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ABSTRACT

Constant evolution requirements of Wi-Fi and cellular standards to meet the

demands of better power efficiency, longer range and higher throughput of wireless

networks has drawn attention to multiple antenna transmitters and receivers, i.e.,

multi-input multi-output(MIMO) systems. This research falls in the larger context of

distributed MIMO, or DMIMO systems, wherein groups of cooperating transceivers

organize themselves into virtual antenna arrays which can, in principle, emulate any

MIMO technique that a centralized array can support.

Beamforming and nullforming are techniques that can be employed by cen-

tralized or distributed antenna array, and can be building blocks for MIMO commu-

nication systems; these impart directionality to the array and can help cater to the

demands of today’s wireless networks. In beamforming, a set of distributed transmit-

ters in a wireless network cooperatively transmit a common message signal in such

a way that their individual transmissions add up to a desired SNR level at the set

of designated receivers while in nullforming, cooperative transmission ensures that

the individual transmissions cancel each other at the set of designated receivers. The

key bottleneck in the practical realization of DMIMO is synchronization. Distributed

nullforming specifically poses challenges that call for special attention. Here, we de-

velop a set of scalable algorithms for beamforming and nullforming using distributed

transmitters by forming a virtual antenna array and overcome the involved challenges

in a purely distributed fashion.
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Under a per-antenna power constraint and assuming equal-gain channels, an

ideal N-antenna beamformer provides an N squared-fold coherent power gain on tar-

get. Ideal nullforming on the other hand results in zero power on the target. These

properties motivate applications in cooperative jamming or communications, where

the goal is to maximize the net transmitted power using multiple transmitters while

simultaneously protecting a designated receiver. For example, in a cognitive radio

system where the transmit array is a secondary user of licensed spectrum which seeks

to communicate with a set of secondary receivers (beam targets) without causing

any interference at primary receivers (null targets). Another possible application is a

cellular network where adjacent Base Stations form a transmit array and coordinate

their transmissions to avoid cochannel interference. Recent algorithms on wireless se-

curity critically rely on nodes blanketing a landscape with full power jamming signals

while protecting a cooperating receiver through nullforming. So a third application

can be electronic warfare where a transmit array broadcasts strong jamming signals

that disable an enemy’s communication infrastructure while protecting friendly sta-

tions (null targets) from interference due to the jamming signal. The joint beam and

nullforming specifically can be more generally thought of as a fundamental build-

ing block for increased spatial spectrum reuse and toward achieving the full spatial

multiplexing gains available from MIMO techniques with distributed antenna arrays.
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PUBLIC ABSTRACT

The human race has come a long way since the birth of radio: from the

first television transmissions to cellular mobile telephony. The number of internet

and mobile phone users and the demand for higher data rates is going up by the

day. Multiple antenna transmitter-receiver (MIMO) systems can provide a possible

solution to meet the demands of better power efficiency, longer range and higher

throughput of wireless networks. This research falls under distributed MIMO, or

DMIMO systems, wherein groups of cooperating transceivers organize themselves

into virtual antenna arrays which can, in principle, emulate any MIMO technique

that a centralized array can support.

Beamforming, in which distributed transmitters in a wireless network cooper-

atively transmit a common message signal in such a way that their individual trans-

missions add up to a desired level at the designated receivers, and nullforming, in

which cooperative transmission ensures that the individual transmissions cancel each

other at the designated receivers, are techniques that can be employed to impart

directionality to the array and can be building blocks for MIMO communication sys-

tems. Here, we develop a set of scalable algorithms for beamforming and nullforming

using distributed transmitters by forming a virtual antenna array and overcome the

involved challenges, like synchronization, in a purely distributed fashion. Coopera-

tive jamming in cognitive radio systems, cochannel interference avoidance in a cellular

network, and wireless security are a few applications.
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CHAPTER 1
INTRODUCTION

It’s been more than hundred years since the era of Hertz, Marconi, Jagdish

Chandra Bose and the first successful wireless communication across the Atlantic

ocean. The human race has come a long way since the birth of radio: from the first

television transmissions to the demonstration of frequency modulation to cellular

mobile telephony and wireless internet. With an ever expanding number of internet

and mobile phone users (close to half and total world population respectively as of

2016), the demand for higher data rates is going up drastically by the day and so

is the cost of frequency spectrum. This has led to constant evolution of Wi-Fi and

cellular standards. Multiple antenna transmitters and receivers (MIMO), compared

to conventional transmission links consisting of a singe antenna transmitter and re-

ceiver, can provide a possible solution to meet the demands of better power efficiency,

longer range and higher throughput of wireless networks. Distributed MIMO systems

(DMIMO) which can be used for larger number of antennas as these overcome con-

straints posed by antenna size, number and form-factor to centralized MIMO, might

help to achieve higher capacity. Techniques such as beamforming, in which trans-

mitters transmit a common message signal in such a way that their individual trans-

missions add up to a desired level at the designated receivers, and nullforming, in

which individual transmissions cancel each other at the designated receivers, impart

directionality to the array and can be employed by centralized or distributed antenna

array to help cater to the demands of today’s wireless networks.
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1.1 Motivation

We are interested in developing a set of scalable algorithms for beamforming

and nullforming using distributed transmitters by forming a virtual antenna array.

Beamforming and nullforming are building blocks for spatial multiplexing (the art of

transmitting multiple messages or signals simultaneously using a common frequency

band) and multi-input multi-output communication systems. DMIMO systems pose

significant challenges in implementation; the ones posed by distributed nullforming

specifically call for special attention. Our research interest is in developing algorithms

to achieve the mentioned goals and overcome the involved challenges in a purely

distributed fashion.

1.2 Background

Performance gains due to Multiple Input Multiple Output (MIMO) techniques

such as beamforming, spatial multiplexing, space division multiple access (SDMA),

and space-time coding are well established [1, 2], and MIMO forms an integral part of

current wireless standards [3, 4]. This work falls in the larger context of distributed

MIMO, or DMIMO, systems, wherein groups of cooperating transceivers organize

themselves into virtual antenna arrays which can, in principle, emulate any MIMO

technique that a centralized array can support. Beamforming and nullforming are of

particular interest, since they provide building blocks for techniques such as spatial

division multiple access (SDMA) and interference alignment. In distributed beam-

forming, a set of distributed transmitters in a wireless network cooperatively transmit



3

a common message signal in such a way that their individual transmissions add up to

a desired SNR level at the set of designated receivers while in distributed nullforming,

cooperative transmission ensures that the individual transmissions cancel each other

at the set of designated receivers.

While the number of antennas in a centralized MIMO transceiver is limited

by size and cost, DMIMO allows us to scale up to large virtual antenna arrays by ex-

ploiting the natural geographical distribution of cooperating nodes. Since the required

array size scales with wavelength, DMIMO techniques are of particular significance at

lower carrier frequencies. The key bottleneck in the practical realization of DMIMO

is synchronization. Unlike conventional centralized MIMO where transmit antennas

are driven by a single oscillator, transceivers in DMIMO have independent oscillators

with unpredictable phase offsets relative to each other. This complicates distributed

transmission strategies such as beam and nullforming, which require precise control

over the phase of the transmitted signals to ensure that these signals arrive at the

receiver with the appropriate phase relationships.

Approaches to DMIMO include a significant body of work that uses high-

bandwidth wired backhaul links for the synchronization needed to synthesize virtual

arrays from base stations in cellular [5] and access points in WiFi networks [6]. This

work focuses, by contrast, on DMIMO techniques that are amenable to all-wireless

deployments (e.g., ad hoc networks for communication and sensing) with little coor-

dination overhead. We are particularly interested in techniques that scale with the

number of cooperating nodes forming the virtual array, in terms of overhead and
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protocol complexity.

While the idea of cooperative communication has been studied for decades [7],

the early work in this area neglected the RF synchronization issues that are crucial

for the practical implementation of these ideas. Recently, there has been a signif-

icant amount of research activity on distributed transmit beamforming [8], which

has led to the development of a menu of sophisticated synchronization techniques [9]

featuring different sets of tradeoffs between simplicity, performance and overheads.

Furthermore, the practical feasibility of the virtual array concept has been convinc-

ingly demonstrated in multiple experimental demonstrations, for example [10], of

distributed beamforming. In essence it has been shown that substantial SNR gains

can be achieved with modest overheads using simple signal processing on commodity

hardware [11, 12]. One approach that stands out amongst the work on synchronization

of all-wireless DMIMO for its scalability is for each transmitter to adapt separately

based on a common aggregate feedback from the receiver. The earliest example of

this approach is the one-bit feedback algorithm for distributed beamforming in [13],

where each transmitter perturbs its phase randomly, and the receiver broadcasts a

single bit of feedback indicating whether the received power is better or worse. If bet-

ter, the transmitters keep their phase perturbations; if worse, they undo them. This

completely decentralized randomized ascent was proven to converge to phase coher-

ence at the receiver [14]. The aggregate feedback for the one-bit algorithm allows the

receiver to be oblivious of the number and identity of transmitters, thus providing

protocol-level scalability, and simplifying prototyping efforts like [11, 15]. This work,
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sets the groundwork for a similar approach to distributed nullforming or joint beam

and nullforming.

Though there is scope for adapting the synchronization techniques originally

developed for distributed beamforming for the case of nullforming, there are important

differences that make nullforming significantly more challenging. These are described

in Section 1.3. While there is a substantial literature on nullforming using centralized

antenna arrays, [16, 17], work on distributed nullforming is limited. The three papers

of note are [18, 19], and [20]. What makes the algorithms of [18, 19], not scalable

however, is the fact that the receiver feeds back to each node, the complex channel gain

seen by every other transmitter. The only truly scalable algorithms are in [20, 21].

In contrast to [18, 19], the algorithms developed in this thesis require that the

receiver(s) send to each transmitter only its complex channel gain and an aggregate

feedback common to all transmitters. This means our algorithms do not require the

transmitters to acquire knowledge of the global channel state information but instead

need each transmitter to only gather information regarding its own channel gain to

the receiver(s). Since the aggregate feedback required by our algorithms is common

to all transmitters, it can be broadcast by the receiver to all transmitters at once

and doesn’t need to be sent individually to the transmitters. These differences in

requirements allow our algorithms to scale very well with number of transmitters in

terms of feedback overhead.

Also, receivers in our formulation cooperate with the distributed transmit

array, for example by explicitly sending required feedback, yielding a far simpler
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problem formulation in contrast to certain interference avoidance techniques proposed

in [22, 23, 24] which require the transmitters to implicitly learn the nullspace by

probing the MIMO channel with different precoding vectors and observing indirect

measures of the SINR, e.g., power control, at the receivers to which the nulls are

steered, and thereby determine a suitable nullforming precoding vector.

In all, we can say that the body of algorithms developed in this work can be im-

plemented in a distributed fashion at the transmit antenna array through an iterative

process to form beams and nulls at designated receiver(s). These algorithms possess

some very interesting properties like scalability with large number of transmitters,

not only in terms of feedback overhead but also in terms of convergence speed, that

is, the convergence speed of these algorithms does not increase with an increase in

the number of transmitters, and performance robustness to noise and feedback errors.

We begin with developing algorithms for performing nullforming at single receiver

in Chapters 2 and 4 and later generalize to the case of performing beamforming and

nullforming at multiple receivers in Chapter 5. All algorithms require the transmitters

to apply suitable weights to their transmitted signals and adaptively adjust those in

subsequent iterations of the algorithm till their transmissions effect the desired power

levels at the receiver(s).

The nullforming algorithm developed in Chapter 2, requires that the transmit-

ters apply and adjust only phases [21] unlike the zero-forcing techniques in [16]-[19]

which control both transmit gains and phases. In Chapter 3, we discusses how this

algorithm is robust to channel estimation errors in both gain and phase. The key
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deficiency of the algorithm developed in Chapter 2 is that it requires prior frequency

synchronization among the transmitters. In Chapter 4, we propose a way to incorpo-

rate frequency synchronization process into the nullforming algorithm itself [25] by

letting each transmitter adjust both its frequency and phase. Thereafter in Chap-

ter 5 where we consider joint beamforming and nullforming(JBNF) which includes

beamforming and nullforming as special cases [26, 27], we let the transmitters apply

a complex weight and adjust both phase and amplitude of applied weights. Using

complex weights helps us mathematically represent the problem as a distributed gra-

dient search of a simple, suitably chosen cost function which is convex in the weights,

and is guaranteed to converge to a manifold on which all the beam and nullforming

constraints of the JBNF problem are satisfied under very general conditions. For

the nullforming only algorithms developed in Chapters 2 and 4, we avoid employing

both phase and amplitude adaptation as this could lead the algorithm to drive the

transmitters to apply zero amplitudes to their transmitted signals in order to achieve

the desired zero power levels at null-targets and hence would not serve our purpose.

1.3 Challenges in distributed nullforming

In a DMIMO system, since each antenna is driven by a separate independent

oscillator, phase errors result in some loss of performance with respect to ideal and

added stringency is required for nullforming as compared to beamforming.

• While beamforming gains are highly robust and insensitive to small phase errors

(upto about 30 degrees [8]), nullforming is substantially more sensitive [19] to
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even modest errors. One implication of this sensitivity to small phase errors is

that the simple 1-bit feedback algorithm [13] that has proved to be effective for

beamforming does not work for nullforming. For a system with N = 10 transmit

nodes and time-invariant channels with unit magnitude, if the transmitting

nodes have perfect channel state knowledge and are perfectly synchronized at

the start, beam and nullforming performance are near ideal when the elapsed

time from synchronization is small, but degrade as oscillators begin to drift. For

example, if the oscillators drift independently with a standard deviation of 62 ps

per second [28] and the channel phase estimates become stale, to maintain a null

10 dB better than incoherent transmission, the nodes must resynchronize within

approximately 120 ms. Nullforming performance tends to degrade more quickly

than beamforming and requires a commensurately tighter synchronization [21].

• For beamforming, each transmitter only needs the knowledge of the phase of its

own transmitted signal at the receiver. In contrast for nullforming, the phase

of the transmitted signal at each node cannot be chosen independently of the

amplitudes and phases of other nodes [19]. Nullforming essentially depends on

a node’s transmitted signal cancelling the signals from all other transmitters.

Therefore state-of-the-art distributed nullforming algorithms, [18] and [19] as-

sume that each transmitter knows every transmitter’s complex channel gain to

the receiver. This requirement poses a severe challenge for scalability.



9

1.4 Scalability to large transmit arrays

As discussed in Section 1.3, nullforming requires each transmitter to know

the global channel state information. This CSI requirement for nullforming poses a

severe challenge for scalability: in [18, 19], the receiver feeds back to each node, the

complex channel gain seen by every other transmitter. In other words, global channel

knowledge is assumed to be available to all nodes in the network. In a network of N

transmitters and M receivers, this requires N ×M complex channel gains to be sent

to each of the N transmitters, representing total overhead scaling as O(MN2).

In this work, we take an iterative approach. We assume only knowledge at

each transmitter of its own complex channel gains to the receivers, and a set of

common feedback messages from each receiver broadcast to all the transmitters. The

feedback messages contain simply the complex amplitude (i.e. the gain and phase) of

the aggregate received RF signal at each receiver. Thus, in this body of algorithms,

only a total of M channel gains are required at each transmitter in addition to the

common feedback signals, representing a total overhead of O(MN+M) per iteration.

Furthermore, it turns out that the number of iterations required for convergence of

our algorithm does not increase with the number of transmitters.

In other words, the total synchronization overhead over all the iterations until

convergence in our proposed algorithm could be a factor of O(N) smaller than what is

required in [18, 19]. We should note that in Chapters 2, 3 and 4, M = 1 as we discuss

the single receiver setting unlike in Chapter 5 where we consider multiple receivers.
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1.5 Practical considerations

The set of algorithms developed in this thesis have a few common properties,

for example, all of them are all iterative in nature and also involve a common step

wherein the receiver(or receivers) broadcast a feedback message to the transmitters.

Practical considerations allow us in making the following simplifying assumptions in

general:

Prior frequency synchronization We know that effective baseband complex chan-

nel gain is the cumulative effect of the propagation channel, the RF transmit and re-

ceive hardware, and carrier frequency offsets between transmitter and receiver. Out

of these, the largest and most dominant effects arise in practice from carrier frequency

offsets. Algorithms developed in Chapters 2 and 5 assume that the transmitters are

frequency synchronized at the start. The following are a few ways to do the same:

• GPS The effect of carrier frequency offsets can be mitigated without any cen-

tralized coordination by having the transmitters lock themselves to a common

reference, e.g., a global positioning system (GPS) frequency reference.

• Common feedback If GPS is not available or undesirable, another possibility

is to simply use the common feedback messages broadcast by the receiver for

carrier frequency synchronization.

A variety of procedures have been developed in the literature for frequency synchro-

nization, e.g., those described in [29], [18], [19], [30], and any of these are appropriate

for use with the algorithms developed in this body of work. We also provide a way of
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addressing the prior frequency synchronization requirement for nullforming in Chap-

ter 4 by incorporating a method to do frequency synchronization into the algorithm

itself.

Time-slotting. We assume a synchronous time-slotted network with a time-division

multiplexed schedule of transmissions. This requires some coarse-level timing syn-

chronization shared across all nodes in the transmit array as well as all the receivers,

achieved using network synchronization protocols such as [31].

Slowly varying phase offsets. We assume that channel gains and oscillator offsets

vary relatively slowly in time so that they can be reasonably taken to be static over

several iterations of our algorithm. With time-slots of duration ≈ 50 ms, this requires

that the channels and offsets are roughly constant over several seconds. This condition

can be assured by using standard filtering techniques [32] that dynamically track

motions-related Doppler effects and clock dynamics.

Local channel state information. We assume the availability of local channel state

information, specifically knowledge at each transmitter of its own complex channel

gains to each receiver. These can be obtained either using an explicit training, esti-

mation and channel feedback procedure, or implicitly by transmitters inferring their

downlink channels using uplink transmissions from the receivers using reciprocity.

Some details are as under:

• Explicit channel feedback. This is the most direct way of obtaining the

necessary CSI. Under this method, there is a dedicated time-slot for channel

state estimation, which starts with transmitter 1 individually transmitting a
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known sequence of training symbols; these symbols are received by the beam

and null-targets which use their knowledge of the training symbols to estimate

the channel gains h1p, p ∈ 1 . . .M where M is the number of receivers. These

channel gains are then sent as feedback to transmitter 1. Note that the estimates

of transmitter 1’s channel gains only need to be sent to transmitter 1. The

process is then repeated for transmitter 2 and so on.

• Aggregate rich feedback method. Under this class of techniques [29], the

transmitters concurrently send uncorrelated training sequences, and the result-

ing fluctuations in the aggregate received signal can be quantized, encoded and

fed back to the transmitters which are then able to extract estimates of their

own channel gains to the receiver using only the knowledge of their own training

sequences. Since the channel feedback signal is common to all transmitters, it

can be combined with the feedback required by the algorithms in a natural and

scalable way.

• Reciprocity-based method. Under this method, the transmitters observe

the uplink feedback signals sent by the beam and null-targets, and are auto-

matically able to infer their downlink channel gains using reciprocity. Note that

this method only allows each transmitter to learn its own channel gains to the

receiver and is thus perfectly suited to our algorithms. However, reciprocity

does require some prior calibration [33] of the transmitting nodes.
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1.6 Applications

Under a per-antenna power constraint and assuming equal-gain channels, an

ideal N -antenna beamformer provides an N2-fold coherent power gain on target. In-

coherent transmission, e.g., transmitting with random phases, provides an N -fold

power pooling gain, on average. Ideal nullforming results in zero power on the target.

Motivating applications of nullforming and beamforming include cooperative jam-

ming or communications, where the goal is to maximize the net transmitted power

using multiple transmitters while simultaneously protecting a designated receiver. For

example in a cognitive radio system [34] where the transmit array is a secondary user

of licensed spectrum which seeks to communicate with a set of secondary receivers

(beam targets) without causing any interference at primary receivers (null targets).

Another possible application is a cellular network where adjacent Base Stations form

a transmit array and coordinate their transmissions to avoid cochannel intereference.

Recent algorithms on wireless security critically rely on nodes blanketing a landscape

with full power jamming signals while protecting a cooperating receiver through null-

forming [35]. So a third application can be electronic warfare where a transmit array

broadcasts strong jamming signals [36] that disable an enemy’s communication in-

frastructure while protecting friendly stations (null targets) from interference due to

the jamming signal. The joint beam and nullforming specifically can be more gener-

ally thought of as a fundamental building block for increased spatial spectrum reuse

[37] and toward achieving the full spatial multiplexing gains available from MIMO

techniques [38] with distributed antenna arrays.
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1.7 Organization

The rest of this thesis is organized as follows. Chapter 2 describes the phase-

only update of transmit array setup for single receiver nullforming. Chapter 3 provides

robustness analysis of the single receiver nullforming algorithm. This leads to Chapter

4 which provides another algorithm to perform nullforming at single receiver but

without prior frequency synchronization requirement. Next Chapter 5 addresses the

joint beam and nullforming setup where we want to form beams at certain beam-target

receivers while simultaneously forming nulls at other receivers by iterative updates to

the entire complex weight instead of just the phase. Chapter 6 concludes the work

presented in the Thesis and mentions scope for future research.
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CHAPTER 2
DISTRIBUTED NULLFORMING WITH PHASE-ONLY

ADAPTATION

This chapter considers the problem of distributed nullforming at a single re-

ceiver, in which multiple wireless transmitters steer a null toward the designated

receiver by only adjusting their carrier phases. Since each transmitter transmits at

full power, the system maximizes “power pooling” gains for cooperative communica-

tion or jamming, while simultaneously protecting a designated receiver. Analysis in a

noiseless setting shows that, while the received power at the designated receiver, as a

function of the transmitted phases, is non-convex with multiple critical points, all of

its local minima are also global minima. This implies that a null can be formed using

a distributed, scalable protocol based on gradient descent: each transmitter adapts its

phase based only on aggregate feedback broadcast by the receiver (so that feedback

overhead does not increase with the number of transmitters), along with an esti-

mate of its own channel gain (which can be obtained, for example, via reciprocity).

Simulations show that the convergence rate actually improves with the number of

transmitters, and that the algorithm is robust to noise, substantial channel estima-

tion errors, and oscillator drift.

The proposed algorithm is scalable on several fronts: (i) it only requires ag-

gregate feedback from the receiver, so that the feedback overhead remains constant

as the number of transmitters increases; (ii) each transmitter only requires local in-

formation (i.e., an estimate of its own channel to the receiver), which can be acquired
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efficiently using reciprocity in TDD systems using broadcast from the receiver (e.g.,

using the feedback packets themselves); and (iii) nulls are formed more effectively for

larger transmit clusters.

This algorithm, formulated as a gradient-descent minimization of the received

power, and is presented in Section 2.1[21]. Section 2.2 characterizes the critical points

of the cost function (which is the received power as a function of the transmitter

phases) and shows that all local minima are global minima. Section 2.3 argues that

this guarantees the practical convergence of gradient descent to a global minimum of

the cost function. While our formal analysis is for an idealized model, simulations in

Section 2.4 verify the robustness to large channel estimation errors and also shows

that the convergence speed actually increases with the number of transmitters. The

latter observation leads to the remarkable fact that the total amount of feedback

overhead required to achieve nullforming — not merely the overhead per iteration —

actually decreases as the number of transmitters increases.

2.1 Algorithm description

We should recall that prior frequency synchronization and a time-slotted struc-

ture have been assumed as discussed in Section 1.5. Any of the frequency synchroniza-

tion techniques enumerated there are appropriate for use with the gradient descent

nullforming algorithm developed here.

Consider an N -transmitter array. Suppose the channel phase from the i-

th transmitter to the receiver is rie
νi[k] at time slot k and denote the estimate of
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the channel phase as ν̂i[k]. Each transmitter precompensates its channel phase to

the receiver by the estimate ν̂i[k], and inserts an additional phase θi[k], which it

adapts in response to receiver feedback, to effect nullforming. Thus, at time slot

k, assuming each node transmits an unmodulated carrier for notational simplicity,

the i-th node transmits the phase compensated baseband signal ej(θi[k]−ν̂i[k]). With

w[k] ∼ CN (0, σ2
w), the aggregate baseband signal at the receiver is thus

s[k] =
N∑
i=1

rie
j(θi[k]+φi[k]) + w[k] = R[k] + jI[k], (2.1)

where φi[k] = νi[k]− ν̂i[k] is the channel estimation error.

Our algorithm for nullforming is the gradient descent minimization of the

objective function J(θ) defined as

J(θ)
.
=

∣∣∣∣∣
N∑
i=1

rie
j(θi+φi)

∣∣∣∣∣
2

(2.2)

where θ = [θ1, · · · , θN ]>. Note that J(θ[k]) is the received power in the k-th time

slot. For a suitably small µ > 0, the gradient descent is specified as

θ[k + 1] = θ[k]− µ ∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

(2.3)

where, ∂J(θ)
∂θ

=

[
∂J(θ)
∂θ1

, · · · , ∂J(θ)
∂θN

]>
.

According to (2.3), the ith transmitter then updates its phase as

θi[k + 1] = θi[k]− µriIm
[
e−j(θi[k]+φi[k])s[k]

]
. (2.4)

In practice this requires the knowledge of the channel phase error φi and the actual
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channel gain ri. As these are not available, we instead use:

θi[k + 1] = θi[k]− µr̂iIm
[
e−jθi[k]s[k]

]
(2.5)

= θi[k] + µr̂i (sin (θi[k])R[k]− cos (θi[k]) I[k]) .

We note from (2.5), that transmitter i only requires knowledge of its own estimated

channel gains r̂i and one additional complex number s[k] which is common to all

transmitters. Hence, given the common feedback s[k] and local channel knowledge,

the gradient descent (2.5) can be implemented by each transmitter independently

in a purely decentralized manner. Furthermore, the common feedback s[k] ensures

that the nullforming feedback overhead is fixed and independent of the size of the

transmitter array. The feedback signals {s[k]} can be broadcast to the transmitters

over, for example, a packetized digital wireless link.

Another important consideration is how best to obtain the local channel state

information required to implement (2.5). Once again we can chose from the methods

mentioned in Section 1.5.

2.2 Preliminaries of stability analysis: critical points and nulls

In this section, we investigate the structure of the cost function J(θ) in terms

of its critical points. The next section considers the convergence of the decentralized

gradient descent algorithm. To develop analytical insight, we will assume an idealized

setting of no noise, zero channel estimation errors and static channel gains and make

the following simplifying standing assumptions for all results in this and the next

section: That the channel phases are time-invariant (νi[k] is constant over k for all
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transmitters i ∈ {1, ..., N}), the channel estimation errors are zero (φi[k] ≡ 0 for all

k and all i ∈ {1, ..., N})), the estimated channel gains r̂i equal the true channel gains

ri (r̂i = ri), and that there is no noise in the receiver feedback (w[k] = 0). To avoid

triviality, we assume that at least two transmitters have nonzero channel gains (i.e.,

ri > 0 for at least two values of i ∈ {1, ..., N}).

Assumption 2.2.1. In (2.1-2.5), ri > 0, φi = 0, w[k] = 0 and r̂i = ri.

Under Assumption 2.2.1, we have

J(θ)
.
=

∣∣∣∣∣
N∑
i=1

rie
jθi

∣∣∣∣∣
2

(2.6)

R[k] =
N∑
i=1

ri cos(θi[k]), I[k] =
N∑
i=1

ri sin(θi[k]). (2.7)

and

θi[k + 1] = θi[k]− µriIm
[
e−jθi[k]s[k]

]
(2.8)

= θi[k] + µri (sin (θi[k])R[k]− cos (θi[k]) I[k]) .

The critical points of the algorithm by definition satisfy

∂J(θ)

∂θ
= 0. (2.9)

The ij-th element of the Hessian H(θ) is

[H(θ)]ij =
∂2J(θ)

∂θi∂θj
. (2.10)

If a critical point is a local minimum, then the Hessian at that point is positive

semidefinite. In general, we can have critical points which are not local minima, and

this is indeed the case for the cost function in (2.6).
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The technical properties derived in this section, and their consequences, are

summarized as follows:

• All nulls and critical points of J(θ) lie along manifolds. All points in the null

manifold J(θ) = 0 are critical points but not all critical points are in the null

manifold.

• The Hessian of J(θ) is singular everywhere (unlike standard settings for gradient

descent, where the Hessian is strictly positive definite at local minima). This

precludes the use of standard gradient descent convergence and stability results

and requires a more careful analysis of the properties of J(θ).

• All local minima are global minima. We characterize the depth of the null

corresponding to this global minimum in terms of the channel gains {ri}.

• We characterize all critical points which are not local minima (i.e., such that

the Hessian has at least one negative eigenvalue).

• The key technical take away from this section used in Section 2.3 is that the only

critical points at which the Hessian is positive semidefinite are global minima.

The following section provides a formal analysis the properties of the critical

points of J(θ).
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2.2.1 Properties of critical points

For every α > 0, the set of θ for which J(θ) = α is either empty or is a

nontrivial manifold as

J(θ) =
N∑
i=1

r2
i + 2

N∑
i=1

N∑
l=1,l 6=i

rirl cos(θi − θl). (2.11)

That is, the cost function depends only on phase differences, and does not change

when we add a constant offset to all phases. Thus, for all scalar β and the N -vector

u = [1, · · · , 1]>, J(θ) = α implies J(θ+βu) = α. For example, J(θ) = 0 corresponds

to a null manifold.

Similarly,

∂J(θ)

∂θi
= −2ri sin θi

(
N∑
l=1

rl cos θl

)

+ 2ri cos θi

(
N∑
l=1

rl sin θl

)
(2.12)

= −2
N∑

l=1,l 6=i

rirl sin(θi − θl), (2.13)

Again, the gradient depends only on phase differences, hence we can add constant

offsets without changing it. Thus, any critical point lies on a critical manifold. As

explained in Section 2.3, this complicates stability analysis.

All members of the null manifold J(θ) = 0 satisfy
∑N

l=1 rl cos θl = 0 and∑N
l=1 rl sin θl = 0. Substituting these equalities into (2.12), we see that any point on

the null manifold is also a critical point. However, there are critical points that do

not lie on the null manifold. From (2.12), these other critical points must satisfy

tan θi = tan θl ∀{i, l} ⊂ {1, · · · , N}. (2.14)
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This corresponds to the phases being offset by integer multiples of π, i.e.,

(θi − θl) mod π = 0 ∀{i, l} ⊂ {1, · · · , N}. (2.15)

From (2.13), the condition in (2.15) is also sufficient for the gradient to be zero. Thus,

(2.15) and the null manifold together constitute all the critical points of J(θ).

We define the minimum value of J(θ)

J∗ = min
θ∈RN

J(θ). (2.16)

Should the null manifold be non-empty, then J∗ = 0. However, for some choices of

the gains ri there may not be phases θi for which J(θ) = 0. In essence, if one channel

gain is larger than the sum of all the rest, then it is clear that the best we can do

is to make sure we coherently subtract all of the smaller gains from the largest one

to minimize J(θ). The more interesting result is that, whenever this condition is

not satisfied (i.e., whenever no one gain is larger than the sum of the rest), then an

ideal null is possible. The theorem below, proved in our work in [21], formalizes this

characterization.

Theorem 2.1. Consider Assumption 2.2.1. Assume ri ≥ ri+1 > 0 and N > 1. Then

J∗ > 0 iff

r1 >

N∑
l=2

rl. (2.17)

Under (2.17) the θi that minimize J(θ) obey: For integer ml, and l ∈ {2, · · · , N}

θ1 − θl = (2ml + 1)π (2.18)
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resulting in the coherent subtraction of the smaller gains yielding the following mini-

mum:

J∗ =

(
r1 −

N∑
l=2

rl

)2

. (2.19)

We now examine the structure of the Hessian. From (2.13) we have

[H(θ)]il =


−2
∑N

l=1
l 6=i
rirl cos(θi − θl) i = l

2rirl cos(θi − θl) i 6= l.

(2.20)

The Hessian is always singular because all row sums are zero, i.e.,

N∑
l=1

[H(θ)]il = 0. (2.21)

for all i. If we define

c(θ) = [cos θ1, · · · , cos θN ]> and (2.22)

s(θ) = [sin θ1, · · · , sin θN ]> (2.23)

then it is readily seen that

H(θ) = 2diag{r}
(
c(θ)c>(θ) + s(θ)s>(θ)

)
diag{r}

− 2diag{δi}Ni=1, (2.24)

where

δi = ri cos θi

N∑
l=1

rl cos θl + ri sin θi

N∑
l=1

rl sin θl. (2.25)

Hessian at global minima: As characterized by Theorem 2.1, the global minimum is an

ideal null with J∗ = 0 if (2.17) does not hold, and is given by (2.19) if it does hold. In

either case (i.e., whether or not (2.17) holds), the Hessian will be positive semidefinite
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at these global minima, since global minima are also local minima. However, the

Hessian is never positive definite because it is singular everywhere. This is consistent

with the fact that the global minima are not isolated but rather lie on nontrivial

manifolds.

The next Lemma provides a compact expression for the Hessian at the critical

points that do not lie on the null manifold. This is then used to show in Theorem 2.3

that critical points that do not correspond to a global minimum are unstable.

Lemma 2.2. Under Assumption 2.2.1, suppose θ is a critical point that is not a null.

Then the following hold:

(i) There exist I and Ic that partition {1, · · · , N}, and obey

(θi − θl) mod 2π =


0 ∀ {i, l} ⊂ I

π ∀ i ∈ I and l ∈ Ic
. (2.26)

(ii) The Hessian defined in (2.20) can be expressed as:

H(θ) = 2

[
xx> − diag{x}

N∑
i=1

xi

]
, (2.27)

where x = [x1, · · · , xN ]> obeys:

xi =


ri ∀ i ∈ I

−ri ∀ i ∈ Ic
. (2.28)

The proof of this result follows directly from (2.15) and (2.20).

The following section analyzes the properties of the Hessian of J(θ) to further

characterize the critical points.
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2.2.2 Eigenvalues of the Hessian

The following theorem shows that H(θ) has a negative eigenvalue at any

critical point that is not a global minimum.

Theorem 2.3. Consider Assumption 2.2.1. Assume ri ≥ ri+1 > 0 and N > 1. If θ

is a critical point that is not a global minimum, then H(θ) has a negative eigenvalue.

Proof. First consider N = 2. Suppose θ is a critical point that is not a global

minimum. If a null is not possible then from Theorem 2.1 and (2.18), (θ1 − θ2)

mod 2π = 0. The same holds when a null is possible as r1 = r2. Thus (2.20) implies

that both diagonal elements of the symmetric matrix H(θ) are negative, i.e. H(θ)

must have a negative eigenvalue.

For N > 2 from Lemma 2.2, (2.27) holds under (2.28). Note |xi| ≥ |xi+1| > 0.

Define

sl = xl

N∑
i=1

xi. (2.29)

We assert that at a critical point that is not a global minimum, sl > 0 for at least

two distinct l ∈ {1, · · · , N}. To prove this consider two cases.

Case I: A null is impossible. Then from Theorem 2.1, (2.17), (2.18) and (2.27)

there exists i ∈ {2, · · · , N} such that

x1 >
N∑
l=2

|xl| and x1xi > 0. (2.30)

Thus, as
∑N

i=1 xi > 0, sl > 0 for l ∈ {1, i}.

Case II: A null is possible. From Theorem 2.1 for all i,

|xi| ≤
n∑

l=1,l 6=i

|xl|. (2.31)
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Clearly there must exist at least two indices k and l such xk and xl have the same

sign as
∑N

i=1 xi. Thus again there are two distinct indices for which si > 0.

Now observe from Lemma 2.2 that with

D = diag {x}
N∑
i=1

xi = diag {d1, · · · , dN}, (2.32)

H(θ) = 2
(
xx> −D

)
with at least two elements of D positive.

As eigenvalues do not change under symmetric permutations, without loss of

generality assume d1 > 0 and d2 > 0. As N > 1, and all xi 6= 0, there exist nonzero

scalars p1 and p2, such that
[
p1, p2,0>

]
x = 0, where the zero vector is in RN−2. As

H(θ) = H>(θ) it has a negative eigenvalue as

[
p1, p2,0

>] (xx> −D)

p1

p2

0

 = −d1p
2
1 − d2p

2
2 < 0

As at a local minimum H(θ) cannot have a negative eigenvalue, Theorem 2.3

shows that a critical point that is not a global minimum cannot be a local minimum.

This has implications to the stability analysis in the next section.

It is worth noting that at a null δi = 0 in (2.25), i.e. from (2.24)

H(θ) = 2diag{r}
[
c(θ)c>(θ) + s(θ)s>(θ)

]
diag{r} (2.33)

Thus, at a null, H(θ) is positive semidefinite and in fact has rank at most 2. Of
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course as H(θ) is positive semidefinite at a global minimum, its eigenvalues must be

nonnegative with at least one zero.

2.3 Stability analysis

Having characterized the nature of critical manifolds in the last section, we

now establish the practical uniform stability of the gradient descent algorithm under

our idealized setting (no noise, ideal channel phase estimates, time-invariant channel),

by showing three things. (A) That the phase estimates uniformly converge to a single

point on a critical manifold, where uniformity is with respect to the initial time. (B)

That all critical points that are not global minima are locally unstable. (C) That the

global minima are locally stable.

The practical implication of (A-C) are as follows. Uniform convergence to a

point under idealized assumptions assures that such convergence is robust to depar-

tures from idealizations, [39]. The role of (B) and (C) is to show that in practical

terms the point to which such robust convergence can occur must be a global mini-

mum. This is so as (B) shows that convergence to a critical point that is not a global

minimum if at all possible, will never be sustained as the slightest noise will drive the

phase trajectories away from them.

While (B) is based on standard arguments, the proofs of (A) and (C) are

nontrivial because in our setting the Hessian is never positive definite. Since the

gradient and the Hessian are bounded and the gradient is Lipschitz continuous, argu-

ments similar to that in [40] show the following: For sufficiently small µ, there exists
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0 < ε(µ) < 1 such that along the trajectories of (2.8) or equivalently (2.3), there

holds,

J(θ[k + 1]) ≤ J(θ[k])− (1− ε(µ))

∥∥∥∥∥ ∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

∥∥∥∥∥
2

. (2.34)

As J(θ[k]) ≥ 0, this does imply that the gradient is in `2. However, as is well known

(see [41] for examples), this does not by itself imply that the gradient actually goes

to zero. Unless the gradient goes to zero the updates in (2.3) or equivalently in

(2.8), will not cease and convergence will not occur. Indeed example convergence

analyses of descent based algorithms (e.g., Newton-Raphson) in [40], that go beyond

just showing that the gradient is in `2, assume a positive definite Hessian. Even in

the classical LMS algorithm, one cannot conclude that convergence to a point occurs

without a condition known as persistent excitation, which is a variation of the positive

definiteness condition on the Hessian [42], .

The local stability of the global minimum is also complicated by the fact

that, without a positive definite Hessian, linearization around a minimum yields a

transition matrix that has eigenvalues at unity. Indeed, to address the lack of positive

definiteness, the recent paper [43] invokes the highly technical center manifold theory.

Given these difficulties, we prove (A) from (2.34) by appealing to the further device

of Lasalle’s invariance principle, [44], summarized in Theorem 2.4. This convergence

result is stated in Theorem 2.5. Theorem 2.6 proves (B), the local instability of

critical points that are not global minima. Theorem 4.7 proves (C) without having

to appeal to center manifold theory.

(A) Convergence: Theorem 2.4 summarizing Lasalle’s invariance principle refers to
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the lack of explicit dependence on time in an update kernel. An example is the update

kernel in (2.8). The update depends on k only through the value of θi[k] at that k.

Theorem 2.4. Consider the state equation

ξ[k + 1] = f(ξ[k]), ∀k ≥ k0 (2.35)

where k and k0 are integers, and f(ξ[k]) has no explicit dependence on k. Suppose

the following conditions hold: (a) ξ[k] is uniformly bounded for every finite ξ[k0]. (b)

There exists a nonegative function V (ξ[k]) such that the following holds for all k ≥ k0

along the trajectories of (2.35):

V (ξ[k + 1]) ≤ V (ξ[k]). (2.36)

(c) For all finite ξ[k0], V (ξ[k]) is uniformly bounded. Then ξ[k] uniformly converges

to a trajectory of (2.35) on which V (ξ[k]) is a constant.

The next theorem establishes (A) and the fact that along the trajectories of

(2.8) J(θ[k]) is nonincreasing.

Theorem 2.5. Under (2.7), (2.8),(2.6) and Assumption 2.2.1, there exists a µ∗ > 0,

such that for all 0 < µ < µ∗, initial time k0 and θ[k0] ∈ RN the following hold:

J(θ[k + 1]) ≤ J(θ[k]) ∀k ≥ k0 (2.37)

and

lim
k→∞

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

= 0 (2.38)
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Further, the convergence in (2.38) is uniform in k0 and there exists a critical point

θ∗ such that

lim
k→∞

θ[k] = θ∗. (2.39)

Proof. Because of (2.34), (2.37) holds. Now we invoke Theorem 2.4 whose application

requires the boundedness of θ[k] ab initio. For this difficulty, we reformulate the state

space to make it a priori bounded, by choosing ξi = (θi mod 2π) as the elements of

the new state vector. Define f(·) = [f1(·), · · · , fN(·)]>, and ξ = [ξ1, · · · , ξN ]>. The

definition of the ξi, ensures that this state space is bounded. Observe, J(θ) = J(ξ)

and

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

=
∂J(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k]

. (2.40)

Define,

gi(ξ) =

(
ξi − µ

∂J(ξ)

∂ξi

)
mod 2π.

Under these definitions (2.8) leads to (2.35). By defintion this state space is bounded.

Identify V (·) with J(·). Then because of (2.34), V (·) satisfies all the conditions in

Theorem 2.4. Consequently, ξ[k] converges uniformly to a trajectory where J(ξ[k]) =

J(θ[k]) is a constant. From (2.34) and (2.40) this must correspond to the trajectory:

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

=
∂J(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k]

= 0.

Further along this trajectory ξ[k+1] = ξ[k]. It remains to show that this also implies

that θ[k + 1] = θ[k]. Observe,

|θi[k + 1]− θi[k]| ≤ 2µri

N∑
l=1

rl.
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Suppose 0 < µ ≤ µ̄ assures (2.34). Choose

µ∗ < min

{
µ̄, min

i∈{1,··· ,N}

{
π

ri
∑N

l=1 rl

}}
. (2.41)

Then as ξi = (θi mod 2π), for all 0 < µ < µ∗, ξi[k+1] = ξi[k] implies θi[k+1] = θi[k].

This completes the proof.

Thus, θ[k] is guaranteed to uniformly converge to a point in the critical man-

ifold.

Intuition behind proof of convergence: While the details are in the appendix, the

intuition behind the preceding development is as follows. First, (2.37) follows from

(2.34). Second to show (2.39) by invoking Lasalle’s invariance principle, we observe

that gradient descent operates on the unwrapped phases θ, which can therefore be

unbounded. Lasalle’s principle is applied to the bounded wrapped phases ξ to conclude

that these converge. We then show that, for small enough adaptation gain µ, we

can guarantee that the unwrapped phases do not jump around too much under our

gradient descent algorithm, and hence inherit the convergence of the wrapped phases.

(B) Instability of critical points which are not minima: Linearization of (2.8) around

any θ∗ is given by, η[k + 1] = [I − µH(θ∗)]η[k], with η = θ − θ∗. From Theorem

2.3, at a critical point that is not a global minimum, [I − µH(θ∗)] has a positive

eigenvalue. Thus we have:

Theorem 2.6. Consider (2.8), under (2.7) and Assumption 2.2.1. Then (2.8) is

locally unstable around any critical point that is not a global minimum.
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(C) Local stability of global minima: This proof is complicated by the fact that the

Hessian is singular. Thus, at every θ, I−µH(θ) has an eigenvalue at 1 and standard

theory does not prove local stability. Suppose J1 is the smallest value J(θ) takes at a

critical point that is not a global minumum. Suppose, at the initial condition, θ[k0],

J(θ[k0]) < J1. Then because of (2.37) J(θ[k]) < J1, for all k ≥ k0. Thus the only

critical points that can be attained are global minima. As (2.38) assures convergence

to a critical point, the limit point has to be a global minimum. We have thus shown

the following.

Theorem 2.7. Consider (2.8) under (2.7) and Assumption 2.2.1. With k0 the initial

time suppose J(θ[k0]) < J1 above. Then uniformly in k0 there holds

lim
k→∞

J(θ[k]) = J∗.

2.4 Simulation results

We now present simulations. Throughout, the receiver noise is AWGN and

oscillator drift is Brownian motion. Observe that a feedback rate of even 100 packets

per second, with 16 bytes/packet to represent a double-precision floating point com-

plex number represents a rate of only 1600 bits/sec, far below the capacity of typical

feedback channels. SNR is defined as the ratio between the signal power of a single

transmitter at the receiver at the null target and the noise power. Received power

is computed by averaging over several runs. Incoherent power is the expectation of

the total received power when the received phases are random, equalling N for N

transmitters when ri = 1.
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2.4.1 Noise, channel errors and oscillator drift

For N = 10, Fig. 2.1 depicts the received power achieved by our algorithm as a

function of SNR without oscillator drift, but with large time-invariant channel phase

estimation errors (modeling severe quantization or imprecise channel estimation),

with φi uniformly distributed over [0, π/2]. Figure 2.2 models channel estimation

errors in both gain and phase. The transmitter assumes that each channel gain

r̂i = 1, even though each ri is actually uniformly distributed over [1, 2] and each

φi is uniformly distributed over [0, π/2]. These results show the robustness of our

nullforming algorithm: despite these very substantial channel estimation errors, the

received signal power nears the SNR floor. This suggests that for slowly varying

channels, infrequent, even highly inaccurate or heavily quantized channel estimation

suffices.
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Figure 2.1: Power at null target vs. SNR with constant φi ∼ U [0, π/2].

Figure 2.3 shows performance under channel time variations. The transmitters
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Figure 2.2: Power at null target with constant channel error: ri ∼ U [1, 2] and φi ∼

U [0, π/2].

always assume unit channel gains. Each transmitter has an initial error in channel

phase estimation, uniformly distributed in [0◦, 45◦] that is never corrected. Thereafter,

each channel changes every C-th iteration of the algorithm. Each change in ri is by

a factor of εi ∼ U [.99, 1.01], representing a one percent change. The change in φi is

additive by δi ∼ U [−1.5◦, 1.5◦]. Thus, with C = 1 at a feedback rate of 100 packets/sec

the gain can change by as much as 170% over a second and the phase by 150◦, even

discounting the initial error. We call C the coherence.

Suppose θi are such that one has a perfect null with unit channel gains and no

phase errors. The actual received power due to a change in channel phase by δi and

gain by a factor εi is:

Jchange(θ) = E

∣∣∣∣∣
N∑
i=1

εie
j(θi+δi)

∣∣∣∣∣
2
 ,

where the expectation is over εi ∼ U [.99, 1.01] and δi ∼ U [−1.5◦, 1.5◦]. Consider
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Figure 2.3: Power at null target with time varying channel gain and phase errors.

Coherence, C means that the channel changes at every C-th iteration.

Jchange(θ) averaged over all θi such that
∑N

i=1 e
jθi = 0. This would represent a

theoretical floor for the algorithm performance for C = 1 without any initial channel

error. Figure (2.4) provides an estimate of this average, by averaging the power over

1000 runs with θi obtained independently in each run by running our algorithm in

the noise free case. Evidently, while for SNRs of 50 and 70 dB our algorithm matches

this performance, it is less than 3dB away for SNR of 20dB, even though Figure 2.4

does not account for the initial phase error of as much as 45◦.

Also interesting are the plots with C = 5. At SNR of 50 and 70 dB, the received

power rapidly declines between the channel transitions, and then expectedly returns

to the C = 1 level at transitions. The fact that the C = 1 curve coincides at these two

SNRs accords with the fact that in Figure 2.4 the received power at these two SNRs

are identical, and that at the channel transitions the phase and gain change by the
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requisite amounts. As interesting is the fact that performance for both C ∈ {1, 5} is

identical for SNR of 20 dB; evidently the noise at this SNR swamps the effect of the

channel transitions. Again note that Figure 2.4 ignores the initial phase error.
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Figure 2.4: Ideal performance with C = 1 and channel change as in Figure 2.3.

Received power vs. phase noise is also plotted in our paper [21]. Received

power vs. the rms oscillator drift between two iterations of the algorithm, for dif-

ferent SNRs and with unit channel gains is plotted in Fig. 2.5. The null power is

determined by SNR for small drifts, but the effect of drift dominates for when the rms

drift between iterations exceeds 0.1◦. Fig. 2.6 has comparable results with unequal

Rayleigh distributed channel gains.

2.4.2 Convergence speed and scalability

As a common packetized feedback is broadcast to all transmitters, scalability

is determined by how the convergence speed depends on N . Figure 2.7 depicts the

relation between convergence speed and N : For N = 50 a −40dB null is attained in
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Figure 2.5: Power at null target vs. oscillator drift for equal channel gains.
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Figure 2.6: Power at null target vs. oscillator drift for unequal channel gains.
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just five iterations. Compellingly, a null of −40 dB is acquired in just 5 iterations,

which would, for example, only take 50 ms at a feedback rate of 100 packet/s. These

simulation results attest to the scalability of our algorithm, showing that the conver-

gence speed improves with N , even though we decrease the adaptation gain µ with N .

Intuitively, this is because the dimension of the null manifold grows with N , shrinking

its distance from generic points. Thus, the overhead associated with the packetized

common feedback does not grow with the number of transmitters.
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Figure 2.7: Number of iterations to achieve a 40-dB null vs. array size.

2.4.3 Effect on coherent beams

Fig. 2.8 shows performance with phases initialized to form a coherent beam

at a location and then deploying our algorithm to nullform at a random target. A

thousand random null targets were selected. The figure has the beam and null power

averaged over these 1000 runs, as a result of the phases generated by our algorithm.
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Figure 2.8: Effect of nullforming algorithm on power at a desired receiver.

The adjustments made by our algorithm barely dent the beam at the original location,

despite achieving a deep null at the null targets, at least on average. Intuitively, this

could be because a coherent beam is insensitive to small phase adjustments while nulls

are very sensitive. A beam at one location could therefore be largely preserved with

minor degradation, while applying small phase perturbations to synthesize a deep

null at another designated location. This raises the intriguing possibility of forming

both beams and nulls with phase-only adjustments, providing a building block for

SDMA.

The scalable, distributed nullforming algorithm we developed in this chapter

allows each transmitter to transmit at full power while steering a null toward a des-

ignated receiver through adaptation of the transmission phases using decentralized

gradient descent. Unlike standard amplitude-phase adaptation with quadratic cost

functions, the proof of convergence for phase-only adaptation required detailed exam-

ination of a highly non-convex cost function to prove that all local minima are global

minima. Simulations show scalability in terms of nullforming performance: conver-
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gence time does not increase with the number of transmitters. In the next chapter we

provide an analysis for the robustness of this algorithm to errors in channel estimation.
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CHAPTER 3
ROBUSTNESS ANALYSIS OF NULLFORMING ALGORITHM

The previous chapter presents a nullforming algorithm (2.5) with phase only

adaptation, and demonstrates its uniform convergence under the idealized assump-

tions of zero channel estimation errors and noise (see Assumption 2.2.1). Simulations

show that the (2.5) withstands significant violations of this assumption. This chapter

provides a theoretical justification for this robustness.

Our approach is as follows. The difference between the algorithm (2.5) we

actually implement, and the true gradient descent algorithm (2.4) is that φi 6= 0

and r̂i 6= ri. As explained further in this chapter, and as is well understood in the

literature, (2.5) will still converge if the inner product between vector of phase updates

in actual, and the true gradient exemplified in (2.4) were positive. In this chapter we

give sufficient conditions under which this is true on the average.

3.1 Problem formulation

We assume that the channel estimation is performed at the start of the null-

forming algorithm for example by using explicit channel information sent by receiver

to transmitters. Since, the channel is assumed to be slowly varying for the duration of

the few time-slots required for a few iterations of the algorithm, channel phases, νi[k],

are assumed to be constant over k for all transmitters i ∈ {1, ..., N}. Channel gains,

are also assumed to be constant over the iterations for all transmitters i ∈ {1, ..., N}

and hence denoted simply as ri for the i-th transmitter. The algorithm (2.5) uses the
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channel gain estimates r̂i which are also assumed constant across the duration of the

updates. Since we estimate the channel at the start in this setting, estimation errors

remain for the duration of the algorithm. Therefore the channel phase estimation

errors φi[k] are constant over k for all i. Hereafter we will refer to these as φi. We

will denote the implemented gradient in (2.5) by

∂J(θ,0, r̂)

∂θm
(3.1)

where r̂ = [r̂1, · · · , r̂N ]T , is the vector of estimated channel gains. The update equa-

tion in (2.5) is thus

θm[k + 1] = θm[k]− µ ∂J(θ,0, r̂)

∂θm

∣∣∣∣
θm=θm[k]

(3.2)

where θm is the m-th element of θ corresponding to the m-th transmitter. Simulations

showed that even if φ 6= 0 and r̂i 6= ri, the (2.5) would converge. When idealized

setting is not considered(φ 6= 0, r̂i 6= ri), the cost function is

J(θ,φ, r) (3.3)

The true gradient is as follows:

∂J(θ,φ, r)

∂θm
(3.4)

where, r = [r1, · · · , rN ]T , is the vector of actual channel gains. The update equation

using this true gradient is of the form:

θm[k + 1] = θm[k]− µ ∂J(θ,φ, r)

∂θm

∣∣∣∣
θm=θm[k]

(3.5)

We will consider the average behavior of (3.2) under a variety of channel estimation

errors. Section 3.3 considers just phase estimation errors. Section 3.4 considers
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multiplicative errors involving both channel phase and gain. The basic approach is

explained in Section 3.2.

3.2 The approach

Consider the minimization of a scalar function f(x) of x ∈ RN . Gradient

descent minimization proceeds as:

xk+1 = xk − µ∇f(xk).

The descent direction −µ∇f(xk) is known as the steepest descent direction. Consider

now the alternative algorithm

zk+1 = zk − µdk.

Then it is well known that the update direction dk represents a descent direction if

the inner product of ∇f(xk) and dk is positive [45]. Translated to our setting the

algorithm in (3.2) will converge if

[
∂J(θ,φ, r)

∂θm

]T [
∂J(θ,0, r̂)

∂θm

]
> 0 (3.6)

i.e., the inner product between the true gradient and the implemented gradient is

greater than 0. Instead of (3.6) in the case where φ and r are random, it suffices to

establish conditions under which

E

[
∂J(θ,φ, r)

∂

]T [
∂J(θ,0, r̂)

∂

]
≥ 0. (3.7)

We proceed to show that (3.7) holds under a variety of assumptions on r and φ.
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3.3 Robustness to channel phase estimation errors

Recall in the simulation depicted in Fig. 2.1 the underlying assumption is

r̂ = r and φi i.i.d. ∼ U [0, α], α < π/2. (3.8)

We will now prove (3.7) under (3.8). First, lets denote the implemented gra-

dient by G(0). From (3.1) under (3.8), we have

Gm(0) =
∂J(θ,0, r)

∂θm

=
∂
∣∣∣∑N

i=1 rie
jθi

∣∣∣2
∂θm

= rm

N∑
i=1

ri sin (θi − θm) (3.9)

We can re-write (3.3) as follows:

J(θ,φ, r) = |
N∑
i=1

rie
j(θi+φi)|2 (3.10)

= (
N∑
i=1

ri cos (θi + φi))
2 + (

N∑
i=1

ri sin (θi + φi))
2 (3.11)

Let us denote the true gradient by G(φ). Gm(φ) can be written as

∂J(θ,φ, r)

∂θm
= −2rm sin(θm+φm)(

N∑
i=1

ri cos(θi+φi))+2rm cos(θm+φm)(
N∑
i=1

ri sin(θi+φi))

and can be further simplified as

Gm(φ) = 2rm

N∑
i=1

ri sin(θi + φi − θm − φm) (3.12)
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E{Gm(φ)} = 2
N∑
i=1

E{sin((θi − θm) + (φi − φm))}

= 2
N∑
i=1

[sin(θi − θm)E{cos(φi − φm)}+ cos(θi − θm)E{sin(φi − φm)}]

(3.13)

Given that the φi’s are independent, we have

E{cos(φi − φm)} = E{cos(φi)}E{cos(φm)}+ E{sin(φi)}E{sin(φm)} (3.14)

E{sin(φi − φm)} = E{sin(φi)}E{cos(φm)}+ E{cos(φi)}E{sin(φm)} (3.15)

Observe

E{sin(φi)} =

∫ α

0

sin(φi)
1

α
dφi =

1− cos(α)

α
(3.16)

and

E{cos(φi)} =

∫ α

0

cos(φi)
1

α
dφi =

sin(α)

α
(3.17)

Putting these values in (3.14) and (3.15) we have

E{cos(φi − φm)} =
1

α2
[sin(α)2 + (1− cos(α))2]

= 2
1− cos(α)

α2
(3.18)

and

E{sin(φi − φm)} =
1

α2
[sin(α)(1− cos(α))− sin(α)(1− cos(α))]

= 0 (3.19)
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We can now write E{Gm(φ)} as

E{Gm(φ)} = 2
N∑
i=1

[sin(θi − θm)E{cos(φi − φm)}+ cos(θi − θm)E{sin(φi − φm)}]

= 2
N∑
i=1

[
2(1− cos(α))

α2
sin(θi − θm) + 0]

=
4

α2
(1− cos(α))

N∑
i=1

sin(θi − θm) (3.20)

We know Gm(0) from (3.9). For ri = 1, this will become

Gm(0) =
N∑
i=1

sin(θi − θm) (3.21)

Now we can go ahead and evaluate E{Gm(φ)Gm(0)} as under

E{Gm(φ)Gm(0)} = Gm(0)E{Gm(φ)}

=
4

α2
(1− cos(α))(

N∑
i=1

sin(θi − θm))2 (3.22)

Thus indeed (3.7) holds if α < π/2.

3.4 Robustness to multiplicative channel estimation errors in both

phase and gain

We will now consider the case where apart from errors in channel phase, there

can be errors in gain too. True channel gain is denoted by ri where,

ri = βir̂i (3.23)

βi is i.i.d. ∼ U [1− ε, 1 + ε], φi is i.i.d. ∼ U [0, α], α < π/2 (3.24)

The channel gain used by i-th transmitter for its update equation is r̂i. Hence there

is an error since the actual channel gain is βi times that estimated and used by the
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transmitter. The new cost function under these considerations will be based on the

power received at the null-target and can be written as

J(θ,φ, r) = |
N∑

i=1

rie
j(θi+φi)|2 (3.25)

Denote the m-th element of true gradient G(φ, β) as under:

Gm(φ, β) =
∂J(θ,φ, r)

∂θm
= 2βmr̂m

N∑
i=1

βir̂i sin(θi + φi − θm − φm) (3.26)

Once again, in order to prove (3.7) we need to evaluate E{Gm(φ, β)Gm(0)}. Since,

the implemented gradient Gm(0), is evaluated for ideal conditions, it does not depend

on φ and βi. That is, for Gm(0), φ = 0 and βi = 1. So, we can evaluate E{Gm(φ, β)

separately. Since βi and φi are independent, we have

E{Gm(φ, β)} = 2r̂m

N∑
i=1

E{βmr̂iβi sin((θi − θm) + (φi − φm))}

= 2r̂m

N∑
i=1

r̂iE{βm}E{βi}[sin(θi − θm)E{cos(φi − φm)}

+ cos(θi − θm)E{sin(φi − φm)}] (3.27)

Now,

E{βi} =

∫ 1+ε

1−ε
βi

1

2ε
dβi

=
(1 + ε)2 − (1− ε)2

4ε

= 1 (3.28)

Also,

E{βm} = 1 (3.29)
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Putting values from (3.18), (3.19), (3.28) and (3.29) into (3.27), we have

E{Gm(φ, β)} = 2r̂m

N∑
i=1

r̂i.1.[2
1− cos(α)

α2
sin(θi − θm) + 0]

= 4r̂m
1− cos(α)

α2

N∑
i=1

r̂i sin(θi − θm) (3.30)

From (3.20) and (3.30) we can observe that E{Gm(φ, β)} = E{Gm(φ)}.

Also, from (3.9) we have

Gm(0) = rm

N∑
i=1

ri sin(θi − θm) = r̂m

N∑
i=1

r̂i sin(θi − θm) (3.31)

since βi = 1 for Gm(0). So,

E{Gm(φ, β)Gm(0)} =
4r̂2

m

α2
(1− cos(α))(

N∑
i=1

r̂i sin(θi − θm))2 (3.32)

Since α < π/2, so, (1− cos(α)) > 0. Thus (3.7) holds as long as α < π/2.

We showed that the single receiver gradient descent nullforming algorithm

(2.3) is robust to channel estimation errors in both phase and gain. In all we proved

why (2.3) performed as expected in simulations under non-idealized conditions even

though its properties had been analyzed theoretically under only ideal conditions in

Chapter 2. In the next chapter we propose an algorithm for nullforming at single

receiver that also tries to address the prior frequency synchronization requirement of

nullforming instead of simply assuming it. The presence of time dependent frequency

term renders the system non-autonomous making it a challenging problem.
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CHAPTER 4
DISTRIBUTED NULLFORMING WITHOUT PRIOR FREQUENCY

SYNCHRONIZATION

In this chapter we propose an algorithm for distributed nullforming at a single

receiver without assuming prior frequency synchronization among the transmitters. In

Chapter 2, our underlying assumptions of prior frequency synchronization and slowly

varying oscillator offsets, simplified the overall problem wherein the transmitters only

adjusted the phase of their transmitted signals as part of algorithm implementation.

In this chapter we try to incorporate a possible way to address the frequency syn-

chronization issue into the algorithm itself. Specifically, we do so by allowing each

transmitter to iteratively make an adjustment to both the phase and frequency of

its transmitted RF signal, thereby effectively implementing an algorithm to reduce

the amplitude of the overall received signal to zero. As discussed in Section 1.5, dis-

tributed nullforming is an extremely challenging problem as each transmitter usually

obtains its RF signal from a separate local oscillator (LO), and signals obtained from

different LOs invariably have Brownian motion driven phase and frequency drifts, [46]

due to manufacturing tolerances and temperature variations which the nullforming

algorithm must estimate, track and compensate for the effect of these drifts.

Section 4.1 describes the general problem formulation. The algorithm pre-

sented in Section 4.2 [25], can be implemented in a purely distributed fashion at each

transmitter as each transmitter needs only an estimate of its own channel gain to the

receiver, and a feedback signal from the receiver, that is common across all the trans-
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mitters. We prove analytically that the algorithm practically, globally converges to a

null at the designated receiver. Following some preliminaries in Section 4.3, Section

4.4 presents this analysis of the stability and convergence properties of the algorithm.

By practical convergence we mean that (i) the algorithm always converges to a sta-

tionary trajectory, (ii) that though some of these trajectories may not correspond to

a null, those that do not are locally unstable, while those that do are locally stable.

4.1 Problem formulation

We assume that at the beginning of a nullforming epoch, each transmitter

has access to its own complex channel gain to the receiver, using which it equalizes

its channel to the receiver. Time slotted structure is assumed and the local channel

information can be gathered using a method like explicit channel feedback as discussed

in Section 1.5. Unlike Chapter 2 we do not assume that these transmitters have been

prior synchronized in frequency.

Denote θi(t) to be the equalized phase of the i-th transmitter. Further, assume

that ωi(t), is a frequency offset of the i-th transmitter, from a nominal frequency to

which each transmitter should ideally have been synchronized, but oscillator drift

prevents the maintenance of such synchronization. Like Chapter 2, N denotes the

total number of transmitters.

Then the complex baseband signal received at the cooperatng receiver is:

s(t) = R(t) + jI(t) (4.1)
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where

R(t) =
N∑
i=1

cos(ωi(t)t+ θi(t)) (4.2)

and

I(t) =
N∑
i=1

sin(ωi(t)t+ θi(t)). (4.3)

The equivalent total baseband signal the receiver sees is

N∑
i=1

ej((ωi(t)t+θi(t))

which is equivalent to knowing s(t) in (4.1). Define θ(t) = [θ1(t), · · · , θN(t)]> and

ω(t) = [ω1(t), · · · , ωN(t)]>. The equivalent total received power is:

J(θ, ω, t) = I2(t) +R2(t). (4.4)

4.2 Algorithm description

The receiver braodcasts the received complex baseband signal s(t) to all trans-

mitters. This aggregate feedback is used by the i-th node to adjust its phase and

frequency to drive J(θ, ω, t) to zero. In practice the adjustment and feedback will be

in discrete time. However, we propose and analyze here a continuous time algorithm.

Should this algorithm be uniformly asymptotically stable (u.a.s), then standard av-

eraging theory, [47] tells us that for sufficiently high feedback rates, and sufficiently

small adaptation gains, an obvious discretized version will also be well behaved.

Specifically, with,

z(t) = [θ>(t), ω>(t)]>, (4.5)

we propose a control law:

ż = f(z, t). (4.6)
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The obvious discretized version of this law is:

z(t+ ∆) = z(t) + ∆f(z, t). (4.7)

We will analyze (4.6), in the belief, to be verified by simulations, that should (4.6)

be (u.a.s) then for sufficiently small ∆, so would be (4.7).

We now consider a point of conceptual departure from Chapter 2, where ω = 0,

the cost function J is autonomous, and a gradient descent minimization suffices.

By contrast in the present setting, frequency offsets render the cost function non-

autonomous, in that it may change its value even if the phases and frequencies are

not adjusted. Accordingly, We consider a Lyapunov based design of the null forming

algorithm. This exploits the following self-evident relationships.

∂J

∂θi
= −2R(t) sin(ωi(t)t+ θi(t)) + 2I(t) cos(ωi(t)t+ θi(t)), (4.8)

∂J

∂t
= −2R(t)

∑
i=1

ωi(t) sin(ωi(t)t+ θi(t))

+ 2I(t)
∑
i=1

ωi(t) cos(ωi(t)t+ θi(t)),

= ω>(t)
∂J

∂θ
(4.9)

and

∂J

∂ω
= t

∂J

∂θ
. (4.10)

Observe also, that the i-th node can implement (4.8) as long as it has access to its

frequency, phase and the common feedback signals I(t) and R(t). Thus, (4.6) can be



53

implemented in a totally distributed fashion should one choose:

θ̇ = −∂J
∂θ
− ω

2
(4.11)

ω̇ = −1

2

∂J

∂θ
. (4.12)

4.3 Preliminaries of stability analysis

In this section we present certain preliminary results that among other things

show the uniform convergence of the gradient of J with respect to θ, and explore the

properties of the stationary points of (4.11,4.12).

But first, a result used in [48].

Lemma 4.1. Suppose on a closed interval I ⊂ R of length T , a signal w : I → R is

twice differentiable and for some ε and M ′

|w(t)| ≤ ε1 and |ẅ(t)| ≤M ′ ∀ t ∈ I.

Then for some M independent of ε1, I and M ′, and M ′′ = max(M ′, 2ε1T
−2) one has:

|ẇ(t)| ≤M(M ′′ε1)1/2 ∀ t ∈ I.

We begin by showing that under (4.11,4.12) J is nonincreasing and its gradient

with respect to θ converges uniformly to zero.

Lemma 4.2. Consider (4.11,4.12) with (4.2-4.4) initial time t0 ≥ 0. Then the

following hold:

(a) For all t ≥ t0,

V (t) = J(t) +
‖ω(t)‖2

2
(4.13)

is nonincreasing.
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(b) The following occurs uniformly in t0.

lim
t→∞

∂J

∂θ
(t) = 0. (4.14)

Proof. Because of (4.4), (4.8)-4.10) and (4.11,4.12), there holds:

J̇ +
d

dt

{
ω>ω

2

}
=

∂J

∂t
+ θ̇>

∂J

∂θ
+ ω̇>

∂J

∂ω
+ ω>ω̇

= ω>
∂J

∂θ
−
∥∥∥∥∂J∂θ

∥∥∥∥2

− ω>

2

∂J

∂θ

− ω>

2

∂J

∂θ
− t

2

∥∥∥∥∂J∂θ
∥∥∥∥2

= −
(

1 +
t

2

)∥∥∥∥∂J∂θ
∥∥∥∥2

(4.15)

Consequently (a) holds. Further, ω is uniformly bounded. Consequently from (4.8)

there is an M1, independent of t0, such that for all t ≥ t0∥∥∥∥ ddt
{
∂J

∂θ
(t)

}∥∥∥∥ ≤M1.

Equally, there exists an M2, also independent of t0, such that for all t ≥ t0,∣∣∣∣∂J∂θ (t)

∥∥∥∥ ≤M2.

Further, since the initial time t0 ≥ 0, from (4.15) and V (t) is nonnegative, one obtains

that for all t ≥ t0: ∫ t

t0

∥∥∥∥∂J∂θ (s)

∥∥∥∥2

ds ≤
∫ t

t0

(
1 +

s

2

)∥∥∥∥∂J∂θ (s)

∥∥∥∥2

ds

≤ V (t0).

Thus, for every ε > 0, there exists a T independent of t0 such that for all t ≥ T + t0,∫ t

T+t0

∥∥∥∥∂J∂θ (s)

∥∥∥∥2

ds ≤ ε.
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Then from Lemma 4.1, there is a K independent of t0 such that for all ε > 0, there

exists a T independent of t0 such that for all t ≥ T + t0,

∥∥∥∥∂J∂θ (s)

∥∥∥∥2

≤ ε, ∀s ≥ T + t0.

Thus indeed (b) holds uniformly in t0.

Evidently, the algorithm converges uniformly to a trajectory where:

∂J

∂θ
= 0 (4.16)

and for some constant ω∗ the frequency offsets

ω = ω∗. (4.17)

Some of these trajectories correspond to the desired null. Others do not, and will

be dubbed spurious. Our goal is to demonstrate that the latter are locally unstable.

Thus they are rarely attained, and even if attained not practically maintained as the

slightest noise would drive the trajectories away from them. Thus, by showing the

local stability of the null manifold, we would have demonstrated the practical uniform

convergence of the algorithm to a null.

Observe, (4.16) and (4.17) hold under the following circumstances.

• [A] R(t) = I(t) = 0.

• [B] If R(t) 6= 0, then for all i,

tan(ω∗i t+ θi) =
I(t)

R(t)
.
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• [C] If I(t) 6= 0, then for all i,

cot(ω∗i t+ θi) =
R(t)

I(t)
.

Clearly [A] corresponds to stationary points reflecting nulls. The set of points

it represents will henceforth be called the null manifold. Both [B] and [C] reflect the

condition that for all i, l, there holds:

tan(ω∗i t+ θi) = tan(ω∗l t+ θl), ∀t. (4.18)

Some of these may still correspond to nulls. The rest are spurious.

It is also evident that under all circumstances and a scalar ω̄,

ω = ω̄[1, · · · , 1]>. (4.19)

The local analysis of these stationary trajectories, will require the examination

of the Hessian with respect to the θ. In particular from (4.8) one has:

∂J(θ)

∂θi
= −2R(t) sin(ωi(t)t+ θi(t))

+ 2I(t) cos(ωi(t)t+ θi(t))

= 2
∑
l=1

sin((ωl(t)− ωi(t))t+ θl(t)− θi(t))

Thus, in view of (4.19), along (4.16) and (4.17) the il-th element of the Hessian along

the stationary trajectory is given by:

[H(θ)]il =
∂2J(θ)

∂θi∂θl
=


−2
∑N

m 6=i cos(θi − θm) i = l

2 cos(θi − θl) i 6= l

(4.20)
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4.4 Stability analysis

Armed with the preliminary results in Section 4.3 we now complete our stabil-

ity analysis. Lemma 4.2 shows that uniform convergence to a stationary trajectory

is guaranteed. Some of these trajectories correspond to a null. Other do not. In

this section we show that only those that correspond to a null are locally stable. The

others are not. Consequently, one is assured of practical uniform convergence in the

sense that stationary trajectories that do not correspond to the desired nulls if at

all attained, cannot be practically maintained. Thus for all practical purposes the

algorithm defined in (4.11,4.12) achieves a desired null.

First we demonstrate the local instability of spurious stationary trajectories.

To this end we present two Lemmas.

Lemma 4.3. The linear system below with scalar a > 0 is unstable:

η̇ =

a ta+ 1
2

a
2

at
2

 η (4.21)

Proof. Consider the initial condition η(0) = [1, 0]>. Then it is evident that both

elements of the state are nonegative for all t > 0. Then the first element of the state

vector is

η1(t) ≥ eat.

Thus the system is unstable.

We next show that H(θ) at a false spurious stationary point has a negative

eigenvalue.
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Lemma 4.4. Consider a stationary point H(θ) in (4.20) when (4.16), (4.17) such

that along this trajectory J 6= 0. Then H(θ) has at least one negative eigenvalue.

Proof. Because of (4.18) and (4.19) there holds, for all i 6= l, cos(θi− θl) = ±1. Thus,

as H(θ) is symmetric, it suffices to show that at least one diagonal element is not

equal is either zero or negative.

Without loss of generality, assume θ ∈ [0, 2π)N . As only the differences of θi

appear in the expression for H(θ), in view of (4.18), again without loss of generailty,

one can partition {1, · · · , N} into two sets I0 and Iπ such that

θi =


0 i ∈ I0

π i ∈ Iπ

Also observe that

cos(θi − θl) =


1 {i, l} ⊂ I0 or {i, l} ⊂ Iπ

−1 else

We need to show that for at least one i ∈ {1, · · · , N} there holds:

N∑
l=1
l 6=i

cos(θi − θl) ≥ 0. (4.22)

We consider the following three cases:

Case I: |I0| − 1 = |Iπ|. Consider i ∈ I0. Then the number of summands in (4.22)

that are 1, equals the number that are -1, and the sum equals zero.

Case II: |I0| + 1 = |Iπ|. Consider i ∈ Iπ. Then the number of summands in (4.22)

that are 1, equals the number that are -1, and the sum equals zero.
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Case III: Neither Case I nor Case II holds. Then there is at least one i ∈

{1, · · · , n} for which the number of summands in (4.22) that are 1, is greater than

the number that are -1, and the sum is positive.

We now prove that a spurious stationary point is unstable.

Theorem 4.5. Consider (4.11,4.12), and a stationary trajectory defined by (4.16),

(4.17) such that along these trajectory J 6= 0. Then this trajectory is unstable.

Proof. Following the discussion in the previous section, and noting that for all i, l

∂2J(θ)

∂θi∂ωl
= t

∂2J(θ)

∂θi∂θl

(4.16), (4.17) linearized around such a trajectory is given by:

ẋ =

−H(θ) −tH(θ) + I
2

−H(θ)
2

− t
2
H(θ)

x. (4.23)

In view of Lemma 4.4 and the symmetry of H(θ), there an orthogonal matrix Ω and

real λi, with λ1 > 0, such that with

Λ = diag {−λ1, · · · , λN},

H(θ) = ΩΛΩT

Define β = diag {Ω,Ω}x. Then the linearized systems is equivalent to:

β̇ =

−Λ −tΛ + I
2

−Λ
2

− t
2
Λ

 β.
Then instability follows from Lemma 4.3.
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Thus indeed spurious stationary points are unstable. To complete the result,

it suffices to show that the null manifold is locally stable. It is tempting to examine

the linearized algorithm around a null trajectory. To this end we must examine the

Hessian H(θ) around this trajectory. However, the test on the Hessian is inconclusive.

To be precise, at a stationary point corresponding to a null, i.e. when R = I = 0,

there holds:

[H(θ)]il =


2 i = l

2 cos(θi − θl) i 6= l

= 2c(θ)c>(θ) + 2s(θ)s>(θ)

where

c(θ) = [cos(θ1), · · · , cos(θN)]>

and

s(θ) = [sin(θ1), · · · , sin(θN)]>.

This has rank at most two. Thus, for N > 2 at least one eigenvalue of the Hessian

is zero and the linearized analysis is inconclusive. One could adopt a center manifold

based approach to showing stability, as was done in [49]. Instead, we adopt a more

direct approach.

For this we require a final Lemma.

Lemma 4.6. Suppose under (4.16), (4.17), J(θ) < 1. Then

∂J(θ)

∂θ
= 0⇔ J(θ) = 0.
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Proof. At a spurious stationary point, for all i, l ∈ {1, · · · , N}, cos(θi − θl) = ±1.

Further, from (4.4), (4.2) and (4.3),

J(θ, ω, t) =

(
N∑
i=1

cos(ωi(t)t+ θi(t))

)2

+

(
N∑
i=1

sin(ωi(t)t+ θi(t))

)2

= N + 2
N∑
i=1

N∑
l=1
l 6=i

cos((ωl(t)− ωi(t))t

+ θl(t)− θi(t))

Thus at a spurious stationary point J(θ) is a nonnegative integer. The result follows.

We can now prove local stability of the null manifold.

Theorem 4.7. Under the conditions of Lemma 4.2 at t0 ≥ 0,

V (t0) < 1.

Then

lim
t→∞

J(θ(t)) = 0, (4.24)

and the convergence is uniform in t0.

Proof. Item (b) of Lemma 4.2 holds uniformly in t0. Further for all t ≥ t0

J(θ(t)) ≤ V (t) ≤ V (t0) < 1.

Thus the result holds from Lemma 4.6.
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The distributed nullforming algorithm we developed in this chapter overcame

the prior frequency synchronization requirement of the algorithm developed in Chap-

ter 2. We proved practical uniform convergence of the algorithm to a null. The

robustness to noise and frequency drift is verified by simulations involving 10 trans-

mitters and nontrivial Brownian motion driven oscillator drift in our paper [25]. In

the next chapter, we let the transmitters apply a complex weight, and adapt both

its phase and amplitude instead of just the phase as in Chapter 2. This makes the

objective function convex in applied weights and helps simplify the problem. Also, in

previous chapters and current chapter, we dealt with nullforming at single receiver,

but in the next chapter we generalize to multiple receivers.
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CHAPTER 5
JOINT BEAM AND NULLFORMING

In this chapter we consider the distributed joint beam and nullforming (JBNF)

problem shown in Fig. 5.1 where N single antenna transmitters seek to cooperatively

broadcast a common message signal to a subset of M1 single antenna receivers while

simultaneously canceling at another set ofM−M1 receivers. In effect, the transmitters

form a virtual antenna array and transmit with particular phases and amplitudes to

shape the array’s pattern such that beams and nulls are created at desired locations.

By simultaneously transmitting beams and nulls, coherent combining gains can be

achieved toward intended receivers while avoiding interference toward unintended

receivers.

Previously we developed algorithms for nullforming to one receiver that do

not require global channel knowledge. These algorithms were limited to a single null

target, and considered phase-only adaptation at the transmitters. Here we consider a

natural generalization of this approach to the multiple receiver case. By allowing both

amplitude and phase adaptation and by targeting received complex amplitudes rather

than power, we are able to consider a much simpler quadratic optimization framework

while generalizing to multiple beam and null targets. We reported preliminary results

in a conference paper [26] and further details in a journal paper [27]. The algorithm

we develop in this chapter is also adaptive in nature in which each transmitter in

the distributed array iteratively adjusts its transmitted signal in a purely distributed

fashion just like other algorithms discussed so far. We assume cooperation from both
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beam and null targets in terms of periodic aggregate feedback messages. Again only

local channel information and the feedback messages are required by transmitters for

implementing the algorithm.It is important to note that we assume prior frequency

synchronization just like we did in Chapter 2 in order to avoid the complications of

dealing with non-autonomous systems.

Given a set of desired power levels at the intended receivers, it is shown that

in the absence of noise, the adaptive algorithm converges to a solution that achieves

the target complex amplitudes and hence the corresponding power levels at the de-

sired receivers while also achieving nulls with zero power toward the null targets.

Moreover, with appropriate initialization, the algorithm converges to the minimum

transmit power solution. The property of requiring only local channel knowledge with

aggregate feedback results in reduced overhead and increased scalability compared to

previous techniques which require global channel knowledge. It is shown that the

convergence speed is nondecreasing in the number of transmitters N if a step-size

parameter is kept constant, and arbitrarily fast for large N with suitable choice of

the step-size, with probability one for Rayleigh fading channel gains. Our algorithm,

when properly initialized, achieves the beams and nulls with vanishing total transmit

power when N becomes large, even in the presence of noise, again with probabil-

ity one for Rayleigh fading channel gains. Taken together, these results add up to

some remarkable scalability properties: the feedback overhead does not grow with the

number of transmitters, and with high probability, the algorithm can be configured

to converge arbitrarily fast and use vanishingly small total transmit power.
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Rx-M

Beamforming

Nullforming
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Array

Receivers
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Tx-3
Tx-i

Channel

Beamforming

Figure 5.1: The problem of joint beam and nullforming using a distributed array.

Contributions Apart from developing a scalable, distributed algorithm for JBNF

problem that has fast convergence and power efficiency properties, we also analyse

these properties as detailed below:

(a) Characterizing limit points: Our JBNF problem is under constrained: there

are no isolated critical points. Instead there is an entire affine subspace of critical

points (identified in (5.9)), all of which are global minima. Such a situation is very

common in adaptive control and is often linked to the lack of persistent excitation

(pe) [50]-[51]. We show (Theorem 5.1) that, in the noise-free setting, our algorithm

converges to the projection of the initial estimate on the affine subspace. With noise,

convergence is to this same point in the mean with bounded variance (Theorem 5.2).

(b) Power efficiency of the limit point: We characterize conditions under which

the limit point corresponds to the solution with minimum transmit power: specifi-

cally, the initial iterate of the gradient descent algorithm must lie in the range space
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of a matrix comprising the complex channel gains.

(c) The absence of drift due to noise: When an adaptive algorithm converges

to an affine subspace rather than an isolated point in the absence of noise, the possi-

bility arises that noise may cause the adaptations to drift along this affine subspace

[52, 53, 54]. We show that our algorithm avoids this problem, as noise has no effect

along the minimizing affine subspace.

(d) Scalability: For a given set of beam and null targets, if we keep a step size pa-

rameter of the algorithm fixed, the convergence rate of our algorithm is nondecreasing

in N .

(e) Asymptotic scalability: For independent Rayleigh fading channels: as N tends

to infinity, with probability one, the convergence speed can be made arbitrarily fast.

Further, if the algorithm is initialized in the range space of the channel matrix de-

scribed above, then again with probability one, even in the presence of noise, the

iterates converge in the mean to zero with zero covariance as N tends to infinity.

The rest of the chapter is organized as follows. Section 5.1 formulates the

JBNF problem as a convex minimization and 5.2 describes our algorithm. The con-

vergence of this algorithm is examined in Section 5.3, and its scaling to large number

of transmitters in Section 5.4. Section 5.5 presents simulation results.

5.1 Problem formulation

This chapter considers a more general setting, compared to Chapters 2 and

4, with M receivers, joint beam and nullforming, and adaptation of both the phase
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and amplitude at each transmit node. We formulate a gradient descent algorithm to

minimize a quadratic cost function that is convex in the complex amplitudes, with

global minima that correspond to gain values for which the beam and nullforming

objectives of the JBNF problem are satisfied. This algorithm can be implemented in

a distributed fashion at each transmitter. Each transmitter adjusts its transmission

knowing only its own M complex channel gains to the receivers and common feedback

messages broadcast by the receivers to all of the transmitters. The feedback messages

contain estimates of the complex amplitude (i.e., the gain and phase) of the aggregate

received radio frequency signal at each receiver.

Note that while the JBNF problem is much more general than the nullforming

to a single receiver considered in Chapter 2, the latter considers phase-only adapta-

tion to avoid the trivial solution where the null is achieved by driving all transmitted

signals to zero. Phase only adaptation renders the minimization considered in Chap-

ter 2 nonconvex, whereas the adaptation of both the phase and gain permits the

minimization here to be convex. Thus in some respects, our proposed algorithm for

the JBNF problem is actually simpler than nullforming to a single receiver.

We consider a distributed array of N transmitters as in Chapters 2 and 4

but unlike one receiver in those chapters, here we consider M receivers. Receivers

1 through M1, where M1 ≤ M , are desired receivers or beam targets where we want

to direct the transmission, and receivers M1 + 1 to M are null targets where the

transmitted signals must cancel each other.

Time-slotting, slowly varying channel phase offsets and frequency
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pre-synchronization are assumed as mentioned in Section 1.5. The time-division mul-

tiplexed schedule of transmissions pertaining to the time-slotted structure is shown

in Fig.5.2. Any of the channel estimation methods mentioned earlier or any combina-

tions of those can be used for our JBNF algorithm. Note that if channels are slowly

varying, the channel estimation process may only need to be performed infrequently.

Notation and problem statement

In this chapter we denote the N ×M channel matrix by H whose ij-th entry

hij is the complex channel from the i-th transmitter to the j-th receiver. With hj its

j-th column we can write H = [h1 h2 . . . hM ].

We denote by x = [x1, x2, ..., xN ]T the N×1 transmit weight vector, where our

convention is that x∗i is the complex weight applied by the ith transmitter, 1 ≤ i ≤ N .

Thus, the complex baseband message signal transmitted by the ith transmitter is

ci(t) = x∗im(t) and the noiseless complex baseband signal received at the jth receiver

is rj(t) =
(
xHhj

)
m(t).

Since the message signal waveform m(t) is immaterial to the JBNF problem,

we set m(t) ≡ 1 without loss of generality. This leads to the total complex baseband

signal seen by receiver j is rj = xHhj. For notational simplicity, we work with the

complex conjugate of this received signal amplitude sj
.
= (rj)

∗ ≡ hHj x. The complex

number sj is the feedback broadcast by receiver j to all the transmitters to drive each

iteration of the JBNF algorithm.

Thus, we can collect the feedback broadcast by the receivers in time slot k
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into the following vector:

s[k] = HHx[k] +w[k], w[k] ∼ CN
(
0, σ2

wI
)
,∀k (5.1)

where w[k] = (w1[k], ..., wM [k])T represents complex Gaussian noise assumed to be

i.i.d. across receivers and time slots.

We would like to adapt x[k] in a distributed fashion so that xH [k]hj are driven

towards specified nonzero values for the beam targets 1 ≤ j ≤M1, and towards zero

for the null targets M1 + 1 ≤ j ≤M . Even though we are interested only in nonzero

power at a beam target, it is convenient to over-constrain the problem, setting a target

complex amplitude instead, in order to obtain a quadratic framework for optimizing

x. Specifically, suppose that the desired complex amplitude at receiver j is bj, where

bj 6= 0, 1 ≤ j ≤M1 and bj = 0 for M1 +1 ≤ j ≤M . We would like to set x such that,

sj = hHj x = bj, 1 ≤ j ≤M , or in vector form HHx = b, where b = (b1, ..., bM)T .

Thus, under (5.1), the JBNF problem can be recast as the asymptotic mini-

mization of the following quadratic objective function over x:

Jw(x) = Ew
[
‖s− b‖2] = Ew

[∥∥HHx+w − b
∥∥2
]

=
∥∥HHx− b

∥∥2
+Mσ2

w. (5.2)

The minimization of Jw is therefore equivalent to that of

J(x) = ‖HHx− b‖2. (5.3)

We show how this minimization can be achieved in a scalable, distributed fashion in

the next section.
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5.2 Algorithm description

In the noise free case, the conjugate gradient of J(x) with respect to x can be

written as:

∇J(x) =
(
H(HHx− b)

)H
(5.4)

Thus, in view of (5.1), in the noise-free case, the exact gradient descent minimization

of J(x) can be accomplished by

x[k + 1] = x[k]− µH(s[k]− b), (5.5)

where the step size µ is suitably small and positive. If we explicitly write down the

adaptation (5.5) for transmitter i, we get:

xi[k + 1] = xi[k] + µ
M∑
j=1

hij (sj[k]− bj) (5.6)

We can clearly see from (5.6), that the adaptation equation (5.5) for transmitter i

only requires knowledge of its own channel gains to the receivers hij, ∀j, and the

aggregate feedback sj[k]. Specifically, transmitter i does not require knowledge of the

channel gains of other transmitters hmj, m 6= i to the receivers.

Fig. 5.2 illustrates a decentralized implementation of (5.5) in a time-slotted

system. At the beginning of each time-slot, the distributed transmit array uses the

weight vector x[k] to transmit a message signal to the receivers. This is the part

of the time-slot where the useful communication takes place. After this follows the

feedback phase of the time-slot where, each receiver successively broadcasts a com-

mon information signal to the transmit array. Specifically, the j-th receiver sends a
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time

All N transmitters broadcast to all M receivers

time-slot k

Receiver-1 broadcasts back to all transmitters
Receiver-2 broadcasts back to all transmitters

Receiver-M broadcasts back to all transmitters

Figure 5.2: Description of transmission in time-slot k.

short packet that contains a single complex number representing the total complex

baseband received signal, sj[k]. At the end of each time-slot the transmitters up-

date their weights using (5.5). At the beginning of the next time-slot k + 1, weight

vector x[k + 1] is used for the transmission from the distributed array. The commu-

nication between transmitters and receivers proceeds in this fashion until the desired

beam/nullforming is achieved at designated receivers.

5.3 Analytical characterization

In this section, we first discuss the geometric structure of the problem and

then investigate the convergence properties of the iterative algorithm (5.5). Given

that J(x) is convex, and in the absence of noise (5.5) is an exact gradient descent,

the convergence of x[k] follows. The focus of our analysis is on characterizing the

effects of initial condition, noise, and the attainment of the so called power efficient

solution. Subsequently, we also study issues of scalability.

Since we are interested in scaling to a large number of transmitters N , we focus

on the regime N > M (distributed array size larger than the number of receivers),
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and indeed, on NγM . With high probability, therefore, the N × 1 channels {hj, 1 ≤

j ≤ M} are linearly independent. For most of our analysis, we make the latter

assumption, stated formally below.

Assumption 5.3.1. The N ×M channel matrix H has full column rank.

This assumption on the tall matrix H implies that the M ×M correlation

matrix HHH is full rank and positive definite. We denote its ordered eigenvalues by

λ1 ≥ λ2... ≥ λM > 0.

5.3.1 Geometric interpretation of optimum solution

Under Assumption 5.3.1, with R(HH) denoting the range space of HH , one

has b ∈ R(HH), which guarantees the existence of x such that (5.3) is zeroed out:

HHx = b. (5.7)

Since this is an underdetermined system in the typical regimes of interest (N >

M), there exists an entire affine subspace of vectors satisfying (5.7), from which we

would like to choose the power-efficient solution, xe = arg minx∈H ‖x‖ with H ={
x ∈ CN

∣∣HHx = b
}

.

Under Assumption 5.3.1, the M × M matrix HHH is invertible, and the

unique power-efficient solution is given by

xe = H
(
HHH

)−1
b = Ha. (5.8)

Observe that the power efficient solution xe must lie in the signal space S = R(H)

spanned by the columns h1, · · · ,hM of H . Fig.5.3 illustrates this geometric interpre-

tation of xe
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Figure 5.3: Geometric interpretations of the power efficient solution.

We can now completely characterize the affine subspace H of solutions as

H = {x : x− xe ∈ S⊥} (5.9)

where S⊥ = N (HH) is the null space of HH [55]. To see this, note that for any

x ∈ H, HH(x − xe) = b − b = 0. Thus, the affine subspace of solutions to (5.7) is

the translation of the “undesired” subspace S⊥ by the power-efficient solution xe (or

indeed, by any solution x of (5.7)). We will characterize how the particular solution

in this affine subspace that the iteration (5.5) converges to depends on the initial

condition. Before that, we provide an alternative geometric characterization of the

power-efficient solution xe, working within the signal space S.

Remark. As long as Assumption 5.3.1 holds, a solution exists for any choice of

target complex amplitudes b. The minimum transmit power, corresponding to the
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minimum norm solution xe, is

PTX = xHe xe = bH
(
HHH

)−1
b

This depends on the target complex amplitudes b, which can be written as [bTbeam0T ]T

where, bbeam = [b1, ..., bM1 ]
T corresponds to the complex conjugates of the desired

complex amplitudes at the beam targets and 0 is a M −M1 column vector of zeroes

corresponding to the desired zero power at null targets. Hence in principle, we could

choose these complex amplitudes to further optimize the value of the minimum trans-

mit power. Such a choice might not be admissible, because we may wish to constrain

the magnitudes of the entries of bbeam to some values based on the desired SNR at

each beam location. We generally focus on a fixed, and arbitrary, choice of bbeam = 1

for the rest of the chapter.

5.3.2 Convergence in noiseless regime

Behavior of the updates (5.5) in the noiseless case is provided in Theorem 5.1

below. A few features are instructive. First observe that, while it is well known that

convergence must occur to the affine subspace H, existing analyses of such algorithms

fail to characterize the the precise limit point x∞ on H. In contrast this theorem

proves that this limit point is in fact the projection of the intial iterate x[0] on H.

Design implications of this fact is described after the theorem.

The second fact that impacts subsequent noise analysis is as follows. Consider

the error vector defined as ∆[k]
.
= x[k]−x∞. It is shown in the proof that this vector



75

evolves according to:

∆[k + 1] = ∆[k]− µHHH∆[k] =
(
I − µHHH

)
∆[k] (5.10)

Observe as H is tall, the transition matrix
(
I − µHHH

)
has eigenvalues at 1, rep-

resenting modes that are orthonormal to H, and do not decay. To facilitate the

convergence analysis, the theorem in fact proves that that the N × 1 vector ∆[k] lies

in the signal subspace, and can therefore be expressed in terms of a lower dimensional

M × 1 vector δ[k] as

∆[k] = Hδ[k] (5.11)

This vector on the other hand evolves as

Hδ[k + 1] =
(
IN − µHHH

)
Hδ[k] = H

(
IM − µHHH

)
δ[k] (5.12)

where we put subscripts on the identity matrices to specify their dimension. As H

has full column rank, this becomes

δ[k + 1] =
(
IM − µHHH

)
δ[k] (5.13)

and the de facto transition matrix IM − µHHH does not have eigenvalues at 1.

Thus, (5.13) reflects movement along the signal subspace. We explain later why this

reduced state space has important implications to the convergence analysis in the

presence of noise.

Theorem 5.1. Consider (5.5) under (5.1) and Assumption 5.3.1. In the absence of

noise, and assuming that the adaptation gain µ satisfies

|1− µλi| < 1, i ∈ {1, · · · ,M}. (5.14)
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the weight sequence converges to the following limit:

x∞ = limk→∞ x[k] = xe + P⊥Sx[0] = xe + x[0]−PSx[0]

= xe + x[0]−H(HHH)−1HHx[0]

(5.15)

Equivalently, we can express this limit as the projection of x[0] onto the affine subspace

H:

x∞ = ProjH (x[0]) (5.16)

Proof. Recall that any vector x ∈ CN can be expressed as the sum of its projection

onto S = R(H) and its orthogonal complement, i.e., x = PSx+ P⊥Sx. Observe that

the update term in (5.5) lies in the signal space S, for any values of the feedback vector

s[k] and desired complex amplitudes b. Thus, the component of x[0] orthogonal to S

is unaffected by the iterations. Decomposing the weight sequence into its projection

in the signal space and orthogonal to it, as H(s[k] − b) ∈ S, we may rewrite the

iteration as follows:

PSx[k + 1] = PSx[k]− µH(s[k]− b)

P⊥Sx[k + 1] = P⊥Sx[k] ≡ P⊥Sx[0]

(5.17)

Thus, the component orthogonal to the signal space remains stuck at P⊥Sx[0]. On the

other hand, the component restricted to the signal space is follows gradient descent on

a quadratic cost function with a unique global minimum xe, and therefore converges

to xe. To see this, without presuming the existence of a limit point, and treating x∞

as the well defined vector on the right hand side of (5.15), consider ∆[k] = x[k]−x∞.
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In view of (5.17), x[k]− x[0] = PS(x[k]− x[0]). Thus,

∆[k] = x[k]− x∞

= x[k]− (xe + P⊥Sx[0])

= x[k]− xe − x[0] + PSx[0]

= PS(x[k]− x[0])− xe + PSx[0]

= PSx[k]− xe. (5.18)

Note that this N × 1 vector lies in the signal space S, and can therefore be written

as in (5.11) for an M × 1 error vector δ[k]. In the absence of noise,

s[k]− b = HHx[k]−HHx∞ = HH∆[k] = HHHδ[k]

Thus (5.5) becomes (5.10), or in terms of the M×1 error vector δ[k] as in (5.13). Un-

der (5.14), all eigenvalues of IM−µHHH are strictly smaller than one in magnitude,

hence the right-hand side converges to zero. Denoting the limiting value of the error

vectors ∆[k] and δ[k] by ∆∞ and δ∞, respectively, we obtain that ∆∞ = Hδ∞ = 0,

so that, under Assumption 5.3.1, δ∞ = 0. This proves that PSx[k] converges to xe

and hence (5.15).

Finally, we derive (5.16) for the limiting weight. The projection of any N -

vector 0 onto the affine subspace H = xe + S⊥ is xe + y, where y ∈ S⊥ minimizes

the distance of 0 from H:

miny∈S⊥ ||0− (xe + y)||2 = miny∈S⊥||PS0− xe||2 + ||P⊥S0− y||2

where we have decomposed the squared distance across S and S⊥. We cannot change

the first term on the right hand side, but can set the second term to zero by setting
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y = P⊥S0, so that

ProjH (0) = xe + P⊥S0 (5.19)

Plugging in 0 = x[0] completes the proof.

Design prescription for minimizing transmit power: A key implication of the

theorem is that, as long as the initial condition x[0] is in the signal space (i.e., it can be

written as x[0] = Hη for some M×1 vector η), the iterations converge to the power-

efficient (minimum norm) solution xe. To see this, substitute x[0] = Hη into (5.15)

and verify that x∞ ≡ xe. For example, the initialization x[0] = 0, or to a spatial

matched filter to one of the beam targets, say x[0] = h1, guarantees convergence to

the power efficient solution. When initialization in the signal space is not feasible,

then leakage-type mechanisms can be introduced to dissipate the P⊥Sx[0] term that

our present algorithm is unable to perturb. This is explored further in Section 5.4.3.

Effect of linear dependence: Should Assumption 5.3.1 be violated (i.e., if the

channel vectors {hi} are not linearly independent), then b may not be in the range

space of HH . In the latter instance, the minimum value of the cost function J(x) is

not zero. Nonetheless under (5.14), in the noise free case the gradient asymptotically

converges to zero:

lim
k→∞

H(HHx[k]− b) = 0 (5.20)

even though HHx[k] does not converge to b. As J(x) is convex, such a limit point

is still its global minimum.
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5.3.3 The effect of noise

We now extend the preceding arguments and analyze the impact of noise in

the feedback:

s[k] = HHx[k] +w[k], w[k] ∼ CN (0, σ2
wI). (5.21)

We characterize the means and covariances of the weight vectors {x[k]} in

Theorem 5.2 below. The noisy version of (5.13) is used to show in the theorem that

noise does not cause the {x[k]} to drift along the affine subspace H, and the error

covariance is bounded with a limit point.

We first note that even with noise, the update term in (5.5) lies in S, hence

we still have

P⊥Sx[k] ≡ P⊥Sx[0]

Define the error vectors ∆[k] and δ[k] as before, using (5.18) and (5.11). The error

term driving the iterations is now given by

s[k]− b = HHx[k] +w[k]−HHx∞ = HH∆[k] +w[k] = HHHδ[k] +w[k]

Thus we obtain,

∆[k + 1] = ∆[k]− µH
(
HH∆[k] +w[k]

)
=
(
I − µHHH

)
∆[k]− µHw[k] (5.22)

Hδ[k + 1] =
(
IN − µHHH

)
Hδ[k] = H

(
IM − µHHH

)
δ[k]− µHw[k] (5.23)

There are two key points to make about these equations. First with λi as in Theorem

5.1, the transition matrix in (5.23) is asymptotically stable, though that in (5.22)

is not. More importantly, in both equations, the effect of noise is masked by the
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channel matrix H , precluding the possibility of Brownian motion orthogonal to the

signal space.

Theorem 5.2. Consider (5.5) under (5.1) and Assumption 5.3.1, with noisy feedback

modeled as in (5.21). Assume that the adaptation gain µ satisfies (5.14). Then the

mean of the weight sequence converges to the same limit as in the noiseless setting:

limk→∞E [x[k]] = x∞ = xe + P⊥Sx[0] = xe + x[0]−PSx[0]

= xe + x[0]−H(HHH)−1HHx[0] = ProjH (x[0])

(5.24)

The covariance Σx[k] = E
[
(x[k]− E[x[k]]) (x[k]− E[x[k]])H

]
converges to the fol-

lowing limit:

Σ = lim
k→∞

Σx[k] = µσ2
wH(2HHH − µ(HHH)2)−1HH . (5.25)

Proof. Observe (5.22) and (5.23) hold. Define the mean vectors

m∆[k] = E [∆[k]] , mδ[k] = E [δ[k]] (5.26)

and the corresponding covariance matrices

Σ∆[k] = E
[
[∆[k]− E[∆[k]]] [∆[k]− E[∆[k]]]H

]
,

Σδ[k] = E
[
[δ[k]− E[δ[k]]] [δ[k]− E[δ[k]]]H

]
(5.27)

Taking expectations on both sides of (5.22) and (5.23), it is easy to see that the means

follow the same trajectories as in the noiseless setting, and therefore converge to zero

under the assumptions of Theorem 5.1. Furthermore, subtracting out the means from

(5.22) and (5.23) and then taking outer products, it is easy to see that we obtain the
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following:

Σ∆[k + 1] =
(
I − µHHH

)
Σ∆[k]

(
I − µHHH

)
+ µ2σ2

wHH
H (5.28)

HΣδ[k + 1]HH = H
(
I − µHHH

)
Σδ[k]

(
I − µHHH

)
HH + µ2σ2

wHH
H (5.29)

While Σ∆[k] = Σx[k] is the covariance of the original error vector, we find it more

convenient to work with the second recursion, which is the covariance of the repre-

sentation of the error vector in the signal space. From (5.29), we see that the limiting

covariance Σδ must satisfy

HΣδH
H = H

(
I − µHHH

)
Σδ

(
I − µHHH

)
HH + µ2σ2

wHH
H

Pre-multiplying byHH and post-multiplying byH , and then pre- and post-multiplying

by (HHH)−1, we obtain that

Σδ =
(
I − µHHH

)
Σδ

(
I − µHHH

)
+ µ2σ2

wI (5.30)

Under the convergence condition (5.14), this Lyapunov equation has a unique positive

definite solution. We can now verify that this solution is given by

Σδ = µσ2
w(2HHH − µ(HHH)2)−1 (5.31)

To see this, set A = HHH , and note that (2A−µA2)−1 commutes with I −µA, as

both can be expressesd as power series in A. Let us now substitute Σδ = µσ2
w(2A−

µA2)−1 in the right-hand side of (5.31) and check that it simplifies to yield the left-
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hand side:

(I − µA)µσ2
w(2A− µA2)−1 (I − µA) + µ2σ2

wI

= µσ2
w(2A− µA2)−1 (I − µA) (I − µA) + µ2σ2

wI

= µσ2
w(2A− µA2)−1

(
I − 2µA+ µ2A2

)
+ µ2σ2

wI

= µσ2
w(2A− µA2)−1

(
I − µ(2A− µA2)

)
+ µ2σ2

wI

= µσ2
w(2A− µA2)−1 − µ2σ2

wI + µ2σ2
wI

= µσ2
w(2A− µA2)−1 = Σδ

This proves (5.31). Since ∆[k] = Hδ[k], we have that Σ∆[k] = HΣδ[k]HH . Plug-

ging in (5.31) yields the final covariance limit (5.25).

Theorem 5.2 shows that, even with noise in the feedback, the mean of the

weight vector x[k] converges to the same limit as in the noiseless setting, and the

limiting covariance is finite. It is worth highlighting the structure of the error revealed

through the proof. As before, the N -dimensional error vector ∆[k] = x[k] − x∞ is

constrained to the M -dimensional signal space S, and can therefore be described in

terms of an M -dimensional error vector δ[k]. The limiting M -dimensional covariance

Σδ is positive definite under our assumptions, whereas the limiting N -dimensional

covariance Σ∆ = HΣδH
H is positive semi-definite, with M positive eigenvalues, and

N −M zero eigenvalues.

We also emphasize that the component of x[k] orthogonal to the signal space

remains fixed at P⊥Sx[0] throughout the iterations, whether or not there is noise in the

feedback. The implication of this is that noise in the feedback cannot cause drift in

x[k]. This is in stark contrast to standard adaptive filtering, where noise components
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orthogonal to the signal space can cause coefficient drift, which is typically remedied

by mechanisms such as tap leakage. The key difference in our setting is that the effect

of noise at the receivers, when used for transmitter adaptation, is seen through the

channel matrix H , and hence is restricted to the M -dimensional signal space. Thus,

no additional mechanisms are required to handle feedback noise, even in the regime

NγM .

We note that, even if Assumption 5.3.1 is violated (i.e., the channel vectors

{hi} are not linearly independent), noise does not induce drift. To see this, note that

drift must occur along the null space of HH . This is so as should x = x∗ minimize

J(x) and η be in the null space of HH then as HHη = 0, x = x∗ + η must also

minimize J(x). Now for any such η there holds:

ηHx[k + 1] = ηH (x[k]− µH(s[k]− b))

= ηH
(
x[k]− µH(HHx[k] +w[k]− b)

)
= ηHx[k].

Thus, the noise has no impact along the null space of HH . This argument can be

formalized further to show that even when H does not have full column rank, noise

does not induce drift.

5.3.4 Convergence speed vs. residual variance

One of our goals is to study convergence speed and residual variance as the

number of transmitters N increases, with the number of receivers M fixed. To this

end, we first quantify the effect of λi and the selection of µ.
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Define Λ = diag {λ1, · · · , λm} as the eigenvalue matrix of HHH under the

ordering λi ≥ λi+1 > 0. Then, with U ∈ CN×N , V ∈ CM×M unitary matrices, one

has

H = U

Λ
1
2

0

V . (5.32)

Then from (5.11) and (5.13) one readily obtains:

∆[k] = U

(I − µΛ)k 0

0 0

UH∆[0]. (5.33)

Thus, the convergence rate is constrained by the largest among |1−µλi|. Specifically

‖∆[k]‖ ≤ |1−µλi|k‖∆[0]‖. Subject to (5.14), the µ that minimizes the largest among

|1− µλi| is, [56],

µ∗ =
2

λ1 + λM
. (5.34)

In this case, the largest value of |1 − µλi| is given by −(1 − µλ1) = 1 − µλM > 0,

which simplifies to

C − 1

C + 1
≡
(

1− 2

C + 1

)
(5.35)

where C = λ1
λM

is the condition number of the channel matrix H . Unsurprisingly, the

convergence rate improves as C decreases (i.e., as the eigenvalue spread gets smaller),

and C = 1 (no spread) yields deadbeat one step convergence.

A more conservative choice,

µ =
1

λ1

, (5.36)
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ensures that 0 < 1 − µλi ≤ 1 for all i. In this case, the convergence rate is given

by 1 − µλM = 1 − λM
λ1

= 1 − 1
C

. As with the optimal choice, the convergence rate

improves with declining C and achieves deadbeat status when C = 1.

The choice of µ = µ∗, however, may lead to a larger residual variance. To see

this observe that (5.25) and (5.32) yield:

Σ = µσ2
wH(2HHH − µ(HHH)2)−1HH

= µσ2
wH

(
V H

[
2Λ− µΛ2

]
V
)−1

HH

= µσ2
wU

Λ
1
2

0

V (V H
[
2Λ− µΛ2

]
V
)−1

V H

[
Λ

1
2 0

]
UH

= µσ2
wU

Λ
1
2

0

V V H
[
2Λ− µΛ2

]−1
V V H

[
Λ

1
2 0

]
UH

= µσ2
wU

(2I − µΛ)−1 0

0 0

UH . (5.37)

Of course a smaller µ results in a smaller steady state covariance. At the same time

under (5.34) there obtains

µ∗

2− µ∗λi
≤ µ∗

2− µ∗λ1

=
2

2(λ1 + λM)− 2λ1

=
1

λM
.

Thus,

0 ≤ Σ ≤ σ2
w

λM
I. (5.38)
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On the other hand if µλ1 ≤ 1, a condition that guarantees convergence, but may not

be satisfied by µ = µ∗, one obtains the smaller bound of

µ

2− µλi
≤ µ

2− µλ1

≤ µ

=
1

λ1

,

leading to

0 ≤ Σ ≤ σ2
w

λ1

I. (5.39)

5.4 Behavior with large N

In this section we study the performance of the JBNF algorithm as N , the

number of transmitters, becomes large, with the total number of beam and null targets

fixed at M . Our goal is to study the convergence rate, the power efficient solution xe

and noise performance. We now introduce subscripts to explicitly denote dependence

on N . For example, HN is the corresponding channel matrix, the eigenvalues of

HHH , are λi,N . Section 5.4.1 shows that the convergence rate is bounded from below

as N grows, under mild deterministic assumptions on HN . Section 5.4.2 examines

convergence speed, steady state residual variance and the nature of the power efficient

solution as N grows to infinity, and the channels are Rayleigh fading.

5.4.1 Convergence speed with deterministic channels

First suppose that µN is fixed at some value µ0 such that µ0λ1,N < 1. In

this case, (5.14) is satisfied and convergence rate does not decline if µ0λM,N does not
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decline with N .

The channel matrix grows from N transmitters to N + 1 as:

HN+1 =

 HN

gHN+1

 (5.40)

with

gN+1 = [h∗N+1,1, h
∗
N+1,2, . . . , h

∗
N+1,M ]>, (5.41)

where gHN+1 is the (N+1)-th row of HN , see (5.1). We then have the following result.

Theorem 5.3. Consider the family of JBNF algorithms (5.5) with an increasing

number of transmitters N > M while keeping the step size µN fixed at µ0. Then the

convergence rate of the algorithm is nondecreasing in the number of transmitters N

provided µ0λ1,N < 1.

Proof. As µ is fixed at µ0 and µ0λ1,N < 1, it suffices to show that for all l < N (a)

µ0λM,N < 1, and (b) µ0λM,l is nondecreasing in l. Observe from (5.40) that

HH
l+1Hl+1 = HH

l Hl + gL+1g
H
L+1.

Then (a) and (b) follow from the fact that for any pairs of compatibly dimensioned

Hermitian matrices A and B,

λmin(A+B) ≥ λmin(A) + λmin(B) and λmax(A+B) ≤ λmax(A) + λmax(B). (5.42)

Note that this result does not depend on any specific channel model and holds

for all fading and LoS channels. However, using a fixed step-size µ0 while increasing
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the number of transmitters is too restrictive: for large N , the value of µ0 required is

unnecessarily small. Thus, we now consider the setting when µN is allowed to change

with N . Recall from Section 5.3.4 that the convergence rate is bounded from below

if and only if the condition number

CN =
λ1,N

λM,N

. (5.43)

is upper bounded. To this end we provide a sufficient condition on the hi that

assures the uniform boundedness of CN . The condition is known in the adaptive

control literature as the persistently spanning or excitation condition, [50]-[51]. It

requires that channel submatrices seen by each new batch of transmitters should be

sufficiently well conditioned. A feature of this condition is that it can be checked

for any deterministic set of channels. However, we show later that i.i.d. complex

Gaussian channels asymptotically meet the condition.

Theorem 5.4. Suppose HN ∈ CN×M is as in (5.40) and gi ∈ CM as in (5.41).

Define λi,N as the eigenvalues of HH
NHN and CN as in (5.43). Suppose there exist

0 < αl and an L such that for all i and gi defined in (5.40),

0 < α1I ≤
i+L∑
m=i

gmg
H
m ≤ α2I.

Then for all N ≥ L, CN is uniformly bounded in N .

Proof. The result follows from the facts that

HH
NHN =

N∑
m=1

gmg
H
m;

and the inequalities (5.42).
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5.4.2 Asymptotics with rayleigh fading channels

We now derive a variety of results for large N , assuming i.i.d. (across all

transmitter-receiver pairs) complex Gaussian channels. All draw upon the following

result from [57].

Theorem 5.5. Suppose the channel coefficients hij ∼ CN (0, 1), i ∈ {1 . . . N}, j ∈

{1 . . .M} and are i.i.d. Then for any given M , the condition number CN of the matrix

HH
NHN satisfies limN→∞CN = 1 with probability one. Further, with probability one,

there holds

lim
N→∞

λ1,N

N
= lim

N→∞

λM,N

N
= 1 (5.44)

Referring to the discussion in Section 5.3.4, this implies that the optimal choice

(5.34) and the conservative choice (5.36) of µN are asymptotically equivalent, and that

we asymptotically obtain arbitrarily fast convergence, both with probability one as

N →∞. Further, the covariance bounds (5.38) and (5.39) imply that the covariance

tends to zero. We summarize these results in the following theorem.

Theorem 5.6. Consider the algorithm

xN [k + 1] = xN [k]− µNHN(s[k]− b) (5.45)

and suppose the conditions of Theorem 5.5 hold. Then there exists a sequence of µN

such that in the noise free case convergence to xN,∞ occurs arbitrarily fast, and in

the presence of noise

lim
N→∞

ΣN = 0. (5.46)

with probability one.
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Finally, recall that any initialization in the range space of HN causes conver-

gence to the power efficient solution xe,N in the noise free case. In the presence of

noise, convergence to the same point occurs in the mean. In view of Proposition 5.5

and (5.8) there holds:

lim
N→∞

xe,N = HN(HH
NHN)−1bN = 0.

Further HN(HH
NH)−1

N H
H
N = UN

IN 0

0 0

UH
N . Thus as, UN is unitary, for every

N , we have
∥∥(I −HN(HH

NH)−1
N H

H
N

)
x[0]

∥∥ ≤ ‖x[0]‖. Thus, one obtains with prob-

ability one that limN→∞
∥∥ProjHN

(x[0])
∥∥ ≤ ‖x[0]‖, and the following.

Theorem 5.7. Suppose the conditions of Theorem 5.6 hold with |1− µNλi,N | < 1

for all i. Then in the noise free case for every xN [0] there holds with probability one,

limN→∞ ‖xN,∞‖ ≤ ‖xN [0]‖. Further when xN [0] is in the range space of HN then

with probability one, limN→∞ xN,∞ = 0.

To summarize, for channels that are i.i.d. CN (0, 1), we have established the

following results with probability one as N goes to infinity.

(i) Convergence is arbitrarily fast.

(ii) Residual variance goes to zero.

(iii) Initialization in the signal space drives the steady state trasmit power to zero.

(iv) Regardless of initialization the steady state transmit power is no greater than

the initial transmit power.
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(v) In the presence of noise the last two occur in the mean.

Items (ii), (iii) and (v) together demonstrate the following. As N tends to

infinity, should one initialize in the signal space using e.g. the design prescription on

Section 5.3.2, then even with noise the limit point approaches almost surely, a zero

transmit power solution in the mean with zero covariance.

5.4.3 Leakage to minimize the total transmit power

Initialization in the signal space ensures the attainment of the power efficient

solution in the noise free case, and that in the presence of noise this solution is attained

in the mean. However, such initialization may not always be feasible; for instance,

if the channel matrix changes, a weight vector that was previously in the subspace

H may no longer be in that space. In such cases, we would like our algorithm to

automatically adapt to the new power efficient solution. To accomplish this, we can

introduce leakage, a popular device both in adaptive filtering and control [58]-[54].

Leakage involves the addition of a penalty term proportional to the total trans-

mit power to the objective function in (5.3) to get a new objective function:

J2(x) =
(
xHH − bH

) (
HHx− b

)
+ α

(
xHx

)
(5.47)

where α > 0 is a constant that can be chosen to penalize power inefficiency to a

greater or lesser degree as desired. Note that the new objective function J2(x) is also

quadratic and convex, and also allows a distributed gradient search implementation:

x[k + 1] = (1− µα)x[k]− µH(s[k]− b). (5.48)
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In this leaky algorithm (5.48), each transmitter only needs local channel knowl-

edge and aggregate feedback, just as in the original JBNF algorithm (5.5). Further-

more, it can be easily shown that (5.48) is guaranteed to achieve the solution to the

JBNF problem with the minimum total transmit power for any arbitrary initializa-

tion x[0]. However, the new algorithm (5.48) suffers from one important limitation

compared to (5.5): Proposition 5.5 that guarantees that the convergence can be made

arbitrarily fast as the network size increases to infinity, may not hold. In practice,

we can use our freedom in choosing the parameter α that determines the size of the

penalty term in (5.48) to gain the benefits of power minimization without compro-

mising convergence speed. We illustrate this with a numerical example in Section

5.5.

5.5 Simulation results

We now present results of some numerical simulations to illustrate the proper-

ties of our proposed JBNF algorithm, specifically its scalability, power efficiency and

flexibility to adapt to channel variations. We consider a JBNF system with N = 20

transmitters and M = 5 receivers of which M1 = 2 are beam targets and the remain-

ing 3 receivers are null targets. All channel gains are modeled as i.i.d. ∼ CN (0, 1),

and the noise level is taken to be −40 dB at each receiver.

First, we consider initialization of transmit weights to zero. Fig. 5.4 shows the

resulting variation of the cost function as well as the individual received signal levels

at each receiver under the JBNF algorithm. We see that, within about 40 iterations,
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Figure 5.4: Convergence of JBNF algorithm with initialization of transmit weights as

zeros.

the cost function as well as the power levels at the null targets have converged to a

level close to the noise floor of −40 dB. The convergence at the beam targets is even

faster.

If the weights are initialized randomly from a complex Gaussian distribution

on the other hand, we expect a non-zero component orthogonal to the signal space

which remains constant, and leads to wasted transmit power. This is confirmed by Fig.

5.5-(a)which shows that the transmit power does not converge to that corresponding

to the optimum weights. In contrast, for zero initialization of weights, we see from
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Figure 5.5: In (a,b,c), blue line represents the total transmit power, and red dashed

line represents the power corresponding to power efficient solution.
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algorithm.
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Fig. 5.5-(b), that the efficient power solution is reached within 50 iterations. Another

interesting initialization within the signal space is to set the transmit weights to a

linear combination of the channel vectors to the beam targets only. Fig. 5.5-(c)

shows that this converges to the efficient power solution even faster, within about 20

iterations, possibly because we start with a solution which is already focusing towards

the beam targets. Fig. 5.6 show the deviation of transmit weights from optimal

weights under the JBNF algorithm corresponding to the three cases in Fig. 5.5 in the

same order and confirm the observations stated. Note that, since each transmitter

knows its own channel, the only coordination required among transmitters for such

an initialization is agreement on the coefficients of the linear combination to be used.

Fig. 5.7 shows the convergence of the JBNF algorithm when the weights are

randomly initialized, but using the leakage term described in Section 5.4.3. It shows

that we attain the desired beams and nulls, as well as the minimum transmit power.

Fig. 5.8 shows the converged average value of the objective function, J(x) for

different noise levels. Clearly, the power at the null-targets is reduced to approxi-

mately the noise floor for the range of SNRs plotted in Fig. 5.8.

Next, we consider the effects of phase drifts on the performance of the JBNF

algorithm. We know from the previous literature [19] that the nullforming process is

highly sensitive to phase errors. So this is an important measure of the robustness

of our algorithm. Fig. 5.8 shows the converged average value of J(x) against the

rate of phase drifts. For this plot, we assume that the time between iterations of the

algorithm is Ts = 50 ms, and the phase drift over this interval varies from 0 to about
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Figure 5.8: JBNF objective function as a function of SNR and phasedrift(N = 20,

M = 5, µ = 0.005).

5◦ in the plot.Noise power is −40dB. We can see that the algorithm is able to achieve

deep nulls even with such large phase errors.

Fig. 5.9 shows scalability, in terms of improved convergence rate, as the num-

ber of transmitters N increases. The step-size parameter µ is selected as per (5.34),

the channels are chosen i.i.d. complex Gaussian, and there is no noise. We set M = 2

with one beam and one null target. We see that the number of iterations required for

the algorithm to drive the cost function to −60 dB decreases with N as described in

5.4.2.

We presented scalable distributed algorithms for nullforming in previous chap-

ters and for joint beam and nullforming in this chapter. We showed that these algo-

rithms are scalable to large arrays and robust to noise and phase drifts. In the next

chapter, we provide conclusion of the body of work presented in this thesis and also
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provide some areas of opportunity for future work in this field.
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CHAPTER 6
CONCLUSION AND FUTURE RESEARCH

In this thesis, we have presented a set of scalable algorithms for nullforming

at a single receiver and joint beam and nullforming at multiple receivers using dis-

tributed transmitters by forming a virtual antenna array. We also presented scalable

algorithm for nullforming at single receiver which does not assume prior frequency

synchronization. Robustness analysis of the single receiver nullforming algorithm was

shown.

These algorithms are iterative in nature and have a distributed and scalable

quality since each transmitter only needs knowledge of its own channel gain to the

receiver( or receivers) in place of the entire channel state information which is gener-

ally required by existing nullforming algorithms. This knowledge alongwith feedback

from the receiver(or receivers) is enough for the transmitters to evaluate their up-

date equation for the next iteration thereby driving the desired beam or null at the

receiver(or receivers). Distributed nullforming specifically poses challenges that call

for special attention. Research work presented in this thesis achieves the mentioned

goals and overcomes these challenges in a purely distributed fashion.

6.1 Open problems

Some open problems that are logical extensions to this thesis are as under

1. Distributed nullforming at multiple receivers with phase-only adap-

tation
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Chapter 2 discussed a provably convergent, scalable, distributed nullforming al-

gorithm that allows each transmitter to transmit at full power while steering a

null toward a designated receiver through adaptation of the transmission phases

using decentralized gradient descent. A natural extension to this scenario would

be to try to form nulls at multiple receivers using phase-only adaptation. This

would be non-trivial but interesting. The JBNF algorithm that uses amplitude

and phase adaptations for forming beams at some receivers and nulls at oth-

ers simultaneously could be used to achieve this goal but since it would be a

multiple-null case, JBNF might lead to the trivial solution of driving all am-

plitudes of weight coefficients to zero. Excellent applications of this would be

in cooperative jamming or communications. For example for wireless security

at physical level relying on nodes blanketing a landscape with full power jam-

ming signals while protecting a set of cooperating receivers through forming

nulls at their location. For a distributed array of N transmitters and M desired

null target receivers, this would mean minimizing the following received signal

power:

J(θ) =
M∑
l=1

|sk|2 (6.1)

where, sk is the total complex baseband signal received at the k-th receiver

provided the same message be transmitted by all transmitters. This task of

finding a set of algorithms which would be distributed in nature and also scalable

in terms of number of feedback messages and required channel state information

at the transmitters, is complicated by the fact that unlike Chapter 2, there are
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several receivers to take care of and hence the cost function which was already

highly non-convex for single null case has become even more complicated.

2. Scalable algorithms for spatial multiplexing

Chapter 5 discussed a gradient descent algorithm scalable with number of trans-

mitters which could be used as building block for spatial multiplexing. Parallel

joint beam and nullforming algorithms can be run at the transmitters for dif-

ferent set of messages to transmit multiple messages simultaneously. But this

would call for an initial training phase the time complexity of which would be

dependent on the number of messages that need to be sent and hence would not

be scalable with increasing number of receivers and hence increasing number of

messages that might be expected to be sent simultaneously. A next step could

be to design an improved set of algorithms to implement spatial multiplexing

which would be scalable in nature.

Apart from these, some other interesting avenues for future exploration are listed as

follows

• Scalability with receivers Scalability properties of present body of algorithms

with increasing number of receivers can be studied. Also, work can be done

to find an approximate relationship between the number of transmitters and

receivers that would be required for nullforming using our algorithms. Such

bounds would also help from a practical implementation point of view.

• Receive-side beamforming The present body of algorithms can be extended
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to employ the receivers instead of transmitters for distributed beamforming.

Essentially the receivers can be made to use smart methods to combine the

received signals. Compression and/or quantization can be used to improve

performance over existing systems.

• MAC for distributed antenna arrays From practical implementation point

of view, our proposed methods for the physical layer need corresponding struc-

ture at the higher layers. Medium access control for distributed antenna arrays

in general is an open area for research. Specifically, simple questions like when

should the transmitters in the virtual array decide to transmit, does it makes

sense for all transmitters to do carrier sensing, etc., need to be addressed.

• Experimental demonstration of nullforming Some work done by us to

experimentally demonstrate the ideas presented here can be brought to comple-

tion. Specifically, the work done to build the experimental setup to demonstrate

beamforming using reciprocity on software-defined radios was used and some

parts of the setup were modified to try to effect the nullforming algorithm that

requires phase-only updates. This work can be completed in order to present one

of the first demonstrations of distributed nullforming on fully wireless platform.

• Experimental demonstration of JBNF Once nullforming has been experi-

mentally demonstrated the next step can be to try to implement the joint beam

and nullfomring algorithm practically.
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