maximize the performance of the registration algorithm. Alternatively,

the registration results produced using different parameters and cutoffs can be

compared with the NIREP framework.

Item 10. Describe the number, training and expertise of the personal segmenting

and approving segmentations and labellings for the evaluation database.

Tissue segmentation was performed by Joel Bruss BA, research assistant II,

under the supervision of neurologist Thomas J. Grabowski, MD. Mr. Bruss

has more than five years of experience with anatomical analysis and structural

image processing. Dr. Grabowski is Associate Professor of Neurology and Ra-

diology, and has extensive expertise in neuroanatomy, neuroimaging, and image

processing. Cortical parcellation was performed by Joel Bruss BA under the su-

pervision of neurologists Hanna Damasio MD and Thomas J. Grabowski, MD.

Combination of tissue segmentation and cortical parcellation was performed by

predoctoral studient Ying Wei, and research assistant II Joel Bruss BA, under

the supervision of Thomas J. Grabowski, MD.

Item 11. Describe whether or not the readers of the index tests and reference stan-

dard blinded to the results of the other tests.

All test statistics are performed by the NIREP software and applied to each reg-

istration method the same way. Therefore the tests are blinded to the outcomes

of other tests.



95

Item 12. Describe the statistical methods used to quantify the uncertainty, i.e., the

criteria used to denote statistically significant differences between registration

algorithms will be described.

The statistical significance of the differences in the evaluation metrics were as-

sessed using Students t-test. For each metric, the t-test was applied for each

region of interest. Alpha was set equal to 0.05. A two-tailed equal variance

t-test was used for relative overlap and intensity variance. A two-tailed paired

t-test was used for inverse consistency error and transitivity error. A significant

difference was reported if the p value was less than 0.05.

Item 13. Describe the methods for calculating test reproducibility.

No reproducibility studies were done for the experiments reported in this paper.

Item 14. Report the dates that the study was done.

All the registrations were started on September, 2008 and were completed on

December, 2008.

Item 15. Report the clinical and demographic characteristics of the study popu-

lation (e.g., age, sex, spectrum of presenting symptoms, comorbidity, current

treatments, recruitment centers).

See Section2.2.2.1.

Item 16. Describe the number of data sets that satisfied the criteria for inclusion

that were or were not included in the evaluation metrics. For example, it is
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possible that some registrations may be excluded from analysis if an algorithm

fails to produce a satisfactory registration.

Six datasets of NA1 were included for this analysis.

They are 3065,3362,3368,3402,3407,3413.

Item 17. Report the time interval from the index tests to the reference standard,

and any treatment administered between them.

Not Applicable. The MRI scans were collected once per subject. Thus, there

was no treatment administered between them.

Item 18. Report the distribution and severity of any disease (define criteria) in the

evaluation population.

Only normal subjects participated in this experiment.

Item 19. Report a cross tabulation/sorted-graph of the results of the evaluation

metrics with respect to each segmented/labeled region in the reference/template

image volume.

See Section3.1.1,Section3.2.1, Section3.3,Section3.4.1, Section3.5.1 and Section3.6.1.

Item 20. Report any adverse events from performing the index tests or the reference

standard.

Not applicable for the NA1 evaluation database.

Item 21. Report the estimates of diagnostic accuracy and measures of statistical

uncertainty of the evaluation metrics (e.g., 95% confidence intervals).
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See Section3.1.1,Section3.2.1, Section3.3,Section3.4.1, Section3.5.1 and Section3.6.1.

Item 22. Describe how indeterminate results, missing responses and outliers of the

index tests were handled.

The evaluation metrics were applied to 6 data sets and all results were used.

Item 23. Report estimates of variability of diagnostic accuracy between subgroups

of participants, readers or centers, if done.

Not applicable to the current study.

Item 24. Report estimates of test reproducibility, if done.

The evaluation metrics were fixed and give the same answer each time they are

applied.

Item 25. Report the clinical applicability of the study findings.

See Chapter5.
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CHAPTER 4
DISCUSSION

4.1 Comparison between registration performance with respect to ARO

We know that bigger ARO value, the better the performance of a registration

algorithm. As shown in Figure 3.1, Figure 3.2, Table 3.1.1 and Table 3.1.2, the overall

best ARO statistic result is given by Demons algorithm. Also SLE and SICLE perform

well too. From both the ARO statistic graph and numbers, SLE performs slightly

better than SICLE. AIR and Affine work worse than these former three, yet there are

still some improvements than rigid registration.

ARO statistic values range from nearly 0 to 0.55 in most ROIs, except ROIs

52-57 which already have large RO after rigid registration. The reason that these

numbers are low is due partly to complexity of brain cortex and partly to the small

ROIs that were used and especially ROIs just include graymatter. One advantage of

these low ARO numbers is that it can serve as a good bench mark for future more

advanced registration algorithms.

4.2 Comparison between registration performance with respect to

normalized ROI Overlap

Figure 3.3 and Figure 3.4 shows that Affine and AIR have improvements than

rigid registration, as there are more complete overlap regions(red color). SLE and

SICLE have improvements over these two again. Moreover, Demons performs best
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as we can see most red color which means complete overlap of all the corresponding

ROIs with target image in Demons’ result.

4.3 Comparison between registration performance with respect to

alignment of calcarine sulci

Figure 3.5 shows after non-rigid registrations all the calcarien sulci point sets of

other subjects are much closer to that of target subject than rigid registration result.

We can see clearly all the other colors are closer to Yellow. Demons always perform

best in alignment of these calcarine sulci. SLE performs better than AIR and SICLE,

though these two win some of the performance measures as well. Affine has worst

performance among these 5 registration algorithms but it still have an improvement

than rigid registration.

4.4 Comparison between registration performance with respect to IV

Figure 3.6, Figure 3.7, Table 3.4.1 and Table 3.4.2 show that Demons out-

performs the other 4 non-rigid registration algorithms with respect to IV statistic.

SLE algorithm achieves a slightly smaller average intensity variance than SICLE. AIR

performs much better than Affine in IV statistic. And Affine registration algorithm is

sometimes even bad than rigid registration. This is because Affine just apply a simple

rotation, translation or scaling here and this might cause worse intensity variance.

4.5 Comparison between registration performance with respect to ICE

Figure 3.8, Figure 3.9, Figure 3.10, Figure 3.11, Table 3.6 and Table 3.7 show

that the SICLE algorithm has significantly less ICE than the SLE, Demons and
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AIR. ICE statistic between SLE and SICLE shows that even though there is a slight

drawback for adding the inverse consistency constraint like the results shown in RO

and IV statistics, it is more than made up for by reducing ICE. The ICE of Affine is

much significantly smaller than the other registration algorithms, even SICLE. This

should result from the fact that Affine registration done by AIR5.2.5 gives two forward

and reverse transformation matrixes as the inverse of each other. So that the ICE

result of Affine is almost zero.

4.6 Comparison between registration performance with respect to TE

Likewise, the SICLE algorithm has less TE than the SLE, Demons and AIR.

Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15 and Table 3.8 and Table 3.9show

that the inverse consistency constraint also reduced the transitivity error produced

by the SICLE algorithm compared to the other registration algorithms. With respect

to TE, evaluation results of NA1 and NA0 give different evaluation results on Affine.

One is the smallest and the other is the biggest among all registration algorithms.

This means small ICE does not guarantee small TE. Yet if TE is small, ICE should

be small in the other hand. Take NA1 database for instance. Though Affine performs

perfect in ICE statistic, yet as it is a very simple registration algorithm and has very

less consideration of transitivity property of registration transformations, so it gives

the worst TE performance among all these five registration algorithms.
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4.7 Analyze of the evaluation results of different registration algorithms

From the evaluation results of 6 statistics shown in previous sections, we can

make some conclusions. First we can see affine and AIR perform worse in almost

all the aspects than SICLE, SLE and demons, as they have very low dimensional

transformation. The transformation of affine and AIR has 12 parameters and 168

parameters respectively, whereas transformation of demons is presented by vector field

image and has very high dimensional parameterization (about 4∗107 in the 256∗256∗

300 image). Transformations of SICLE and SLE are parameterized by Fourier series,

which also have much higher parameterization than AIR and affine. The higher

dimensional transformations can better model correspondences between anatomies

with complex differences than lower dimensional transformations. Moreover, demons

implemented in this work performs best in all similarity-based statistics, yet nearly the

worst for ICE and TE, as it has less constraint that SICLE and SLE on transformation

properties. This demonstrate that there is a trade-off between adding more constraint

for improving transformation properties and getting smaller similarity-based error.

The fact that one registration algorithm produced the best result for one criterion

and nearly the worse for another, illustrates the need to use multiple evaluation

criteria. Also, Then SICLE has nearly best performance on ICE and TE statistic

evaluation. This shows us the inverse consistency constraint reduced the TE as well.

SLE and SICLE algorithms are nearly identical except that the SICLE algorithm has

an additional inverse consistency constraint. From this fact we demonstrate again that

the trade-off of adding the extra inverse consistency constraint is that the registration
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is a little bit worse with respect to the similarity-based statistics. Finally, if users

would like to receive recommendation for choice of algorithm for their specific use.

We can suggest users to choose demons among these five registration algorithms if

similarity-based statistics are more concerned in their application and choose SICLE

if good transformation-based properties are more important.

4.8 Discussion of registration of evaluation through functional image

Results of the evaluation by fMRI do not show a good trend of NCC among

different registration algorithms. Because fMRI included in this work is the phase

value of eccentricity, the phase value is supposed to change along calcarine sulcus

and follow this trend: from the starting point of calcarine sulcus to the joint point

of calcarine sulcus and parietooccipital fissure, functional response corresponds from

the center to the outside of the visual field in eccentricity stimulation. Yet the result

shows that there should be a variability of this trend among different individuals.

To find more details of the variability which might cause the absence of a

trend, we picked up the phase values along the calcarine sulcus to show that the

phase value trend along calcarine sulcus varies among different individuals. Here we

chose the starting point of calcarine sulcus in those slices (in coronal plane) which

have calcarine sulcus point sets outlined, instead of the bottom of calcarine sulcus.

The reasons are: (1) the bottom of calcarine sulcus always has braches and is more

complicated than the starting point; (2) while moving towards the end of calcarine

sulcus, sometimes the starting point still has a response whereas the bottom point

does not have a response already.
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Figure 4.1 shows an example of the starting point we chose of calcarine sulcus.

The red line is the calcarine sulcus in coronal plane. And green point is the starting

point we chose to represent the calcarine sulcus in each slice. The numbers show there

are six continuous slices, and the situation here is a little bit complicated. There are

two branches. In Slice 1 we can see a small new branch comes up in additional to our

original one. We still chose the starting point of the original one and ignore the new

small one till these two branches joint to be one.

Figure 4.1: The starting point of Calcarine sulcus chosen in each slice

Next we calculated the phase value of each point by taking the averaged phase

value in its neighborhood with a radius 1. Each point represented the phase in one

position of calcarine sulcus, and by combining them, we saw how the phase value

of eccentricity change along calcarine sulcus. All the lengths of calcarine sulcus are

normalized to a same length.

Figure 4.2 shows the trend of phase value in eccentricity response along cal-
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carine sulcus in left brain among different subjects. It is kind of follow the trend

that along calcarine sulcus: the phase values are decreased, i.e., from center to the

outsider in visual field under eccentricity stimulation (+pi represents center and -pi

represents most-outsider). Yet some subjects have a sudden sharp increase in phase

value (as 3065, red line).

Figure 4.2: Trend of phase value in eccentricity response change along Calcarine
Sulcus in left brain

Figure 4.3 shows the trend of phase value in eccentricity response along cal-

carine sulcus in right brain among different subjects. This time is very complicated

and there seems no apparent trend here. More, in some subjects, the phase value

increase first and decrease, which should not be correct.



105

Figure 4.3: Trend of phase value in eccentricity response change along Calcarine
Sulcus in right brain
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CHAPTER 5
CONCLUSION

Image registration is important for many applications. Non-rigid image reg-

istration is a more general approach than the widely used affine and rigid methods,

but requires more complex methodology and computational effort to implement. We

have started the NIREP to develop software tools and provide shared image evalua-

tion databases for rigorous testing of non-rigid image registration algorithms.

In this thesis work, NIREP NA0 and NA1 databases have been established and

released to the research community through XNAT central. To show the ability to

evaluate the registration algorithms by these two common databases, the performance

of five non-rigid registration algorithms (affine, AIR, demons, SLE and SICLE) were

evaluated using 22 images from two NIREP neuroanatomical evaluation databases.

Six evaluation statistics (relative overlap, intensity variance, normalized ROI overlap,

alignment of calcarine sulci, inverse consistency error and transitivity Error) were

used to evaluate and compare registration performances. Tables, graphs, images and

analysis reports were produced to help interpret registration performances and com-

pare registration results. The results suggest that the demons registration algorithm

produced the best registration results with respect to the relative overlap statistic but

produced nearly the worst registration result with respect to the inverse consistency

statistic. The fact that one registration algorithm produced the best result for one cri-

terion and nearly the worst for another, illustrates the need to use multiple evaluation
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criteria. To conclude, the evaluation results show that SICLE, SLE and demons work

better in almost all the aspects than those registration algorithms which have lower

dimensional transformations, such as AIR and affine. All these non-rigid registra-

tion results have improved the results of the rigid registration. This work illustrates

the need to archive registration algorithms’ performances so that investigators can

choose the best registration algorithm based on their own needs. Archiving registra-

tion results can also help drive future innovation in the non-rigid image registration.

This work presents that people can download our databases to evaluate their own

registration algorithms through these common databases by NIREP.

In this thesis, we focus on the description of the NIREP evaluation framework

and show how it can be used to evaluate non-rigid registration algorithms. This

evaluation framework can be easily extended by adding more statistics and additional

evaluation databases.
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CHAPTER 6
PROBLEMS AND FUTURE WORK

For each pair of MR images, a transformation to deform the source image

to the target image was computed by registration algorithms and then stored in a

transformation database. With respect to transformation format, there is a tradeoff

between storage and computation time. For example, AIR software will generate .air

transformation file for Affine and .warp for AIR, which record 12 parameters and 168

parameters for registration models respectively. So that we need to select different

transformation reader to read these transformation files. Or we can use space to

save computation time, that is, to save transformation in displacement image-vector

image format. Vector image is used in ITK for a lot of registration algorithms and has

more generality. So that if the transformation format of a new registration algorithm

does not have the corresponding reader in the NIREP software, displacement images

provided by user can be used instead.

Also, we plan to expand and enrich the non-rigid registration evaluation MR

brain database by including MR data sets with functional markers (fMRI). Yet the

preliminary studies show that the evaluation results can give few trend among al-

gorithms and cannot tell which algorithm performs better than others. We need to

revise the statistic of fMRI to evaluate registration algorithms. In the future, we plan

to find a better way to evaluate the variance of functional response among individuals.

Following the evaluation procedure presented in this thesis, we can evaluate
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new registration algorithm by adding more standardized data sets, new statistics and

new evaluation results of other algorithms. The new evaluation results will be avail-

able to the research community through the standardized documentation. Different

evaluation results enable generalizable conclusions to be drawn to predict how well

a certain algorithm may perform on a different image modality, different body or-

gan, different experimental setup, different parameters, on animal data, or using an

additional constraint.
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