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ABSTRACT

Intensity modulated radiation therapy (IMRT) is a modern cancer therapy

technique that aims to deliver a highly conformal radiation dose to a target tumor

while sparing the surrounding normal tissues. The prescribed dose is specified by an

intensity map (IM) matrix and often delivered by a multileaf collimator (MLC).

In this thesis, we study a set of combinatorial optimization problems arising in

the field of IMRT: 1) the auto-contouring problems using region properties, which aim

to optimize the intraclass variance of the target objects; 2) the field decomposition

problems, whose goal is to decompose a “complex” IM to the sum of two “simpler”

sub-IMs such that the two sub-IMs are delivered in orthogonal directions to improve

the delivery efficiency; 3) the field splitting problems, which seek to split a large IM

that can not be directly delivered by MLC into several separate sub-IMs of size no

larger than the given MLC size and the delivery effectiveness is optimized.

Our algorithms are based on combinatorial techniques – mostly graph-based

algorithms. We strive to find the globally optimal solution efficiently – in a linear or

low polynomial time. In the case that the exact algorithm is not efficient enough, an

approximation algorithm is also developed for solving the problem.

We have implemented all the proposed algorithms and experimented on computer-

generated phantoms and clinical data. Comparing with results supervised by experts,

the auto-contouring algorithms yield highly accurate results for all tested datasets.

The field decomposition and field splitting methods produce treatment plans of much
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better quality while comparing with the state-of-the-art commercial treatment plan-

ning system.
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ABSTRACT

Intensity modulated radiation therapy (IMRT) is a modern cancer therapy

technique that aims to deliver a highly conformal radiation dose to a target tumor

while sparing the surrounding normal tissues. The prescribed dose is specified by an

intensity map (IM) matrix and often delivered by a multileaf collimator (MLC).

In this thesis, we study a set of combinatorial optimization problems arising in

the field of IMRT: 1) the auto-contouring problems using region properties, which aim

to optimize the intraclass variance of the target objects; 2) the field decomposition

problems, whose goal is to decompose a “complex” IM to the sum of two “simpler”

sub-IMs such that the two sub-IMs are delivered in orthogonal directions to improve

the delivery efficiency; 3) the field splitting problems, which seek to split a large IM

that can not be directly delivered by MLC into several separate sub-IMs of size no

larger than the given MLC size and the delivery effectiveness is optimized.

Our algorithms are based on combinatorial techniques – mostly graph-based

algorithms. We strive to find the globally optimal solution efficiently – in a linear or

low polynomial time. In the case that the exact algorithm is not efficient enough, an

approximation algorithm is also developed for solving the problem.

We have implemented all the proposed algorithms and experimented on computer-

generated phantoms and clinical data. Comparing with results supervised by experts,

the auto-contouring algorithms yield highly accurate results for all tested datasets.

The field decomposition and field splitting methods produce treatment plans of much
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ning system.
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CHAPTER 1
INTRODUCTION

The study of mathematical and geometric optimization problems is becoming

an important research area. Many application problems arise in this field and exten-

sive studies have been done to solve these problems. In this thesis, we propose to

solve a set of combinatorial optimization problems in the field of intensity-modulated

radiation therapy (IMRT).

1.1 Basic Concepts in IMRT

IMRT is a modern cancer therapy technique [23, 10] that aims to deliver a

highly conformal radiation dose to a target tumor while sparing the surrounding

normal tissues.

The prescribed dose distribution of radiation is commonly described by an

intensity map (IM), which is specified by a set of nonnegative integers on a 2-D grid

(see Figure 1.1(a,b)). The number in a grid cell indicates the amount (in unit) of

radiation to be delivered. The delivery is done by a set of radiation beams orthogonal

to the IM grid.

Most commonly the external radiation beams are delivered by a linear accel-

erator (LINAC) (see Figure 1.2). The linear accelerator uses microwave technology

to accelerate electrons in a “wave guide”, then allows these electrons to collide with

a high atom number metal (usually tunsten) target. As a result of the collisions,

high-energy x-rays are produced from the target and become the radiation source.
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Figure 1.1: Illustration of intensity map(IM) and multileaf collimator (MLC). (a)
An example of dose distribution. (b) The intensity map (IM) corresponding to dose
distribution in (a). (c) An example of multileaf collimator (MLC).

Figure 1.2: A linear accelerator (LINAC).
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An advanced tool today for IM delivery is the multileaf collimator (MLC) [74].

An MLC consists of many pairs of tungsten alloy leaves of the same rectangular shape

and size (see Figure 1.1(c)). The leaves can move left and right to form a rectilinear

region, called an MLC-aperture. Each MLC-aperture is associated with an integer

representing the radiation units delivered by its radiation beam.

Comparing with 3D conformal radiation therapy (3DCRT), which uses 3D

anatomic information and delivers highly “conformed” radiation to the target volume

as closely as possible [49], IMRT has several advantages:

1. IMRT has the ability to conform the treatment volume to concave tumor shapes,

which yields better tumor targeting and less normal tissue complication.

2. IMRT can deliver higher radiation to tumor and thus we can achieve better

tumor control.

1.2 The Basic Workflow of IMRT

The workfolw of an MLC-based radiation treatment usually consists of the

following steps:

1. Determine the tumor contour and the contours of nearby organs-at-risk. Ta-

ble 1.1 lists some contour related terms used in treatment planning.

Radiation therapy seeks to effectively irradiate CTVs while avoiding surround-

ing normal tissues and critical structures (OARs). To minimize radiation to

normal tissue, CTV and surrounding OARs must be precisely defined. Cur-

rently this is done on CT or MRI scans of the patient (Figure 1.3) and this
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Table 1.1: Contour related terms [35]

gross tumor volume GTV Gross palpable, visible, or clinically
demonstrable disease

clinical target volume CTV GTV plus an extension for subclinical
(microscopic) malignant disease

planning target volume PTV CTV plus a setup margin (SM) for un-
certainties in patient positioning and
alignment of the therapeutic beams

organ at risk OAR any organ or compartment of normal
tissue which might be significantly im-
pacted by the radiation dose delivered

procedure is called contouring. Currently, contouring is carried out manually

by physician based upon clinical disease information by marking the perime-

ter of CTV on each image slice [50]. This may not be effective, and it may

be time-consuming and subjective – there are considerable variations of con-

touring. Many interactive semi-auto contouring methods were then developed:

these methods start with specialists’ manual contours and then an intelligent al-

gorithm searches around the contours and shapes the contours to the structures

so they match the structures [56, 50]. This greatly improves the efficiency of the

contouring process and reduces the subjectivity of GTV. These computer-aided

contour modules are usually integrated into the treatment planning software

and are the currently desirable approaches in clinical practice. With the devel-

opment of image segmentation techniques, less and less interaction needs to be

involved in the contouring process (e.g., only a 3-D box is needed as the bound

of the contour, which is not necessarily tight to the tumor/structure.) There are
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Figure 1.3: CT scans of a cervix tumor superimposed with dose distribution. (a)
Transverse view (b) coronal view and (c) beam angle selection.

also fully automatic contour segmentation algorithms being developed [19, 54].

Besides determining the contours, the prescription dose (i.e., energy we want to

impart to the irradiated PTV, e.g., 72Gy ), fractionation plan (e.g., 1.8Gy per

day) and constraints, such as priority for overlapped structures and penalties,

are also specified in this step.

2. Beams are then selected and optimized [12, 17]. We want to simplify the use

of beams while maintaining a good quality of the plan. Less sensitive tissues or

organs should be chosen as passage of radiation. Usually 4 to 9 such passages

are chosen to apply beams (see Figure 1.3(c)).

Beams are then optimized. The quantity optimized is an intensity map for

each beam direction, comprised of beam elements (beamlets) that are typically

square and the side length of the beamlet is equal to the width of an MLC

leaf. Optimization is accomplished via a deterministic method that assesses
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the dose distribution [75, 4]. After each iteration of optimization, the dose

distribution along each beam is calculated and then compared with the goal. It

determines how much the dose goal is violated and how much change should be

applied to the beamlets. At the end of each iteration, an objective function is

evaluated to see how well the current dose distribution conforms the dose goal.

The optimization terminates when an objective function goal is achieved or the

maximum number of iterations is reached.

3. Radiation delivery. The intensity maps computed in step 2 is the dose to be de-

livered in intensity-modulated radiation therapy[24, 74, 82]. The system needs

to know how to used MLC to deliver the dose. This process is known as leaf se-

quencing or conversion. There are two basic types of radiation delivery scheme:

static and dynamic leaf sequencing.� Static leaf sequencing (SLS): SLS is also known as “step-and-shoot” deliv-

ery. In SLS, MLC does not move when the beam is on - the beam is turned

off and wait the MLC-aperture to form, and then the beam is turned on to

deliver a specific dose [7, 6]. Figure 1.4 shows an example of leaf sequenc-

ing for a given intensity map. The reader is referred to [82, 3, 30, 15] for

more details on the step-and-shoot IMRT technique.� Dynamic leaf sequencing: In dynamic leaf sequencing [22, 51], the MLC

leaves keep moving across the IM field with the radiation beam remains

on.
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Figure 1.4: An example of static leaf sequencing for an IM.

Following the leaf sequencing, the prescribed dose is delivered to the patient.

4. Verification. The is the final step of IMRT. Patient-specific quality assurance

(QA) procedures such as the comparison of the percent difference between mea-

surements and planned results for IMRT treatments are carried out. Film and

ion-chamber measurements are often used as verification methods. The goal of

this procedure is to ensure accurate and consistent treatments for each patient.

1.3 Efficiency and Quality Measure of Static

Leaf Sequencing

Mathematically, the static leaf sequencing planning can be viewed as the fol-

lowing matrix decomposition problem: Given an intensity map A (i.e., a matrix),

decompose A into the form of A =
∑κ

i=1 αiSi, where Si is a special 0-1 matrix speci-

fying an MLC-aperture, αi is the amount of radiation delivered through Si, and κ is

the number of MLC-apertures used to deliver M (see Figure 1.4).

There are two obvious measures for the efficiency of the step-and-shoot de-

livery: (1) the number of MUs (beam-on time) which is given by
∑κ

i=1 αi, and (2)

the number κ of MLC-apertures used. The number of MUs is the actual amount of

radiation delivered to the patient and is proportional to the time that the patient is
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exposed to the radiation (beam-on time). Minimizing number of MUs is crucial to

reduce the patient’s risk under irradiation and to reduce the delivery error caused by

the tumor motion [3]. On the other hand, minimizing the number of MLC-apertures

used for each IM (hence, minimizing the treatment time of each IM) is also impor-

tant because it not only lowers the treatment cost for each patient but also enables

hospitals to treat more patients [15].

The delivery error (accuracy) can also be used as a quality measure of SLS

planing. Due to the special geometric shapes of the MLC leaves [14, 57, 69, 74, 82, 83]

(i.e., the tongue-and-groove interlock feature), an MLC-aperture cannot be delivered

perfectly. Instead, there is a delivery error between the planned dose and actual

delivered dose [14, 57] (called the tongue-and-groove error in medical literature [74,

82, 83]). Chen et al. [16] showed that for an IM A = (ai,j)m×n of size m × n, the

minimum amount of error for delivering A is captured by the following formula (note

that A contains only nonnegative integers):

Err(A) =

n
∑

j=1

{

a1,j +

m−1
∑

i=1

|ai,j − ai+1,j |+ am,j

}

. (1.1)

Minimizing the delivery error is important because according to a recent

study [26], the maximum delivery error can be up to 10%, creating underdose/overdose

spots in the target region.
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1.4 Summary of Target Problems and Our

Main Results

In this thesis, we study various combinatorial optimization problems that arise

in the treatment planning and delivery process to improve the effectiveness of IMRT.

1.4.1 Auto-Contouring Using Regional Properties

As mentioned in Section 1.2, tumor and organ contouring is the first step of

the workflow of IMRT. An accurate contouring is the basis of a good IMRT plan-

ning. Many image segmentation methods have been developed to facilitate automatic

contouring.

While edges defined by image gradients are commonly used for image segmen-

tation, many object boundaries in medical image data may lack strong edges, e.g.,

when multiple adjacent objects with similar intensity profiles that may be locally noisy

and not exhibit distinct edge properties, are present in an image. Image segmentation

having the capability of handling weak edges is crucially important in medical image

analysis. Intraclass variance has been successfully used in the well-known Chan-Vese

active contour model without using image gradient [11], which is based on a piece-

wise constant minimal variance criterion of the Mumford-Shah functional [60]. The

following formula captures the intraclass variance, which is the data-driven term of

the energy function used by Chan and Vese:
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E(S) =

∫

inside(S)

|u0(x, y, z)− c1|
2dxdydz

+

∫

outside(S)

|u0(x, y, z)− c2|
2dxdydz (1.2)

where u0 is the image, S is a variable boundary surface, and the constants c1, c2,

depending on S, are the averages of u0 inside and outside S, respectively. This

energy function (intraclass variance) was proved capable of producing promising re-

sults [11]. However, Chan and Vese’s method lacks the ability of finding the global

optimality. Chan and Vese also considered two regularization terms in their energy

function, which regularize the length of the boundary and the area of the region.

These regularization terms tend to smooth the boundary of the target object.

Our algorithm is based on the shape probing technique used in computational

geometry and computes a sequence of minimum-cost closed sets in a derived para-

metric graph.

Furthermore, we develop an approximation method which runs much faster

than the exact algorithm while yielding highly comparable segmentation accuracy.

A more efficient algorithm for a simplified version of the problem - single surface

detection (SSD) problem - is also provided.

Methods using graph-searching principles [59, 58, 63, 71, 32] have become ones

of the most frequently utilized medical image segmentation tools in 2-D. But it was

not until recently that graph-search methods were extended to d-D (d ≥ 3). Wu et
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al. [79] first developed a graph-search based method for single surface detection and

then Li et al. [53] extended the work for detection of multiple interacting surfaces.

The basic idea is to formulate the tasks as a minimum-cost closed set problem in

graph theory, which can be solved by a minimum s-t cut algorithm.

Recently, the graph-cut based segmentation methods of Boykov et al. (e.g., [8]),

which represent an option for optimally performing segmentation tasks in 3-D, have

attracted a lot of attention. The cost function employed in their work follows the

“Gibbs model”, which is general enough to include both the region and boundary

properties of the target objects. Their approach, which is topologically flexible and

shares some elegance with the level set methods, has been quite successful. Though

desirable for segmenting objects of unknown structures in many applications, topol-

ogy flexibility in medical image segmentation may sometimes be considered a liabil-

ity rather than an advantage since many medical structures have known topologies.

Furthermore, Boykov et al. ’s methods are at least non-trivial to be extended to si-

multaneous detection of coupled surfaces. Grady [37] recently developed a method

for computing discrete minimal surfaces using linear programming.

The method we propose has been validated on computer-synthetic volumetric

images and in X-ray CT-scanned datasets of plexiglas tubes of known sizes. Its

applicability to clinical data sets is also demonstrated. In all cases, the approach

yields highly accurate results.
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1.4.2 Field Decomposition

In current SLS method, MLC leaves move along one direction (say, horizontally

or vertically) to deliver the IMs during the entire delivery process. This uni-direction

delivery may not fully utilize the capacity of the advanced MLC, which is rotatable.

In fact, in order to improve the effectiveness of the IMRT delivery, it was proposed

recently to rotate the MLC between the delivery of different segments of an IM [20, 29,

40, 44]. Several authors have reported variations on standard MLC-based techniques

that attempt to improve the spatial resolution of fluence maps by rotating MLC [70,

31]. Later people considered delivering IMs by rotating the MLC to reduce interleaf

leakage, tongue-and-groove effects and increase maximum deliverable field size [62].

The rotating capacity of MLC was also used to increase the maximum deliverable

dose [66].

We propose to use two orthogonal directions to deliver an IM (i.e., horizontal

and vertical). The intensity map is first decomposed to the sum of two “simpler”

sub-intensity maps (sub-IM), and then, the sub-IMs are delivered in two orthogonal

directions. This is a decomposition problem optimizing the total complexities of the

two resulting sub-IMs. The complexity of an IM is not well defined, we use two

different measures.

For each complexity measure, we develop an efficient algorithm for solving the

IM matrix orthogonal decomposition problem.

Our algorithm is based on a non-trivial graph construction scheme, which

enables us to formulate the decomposition problem as computing a minimum s-t cut
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in a 3-D geometric multi-pillar graph. Experiments on clinical intensity maps on

Pinnacle show that our algorithm can improve the efficiency of the treatment plan.

Using the first complexity measure, our algorithm produces as much as 27.3% less

MLC-apertures with an average of 13.1% comparing with the SLS method using a

single direction for delivery. Our second complexity measure performs better in terms

of number of MUs. Using our decomposition algorithm, the average improvement

percentage of number of MUs is 45.1%.

1.4.3 Field Splitting

One common constraint of the MLC is called the maximum leaf spread: each

MLC leaf can only travel away from the vertical center line of the MLC within a

certain threshold distance. Note that during the delivery of an IM, the vertical center

line of the MLC is always aligned with the center of the IM. Geometrically, the

maximum leaf spread means the rectilinear y-monotone polygon corresponding to

each MLC-aperture has a maximum horizontal ”width” ̟ (e.g., ̟ = 14.5cm for the

Varian MLCs). But we need to point out here that not all MLC systems require field

splitting, e.g., Siemens MLCs and Tomotherapy, in which the radiation is delivered

slice-by-slice, do not require field splitting in clinical practice.

In current clinical radiation therapy, large intensity maps occur [28, 42, 76].

Hong al. [42] did experiments on whole abdomen irradiation for 10 patients in which

the GTV (gross target volume, which is the palpable, visible, or clinically demonstra-

ble disease) included the entire peritoneal cavity. The PTV (planning target volume)

extended 1cm beyond the GTV in both the superior and the inferior direction and
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has a margin of 5mm around GTV. Among the 10 patients, the ranges of PTV di-

mensions were: length 35 - 46cm (median 44cm), width 27 - 35cm (median 30cm),

and depth 17 - 23cm (median 19cm). Due to the maximum leaf spread constraint,

a large IM needs to be split into several sub-IMs each being delivered separately

using the step-and-shoot delivery technique. However, such splitting may result in

lowered efficiency and increased delivery error, and thus compromise the treatment

quality. The field splitting problem, roughly speaking, is to split an IM of a large size

into multiple sub-IMs whose sizes are no larger than a threshold size, such that the

treatment quality is optimized.

I

Xj X

I

Xj XX´j

e

I

Xj XX´j

e

Figure 1.5: Illustration of hotspot and coldspot caused by field splitting, the top
profile shows the desired profile split at xj , due to field mismaching, the left end of
right field is positioned at x′j and the fields may overlap as in bottom left to cause
hotspot or be separated as in bottom right to cause coldspot.
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One simple way to split a large IM is to use straight lines, yielding abutting

sub-IMs. One of the problems associated with this field splitting method is the field

mismatching problem that occurs in the field junction region due to the uncertainties

in setup and organ motion [46, 76]. If the borders of two abutting sub-IMs do not

precisely align each other, it may result in hotspots or coldspots (see Figure 1.5). To

alleviate the field mismatching problem, a commonly used medical practice is to apply

a so-called field feathering technique [28, 46, 76]. Using this technique, a large IM

A is split into a set of sub-IMs, A1, A2, . . . , AK , such that each sub-IM Ak is subject

to the maximum field size constraint, and any two adjacent sub-IMs overlap over

a central feathering region. Note that in the former splitting method, each IM cell

belongs to exactly one sub-IM; but in the latter method, each cell of the feathering

region can belong to two adjacent sub-IMs, with non-negative intensity value in both

sub-IMs as in Figure 1.6. While splitting an IM into multiple sub-IMs to minimize

the total complexity, it is also desirable to minimize the maximum number of MUs

of the resulting sub-IMs. The motivation for this optimization is that, during the

delivery of each sub-IM, the patient may move, and the larger the number of MUs of

a sub-IM, the higher chance of body motion is. Thus it is good not to have a sub-IM

after splitting with a large number of MUs.

A few field splitting algorithms have been recently reported in the literature

to address the issue of treatment delivery efficiency and accuracy for large IMs. Early

studies focused more on measures other than efficiency, e.g., the magnitude of hot/cold

spots. Wu et al. [76] proposed a dynamic ”feathering” technique where the subfields
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Figure 1.6: Illustrating field splitting without (the lower left panel) and with (the
right panel) feathering. The upper left panel shows the original IM. The feathering
region consists of two columns.

overlap each other by a small amount, and the intensity in the overlapping region

gradually decreases in one subfield and increases in the other. Dogan et al. [28]

employed the methods of shifting the isocenter position along the target width and

introduced a “pseudo-target” to modify the split line positions, thereby reducing the

magnitude of hot/cold spots. Later researchers put more efforts on preserving delivery

efficiency when splitting the intensity map. To our best knowledge, Kamath et al. [47]

first gave an O(mn2) time algorithm to split an m× n IM with or without feathering

using vertical lines into at most three sub-IMs (thus restricting the maximum width of

a large IM) while minimizing the total number of MUs. They further extended their

algorithm to a more general case in which the field width was the only constraint [45].

However, their algorithm again works only when the width of the input IM is ≤

3̟, where ̟ is the maximum allowed field width. However, the current use of the
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high resolution motorized micro multi-leaf collimator (micro-MLC), which is usually

designed for the treatment of lesions smaller than 8.0cm (e.g., a micro-MLC system

manufactured by MRC systems GmbH Heidelberg has a maximum field width of

7.2cm [61]), may require the field splitting method to have the capability of splitting

an IM into over three sub-IMs in order to treat large tumor sites. Wu [77] formulated

the field splitting without feathering problem for an arbitrary field width ̟ using

vertical lines as a k-link shortest path problem and developed an O(mn̟) time

algorithm. Chen and Wang [18] further developed an algorithm for optimally splitting

an IM of size m × n with feathering while minimizing the total beam-on time of

the resulting sub-IMs. Their algorithm runs in O(mn+mξd−2) time, where d is the

number of resulting sub-IMs and ξ is the remainder of n divided by ̟ . Very recently,

field splitting while addressing delivery accuracy was studied in [81, 13]. Chen et

al. [13] also considered field splitting problems based on other clinical objectives.

We study the problem of splitting a large IM into arbitrary number of sub-

IMs if necessary, with the maximum leaf spread and the minimum and maximum

feathering width as the only constraints, such that the total complexity of the re-

sulting sub-IMs is minimized. Our algorithm is based on the shortest-path approach.

Meanwhile, our algorithm strives to minimize the maximum number of MUs of those

sub-IMs considering an interesting min-max slope path problem in a monotone poly-

gon which is solvable in linear time. Our method has no size limit of tumor and is

applicable to treating large tumor with micro-MLCs. A more general case is also

studied and solved using dynamic programming approach.
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A comprehensive comparison study is conducted against a commercial treat-

ment planning system in radiation therapy. Our field splitting method outperforms

Pinnacle in terms of both the total MU efficiency and the total MLC-aperture ef-

ficiency. To the best of our knowledge, this is the first study of the field splitting

method considering both total MU and total MLC-aperture efficiencies.

1.5 Significance of Our Work and Their

Impact on Radiation Therapy

In current treatment planning software, good success is achieved for high-

contrast objects such as the external skin surface and outlines of the lungs, and for

bone, all of which have high contrast interfaces, but for features with less contrast,

only little success is achieved [35]. Using region information, the auto-contouring

algorithm we proposed can help in this situation. By using the auto-contouring

algorithm, subjectivity of the result is greatly reduced and efficiency is improved.

One of the known disadvantages of IMRT is its long delivery time. The treat-

ment delivery time of the MLC-based technique is one to five times as long as that of

conventional treatment [33]. In step-and-shoot radiation delivery, the total treatment

delivery time consists of beam-on time, leaf-travel time and verification-and-recording

(V&R) overhead time, and is equal to the summation of the first component and the

larger of the other two components. For a system with a longer V&R overhead time,

minimizing the number of MLC-apertures may significantly reduce the treatment

delivery time. Thus reducing number of MUs (beam-on time) and/or number of

MLC-apertures can help improve the delivery time. Our field decomposition method,
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which can be used as a preprocessing step of static leaf sequencing, has been proved

to help in reducing number of MUs and number of MLC-apertures and thus improve

the treatment efficiency.

When field splitting is necessary (although not all systems require field split-

ting for large fields), our field splitting algorithm produce feathering near the splitting

region, which helps reduce the sensitivity to displacement at the field junction region

due to uncertainties in setup and organ motion. Our algorithm also achieved bet-

ter MU and MLC-aperture efficiency compared with commercial treatment planning

software. As described above, treatment delivery time is closely related to number of

MUs and number of MLC-apertures of a treatment plan, and thus our field splitting

algorithm can achieve better treatment efficiency.

By applying our auto-contouring algorithms to the current planning software,

we expect a higher treatment plan design efficiency (for shorter contouring time) and

a better quality of the GTV/OAR contour. With this improvement, we expect a

better tumor control and a lower normal tissue complication probability from the

plan and thus reduce tumor recurrence and improve the patient survival rate.

By applying our field decomposition and field splitting algorithms to radiation

therapy, we can expect a shorter delivery time. Thus uncertainties due to organ

motion and systematic errors will be greatly reduced so less margin is needed and we

may achieve a reduced normal tissue complication. When field splitting is required,

the fluence map we generate may have a reduced sensitivity to displacement at the

field junction and thus a better quality because its lowered intensities around splitting
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regions.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2,3, and 4 present our

main results on region-based contouring algorithm, the field decomposition problems,

and the field splitting problems, respectively. Chapter 5 concludes the thesis and

proposes some interesting problems for future research.
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CHAPTER 2
GLOBALLY OPTIMAL SEGMENTATION USING REGIONAL

PROPERTIES

2.1 Introduction

In this chapter, we develop a novel algorithm that can find a globally optimal

solution to segmentation by minimizing the intraclass variance. Our approach detects

an optimal region between two coupled terrain-like surfaces in a volumetric image in a

low-order polynomial time. Instead of adding the smoothness regularization term to

the objective function as in the Chan-Vese model, we explicitly enforce the smoothness

of the target surfaces with geometric constraints between neighboring voxels on the

surfaces (see details in Section 2.2). The proposed method is limited to handling

those target objects that can be “unfolded” into two coupled terrain-like surfaces,

which may seem to highly limit the application scope of the method. However, as

we will demonstrate, the guarantee of global optimality and the freedom to design

problem-specific cost functions allow the method to be applied to various medical

image segmentation problems, for instance, the delineation of inner and outer airway

wall surfaces in pulmonary CT images and the detection of endocardial and epicardial

boundaries of the left ventricle from cardiac MR, both of which are difficult to solve

by existing techniques. We show that the optimal solution can be obtained via the

construction of the convex hull for a set of O(n) unknown 2-D points using the shape

probing technique [21, 27] in computational geometry, where n is the size of the
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input image. The probing oracles are implemented by computing a minimum s-t cut

in a weighted directed graph. The intraclass variance can then be minimized by a

sequence of calls to the minimum s-t cut algorithm. The shape probing technique has

been used for image segmentation in the past [2, 78]. To the best of our knowledge,

our method is the first algorithm for globally minimizing the intraclass variance to

detect a region bounded by two coupled terrain-like surfaces in a volumetric image.

We believe that the developed technique is of interest on its own. We expect that it

can help solving other important optimization problems existing in computer vision.

We further develop an approximation method which runs much faster than the exact

algorithm while yielding highly comparable segmentation accuracy. A more efficient

algorithm for a simplified version of the problem - single surface detection (SSD)

problem - is also provided.

The remaining of the chapter is organized as follows: Section 2.2 shows the

problem modeling and some basic notations, Section 2.3 demonstrates the exact al-

gorithm of the main problem, Section 2.4 shows the approximation method, and the

SSD method is developed in Section 2.5.

2.2 Problem Modeling

Let I be a given 3-D volumetric image of n = X × Y ×Z voxels, where X, Y ,

and Z denote the image sizes in x, y, and z directions, respectively. The intensity

level of every voxel (x, y, z) (1 ≤ x ≤ X, 1 ≤ y ≤ Y , and 1 ≤ z ≤ Z) is denoted by

I(x, y, z). We consider the desired region (target object) R that is bounded by two

coupled terrain-like surfaces, Sl and Su, and oriented as shown in Figure 2.1. Each
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of the bounding surfaces intersects with exactly one voxel of every column parallel

to the z-axis. We look for an optimal region by minimizing the intraclass variance

among all feasible regions that can be defined in the 3-D volumetric image I. Let

µ0 (resp., µ1) be the average intensity of the desired region R (resp., the background

R = I − R), that is µ0 = 1
|R|

∑

(x,y,z)∈R I(x, y, z), and µ1 = 1
|R|

∑

(x,y,z)∈R I(x, y, z).

The intraclass variance is

ECV (R) =
∑

(x,y,z)∈R

(I(x, y, z)− µ0)
2 +

∑

(x,y,z)∈R

(I(x, y, z)− µ1)
2. (2.1)

R

R

R

Su

Sl

O

X

Z

Y

Figure 2.1: A region R enclosed by two coupled terrain-like surfaces Sl and Su.

The feasibility of a region in I is constrained by two sets of application-specific pa-

rameters: (1) surface smoothness parameters, ∆x and ∆y, and (2) surface separation

parameters, δl and δu. The surface smoothness parameters guarantee the continuity

of the bounding surfaces of R. More precisely, if (x, y, z) and (x + 1, y, z′) (resp.,
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(x, y+ 1, z′)) are two voxels on a feasible bounding surface, then |z− z′| ≤ ∆x (resp.,

|z − z′| ≤ ∆y). The surface separation parameters ensure that the two bounding

surfaces, Sl and Su, of the desired region R are at a certain distance range apart,

that is, for every pair (x, y), δl ≤ Su(x, y) − Sl(x, y) ≤ δu, where S(x, y) denotes

the z-coordinate of the intersection voxel of the surface S and the column (x, y) of

I. Comparing to the regularizing terms used in Chan and Vese’s method [11], our

geometric constraints not only regulate the smoothness of the bounding surfaces,

they also incorporate essential shape information: the guarantee of monotonicity and

topological constraints.

2.3 The Algorithm

Although minimizing the intraclass variance for general object shapes is com-

putationally intractable, we are able to optimally detect the region bounded by two

coupled terrain-like surfaces (or those regions that can be “unfolded” into two coupled

terrain-like surfaces) in low-order polynomial time using the techniques of paramet-

ric search [48], hand probing [21, 27] in computational geometry, and 3-D graph-

search [79, 53, 80].

Let µ = 1
n

∑

(x,y,z)∈I I(x, y, z) be the average intensity of the entire image

I. It is known that minimizing the intraclass variance ECV (R) is equivalent to the

maximization of the following objective function [39],

EInter(R) = |R|(µ− µ0)
2 + |R|(µ− µ1)

2,
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which is called the interclass variance of R and R.

The equivalency of the two objective functions can be shown as follows,

ECV (R) =
∑

(x,y,z)∈R

(I(x, y, z)2 − 2µ0I(x, y, z) + µ2
0)

+
∑

(x,y,z)∈R

(I(x, y, z)2 − 2µ1I(x, y, z) + µ2
1)

=
∑

(x,y,z)∈I

I(x, y, z)2 − 2|R|µ2
0 + |R|µ2

0 − 2|R|µ2
1 + |R|µ2

1

=
∑

(x,y,z)∈I

I(x, y, z)2 − |R|µ2
0 − |R|µ

2
1 (2.2)

and

−EInter(R) = −nµ2 + 2µ(|R|µ0 + |R|µ1)− |R|µ
2
0 − |R|µ

2
1

=





∑

(x,y,z)∈I

I(x, y, z)





2

/n− |R|µ2
0 − |R|µ

2
1 (2.3)

Noticing that both
∑

(x,y,z)∈I I(x, y, z)
2 and (

∑

(x,y,z)∈I I(x, y, z))
2/n are con-

stants for a given image, the two objective functions differ by a constant, and thus

minimizing ECV (R) is equivalent to maximizing EInter(R).

Note that the objective function EInter(R) is invariant if we replace I(x, y, z)

by Ĩ(x, y, z) = I(x, y, z) − µ for every voxel (x, y, z) in I. We thus, without loss of

generality (WLOG), assume that µ = 0 and, accordingly,

EInter(R) = |R|

(

U(R)

|R|

)2

+ |R|

(

−U(R)

|R|

)2

=
n

|R| · |R|
(U(R))2, (2.4)
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where U(R) =
∑

(x,y,z)∈R I(x, y, z). Note that U(R) could be negative. If U(R) < 0

for an optimal region R, then we can define a new image such that the intensity of

each of its voxel (x, y, z) is −I(x, y, z). It is not difficult to see that an optimal region

in this new image is also an optimal region in the original image. Hence, WLOG, we

can assume U(R) ≥ 0, and thus minimizing ECV (R) is equivalent to maximizing

Ψ(R) ≡
U(R)

√

|R|(n− |R|)
=

∑

(x,y,z)∈R I(x, y, z)
√

|R|(n− |R|)
. (2.5)

Let us further demonstrate how to find an optimal region R while maximizing

Ψ(R), where R is bounded by two coupled terrain-like surfaces.

2.3.1 Overview of the Algorithm

To maximize Ψ(R), the following straightforward observation holds: for each

n0 = 0, 1, . . . , n, if an optimal region R∗
n0

of size n0 can be computed so that it

maximizes the total sum of intensity of all voxels in the region (denoted by U(R∗
n0

)),

the problem is solved. Unfortunately, that is not an easy task at all. However, viewing

the problem in this way provides a basis for further exploitation of the intrinsic

geometric structure of the problem.

For each n0 = 0, 1, . . . , n, the pair (n0, U(R∗
n0

)) defines a point on the 2-D

plane, on which the x-axis represents the number of voxels of a desired region R and

the y-axis represents U(R), thus forming a set P of n + 1 points. A key observation

here is that it may not be necessary to compute all points in P. A classical concept in

computational geometry [25], called convex hull, plays an important role. The convex
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hull CH(P) of a point set P is the unique convex polygon which contains P and all

vertices of which are points from P.

Lemma 1. The point (|R∗|, U(R∗)) defined by an optimal region R∗ in I (i.e.,

Ψ(R∗) = maxR Ψ(R)), must be a vertex of the convex hull CH(P).

Proof. Let ψ∗ = Ψ(R∗) = U(R∗)/
√

|R∗|(n− |R∗|). Consider the curve ξ : y =

ψ∗
√

x(n− x) in the 2-D plane (see Figure 2.2). Since U(R∗) = ψ∗
√

|R∗|(n− |R∗|),

the point (|R∗|, U(R∗)) is on the curve ξ. Notice that ψ∗ = maxR{U(R)/
√

|R|(n− |R|)}.

Thus, for any region R bounded by two coupled terrain-like surfaces, we have U(R) ≤

ψ∗
√

|R|(n− |R|), i.e., every point (n0, U(R∗
n0

)) ∈ P (n0 = 0, 1, . . . , n) lies below or on

the curve ξ. Furthermore, due to the concavity of the curve ξ : y = ψ∗
√

x(n− x), all

points in P lie below or on the tangent line l to ξ at the point (|R∗|, U(R∗)). Hence,

(|R∗|, U(R∗)) is a vertex of the upper chain of the convex hull CH(P) of P.

Thus, finding the optimum can be simplified to examining all convex hull

vertices. However, directly computing the hull vertices of CH(P) appears to be quite

involved. Inspired by the shape probing method [21, 27] which can be viewed as

recognizing a convex polygon by “touching with lines”, we use the following probing

oracle to construct CH(P) when the coordinates of the points in P are unknown.

The probing oracle is:

Given a slope θ, report the tangent line with slope θ to CH(P) and the tangent

point.

Using this probing oracle, the convex hull CH(P) can be constructed as follows.
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Figure 2.2: Illustrating the proof of Lemma 1.

Start with slopes +∞ and −∞ to find the two endpoints of P (leftmost and rightmost

points, which are always (0, 0) and (n, 0) in this problem). Note that the convex hull

CH(P) is always an upper convex chain. Now suppose that two vertices u and v have

been computed on the hull and that so far there is no vertex of CH(P) between u and

v. Let θ be the slope of the line through u and v. Then, employ a probing oracle with

respect to θ (see Figure 2.3). Consequently, we either find a new vertex on CH(P)

between u and v or conclude that uv is an edge of CH(P). Thus, employing a probing

oracle results in either a new vertex or a new edge of CH(P). Hence, the convex hull

CH(P) with k vertices can be computed in O(k) probing oracle application steps.

A major challenge is to implement this oracle for a given slope θ. The para-
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Figure 2.3: Illustrating the construction of a convex hull using the shape probing
technique.

metric approach [48] in computational geometry is utilized. For a given real-valued

parameter θ, we define the parametric intensity sum of a region R as the sum of

intensities of all voxels in R minus θ|R| (i.e., U(R) − θ|R|), denoted by Uθ(R). We

show in Lemma 2 below, that the tangent point of the tangent line with slope θ to

CH(P) is defined by the optimal feasible region with a maximized intensity sum in

the parametric image Iθ, where Iθ(x, y, z) = I(x, y, z) − θ for every (x, y, z) tuple.

This last step of the optimal-region-finding process can be solved using the existing

graph-based segmentation method [53].

The key shape probing procedure can therefore be summarized as follows.

ShapeProbe(I,nleft,Uleft,nright,Uright)

1 θ← (Uright − Uleft)/(nright − nleft)
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2 Find the region R∗(θ) such that Uθ(R
∗(θ)) = maxR Uθ(R).

3 if |R∗(θ)| 6= nright then do

4 ShapeProbe(I,nleft,Uleft,|R∗(θ)|,U(R∗(θ)))

5 ShapeProbe(I,|R∗(θ)|,U(R∗(θ)),nright,Uright)

The input to the subroutine ShapeProbe includes two known hull vertices

u(nleft, Uleft) and v(nright, Uright), with no known hull vertices in between so far. It

finds all hull vertices of CH(P) between u and v. Line 1 calculates the slope θ

of the probing lines. Line 2 computes an optimal region R∗(θ) whose parametric

intensity sum is maximized to implement the probing oracle. Then, if a new hull

vertex (|R∗(θ)|, U(R∗(θ))) between u and v is found, as shown in Line 3, the procedure

recursively computes all hull vertices on both left and right convex hull chains divided

by (|R∗(θ)|, U(R∗(θ))). Thus, the convex hull CH(P) is computed. Based on Lemma

1, we can examine every vertex of CH(P) to find the optimum. We next show the

efficient implementation of the probing oracle.

2.3.2 Implementation of the Probing Oracle

Given a real-valued parameter θ, we show in this section that the probing oracle

can be implemented by computing in I an optimal region R∗(θ) whose parametric

intensity sum Uθ(R
∗(θ)) is maximized. We call R∗(θ) an optimal parametric region

associated with the parameter θ. Recall that R∗
k denotes an optimal region in I whose

total intensity sum U(R∗
k) is maximized.

Lemma 2. There exists a tangent line to CH(P) at the point (n0, U(R∗
n0

)) with a

slope θ if and only if |R∗(θ)| = n0 and U(R∗(θ)) = U(R∗
n0

).
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Proof. “⇒” Suppose that l : y = θx + b is a tangent line to CH(P) at the point

(n0, U(R∗
n0

)). This implies that b = U(R∗
n0

) − n0θ = U(R∗
n0

) − |R∗
n0
|θ. Note that

CH(P) is actually the upper chain of the convex hull. Thus for any k 6= n0, the

point (k, kθ + b) on l is on or above CH(P). Alternatively, kθ + b ≥ U(R∗
k), that is

U(R∗
n0

) − n0θ ≥ U(R∗
k)− kθ for any k 6= n0 (see Figure 2.4). Hence, the region R∗

n0

achieves maxk{U(R∗
k)− kθ}. Note that Uθ(R

∗(θ)) = maxR(θ){U(R(θ))−|R(θ)| · θ} =

maxk{U(R∗
k)− kθ}. Thus, U(R∗(θ)) = U(R∗

n0
).

“⇐” The fact that |R∗(θ)| = n0 indicates that, for any feasible region R(θ)

bounded by two coupled terrain-like surfaces, if |R(θ)| 6= n0, then U(R(θ))−|R(θ)|·θ ≤

Uθ(R
∗(θ)). Thus, for any k 6= n0, U(R∗

k)− kθ ≤ Uθ(R
∗(θ)). Based on the assumption

that U(R∗(θ)) = U(R∗
n0

) and |R∗(θ)| = n0, we have U(R∗
k) − kθ ≤ U(R∗

n0
) − n0θ for

any k 6= n0. Consider the line l : y − θx = b with b = U(R∗
n0

)− n0θ. Obviously, the

point (n0, U(R∗
n0

)) is on Line l and any other point (k, U(R∗
k)) with k 6= n0 is on or

below Line l (see Figure 2.4). Hence, Line l is a tangent line to CH(P) at the point

(n0, U(R∗
n0

)) with a slope θ.

This proves Lemma 2.

Consequently, for a given slope θ, we need to compute an optimal parametric

region R∗(θ) bounded by two coupled terrain-like surfaces in I. If the size of R∗(θ)

is n0, based on Lemma 2, the line l: y = θx+ (U(R∗(θ))− n0 · θ) is a tangent line to

CH(P) at the point (n0, U(R∗(θ))) with slope θ. Let R∗
n0

= R∗(θ). We thus recognize

a hull vertex on CH(P). Next, we develop an efficient algorithm for computing such

an optimal parametric region R∗(θ) in I.
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Figure 2.4: Illustrating the proof of Lemma 2.

2.3.3 Computing an Optimal Parametric Region

Given a parameter θ, we reduce the problem of computing an optimal paramet-

ric region R∗(θ) in I to the problem of finding two coupled terrain-like 3-D surfaces on

the transformed images while minimizing the total sum of the cost on both surfaces.

The detection of two coupled terrain-like surfaces can be formulated as a surface

segmentation problem proposed by Li et al. [53].

First, we perform the following transformations on the image I:

I ′θ(x, y, z) =















0 if z = 0;

∑

0≤z′<z{I(x, y, z
′)− θ} otherwise.

(2.6)



33

and

I ′′θ (x, y, z) =
∑

0≤z′≤z

−{I(x, y, z′)− θ}. (2.7)

Hence, for any feasible region R(θ) bounded by two coupled terrain-like sur-

faces, Sl and Su, with Su above Sl, we have

∑

(x,y,z)∈Sl

I ′θ(x, y, z) +
∑

(x,y,z)∈Su

I ′′θ (x, y, z) = −Uθ(R(θ)). (2.8)

Note that both bounding surfaces Sl and Su satisfy the smoothness constraint and

the surface separation constraint.

In this way, we convert the optimal parametric region problem to a surface

segmentation problem, which can be optimally solved using Li et al.’s method [53].

The basic idea of Li et al.’s surface segmentation method is to transform the

problem into computing a minimum s-t cut in a derived arc-weighted directed graph.

Denote by T (n′, m′) the time for finding a minimum s-t cut in an arc-weighted directed

graph with O(n′) vertices and O(m′) edges. For example, by Goldberg and Tarjan’s

algorithm [36], T (n′, m′) = O(m′n′ log n′2

m′ ).

Lemma 3. For a given θ, an optimal parametric region R∗(θ) in I can be computed

in O(T (n, n)) time.

In summary, it suffices to compute the convex hull CH(P) to detect in I

an optimal region while minimizing the intraclass variance by Lemma 1. Based on

Lemma 2, we can perform O(n) probing oracles to obtain all vertices on CH(P). Each

probing oracle can be implemented in O(T (n, n)) time by Lemma 3. Thus, the total
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running time of our algorithm for minimizing the intraclass variance is O(nT (n, n)).

However, in our experimentation, the number of the employed probing oracles is much

less than n.

2.4 Approximating Minimum Intraclass

Variance

Although our exact algorithm for minimizing the intraclass variance in Sec-

tion 2.3 is efficient for the moderate size of input images, the large image size may

prevent the method from being computationally practical. In this section, we de-

velop an approximation method that improves the running time while still producing

close-to-optimal solutions.

Our method is based on the property of interclass variance explored by Asano

et al. [2]. They utilized the property to obtain a (1− ǫ)-approximation algorithm for

computing an optimal connected rectilinear region with maximum interclass variance

in 2-D. We characterize a similar property for a region bounded by two coupled

terrain-like surfaces in 3-D, as stated in Lemma 4. The proof of the lemma is similar

to that in [2].

Lemma 4. Let θ̂ denote the optimal parameter value with which the optimal para-

metric region R∗(θ̂) maximizes Ψ(R). If θ̂ 6= 0, then an optimal parametric region

R∗((1+ǫ)θ̂) gives an (1−ǫ)-approximate solution to the problem of maximizing Ψ(R),

that is, for any 0 < ǫ < 1, Ψ(R∗((1 + ǫ)θ̂)) ≥ (1− ǫ)Ψ(R∗(θ̂)).

We assume that the cost I(x, y, z) of each voxel in the input image I is an
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integer, and L is the total sum of the absolute values of the voxel costs in I. Due

to the integrality of I(x, y, z), it is not difficult to see that 1
n
≤ |θ̂| ≤ L. Our idea

is to partition the θ-space [−L · · − 1
n
] ∪ [ 1

n
· ·L] into intervals [θi · ·θi+1] such that

either θi

θi+1
= 1 + ǫ or θi+1

θi
= 1 + ǫ. Note that Lemma 4 actually indicates that for

any θ in between (1 + ǫ)θ̂ and θ̂, an optimal parametric region R∗(θ) gives an (1− ǫ)-

approximate solution to the problem of maximizing Ψ(R). Thus, if θ̂ ∈ [θi · ·θi+1],

then either R∗(θi) or R∗(θi+1) is an (1− ǫ)-approximate solution. Hence, we partition

the θ-space into the following intervals:





⌊log1+ǫ nL⌋
⋃

i=0

[−
1

n
(1 + ǫ)i+1 · · −

1

n
(1 + ǫ)i]





⋃





⌊log1+ǫ nL⌋
⋃

i=0

[
1

n
(1 + ǫ)i · ·

1

n
(1 + ǫ)i+1]



 .

Considering the sequence {−θi, θi} of parameters for θ, with θi = 1
n
(1 + ǫ)i (i =

0, 1, . . . , ⌊log1+ǫ nL⌋), we compute an optimal parametric region R∗(θi) for each θi.

Among those optimal parametric regions, the one that maximizes Ψ(R) is chosen as

the approximation solution. It is clear that such a solution is an (1−ǫ)-approximation

solution. The number of parameters that we search is O(log1+ǫ nL) = O(ǫ−1 log nL).

Note that an optimal parametric region R∗(θ) for a given parameter θ can be com-

puted in T (n, n) time using minimum s-t cut algorithm. Thus, the running time of

this approximation algorithm is O( log nL
ǫ
T (n, n)).

Lemma 5. A (1− ǫ)-approximation solution to the problem of maximizing Ψ(R) can

be computed in O( log nL
ǫ
T (n, n)) time.

We then output the (1 − ǫ)-approximation solution to the problem of maxi-
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mizing Ψ(R) as our approximate solution to the problem of minimizing the intraclass

variance ECV (R). Although we have not yet proven a tight bound of the approxima-

tion ratio of this approximation algorithm for minimizing the intraclass variance, our

implementation demonstrated its high segmentation accuracy with much less execu-

tion times for all data we tested for our exact algorithm.

2.5 Fast Single Surface Detection Algorithm

Since the exact algorithm is computationally expensive, we consider a sim-

plified version of the problem - the single surface detection (SSD) problem, whose

complexity can be greatly reduced. In this section, we develop a fast algorithm for

the SSD problem.

SSD problem seeks to find an optimal terrain-like surface S∗ such that (1) S∗

satisfies the smoothness constraints, (2) S∗ divides the input image into two regions:

the target object R consisting of all voxels on and below S∗ and background R

consisting of all voxels above S∗ (with respect to z-axis), and (3) the total sum of

intraclass variance of R and R is minimized. Instead of considering a target region

bounded by two coupled terrain-like surfaces as in Section 2.3, the SSD problem looks

for an optimal region bounded by a single terrain-like surface.

Recall that we can still use the algorithmic framework in Section 2.3 and the

only difference is the implementation of the probing oracle. For a given parameter

θ, we need to compute an optimal parametric region bounded by a single terrain-like

surface, as in Section 2.3.3. By applying Li et al.’s method [53], this problem can

be formulated as computing a maximum-cost closed set in a constructed graph G(θ)
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associated with the parameter θ.

Let V + and V − denote the sets of nodes in G with non-negative and negative

costs, respectively. Define a new directed graph Gst = (V ∪{s, t}, E∪Est). The node

set of Gst consists of the node set V of G plus a source node s and a sink node t. The

arc set of Gst is the arc set E of G plus a new arc set Est. We assign an infinity cost

to each arc in E. Est consists of the following arcs: The source node s is connected

to each node V (x, y, z) ∈ V − by a directed arc of cost −I(x, y, z) + θ; every node

V (x, y, z) ∈ V + is connected to the sink node t by a directed arc of cost I(x, y, z)−θ.

It can be proved that the minimum-cut corresponding to the maximum-flow in Gst is

the same as the cut separating the minimum closed-set in G.

Observing that when θ increases, the cost of an arc from the source node s

to a node V (x, y, z) ∈ V increases at a slope of 1; the cost of an arc from a node

V (x, y, z) ∈ V to the sink node t decreases at a slope of 1 until it reaches 0, when

this link is cut and a new arc is created from the source node s.

We then model a parametric maximum-flow problem. The graph G′
st(θ) =

(V ∪ {s, t}, E ∪E ′st). The node set of G′
st(θ) is the same as that of Gst. E

′st consists

of the following arcs: there is an arc from the source node s to each node V (x, y, z)

with a cost of max(0,−I(x, y, z) + θ); an arc is connected from V (x, y, z) to the sink

node t with a cost of max(0, I(x, y, z)− θ).

Noticing that the arc weights of the graph Gst have the following good prop-

erties:

1. for each arc from the source s to a vertex, the arc weight is a nondecreasing
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function of θ;

2. for each arc from a vertex to the sink t, the arc weight is a nonincreasing function

of θ; and

3. for each of the other arcs, the weight is a constant (+∞),

we proposed to solve this problem using Gusfield and Martel’s parametric minimum

s-t cut algorithm [38].

G′
st(θ) is a monotone parametric flow network [34, 38] with respect to the

parameter θ. Following the algorithmic framework in Section 2.3, we need to compute

a minimum s-t cut for each of a sequence of parameters {θ1, θ2, . . . , θτ} generated by

the shape probing process, where τ = O(n). Due to the monotonicity of G′
st(θ), the

problem can be used to compute all those τ minimum s-t cuts in the complexity of

solving a single maximum flow problem.

The running time of this parametric maximum-flow algorithm is O(n′3 + kn′)

if the number of nodes in the graph is n′ and the number of different θ’s is k. In our

problem, it can be shown the number of nodes in the graph is n+2 and the number of

different θ’s is bounded by n. So the time complexity of our algorithm is O(n3). The

running time can be further reduced to O(n2 log n) if dynamic tree data structure is

used.

Lemma 6. The globally optimal solution to our single surface detection using region

properties problem can be computed in O(n2 logn) time.
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2.6 Experimental Methods

The experiments were performed on computer phantoms, physical phantoms

and 3-D CT and MR medical images. Both regions bounded by terrain-like surfaces

and by tubular surfaces were used.

2.6.1 Data

Computer Phantoms: To validate the correctness of the modeling techniques,

we tested our method on a set of computer-generated phantoms, with sizes of 256×

256×3 voxels, containing differently textured regions or shapes (Figure 2.7). For the

evaluation of the execution times, a second set of computer phantoms was produced

that contained a region bounded by two coupled terrain-like surfaces with various

shapes and mutual positions. Two sets of different patterns were used to differentiated

the target region from the background. The sizes of the phantom images ranged from

30 × 30 × 40 to 100 × 100 × 50. To test the performance of our algorithm in noisy

images, we added this set of computer phantoms with Gaussian noise of σ = 0.5, 2.0,

and 3.0, respectively. In addition, we generated a third set of 160 computer phantoms,

each of size 100× 100× 10, to evaluate the approximation ratio of the approximation

algorithm. Each phantom image included a region bounded by two coupled terrain-

like surfaces with specific position, distance, and smoothness randomly generated.

Please refer to Figure 2.7(a) and (b) in Section 2.7 for samples of computer phantoms.

Physical Phantoms: To quantitatively assess the performance of our method,

a physical phantom was imaged by multi-detector CT and analyzed. The phantom

contained six plexiglas tubes, numbered 1 through 6, with nominal inner diameters
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of 1.98, 3.25, 6.40, 6.50, 9.50 and 19.25mm, respectively. The corresponding outer

diameters were 4.45, 6.30, 9.70, 12.60, 15.60 and 25.50mm, respectively. The phantom

was scanned using Philips Mx8000 4-slice CT scanner with 3 different scan settings

(low dose, regular dose, and high dose). Under each setting, the scans were taken

at 4 distinct angles of 0◦, 5◦, 30◦, and 90◦, rotated in the coronal plane, resulting

in a total of 12 datasets for use in the validation. The regular dose scanning was

intentionally repeated, yielding additional 4 datasets used for initial calibration of

the cost functions. In all cases, a resolution of 0.39 × 0.39 × 0.6mm3 was used.

Images consisted of 200-250 slices, 512× 512 pixels each. Figure 2.5 shows a sample

slice of the data.

CT Images of Pulmonary Airway Walls: To demonstrate the utility of our

method in quantitative analysis of medical images, the method was applied to human

pulmonary CT images to concurrently segment the inner and outer wall surfaces of

intrathoracic airways imaged by multi-detector CT. 20 airway wall segments extracted

from 12 in vivo CT scans of 6 human objects were used for the experiments. The

airway wall segments had a resolution of 0.7 × 0.7× 0.6mm3 and consisted of 30-50

slices, each having an average size of 50×50 pixels. Figure 2.6(a) shows some sample

slices of the pulmonary airway wall data.

The inner and outer surfaces needed to be unfolded to apply our method.

The centerlines of the airways were manually chosen for the unfolding process. B-

spline interpolation was used in the unfolding process. Segmentation was performed

only on the trunks of the airway tree between bifurcations since our method can not
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Figure 2.5: A sample slice of the physical phantom data.

handle topological changes at this point. The inner and outer walls were segmented

simultaneously.

MR Images of Cardiac Ventricular Walls: To study the applicability of the

method to a broader range of medical image segmentation applications, we also per-

formed our method on MRI images of left human cardiac ventricle. 20 MRI scans

of normal human hearts and 10 MRI scans of patient hearts were segmented. The

images had a resolution of 2.08 × 2.08 × 2.08mm3. Each dataset consisted of 30-40

mid-papillary slices and each slice had an average size of 40× 40 pixels. To facilitate

the unfolding process of the tubular shape of ventricular walls, the centerlines (long

axes) of the cardiac ventricle were manually determined. Figure 2.6(b) shows some

sample slices of the cardiac ventricular wall data.

CT Images of Liver Lesion for Single Surface Detection: To study the appli-

cability of the single surface detection method to medical image segmentation appli-

cations, we performed our method on CT images of liver lesion. 15 CT scans of liver

lesions were segmented. The images had a resolution of 0.97×0.97×0.97mm3. Each

dataset consisted of 10-30 slices and each slice had an average size of 50× 50 pixels.



42

Figure 2.6: Sample slices of pulmonary airway wall data and cardiac ventricular wall
data. (a) Pulmonary airway wall data. (b) Cardiac ventricular wall data.

The user initiated the segmentation by drawing a single line over the target object

in a cross-sectional slice, which roughly indicated the extent of the object. Then

an ellipsoidal coordinate transformation was performed on the region of interest to

unfold the bounding surface and the surface detection algorithm was used to segment

the tumor. Please refer to Figure 2.19 in Section 2.7.8 for sample slices of the data.

CT Images of Lung Tumor for Single Surface Detection: Lung tumor data

was also used for the verification of our single surface detection method. 12 CT

scans of lung tumors were segmented. The images had a resolution of 0.97× 0.97×

0.97mm3. Each dataset consisted of 12-40 slices and each slice had an average size

of 60× 60 pixels. A ellipsoidal transformation similar to the one used for liver lesion
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segmentation was performed. Please refer to Figure 2.20 in Section 2.7.8 for sample

slices of the data.

2.6.2 The Cost Functions

Cost function design is very important in graph-based segmentation. Since our

method minimizes the intraclass variance, a cost function reflecting the homogeneity

was used. For the experiments, the intensity or its linear transformation was utilized

as the cost of a voxel. For the texture related phantom images, the cost function

also included orientation and/or curvature information [11]. For the clinical data, our

algorithm was run on the original image to get the estimated positions of the bounding

surfaces and then this estimated position information was combined with the voxel

intensities to form the cost function. For liver lesion cases, because basically the

intensities in both the parenchyma and lesion are homogeneous, the voxel intensity

and transformation of intensity were used in cost function. For lung tumor cases,

generally intensity was used for cost function. In case a tumor is close to the boundary

of the lung, lung boundary was segmented first and the information was combined

into the cost function.

2.6.3 Execution Time

All experiments were conducted on a Pentium-D 2.4GHz PC with 3.5 GB of

memory. The execution time included the graph initialization time and the actual

computation time. The execution times varied across the test cases even with the

same image size. We thus averaged the running times over 20 test cases for each image
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size. The execution time for each test case was measured three times and the results

were averaged. In our implementation, Boykov and Kolmogorov ’s algorithm [9] was

used to compute the minimum s-t cut.

2.6.4 Performance Indices

Besides visual inspection, which was carried out on computer phantom images,

we used several quantitative indices to measure the performance of our method.

2.6.4.1 Diameter Calculation for Physical Phantom

For the physical phantoms, the average diameter of the segmentation result of

each slice was calculated using the circle fitting method to minimize the mean-squared

error, and then the diameter was compared with the known tube diameter. The

diameter errors are reported as mean ± standard deviation in absolute measurements

and as percentages of the diameter.

2.6.4.2 Positioning Error Measure for Clinical Cases

Surface detection accuracy was determined in clinical test cases in comparison

with the independent standard. The mean surface positioning errors were computed

and expressed in pixels. Corresponding points were defined as pairs of points, the first

point being from a computer detected border and the second point from the reference

standard border that was closest to each other using the Euclidean distance metric.

The positioning errors were calculated both signed and unsigned, where signed errors

were calculated by adding a sign to each pair-wise unsigned errors, and the sign was

positive while the point from a computer detected border was outside the reference
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standard contour, and negative otherwise. These errors were reported as mean ±

standard deviation.

2.6.4.3 Optimizing Intraclass Variance with Iterations

Since our reported approach and the Chan-Vese original method [11] both

optimize the intraclass variance, it is of interest to compare their performance. Con-

sidering that the regularization terms and constraints are different, a fair comparison

is very difficult. We thus compared our approach with a modified Chan-Vese method,

which keeps the iteration-based principle of the Chan-Vese method to optimize the

intraclass variance while it incorporates the geometric constraints of our method. We

briefly call the method an iterative intraclass variance or iterative ICV method.

The basic idea of the Chan-Vese method [11] is to first find an initial region

and calculate the average intensities of the initial region and the background as µe
0

and µe
1. These two parameters are used as constants in the next iteration to find an

optimal region optimizing the objective function,

EChan−V ese(R) =
∑

(x,y,z)∈R

(I(x, y, z)− µe
0)

2 +
∑

(x,y,z)∈R

(I(x, y, z)− µe
1)

2

+Tregulariztion, (2.9)

where Tregularization is a regularization term. Then, the new average intensities, µe
0 and

µe
1, of the newly computed region and the background are calculated. This process

iterates until both µe
0 and µe

1 converge.

The iterative ICV method “simulates” the Chan-Vese method to find an op-
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timal region bounded by two coupled terrain-like surfaces while minimizing the intr-

aclass variance of the region. With given average intensities, µe
0 and µe

1, of the initial

region and the background, the Li et al.’s graph searching method [53] was employed

to find the desired region with the same geometric constraints as used in the presented

method.

We performed the following transformations on image I:

I ′(x, y, z) =
∑

0≤z′<z

(I(x, y, z′)− µe
1)

2 +
∑

z≤z′<Z

(I(x, y, z′)− µe
0)

2. (2.10)

and

I ′′(x, y, z) = −
∑

z<z′<Z

(I(x, y, z′)− µe
0)

2 +
∑

z<z′<Z

(I(x, y, z′)− µe
1)

2. (2.11)

Hence, for any feasible region R bounded by two coupled terrain-like surfaces,

Sl and Su with Su above Sl, we have

∑

(x,y,z)∈Sl

I ′(x, y, z) +
∑

(x,y,z)∈Su

I ′′(x, y, z)

=
∑

(x,y,z)∈R

(I(x, y, z)− µe
0)

2 +
∑

(x,y,z)∈R

(I(x, y, z)− µe
1)

2. (2.12)

Note that both bounding surfaces Sl and Su satisfy the surface smoothness and sep-

aration constraints. Using Li et al.’s method [53], the optimal surfaces S∗
l and S∗

u are

simultaneously detected in I ′ and I ′′, respectively. From Equation (2.12), the region

R∗ bounded by S∗
l and S∗

u is the desired region in I. This process iterates until both
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µe
0 and µe

1 converge, as in the Chan-Vese method.

Figure 2.7: Computer phantoms with textures and segmentation results. (a),(b)
Original images. (c),(d) The segmentation results from our method. (e),(f) The
segmentation results from the Chan-Vese method.

2.7 Results

2.7.1 Computer Phantoms

Figure 2.7 presents segmentation examples obtained by our algorithm. The

objects and background were differentiated by their different textures. The curvature

and edge orientation in each slice were used (as descriptions of the patterns) in the cost

functions. Using the Chan-Vese method with the same cost images yielded similar

results.
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Figure 2.8: The signed percentage errors of inner- and outer-diameter measurements
in the CT-imaged physical phantom tubes.

Figure 2.9: Segmentation result on CT-imaged physical phantom tubes. a) An ex-
ample 2-D slice of a 3-D CT-imaged physical phantom. b) Segmentation result from
Chan-Vese method. The errors of the measured diameters of the inner and outer walls
were -0.139mm and -0.314mm, respectively. c) Segmentation result from our method.
The errors of the measured diameters of the inner and outer walls were 0.042mm and
0.071mm, respectively.
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2.7.2 Accuracy Assessment in CT-imaged

Physical Phantoms

The signed errors of the measured diameters of the inner and outer walls

were 0.026±0.072mm and 0.045±0.094mm, respectively, given a voxel size of 0.39×

0.39×0.6mm3. The corresponding unsigned errors were 0.057±0.059mm and 0.079±

0.071mm. The signed percentage errors of the computer segmented and the measured

diameters are presented in Figure 2.8, where mean errors ± standard deviations are

shown as a function of the phantom tube diameters.

Using the Chan-Vese method (the input was the cost image used in our

method), we obtained the segmentation results with signed errors of 0.311±0.094mm

and 0.097±0.064mm, and unsigned errors of 0.411±0.090mm and 0.359±0.063mm for

the inner- and outer-diameters, respectively. Comparing with the Chan-Vese method,

our approach is more accurate. Figure 2.9 shows the example segmentation results

using the Chan-Vese method and our approach on a 2-D slice of a 3-D CT-imaged

physical phantom.

2.7.3 Airway Wall Segmentation

While the inner airway wall surfaces are well visible in CT images, the outer

airway wall surfaces are very difficult to segment due to their blurred and discon-

tinuous appearance. The results showed a high accuracy and 3-D consistency of our

method (see Figures 2.10 and 2.11). Compared with the manual tracings, our method

yielded signed border positioning errors of 0.422± 0.381 and -0.127± 0.460 voxel for

inner and outer wall surfaces, respectively. The corresponding unsigned errors were
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Figure 2.10: Segmented inner and outer walls of human pulmonary airways imaged
with multi-detector CT. (a) The transverse, (b) sagittal cross-sections, and (c) 3-D
view of an airway segment.

0.657 ± 0.149 and 0.572 ± 0.032 voxel, respectively. We attempted to perform the

Chan-Vese method on these data, but without enforcing the separation constraints,

their method failed to produce meaningful segmentations.

2.7.4 Cardiac Ventricular Wall Segmentation

Our 3-D method for cardiac ventricular wall segmentation demonstrated low

surface positioning errors as well as robust performance when compared with the

expert-traced results, although the simultaneous inner- and outer-wall segmentation

is challenging due to blurriness and discontinuity of the boundaries in the cardiac ven-

tricular images. Detailed results are given in Table 2.1. Examples of our segmentation
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Figure 2.11: Comparison of computer-segmented and expert-traced inner and outer
airway wall borders. (a) Original image, (b) expert-traced borders, and (c) 3-D surface
obtained using our method.

results and the corresponding manual tracings are shown in Figure 2.12.

2.7.5 Comparison With the Iterative ICV Method

We demonstrated that our method outperformed the the iterative ICV method

(Section 2.6.4.3) for optimally detecting a region bounded by two coupled terrain-like

surfaces. The experiments were conducted on both phantoms and 3-D MR car-

diac ventricular datasets. Although it always converged, the iterative ICV method
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Table 2.1: Surface positioning errors of 3-D cardiac ventric-
ular wall segmentation

Inner Outer
Our Method ICV Our Method ICV

Normal 0.77± 0.43 0.81± 0.57 0.79± 0.44 0.86± 0.56
Patient 0.78± 0.48 0.79± 0.51 0.95± 0.59 1.11± 0.73

(a) Unsigned errors in voxels

Inner Outer
Our Method ICV Our Method ICV

Normal −0.71± 0.54 −0.72± 0.59 −0.58± 0.43 −0.62± 0.45
Patient −0.49± 0.77 −0.54± 0.77 0.53± 0.59 −0.94± 0.72

(b) Signed errors in voxels

frequently did not find the globally optimal solution with respect to the interclass

variance objective function.

For the physical phantom images tested, our method outperformed the itera-

tive ICV method by a factor of 0.23% on average in terms of the interclass variance

(i.e., the value of the objective function) obtained. Figure 2.13 shows an example of

the segmentation results produced by the iterative ICV method and by our method.

For this example, our method gave a segmentation with an interclass variance of

9.6071× 106, compared with 9.5909× 106 achieved by the iterative ICV method.

For the 3-D MR left ventricular datasets, our method outperformed the it-

erative ICV method by a factor of about 9% on average in terms of the surface

positioning errors. For the fairness of the comparison, the cost functions and geo-

metric constraints used for the iterative ICV method were the same as those used for

our method. Table 2.1 shows the signed and unsigned positioning errors of results
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Figure 2.12: Segmentation of MR ventricular walls. (a) Original images. (b)
Computer-segmented inner- and outer-wall borders using our method. (c) Manually
identified inner- and outer-walls.

obtained by the iterative ICV method.

2.7.6 Execution Time

The execution time of our method mainly depends on the number of shape

probings performed (i.e., the number of hull vertices of the constructed convex hull)

and the time for performing each probing oracle.
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Figure 2.13: Comparison of segmentation results for an example computer phantom
image. (a) The phantom image. (c) The overlay of the results by our method and by
the iterative ICV method. The green contour is the result from our method, the red
one shows the result from the iterative method, and the yellow one is the overlapping
part.

The average execution times for employing each probing oracle are shown in

Table 2.2. The minimum s-t cut was computed using Boykov and Kolmogorov’s

maximum flow algorithm [9] with a “forward-star” graph representation.

For the airway wall segmentation, the number of the hull vertices of CH(P)

ranged from 1.50% to 2.86% of the image size; while for the 3-D ventricular datasets,

Table 2.2: Average execution times of each shape probing pro-
cess

Image Size Execution Time (s) Image Size Execution Time (s)
302 × 40 0.5 802 × 40 5.9
502 × 40 2.1 1002 × 40 15.7
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Figure 2.14: Execution times for 3-D airway CT images and 3-D ventricular MR
images.

Figure 2.15: Execution times for computer phantoms with different levels of Gaussian
noise (σ = 0.0, 0.5, 2.0, 3.0).
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the percentage ranged between 1.64% and 2.89%. The average total execution times

of our algorithm are shown in Figure 2.14.

For the computer phantoms with no Gaussian noise added (σ = 0.0), the

number of hull vertices of CH(P) was ranging from 1.32% to 1.61% of the image size.

Our experiments showed that the added Gaussian noise affected the performance of

our algorithm significantly. The average execution times on the computer phantoms

with different levels of Gaussian noise are shown in Figure 2.15.

2.7.7 Performance of the Approximation Method

The performance of our developed approximation method was tested on com-

puter phantoms, physical phantoms, 3-D CT images of pulmonary airway walls, and

3-D MR images of cardiac ventricular walls, and was compared to that of our ex-

act algorithm. Our experiments demonstrated that the approximation method ran

much faster than the exact algorithm while the segmentation accuracy was highly

comparable to that of the exact algorithm.

We chose ǫ = 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5 to test the approximation method

on segmentation accuracy. In addition to the surface positioning errors, the so-called

approx-opt ratio, which is the ratio of the objective function value produced by the

approximation algorithm over that yielded by the exact algorithm, was also used to

measure the segmentation performance. Interestingly, while ǫ ≤ 0.05, the approxi-

mation method always computed the optimal solutions to the problem of minimizing

intraclass variance ECV (R) for all the datasets we tested. For the six physical phan-

toms, even while we took ǫ = 0.1, 0.2, 0.5, we were still able to obtain the optimal
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solutions by using the approximation method. Table 2.3 presents, for the different

ǫ’s, the average approx-opt ratios, the maximum approx-opt ratios, and the percent-

age of the test cases that the approximation algorithm did not produce the optimal

solution. Table 2.4 and Table 2.5 show the average approx-opt ratio and the average

surface positioning errors with different ǫ’s for the airway wall images and the ven-

tricular wall images, respectively. Note that for ǫ = 0.05 in both tables, the objective

function values were optimal and the average surface positioning errors were the same

as those obtained by the exact algorithm. Thus, our experiments showed that the

approximation method is able to produce highly comparable segmentation results as

those produced by the exact algorithm even for relatively large ǫ’s.

Table 2.3: Segmentation accuracy of the approximation method
on computer phantoms

ǫ 0.05 0.1 0.2 0.5
Average Approx-opt Ratio 100.00% 100.03% 100.22% 101.02%

Max Approx-opt Ratio 100.00 100.15% 100.80% 104.35%
% of Non-Optimal Results 1.25% 7.50% 25.00% 51.25%

The running times of the approximation method were evaluated on computer

phantoms and clinical data. Our experiments demonstrated great improvement of

running time over the exact algorithm. Figure 2.16 shows the comparison of the exe-

cution times of the approximation algorithm with different ǫ’s on the computer phan-

tom images against the exact algorithm. We did not explicitly add Gaussian noise

to those phantoms. Our further experiments on those phantom images with added
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Table 2.4: Segmentation accuracy of the approximation
method on 3-D CT airway wall images

Average Unsigned Error(Pixels)
ǫ Approx-opt Ratio Inner Wall Outer Wall

0.05∗ 100.00% 0.4220± 0.3810 −0.1270± 0.4600
0.1 100.10% 0.4222± 0.3810 −0.1270± 0.4601
0.2 100.52% 0.4220± 0.3810 −0.1270± 0.4600
0.5 100.97% 0.4220± 0.3810 −0.1270± 0.4600

Average Signed Error(Pixels)
ǫ Approx-opt Ratio Inner Wall Outer Wall

0.05∗ 100.00% 0.6570± 0.1490 0.5720± 0.0320
0.1 100.10% 0.6562± 0.1490 0.5726± 0.0320
0.2 100.52% 0.6570± 0.1490 0.5724± 0.0320
0.5 100.97% 0.6570± 0.1490 0.5724± 0.0320

Table 2.5: Segmentation accuracy of the approximation
method on 3-D MR ventricular images

Average Unsigned Error(Pixels)
ǫ Approx-opt Ratio Inner Wall Outer Wall

0.05∗ 100.00% −0.7103± 0.5384 −0.5841± 0.4367
0.1 100.14% −0.7090± 0.5375 −0.5859± 0.4430
0.2 100.86% −0.7076± 0.5354 −0.5860± 0.4440
0.5 101.43% −0.7201± 0.5470 −0.5869± 0.4275

Average Signed Error(Pixels)
ǫ Approx-opt Ratio Inner Wall Outer Wall

0.05∗ 100.00% 0.7776± 0.4356 0.7929± 0.4367
0.1 100.14% 0.7742± 0.4366 0.8068± 0.4430
0.2 100.86% 0.7674± 0.4398 0.8207± 0.4440
0.5 101.43% 0.8033± 0.4288 0.7516± 0.4275
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Exact Algorithm
ε=0.05
ε=0.10
ε=0.20
ε=0.50

Figure 2.16: Comparison of execution times on computer phantoms by the approxi-
mation algorithm against the exact algorithm.
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Gaussian noise (σ = 0.5, 2.0, 3.0) revealed that the efficiency of the approximation

method did not decrease with the presence of noise. In contrast, the performance of

the exact algorithm on running time deteriorated significantly for noisy images. The

dramatic improvement on the execution times of the approximation algorithm over

the exact algorithm are shown in Figures 2.17 and 2.18, respectively, for 3-D airway

CT images and 3-D ventricular MR images, which show less intensity homogeneity.

Figure 2.17: Comparison of execution times on 3-D airway CT image data by the
approximation algorithm against the exact algorithm.

2.7.8 Performance of the SSD Method

Our SSD method for liver lesion segmentation demonstrated low surface posi-

tioning errors as well as robust performance when compared with the expert-traced
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Figure 2.18: Comparison of execution times on 3-D ventricular MR images by the
approximation algorithm against the exact algorithm.

results. The average signed and unsigned positioning errors were −0.07 ± 0.31 and

0.77±0.16 voxels. Examples of our segmentation results and the corresponding man-

ual tracings are shown in Figure 2.19.

For lung tumor data, the average signed and unsigned positioning errors were

−0.03 ± 0.10 and 0.78 ± 0.13 voxels compared with the expert-traced results. Fig-

ure 2.20 shows examples of our segmentation results.

The average execution times for the initial preflow and the total running time

of our algorithm are shown in Table 2.6. It shows that the total execution time is just

a few times higher than the single non-parametric maximum-flow algorithm while our

exact double surface algorithm takes O(n) runs of the non-parametric maximum-flow

algorithm.
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Figure 2.19: Example slices showing our segmentation result (red) and expert-traced
result (green) on liver lesion data. Top row shows the original images.

Figure 2.20: Example slices showing our segmentation result (red) and expert-traced
result (green) on lung tumor data. Top row shows the original images.
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Table 2.6: Average execution times

Image Size Single Max-flow (s) Total Time (s)
40× 40× 40 5.0 18.8
60× 60× 40 12.0 62.5
80× 80× 40 20.0 145.5

100× 100× 40 33.1 272.5
140× 140× 40 66.1 733.9

2.8 Discussion

The algorithm efficiently detects the globally optimal region in the entire

region-of-interest (ROI), enabling highly accurate image segmentation that is a pre-

requisite for reliable quantitative image analyses. One obvious limitation is that that

our method only allows optimal detection of a single object (region). This may pre-

vent the method from being used for a wider range of medical applications, in which

multiple interacting objects are present. The extension of our method for dealing

with simultaneous multiple object segmentation is an interesting and challenging fu-

ture work. The second limitation is that the method can only detect those surfaces

that can be unfolded to be terrain-like, including cylindrical or tubular surfaces. Un-

folding techniques have been developed for objects of relatively complex shapes, such

as liver [41], knee bone and cartilage [52, 43], heart [67], and pulmonary airway and

vascular trees [55]. However, one may experience difficulty to unfold more complex

objects into terrain-like surfaces. Thus, another challenge is to make the method

work with complex topology.

The approximation algorithm was demonstrated as having much faster run-
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ning times while still producing highly comparable segmentation results as the exact

algorithm. Unfortunately, we have not yet proven a tight bound of the approximation

ratio, although the experiments indicated that it was pretty small. We plan to further

study the approximation ratio of our approximation algorithm.
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CHAPTER 3
FIELD DECOMPOSITION PROBLEM

3.1 Introduction and Problem Modeling

In this chapter, we propose to use two orthogonal directions to deliver an IM

(i.e., horizontal and vertical) and formulate the following IM matrix orthogonal

decomposition (IMOD) problem: Given an m × n non-negative integer matrix

A = (ai,j) ∈ Z
+m×n

(i.e., an IM) and an integer λ ≥ 1, find two matrices (i.e.,

sub-IMs) Q = (qi,j), R = (ri,j) ∈ Z
+m×n

such that:

(1) A = λQ+R,

(2) the sum of the horizontal complexity CH(Q) of Q and the vertical

complexity CV (R) of R is minimized.

Since the complexity of an IM is not well defined, we consider the following

two sets of complexity definitions:

1. Positive Gradient Sum Cost:

CH(Q) =

m
∑

i=1

(

qi,1 +

n
∑

j=2

max(0, qi,j − qi,j−1)

)

CV (R) =
n
∑

j=1

(

r1,j +
m
∑

i=2

max(0, ri,j − ri−1,j)

)

(3.1)
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2. Total Variation Cost:

CH(Q) =

m
∑

i=1

n
∑

j=2

(qi,j − qi,j−1)
2

CV (R) =
n
∑

j=1

m
∑

i=2

(ri,j − ri−1,j)
2 (3.2)

The rationale behind the positive gradient sum cost definition is based on

the following observations. The minimum number of MUs TMU(B[i]) for delivering

each row B[i] of B equals to
(

bi,1 +
∑n

j=2 max(0, bi,j − bi,j−1)
)

[30]. The complexity

C(A) measures the total minimum number of MUs of all rows of the IM A when it is

delivered horizontally. Hence, the complexity of an IM that we use is closely related

to the number of MUs of the IM.

For the total variation cost, Süss and Küfer found that if the total variation of

an intensity map increases, the minimum number of MUs used to deliver it is expected

to increase as well [72]. This indicates that the total variation is a good measure of

the complexity of an IM, especially number of MUs of the IM.

Then, the sub-IM Q and R are delivered in two orthogonal directions. It is

helpful to note that two IMs A and B with A = λ ·B for some integer λ > 1, can be

delivered by the same set of MLC-apertures. By adding the factor λ, it is very likely

to reduce the total number of MLC-apertures since this can reduce the elements

in R and thus the number of MLC-apertures used to deliver R. Most of current

approaches for the SLS problem are based on a method for reducing the intensity

level of IM matrices, then compute a set of MLC-apertures for the IM matrices with
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a smaller maximum intensity level [82, 15, 64, 65, 73, 16]. Our decomposition results

in two “simpler” sub-IMs with smaller maximum intensity level, which, in turn, yields

a more efficient delivery plan using fewer MLC-apertures and/or less total number of

MUs.

We develop an efficient algorithm for the IM matrix orthogonal decomposition

problem. Our algorithm is based on a non-trivial graph construction scheme, which

enables us to formulate the decomposition problem as computing a minimum s-t cut

in a 3-D geometric multi-pillar graph. The algorithm was implemented and tested on

clinical datasets.

3.2 Algorithm for the Positive Gradient

Sum Cost

This section presents our efficient IM matrix orthogonal decomposition algo-

rithm. We start from the first cost function, and we model the problem as a minimum

s-t cut problem on a 3-D geometric multi-pillar graphG by a complicated graph trans-

formation scheme. The s-t cuts in the graph G characterize the solution space of the

IMOD problem.

3.2.1 Modeling the IMOD Problem

We define a 3-D geometric multi-pillar graph G = (V,E) on a 2-D m× n grid

Γ from the given IM matrix A = (ai,j)m×n and the integer λ > 0, as follows.

Note that each element ai,j of A has ⌊ai,j

λ
⌋ + 1 possible decompositions, that

is, ai,j = λ · qi,j + ri,j for qi,j = 0, 1, . . . , ⌊ai,j

λ
⌋. We then introduce exact one vertex



68

(a) (b)

Figure 3.1: Illustration of 2-D grid and multi-pillar vertices. (a) A 2-D grid. (b)
Multi-pillar vertices.

v(i, j, k) ∈ V for each possible decomposition (qi,j, ri,j) of ai,j , where k = qi,j +1. For

the ease of our graph construction, a special vertex v(i, j, ⌊ai,j

λ
⌋ + 2) is put in G for

each ai,j. Thus, there is a set Col(i, j) of ⌊ai,j

λ
⌋+2 vertices in G corresponding to ai,j

of the IM matrix A; Col(i, j) = {v(i, j, k)|k = 1, 2, . . . , ⌊ai,j

λ
⌋ + 1, ⌊ai,j

λ
⌋ + 2}, called

the (i, j)-pillar of G (see Figure 3.1(a) and (b) for an example). In addition, we add

two dummy vertices, a source s and a sink t, in G to formulate our IMOD problem

as computing a minimum s-t cut in G.

Before adding edges into G, we first introduce some notations. The height

h(i, j) of the pillar Col(i, j) is ⌊ai,j

λ
⌋+2. We say that two pillars Col(i, j) and Col(i′, j′)

are adjacent to each other if |i − i′| + |j − j′| = 1. For each pillar Col(i, j), v(i, j, 1)

is called the base vertex and v(i, j, ⌊ai,j

λ
⌋+ 2) is called the top vertex of the pillar.

We are now ready to put directed edges in G. Our basic idea is that, for a

feasible decomposition (qi,j , ri,j) of each ai,j of A, we expect that� qi,j partitions the (i, j)-pillar into two subsets, Si,j = {v(i, j, k)|k = 1, 2, . . . , qi,j+
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1} and Si,j = {v(i, j, k)|k = qi,j +1, . . . , ⌊ai,j

λ
⌋+2}, and C =

(

⋃

i,j Si,j,
⋃

i,j Si,j

)

is a valid s-t cut in G (a cut C in G is valid if the total edge weight w(C) of C

is finite); and� the total weight of the cut C equals to the sum of the horizontal complexity

CH(Q) of Q = (qi,j)m×n, with

CH(Q) =

m
∑

i=1

(

qi,1 +

n
∑

j=2

max(0, qi,j − qi,j−1)

)

,

and the vertical complexity CV (R) of R = (ri,j)m×n, with

CV (R) =

n
∑

j=1

(

r1,j +

m
∑

i=2

max(0, ri,j − ri−1,j)

)

.

We thus introduce two types of directed edges: one is used to enforce the

feasibility of a solution, which includes two subsets of edges Emo and Ead; the other

is used to realize total complexity of a feasible decomposition of A, which consists

of four subsets of edges, Evt, Ehz, Er, and Eq. The four subsets are used to real-

ize different parts of the complexity measurement,
∑n

j=1

∑m−1
i=1 max{0, ri+1,j − ri,j},

∑m

i=1

∑n−1
j=1 max{0, qi,j+1− qi,j} ,

∑n

j=1 r1,j, and
∑m

i=1 qi,1, of a feasible decomposition

(Q,R) of A, respectively.� The edges in Emo: On each pillar Col(i, j), an edge of weight +∞ is added from

every vertex v(i, j, k) to vertex v(i, j, k − 1) for k = 2, 3, . . . , h(i, j). The set of

edges in Emo is used to guarantee the monotonicity property of the solution,
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since exactly one vertex on each pillar of G can be used to define a feasible

solution to the IMOD problem.� The edges in Ead: An edge of weight +∞ is put in Ead from the source s to the

base vertex of each pillar. Meanwhile, an edge of weight +∞ is added from the

top vertex of each pillar to the sink t.� The edges in Evt: Consider any two adjacent pillars Col(i, j) and Col(i + 1, j)

on the same column of Γ (0 < i < m and 0 < j ≤ n). Recall that edges in

Evt are used to realize the part
∑n

j=1

∑m−1
i=1 max{0, ri+1,j − ri,j} of the vertical

complexity CV (R). We thus expect that the edges between Col(i, j) and Col(i+

1, j) are put in such a way that the total weight of the edges that contribute to

the corresponding cut of the decomposition (Q,R) equals to max{0, ri+1,j−ri,j}.

Let us take a close look at the term ri+1,j − ri,j .

ri+1,j − ri,j = (ai+1,j − λ · qi+1,j)− (ai,j − λ · qi,j)

= (ai+1 − ai,j) + λ · (qi,j − qi+1,j)

= λ ·

(

⌊
ai+1,j − ai,j

λ
⌋+ (qi,j − qi+1,j)

)

+ (ai+1,j − ai,j)%λ

To give an intuitive idea on how to introduce edges in Evt, we assume that

ai+1,j ≥ ai,j . Based on the equation above, we could “align” vertex v(i, j, k) ∈

Col(i, j) with vertex v(i+ 1, j, k′) ∈ Col(i+ 1, j) such that k′ = k+ ⌊ai+1,j−ai,j

λ
⌋
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and add an edge in Evt from v(i, j, k) to v(i + 1, j, k′ + 1) with a weight of

(ai+1,j−ai,j)%λ. Notice that when the difference between qi,j and qi+1,j increases

by 1, the complexity increases by λ. To accommodate this, we might put an

edge from v(i, j, k) to v(i+ 1, j, k′) with a weight of λ− (ai+1,j − ai,j)%λ.

Formally, for every vertex v(i, j, k) with i < m and 0 < k < h(i, j) in G,

we define its lower neighbor and its upper neighbor on the pillar Col(i + 1, j)

adjacent to Col(i, j):

1. if 1 ≤ (⌊ai+1,j−ai,j

λ
⌋+ k) ≤ h(i+ 1, j)− 1, the lower neighbor of v(i, j, k) is

v(i+ 1, j, ⌊ai+1,j−ai,j

λ
⌋+ k);

2. if v(i + 1, j, zl) is the lower neighbor of v(i, j, k) and zl < h(i + 1, j), the

upper neighbor of v(i, j, k) is v(i+ 1, j, zl + 1).

Note that we do not define neighbors for the top vertices.

Then, for each non-base vertex v(i, j, k) on Col(i, j) (i.e., k > 1), two directed

edges are put in Evt:

1. a lower edge from v(i, j, k) to its lower neighbor, and

2. an upper edge from v(i, j, k) to its upper neighbor (see Figure 3.2(a)).

The weight of the lower edge of v(i, j, k) is assigned as (λ−[ai+1,j−ai,j]%λ), and

the weight of the upper edge of v(i, j, k) is set to ([ai+1,j −ai,j ]%λ). Meanwhile,

for the base vertex v(i, j, 1), we put an upper-base edge with a weight of ([ai+1,j−

ai,j]%λ) from v(i, j, 1) to its upper neighbor on Col(i+1, j). If the lower neighbor
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v(i+ 1, j, zl) of v(i, j, 1) is not the base vertex of the pillar Col(i+ 1, j), then a

set of directed edges (called the lower-base edges) from v(i, j, 1) to v(i+ 1, j, k′)

for every 2 ≤ k′ ≤ zl is introduced into Evt; the weight of each of these edge

is λ. Note that all the above edges are added only when the corresponding

neighbor exists or the neighbor is not the base vertex. Figure 3.2(a) illustrates

the construction with an example.� The edges in Ehz: The edges in Ehz are used to realize the part

∑m

i=1

∑n−1
j=1 max{0, qi,j+1 − qi,j} of the horizontal complexity CH(Q). Consider

any two adjacent pillar Col(i, j) and Col(i, j + 1) on the same row of Γ (0 <

i ≤ m and 0 < j < n). For each non-base vertex v(i, j + 1, k) on Col(i, j + 1)

(i.e., k 6= 1), if k < min{h(i, j), h(i, j+1)}, we put an edge from v(i, j+1, k) to

v(i, j, k) ∈ Col(i, j) with a weight of 1 (see Figure 3.2(b)). If the height h(i, j+1)

of Col(i, j + 1) is larger than the height h(i, j) of Col(i, j), a directed edge of

weight 1 is also introduced from each vertex v(i, j+1, k) on the pillar Col(i, j+1)

to the top vertex v(i, j, h(i, j)) of Col(i, j), for every k = h(i, j), . . . , h(i, j+1)−

1.� The edges in Er: The part
∑n

j=1 r1,j of the vertical complexity CV (R) is intended

to be realized using edges in Er. The top vertex of each pillar Col(1, j) on the

first row of Γ (i.e., for every j = 1, 2, . . . , n), has a directed edge with a weight

of a1,j%λ from the source s. Additionally, for each vertex v(1, j, k) of every

pillar Col(1, j), if v(1, j, k) is not the base vertex or the top vertex, then we add

a directed edge of weight λ from the source s to v(1, j, k). Figure 3.2(a) shows
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Figure 3.2: Illustrating the construction of the multi-pillar graph G from a given IM
matrix A. Each element ai,j corresponds to a pillar Col(i, j) of ⌊ai,j⌋+1 vertices, each
specifying a possible decomposition (qi,j, ri,j) of ai,j , and a top vertex of the pillar,
which is denoted by “void”. (a) The construction of Evt (thin edges) and Er (thick
edges) of the case ai,j = 10, ai+1,j = 14, and λ = 3. Each vertex of Col(i, j), except the
base and top ones, has in Evt a lower edge with a weight of 2 (= (λ− [ai+1,j−ai,j ]%λ))
and an upper edge with a weight of 1 (= ([ai+1,j−ai,j ]%λ)) to Col(i+1, j). The base
vertex of Col(i, j) has in Evt an upper-base edge of weight 1 (= ([ai+1,j − ai,j ]%λ))
and only one lower-base edge of weight λ to Col(i + 1, j) in this case. Assume that
i = 1. The source s has in Er a directed edge with a weight of 1 (= a1,j%λ) to the top
vertex of Col(1, j) and a directed edge of weight λ to each of other non-base vertices
of Col(1, j). (b) The construction of Ehz (thin edges) and Eq (thick edges) of the case
ai,j = 9, ai,j+1 = 13, and λ = 3. Each non-base vertex v(i, j+1, k) ∈ Col(i, j+1) has
in Ehz a directed edge of weight 1 to the corresponding vertex v(i, j, k) ∈ Col(i, j)
if k < 5 (the smaller height of Col(i, j) and Col(i, j + 1)). For each non-top vertex
v(i, j + 1, k) with k ≥ 5, a directed edge of weight 1 is introduced to the top vertex
of Col(i, j). Assuming j = 1, each vertex of Col(i, j), except the base and top ones,
has a directed edge with a weight of 1 to the sink t.
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an example for this construction. Note that there is no edge in Er from source

s to the base vertex of each pillar Col(1, j).� The edges in Eq: The edges in Eq are used to realize the part
∑m

i=1 qi,1 of the

horizontal complexity CH(Q). For each vertex v(i, 1, k) of every pillar Col(i, 1)

on the first column of Γ (i.e., i = 1, 2, . . . , m), if v(i, 1, k) is not the base vertex

or the top vertex, then we put a directed edge of weight 1 from v(i, 1, k) to the

sink t (see Figure 3.2(b) when j = 1).

Hence, the edge set E of G is Evt∪Ehz∪Eq∪Er∪Emo∪Ead. We thus complete

the construction of the multi-pillar graph G.

3.2.2 Computing an Optimal Matrix Orthogonal

Decomposition

The graph G constructed in Section 3.2.1 allows us to find the optimal matrix

orthogonal decomposition for the given IM matrix A, by computing a minimum-

weight s-t cut in G. In order to do that, below we prove the following facts: (1) Any

valid s-t cut C defines a feasible decomposition (Q,R) of A (i.e., A = λ ·Q+R), such

that CH(Q) + CV (R) = w(C); (2) any feasible decomposition (Q,R) of A specifies a

valid s-t cut C in G, such that w(C) = CH(Q)+CV (R). Consequently, a valid s-t cut

in G with the minimum total edge weight can specify an optimal matrix orthogonal

decomposition of A.

We first argue that any valid s-t cut in G corresponds to a feasible decompo-

sition of A and any feasible decomposition corresponds to a valid s-t cut in G.



75

Observation 1. For a valid s-t cut C = (S, S) in G, the base vertices of all pillars

are included in the source set S and all top vertices of pillars are included in the sink

set S.

Proof. The observation can be proved by contradiction. If a base vertex is included

in the sink set S, since we add edges of weight +∞ from the source s to every base

vertex during the construction of Ead ⊂ E, the total edge weight w(C) is thus equal

to +∞, which is a contradiction. Similarly, all top vertices have to be in the sink set

S.

Observation 2. For a valid s-t cut C = (S, S) in G, if a vertex v(i, j, k) ∈ Col(i, j)

is in the source set S, each vertex v(i, j, k′) with k′ < k is also in S; if a vertex

v(i, j, k) ∈ Col(i, j) is in the sink set S, every vertex v(i, j, k′) with k′ > k is also in

the sink set S.

Proof. We prove this observation also by contradiction. Without loss of generality

(WLOG), assume that v(i, j, k) is in the source set S and v(i, j, k − 1) is in the sink

set S. Due to the construction of edges in Emo, there is an edge of weight +∞ from

vertex v(i, j, k) to vertex v(i, j, k−1) for any k = 2, 3, . . . , h(i, j). Thus, w(C) = +∞,

which is a contradiction. Hence, if a vertex v(i, j, k) ∈ Col(i, j) is in the source set

S, each vertex v(i, j, k′) with k′ < k is also in S. A similar argument can show that

the second part of the observation holds.

Thus, we can define a matrix D = di,j ∈ Z
+m×n

(1 ≤ di,j ≤ h(i, j) − 1)

to describe a valid s-t cut C = (S, S) in G, such that for each pillar Col(i, j), S ∩
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Col(i, j) = {v(i, j, k)|k = 1, 2, . . . , di,j} and S∩Col(i, j) = {v(i, j, k)|k = di,j +1, di,j+

2, . . . , h(i, j)}. Then, a feasible decomposition (Q,R) of A, with A = λ · Q+ R, can

be defined, as follows. For every pair (i, j) (1 ≤ i ≤ m and 1 ≤ j ≤ n), qi,j = di,j − 1

(Note that ri,j is uniquely determined by qi,j ).

On the other hand, given a feasible decomposition (Q,R) of A, a valid s-t cut

C = (S, S) in G can be specified: S = {(v(i, j, k)|(i, j) ∈ Γ and k = 1, 2, . . . , di,j} and

S = {(v(i, j, k)|(i, j) ∈ Γ and k = di,j + 1, di,j + 2, . . . , h(i, j)}. It is easy to see the

weight w(C) of the cut C is finite. Hence, the following lemma holds.

Lemma 7. Any valid s-t cut in G has a one-to-one correspondence to a feasible

decomposition of the IM matrix A.

For a given valid s-t cut C = (S, S) in G, based on Lemma 7, it specifies a

feasible decomposition (Q,R) of A. Next, we show that the total edge weight w(C) of

C equals to the sum of the horizontal complexity CH(Q) and the vertical complexity

CV (R).

From Observations 1 and 2, edges in Emo or in Ead cannot be in C. We thus

only need to consider edges in Evt, Ehz, Eq, and Er. Actually, we are able to show

that the total edge weight of the intersection of C with Evt, Ehz, Eq, and Er, equals

to
∑n

j=1

∑m−1
i=1 max{0, ri+1,j − ri,j},

∑m

i=1

∑n−1
j=1 max{0, qi,j+1 − qi,j},

∑m

i=1 qi,1, and

∑n

j=1 r1,j , respectively.

Lemma 8. For a valid s-t cut C = (S, S) in G, the total edge weight of C ∩Evt equals

to
∑n

j=1

∑m−1
i=1 max{0, ri+1,j − ri,j}.
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Proof. In the construction of the edge set Evt, all edges are added between two ad-

jacent pillars on the same column of Γ, we thus first consider the subset Ci,j of edges

that are between two adjacent pillars Col(i, j) and Col(i+1, j), and belong to the s-t

cut C. Recall that we distinguish four types of edges in G: lower edges, upper edges,

lower-base edges, and upper-base edges. The weights of the edges of the same type

are uniform. The basic idea to prove this lemma is to calculate in Ci,j the number of

edges of each of those four types. We then compute the total edge weight of Ci,j.

From the decomposition defined by the cut C, we know that the set of vertices

{v(i, j, k)|k = 1, . . . , qi,j + 1} ∪ {v(i + 1, j, k)|k = 1, . . . , qi+1,j + 1} are in the source

set S; while the set of vertices {v(i, j, k)|k = qi,j + 2, . . . , h(i, j)} ∪ {v(i+ 1, j, k)|k =

qi+1,j + 2, . . . , h(i + 1, j)} are in the sink set S. Recall that for the lower edge le

incident to a non-base vertex v(i, j, k) ∈ Col(i, j), we have

1 ≤ ⌊
ai+1,j − ai,j

λ
⌋+ k ≤ h(i+ 1, j)− 1.

Further, the edge le can be in the cut C only if the lower neighbor of v(i, j, k)

is in the sink set S. Hence,

qi+1,j + 2 ≤ ⌊
ai+1,j − ai,j

λ
⌋+ k ≤ h(i+ 1, j)− 1.

Another condition needed for the edge le to be in C is that v(i, j, k) ∈ S, which

means
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2 ≤ k ≤ qi,j + 1.

Combining both conditions above we have

max

{

2, qi+1,j + 2− ⌊
ai+1,j − ai,j

λ
⌋

}

≤ k

≤ min

{

h(i+ 1, j)− 1− ⌊
ai+1,j − ai,j

λ
⌋, qi,j + 1

}

.

Hence, the number of lower edges in the cut C is,

max

{

0,min

{

h(i+ 1, j)− 1− ⌊
ai+1,j − ai,j

λ
⌋, qi,j + 1

}

− max

{

2, qi+1,j + 2− ⌊
ai+1,j − ai,j

λ
⌋

}

+ 1

}

For the upper edges between Col(i, j) and Col(i + 1, j), in a similar way, we

can calculate that the number of such edges in the cut C is

max

{

0,min

{

h(i+ 1, j)− 1− ⌊
ai+1,j − ai,j

λ
⌋, qi,j + 1

}

− max

{

1, qi+1,j + 1− ⌊
ai+1,j − ai,j

λ
⌋

}

+ 1

}

The number of the upper-base and lower-base edges between Col(i, j) and
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Col(i+ 1, j) that are in the cut C is

max{⌊
ai+1,j − ai,j

λ
⌋ − qi+1,j, 0}.

Thus, the total weight of the edges in the intersection of the s-t cut and the

edges between Col(i, j) and Col(i+ 1, j) is calculated, as follows.

(λ− [ai+1,j − ai,j]%λ)×max

{

0,min

{

h(i+ 1, j)− 1− ⌊
ai+1,j − ai,j

λ
⌋,

qi,j + 1} − max

{

2, qi+1,j + 2− ⌊
ai+1,j − ai,j

λ
⌋

}

+ 1

}

+ ([ai+1,j − ai,j]%λ)×max

{

0,min

{

h(i+ 1, j)− 1− ⌊
ai+1,j − ai,j

λ
⌋, qi,j + 1

}

− max

{

1, qi+1,j + 1− ⌊
ai+1,j − ai,j

λ
⌋

}

+ 1

}

+ λ×max

{

⌊
ai+1,j − ai,j

λ
⌋ − qi+1,j , 0

}

=















0 f(·) < 0

λ
(

f(·) + max
{

⌊ai+1,j−ai,j

λ
⌋ − qi+1,j , 0

})

+ [ai+1,j − ai,j ]%λ f(·) ≥ 0

,

(3.3)

where

f(·) = min

{

⌊
ai+1,j

λ
⌋ − ⌊

ai+1,j − ai,j

λ
⌋, qi,j

}

−max

{

0, qi+1,j − ⌊
ai+1,j − ai,j

λ
⌋

}

When 0 ≤ ai+1,j − ai,j < λ or ⌊ai+1,j−ai,j

λ
⌋ = 0, function f(·) can be reduced to
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f(·) = min
{

⌊
ai+1,j

λ
⌋, qi,j

}

−max{0, qi+1,j} = qi,j − qi+1,j

And thus the expression in Equation 3.3 can be rewritten as















0 qi,j − qi+1,j < 0

(qi,j − qi+1,j)× λ+ [ai+1,j − ai,j]%λ qi,j − qi+1,j ≥ 0

= λ ·max

{

0,
ai+1,j − ai,j

λ
+ qi,j − qi+1,j

}

= max{ri+1,j − ri,j, 0}

When ⌊ai+1,j−ai,j

λ
⌋ < 0, we can increase ai+1,j by λ⌊ai+1,j−ai,j

λ
⌋ and qi+1,j by

⌊ai+1,j−ai,j

λ
⌋, and denote the results by a′i+1,j and q′i+1,j , respectively. This operation

does not change ri+1,j or any edges in the cut C. However, after the operation,

⌊ai+1,j−ai,j

λ
⌋ = 0 holds, and thus we still have the total weight of the edges in the

intersection of the s-t cut C and the edges between Col(i, j) and Col(i + 1, j), is

max{ri+1,j − ri,j, 0}. Figure 3.3 (a) and (b) show an example to illustrate the key

idea.

When ⌊ai+1,j−ai,j

λ
⌋ > 0, we can decrease ai+1,j by λ⌊ai+1,j−ai,j

λ
⌋ and qi+1,j by

min{qi+1,j, ⌊
ai+1,j−ai,j

λ
⌋} to a′i+1,j and q′i+1,j , respectively, to make sure that q′i+1,j ≥ 0.

Observe that the case for qi+1,j ≥ ⌊
ai+1,j−ai,j

λ
⌋ is the same as the case for ⌊ai+1,j−ai,j

λ
⌋ <

0. However, if qi+1,j < ⌊
ai+1,j−ai,j

λ
⌋, the new r′i+1,j = a′i+1,j−λq

′
i+1,j will be (⌊ai+1,j−ai,j

λ
⌋−

qi+1,j)× λ less than the actual ri+1,j . The term
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Figure 3.3: Illustrating the proof of Lemma 8. (a) An example with ⌊ai+1,j−ai,j

λ
⌋ < 0,

wherein ai,j = 9, ai+1,j = 7, qi,j = 2, qi+1,j = 0, and λ = 3. (b) Increasing ai+1,j to 10
and qi+1,j to 1, ri,j will not be changed, neither are the edges across the cut. (c) An
example with ⌊ai+1,j−ai,j

λ
⌋ > 0, wherein ai,j = 9, ai+1,j = 13, qi,j = 2, qi+1,j = 0, and

λ = 3. (d) Decreasing ai+1,j to 10 and keeping qi+1,j unchanged, ri+1,j is decreased
by 3, but an edge of weight 3 is introduced to counteract this change.

max

{

⌊
ai+1,j − ai,j

λ
⌋ − qi+1,j , 0

}

× λ

can then counteract the change. Hence, in this case, we again have the total weight

of the edges in the intersection of the s-t cut C and the edges between Col(i, j) and

Col(i + 1, j), is max{ri+1,j − ri,j , 0}. Figure 3.3 (c) and (d) illustrate the essential

idea using an example.

Taking all the above possibilities into account, we conclude that the total

weight of the edges in the intersection of the s-t cut C and the edges between Col(i, j)

and Col(i + 1, j), is max{ri+1,j − ri,j, 0}. By considering all pairs of adjacent pillars

on the same columns of Γ, we have w(C ∩ Evt) =
∑n

j=1

∑m−1
i=1 max{0, ri+1,j − ri,j}.

Thus, Lemma 8 follows.
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Using a similar argument as for Lemma 8, we have the following lemma.

Lemma 9. For a valid s-t cut C = (S, S) in G, the total edge weight of C∩Ehz equals

to
∑m

i=1

∑n−1
j=1 max{0, qi,j+1 − qi,j}.

We next investigate the total edge weight of the intersections of a valid s-t cut

C with Er and Eq, respectively.

Lemma 10. For a valid s-t cut C = (S, S) in G, the total edge weight of C∩Er equals

to
∑n

j=1 r1,j.

Proof. For each pillar Col(1, j) on the first row of Γ, all vertices in {v(1, j, k)|k =

1, . . . , d(1, j) or k = 1, . . . , q1,j+1} are in the source set S, while vertices in {v(1, j, k)|k =

q1,j + 2, . . . , h(1, j)} are in the sink set S. Recall that each edge in {(s, v(1, j, k))|k =

2, . . . , h(1, j)−1} has a weight of λ, and the edge (s, v(1, j, h(1, j))) is of weight a1,j%λ.

Here only edges in E ′′ = {(s, v(1, j, k))|k = q1,j+2, . . . , h(1, j)−1}∪{s, v(1, j, h(1, j))}

are in the cut C. Thus, we have

w(E ′′) = (h(1, j)− 1− (q1,j + 2) + 1)× λ+ a1,j%λ

=
(

⌊
a1,j

λ
⌋+ 2− 1− q1,j − 2 + 1

)

× λ+ a1,j%λ

= ⌊
a1,j

λ
⌋ × λ+ a1,j%λ− λq1,j

= a1,j − λ× q1,j = r1,j.

Hence, w(C ∩Er) =
∑n

j=1 r1,j
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Lemma 11. For a valid s-t cut C = (S, S) in G, the total edge weight of C∩Eq equals

to
∑m

i=1 qi,1.

Proof. Consider each pillar Col(i, 1) on the first column of the grid Γ. All vertices in

the set {v(i, 1, k)|k = 1, . . . , d(i, 1) or k = 1, . . . , qi,1 +1} are in the source set S, while

vertices in {v(i, 1, k)|k = qi,1 + 2, . . . , h(i, 1)} are in the sink set S. Thus, only edges

in E ′ = {(v(i, 1, k), t)|k = 2, . . . , qi,1 + 1} (recall that no edge in Eq is incident to a

base vertex) is in the cut C. Note that the weight of each of those edges is 1. Thus,

the total edge weight of E ′ is qi,1 +1−2+1 = qi,1. Hence, w(C ∩Eq) =
∑m

i=1 qi,1.

Putting Lemmas 8 - 11 all together, we have the following fact.

Lemma 12. For any valid s-t cut C in G and its specified decomposition (Q,R) of

A, with A = λ ·Q+R, we have w(C) = CH(Q) + CV (R).

From Lemmas 7 and 12, an minimum-weight s-t C in G can be used to define

an optimal matrix orthogonal decomposition (Q∗, R∗) of A, with A = λ · Q∗ + R∗,

such that CH(Q∗) + CV (R∗) is minimized. Note that |V | = O(mn⌊H
λ
⌋) and |E| =

O(mn⌊H
λ
⌋), where H is the largest intensity level in the IM matrix A. Denote by

T (n′, m′) the time for finding a minimum s-t cut in an edge-weighted directed graph

with O(n′) vertices and O(m′) edge. We have our first main result.

Theorem 1. The IMOD problem with positive gradient sum cost can be solved in

T
(

mn⌊H
λ
⌋, mn⌊H

λ
⌋
)

time.



84

3.3 Our Algorithm for the Total Variation Cost

For the second cost function, we first formulate the problem as searching an

optimal surface in a 3-D geometric multi-pillar graph. The graph is constructed from

the given intensity map A , such that each feasible surface in the graph defines a

corresponding orthogonal decomposition of A (i.e., A = λQ + R ) and the cost of

the surface equals to the horizontal complexity of Q plus the vertical complexity of

R . Thus, the minimum-cost surface in the graph defines an optimal orthogonal

decomposition of A . Then the minimum-cost surface is detected by computing a

minimum s-t cut in a derived graph [79].

3.3.1 The Graph Transformation Scheme for the Total Variation Cost

In this section, we formulate the IMOD problem as the minimum-cost surface

detection problem. Given an IM matrix A = (ai,j)m×n and the integer λ > 1, a 3-D

geometric multi-pillar graph G = (V,E) is constructed on a 2-D m × n grid Γ (see

Figure 3.4(a)), as follows.

Let g(i, j) ( 0 < i ≤ m and 0 < j ≤ n ) denote a grid point in Γ and each

grid point represents an element ai,j of the given intensity map. Similar to the graph

construction for the positive gradient sum cost, for each grid point g(i, j), we create

a set Col(i, j) of ⌊ai,j

λ
⌋ + 1 (defined as height hi,j) vertices in G, each representing a

decomposition of ai,j; Col(i, j) = {v(i, j, k)|k = 0, 1, . . . , hi,j − 1}, is called the (i, j)-

pillar of G (see Figure 3.4(b)). Two pillars Col(i, j) and Col(i′, j′) are adjacent to

each other if |i − i′| + |j − j′| = 1. We add edges between any two vertices if their

corresponding pillars are adjacent. The edge weights are assigned as follows,
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(a) (b)

Figure 3.4: Illustration of a 2-D grid and multi-pillar vertices. (a) A 2-D grid. (b)
Multi-pillar vertices.

1. For two vertices v1(i, j, k) ∈ Col(i, j) and v2(i, j+1, k′) ∈ Col(i, j+1), the weight

of the edge e = (v1, v2) is assigned as c(e) = f(i,j)(i,j+1)(|k − k
′|) = (k − k′)2.

2. For two vertices v1(i, j, k) ∈ Col(i, j) and v2(i + 1, j, k′) ∈ Col(i + 1, j), the

weight of the edge e = (v1, v2) is assigned as c(e) = f(i,j)(i+1,j)(k − k′) = (ai,j −

ai+1,j − λk + λk′)2.

A surface in G is defined by a function N : Γ → {0, 1, . . . , hi,j − 1}, that is,

each (i, j) ∈ Γ is mapped to k = N (i, j) and v(i, j, k) is a vertex of G. Intuitively the

net surface is a surface that “intersects” exactly once with each pillar at a vertex. For

simplicity, we also denote the surface by N . Note that for any two adjacent vertices

on the surface N , v1(i, j, k) and v2(i
′, j′, k′) with |i − i′| + |j − j′| = 1, (v1, v2) is an

edge of G. The cost c(N ) of the surface N is the total sum of the weights of the

edges on N . Apparently a feasible surface in G has a one-to-one relation with the

decomposition of the IM A by setting qi,j = N (i, j) and ri,j = ai,j−qi,j. The following
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equation shows that the cost c(N) of the surface N equals to the total complexity of

the resulting decomposition:

c(N ) =
m
∑

i=1

n
∑

j=2

(N (i, j)−N (i, j − 1))2

+

n
∑

j=1

m
∑

i=2

(ai+1,j − ai,j − λ · N (i, j) + λ · N (i, j − 1))2

=
m
∑

i=1

n
∑

j=2

(qi,j − qi,j−1)
2 +

n
∑

j=1

m
∑

i=2

((ai,j − λ · qi,j)− (ai−1,j − λ · qi−1,j))
2

= CH(Q) + CV (R) (3.4)

Thus, an optimal surface N ∗ in G defines an optimal decomposition of IM A.

3.3.2 Optimal Surface Detection

In this section, we present an efficient algorithm for detecting an optimal

surface in G. The basic idea is to transform the optimal surface detection problem

as a minimum s-t cut problem by adapting Wu and Chen’s technique for the optimal

net surface problem [79].

To solve the problem by the minimum s-t cut algorithm, a weighted directed

graph G̃ = (Ṽ , Ẽ) is constructed from G, as follows. The vertex set Ṽ consists

of the vertex set V of G, a set Vtop of dummy vertices, a source vertex s and a

sink vertex t. To differentiate the description of from G, we call the set of nodes

Col(i, j) = {v(i, j, k)|k = 0, 1, . . . , hi,j − 1} a column (i.e., the (i, j)-column) in G̃.

For each column Col(i, j), we add a dummy vertex vtop(i, j) ∈ Vtop on the top of the
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column, called the top vertex of Col(i, j) (see Figure 3.4(b) for example). Note that

vtop(i, j) 6∈ Col(i, j). The arcs (directed edges) are put in G̃ such that,� for any feasible surface N in G, N (i, j) partitions each (i, j)-pillar into two sub-

sets, Si,j = {v(i, j, k)|k = 0, 1, . . . ,N (i, j)} and S̄i,j = {v(i, j, k)|k = N (i, j) +

1, . . . , hi,j − 1}, and the induced cut κ = (
⋃

i,j Si,j ,
⋃

i,j S̄i,j ∪ Vtop) is a feasible

s-t cut in (a cut κ is feasible if the total edge weight c(κ) is finite);� any feasible cut κ = (S, S̄∪Vtop) in G̃ can be used to define a feasible surface N

in G, as follows. Let v(i, j, ktop) be the “topmost” vertex in S ∩ Col(i, j) (i.e.,

the vertex with the largest k-coordinate in S ∩Col(i, j)). Then, N (i, j) = ktop;

and� the total weight of the cut equals to the cost of the surface N .

We thus introduce two types of arcs: one is used to enforce the feasibility of a

solution, which includes two subsets of arcs Emo and Ead; the other is used to realize

the total cost of a feasible surface N , which consists of Ehz and Evt.� The arcs in Emo: On each column Col(i, j), an arc of weight +∞ is added from

every vertex v(i, j, k) to vertex v(i, j, k − 1) for k = 1, 2, . . . , hi,j − 1 and from

every top vertex vtop(i, j) to v(i, j, hi,j − 1). The set of arcs in Emo is used to

guarantee that exactly one vertex on each pillar of G can be on a feasible surface

N .� The arcs in Ead: An arc of weight +∞ is put in Ead from the source s to the
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vertex v(i, j, 0) of each column Col(i, j). Meanwhile, an arc of weight +∞ is

added from the top vertex of each column to the sink t.� The arcs in Ehz: These arcs are added between two adjacent columns Col(i, j)

and Col(i, j + 1). As in Ref. [79], we first define the functions ∆(i,j)(i,j+1)(x)

from f(i,j)(i,j+1)(x), as follows,

∆(i,j)(i,j+1)(0) = f(i,j)(i,j+1)(1)− f(i,j)(i,j+1)(0) = 12 − 02 = 1

∆(i,j)(i,j+1)(x+ 1) = f(i,j)(i,j+1)(x) + f(i,j)(i,j+1)(x+ 2)− 2f(i,j)(i,j+1)(x+ 1)

= x2 + (x+ 2)2 − 2(x+ 1)2 = 2, x = 0, 1, 2, . . .

In fact, ∆(i,j)(i,j+1)(x) is a discrete equivalent of the second derivative of f(i,j)(i,j+1)(x)

at x.

Now we can put arcs in Ehz. Consider each vertex v(i, j, k) ∈ Col(i, j), we

differentiate two cases.

Case 1. If k < hi,j+1, an arc is added from v(i, j, k) to each vertex v(i, j+1, k′)

of Col(i, j + 1) with k′ = 0, 1, . . . , k. The weight of the arc is set to

∆(i,j)(i,j+1)(|k − k
′|).

Case 2. If k ≥ hi,j+1, we put in Ehz an arc from v(i, j, k) to each vertex

v(i, j+1, k′) of Col(i, j+1) . The weight of the arc is set to ∆(i,j)(i,j+1)(|k−
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Figure 3.5: Illustrating Ehz of the case ai,j = 10, ai,j+1 = 5 , and λ = 3. Solid circles
represent vertices in the columns and hollow circles represent the top vertices.

k′|). Since there is no cost-penalty arc for ∆(i,j)(i,j+1)(0), ∆(i,j)(i,j+1)(1),. . . ,

∆(i,j)(i,j+1)(k−hi,j+1), the weight of the arc to vertex vtop(i, j+1) is updated

to
k−hi,j+1
∑

k′=0

∆(i,j)(i,j+1)(k
′) = 2(k − hi,j+1) + 1.

Arcs are symmetrically added from v(i, j + 1, k) ∈ Col(i, j + 1) to vertices of

Col(i, j). An example of the construction of Ehz is shown in Figure 3.5.� The arcs in Evt: These arcs are added between two adjacent pillars Col(i, j)

and Col(i + 1, j). The purpose is to ensure that the total weight of the arcs

between Col(i, j) and Col(i+1, j) that are in a feasible s-t cut κ of G̃, equals to

a constant (possible 0) plus the weight of the corresponding edge on the surface

in G defined by the cut κ.

Consider each vertex v(i, j, k) of Col(i, j). Recall that the weight of an edge
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between v(i, j, k) and v(i + 1, j, k′) of G is f(i,j)(i+1,j)(k − k
′) = (ai,j − ai+1,j −

λk + λk′)2. To “distribute” the weight of f(i,j)(i+1,j)(k − k
′) to appropriate arcs

between Col(i, j) and Col(i + 1, j), we develop the following novel arc weight

penalty embedding scheme.

For each vertex v(i, j, k) of Col(i, j), we first find a vertex v(i + 1, j,−→η k) such

that f(i,j)(i+1,j)(k −
−→η k) is minimized, where −→η k is an integer. In this way, we

essentially want to create a correspondence between vertices of Col(i, j) and

Col(i+ 1, j). Two possible cases need to be differentiated.

Case 1) : ai,j ≥ ai+1,j. It is not difficulty to see that when k−−→η k =
ai,j−ai+1,j

λ
,

f(i,j)(i+1,j)(k −
−→η k) is minimized. Note that although k and −→η k are inte-

gers,
ai,j−ai+1,j

λ
may not be an integer. With a close eye on the function

f(i,j)(i+1,j)(k −
−→η k), we know that for any k, k − −→η k is a fixed constant

while f(i,j)(i+1,j)(k −
−→η k) is minimized. Thus, we only need to consider

k = hi,j − 1, where hi,j is the height of Col(i, j). Then, −→η k only has

three possible values: hi+1,j − 2, hi+1,j − 1, or hi+1,j. Let us investigate the

function value of f(i,j)(i+1,j)(k −
−→η k) for each of those three possible −→η k

values.

a) If k = hi,j−1 and −→η k = hi+1,j−2, f(i,j)(i+1,j)(k−
−→η k) = [λ−(ai,j%λ−

ai+1,j%λ)]2.

b) If k = hi,j − 1 and −→η k = hi+1,j − 1, f(i,j)(i+1,j)(k −
−→η k) = (ai,j%λ −

ai+1,j%λ)2.
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c) If k = hi,j − 1 and −→η k = hi+1,j, f(i,j)(i+1,j)(k −
−→η k) = [λ + (ai,j%λ −

ai+1,j%λ)]2.

Hence, we can compute −→η hi,j−1, as follows.

i) If ai,j%λ−ai+1,j%λ ≥ 0 and 2(ai,j%λ−ai+1,j%λ) < λ, then −→η hi,j−1 =

hi+1,j − 2.

ii) If ai,j%λ−ai+1,j%λ ≥ 0 and 2(ai,j%λ−ai+1,j%λ) ≥ λ, then −→η hi,j−1 =

hi+1,j − 1.

iii) If ai,j%λ−ai+1,j%λ < 0 and 2(ai,j%λ−ai+1,j%λ) ≤ λ, then −→η hi,j−1 =

hi+1,j − 1.

iv) If ai,j%λ−ai+1,j%λ < 0 and 2(ai,j%λ−ai+1,j%λ) > λ, then −→η hi,j−1 =

hi+1,j.

Then, for each k = 0, 1, . . . , hi,j − 1, −→η k = k − hi,j +−→η hi,j−1 + 1.

To establish one-to-one correspondences between vertices of Col(i, j) and

Col(i+ 1, j), we add the following vertices to Col(i, j) or Col(i+ 1, j).

For each k = 0, 1, . . . , hi,j − 2, if v(i+ 1, j,−→η k) is not a vertex of Col(i +

1, j) (i.e., −→η k < 0), we add this new vertex to Col(i + 1, j) (Figure 3.6

(a)). In this way, we say that vertexv(i, j, k) of Col(i, j) corresponds to

v(i + 1, j,−→η k) of Col(i + 1, j). For k = hi,j − 1, we need the following

special treatment.

a) −→η hi,j−1 = hi+1,j − 2 (Figure 3.6(b)). We add a new vertex v(i, j, hi,j)

to Col(i, j). The vertex v(i+1, j, hi+1,j−1) of Col(i+1, j) corresponds
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Figure 3.6: Illustrating the establishment of the correspondence of vertices between
Col(i, j) and Col(i+ 1, j). Solid circles represent vertices in the columns and hollow
circles represent the top vertices. Dashed circles are vertices added and arrows mark
the correspondence between two vertices. (a) ai,j = 8, ai+1,j = 3, and λ = 3, vertices
are created below Col(i+ 1, j). (b) ai,j = 8, ai+1,j = 3, and λ = 3, a vertex is created
on top of Col(i, j). (c) ai,j = 3, ai+1,j = 8, and λ = 3, vertices are created below
Col(i, j). (d) ai,j = 3, ai+1,j = 8, and λ = 3, a vertex is created on top of Col(i+1, j).

to this new vertex v(i, j, hi,j), and vertex v(i, j, hi,j − 1) corresponds

to v(i+ 1, j, hi+1,j − 2).

b) −→η hi,j−1 = hi+1,j − 1. The vertex v(i, j, hi,j − 1) corresponds to v(i +

1, j, hi+1,j − 1) of Col(i+ 1, j).

c) −→η hi,j−1 = hi+1,j . We add a new vertex v(i+1, j, hi+1,j) to Col(i+1, j).

The vertex v(i, j, hi,j − 1) of Col(i, j) corresponds to this new vertex

v(i+ 1, j, hi+1,j).

Case 2) : ai,j < ai+1,j. Similar to the case ai,j ≥ ai+1,j, we establish the

vertex correspondence between Col(i, j) and Col(i+1, j). In this case, for

each k′ = 0, 1, . . . , hi+1,j − 1 of Col(i + 1, j), we compute ←−η k′ such that

f(i,j)(i+1,j)(
←−η k′ − k′) is minimized. The computation of ←−η k′’s is the same

as that for Case 1). Then, we establish the correspondence between vertex
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v(i, j,←−η k′) and v(i + 1, j, k′) for k′ = 0, 1, . . . , hi+1,j − 1 (Figure 3.6 (c)).

Note that if v(i, j,←−η k′) does not exist in Col(i, j), we add it in. As in Case

1), if ←−η hi+1,j−1 = hi,j − 2 (Figure 3.6 (d)), we need to add a new vertex

v(i + 1, j, hi+1,j) such that the vertex v(i, j, hi,j − 1) corresponds to this

new vertex.

Up to this point, we set the one-to-one correspondences between vertices be-

tween the new columns Col(i, j) and Col(i + 1, j), which include the newly

added vertices. Intuitively, these correspondences indicate the pairs of ver-

tices of two adjacent columns who have the closest r-values. To facilitate the

addition of weighted arcs, we define the following functions
−→
∆ (i,j)(i+1,j)(x) and

←−
∆ (i,j)(i+1,j)(x) from f(i,j)(i,j+1)(x). Recall that f(i,j)(i+1,j)(k−k

′) = (ai,j−ai+1,j−

λk + λk′)2 and k − −→η k = (hi,j − 1) − −→η hi,j−1. Let χ = ai,j − ai+1,j − λ(hi,j −

1) + λ−→η hi,j−1.

For k′ ≤ −→η k, k−k′ = x+(k−−→η k) = x+[(hi,j−1)−−→η hi,j−1], x = 0, 1, 2, . . .. We
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have f(i,j)(i+1,j)(x) = f(i,j)(i+1,j)(k− k
′) = (ai,j − ai+1,j − λk+ λk′)2 = (λx−χ)2.

−→
∆ (i,j)(i+1,j)(0) = f(i,j)(i+1,j)(1)− f(i,j)(i+1,j)(0)

= (λ− χ)2 − χ2 = λ2 − 2λχ;

−→
∆ (i,j)(i+1,j)(x+ 1) = [f(i,j)(i+1,j)(x+ 2)− f(i,j)(i+1,j)(x+ 1)]

− [f(i,j)(i+1,j)(x+ 1)− f(i,j)(i+1,j)(x)]

= [(λ(x+ 2)− χ)2 − (λ(x+ 1)− χ)2]

− [(λ(x+ 1)− χ)2 − (λx− χ)2]

= 2λ2, forx = 0, 1, 2, . . .

Then, we consider k′ > −→η k. In this case, k − k′ = −x + (k − −→η k) = −x +

[(hi,j−1)−−→η hi,j−1], x = 0, 1, 2, . . .. We have f(i,j)(i+1,j)(x) = f(i,j)(i+1,j)(k−k′) =

(ai,j − ai+1,j − λk + λk′)2 = (λx+ χ)2.
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←−
∆ (i,j)(i+1,j)(0) = f(i,j)(i+1,j)(1)− f(i,j)(i+1,j)(0)

= (λ+ χ)2 − χ2 = λ2 + 2λχ;

←−
∆ (i,j)(i+1,j)(x+ 1) = [f(i,j)(i+1,j)(x+ 2)

− f(i,j)(i+1,j)(x+ 1)]− [f(i,j)(i+1,j)(x+ 1)− f(i,j)(i+1,j)(x)]

= [(λ(x+ 2) + χ)2 − (λ(x+ 1) + χ)2]

− [(λ(x+ 1) + χ)2 − (λx+ χ)2]

= 2λ2, forx = 0, 1, 2, . . .

We are now ready to put in Evt arcs. For every vertex v(i, j, k) of Col(i, j)

including the newly added vertices, we add an arc to each vertex v(i+ 1, j, k′)

with k′ ≤ −→η k (note that v(i+1, j,−→η k) is the corresponding vertex of v(i, j, k) in

Col(i+1, j), and the weight of the arc is
−→
∆ (i,j)(i+1,j)(

−→η k−k′). In the meanwhile,

for every vertex v(i+1, j, k′) of Col(i+1, j) including the newly added vertices,

denote by v(i, j,←−η k′) the corresponding vertex of v(i+ 1, j, k′) in Col(i, j). An

arc from every vertex v(i + 1, j, k′) to each vertex v(i, j, k) with k ≤ ←−η k′ is

added, and the weight of the arc is
←−
∆ (i,j)(i+1,j)(

←−η k′ − k).

So far, we finish adding new vertices and arcs into the graph G̃. Applying a

similar argument in Ref. [79], it is not difficult to show that the weight of the

edge between Col(i, j) and Col(i+ 1, j) on a feasible surface N in G equals to

a constant (possible 0) plus the total weight of the arcs between Col(i, j) and
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Col(i + 1, j) in G̃, which are in the corresponding s-t cut κ of defined by N .

However, a feasible s-t cut κ of G̃ may not define a feasible surface in G due to

the addition of new vertices in G̃. We thus use the following scheme to remove

the newly added vertices from G̃.

For each column Col(i, j) in G̃, note that a vertex v(i, j, k) is a newly added on

if k < 0 or k = hi,j . Consider each newly added vertex v(i, j, k) with k < 0.

– For each incoming arc of v(i, j, k), that is, an arc from v(i′, j, k′) to v(i, j, k)

(i′ = i + 1, or i − 1), it cannot be in a valid s-t cut (a feasible s-t cut is

valid if it can be used to define a feasible surface in G). We thus simply

remove the arc (v(i′, j, k′), v(i, j, k)).

– For each outgoing arc of v(i, j, k), that is, an arc from v(i, j, k) to v(i′, j, k′)

(i′ = i + 1, or i − 1), if the arc (v(i, j, k), v(i′, j, k′)) is in a valid s-t cut,

then the arc (v(i, j, 0), v(i′, j, k′)) must be in the cut. Thus, we remove

the arc (v(i, j, k), v(i′, j, k′)) and add the weight of that arc to the arc

(v(i, j, 0), v(i′, j, k′)).

After removing all the associated arcs of v(i, j, k), we then remove that vertex.

Next, we consider the newly added vertex v(i, j, k) with k = hi,j. In this

case, the outgoing arc of v(i, j, k) cannot be in a valid s-t cut, we thus simply

remove each outgoing arc. For each incoming edge of v(i, j, k), that is, an arc

from v(i′, j, k′) to v(i, j, k) (i′ = i + 1, or i − 1), if it is in a valid s-t cut, then

v(i′, j, k′) must be in the source set of the cut. We thus introduce an arc, having
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the weight of the arc (v(i′, j, k′), v(i, j, k)), from v(i′, j, k′) to the sink vertex t.

We then remove the vertex v(i, j, k) after no arc is associated with it. Figure 3.7

shows the construction of arcs in Evt for the example in Figure 3.6(a).

After performing the above scheme for the removal of the newly added vertices,

any feasible s-t cut κ in G̃ can be used to define a feasible surface N in G. Further-

more, using a similar argument in Ref. [79], we can prove that the total weight of the

arcs between Col(i, j) and Col(i+1, j) that are in differs from the weight of the edge

on the surface N by a constant.

We thus finish the construction of graph G̃. Any feasible s-t cut in can be

used to define a feasible surface N in G, and vice verse; furthermore, the total weight

of differs by a constant from the total cost of the corresponding surface N . Hence,

an optimal surface N ∗ in G, which defines an optimal decomposition of the input IM

A, can be obtained by computing a minimum s-t cut κ∗ in G̃. Note that a minimum

s-t cut κ∗ in G̃ can be computed by Goldberg and Tarjan’s efficient maximum flow

algorithm [36]. We thus solve the IMOD with total variation cost problem efficiently.

3.4 Material and Experimental Method

To evaluate performance of the method with the positive gradient sum cost, we

performed some statistical studies using 1000 randomly generated 15×15 IM matrices

each with intensity levels ranging from 4 to 64 in powers of 2. The number of MLC-

apertures are computed using Xia and Verhey’s algorithm [82] without considering

interleaf motion constraint.
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Figure 3.7: Illustrating the construction of arcs in Evt. In this example, ai,j = 8,
ai+1,j = 3, and λ = 3. (a) Arcs added from Col(i, j) to Col(i + 1, j). The thin

line arrows represent arcs with a weight of
−→
∆ (i,j)(i+1,j)(0) = 15 and the thick arcs

have a weight of
−→
∆ (i,j)(i+1,j)(1) = 18. (b) Arc(s) after removing the newly added

vertices (the dashed circular ones). (c) Arcs added from Col(i + 1, j) to Col(i, j),

the thin arcs have a weight of
←−
∆ (i,j)(i+1,j)(0) = 3 and the thick arc have a weight of

←−
∆ (i,j)(i+1,j)(1) = 18. (d) Arcs after removing the newly added vertices. The numbers
on the two arcs denote the weight of each individual arc after the removal operations.
The weights of other arcs are not changed.
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We have also experimented with some real medical data sets available to us.

The performance of the method with the total variation cost was tested using

73 intensity maps that were generated with a commercial inverse treatment planning

system (Pinnacle v8.0m). 32 IMs were from woman pelvic data and 41 IMs were from

head & neck data to discover how complexity of IMs affects the performance of our

algorithm.

We assume to do the planning for the Varian LINAC System. Our decompo-

sition method was conducted and then leaf sequencing was performed in Pinnacle.

The results were compared between with that without field decomposition conducted.

The total number of MUs required to deliver the IMs by Pinnacle was recorded when

doing the leaf sequencing algorithm in Pinnacle.

3.5 Experimental Results

3.5.1 Results for the Positive Gradient Sum Cost

Table 3.1 shows percentage of IMs getting improved and the average results

(both number of MUs and number of MLC-apertures) before and after performing

our decomposition method (the average is calculated based only on those IMs getting

improved). We observed that our IMOD algorithm generated as much as 38.1% less

MLC-apertures and 33.3% less number of MUs than single direction delivery.

For the medical data. 77.0% IMs that we tested on got improved number

of MLC-apertures. Our IMOD algorithm produced as much as 27.3% less MLC-

apertures with an average of 13.1% comparing with the SLS method using single

direction delivery.
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Table 3.1: The average number of MUs and the
number of MLC-apertures

IM size
Number of MLC-apertures

%Improved Avg before Avg after
4 9% 6.0±0.6 5.8±0.4
8 24% 9.1±0.6 8.5±0.7
16 25% 12.0±0.7 11.4±0.6
32 45% 14.9±0.9 14.2±0.7
64 54% 18.2±0.9 17.1±0.7

IM size
Number of MUs

%Improved Avg before Avg after
4 25% 7.8±1.0 7.3±0.8
8 66% 17.1±2.0 15.5±1.6
16 73% 35.3±4.3 32.1±4.0
32 81% 69.7±8.9 63.4±6.5
64 94% 144.2±18.2 129.0±13.1

3.5.2 Results for the Total Variation Cost

For all the 73 datasets, the average decrease in MUs obtained using our al-

gorithm over Pinnacle v8.0m is 45.1%. The maximum decrease was 60.9% for the

number of MUs. 66 (90.6%) intensity maps got decreased number of MUs and the

average decrease for those intensity maps was 50.8%.

For woman pelvic data (as shown in Table 3.2), the average improvement for

number of MUs was 50.7%. The maximum decrease was 80.8% for number of MUs.

For number of MUs, 31 out of the 32 IMs (96.9%) got reduced number of MUs with

an average of 52.5%.
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Table 3.2: Results for woman pelvic data

Patient IM
# of MUs % Decrease

Pinnacle Our Method %Decrease per patient

1

1 160 81 49.4%

37.4%

2 149 96 35.6%

3 101 107 -5.9%

4 144 63 56.3%

5 130 54 58.5%

6 170 166 2.4%

7 172 86 50.0%

8 136 75 44.9%

2

1 113 44 61.1%

51.3%

2 163 60 63.2%

3 163 56 65.7%

4 129 80 38.0%

5 151 55 63.6%

6 164 129 21.3%

7 167 32 80.8%

8 165 136 17.6%

3 1 191 46 75.9% 66.9%
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Table 3.2 Continued

Patient IM
# of MUs % Decrease

Pinnacle Our Method %Decrease per patient

3

2 151 43 71.5%

66.9%

3 110 53 51.8%

4 186 55 70.4%

5 139 51 63.3%

6 179 60 66.5%

7 115 45 60.9%

8 169 58 65.7%

4

1 141 61 56.7%

49.0%

2 127 83 34.7%

3 198 133 32.8%

4 160 68 57.5%

5 186 71 61.8%

6 131 68 48.1%

7 167 92 44.9%

8 130 56 56.9%

For head & neck data (as shown in Table 3.3), the average improvement for

number of MUs was 40.7%. 35 (85.4%) of the 41 IMs got improvement in number of

MUs and the average improvement is 48.9%.
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Table 3.3: Results for head & neck data

Patient IM
# of MUs % Decrease

Pinnacle Our Method %Decrease per patient

1

1 120 87 27.5%

48.9%

2 75 55 26.8%

3 66 12 81.8%

4 87 42 51.7%

5 76 44 42.1%

6 79 35 55.7%

7 84 74 11.9%

8 84 25 70.2%

9 96 18 81.3%

2

1 148 91 38.5%

22.9%

2 112 56 50.0%

3 67 68 -1.5%

4 117 58 50.4%

5 98 112 -14.3%

6 121 101 16.5%

7 70 79 -12.9%

3 1 111 59 46.9% 42.1%



104

Table 3.3 – Continued

Patient IM
# of MUs % Decrease

Pinnacle Our Method %Decrease per patient

3

2 49 40 18.4%

42.1%

3 145 58 60.0%

4 71 81 -14.1%

5 123 36 70.7%

6 121 67 44.6%

7 125 59 52.8%

8 93 56 39.8%

9 134 107 20.2%

4

1 224 89 60.3%

63.7%

2 121 66 45.5%

3 168 58 65.5%

4 144 43 70.1%

5 155 70 54.8%

6 130 41 68.5%

7 212 53 75.0%

8 115 20 82.6%

9 85 51 40.0%

5 1 64 68 -6.3% 31.4%



105

Table 3.3 – Continued

Patient IM
# of MUs % Decrease

Pinnacle Our Method %Decrease per patient

5

2 76 38 50.0%

31.4%

3 100 79 21.0%

4 75 80 -6.7%

5 78 50 35.9%

6 101 67 33.7%

7 142 54 62.0%

3.6 Discussion

From the results in Table 3.2, our algorithm constantly got good results for

all the women pelvic data if we consider the per patient performance. It is noticeable

that the improvement of the first patient, whose diagnosis category is uterus, is not

as good as the other three whose diagnosis categories are cervix. This may be an

implication that the performance of our algorithm does depend on the diagnosis case.

As for each IM, there is no clear relation between the complexity of the IM (number

of MUs without decomposition) and the improvement – although the only IM without

any improvement has the lowest number of MUs without decomposition, but other

IMs with lower improvement have relatively large complexities (e.g., the 6th IM of

the first patient and the 8th IM of the second patient).

For head & neck data in Table 3.3, the per patient performance is also con-
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stantly good with the lowest per patient improvement of 22.9%. For head & neck

case, there is a relation between the complexity of the IM (number of MUs without

decomposition) and the improvement - all IMs without any improvement have a num-

ber of MUs without decomposition of 98 or less. If we only consider IMs having a

number of MUs without decomposition of 100 or more, all IMs got improvement and

the average improvement in number of MUs is 50.8%. The average improvement for

the remaining IMs is 28.9%.

About the two cost function used, the first cost function demonstrates fair

improvement in both number of MUs and number of MLC-apertures while the second

cost function generates much better improvement in number of MUs but a little

compromised number of MLC-apertures. This is compliant with Süss and Küfer’s

statement [72].
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CHAPTER 4
FIELD SPLITTING PROBLEM

4.1 Problem Modeling

In this chapter, we study the following optimal field splitting with bal-

anced beam-on times (OFSB) problem. Given an IM A = (ai,j)m×n of size m×n,

an integral maximum leaf spread ̟ > 0, and the width range [δ ..∆] of each feather-

ing region (0 < δ < ∆ < ̟), split A using vertical lines into a sequence of d = ⌈ n−δ
̟−δ
⌉

(≥ 2) sub-IMs, such that: (1) the width of each sub-IM is ̟, except the width of

the last sub-IM is larger than 0 and no larger than ̟; (2) any two neighboring sub-

IMs in the sequence overlap each other and the width of the overlapping (feathering)

region ranges from δ to ∆; (3) no sub-IM overlaps completely with its neighboring

sub-IM(s); and (4) the total complexity of all these d sub-IMs is minimized. In our

algorithm, we use the sum of positive gradients to measure the complexity C(A) of

an IM A [5, 70, 13], more precisely, C(A) =
∑m

i=1

(

ai,1 +
∑n

j=2 max(0, ai,j − ai,j−1)
)

.

The resulting d sub-IMs, however, may have a large minimum beam-on time,

which is undesirable. We thus seek to further decompose the induced (d-1) feathering

regions of those d sub-IMs, yielding a split S of d sub-IMs {S1, S2, . . . , Sd} (from

left to right), such that the maximum Mbot(S) of all the minimum beam-on times

Tbot(·) of these sub-IMs in S (i.e., Mbot(S) = maxSk∈S Tbot(Sk)) is minimized, while

imposing the lower bound on the total complexity TC(S) of the split S with TC(S) =

∑

Sk∈S
C(Sk). Note that d is the minimum number of sub-IMs needed. We may use
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more sub-IMs, which however, could undesirably increase the total treatment time.

Thus, we assume that each sub-IM has a maximum width ̟ since we can introduce

columns filled with 0’s to the sub-IM without increasing its complexity.

Notice that the complexity definition we use is the sum of positive gradients

(see Figure 4.1(a)) and recall the equation we used to capture delivery error in Chapter

1:

Err(A) =

n
∑

j=1

{

a1,j +

m−1
∑

i=1

|ai,j − ai+1,j |+ am,j

}

.

This definition is actually the sum of all gradients, both positive and nega-

tive(see Figure 4.1(b)) and thus the delivery error of an IM is twice the value of our

complexity definition. So our method helps not only in improving the efficiency but

also in reducing the delivery error.

(a) (b)

Figure 4.1: Comparison between our complexity definition and delivery error on
vector (1, 2, 4, 3, 5, 2). (a) Our complexity definition: sum of positive gradients (in
thick edges). (b) Delivery error: sum of all gradients (in thick edges).

We present the first ever near linear time algorithm for solving the above field
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splitting problem. In our algorithm, we first model the computation of an “optimal”

set of (d-1) feathering regions (i.e., with minimum total increase of the complexity)

as a shortest path problem in a directed acyclic graph (DAG) with O(n) vertices

and O(n(∆− δ)) edges. This DAG has a special “layered” structure, which consists

of d layers of vertices with any two adjacent layers inducing a bipartite graph. We

are able to calculate each edge weight in constant time after a certain preprocessing.

Moreover, the edge weights of the DAG satisfy the Monge property [1]. Thus, we can

solve this shortest path problem by examining only a small portion of the graph, and

our algorithm runs in a near linear time (Section 4.2). Then, the decomposition of the

resulting feathering regions is modeled as computing a min-max slope path problem

in a special monotone polygon, which is of its own interest. We develop an interest-

ing geometric algorithm, which runs in O(mnα(̟)) time, where α(·) is the inverse

Ackermann function., for solving the min-max slope path problem (Section 4.3). A

less effective algorithm for a more general case is provided in Section 4.4.

4.2 Computing an Optimal Set of Feathering

Regions

In this section, we compute a set F of (d-1) feathering regions for a given

instance of the OFSB problem, such that the decomposition of the feathering regions

in F yields a split of the input IM A, whose total complexity is minimized. The

problem is modeled as computing a shortest path in a directed acyclic graph, for

which we can exploit the Monge property to speed up the computation. The running

time of our algorithm is O(mnα(̟)), where α(·) is the inverse Ackermann function.
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4.2.1 The Shortest Path Model

Denote by A[j] the j-th column of IM A, i.e., A[j] = {a1,j , a2,j, . . . , am,j}, and

A[j .. k] consists of all elements of A from Column j to Column k. Since the width

of each sub-IM is fixed as ̟, d vertical lines {j1, j2, . . . , jd} are needed to determine

the starting column of each sub-IM in the split (including the first vertical line which

is always corresponding to the first column of A, i.e., j1 = 1). The k-th feathering

region Fk consists of multiple columns of A starting from Column jk+1 to Column

jk +̟− 1. Fk is somehow decomposed into F
(0)
k and F

(1)
k such that Fk = F

(0)
k +F

(1)
k

(i.e., the value of every element in Fk is decomposed into two non-negative integers,

one in F
(0)
k and the other in F

(1)
k ). Then, a feasible split S = {S1, S2, . . . , Sd} of A is

defined, as follows. For each k = 1, 2, . . . , d, Sk = F
(1)
k−1 ||A[jk−1 +̟ .. jk+1− 1] ||F (0)

k ,

where || is a concatenation operator, F
(1)
0 = F

(0)
d = ∅, j0 = −̟+1 and jd+1 = n+1.

The decomposition of each feathering region Fk may increase the total complexity.

Our goal is to find a set F of (d-1) feathering regions such that the total increase of

the complexity resulting from the decomposition of all the feathering regions in F is

minimized. We next model this problem as computing a shortest path in a weighted

directed acyclic graph G = (V,E).

1) The graph G has d layers of vertices, where each vertex in the k-th layer

(denoted by Lk) defines a possible starting column of the k-th sub-IM. The first

layer L1 consists of only one vertex u1, i.e., the first sub-IM S1 has to start at the

first column of A. For the k-th sub-IM Sk, there are k − 1 (resp., d − k) sub-

IMs to the left (resp., right) of it. Thus, the rightmost (resp., leftmost) possible
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starting column of sub-IM Sk is (k − 1)(̟ − δ) + 1 (resp., (k − 1)(̟ − δ) + 1 − µ),

where µ = (n − δ)%(̟ − δ). Thus, each layer Lk (k = 2, . . . , d) contains µ + 1

vertices {uj | (k − 1)(̟ − δ) + 1− µ ≤ j ≤ (k − 1)(̟ − δ) + 1}. Note that no sub-

IM overlaps completely with its neighboring sub-IMs. Hence, the maximum width ∆

of a feathering region is less than (̟ − δ). We thus can prove that the layers are

mutually exclusive (i.e., Lk ∩ Lk+1 = ∅ for k = 1, 2, . . . , d− 1).

2) For each vertex uj ∈ Lk in G, there is a directed edge from uj to every

uj′ ∈ Lk+1 as long as the two corresponding sub-IMs overlap each other with an

overlapping region of width between δ and ∆. Thus, each edge (uj, uj′) defines a

feathering region A[j′ .. j +̟ − 1].

3) For each edge e = (uj, uj′) in G, we compute the minimum increased com-

plexity ∆cpl of the corresponding feathering region and assign it as the weight of the

edge, denoted by c(uj, uj′).

4) For the ease of our algorithm description, we introduce a dummy vertex t.

Each vertex in the d-th layer Ld has a directed edge to t with a weight of 0.

An example of the constructed graph is shown in Figure 4.2. Our algorithm

then computes a shortest u1-to-t path p: u1 → uj2 → · · · → ujd−1
→ ujd

→ t

in G, where ujk
∈ Lk. Obviously, the d sub-IMs defined by the starting columns in

{1, j2, . . . , jd−1, jd} specify a feasible split S∗ of A. The total increase of the complexity

due to the split S∗ equals the total path weight c(p), which is minimized. Thus, S∗

is a split of A minimizing the total increase of the complexity.

We next in Section 4.2.2 show how to efficiently compute ∆cpl for each pos-
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Figure 4.2: Illustrating the constructed graph for an example intensity map. In the
example n = 14, ̟ = 6, δ = 1 and ∆ = 2. L1, L2, and L3 shows layered structure
of the nodes. Edges are added to guarantee the minimum and maximum feathering
width. The red thick edge is corresponding to the increased complexity by splitting
the feathering region surrounded by the red dashed box.

sible feathering regions. Actually, the computation can be done in O(m) time after

an O(mn) time preprocessing. The Monge property of the graph G is explored in

Section 4.2.3 to speed up the computation of the shortest u1-to-t path in G.

4.2.2 Computing the Minimum Increase of the

Complexity for a Feathering Region

In this section, we characterize the complexity increase due to the feathering

region decomposition. Then, a linear time algorithm is developed to compute the

minimum increase of the complexity ∆cpl for a feathering region.

4.2.2.1 Characterizing the Increase of the Complexity

Consider a feathering region Fk = A[l .. r] with δ ≤ r − l = ω ≤ ∆ (1 < l <

r < n), which is the overlapping region of sub-IMs Sk and Sk+1. Assume that the

decomposition of Fk is F
(0)
k = (xi,j)m×ω plus F

(1)
k = (yi,j)m×ω. Then, Sk ends with
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F
(0)
k and Sk+1 starts with F

(1)
k . The contribution R(Fk) of the feathering region Fk

(A[l .. r]) to the complexity of IM A is
∑m

i=1

∑r+1
j=l max{0, ai,j − ai,j−1}. While the

contribution R(F
(0)
k ) to the complexity of Sk is

∑m

i=1
(max{0, xi,l − ai,l−1}+

∑r

j=l+1
max{0, xi,j − xi,j−1}+ max{0, 0− xi,r}),

and the contribution R(F
(1)
k ) to the complexity of Sk+1 is

∑m

i=1
(max{0, yi,l − 0}+

∑r

j=l+1
max{0, yi,j − yi,j−1}+ max{0, ai,r+1 − yi,r}).

Thus, the increase of the complexity due to the decomposition (i.e., F
(0)
k and

F
(1)
k ) of the feathering region Fk is R(F

(0)
k )+R(F

(1)
k )−R(Fk). We next develop a linear

time algorithm for an optimal decomposition of an feathering region to minimizing

the increase of the complexity.

Observing that the decomposition of Fk can be performed row by row, we

define the following optimal vector decomposition (OVD) problem. Define the

weight Wovd(z) of a vector z = (z1, z2, . . . , zN) as
∑N

j=2 max{0, zj − zj−1}. Given a

non-negative integer vector b = (b1, b2, . . . , bN), decompose b into two non-negative

vectors x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN), such that (1) x1 = b1 and

yN = bN ; (2) for each j = 1, 2, . . . , N , bj = xj + yj, and (3) the total weight of x and

y (i.e., Wovd(x) +Wovd(y)) is minimized.
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Then, for a given feathering region Fk = A[l .. r], each extended row (ai,l−1, ai,l, . . . ,

ai,r, ai,r+1) is viewed as a vector ai. Applying the OVD algorithm, ai is decomposed

into two vectors, xi = (ai,l−1, xi,l, . . . , xi,r, 0) and yi = (0, yi,l, . . . , yi,r, ai,r+1), with

Wovd(xi) + Wovd(yi) being minimized. Clearly, (xi)
m
i=1 and (yi)

m
i=1 can be used to

specify a decomposition of Fk (i.e., F
(0)
k and F

(1)
k ). Thus, F

(0)
k and F

(1)
k is an optimal

decomposition of Fk minimizing the increase of the complexity.

We next develop a linear time algorithm for solving the OVD problem in

Section 4.2.2.2. Chen and Wang [18] also independently studied this OVD problem

for a different purpose and a linear time algorithm was obtained. Our algorithm is

essentially the same as the algorithm of Chen and Wang; however, in light of earlier

result, our formulation is arguably more natural and general.

4.2.2.2 Linear Time Algorithm for Optimal Vector

Decomposition (OVD) Problem

This section presents our optimal O(N) time algorithm for computing an op-

timal decomposition of a given vector b = (b1, b2, . . . , bN). The OVD problem is

modeled as computing a shortest path in a directed acyclic graph (DAG) of pseudo-

polynomial size. By exploiting the convexity of the edge weight functions of the

graph, we show that the OVD problem can be optimally solved in linear time with-

out explicitly constructing and searching the whole graph.

1. The Graph Model of the OVD Problem

Given a non-negative integer vector b = (b1, b2, . . . , bN), we define an edge-

weighted DAG H = (VH , EH) for the OVD problem, as follows.
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The element b1 (resp., bN ) of b corresponds to exactly one vertex v1(b1) (resp.,

vN(bN )) in VH , briefly called the source (resp., sink) vertex s (resp., t) of H . For every

other element bj (j = 2, 3, . . . , N − 1), there is a set Col(j) of bj + 1 vertices in H

corresponding to bj , with Col(j) = {vj(h) | h = 0, 1, . . . , bj}, namely the bj-column

of H . Intuitively, the vertices in Col(j) give all possible distinct ways to decompose

bj into two non-negative integers (i.e., each vertex vj(h) corresponds to decomposing

bj into h and bj − h). Note that Column Col(1) (resp., Col(N)) consists of only one

vertex v1(b1) (resp., vN (bN)). For any two adjacent columns Col(j) and Col(j + 1)

(j = 1, 2, . . . , N −1), each vertex vj(h) ∈ Col(j) has a directed edge e to every vertex

vj+1(h
′), with an edge weight w(e) = max{0, h′− h}+ max{0, (bj+1− h

′)− (bj − h)}.

For the convenience of our discussion, we let wx(e) = max{0, h′ − h} and wy(e) =

max{0, (bj+1 − h′)− (bj − h)}.

Consider any s-t path p inH , with p = v1(h1)→ v2(h2)→ . . .→ vN−1(hN−1)→

vN(hN ), where h1 = b1 and hN = bN (i.e., v1(h1) is the source s and vN (hN) is the

sink t). Let x(p) = (x1, x2, . . . , xN) and y(p) = (y1, y2, . . . , yN) be two non-negative

integer vectors defined from the path p, in the following way: for each j = 1, 2, . . . , N ,

xj = hj and yj = bj − hj. Note that each s-t path p in H actually define a feasi-

ble decomposition of b, i.e., b = x(p) + y(p). The total weight of x(p) and y(p),

Wovd(x(p)) + Wovd(y(p)), equals to the total sum of the weights of the edges on p,

i.e., w(p) = Wovd(x(p)) + Wovd(y(p)). We further introduce the following notation:

wx(p) = Wovd(x(p)) and wy(p) = Wovd(y(p)). Hence, a shortest s-t path in H , which

can be computed in O(|V |+ |E|) time, specifies an optimal decomposition of b.
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This is a pseudo-polynomial time algorithm for the OVD problem, which may

not be efficient enough, especially when the elements of b are large. However, this

DAG model lays down a base for further exploring the intrinsic structures of the OVD

problem.

2. Our Optimal OVD Algorithm

Our OVD algorithm hinges on the piecewise linearity and convexity of the

edge weight functions of H . For each j = 1, 2, . . . , N − 1, based on bj and bj+1, we

define a function fj(∆h): Z→ Z
+, as follows.

(1) If bj ≤ bj+1,

fj(∆h) =































∆h+ (bj+1 − bj), if ∆h > 0

bj+1 − bj , if bj − bj+1 ≤ ∆h ≤ 0 (∗)

−∆h, if ∆h < bj − bj+1

(2) If bj > bj+1,

fj(∆h) =































∆h+ (bj+1 − bj), if ∆h > bj − bj+1

0, if 0 ≤ ∆h ≤ bj − bj+1 (∗∗)

−∆h, if ∆h < 0

Note that fj(∆h) is piecewise linear and convex with respect to ∆h. For any

edge (vj(h), vj+1(h
′)) between two adjacent columns Col(j) and Col(j + 1), Lemma

13 reveals the relation between the edge weight w(vj(h), vj+1(h
′)) and the function
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fj(∆h).

Lemma 13. w(vj(h), vj+1(h
′)) = fj(h− h′).

We next explore the structures of any shortest s-t path p passing a specific

vertex vĵ(ĥ) ∈ Col(ĵ) in H . The path p consists of two shortest paths: one is from s

to vĵ(ĥ), denoted by s
p−

 vĵ(ĥ), and the other is from vĵ(ĥ) to t, denoted by vĵ(ĥ)
p+

 t.

Both shortest paths s
p−

 vĵ(ĥ) and vĵ(ĥ)
p+

 t can defined using the following series

{h−j }
ĵ
j=1 and {h+

j }
N

j=ĵ
, respectively.

h−j =































ĥ, j = ĵ

min
{

bj , h
−
j+1 + max{0, bj − bj+1}

}

, 1 < j < ĵ

b1, j = 1

h+
j =































ĥ, j = ĵ

max
{

0, h+
j−1 −max{0, bj−1 − bj}

}

, ĵ < j < N

0, j = N

Intuitively, for any j < ĵ, vj(h
−
j ) is the “top-most” vertex on Col(j) such that

the edge (vj(h
−
j ), vj+1(h

−
j+1)) has the minimum edge weight among all edges connect-

ing a vertex in Col(j) to vj+1(h
−
j+1); while for any j > ĵ, vj(h

+
j ) is the “lowest” vertex

on Col(j) such that the edge (vj−1(h
+
j−1), vj(h

+
j )) has the minimum edge weight among

all edges connecting vj−1(h
+
j−1) to every vertex of Col(j). Figure 4.3 demonstrates

some example of these basic ideas.

Lemma 14. (14a) The path s
p−

 vĵ(ĥ) defined by the series {h−j }
ĵ
j=1, with s

p−

 vĵ(ĥ) =
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Arched path

Incurved path

1,0 1,1
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0,2
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0,6
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5,1

3,3

6,0

1,3

2,2

0,4

4,0

3,1

0,2

p

p

(a) (b)

4

1

0 0 0 04

1

Figure 4.3: Illustrating the graph model for decomposing the vector (1, 2, 6, 4, 2). Only
edges with minimum weights between two columns are shown and the minimum edge
weight is labeled below each set of edges. (a) The shortest s-t path through v3(2),

which is the concatenation the arched path s
p−

 v3(2) and the incurved path v3(2)
p+

 t.

(b) p = s
p−

 t (upper) and p = s
p+

 t (lower).

v1(h
−
1 ) → v2(h

−
2 ) → . . . → vĵ(h

−

ĵ
) (h−

ĵ
= ĥ), is a shortest path from s to vĵ(ĥ), and

wy(s
p−

 vĵ(ĥ)) = bĵ − ĥ.

(14b) The path vĵ(ĥ)
p+

 t defined by the series {h+
j }

N

j=ĵ
, with vĵ(ĥ)

p+

 t = vĵ(h
+

ĵ
) →

vĵ+1(h
+

ĵ+1
) → . . . → vN (h+

N) (h+

ĵ
= ĥ), is a shortest path from vĵ(ĥ) to t, and

wx(vĵ(ĥ)
p+

 t) = 0.

(14c) The weight w(s
p−

 vĵ(ĥ)) of the path s
p−

 vĵ(ĥ) is max{ĥ,
∑ĵ

j=2 max{0, bj −

bj−1}}.

Proof. Let sw−
j (h) denote the shortest path weight from s to vj(h) and sw+

j (h) denote

the shortest path weight from vj(h) to t. We first prove the following claim.

Claim 1. (i) sw−
j (h + 1) ≤ sw−

j (h) ≤ sw−
j (h + 1) + 1, for j = 2, 3, . . . , N and

h = 0, . . . , bj − 1.

(ii) sw+
j (h−1) ≤ sw+

j (h) ≤ sw+
j (h−1)+1, for j = 1, 2, . . . , N−1 and h = 1, 2, . . . , bj.



119

Proof. We only show by induction on j that the first part of the claim holds.

The second part of the claim can be proved in a similar way.

For j = 2, based on Lemma 13, sw−
2 (h) = w(s, v2(h)) = f1(b1 − h). It

follows from the definition of f1(∆h) that sw−
2 (h + 1) ≤ sw−

2 (h) ≤ sw−
2 (h + 1) + 1 for

h = 0, 1, . . . , b2−1. We next consider the shortest path weight sw−
j (h) from s to vj(h)

for j > 2.

Let s vj(h + 1) = s → v2(h2) → . . . → vj−1(h
′) → vj(h + 1) be a shortest

path. From Lemma 13, w(vj−1(h
′), vj(h)) = fj−1(h

′−h) and w(vj−1(h
′), vj(h+ 1)) =

fj−1(h
′ − h − 1). It is not hard to see that fj−1(∆h) ≤ fj−1(∆h − 1) + 1 holds from

the definition of fj−1(·). Thus, w(vj−1(h
′), vj(h)) ≤ w(vj−1(h

′), vj(h + 1)) + 1. By

replacing edge (vj−1(h
′), vj(h+ 1)) by (vj−1(h

′), vj(h)) on the path s vj(h+ 1), we

obtain a path p′ from s to vj(h). Hence, sw−
j (h) ≤ w(s

p′

 vj(h)) = sw−
j (h + 1) −

w(vj−1(h
′), vj(h+ 1)) + w(vj−1(h

′), vj(h)) ≤ sw−
j (h + 1) + 1.

Next, we show that sw−
j (h) ≥ sw−

j (h + 1). Let s vj(h) = s → v2(h2) →

. . .→ vj−1(h
′)→ vj(h) be a shortest path. Two cases are distinguished.

Case (1): h′ = bj−1. Note that fj−1(bj−1 − h) is decreasing with respect to

h. While w(vj−1(h
′), vj(h)) = fj−1(h

′ − h) and w(vj−1(h
′), vj(h + 1)) = fj−1(h

′ −

h − 1). Thus, w(vj−1(h
′), vj(h + 1)) ≤ w(vj−1(h

′), vj(h)). If we substitute edge

(vj−1(h
′), vj(h)) on the path s vj(h) by edge (vj−1(h

′), vj(h + 1)), we have a path

p′ from s to vj(h + 1). Consequently, sw−
j (h + 1) ≤ w(s

p′

 vj(h + 1)) = sw−
j (h) −

w(vj−1(h
′), vj(h)) + w(vj−1(h

′), vj(h+ 1)) ≤ sw−
j (h).

Case (2): h′ 6= bj−1. We have w(vj−1(h
′), vj(h)) = fj−1(h

′ − h) = w(vj−1(h
′ +
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1), vj(h + 1)). By the induction hypothesis, sw−
j−1(h

′ + 1) ≤ sw−
j−1(h

′). As a result,

sw−
j (h+1) ≤ sw−

j−1(h
′+1)+w(vj−1(h

′+1), vj(h+1)) ≤ sw−
j−1(h

′)+w(vj−1(h
′), vj(h)) =

sw−
j (h).

This proves the first part of the claim. ¶

We are now ready to prove Lemma 14. Again, we only prove by induction

Lemma 14a and 14c. Lemma 14b follows by a similar argument for Lemma 14a.

(14a) For ĵ = 2, it trivially holds. Assuming that the statement holds for any

j < ĵ, we show that it also holds for ĵ. Note that sw−

ĵ
(ĥ) = min

b
ĵ−1

h=0 (sw−

ĵ−1
(h) +

w(vĵ−1(h), vĵ(ĥ))). Let h−
ĵ−1

= min
{

bĵ−1, ĥ+ max{0, bĵ−1 − bĵ}
}

(ĥ = h−
ĵ
). By

the definition of fĵ−1(·) and Lemma 13, for any h with h−
ĵ−1
≤ h < bĵ−1, we have

w(vĵ−1(h + 1), vĵ(ĥ)) = w(vĵ−1(h), vĵ(ĥ)) + 1; while for each h < h−
ĵ−1

, w(vĵ−1(h +

1), vĵ(ĥ)) ≤ w(vĵ−1(h), vĵ(ĥ)). On the other hand, from Claim 1, sw−

ĵ−1
(h) is mono-

tonically decreasing with respect to h and sw−

ĵ−1
(h)− sw−

ĵ−1
(h + 1) ≤ 1. Thus, when

h = h−
ĵ−1

, sw−

ĵ
(ĥ) achieves its minimum value. Together by the induction hypothesis,

the statement holds for ĵ.

We then show that wy(s
p−

 vĵ(ĥ)) = bĵ − ĥ. Consider the corresponding de-

composition x(p−) and y(p−) = (y1, y2, . . . , yĵ) of the path s
p−

 vĵ(ĥ). We have y1 = 0,

and yj = bj − h−j (j = 2, 3, . . . , ĵ). Since h−j = min
{

bj , h
−
j+1 + max{0, bj − bj+1}

}

,

we consider two cases: (1) h−j = bj , and (2) h−j = h−j+1 + max{0, bj − bj+1}. A

careful analysis reveals that in both cases yj ≤ yj+1. Hence, wy(p−) = Wovd(y) =

∑ĵ−1
j=1 max{0, yj+1 − yj} =

∑ĵ−1
j=1(yj+1 − yj) = yĵ = bĵ − ĥ.

Thus, Lemma 14a follows.
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(14c) To demonstrate w(s
p−

 vĵ(ĥ)) = max{ĥ,
∑ĵ

j=2 max{0, bj − bj−1}}, it

suffices to show that for any j ∈ {2, 3, . . . , ĵ}, swj(h
−
j ) = max{h−j ,

∑j

k=2 max{0, bk −

bk−1}}. We prove it by induction on j. For j = 2, it is trivial. Assuming that the

statement holds for all j ≤ r, we show that it also holds for j = r + 1.

Since h−r = min{br, h
−
r+1+max{0, br−br+1}}, it is easy to show 0 ≤ h−r −h

−
r+1 ≤

max{0, br − br+1}. By induction hypothesis, swr(h
−
r ) = max{h−r ,

∑r

k=2 max{0, bk −

bk−1}}. Hence

swr+1(h
−
r+1) = swr(h

−
r ) + w(vr(h

−
r ), vr+1(h

−
r+1))

= max{h−r ,
r
∑

k=2

max{0, bk − bk−1}}+ max{0, h−r+1 − h
−
r }

+ max{0, (br+1 − h
−
r+1)− (br − h

−
r )}

= max{h−r ,
r
∑

k=2

max{0, bk − bk−1}}

+ h−r+1 − h
−
r + max{0, br+1 − br − (h−r+1 − h

−
r )}

= max{h−r ,
r
∑

k=2

max{0, bk − bk−1}}+ max{h−r+1 − h
−
r , br+1 − br}.

Consider two possible cases.

Case (I) br+1 < br. In this case, we have h−r = h−r+1 and max{0, br+1− br} = 0.

Thus, it follows

swr+1(h
−
r+1) = max{h−r ,

r
∑

k=2

max{0, bk − bk−1}}+ 0

= max{h−r+1,
r+1
∑

k=2

max{0, bk − bk−1}}.
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Case (II) br+1 ≥ br. In this case, h−r = max{0, h−r+1−br+1+br}, h
−
r +br+1−br =

max{h−r+1, br+1 − br}, and br+1 − br ≥ h−r+1 − h
−
r . Hence,

swr+1(h
−
r+1) = max{h−r ,

r
∑

k=2

max{0, bk − bk−1}}+ max{h−r+1 − h
−
r , br+1 − br}

= max{h−r ,
r
∑

k=2

max{0, bk − bk−1}}+ br+1 − br

= max{h−r + br+1 − br,
r+1
∑

k=2

max{0, bk − bk−1}}

= max{max{h−r+1, br+1 − br},
r+1
∑

k=2

max{0, bk − bk−1}}

= max{h−r+1, br+1 − br,
r+1
∑

k=2

max{0, bk − bk−1}}

= max{h−r+1,
r+1
∑

k=2

max{0, bk − bk−1}}.

We call the path s
p−

 vĵ(ĥ) an arched path from s to vĵ(ĥ), while vĵ(ĥ)
p+

 t an

incurved path from vĵ(ĥ) to t. In the rest of the paper, we use the notation u
p−

 v

(resp., u
p+

 v) to denote an arched (resp., incurved) path from u to v. It immediately

follows from Lemma 14 that when vĵ(ĥ) = vN(0), the series {h−j }
N
j=1 defines an s-t

shortest path in H , denoted by p (i.e., p = s
p−

 t), and when vĵ(ĥ) = v1(b1), the series

{h+
j }

N
j=1 specifies another s-t shortest path in H , denoted by p (i.e., p = s

p+

 t).

From the graph model of the OVD problem and Lemmas 13 and 14, the

following lemma immediately follows.

Lemma 15. (1) Each of the s-t shortest paths p and p in H can be computed in
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O(N) time, and wy(p) = bN and wx(p) = 0.

(2) w(p) = max{bN ,
∑N

j=2 max{0, bj − bj−1}}. (3) The OVD problem can be solved in

an optimal linear time.

For a given non-negative vector b = (b1, b2, . . . , bN ), define two vectors x∗ =

(x1, x2, . . . , xN ) and y∗ = (y1, y2, . . . , yN), as follows.

xj =































b1, j = 1

max {0, xj−1 −max{0, bj−1 − bj}} , 1 < j < N

0, j = N

(4.1)

For every j = 1, 2, . . . , N , yj = bj−xj . The following lemma then immediately follows

from Lemma 15.

Lemma 16. Given a non-negative vector b = (b1, b2, . . . , bN ), an optimal decompo-

sition x∗ and y∗ of b can be computed in O(N) time; furthermore, Wovd(x
∗) = 0 and

the total weight of x∗ and y∗, Wovd(x
∗)+Wovd(y

∗) = max{bN ,
∑N

j=2 max{0, bj−bj−1}}

4.2.2.3 Computing the minimum increase of the

complexity

As analyzed in Section 4.2.2.1, for a given feathering region Fk = A[l .. r],

we can view each extended row (ai,l−1, ai,l, . . . , ai,r, ai,r+1) as a vector ai. Applying

the OVD algorithm to decompose each ai into two vectors, xi and yi, we have the

minimum increase ∆cpl(Fk) of the complexity for Fk is
∑m

i=1[Wovd(xi) + Wovd(yi) −

Wovd(ai)], which equals
∑m

i=1 max{0, ai,r+1−
∑r+1

j=l max{0, ai,j − ai,j−1}} based on

Lemma 16. We thus can introduce an additional matrix B = (bi,j)m×n such that
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bi,j =
∑j+1

k=1 max{0, ai,k− ai,k−1}} (ai,0 = ai,n+1 = 0). The matrix B can be computed

in O(mn) time. Then, ∆cpl(Fk) for any feathering region Fk can be obtained in O(m)

time.

Lemma 17. After an O(mn) time preprocessing, the minimum increase ∆cpl(Fk) of

the complexity for any feathering region Fk = A[l .. r] can be computed in O(m) time,

with ∆cpl(Fk) =
∑m

i=1 max{0, ai,r+1 −
∑r+1

j=l max{0, ai,j − ai,j−1}}.

4.2.3 Speeding Up the Computation of the

Feathering Regions

In this section, we exploit the Monge property [1] of the graph G = (V,E)

defined in Section 4.2.1. This property enables us to compute in a near linear time a

shortest u1-to-t path in G, which defines an optimal set of feathering regions for the

field splitting problem.

Lemma 18. Given four vertices uj′, uj′+1 ∈ Lk and uj′′, uj′′+1 ∈ Lk+1 in G with

2 ≤ k < d, c(uj′, uj′′) + c(uj′+1, uj′′+1) ≤ c(uj′, uj′′+1) + c(uj′+1, uj′′).

Proof. First, if either (uj′, uj′′+1) or (uj′+1, uj′′) is not an edge in G, then we can

assume that the weight c(·, ·) of an unexisting edge is +∞ and the lemma holds. We

thus consider the case that both (uj′, uj′′+1) and (uj′+1, uj′′) are edges in G, which

implies ̟ − ∆ + 1 ≤ j′′ − j′ ≤ ̟ − δ − 1 due to the construction of the graph

G in Section 4.2.1, and thus both (uj′, uj′′) and (uj′+1, uj′′+1) are edges. Hence, we

only need to prove the lemma assuming all (uj′, uj′′), (uj′+1, uj′′+1), (uj′, uj′′+1), and

(uj′+1, uj′′) are edges in G.
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Note that an edge (uj, uk) in G defines a feathering region F = A[k .. j+̟−1]

and c(uj, uk) is equal to ∆cpl(F ). Based on Lemma 17, it suffices to prove that for

each row i of A,

max{0, ai,j′+̟ −

j′+̟
∑

j=j′′

max{0, ai,j − ai,j−1}}

+ max{0, ai,j′+̟+1 −

j′+̟+1
∑

j=j′′+1

max{0, ai,j − ai,j−1}}

≤ max{0, ai,j′+̟ −

j′+̟
∑

j=j′′+1

max{0, ai,j − ai,j−1}}

+ max{0, ai,j′+̟+1 −

j′+̟+1
∑

j=j′′

max{0, ai,j − ai,j−1}}

Further, it suffices to show that

max{ai,j′+̟,

j′+̟
∑

j=j′′

max{0, ai,j − ai,j−1}}

+ max{ai,j′+̟+1,

j′+̟+1
∑

j=j′′+1

max{0, ai,j − ai,j−1}}

≤ max{ai,j′+̟,

j′+̟
∑

j=j′′+1

max{0, ai,j − ai,j−1}}

+ max{ai,j′+̟+1,

j′+̟+1
∑

j=j′′

max{0, ai,j − ai,j−1}}

Based on the possible values of max{ai,j′+̟,
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1}} and

max{ai,j′+̟+1,
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}}, we distinguish four cases:

I) max{ai,j′+̟,
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1}} = ai,j′+̟,
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max{ai,j′+̟+1,
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}} = ai,j′+̟+1;

II) max{ai,j′+̟,
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1}} = ai,j′+̟,

max{ai,j′+̟+1,
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}} =
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1};

III) max{ai,j′+̟,
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1}} =
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1},

max{ai,j′+̟+1,
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}} = ai,j′+̟+1;

IV) max{ai,j′+̟,
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1}} =
∑j′+̟

j=j′′ max{0, ai,j − ai,j−1},

max{ai,j′+̟+1,
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}} =
∑j′+̟+1

j=j′′+1 max{0, ai,j − ai,j−1}.

The proof of case III) is shown below. The other cases can be proved in a

similar way.

max{aj ,

j
∑

k=i+1

max{0, ak − ak−1}}+ max{aj+1,

j+1
∑

k=i+2

max{0, ak − ak−1}}

=

j
∑

k=i+1

max{0, ak − ak−1}+ aj+1

≤

j
∑

k=i+1

max{0, ak − ak−1}+ max{0, aj+1 − aj}+ aj

≤ max{aj+1,

j+1
∑

k=i+1

max{0, ak − ak−1}}+ max{aj,

j
∑

k=i+2

max{0, ak − ak−1}}.

Thus, the lemma holds.

The Monge property as shown in Lemma 18 can be used to speed up the

computation of the shortest u1-to-t path in G. For every vertex uj in the k-th layer
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Lk, let swk(j) denote the shortest path length from u1 to uj ∈ Lk in G. Clearly,

swk(j) = min{swk−1(j
′) + c(uj′, uj) |uj′ ∈ Lk−1 and ̟ −∆ ≤ j − j′ ≤ ̟− δ}. Recall

that an edge (uj′, uj) ∈ E if and only if uj′ ∈ Lk−1, uj ∈ Lk, and̟−∆ ≤ j−j′ ≤ ̟−δ.

Hence, the set of all outgoing edges of each vertex uj′ and the set of all incoming edges

of each uj can be represented implicitly (such that we can access any edge of G in

O(1) time and compute its weight in O(m) time as shown in Section 4.2.2). Note

that the Monge property is normally defined on a matrix [1]. We consider the matrix

Mk containing the path weight swk−1(j
′) + c(uj′, uj) for every edge (uj′, uj) between

the vertices on two consecutive layers Lk and Lk+1 of G, with 1 < k < d. Lemma 18

actually shows that Mk is a staircase matrix with the concave Monge property [1].

Thus, by using the staircase Monge matrix searching technique, it takes O(m̟α(̟))

time to compute all shortest paths from u1 to all vertices on the k-th layer when

knowing all swk−1(j
′)’s of Layer Lk−1, where α(·) is the inverse Ackermann function.

Hence, a shortest u1-to-t path in G can be obtained in O(dm̟α(̟)) = O(mnα(̟))

time.

Lemma 19. Given an IM A of size m × n, and an maximum allowable field width

̟, an optimal set of feathering regions for the OFSB problem can be computed in

O(mnα(̟)) time.

4.3 Balancing the Minimum Beam-On Times

in an Optimal Splitting

After obtaining an optimal set of feathering regions {Fk | k = 1, 2, . . . , d− 1},

we can decompose each extended row of every feathering region Fk by Lemma 16,
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yielding a split of the IM A with d sub-IMs, whose total sum of the complexity is

minimized. However, some of the resulting sub-IMs may have an undesirably large

minimum beam-on time.

In this section, we thus consider the following min-max beam-on time

(MBoT) problem: Given an optimal set of feathering regions {Fk | k = 1, 2, . . . , d−

1}, decompose the feathering regions to achieve a set S of d sub-IMs {S1, S2, . . . , Sd},

such that the maximum Mbot(S) of all the minimum beam-on times Tbot(·) of these

sub-IMs in S (i.e., Mbot(S) = maxSk∈S Tbot(Sk)) is minimized, while imposing the

lower bound on total complexity of the split. We formulate the MBoT problem

as computing a polygonal path in a polygon, such that the maximum slope of the

segments on the path is minimized, which can be solved in linear time.

4.3.1 The Min-Max Slope Path Model

Assume that each feathering region Fk = A[jk+1 .. jk + ̟ − 1] is decomposed

into F
(0)
k and F

(1)
k , and denote by αk(i) and βk(i) the weights of each row i of F

(0)
k

and F
(1)
k , respectively, as defined in Section 4.2.2.1. Since we impose the lower bound

on the total complexity of the split while performing the decomposition of Fk, by

Lemma 16, αk(i) + βk(i) is a fixed constant, denoted by ρk(i), and 0 ≤ αk(i), βk(i) ≤

ρk(i). Then, for each k = 1, 2, . . . , d, as shown in Section 4.2.1, the k-th sub-IM in

the split S is Sk = F
(1)
k−1 ||A[jk−1 + ̟ .. jk+1 − 1] ||F (0)

k . For a given set of (d − 1)

feathering regions, A[jk−1 +̟ .. jk+1 − 1] in each Sk is fixed, and thus we let ck(i) =

∑jk+1−1
l=jk−1+̟ max{0, ai,l − ai,l−1}, which is a constant. Note that the minimum beam-

on time Tbot(B) of an IM B = (bi,j)m′×n′ equals to maxm′

i=1{bi,1 +
∑n′

j=2 max{0, bi,j −
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bi,j−1}} [30]. Hence, Tbot(Sk) = maxm
i=1(βk−1(i)+ ck(i)+αk(i)), where αk(i) and βk(i)

are varying depending on the decompositions of Fk’s. Then, the maximum Mbot(S)

of all the minimum beam-on times of the sub-IMs in S is maxSk∈S maxm
i=1(βk−1(i) +

ck(i)+αk(i)), that is, Mbot(S) = maxm
i=1 maxd

k=1(βk−1(i)+ck(i)+αk(i)), where β0(i) =

αd(i) = 0.

Thus, to minimize Mbot(S), we need to solve the following problem: Given a

vector ρ = {ρ0, ρ1, . . . , ρd−1, ρd} with ρ0 = ρd = 0 and ρk ≥ 0 (k = 1, 2, . . . , d − 1),

and a vector c = (c1, c2, . . . , cd) with ck ≥ 0 for every k = 1, 2, . . . , d, decompose ρ

into two non-negative integral vectors α = (α0, α1, . . . , αd) and β = (β0, β1, . . . , βd),

such that:

(1) αk + βk = ρk for each k = 0, 1, . . . , d;

(2) 0 ≤ αk, βk ≤ ρk; and

(3) maxd
k=1(βk−1 + ck + αk) is minimized.

Without loss of generality, we assume that ρk > 0 for k = 1, 2, . . . , d−1. Interestingly,

we are able to model this problem as a min-max slope path (MSP) problem in a

polygon, as follows.

Define a monotone polygon P in the 2-D x-y plane, whose boundary consists

of two x-monotone polygonal chains, the upper chain Cu and the lower one Cl. Both

Cu and Cl, each consisting of d + 1 chain vertices, start at the point s(0, 0) and end

at the point t(d,
∑d

i=1 ci +
∑d

i=0 ρi). The k-th vertex on the lower (resp., upper)

chain Cl (resp., Cu) is at Bk(k,
∑k

i=1 ci +
∑k−1

i=0 ρi) (resp., Bk(k,
∑k

i=1 ci +
∑k

i=0 ρi))

for k = 1, 2, . . . , d − 1, i.e., Bk and Bk are on the vertical line x = k and Bk is ρk
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ρ1
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Bd-1

Bd-1

t

B1

Figure 4.4: Illustrating the construction of polygon P.

“higher” than Bk (see Figure 4.4). Let x(P ) (resp, y(P )) denote the x-coordinate

(resp., y-coordinate) of a point P . The min-max slope path (MSP) problem

seeks a polygonal path L = P0P1 . . . Pq−1Pq in P such that: (1) P0 = s and Pq = t

and (2) the maximum slope of the line segments on L, denoted by MS(L) (i.e.,

MS(L) = maxq
i=1

y(Pi)−y(Pi−1)
x(Pi)−x(Pi−1)

), is minimized. Such a path L is called a min-maxslope

path from s to t.

For any feasible decomposition of ρ, α = (α0, α1, . . . , αd−1, αd) and β =

(β0, β1, . . . , βd−1, βd), we can define a polygonal path L = P0P1, . . . , Pd−1Pd with

P0 = s, Pd = t, and Pk = (k, y(Bk) + αk) for k = 1, 2, . . . , d− 1 (see Figure 4.4). It is

not difficult to see that L is in the polygon P, and MS(L) = maxd
k=1(βk−1 + ck +αk).

We next show how to compute a min-max slope s-to-t path which defines an optimal

decomposition of ρ.
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4.3.2 Computing a Min-Max Slope s-to-t Path

We show a min-max slope s-to-t path in P may only use the polygonal vertices

of P, which leads to a linear time algorithm for computing a min-max slope s-to-t

path.

In the polygon P, we call the line segments BkBk (resp., BkBk+1 ) as V-

diagonals (resp., H-diagonals) of P (see Figure 4.4). Note that we do not consider

the line segments BkBk+1 in P. A diagonal di of P is denoted by vivi with vi on the

upper chain Cu of P and vi on the lower chain Cl of P. Denote by L(v, v′) the min-

max slope path from a polygonal vertex v to v′ in the polygon P. Thus, L(s, vi) and

L(s, vi) be the min-max slope paths from s to vi and vi, respectively. There exists a

unique common vertex u of both L(s, vi) and L(s, vi), which is the farthest one from

s on both paths. The region bounded by the diagonal di, the sub-path L(u, vi) of

L(s, vi) from u to vi, and the one L(u, vi) of L(s, vi) from u to vi, is called a funnel,

denoted by Ri, with u being the apex of the funnel (see Figure 4.5).

Lemma 20. There exists a min-max slope s-to-t path L∗ = P0P1 . . . Pd−1Pd such that

P0 = s, Pd = t, and Pk is a polygonal vertex of P for every k = 1, 2, . . . , d− 1.

Proof. We first show that there exists a min-max slope s-to-t path such that the

x-coordinate of each vertex on the path is an integer. The idea is that, for a given

min-max slope s-to-t path, if the x-coordinates of the vertices on the path are not an

integer, we convert it to another min-max slope s-to-t path such that the x-coordinate

of each vertex on the new path is an integer.

For a given a min-max slope s-to-t path L∗ = P0P1 . . . Pd−1Pd, assume that
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u0

u1

u2

u3

di

s

Figure 4.5: An example of Ri. For the diagonal di with u0 and u3 being the two
endpoints, su2u1u0 and su2u3 are the min-max slope paths from s to u0 and u3,
respectively. The region bounded by u2u1u0, u2u3 and di is Ri and u2 is the apex.

Pi−1Pi is the first segment on L∗ such that x(Pi−1) is an integer while x(Pi) is not.

Here, i < d; otherwise, L∗ is the path that we want. Let PjPj+1 be the segment of

L∗ that intersects with the line x = ⌈x(Pi)⌉. Denote by P ′ the intersection of the

segment Pi−1Pi with Line x = ⌊x(Pi)⌋, and let P ′′ be the intersection of the segment

PjPj+1 with Line x = ⌈x(Pi)⌉. Three cases need to be considered.

Case (1) Both Pi and Pj are in the same half plane defined by the line segment

P ′P ′′. In this case, the slope of either Pi−1Pi or PjPj+1 is no less than that of

P ′P ′′. See Figure 4.6(a) for example.

Case (2) Pi is in the upper half plane and Pj is in the lower half plane defined

by P ′P ′′. Then, the slopes of both Pi−1Pi and PjPj+1 are no less than that of

P ′P ′′. See Figure 4.6(b) for example.
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Case (3) Pi is in the lower half plane and Pj is in the upper half plane defined by

P ′P ′′. In this case, Pi 6= Pj. Let L(Pi, Pj) denote the sub-path of L∗ from Pi

to Pj. Due to the monotonicity of L(Pi, Pj), the maximum slope of the line

segments on L(Pi, Pj) (MS(L(Pi, Pj))) is no less than the slope of PiPj. The

slope of PiPj is no less than that of P ′P ′′ since x(Pi) ≤ x(Pj) and y(Pi) ≤ y(Pj).

Hence, MS(L(Pi, Pj)) is no less than the slope of P ′P ′′. See Figure 4.6(c) for

example.

Figure 4.6: Illustrating the proof of Lemma 20. Illustrating the three possible cases
for the proof that there exists a min-max slope s-to-t path such that the x-coordinate
of each vertex on the path is an integer.

We thus consider the path L′ = P0 . . . Pi−1P
′P ′′Pj+1 . . . Pd. Obviously, L′ is

in P and MS(L′) ≤ MS(L∗). Hence, L′ is a min-max slope s-to-t path. Repeat

this operation, we can generate a min-max slope s-to-t path in P such that the

x-coordinate of each vertex on the path is an integer.

We next show that each vertex on L∗ can be a polygonal vertex of P. Other-

wise, let Pi = (xi, yi) be the first vertex of L∗ that is not a polygonal vertex of P. We
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Pi

Pi-1

Pi+1

Qi

Pi

Pi-1

Pi+1

Pi

Pi

Pi-1

Pi+1

Pmid

(a) (b) (c)

Ii

(Qi)

Pi (Ii)
Pi (Ii)

Qi

Figure 4.7: Illustrating the proof of Lemma 20. Thin solid lines show the polygon.
Red solid lines show the original min-max slope path and the thick solid lines show
the revised min-max slope path.

have two possible cases: (i) The slope of PiPi+1 is no less than that of Pi−1Pi; and

(ii) The slope of PiPi+1 is smaller than that of Pi−1Pi.

We first consider the case that the slope of PiPi+1 is no less than that of

Pi−1Pi. In this case, there must exist a point Qi = (xi, yi + ∆y∗) with ∆y∗ > 0, such

that both Pi−1Qi and QiPi+1 are within the polygon P, but for any point Qǫ(xi, yǫ)

above Qi on the line x = xi (i.e., yǫ > yi + ∆y∗), either Pi−1Qǫ or QǫPi+1 is not

within P. That is, Qi is the “highest” point on the line x = xi such that both

Pi−1Qi and QiPi+1 are within P. We then consider a point P ′
i (xi, yi + ∆y) with

∆y = min{
∑xi

k=1 ck +
∑xi

k=1 ρk,
yi+1−yi−1

xi+1−xi−1
(xi − xi−1) + yi−1} − yi. Note that the point

B̄i(xi,
∑xi

k=1 ck +
∑xi

k=1 ρk) is the polygonal vertex of P on the line x = xi, and the

point Ii(xi,
yi+1−yi−1

xi+1−xi−1
(xi − xi−1) + yi−1) is the intersection point of the line segment

Pi−1Pi+1 with the line x = xi. The point P ′
i is no “higher” than the point Ii on the

line x = xi.
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If ∆y ≤ ∆y∗ (i.e., Qi is no lower than P ′
i ), then both Pi−1P

′
i and P ′

iPi+1 are

still within P. Since y(P ′
i ) > y(Pi) and y(Ii) > y(Pi), the slopes of P ′

iPi+1 and IiPi+1

are both smaller than that of PiPi+1. Note that the point P ′
i is no “higher” than the

point Ii on the line x = xi (i.e, y(P ′
i ) ≤ y(Ii)). Thus, the slope of Pi−1P

′
i is no larger

than that of Pi−1Ii. Since Ii is on the line segment Pi−1Pi+1, the slope of Pi−1P
′
i is

smaller than that of PiPi+1. Hence, the slopes of both Pi−1P
′
i and P ′

iPi+1 are smaller

than that of PiPi+1. We thus can replace Pi−1Pi by Pi−1P
′
i and PiPi+1 by P ′

iPi+1

to get a new s-to-t path Lnew from L∗. Obviously, the maximum slope of Lnew is

no larger than that of L∗. Therefore, Lnew is a min-max slope s-to-t path in P. In

addition, P ′
i is either a polygonal vertex (see Figure 4.7(a)) of P if P ′

i = B̄i, or P ′
i

is a point on the straight line segment Pi−1Pi+1 if P ′
i = Ii, that is, P ′

i is no longer a

vertex on the path Lnew (see Figure 4.7(b)). We thus obtain a new min-max slope

s-to-t path with one less non-polygonal vertex.

If ∆y > ∆y∗, then either Pi−1P
′
i or P ′

iPi+1 is not within P. Without loss of

generality, we assume that Pi−1P
′
i is not within P. Let Pmid be the first polygonal

vertex of P such that x(Pmid) > x(Pi−1) and the intersection point of Pi−1P
′
i and line

x = x(Pmid) is outside of P. Replacing Pi−1Pi and PiPi+1 by Pi−1Pmid concatenated

with PmidPi+1 yields a new s-to-t path Lnew. We now exams the slopes of Pi−1Pmid

and PmidPi+1. Since y(Ii) > y(Pi) and Ii is on Pi−1Pi+1, the slope of Pi−1Pi+1 is less

than that of PiPi+1. Note that the slope of Pi−1Pi+1 is no less than that of Pi−1Pmid.

Thus, the slope of Pi−1Pmid is less than that of PiPi+1. It is not difficult to see that

the slope of PmidPi+1 is less than that of PiPi+1. Hence, the maximum slope of Lnew
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does not increase. If PmidPi+1 is within the polygon P, then Lnew is a min-max

slope s-to-t path with one less non-polygonal vertex on the path. Otherwise, we can

repeat the above operations to replace PmidPi+1 by a sub-path L(Pmid, Pi+1) whose

maximum segment slope is less than the slope of PiPi+1. We thus again can obtain a

new min-max slope s-to-t path with one less non-polygonal vertex.

For the second case that the slope of PiPi+1 is smaller than that of Pi−1Pi,

we can perform the segment replacement operations in a similar way as for the first

case to eliminate the non-polygonal vertices on an optimal min-max slope s-to-t path.

Thus, the lemma is proved.

From Lemma 20, we develop the following algorithm to compute a min-max

slope s-to-t path L∗, such that all vertices of L∗ are the polygonal vertices of P.

Step 1: Initially, the min-max slope paths from s to v1 = B1 and v1 = B1 are

obvious. Set k = 1 and dk = vkvk. The region bounded by dk, sv1 and sv1 forms the

funnel R1.

Step 2: Let ua be the apex of the funnel Rk, at which the two subchains

uaua+1 . . . ub and uaua−1 . . . u0 diverge, where vk = u0 and vk = ub (Figure 4.8).

Consider the next diagonal dk+1 = vk+1vk+1.

To determine vk+1 and vk+1, and to compute the min-max slope paths from s

to vk+1 and vk+1, we have the following possible cases:

(1) dk is an H-diagonal. Then, dk+1 is a V -diagonal and vk+1 = vk. Based on the

definition of V -diagonals, vk+1 is determined. Start from u0 to scan the sequence

u0, u1, . . . , ub and let j be the smallest index for which vk+1uj is a supporting
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Figure 4.8: Illustrating the algorithm for computing the min-max slope path in P.
(a), (b), (c), and (d) are four possible cases in the algorithm.

segment of uaua−1 . . . u0 or uaua+1 . . . ub. A line segment is a supporting segment

of an open convex (concave) curve if it has at least one point on the curve and

it is a tangent line of the curve.

(i) If j ≤ a (Figure 4.8(a)), then remove all edges uiui+1 for 0 ≤ i ≤ j − 1 and

add edge ujvk+1.

(ii) If j > a (Figure 4.8(b)), then remove all edges uiui+1 for 0 ≤ i ≤ j−1 and



138

add ujvk+1. uj becomes the apex of the funnel Rk+1.

(2) dk is a V -diagonal. Then, dk+1 is an H-diagonal and vk+1 = vk. Based on the

definition of V -diagonals, vk+1 is determined. Start from u0 to scan the sequence

u0, u1, . . . , ub and let j be the smallest index for which vk+1uj is a supporting

segment of uaua−1 . . . u0 or uaua+1 . . . ub.

(i) If j ≤ a (Figure 4.8(c)), the remove all edges uiui+1 for j ≤ i ≤ b − 1 and

add edge ujvk+1. uj becomes the apex of the funnel Rk+1.

(ii) If j > a (Figure 4.8(d)), then remove all edges uiui+1 for j ≤ i ≤ b− 1 and

add edge ujvk+1.

Step 3: Let k = k + 1 and repeat Step 2 until t is reached. Then, we obtain a

min-max slope s-t path L∗.

ua

u j

ua'

u0

ub-1

ub

dk

dk+1

vk+1

u1(u j')

(a)

ua(uj')

u j

ua'

u0

ub-1

ub

dk

dk+1

vk+1

u1

(b)

ua

u j

ua'

u0

ub-1(u j')

ub

dk

dk+1

vk+1

u1

(c)

Figure 4.9: Illustrating the correctness of the MSP algorithm.

To prove the correctness of the algorithm, we first prove the path generated
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in Step 2 of the algorithm is a min-max slope path from ua to vk+1. We prove it by

contradiction. Let us take case (2)(i) as an example. Suppose the last segment of the

min-max slope path from ua to vk+1 is not uj′vk+1. We have the following three cases

(see Figure 4.9):

(1) j′ < j (Figure 4.9(a)). We know the min-max slope path from ua to uj′ is

uaua−1 . . . uj′, so the min-max slope path from ua to vk+1 is uaua−1 . . . uj′vk+1.

Note that ujvk+1 is a supporting segment of uaua−1 . . . u0, the slope of any

segment on ujuj−1 . . . uj′ is larger than the slope of ujvk+1. Thus, the min-

max slope of the path uaua−1 . . . uj . . . uj′vk+1 is larger than that of the path

uaua−1 . . . ujvk+1.

(2) j < j′ ≤ a′ (Figure 4.9(b)), where a′ is the largest index such that ua′ is on

the upper half-plane defined by the line segment vk+1uj. Since vk+1uj is a

supporting segment of uaua−1 . . . u0, the segment vk+1uj′ is not entirely in the

polygon. Thus, the min-max slope ua-to-vk+1 path does not pass any vertex

between ua′ and uj+1.

(3) j > a′ (Figure 4.9(c)). Again, note that vk+1uj is a supporting segment of

uaua−1 . . . u0. The min-max slope of the path uaua−1 . . . ujvk+1 is the slope of

ujvk+1. However, the slope of uj′vk+1 is larger than that of ujvk+1. Thus, the

min-max slope of the path uaua+1 . . . uj′vk+1 is larger than that of the path

uaua−1 . . . ujvk+1.

Consider all the above three cases, we can conclude that the path computed in
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Step 2 of the algorithm is a min-max slope path from ua to vk+1. A similar argument

is applicable for the other three cases.

Next, we show that for any point w on diagonal dk+1, a min-max slope s-to-w

path passes through the apex of the funnel Rk+1. We prove it by induction on k.

Obviously, the claim is true for R1. Assume that it is true for 1, 2, . . . , k, we want to

prove it is also true for k + 1.

Suppose the min-max slope s-to-w path intersects with dk at w′. The assump-

tion immediately leads to the conclusion that the min-max slope s-to-w′ path passes

through the apex ua of Rk, so the min-max s-to-w path is the min-max slope s-to-ua

path concatenated with the min-max slope ua-to-w path. The min-max slope ua-to-w

path can be constructed using Step 2 of our algorithm (although we only show the

computation of the min-max slope path for the end points of the diagonal). For case

(1)(i) and (2)(ii), the apex of the funnel Rk+1 is the same as that of Rk. Thus, the

claim for k + 1 is held. We now consider Cases (1)(ii) and (2)(i). Since a similar

argument is applicable to both cases, we only detail the proof for Case (2)(i) in the

following.

It is not difficulty to see that the path uaua−1 . . . u0 is inward convex, that is,

the slopes of the line segments, uaua−1, ua−1ua−2, . . . , u1u0 on the path, are monoton-

ically increasing. Also note that to compute the supporting segment from a vertex

v of the diagonal dk+1 to uaua−1 . . . u0 is essentially finding the largest index i such

that the slope of uiui+1 is larger than that of uiv. The fact that ujvk+1 is the sup-

porting line from vk+1 to the path uaua−1 . . . u0 indicates that the slope of ujvk+1 is
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less than that of ujuj+1. Suppose that uj′′w is the supporting line from w to the

path uaua−1 . . . u0. We have the slope of uj′′w is less than that of uj′′uj′′+1. Since

0 < j′′ < a, the slope of uj′′vk+1 is less than that of uj′′w. Thus, the slope of uj′′vk+1

is less than that of uj′′uj′′+1, which indicates that j > j′′ (Figure 4.10). Hence, the

computed min-max slope ua-to-w path passes through the apex uj of the funnel Rk+1.

We can thus conclude that a min-max slope s-to-w path passes through the apex of

the funnel Rk+1.

ua

uj

ua+1

u0

ub-1

ub

uj"
dk

dk+1
vk+1

w

u1

Figure 4.10: If both ujvk+1 and uj′′w are supporting segments of uaua−1 . . . u0, then
j ≥ j′′.

Lemma 21. A min-max slope s-to-t path in P can be computed in O(N) time, where

N is the number of vertices on P.

4.3.3 Solution Integerization

The min-max slope s-to-t path L∗ in P computed in Section 4.3.2 may not

intersect with each line x = k (k = 1, 2, . . . , d − 1) at a point whose y-coordinate is
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an integer. This prevents us from defining a valid decomposition of ρ for solving the

MBoT problem.

However, if the maximum slope of a min-max slope s-to-t path L∗ in P is Smax,

an s-to-t path L′∗ in P, which intersects with each line x = k (k = 1, 2, . . . , d− 1) at

an integer point, can be found using the following integerization operation and the

maximum slope of the line segments on L′∗ is ⌈Smax⌉. Obviously, this is an optimal

integer solution to the MSP problem.

Suppose Pk = (x, y) and Pk+1 = (x+ ∆x, y + ∆y) are two adjacent polygonal

vertices on the path L∗. We define the following integerization operation on this line

segment: For each i = 1, 2, . . . ,∆x−1, we insert a new point (x+i, ⌈y+i∆y/∆x⌉). It

is easy to show that none of the slopes of all these segments is larger than ⌈∆y/∆x⌉.

Performing this integerization operation on each line segment of L∗, we then

obtain an s-to-t path L′∗ whose vertices are integer points and maximum slope is

⌈Smax⌉. We call L′∗ an integer min-max slope path from s to t in P. Consider each

point P (k, y(Bk) + αk) ∈ L′∗ for k = 1, 2, . . . , d − 1. Then, ρk can be decomposed

into αk and βk with βk = ρk − αk. Thus, ρ can be decomposed into integer vectors α

and β such that maxd
k+1(βk−1 + ck + αk) is minimized.

4.3.4 Constrained Feathering Region Decomposition

Up to this point, to balance the minimum beam-on times in an optimal split,

we decompose the total complexity ρk(i) of each row i of every feathering region Fk

into αk(i) and βk(i) (i.e., αk(i) + βk(i) = ρk(i)). Next, we need to decompose each

extended row i of the feathering region Fk into two vectors, x and y, such that the
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weight Wovd(x) of x equals to αk(i) and Wovd(x) +Wovd(y) = ρk(i). In this section,

we present a linear algorithm for such a decomposition by characterizing the optimal

solution space of the OVD problem in Section 4.2.2.2.

Denote by ρ(b) the total complexity of an optimal decomposition x and y of

b, i.e., ρ(b) = Wovd(x) + Wovd(y). Clearly, by Lemma 15, we are able to compute

an optimal decomposition of b such that Wovd(x) = 0 (i.e., x = x(p)) or Wovd(x) =

ρ(b) − bN (i.e., x = x(p)). Further, note that x1 = b1 and xN = 0, and y1 = 0 and

yN = bN . Thus, Wovd(x) ≥ b1 ≥ 0, and Wovd(y) =
∑N−1

j=1 max{0, yj+1 − yj} ≥ bN .

Hence, for any optimal decomposition x and y of b, we have 0 ≤Wovd(x) ≤ ρ(b)−bN .

We next show that, in fact, for any integer τ with 0 ≤ τ ≤ ρ(b)−bN , we can compute

an optimal decomposition x and y of b such that Wovd(x) = τ .

Let the arched shortest path in G from s (v1(b1)) to t (vN (0)) be p = v1(h
−
1 )→

v2(h
−
2 ) → . . . → vN−1(h

−
N−1) → vN (h−N), where h−1 = b1 and h−N = 0. For each j =

1, 2, . . . , N , we then define an s-t path pj, which is the concatenation of an arched path

s
p−

 vj(h
−
j ) and an incurved path vj(h

−
j )

p+

 t, denoted by

(

s
p−

 vj(h
−
j )

)

∨

(

vj(h
−
j )

p+

 t

)

(Figure 4.11(a)). It is not difficult to see that each path pj is a shortest s-t path in

G. Each path pj induces a feasible decomposition x and y of vector b. Consider-

ing the weight of the vector x induced by each path pj, denoted by wx(pj) (in fact,

wx(pj) = Wovd(x)), we have the following lemma.

Lemma 22. 0 = wx(p1) ≤ wx(p2) ≤ . . . ≤ wx(pN−1) ≤ wx(pN) = ρ(b)− bN , and all

these wx(pj)’s (j = 1, 2, . . . , N) can be computed in O(N) time.

Proof. We first note that p1 actually is the incurved shortest path p from s to t in
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G and pN is the arched shortest path p. By Lemma 15, it immediately follows that

wx(p1) = 0 and wx(pN) = ρ(b)− bN .

For any j = 1, . . . , N , pj =

(

s
p−

 vj(h
−
j )

)

∨

(

vj(h
−
j )

p+

 t

)

. Thus, wx(pj) =

wx

(

s
p−

 vj(h
−
j )

)

+wx

(

vj(h
−
j )

p+

 t

)

. It follows from Lemma 15 thatwx

(

vj(h
−
j )

p+

 t

)

=

0. Hence, wx(pj) = wx

(

s
p−

 vj(h
−
j )

)

. Considering two paths pj and pj+1 (j < N),

wx(pj+1)− wx(pj) = wx

(

s
p−

 vj+1(h
−
j+1)

)

− wx

(

s
p−

 vj(h
−
j )

)

= wx

(

s
p−

 vj(h
−
j )→ vj+1(h

−
j+1)

)

− wx

(

s
p−

 vj(h
−
j )

)

= max{0, h−j+1 − h
−
j } ≥ 0.

Thus, we have wx(p1) ≤ wx(p2) ≤ . . . ≤ wx(pN−1) ≤ wx(pN).

Note that for each j = 1, 2, . . . , N , s
p−

 vj(h
−
j ) is the portion of p from s to

vj(h
−
j ). While p can be obtained in O(N) time from Lemma 15. Hence, all wx(pj)’s

can be computed in O(N) time from p. This proves the lemma.

Lemma 23. For any integer τ with wx(pj) ≤ τ ≤ wx(pj+1), a shortest s-t path q in

G with wx(q) = τ can be computed in O(N) time.

Proof. Let pj =

(

s
p−

 vj(h
−
j )

)

∨

(

vj(h
−
j )

p+

 t

)

=

(

s
p−

 vj(h
−
j )→ vj+1(h

+
j+1)

p+

 t

)

and

pj+1 =

(

s
p−

 vj+1(h
−
j+1)

)

∨

(

vj+1(h
−
j+1)

p+

 t

)

=

(

s
p−

 vj(h
−
j )→ vj+1(h

−
j+1)

p+

 t

)

.

From Lemma 22, it is easy to see that h−j+1 ≥ h+
j+1.

If τ = wx(pj) or τ = wx(pj+1), obviously, the lemma holds (Figure 4.11(a)).

We thus assume that wx(pj) < τ < wx(pj+1) (Figure 4.11(b)). Two cases are needed
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Figure 4.11: Illustrating the solution space of decomposing the vector (1, 2, 6, 4, 2).
Only edges with minimum weights between two columns are shown and the minimum
edge weight is labeled below each set of the edges. (a) The shortest s-t paths pj ,
j = 1, 2, . . . , 5, with wx(p1) = 0, wx(p2) = 1 and wx(p3) = wx(p4) = wx(p5) = 3. (b)
The shortest s-t path with wx = 2.

to be considered.

Case (1): bj ≤ bj+1. In this case, h+
j+1 = h−j . Let ~ = h−j +(τ−wx(pj)). Clearly,

~ > h−j and h−j+1 > ~ > h+
j+1. We then define an s-t path q in G as s

p−

 vj(h
−
j ) →

vj+1(~)
p+

 t. Note that wx

(

vj(h
−
j ), vj+1(~)

)

= τ−wx(pj), wx

(

s
p−

 vj(h
−
j )

)

= wx(pj),

and wx

(

vj+1(~)
p+

 t

)

= 0. Hence, wx(q) = τ .

Case (2): bj > bj+1. In this case, h+
j+1 = h−j + (bj+1 − bj). For any integer h

with h+
j+1 ≤ h ≤ h−j , wx

(

s
p−

 vj(h
−
j )→ vj+1(h)

)

= wx(pj), and for any h−j < h ≤

h−j+1, wx

(

s
p−

 vj(h
−
j )→ vj+1(h)

)

= wx(pj) + (h − h−j ). Let ~ = h−j + (τ − wx(pj)).

Clearly, h−j+1 > ~ > h+
j+1. As in Case (1), we can define an s-t path q in G as

s
p−

 vj(h
−
j )→ vj+1(~)

p+

 t, and wx(q) = τ .

We next need to prove that path q is a shortest s-t path in G. Actually, we go a

step further to show that for any h with h+
j+1 < h < h−j+1, the path q = s

p−

 vj(h
−
j )→

vj+1(h)
p+

 t is a shortest s-t path in G.
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Consider the three shortest paths, vj+1(h
+
j+1)

p+

 t, vj+1(h)
p+

 t, and vj+1(h
−
j+1)

p+

 t.

By Claim 1, we have w

(

vj+1(h
+
j+1)

p+

 t

)

≤ w

(

vj+1(h)
p+

 t

)

≤ w

(

vj+1(h
−
j+1)

p+

 t

)

.

Further, it follows from Lemma 13 and the definition of f(·) that w(vj(h
−
j ), vj+1(h

+
j+1))

≤ w(vj(h
−
j ), vj+1(h)) ≤ w(vj(h

−
j ), vj+1(h

−
j+1)). Hence,

w

(

vj(h
−
j )→ vj+1(h

+
j+1)

p+

 t

)

≤ w

(

vj(h
−
j )→ vj+1(h)

p+

 t

)

≤ w

(

vj(h
−
j )→ vj+1(h

−
j+1)

p+

 t

)

.

Note that all the three paths, pj , q, and pj+1, share the same sub-path s
p−

 vj(h
−
j ).

Thus, w(pj) ≤ w(q) ≤ w(pj+1). Since both pj and pj+1 are shortest s-t paths, it

immediately follows that q is a shortest s-t path in G.

This proves the lemma.

The following Lemma immediately follows.

Lemma 24. Given a non-negative vector b = (b1, b2, . . . , bN) and a non-negative

integer τ , there exists an optimal decomposition x and y of b with Wovd(x) = τ if

and only if 0 ≤ τ ≤ ρ(b) − bN , and such an optimal decomposition x and y can be

computed in O(N) time.

To compute an optimal split of IM A, we perform the following steps: (1)

Compute an optimal set of d − 1 feathering regions Fk’s. (2) For each row i of

these feathering regions, compute ρ(i) = (ρ1(i), ρ2(i), . . . , ρd−1(i)) by Lemma 16. (3)

Using our MSP algorithm to decompose each ρ(i) into α(i) and β(i). (4) Based on

Lemma 24, each row i of every feathering region Fk can be decomposed into two

vectors xk(i) and yk(i) such that Wovd(xk(i)) = αk(i). We thus obtain an optimal
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spit S = {S1, S2, . . . , Sd} from the vectors xk(i) and yk(i) (k = 1, 2, . . . , d − 1 and

i = 1, 2, . . . , m). Hence, the following theorem holds.

Theorem 2. Given an IM A = (ai,j)m×n,an integral maximum field width ̟ > 0, and

the width range [δ ..∆] of each feathering region (0 < δ < ∆ < ̟), the OFSB problem

can be solved in O(mnα(̟)) time, where α(·) is the inverse Ankermann function.

4.4 An Alternative Method for Computing

the Optimal Set of Feathering Regions

Our algorithm for computing the optimal set of feathering regions in Sec-

tions 4.2 and 4.3 require the width of each sub-IMs to be ̟ and a upper bound of the

feathering width ∆. By removing these two constraints we can get a more general

description of the field splitting problem but the shortest path approach may not

work. We then turn to a less efficient approach – dynamic programming.

After removing the two constraints, the problem can be modeled as the follow-

ing general optimal field splitting with balanced beam-on times (GOFSB)

problem:

Given an IM A = (ai,j)m×n of size m × n, an integral maximum leaf spread

̟ > 0, and the minimum width δ of each feathering region (0 < δ < ∆ < ̟), split

A using vertical lines into a sequence of d = ⌈ n−δ
̟−δ
⌉ (≥ 2) sub-IMs, such that: (1)

the width of each sub-IM is no larger than ̟; (2) any two neighboring sub-IMs in

the sequence overlap each other and the width of the overlapping (feathering) region

ranges from δ to ∆; (3) no sub-IM overlaps completely with its neighboring sub-IM(s);

and (4) the total complexity of all these d sub-IMs is minimized.
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To apply the dynamic programming approach, we explore the optimal sub-

structure of the problem, as follows. Let C(x,N, L, k) be the minimum complexity

increase of the following subproblem of the field splitting:� The intensity map consists of the first x columns of the input IM A, which is

to be split into k sub-IMs.� The first (k − 1) sub-IMs cover the first (x−N) columns of the input IM A.� The width of the feathering region between the last two sub-IMs (i.e., the (k−1)-

th and k-th sub-IMs) is L.� The width of each sub-IM is no larger than ̟.� Any two adjacent sub-IMs overlap each other with a feathering width no less

than δ.� No sub-IM overlaps completely with its neighboring sub-IM(s).

Note that N + L is the width of the k-th sub-IM of the split, thus N + L ≤ ̟. We

then have the following recurrence formula.

C(x,N, L, k) = min
N′+L′≤̟

L′≥δ,N′≥L

{C(x−N,N ′, L′, k − 1)}

+ ∆cpl(A[x−N − L+ 1 .. x−N ]), (4.2)

where ∆cpl(A[x − N − L + 1 .. x − N ]) is the minimum complexity increase while

decomposing the feathering region A[x−N − L+ 1 .. x−N ], which can be solve by
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Lemma 17. The condition L′ +N ′ ≤ ̟ is to make sure that the width of each sub-IM

is no larger than the maximum leaf spread ̟. The minimum feathering width is

guaranteed by L′ ≥ δ. To make sure that no sub-IM overlaps completely with its

neighboring sub-IM(s), we let N ′ ≥ L.

The optimal solution to minN+L≤̟
L≥δ

C(n,N, L, d) gives an optimal split of A.

Initially, if n ≤ ̟, we do not need to split A. Thus, for any x ≤ ̟, we have

C(x,N, L, 1) = 0 for any N + L ≤ ̟ and L ≥ δ. To make sure that the number of

sub-IMs in the split is d, let C(x,N, L, 0) = +∞ for any x > 0, N + L ≤ ̟, and

L ≥ δ. Intuitively, after using d sub-IMs to split IM , if the residual IM of A is not

empty (i.e., x > 0), that means we have to use more than d sub-IMs in that split. We

thus let C(x,N, L, 0) = +∞ to prevent using more than d sub-IMs for splitting A.

After the optimal feather regions are determined, the actual decomposition of

the feathering regions are done by our MSP method and then the splitting is achieved.

Note that it takes O(n2̟+mn) time to compute the optimal set of feathering

regions by dynamic programming. The MSP algorithm takes a linear O(mn) time.

We thus have the following theorem.

Theorem 3. Given an IM A = (ai,j)m×n, an integral maximum leaf spread ̟ > 0,

and the minimum feathering width δ (0 ≤ δ < w/2), the GOFSB problem can be

solved in O(n2̟ +mn) time.
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4.5 Implementation and Experiments

4.5.1 Experiments for the OFSB Algorithm

To study the performance of our new OFSB algorithm for clinical applica-

tions, we implemented the algorithm using Matlab on Windows XP system. We

experimented with the resulting software on 1000 randomly generated intensity maps

for each problem configuration and also on 105 sets of clinical intensity maps obtained

from the Department of Radiation Oncology, the University of Iowa. We conducted

comparisons with Chen and Wang’s FSMP algorithm [18] for field splitting with feath-

ering, which devotes to minimize the total beam-on time of the resulting sub-IMs.

With the FSMP algorithm, a given IM was split into d sub-IMs with each one being

of the same width of ̟, where ̟ was the maximum field width. Actually, Chen

and Wang’s method did not guarantee overlapping between two adjacent sub-IMs,

especially, when n%̟ < d, that was impossible. To ensure a fair comparison, the

minimum feathering width δ in our algorithm was set to 0. In addition, one may also

note that in our algorithm, we did not require that the last sub-IM in a split be of

width of ̟ although the first d-1 sub-IMs had the same width of ̟. Both the total

minimum beam-on time and the number of MLC apertures were used as measures of

the results. Furthermore, we compared the total minimum beam-on time and the the

number of MLC apertures of the resulting sub-IMs by our OFSB algorithm to those

obtained without splitting. In these experiments, the minimum feathering width δ

was set to 3 in our OFSB algorithm.

For the randomly generated intensity maps, the widths of the tested intensity
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Table 4.1: Comparison results on randomly generated intensity maps
of various sizes and on different maximum field widths.

̟ n = 25 n = 35 n = 45 n = 60 n = 75

beam-on time
14 -2.03%‡/2 4.81%/3 14.41%/4 11.73%/5 9.03%/6
16 0.33%/2 12.56%/3 1.57%/3 2.87%/4 3.73%/5
18 1.89%/2 -0.23%‡/2 5.87%/3 9.96%/4 14.88%/5

# of MLC
14 0.20%/2 -0.43%/3 -1.30%/4 -0.54%/5 -0.03%/6
16 -3.29%/2 -3.92%/3 0.24%/3 0.18%/4 0.13%/5
18 -8.18%/2 0.01%/2 -0.96%/3 -0.92%/4 1.08%/5

(a)

̟ n = 25 n = 35 n = 45 n = 60 n = 75

beam-on time
14 6.84%/2 11.50%/3 14.49%/4 19.03%/6 19.47%/7
16 7.19%/2 11.35%/3 14.60%/4 15.66%/5 16.74%/6
18 9.86%/2 13.50%/3 10.23%/3 12.68%/4 14.16%/5

# of MLC
14 12.64%/2 19.65%/3 24.06%/4 31.07%/6 32.25%/7
16 12.52%/2 19.40%/3 23.97%/4 26.47%/5 27.81%/6
18 12.19%/2 18.51%/3 17.21%/3 20.73%/4 23.30%/5

(b)

(a) The average increment of the total minimum beam-on time and
the number of MLC apertures of the resulting sub-IMs by using
our OFSB algorithm over Chen and Wang’s FSMP algorithm. The
values after “/” show the numbers of the resulting sub-IMs after
splitting. (b) The average increment of the total minimum
beam-on time and the number of MLC apertures of the resulting
sub-IMs after splitting using our OFSB algorithm over those
obtained without splitting.

‡: Our OFSB algorithm does not require that the last sub-IM of the

split have a maximum field width, while the FSMP algorithm does.

Thus, our algorithm allows some more flexibility for splitting, which

indicates that it may outperform the FSMP algorithm in term of the

total minimum beam-on time.
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Table 4.2: Comparison results on 105 clinical intensity maps.

̟ d
beam-on time # of MLC apertures

FSMP OFSB increment% FSMP OFSB increment%

14
2 6081 6232 2.48 837 840 0.36
3 15502 16490 6.37 2324 2385 2.62
4 2061 2267 10.00 346 352 1.73

16
2 8849 8908 0.67 1297 1300 0.23
3 11931 13015 9.09 1960 1975 0.77

18
2 13854 13970 0.843 2161 2134 -1.25
3 4608 5257 14.08 836 854 2.15

The maximum field widths ̟ considered were 14, 16, and 18 (first column).
The clinical datasets were grouped based on the number of the resulting
sub-IMs after splitting (second column). The total minimum beam-on time of
the resulting sub-IMs for each group by using Chen and Wang’s FSMP
algorithm and our OFSB algorithms are shown in columns 3 and 4, respectively.
The average increment in the total minimum beam-on time obtained using our
OFSB algorithm over Chen and Wang’s FSMP algorithm are shown in column
5. The comparison results in terms of the number of MLC apertures of the
resulting sub-IMs are shown in columns 6, 7 and 8.
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Table 4.3: The comparison of execution times.

d ̟ TFSMP (s) TOFSB(s) TFSMP/TOFSB

4
14 6.81 0.85 8.01
16 11.11 0.94 11.82
18 17.42 1.11 15.69

5
14 32.72 0.94 34.81
16 59.86 1.19 50.30
18 103.84 1.33 78.08

6
14 138.19 1.13 122.29
16 286.19 1.30 220.15
18 572.05 1.50 381.37

d is the number of resulting sub-IMs from the splittings, and ̟ is the
maximum field width. The intensity maps we used were of width d ∗̟+ ξ̟
for ξ̟ = 0, 1, . . . , ̟ − 1. For each configuration (d,̟, ξ̟), we randomly
generated 100 IMs and ran each of the FSMP and OFSB programs on every
IMs to calculate the average execution time. Notice that the running time
of the FSMP algorithm largely depends on ξ̟. To make a fair comparison,
in the table we show for each (d,̟) pair the accumulation of the average
execution times for the configurations (d,̟, ξ̟) with ξ̟ ranging from 0 to
̟ − 1.
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maps were 25, 35, 45, 60, and 75, to get different number of sub-IMs. The maximum

intensity level was set to 100. The average increment in the total beam-on time of the

resulting sub-IMs obtained using our OFSB algorithm over Chen and Wang’s FSMP

algorithm was only 6.09%. Note that the FSMP algorithm can produce optimal splits

with respect to the total minimum beam-on time. In terms of the number of MLC

apertures, our algorithm slightly outperformed the FSMP algorithm. Table 4.1(a)

shows the comparison results in term of the beam-on time and the number of MLC

apertures for the FSMP and OFSB algorithms. Our experiments also demonstrated

the increase of the total minimum beam-on time and the number of MLC-apertures

were pretty small (as shown in Table 4.1 (b)) after splitting comparing to those

obtained without splitting. For example, when the IMs needed to be split into 7

sub-IMs, the total minimum beam-on time only increased by less than 20% and the

number of MLC-apertures by about 30%.

For clinical data, the widths of the tested intensity maps ranged from 15 to 47.

The maximum intensity level of each IM was normalized to 100. The maximum field

widths used were 14, 16, and 18. For the tested IMs, the total minimum beam-on

time of the resulting sub-IMs obtained using our OFSB algorithm was only slightly

larger than that obtained by Chen and Wang’s FSMP algorithm, with an average

increase of 6.2%; while the number of MLC apertures output by our algorithm was

comparable to that by Chen’s algorithm, with an average increase of 0.9%. Table 4.2

shows the comparison results of the two algorithms for those 105 clinical IMs.

Our algorithm runs very fast comparing to Chen and Wang’s FSMP algorithm.
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For most of the intensity maps, the execution time was within a second, while the

FSMP algorithm took hundreds of seconds. Table 4.3 shows the comparison results

of the execution times.

4.5.2 Experiments for the GOFSB algorithm

The performance of the GOFSB algorithm was tested using 54 intensity maps

that were generated with a commercial inverse treatment planning system (Pinnacle

v8.0m). The size of the intensity maps was of 101× 101 and the maximum intensity

levels ranged from 42 to 147. 23 of those tested IMs were needed to be split into 3

sub-IMs and the sizes of the tumor contour were between 27cm and 30.5cm. The

remaining 31 IMs were needed to be split into 2 sub-IMs and the sizes of the tumor

contours ranged from 15.5cm to 19.5cm.

We assume to do the planning for the Varian LINAC System. The maximum

leaf spread was set to 14.5cm and the minimum feathering width was set to 3cm.

Our splitting method was compared with that used in Pinnacle v8.0m. The total

number of MUs and the total number of MLC-apertures required to deliver the split

generated by Pinnacle and that generated by our method were computed using the leaf

sequencing algorithm in Pinnacle. Note that our method allowed varying feathering

widths (≥ 3cm) while Pinnacle used a fixed width of the feathering regions.

For all the 54 datasets, the average decreases in MUs and in the number of

MLC-apertures obtained using our algorithm over Pinnacle v8.0m were, respectively,

18.95% and 12.22%. The maximum decreases were 63.68% and 50.00% for the number

of MUs and MLC-apertures, respectively. 39 out of the 54 (72.22%) intensity maps
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got decreased in MUs and the average decrease for those intensity maps was 24.83%;

while 34 intensity maps out of the 54 (62.96%) datasets got decreased in the number

of MLC-apertures and the average decrease for those intensity maps was 20.86%.

For those 23 tested IMs that were needed to be split into 3 sub-IMs, the

number of MUs and the number of MLC-apertures were reduced by, respectively,

25.70% and 14.70% on average. The maximum decreases in MUs and in the number

of MLC-apertures were 63.68% and 50.00%, respectively. In terms of number of MUs,

19 out of the 23 (82.61%) IMs got reduced MUs and the average decrease for those

IMs was 30.65%. For the number of MLC-apertures, 17 IMs out of the 23 (73.91%)

datasets got reduced measure with an average decrease of 20.53%. The two methods

produced splitting results of the same total number of MLC-apertures for 2 IMs. The

results are tabulated in Table 4.4.



157

Table 4.4: Comparison between Pinnacle and our field

splitting method on IMs to be split into 3 sub-IMs

IMs
# of MUs # of MLC-apertures

Pinnacle GOFSB % Decrease Pinnacle GOFSB % Decrease

1 353 257 27.2% 29 22 24.1%

2 485 369 23.9% 31 28 9.7%

3 309 273 11.7% 47 41 12.8%

4 224 219 2.2% 35 37 -5.7%

5 273 297 -8.8% 49 49 0.0%

6 294 309 -5.1% 27 29 -7.4%

7 271 263 3.0% 28 27 3.6%

8 229 240 -4.8% 22 22 0.0%

9 505 235 53.5% 43 29 32.6%

10 368 241 34.5% 33 30 9.1%

11 702 255 63.7% 41 23 43.9%

12 427 292 31.6% 41 40 2.4%

13 464 264 43.1% 39 37 5.1%

14 298 233 21.8% 40 38 5.0%

15 247 225 8.9% 33 28 15.2%

16 357 246 31.1% 36 30 16.7%
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Table 4.4 – Continued

IMs
# of MUs # of MLC-apertures

Pinnacle GOFSB % Decrease Pinnacle GOFSB % Decrease

17 365 345 5.5% 29 31 -6.9%

18 355 207 41.7% 40 20 50.0%

19 270 205 24.1% 38 26 31.6%

20 176 217 -23.3% 23 27 -17.4%

21 331 186 43.8% 45 33 26.7%

22 249 215 13.7% 30 25 16.7%

23 300 241 19.7% 44 30 31.8%

Total 7852 5834 25.7% 823 702 14.7%

For those 31 tested IMs to be split into 2 sub-IMs, the performance of our

method was worse than that for those to be split into 3 sub-IMs. The average de-

creases in MUs and in the number of MLC-apertures obtained using our method

over Pinnacle v8.0m were 7.87% and 9.55%, respectively, with maximum decreases

of 27.43% and 38.24%. Considering the number of MUs, 20 out of the 31 (64.52%)

tested IMs got reduced MUs and the average reduction for those IMs was 13.37%. In

term of the number of MLC-apertures, 17 out of the 31 (54.84%) IMs got reduced

measure and the average decrease for those IMs was 21.32%. The two methods pro-

duced splitting results of the same total number of MLC-apertures for 6 IMs. The

results are tabulated in Table 4.5.
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Table 4.5: Comparison between Pinnacle and our field

splitting method on IMs to be split into 2 sub-IMs

IMs
# of MUs # of MLC-apertures

Pinnacle GOFSB % Decrease Pinnacle GOFSB % Decrease

1 241 200 17.0% 22 19 13.6%

2 94 88 6.4% 22 22 0.0%

3 78 81 -3.9% 14 15 -7.1%

4 99 91 8.1% 24 22 8.3%

5 91 94 -3.3% 22 22 0.0%

6 186 173 7.0% 20 20 0.0%

7 277 219 20.9% 19 20 -5.3%

8 163 162 0.6% 34 39 -14.7%

9 202 178 11.9% 22 18 18.2%

10 261 200 23.4% 23 17 26.1%

11 186 186 0.0% 22 22 0.0%

12 211 224 -6.2% 25 25 0.0%

13 318 258 18.9% 34 23 32.4%

14 166 163 1.8% 15 22 -46.7%

15 136 154 -13.2% 24 20 16.7%

16 94 105 -11.7% 25 21 16.0%
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Table 4.5 – Continued

IMs
# of MUs # of MLC-apertures

Pinnacle GOFSB % Decrease Pinnacle GOFSB % Decrease

17 152 123 19.1% 30 20 33.3%

18 149 146 2.0% 28 23 17.9%

19 101 93 7.9% 22 23 -4.6%

20 89 98 -10.1% 34 21 38.2%

21 112 115 -2.7% 28 21 25.0%

22 204 183 10.3% 19 24 -26.3%

23 206 182 11.7% 20 17 15.0%

24 87 100 -14.9% 27 20 25.9%

25 64 75 -17.2% 29 23 20.7%

26 112 107 4.5% 21 22 -4.8%

27 137 144 -5.1% 30 33 -10.0%

28 126 104 17.5% 32 28 12.5%

29 84 75 10.7% 30 26 13.3%

30 116 110 5.2% 24 24 0.0%

31 237 172 27.4% 23 19 17.4%

Total 4779 4403 7.9% 764 691 9.6%
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4.6 Discussion

Since not all MLC systems require field splitting, e.g., Siemens MLCs and

Tomotherapy do not require field splitting in clinical practice, our algorithm mainly

benefit when we use small MLC systems (e.g., Varian system) to treat large tumor

sites. In clinical practice, large tumor sites include many pelvic cases, e.g., cervix and

prostate (with lymph node metastases), and some head & cases, e.g., larynx.

It is desirable to maximize the delivery efficiency while splitting a large IM.

Two measures, the number of MUs and the number of segments, are associated with

the delivery efficiency of an IM. We certainly can use either one to measure the com-

plexity of an IM and to minimize the total complexity of the sub-IMs of a split. There

are two issues with that method. First, the resulting optimization problem is compu-

tational intractable. It may take a prohibitively long time to compute the splitting

result for a relatively large intensity field. Secondly, minimizing the total number of

either MUs or segments may result in a split of compromised quality with respect

to the other measure. Previous work [47, 45, 80, 18] mainly focused on improving

the total MU efficiency of a split while ignoring the total number of segments. In

this paper, we use the sum of positive gradients to measure the complexity of an IM,

which is closely related to the number of MUs. Experiments on our GOFSB algorithm

also revealed that the total MLC-aperture efficiency got improved, comparing to the

field splitting method in Pinnacle v8.0m. On average, the decreases in MUs and in

the number of MLC-apertures obtained using our method over Pinnacle v8.0m were,

respectively, 18.95% and 12.22% for all 54 tested datasets. To the best of our knowl-
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edge, this is the first report to address both the total MU and the total MLC-aperture

efficiencies of a field splitting method.

The performance of our GOFSB algorithm on the tested IMs to be split into

2 sub-IMs was not as good as that on the IMs to be split into 3 sub-IMs. It seemed

that our adopted complexity measure (i.e, the sum of positive gradients) might not

work quite well for less “complex” IMs. Consider those tested IMs to be split into 2

sub-IMs. We observed that for those IMs whose total number of MUs of the resulting

split by Pinnacle v8.0m was less than 150, the performance of our method was almost

the same as that of Pinnacle in terms of the total MU efficiency. In addition, for those

IMs whose total number of segments of the resulting split by Pinnacle was less than

22, the splitting method in Pinnacle outperformed our algorithm considering the

total segment efficiency, and the average increase in the number of segments obtained

using our algorithm over Pinnacle was 9.38%. We also observed that, interestingly,

for those IMs on which the Pinnacle splitting method outperformed our algorithm in

terms of the total MU efficiency, our algorithm outperformed the Pinnacle method

regarding to the total segment efficiency and the average decrease was 14.34%. This

may indicate that the Pinnacle splitting method focuses on optimizing the total MU

efficiency, especially for less “complex” IMs.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

In this chapter, we conclude the thesis and discuss some possible future prob-

lems.

5.1 Summary of Results

In this thesis, we study some problems arise in the field of intensity-modulated

radiation therapy IMRT) – the auto-contouring using region properties, the field

decomposition problem, and the field splitting problem. Experiments on clinical data

with the algorithms reveal good performance.

5.1.1 Auto-Contouring Using Regional

Properties

An algorithm to find globally optimal solution to segmentation by minimizing

the intraclass variance is reported. Our approach detects an optimal region bounded

by two coupled terrain-like surfaces in a volumetric image in a low-order polynomial

time. We employ the techniques of parametric search, shape probing in computational

geometry, and 3-D graph-search. The developed approximation algorithm exhibits a

significantly improved running times when compared with our optimality guarantee-

ing algorithm while still producing highly close-to-optimal solutions. A fast algorithm

for the simplified version of this problem - the single surface detection problem - is

also developed.
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Experiments on computer phantoms demonstrate the correctness of our algo-

rithm. Accurate and consistent performance on CT and MRI images of airway wall,

cardiac ventricle, and liver lesion show good applicability of our algorithm to clinical

cases. Sub-pixel results are achieved for most of the clinical data.

5.1.2 Field Decomposition

We solve the matrix decomposition problem that seeks to decompose a “com-

plicated” matrix into two “simpler” matrices.

We propose two complexity definitions and develop algorithm for the two com-

plexity definitions. Our algorithm is based on a non-trivial graph construction scheme

inspired by Wu et al.’s VCE method [80], which enables us to formulate the decom-

position problem as computing a minimum s-t cut in a 3-D geometric multi-pillar

graph.

Experiments on clinical intensity map matrices demonstrates the performance

of our algorithm. Using the positive gradient sum cost, our algorithm produces as

much as 27.3% less MLC-apertures with an average of 13.1% comparing with the SLS

method using a single direction for delivery. Our method with total variation cost

performs better in terms of number of MU. Using our decomposition algorithm, the

average improvement percentage of number of MU is 45.05%.

5.1.3 Field Splitting

We develop a near linear time algorithm for solving the field splitting problem

while minimizing the total complexity of the resulting sub-IMs by formulating it to
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a shortest path problem in a directed acyclic graph (DAG). A less efficient algorithm

for a more general case is also developed based on dynamic programming approach.

In both of the two approaches, the minimum increase in complexity when splitting a

feathering region is used and formulated as a shortest path problem. This problem is

of its own interest.

To minimize the maximum beam-on time of the resulting sub-IMs, we consider

an interesting min-max slope path problem in a monotone polygon which is solvable

in linear time.

Experiments shows that our algorithm is very fast with good performance.

A comprehensive comparison study is conducted against a commercial treatment

planning system in radiation therapy for the general case algorithm. Our field splitting

method outperforms Pinnacle in terms of both the total MU efficiency and the total

MLC-aperture efficiency. The average decreases in the number of MUs and in the

number of MLC-apertures obtained using our method over a conventional method are,

respectively, 19.0% and 12.2%. To the best of our knowledge, this is the first study

of the field splitting method considering both the total MU and the total number of

MLC-aperture efficiencies.

5.2 Future Work

Here we point out some directions of our future research for each of the prob-

lems we studied. We also proposed some other problems we can study in the future

in the area of IMRT.
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5.2.1 Auto-Contouring Problem

In the development of our auto-contouring algorithm, we focused on the opti-

mality of the algorithm while ignoring some applicability issues. In the future works,

we may put more efforts on the following aspects to make our algorithm perform

better in clinical applications.

1. One limitation of our auto-contouring algorithm is that the method can only

detect those surfaces that can be unfolded to be terrain-like, including cylindri-

cal or tubular surfaces (or a closed surface, if we build the graph from a mesh).

However, one may experience difficulty to unfold more complex objects into

terrain-like surfaces (e.g. branches). Thus, one direction of our future work is

to make the method topologically adaptive.

2. Another problem with our contouring algorithm is the smoothness definition.

With our smoothness constraint, a zigzagging boundary may be regarded as

“smooth”. To solve this problem, we may use second-order smoothness instead

of the current first-order smoothness when setting the smoothness constraint.

This may greatly improve the smoothness of our segmentation result.

5.2.2 Field Decomposition Problem

In the future we may focus on improving the complexity definition and running

time efficiency of our algorithm.

1. About the complexity definition, although the current definitions achieves good

improvement, using the number of MUs, or if possible, number of MLC-apertures
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(which may not be captured by a formula) directly may potentially improve

more on the performance of the algorithm. But under current framework of

our algorithm, using these complexity definitions will make the problem com-

putationally intractable. We thus need to seek other approaches or develop

approximation algorithms under current structure.

2. Recall that our field decomposition algorithm has a pseudo-polynomial time

complexity which may not seem good. Using local search method may be able

to improve the efficiency but to achieve a true polynomial time algorithm there

is still a lot of work to do.

5.2.3 Field Splitting Problem

Our future work on field splitting problem will focus on improving the perfor-

mance, and its applicability to clinical cases. In this context, there are two primary

areas needing attention.

1. Similar to the field decomposition problem, we need to improve the complexity

definition to achieve a better performance.

2. More experiments should be done in order to figure out when our algorithm

can make an improvement and should be applied. Experiments are also needed

to demonstrate its applicability to clinical cases by studying how field split-

ting algorithms affect the difference between delivered intensity map and the

prescribed dose.
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5.2.4 Tumor Tracking Problem

Recent study shows that respiratory movement can cause considerable changes

in the area and displacement of the tumor [68]. It is more desirable to irradiate the

tumor by gating the timing according to the movement of the tumor. Thus real-

time tumor tracking can help improve the accuracy of radiation delivery. Real-time

tracking requires the capability to automatically adjust the relative position between

irradiation and the moving tumor.

All approaches to real-time tracking requires the measurement of tumor posi-

tion on a time scale faster than the motion itself. Most commonly, the measurement is

made via radiographic imaging. Although our algorithm in Chapter 2 can be extended

to higher dimensional cases, the time complexity makes it difficult to be utilized on

tumor tracking problems. More efficient approaches, e.g. matching of a deformable

template, need to developed to solve this problem.

5.2.5 Intensity Map Smoothing Problem

It has been verified that smoother intensity maps can be expected to produce

shorter delivery time. Süss and Küfer’s work [72] built a theoretical foundation for the

consideration of intensity map smoothness. They suggested to use the smoothness of

an intensity map as part of the objective function when doing optimization (step 2

of the workflow).

We consider doing the smoothing operation between optimization and leaf

sequencing. Of course this may compromise the accuracy of the plan comparing with

the prescribed dose and thus balance needs to be kept between effectiveness and
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accuracy.
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