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ABSTRACT

The objective of manufacturing test is to separate the faulty circuits from the

good circuits after they have been manufactured. Three problems encompassed by

this task will be mentioned here.

First, the reduction of the power consumed during test. The behavior of the

circuit during test is modified due to scan insertion and other testing techniques.

Due to this, the power consumed during test can be abnormally large, up to several

times the power consumed during functional mode. This can result in a good circuit

to fail the test or to be damaged due to heating.

Second, how to modify the design so that it is easily testable. Since not every

possible digital circuit can be tested properly it is necessary to modify the design

to alter its behavior during test. This modification should not alter the functional

behavior of the circuit. An example of this is test point insertion, a technique

aimed at reducing test time and decreasing the number of faulty circuits that pass

the test.

Third, the creation of a test set for a given design that will both properly

accomplish the task and require the least amount of time possible to be applied.

The precision in separation of faulty circuits from good circuits depends on the

application for which the circuit is intended and, if possible, must be maximized.

The test application time is should be as low as possible to reduce test cost.

This dissertation contributes to the discipline of manufacturing test and will

encompass advances in the afore mentioned areas. First, a method to reduce the

power consumed during test is proposed. Second, in the design modification area,

a new algorithm to compute test points is proposed. Third, in the test set creation

area, a new algorithm to reduce test set application time is introduced. The three

algorithms are scalable to current industrial design sizes. Experimental results for
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the three methods show their effectiveness.
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CHAPTER 1

INTRODUCTION

This document is organized as follows. This chapter outlines the purpose

of this work and gives a review of different Design for Test (DFT) techniques.

Chapter 2 contains the proposed method for generating low power test sets both as

part of ATPG (Automatic Test Pattern Generator) and as a post-processing step

on a previously created test set. Chapter 3 presents the proposed algorithm for

test point insertion that finds observation point locations. Chapter 4 introduces

the ATPG heuristics that achieve small test sets in a scalable manner. Finally,

Chapter 5 reviews and concludes this thesis.

1.1 Motivation

Every year and a half, according to Moore’s law, the transistor count and

henceforth the gate count in a typical industrial design becomes doubles. Also,

every few years the size of the transistors used shrinks. As these trends continue,

several new issues become relevant in the testing of VLSI circuits. Our focus is

addressing three of these problems using different heuristics to find solutions to

them. Two of the problems share the same objective but through very different

means making them separate problems. It is not relevant to find a final or best

solution to the three issues addressed since they are NP-hard problems: it is

therefore believed that an optimal solution cannot be found without utilizing O(en)

(where n is the size of the problem, in this case the size of the circuit in the number

of gates) computing time. Also, as testing technology changes a usable solution

may need to be reviewed and tuned, or may even become obsolete.

The first of the addressed problems is the need for low power testing that

appears in some designs. When a response to a test vector is captured by state
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elements in scan testing, the switching activity of the circuit under test may be

large resulting in abnormal power dissipation and supply current demand. High

supply current may cause excessive voltage supply droops leading to larger gate

delays which may cause good chips to fail tests. Excessive power dissipation may

cause hot spots that could damage the circuit under test. Given this problem, we

propose a method that can be used to create a low power test set or to modify in

a post-processing step an existing test set to reduce its power.

The second addressed problem regards circuit modification for testability.

In this case our objective will be to reduce test pattern count and therefore test

cost. As previously explained, the logic gate count of typical industrial designs

continually increases and pattern count tends to grow with the size of the design.

The increasing size of industrial circuits also impacts the time consumed by an

ATPG to create a test set, which also tends to grow with the design size. Six years

ago, a technique called test compression started to be used on industrial designs.

Test compression may reduce data volume and test application time by a factor

that can vary from ten to a couple of thousands but consumes around 1.5X to

5X the time spent in test generation [1]. Given this time overhead, commercial

ATPGs started using faster, but less effective (in terms of pattern count) engines

based on quicker compaction schemes. These two effects combined to create the

need for solutions that address the pattern count increase problem for the next

generation of designs. The method for identification of test points should at least

work with one existing ATPG set of heuristics, ideally the method would be general

to any ATPG, and should identify a different set of test points for each ATPG set

of heuristics or a set of test points independent of the ATPG. Two types of test

points exist: control points and observation points. In this work we will focus

only on observation points because the selection of control points requires different

techniques.
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The third addressed problem is about pattern count growth. The approach

followed is the creation of an ATPG set of heuristics capable of achieving small test

sets. The newly developed set of heuristics are more time consuming than the ones

previously utilized, but their run time growth normalized to their increase in size

is almost constant. This property makes them scalable to industrial designs. Since

they are dependent only on ATPG modifications, they are compatible with test

point insertion. However, the set of test points computed for the same circuit with

different ATPG heuristics may differ because of the properties of the test point

computation algorithm.

For the reasons explained at the beginning of this introduction, the three

methods proposed do not intend to be final solutions to the problems mentioned.

Instead, they are designed to improve on the previously known methods and be

relevant during a certain time frame.

1.2 Test of Digital Circuits

Manufacturing test is done after a circuit comes out of the manufacturing

line to determine the presence of defects. The possible defects that are often found

in a VLSI circuit occur due to random particles, process defects and lithography

issues [2][3] that may make some defects design dependent. A representation of

the behavior of the circuit in the presence of a defect is used as a surrogate for

the actual defect; this representation is called a fault model. Most manufacturing

defects are detected using the stuck-at fault model. However, in recent technologies

the transition fault model detects a significant fraction of the defects. These models

are described in Section 1.2.3.

The manufacturing test of a circuit that is composrised of only combinational

logic is a relatively easy task. The circuit inputs can be set to the desired values

and the circuit outputs can be observed. The set of zeros and ones applied to the
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circuit inputs is called a test vector, and the circuit outputs are called the circuit

under test response.

On the other hand, the test of sequential circuits is a more complicated task.

The circuit sequential elements need to be set to the desired values, called the

circuit state. Then a clock pulse needs to be applied to capture the circuit response

for measuring. Scan is a technique applied to the sequential elements of a circuit

that enables the setting of the circuit state. This simplifies the task of testing a

sequential circuit making it similar to the test of a combinational circuit.

Given the size of present day circuits, the task of creating a test vector set for

all possible manufacturing defects that a circuit may have is automated. Powerful

ATPGs are employed to this effect. These ATPGs tools are based on different

search algorithms devised for this task.

In this Section, some principles of manufacturing test will be introduced along

with commonly used Design For Test (DFT) techniques. We will discuss: defects,

scan, two of the existing fault models, one of the algorithms to create a test for a

given fault (D algorithm), Built-In Self Test (BIST) and test compression.

1.2.1 Defects

While the causes and expressions of defects are various, they have been, in

the past, divided into two major categories. Shorts, which occur when current

conduction is present but not desired and opens, which occur when conduction is

not present but it is desired. The behavior of these types of defects is determined

by its location, whether in the transistor structure or in the interconnect between

transistors.

Manufacturing processes that use aluminum tend to have more short [4]

defects than open defects. Both extra conductive material and lack of insulating

material can cause a short. These two mechanisms can appear due to:
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• Photolithographic printing errors

• Conductive particle contamination

• Incomplete etch

• Incomplete metal polish

• Crack in the insulator

• Gate oxide defect causing pinhole

Displaying an opposite behavior to shorts, opens also appear due to the

opposite reasons. Which are: missing conductive material or extra insulating

material. These can happen due to:

• Photolithographic printing errors

• Step coverage

• Incompletely filled via

• Electromigration

• Silicide agglomeration

• Incomplete via etch or via foreign material

• Insulating particle contamination

A single isolated problem is not always the cause of defective behavior,

sometimes a circuit parameter is out of specification across a wide area. This

may cause failures or susceptibility to other problems like temperature effects and

crosstalk.

In manufacturing processes at the 130nm node and below, other defect

mechanisms start appearing with increasing frequency. They are related to the
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transition from aluminum to copper that entails a change in the process. Also, to

the appearance of optical defects due to layout features being below the wavelength

of light used during photolithography and also to design related defects [2].

Historically, all testing was functional, and asked the question “Does

the device do what is supposed to do?”. . . For digital logic, functional

tests became too expensive to develop. . . As a result, functional tests

in production have largely (but not completely) been replaced by

structural tests. Structural tests changed the basic questions being

asked by test, and expanded the “Does it work?” question into a new

question and syllogism: “Are all circuit elements present and working?

If so, and the design is correct, then it must work” [2].

Given this new approach to the testing of digital circuits, new techniques

have been developed. These include scan, fault models (as a surrogate for the

actual defect), test generation algorithms (that target faults instead of defects),

BIST and test compression (to reduce test data volume and test application time).

1.2.2 Scan Based Test

To test a digital circuit several test vectors are applied to its inputs. Then,

the circuit under test (CUT) response, which also consists of another stream of

zeros and ones, is analyzed. If the CUT responses match the golden (fault-free)

responses, then the circuit is considered to be functioning properly. The input test

vectors and their responses are stored in an Automatic Test Equipment (ATE),

which applies the tests to the CUT and analyzes its responses. Figure 1.1 shows a

diagram of this process.

To detect a fault, a difference between the golden and the CUT responses must

be created. For this purpose, at least one fault must be activated and propagated

to an output. As previously stated, ATPG tools are used for this purpose based on
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Figure 1.1: Manufacturing test of a circuit. From [5]

different search algorithms. For a given fault, an ATPG will either create a test for

it or prove it un-testable (redundant). Some of these are the PODEM, FAN and

D algorithms [6]. These algorithms work by searching the space of possible input

assignments to find a combination that will detect a given fault. The D-algorithm

will be reviewed in more detail in Section 1.2.4.

The CUT may contain sequential elements, namely flip-flops or latches.

Sometimes a test vector for a given fault f requires that one or more of the sequential

elements be assigned to a specific logic value. To test f when this occurs, the ATPG

needs to create another time frame and justify those assignments to circuit inputs,

i.e. to assign input values that will set these gates to the desired values. The

result of this is that a large percentage of faults now become un-testable due to

the sequential elements. To cope with this problem a technique called scan was

proposed [7].

In scan, a subset of the circuit sequential elements is replaced with scan

cells. Full scan is when all the circuit’s sequential elements are replaced. There

are many possible implementations of a scan cell; the most common is shown in
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Figure 1.2: A scan cell

Figure 1.2. When using scan, the circuit sequential elements can be set to arbitrary

combinations of values by shifting through Scan In the desired combinations. This

enables the test of previously un-testable faults but it may set the circuit into

non-functional states.

Through scan, we can control the values that a scan cell will assume by

shifting in arbitrary values through the Scan In input, the scan cell output can

now be considered a new circuit input, or pseudo-primary input (PPI), during test

mode. Also, since the scan cell can capture the functional CUT response to a

test and we can observe this response through shifting out the scan cell values,

the Data Path input of the scan cell can be considered a new circuit output, or

pseudo-primary output (PPO), during test mode.

Scan is now a widely adopted technique. Circuits and ATPGs are designed to

work under the assumption that this DFT technique will be used. It is important

to note that near to full scan is used more than full scan because inserting an

extra MUX at a time critical path will reduce the circuit frequency. Thus, even the

improved testability of full scan does not have enough payoff for it to be employed,
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except in very few designs.

1.2.3 Single Fault Models

In this Section, two fault models will be reviewed: the stuck-at fault model

and the transition fault model. The single fault assumption comes from the frequent

testing strategy, in which a system is tested often enough to make the probability

of a system developing more than one fault very small [6].

1.2.3.1 Stuck-at Fault Model

A stuck-at fault [8] happens when a line in the circuit is stuck at a fixed logic

value. One case in which this may occur is when there is a short between ground

or power lines and a signal line. Different technologies will be prone to different

defects that may cause stuck-at faults. Here, the causes for stuck-at faults in each

technology will not be discussed; the focus will be on the model itself. This is the

earliest fault model, and still the most common. It was originally proposed for

circuits consisting of resistors and vacuum tubes.

A stuck-at fault can occur in either a stem or a fanout branch. The

differentiation between faults in stem lines and branches of the stem line is to

model the case when a gate input is stuck, or under certain circumstances appears

to be, at a logic value. This is equivalent to saying that a stuck-at fault can be

either at the output of a gate or at its inputs. A notation commonly employed

when line l is stuck-at 0 (1) is l/0(1). Most of the defects that a CUT may have

are detected using the single stuck-at fault model. In previous technologies, test

for stuck-at faults were the only test applied to a system. With the continuously

shrinking sizes of the transistors employed in modern designs, other types of defects

not covered by the tests for stuck-at faults are beginning to appear in the CUTs. For

this reason, tests for other types of faults are being applied, such as the transition
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Figure 1.3: Stuck-at faults example

fault model, which is presented next.

Figure 1.3 shows line f stuck-at ‘0’ and line e stuck-at ‘1’. Fault f stuck-at ‘0’

is represented as a short between line f and ground. Fault e stuck-at ‘1’ can be

represented as a short between line e and the power supply line Vdd. While both

faults are represented together in Figure 1.3, it is important to notice that it is rare

that both happen in the same CUT at the same time because of the single fault

assumption.

1.2.3.2 Transition Fault Model

Certain types of defects in the manufacturing of the transistors that comprise

the circuit gates may cause the gate to have a higher than normal delay. This

abnormal delay causes the gate to switch at a lower than normal speed when its

inputs change. When this delay is large enough the defect is modeled as a transition

delay fault [9][10].

A transition delay fault occurs when a gate that should switch its output

from 0 (1) to 1 (0), due to a change in its inputs, does it in a longer than normal

time. If the delay introduced is large enough so that its effects can be seen at least

at one of the circuit primary outputs (POs) or captured in a scan cell, the circuit
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cannot operate at its intended clock speed without having a faulty behavior.

A transition fault that occurs when a gate switches from 0 (1) to 1 (0) in

an abnormally long time is called a slow-to-rise (slow-to-fall) transition fault. To

test a slow-to-rise (slow-to-fall) fault a test vector needs to set the gate output to 0

(1) in the first time frame and, by applying a functional clock, launch a transition

in the gate to 1 (0) and propagate the transition to an observation point in the

second time frame. Thus, a test for a transition fault should consist of a pair of

input vectors to the CUT. One method to produce the second vector in the pair

will be reviewed in sub-Section 2.2.1.

In the transition fault model faults are located only at the outputs of gates.

The test for this type of fault will be reviewed in Chapter 2 and is called at-speed

test because of the presence of at-speed clock pulses to launch and capture the

faults. This type of fault is being commonly used as a target to test generation for

testing the behavior of the CUTs in at-speed environments.

In Figure 1.4 a capacitor to ground in line f will slow the transitions ‘0’ to

‘1’ and ‘1’ to ‘0’ at the gate output. Every time f changes value the gate driving

f needs to charge or discharge the capacitor introducing delay. A slow-to-rise fault

in f can be modeled as a big resistor to ground in f. A slow-to-fall fault in f can

be modeled as a big resistor to the power supply line Vdd in f.

1.2.4 D-Algorithm

To create a test for a given fault f, f must be activated and propagated to

an observation point. To activate f is to create the conditions under which there

is a difference in behavior between the faulty machine and the good machine. To

propagate it is to carry through logic gates the difference in behavior until an

observation point is reached.

This problem is called circuit-SAT and is known to be NP-complete. The
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Figure 1.4: Transition delay fault example

algorithms to create a test for f exhaustively search the whole space of possibilities,

i.e. the combinations of input (PIs and PPIs) assignments, to find if f can be

detected or not. Since this implies exponential time, they try to reduce the search

space only to the relevant inputs.

The D-algorithm [11] works by first identifying all the necessary gate output

values (assignments) to detect f. After this is done, some lines may have values

that are not justified by its inputs because there is more than one possibility in

which their values can be justified. We call this set of lines or gate outputs the J-

frontier. Also, the fault effect (difference in behavior between the good and faulty

machine) may not be propagated to an observation point yet because there is a

choice between paths to follow. The gates in which a fault effect is present at an

input and could be propagated to the gate output is called the D-frontier.

The D-algorithm maps the decisions to be made in justification and propa-

gation to the gates in which the decisions are to be made, effectively restricting

the search space to the relevant portions of the circuit. The order in which the D

algorithm makes the decisions choices is based on heuristics, and one possibility is

to make them at random. If a decision results in implications that lead to a conflict

in values at gates or an empty D-frontier the algorithm encounters a conflict. Then
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the algorithm will undo decisions previously made to avoid the conflict and chose

another alternative. This is called backtracking and is what guarantees the D

algorithm will cover the entire search space. If the D algorithm tries all possible

combinations and in each reaches a conflict, then the fault is proven un-testable.

Given that trying all possible combinations may result in an exponential (in

the gate count of the CUT) number of operations, an abort limit is placed on the

number of possible backtrackings. Since some faults may abort and neither be

proven testable by constructing a test or un-testable by exhausting all possibilities,

the D algorithm (when abort limit is used) also becomes a heuristic.

Figure 1.5 shows an example of the previously discussed D-algorithm. In

Figure 1.5, fault f (a stuck-at fault) is activated through a = 1 and b = 0, then the

fault effect is propagated from e to g by the assignment f = 1.

Figure 1.5 shows the state of the circuit at that moment. All necessary

assignments for f have been computed, but a test has not yet been created for f.

The assignment f = 1 is not justified and is in the J-frontier. Also the fault effect

has not been propagated to a point where it can be observed because there are two

paths to follow: g1 and g2. Thus g is in the D-frontier.

The order in which the decisions in the J-frontier and D-frontier are made

is based on heuristics and varies in different ATPGs. Moreover, in more complex

circuits than the one in Figure 1.5, the resolution of decisions in the J-frontier

may lead to new decisions in the J-frontier and conflicts with the D-frontier that

can remove gates from the D-frontier and even render it empty, in which case

backtracking occurs. The resolution of D-frontier decisions may create both J-

frontier and D-frontier decisions. This process continues until all decisions in the

J-frontier and D-frontier have been solved, in which case a test cube for f is created,

the abort limit in backtracking is reached or the fault is proven redundant.
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Figure 1.5: Example of the D-algorithm

Figure 1.6: High level view of the BIST scheme. From [5]

1.2.5 Built-In Self Test

“BIST is a DFT technique in which test generation and test application is

accomplished through built-in hardware features” [12]. Figure 1.6 shows a CUT

with BIST. A test pattern generator (TPG) generates patterns that are loaded into

the CUT and a signature analyzer (SA) examines the CUT response to the test

patterns when the circuit is in Test Mode. The signature analyzer has an output

to indicate if the circuit has passed or failed the test.

The TPG can be implemented with one of the following: ROM, linear



15

feedback shift register (LFSR), cellular automaton or binary counter [12]. The

SA can be implemented with one of the following: ROM and comparison logic,

LFSR, multiple-input signature register (MISR), cellular automaton, level counter,

transition counter or XOR trees [12]. More details of the BIST architecture can be

found at [6][12][13].

BIST is a technique based on scan. The TPG loads the vector into the primary

inputs (PIs) and scan cells (PPIs); and the SA examines the CUT response from

the primary outputs (POs) and scan cells (PPOs).

Most typically used TPGs produce pseudo-random patterns. This results in

an increase in the number of patterns needed to test the CUT. To address this

problem several techniques are employed [6][12][13], such as: weighted pseudo-

random patterns, TPG seeding and test point insertion. These techniques aim at

increasing the testability of random pattern resistant faults by either producing

different input vector sequences to the CUT or changing the signal probabilities of

the circuit lines.

1.2.6 Test Compression

In past years several test compression techniques have been developed to

reduce test data volume and test application time, which reduces manufacturing

costs. Test compression techniques are based on scan. They segment the scan path

into several scan chains and instead of feeding each scan chain with one input,

several scan chains are fed with fewer number of inputs called scan channels.

Here the focus will be on one technique called Embedded Deterministic Test

[14] (EDT). EDT is based on adding additional hardware at the inputs and outputs

of the circuit. A data decompressor is placed at the input. The data decompressor is

implemented by a ring generator (optimized LFSR) and a phase shifter. A response

compactor is placed at the output. The circuit scan chains are divided evenly, if
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Figure 1.7: An EDT decompressor. From [14]

Figure 1.8: A decompressor. From [14]
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possible, into several shorter chains. For the purpose of producing the desired

output, the ring generator is continuously seeded with data. The ratio between the

inputs of the ring generator and the outputs of the phase shifter determines the

maximal compression possible. Figure 16 shows a circuit with EDT being tested

by an ATE. Figure 1.7 shows the internal schematic of an EDT decompressor and

Figure 1.8 shows an implementation of a four-output 8-bit decompressor.

In EDT the compactor consist of an XOR tree. Since XORs always propagate

fault effects (when no unknown values exist), every scan chain can be observed at

the same time using a reduced number of outputs, effectively reducing the response

data. Since unknown values can be present in the CUT response to a test, AND

gates are placed at the outputs of every scan chain to block these unknown values.
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CHAPTER 2

LOW POWER TEST

When the response to a test vector is captured by state elements in scan

testing, the switching activity of the circuit may be large resulting in abnormal

power dissipation and supply current demand. High supply current may cause

excessive power supply droops leading to larger gate delays which may cause good

chips to fail tests. This chapter presents a scalable approach called Preferred Fill to

reduce average and peak power dissipation during capture cycles. Preferred Fill is

introduced also as a post-processing step to modify existings test sets. Also a hybrid

technique, based on a combination of Preferred Fill and Adjacent Fill, aiming at

reducing both capture and shift power is presented. Experimental results presented

for benchmark and industrial circuits demonstrate the effectiveness of the proposed

methods.

2.1 Introduction

Scan based test has become the standard method for manufacture test.

Earlier it has been observed that scan tests may cause switching activity far

exceeding the activity during normal operation of the circuit [15][16][17]. Excessive

switching activity is caused by scan tests requiring the circuit under test (CUT)

to operate outside of the normal functional operation. Excessive switching activity

during the application of scan tests are caused both during scan chain shifts to

load tests and unload test responses as well as when the scan cell contents are

updated using functional clocks in what are referred to as capture cycles. Abnormal

switching activity causes abnormal peak as well as average power dissipation and

supply currents. Excessive power dissipation may cause hot spots that could

damage the CUT. Excessive peak supply currents may cause supply voltage droops
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resulting in increased gate delays during test. Increased gate delays during test may

cause good chips to fail at-speed tests causing yield loss [16].

Several methods have been proposed to reduce the switching activity in

a CUT during scan based tests. Earlier methods to reduce switching activity

during scan shift include adding additional logic [17][18][19][20][21][22], scan

chain segmentation [19][23][24][25], ordering of tests [26] and scan elements

[27][28], and reduced transition tests [29]. Earlier approaches to reduce switching

activity during capture cycles include selectively deactivating some scan chains

[30]citeLPTref18, segmented scan with gated clocking [23][24], test generation

methods [32][33][34][35][36][37], and methods to fill unspecified values in test cubes

[38][39][40][41][42][43][44][45].

The test generation method proposed in [33] that restricts the scanned in

states to the set of reachable states insures that the CUT operates in the functional

mode only during capture cycles. Thus, such tests not only avoid abnormal

switching activity during capture cycles but also avoid detection of faults that do

not affect normal functional operation. Methods to generate tests with reachable

scanned in states for transition delay faults (TDFs), called functional tests, were

proposed in [35]. The requirement that scanned in state of a test is a reachable state

may be difficult to ascertain in larger designs. For this reason pseudo-functional

tests that attempt to operate a CUT close to its normal functional operation were

investigated in [34][36]. Pseudo-functional test generation procedures determine a

subset of non-reachable states and generate tests that avoid using any of the non-

reachable states as scanned in states. Pseudo-functional tests do not guarantee

avoiding non-functional operation that may cause excessive switching activity.

Additionally finding a sufficiently large set of un-reachable states in large designs

and specially those with multiple clock domains may not be practical.

The methods to fill unspecified entries in test cubes to reduce circuit switching
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activity have the advantage that they require only minimal changes to the existing

ATPGs. However, in order to make such methods scalable, the specific procedure

used to fill the unspecified entries must achieve substantial reduction in switching

activity while not increasing the run times of ATPGs substantially. In this work

we propose a scalable and effective method, called preferred fill, to fill unspecified

entries in test cubes such that the switching activity during capture cycles of the

tests is reduced. The proposed method is applied to generate launch off capture

tests for TDFs. However, the method can be applied to generate tests for other

fault models such as stuck-at and path delay faults.

2.2 Preliminaries

In this section we first briefly review launch off capture (LOC) also called

broadside test method [46] used to detect delay faults in standard scan designs.

We discuss the issues related to supply current demands and power dissipation

during the application of LOC tests. Next we review earlier works that proposed

methods to fill unspecified values in test cubes to reduce supply current and power

dissipation during test application. We also discuss the shortcomings of the known

methods that are addressed by the method proposed in this work and described

in the following sections. Since our initial focus in this document TDFs, initially

all discussions will assume this fault model. Later in the document, the proposed

method will be also applied to stuck-at faults (SAF), when this is the case it will

be explicitly stated.

2.2.1 Launch off Capture Tests

For standard scan designs illustrated in Figure 2.1 two methods have been

used to test TDFs. One is called launch off capture (LOC) [46] and the other is

called launch off shift [47]. Both methods use a two-pattern test< V1, V2 > to detect
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Figure 2.1: Standard scan

a targeted TDF. In both methods, the first pattern V1, called the initialization

pattern, is scanned in, with the scan enable (SE) signal asserted. For a slow to rise

(slow to fall) TDF, V1 sets the fault site to 0(1). The second pattern V2 is generated

differently in the two methods. In LOC the second pattern is generated through

the combinational logic of the circuit under test (CUT) by applying a clock pulse

with SE de-asserted. This is referred to as the launch cycle and is illustrated in

Figure 2.2 for a scan chain of length n. Application of V2 activates the fault by

launching a transition at the fault site and also propagates the fault effect to an

observed output (primary output or a scan cell). For a slow to rise (slow to fall)

TDF V2 is a test for a stuck-at-0 (stuck-at-1) fault at the fault site. Following

the application of V2, another clock pulse is applied with SE still de-asserted to

capture the CUT response to the test. This is also shown in Figure 2.2 where the

corresponding clock pulse is labeled C for capture. Often the two clock pulses used

to launch a transition and capture test responses are both called capture cycles.

Thus a standard LOC test uses two capture cycles.

During the application of LOC tests, circuit nodes switch states due to scan
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Figure 2.2: Timing diagram of LOC Tests

shifts as well as capture cycles. The switching activity caused by the changes in

the circuit inputs (primary inputs as well as the scan cells) initiated by the capture

cycle clocks may be considerably higher than during normal circuit operation. High

supply current demand may cause supply voltage to droop which tends to increase

signal propagation delays of effected gates. Increased delay due to supply voltage

droops may lead to capturing faulty responses, especially during the second capture

cycle. This causes good chips to fail tests leading to yield loss [16]. Thus to reduce

the potential yield loss it is critically important to reduce peak switching activity

caused by the first capture cycle changing the state of the scan cells. It is also

important to reduce the switching activity caused by the second capture cycle to

prevent excessive power dissipation.

In this work we use Weighted Switching Activity (WSA) defined next. WSA

was also used to represent instantaneous power and current in earlier works [18].

The weighted switching activity (WSA) of a node is the number of state changes at

the node multiplied by (1+node fan-out). The WSA of the entire circuit is obtained

by summing the WSA of all the nodes in the circuit.
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Figure 2.3: A LOC test

2.2.2 Related Earlier Works

A test pattern for a target fault or a set of target faults typically contains

many unspecified entries. The unspecified values can be arbitrarily specified to

binary values. This is often referred to as filling of unspecified values or simply

fills. Among the works that target reduced WSA some target reducing WSA during

scan shifts [39] and others target reducing WSA during capture cycles [42][43][44].

Experimental results in [39] showed that a method called adjacent fill not only

reduces WSA during scan shift but also the average WSA (averaged over all tests)

caused by capture cycles. However, it was observed that this method may increases

the peak or maximum value of WSA [43]. As noted earlier increased peak WSA

during capture cycles increases the possibility of failing good chips due to increased

supply voltage droops [16]. For this reason recent works proposed methods to

reduce peak WSA during capture cycles of LOC tests [42][43][44]. The objective

of this work is also to reduce peak WSA and average WSA caused during capture

cycles in LOC tests.

Next we briefly describe the methods used in [43][44] to fill unspecified entries
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in LOC test cubes. The two methods are essentially the same with some differences

in details. We discuss the steps used in [44]. Consider the two-pattern test

illustrated in Figure 2.3. In Figure 2.3 we show two frames. The vertical inputs at

each time frame are primary inputs and the horizontal inputs and outputs are the

present and the next states of the CUT, respectively. A vector in a two-pattern test

has two components. One component corresponds to the primary inputs and the

other component corresponds to the state variables. In Figure 2.3, S1 (S2) is the

state part of the initializing (test) vector V1 (V2) of the two-pattern test < V1, V2 >.

S3 is the state captured by the second capture cycle. If the state and the primary

inputs of V1 and the primary input part of V2 are fully specified then S1, S2 and

S3 will all be fully specified. Further more S2 and S3 are determined entirely by

S1 and the primary inputs. Thus the unspecified values available to fill to reduce

WSA are only in S1. For the sake of simplicity of explanation, assume that the

primary input values are held constant during the application of the two-pattern

test and are also fully specified. Then the switching activity in the circuit is caused

by the changes in the state from S1 to S2 after the first capture cycle and next

due to the state change from S2 to S3 after the second capture cycle. The method

proposed in [44] fills the unspecified values in S1 such that S1 and S2 as well as S2

and S3 differ in as few places as possible. In other words the method tries to fill

the unspecified values in S1 such that the Hamming distances between S1 and S2

and S2 and S3 are as small as possible. The procedure called LCP-fill from [44] to

fill unspecified values in S1 to reduce WSA caused by capture cycles of LOC tests

is briefly reviewed next.

Consider the example illustrated in Figure 2.4 which shows a test cube with

S1 = (0, X, 1, X, X, X, 1) which results in S2 = (X, 1, X, 0, X, X, 0). Notice that

the first and the third elements of S1 are specified and the corresponding elements

of S2 are unspecified. Similarly the second and the fourth components of S2 are
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Figure 2.4: LCP filling

specified while the corresponding elements of S1 are unspecified. In order to reduce

the places in which S1 and S2 differ or equivalently to keep the Hamming distance

between S1 and S2 small, the procedure of [44] iteratively specifies few selected

unspecified entries in S1 at a time. In the example being considered, one can specify

the second and the fourth elements of S1 to 1 and 0, respectively, to match the

specified values in the corresponding elements of S2. One can also attempt to set the

first and the third elements of S2 to 0 and 1, respectively, to match the values in the

corresponding elements of S1, through implication and line justification procedures

of ATPGs. These steps will specify some of the originally unspecified values in S1.

S1 is simulated with the newly specified values to obtain S2 and the procedure is

iterated until all components of S1 are specified. One can also fill the unspecified

values in S1 such that the Hamming distance between S2 and S3 is small also.

The procedure in [44] attempts to balance between the two objectives: keeping the

Hamming distances between S1 and S2 small and the Hamming distance between

S2 and S3 small. The LCP-fill procedure leads to considerable reduction in peak
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and average WSA of LOC tests compared to random fill of the unspecified values in

the test cubes. However the run time of this procedure could be potentially high.

The reasons for this are the repeated simulations of incrementally updated test

cubes and use of implications and line justification steps as part of the procedure.

In this work we investigate a simple and scalable procedure to fill unspecified

values to reduce WSA during capture cycles of LOC tests. The procedure fills

all the unspecified values in the initialization vector of a two-pattern test in one

step rather than iterative incremental fill and simulation. It also does not use

implications and line justification procedures. Experimental results presented for

benchmark circuits show that the reductions in the peak and average WSA using

the proposed procedure are similar to those obtained using LCP-fill while the run

times are substantially smaller.

2.3 The Proposed Method

In this Section the proposed method called preferred fill (PF) to fill

unspecified values in test cubes is described. For the sake of simplicity we first

describe the basics of the method in the context of circuits with 100% scan and

present experimental results on ISCAS-89 benchmark circuits. In the next Section

we discuss extensions to the basic method used for industrial designs.

2.3.1 Preferred Fill

Consider a two-pattern LOC test < V1, V2 > for TDFs. It can be written

as V1 = (PI1, S1) and V2 = (PI2, S2), where PI1 and S1 correspond to the PI

values and the PPI values in the initialization vector and PI2 corresponds to the

PI values in the test vector and S2 is the PPO values implied by V1. Our goal, as

in [42][43][44] is to reduce the Hamming distance between V1 and V2 by reducing

the Hamming distance between PI1 and PI2 as well as between S1 and S2.
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The Hamming distance between PI1 and PI2 can be minimized in a

straightforward manner as done in [43]. Where ever possible we first fill the

unspecified values in PI1 (PI2) to match the specified values in PI2 (PI1). This step

is not needed in case the primary inputs are held constant over the two time frames

during test generation. After this step, all the remaining unspecified values in PI1

and PI2 will be in the same positions. We randomly fill these values to have the

same specified value. To illustrate filling of the values in PIs consider the following.

In a two pattern test cube let PI1 = (1XXX01X) and PI2 = (01X0XXX). We

fill the unspecified values in PI1 (PI2) in positions 2 and 4 (5 and 6) with 1 and 0

(0 and 1) to match the specified entries in these positions in PI2 (PI1). After this

step we get PI1 = (11X001X) and PI2 = (01X001X). Next we fill positions 3

and 7 in PI1 and PI2 randomly say by 0 and 1, respectively and get (1100011) and

PI2 = (0100011). The Hamming distance between PI1 and PI2 after the proposed

fill is 1.

It should be pointed out that instead of randomly filling unspecified values

in PI1 and PI2 in the second step one can use a better procedure. For example we

can determine preferred values as we do for PPIs which is discussed next.

Next we describe the procedure we used to reduce the Hamming distance

between S1 and S2 of a two-pattern test. Recall that we can arbitrarily fill

the unspecified values in S1 since it is the state that is scanned in. Let S1 =

(s11, s12, s13, ..., s1n) and S2 = (s21, s22, s23, ..., s2n). If s1j is unspecified then we

should fill it with 1 (0) if the probability of s2j taking the value 1 (0) is higher than

it taking the value 0 (1). In other words we should fill s1j with a value that is more

likely to be held in the jth scan cell. With this in mind, we define HPj(v), v ∈ 0, 1,

as the probability of the jth flip-flop holding the value v under the assumption that

all PIs and PPIs other than the jth PPI are applied random inputs. Note that

HPj(v) is simply the conditional probability that the jth scan cell will hold the
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value v if it is loaded with v and all other inputs are applied random inputs.

Definition: 0 (1) is the preferred value for the jth scan cell (i.e. s1j) if HPj(0) >

HPj(1) (HPj(1) > HPj(0)). Note that if HPj(0) = HPj(1) then s1j does not have

a preferred value.

The procedure we used to fill the unspecified values in S1 is the following.

First, in every position of S1 in which it has unspecified value and S2 has a specified

value we fill the unspecified value in S1 by the specified value in S2. After this step

in every position in which S1 has an unspecified value S2 will also have unspecified

value (S2 may have additional unspecified values). This method is called dynamic

preferred fill. We illustrate below this step using an example.

Let S1 = (1XXX01X) and S2 = (01X0XXX). We fill the second and

the fourth position of S1 to match the specified values 1 and 0 in S2 and obtain

S1 = (11X001X) and S2 = (01X0XXX). Notice that now every place in which

S1 is unspecified S2 is also unspecified. In these positions, S1 is filled with the

preferred values if they exist. Otherwise, they are filled randomly.

The hold probabilities defined above or equivalently the conditional probabil-

ities as discussed above can be computed in two ways. One is to use symbolic

methods to accurately compute probabilities and the other is to estimate the

probabilities by simulating a large number of random patterns. The first method is

known to be NP-hard and the second method may also require a large computation

effort for modern designs.

A simpler but less accurate method is to use the standard signal probability

calculation procedures ignoring statistical correlation between gate inputs [6].

However even this approach may take large run times if the number of scan cells

in a circuit is large as is the case with modern VLSI designs. This is because the

conditional probabilities must be computed separately for each PPI. For this reason

we used a much simpler procedure. It uses simpler procedures to compute signal
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probabilities ignoring correlation between gate inputs together with a simplifying

assumption. The simplifying assumption we used is that the probability of s2j,

the jth component of S2, assuming the value 1 or 0 is independent of the state

of s1j. Under this assumption, we get, HPj(1) > HPj(0) (HPj(0) > HPj(1)) if

and only if Pj(1) > Pj(0) (Pj(1) > Pj(0)), where Pj(1) (Pj(0)) is the probability

that s2j takes the value 1 (0). Thus one can determine the preferred values for

s1j by simply computing the signal probabilities of s2j. Signal probabilities of all

s2j, 1 ≤ j ≤ n, can be simultaneously found in one pass using the standard signal

probability calculation procedures [6] ignoring the correlation between gate inputs.

In our experiments we used this simplified method of determining preferred values

for s1j.

Next we give an example to illustrate how we computed signal probabilities

and preferred values for s1j, 1 ≤ j ≤ n. Consider the circuit in Figure 2.5. On each

line we show two numbers. The first number is the probability of the line having

the value 0 and the second number is the probability of the line having value 1.

The circuit has two PPIs s11 and s12 and one PI a. We assign to these inputs equal

probabilities for 0 and 1 as shown. Next we compute the probabilities for the other

lines using the standard formulae [6] and ignoring the correlation between gate

inputs. For example the two inputs to the OR gate of the circuit are correlated.

The output of the circuit is the PPO s21. The probability of the scan cell holding

a 1 (0) is computed by computing the conditional probability of a corresponding

PPO being at 1 (0) given that the corresponding PPI is at 0 (1). This is illustrated

in Figure 2.6 for the circuit of Figure 2.5. In Figure 2.6(a) we set the 1 probability

of PPI s11 to 1.0 and the 0 probability to 0.0. The probability of s21 being 1 under

this condition is 0.75 and hence HP1(1) = 0.75. We can compute HP1(0) = 1.0

in a similar manner as illustrated in Figure 2.6(b). In Figure 2.6(b) we set the 0

probability of s11 to be 1.0 and its 1 probability to be 0.0. Since HP1(0) > HP1(1)
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Figure 2.5: Signal probabilities

the preferred value for s11 is 0. As this example illustrates computing HPj(0) and

HPj(1) requires two passes through the circuit for each j, 1 ≤ j ≤ n. Instead, as

discussed above, we use the signal probabilities Pj(1) and Pj(0) of the jth PPO

being at 1 and 0, respectively, to determine the preferred value for the jth PPI.

For the example under consideration, we have from Figure 2.5 P1(0) = 0.5625 and

P1(1) = 0.4375. P1(0) > P1(1) we conclude that the preferred value for s11 is 0.

In this example the preferred value found for s11 using hold probabilities as well

as signal probabilities turns out to be the same. However in general it may be

different.

We performed extensive experiments on benchmark circuits using all the

methods discussed above to determine preferred values for s1j. All the methods to

determine preferred values yielded essentially the same results for the reduction of

WSA. For this reason we used the computationally less demanding procedure of

computing the signal probabilities for s2j, 1 ≤ j ≤ n, illustrated in Figure 2.5.

2.3.2 Experimental Results for Benchmark Circuits

The proposed method was implemented in C language and two experiments

were conducted on ISCAS-89 benchmark circuits using Pentium 4 2.8 GHz PC with

1 GB RAM using Linux. For the first experiment we chose an experimental set up
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Figure 2.6: Conditional probabilities

for the results on the benchmarks so as to be identical to the one used in [44] with

which we compare the obtained results. Test cubes were obtained using an academic

ATPG. The test cubes were generated using dynamic compaction procedures to

detect all detectable TDFs using LOC tests. The dynamic compaction procedure

was allowed to use up to 20% of the unspecified values in the test cube generated for

the primary target fault. For each test cube the state captured after the application

of the first capture cycle (i.e. S2) was also provided by the ATPG. The unspecified

values were filled using the preferred fill proposed in this paper.

In Table 2.1 we give the test generation results. After the circuit name we

give the reduction percentages in average WSA and in peak WSA in the CUT

caused by the first and the second capture cycle using LCP-fill of [44] and using

the preferred fill proposed in this paper, respectively. Both reduction percentages

are relative to the case when the unspecified values are filled randomly. From the
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Circuit

Average WSA Reduction Peak WSA Reduction

1st Capture 2nd Capture 1st Capture 2nd Capture

LCP Pref. LCP Pref. LCP Pref. LCP Pref.

s1423 19.37 37.95 27.75 27.06 18.49 40.78 6.65 16.69

s5378 49.88 45.07 23.35 46.27 36.89 30.08 22.84 26.30

s9234 18.07 34.59 8.56 15.20 12.25 19.13 2.25 -1.07

s13207 23.95 45.77 9.40 29.55 15.42 26.62 4.51 22.81

s15850 45.82 41.82 31.29 31.56 31.68 35.57 6.78 21.90

s35932 60.38 30.78 53.22 28.56 25.05 23.50 19.88 11.83

s38417 20.07 20.75 18.20 15.86 13.02 29.24 10.96 21.88

s38584 43.96 31.56 37.97 18.57 50.17 27.63 51.29 35.68

Average 35.19 36.04 26.22 26.58 25.37 29.07 15.65 19.50

Table 2.1: WSA reduction results for ISCAS-89 circuits

table, it can be seen that both the preferred fill and the LCP-fill achieve similar

reduction percentages in peak and in average WSA compared to random fill.

In Table 2.3.2, we show the run times for the LCP-fill and the preferred fill

under the column CPU time. The run time given for LCP-fill is for only the fill

procedure used in [44] and was provided to us by its authors [48]. The run times

reported for preferred fill includes computation of the signal probabilities. It can

be seen that the run times for preferred fill were un-measurably small.

Direct comparison of test set sizes will not be meaningful since the test

pattern generators used are not the same. However for the sake of completeness we

report the test set sizes for LCP-fill from [44] and preferred fill under the column

#Patterns. We also give the pattern count when the unspecified entries are filled

randomly and the dynamic compaction procedure is allowed to use all unspecified

values to target detection of additional faults. These pattern counts are given in
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Circuit
CPU time #Patterns

LCP Pref. LCP Pref. Rand.

s1423 0.10 0 135 112 82

s5378 0.70 0 248 206 167

s9234 2.50 0 350 392 328

s13207 13.10 0 356 385 377

s15850 5.90 0 220 202 183

s35932 27.60 0 72 96 40

s38417 87.30 0 227 324 222

s38584 302.40 0 444 320 292

Average 54.95 0 257 255 211

Table 2.2: CPU and pattern increase results for
ISCAS-89 circuits

the last column of Table 2.3.2. It can be seen that over all the circuits the number

of test patterns are similar as can be seen by the average numbers reported in the

last row of Table 2.3.2. Also when preferred fill is used to fill unspecified entries in

test cubes on the average the number of tests increases by approximately 20% to

25% from 211.

In the next experiment we used a post-processing step applied to (completely

specified) test vectors generated by an ATPG. For this experiment we used

completely specified test vectors generated using dynamic compaction with no limit

thus obtaining test sets of minimal size. In the post-processing step we relaxed the

given test vectors one at a time after ordering them by the WSA value of the first

capture.

Relaxing a fully specified test unspecifies some specified entries in it without

decreasing fault coverage. We adapted the test vector relaxation method of [49] for
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Circuit
Original
# of
Patterns

Final
# of
Patterns

% Reduction in WSA

Time1st Capture 2nd Capture

Peak Average Peak Average

s1423 82 82 28.65 33.59 18.01 26.60 8.02

s5378 167 166 34.81 45.42 23.50 45.49 7.50

s9234 328 325 36.68 33.19 11.47 16.99 36.87

s13207 377 367 28.51 47.29 28.01 31.36 63.27

s15850 183 181 43.13 43.05 3.48 35.34 37.43

s35932 40 40 19.53 22.12 19.84 18.57 40.07

s38417 222 222 25.44 19.40 6.34 16.36 106.27

s38584 292 292 38.65 33.46 33.21 19.42 165.47

Average 211.4 209.4 31.92 34.69 17.98 26.32 45.58

Table 2.3: Post-Processing results for ISCAS-89 Circuits

the two pattern TDF tests. The unspecified entries in the relaxed tests were then

filled using preferred fill values. Results of this experiment are given in Table 2.3.

In Table 2.3 after the circuit name, the number of test patterns in the original

test set is given followed by the number of tests after the post-processing step. In

the next four columns, the percentage reduction in peak and average WSA in the

first and the second capture cycles are given. In the last column the run times for

the procedure are given. Comparing the percentage reduction in WSA in Tables

1 and 2 we conclude that test relaxation followed by preferred fill achieves WSA

reduction similar to those achieved by filling test cubes during test generation.

However the advantage of post-processing approach is that the number of test

patterns does not increase. As a matter of fact for some circuits the number of

patterns can decrease as shown in the second column of Table 2.3. A disadvantage

of post-processing is that it requires additional run times beyond test generation
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times.

2.4 Applications to Industrial Designs

In this Section, we give a brief sketch of the modifications we made to the

basic preferred fill procedure for industrial designs.

2.4.1 Signal Probability Calculations

An industrial design often contains non-scan cells, RAMs, ROMs, undriven

pins, unmodeled cores, buses, bidirectional pins, and combinational loops. Addi-

tionally we need to accommodate a larger set of signal values to include 0, 1, U

and Z, where U represents unknown value and Z represents high impedance state.

Let P(v) be the probability that a signal line takes the value v ≤ 0, 1, U, Z.

Undriven pins and unmodeled core outputs are treated as U and their signal

probabilities are set as P (0) = P (1) = P (Z) = 0 and P (U) = 1. For the PIs which

can take Z value, the initial signal probabilities are set as P (0) = P (1) = P (Z) =

1/3 and P (U) = 0. The signal probabilities at other signal lines are determined in

a manner similar to the case when only Boolean gates and signal values 0 and 1

are needed. Now we need to compute probabilities of all four signals.

To determine the signal probabilities of the gates involved in a combinational

loop, we need to calculate them iteratively. For example, the signal probabilities

at gates G1 and G2 in Figure 2.7 are shown by using the evaluation order G1

followed by G2. For each line we show three signal probabilities corresponding to

P (0), P (1) and P (U). We illustrate the computations for six iterations. However,

the calculation results give optimistic estimates for P (0) and P (1) when sequential

behavior of the loop is not allowed during test generation. In our implementation,

ATPG does not consider the sequential behavior of the loop. To reduce the

optimistic calculation of P (0) and P (1), we apply the procedure given in Figure
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Figure 2.7: Calculate signal probabilities for a combinational loop

1. Find minimum cuts to break the loops. A cut is a signal line that breaks the
feedback connections among gates.

2. Levelize the gates in the loop by assuming that the cut points are at the first
level.

3. Assign probability (P (0), P (1), P (U)) = (0.0, 0.0, 1.0) to all cut points.

4. Initialize two change flags cf0 and cf1 to be false for every cut point.

5. Calculate the probabilities iteratively:

(a) Evaluate the probabilities of every gate in the loop according to their
level order.

(b) For each cut point: If cfv, where v ≤ 0, 1, is true, do not update the
probability at the cut point for value v. Otherwise, if the probability
P (v) at the cut point’s driving gate is greater than 0.0, set the
probability at the cut point to be P (v) and set cfv to be true.

(c) Stop iteration if there is no change in any cut point.

Figure 2.8: Procedure estimate probabilities in loop()

2.8 below to estimate the signal probabilities of the gates in a loop.

For example, let us assume that the cut point for the loop shown in
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Figure 2.7 is at the connection from G2 to G1. After the first iteration, the

probabilities at the cut point are (0.5, 0.25, 0.25) and both change flags are set.

The second iteration sets the probabilities at G1 and G2 to be (0.25, 0.625, 0.125)

and (0.625, 0.3125, 0.0625) and the calculation stops.

2.4.2 Preferred Fill for Industrial Designs

For the benchmark circuits an unspecified value in the jth PPI s1j was filled

with 1 if Pj(1) > Pj(0) and filled with 0 if Pj(0) > Pj(1), where Pj(0) (Pj(1)) is the

probability that PPO s1j is 1 (0). For industrial designs we filled an unspecified

value in the jth PPI, s1j with 1 if Pj(1) > Pj(0) + ε and filled with 0 if Pj(0) >

Pj(1) + ε, where ε was set to 0.025 in our experiments.

As noted earlier methods to fill unspecified values in test cubes to reduce

WSA typically increases the test pattern counts compared to the case when the

unspecified values are randomly filled [42][43][44]. The same was observed when

preferred fill is used for industrial designs. In order to reduce the increase in test

pattern count using preferred fill we experimented with first filling some percentage

of unspecified values randomly followed by preferred fill. We call this technique

limited preferred fill.

2.4.3 Use of Signal Probabilities for Test Generation

We also experimented with the use of signal probabilities to guide the ATPG

to generate tests that cause lower WSA during capture cycles. We used signal

probabilities to guide line justification step of the ATPG. Among the signals which

when set to a value justifies a desired line value we pick the signal with the highest

probability. The idea behind this heuristic is similar to the idea behind preferred fill.

We report the results of using the test generation procedure with this modification.
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2.4.4 Calculation of WSA with Unknown Values

The X-sources in the industrial designs make some gates have unknown

values during good machine simulation. The unknown values can potentially create

transitions at the internal gates. Ignoring them completely will underestimate the

power dissipation in capture cycles. In this work, we computed WSA at a gate g

using the formula given below.

WSAg = α ∗ (1 + fanout numberg)

• When g has unknown values in both the previous time frame and the current

time frame, α is equal to 0.125.

• When the gate g has unknown value in the previous time frame and known

value in the current time frame, α is equal to 0.0625.

• When the gate g has known value in the previous time frame and unknown

value in the current time frame, α is equal to 0.0625.

• If the gate has known values in both the time frames that create a transition

then α is equal to 1.

2.4.5 Experimental Results

The proposed techniques were integrated into a commercial ATPG tool and

several industrial designs were used to evaluate their effectiveness.

In Table 2.4, we show the test generation results using random fill during test

generation. This is the standard test generation flow. After the circuit names, we

show the numbers of transition faults in millions and the test pattern counts under

the columns #Flts and #Pat, respectively. The average WSA and the peak WSA

for the two capture cycles are given under the columns 1stCapture and 2ndCapture.

The results using preferred fill are shown in Table 2.5. Two sets of data
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are given in Table 2.5. The first set of data, given under Preferred Fill columns,

corresponds to the case when preferred fill alone is used without modifying the test

generation procedure. The second set of data, given under Preferred Fill + ATPG

columns, is for the case when test generation procedure is modified by employing

signal probabilities to guide line justification step of the test generation procedure.

In Table 2.5 we give the results for pattern counts and WSA as a percentage increase

or decrease relative to their respective values when random fill is used and given in

Table 2.4. In column Pat. Inc. we give the percentage increase in pattern count.

The percentage decreases in average WSA and peak WSA for each capture cycle

are given under the columns Ave. and Peak, respectively. It can be seen that,

on average, when only preferred fill is used, the average WSA and the peak WSA

are reduced by 64.29% and 58.43% in the first capture cycle and by 46.90% and

53.55% in the second capture cycle. The test pattern count is increased by 144.83%

on average. These results illustrate that random fill helps hold down test pattern

counts, but it creates a larger amount of internal gate switching activity leading

to much higher power dissipation during test. Preferred fill reduces the switching

activity dramatically. However pattern counts are increased substantially.

The data in Table 2.5 for the case using signal probabilities in test generation

together with preferred fill given under Preferred Fill + ATPG columns show that

both peak and average WSA can be further reduced if signal probabilities are used

to guide ATPG. Additionally pattern counts do not increase as much as when only

preferred fill is used.

To moderate the pattern count increase when preferred fill is used, we apply

the limited preferred fill where we first fill a certain percentage of unspecified values

of PPIs randomly and fill the remainder of unspecified values using preferred fill.

We report the results of these experiments in Table 2.6 for the case when up to

10% of the unspecified values are filled using random fill. The data in Table 5
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Circuit
#Flts
(Millions)

#Pat.
1st Capture 2nd Capture

Average Peak Average Peak

ckt1 0.473 15034 143754 266527 99387 219534

ckt2 0.745 17447 70620 228801 34697 130912

ckt3 1.317 6391 293044 673924 245466 574517

ckt4 2.207 21665 638073 1216694 512557 920930

ckt5 2.284 60748 171778 950634 138212 894014

ckt6 3.689 12666 704288 828964 441437 603281

ckt7 5.202 50720 764327 1550568 751004 1816088

Table 2.4: WSA for ATPG with random fill

Circuit

Preferred Fill Preferred Fill + ATPG

Pat.
Inc.

1st Capture 2nd Capture Pat.
Inc.

1st Capture 2nd Capture

Ave. Peak Ave. Peak Ave. Peak Ave. Peak

ckt1 66.61 45.77 36.74 25.81 32.42 80.07 47.87 33.51 27.80 24.99

ckt2 133.13 60.04 62.47 33.80 46.16 29.20 58.31 66.65 38.20 44.07

ckt3 158.07 70.16 56.51 69.10 61.82 81.99 74.00 44.29 69.72 55.47

ckt4 170.83 79.35 66.95 43.32 51.95 182.20 80.61 66.41 44.60 55.13

ckt5 219.12 67.21 66.38 50.69 66.88 303.39 63.32 66.65 44.26 68.67

ckt6 95.57 59.94 51.63 47.56 44.69 181.33 71.62 63.20 52.76 46.88

ckt7 170.51 67.56 68.32 58.04 70.94 25.88 69.54 71.96 58.62 72.95

Average 144.83 64.29 58.43 46.90 53.55 126.29 66.47 58.95 47.99 52.59

Table 2.5: WSA reductions with preferred fill and ATPG
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Circuit

Preferred Fill + 10% Random Fill Pref. Fill + ATPG + 10% Rand. Fill

Pat.
Inc.

1st Capture 2nd Capture Pat.
Inc.

1st Capture 2nd Capture

Ave. Peak Ave. Peak Ave. Peak Ave. Peak

ckt1 23.99 36.87 26.49 21.61 25.28 34.18 41.78 26.46 25.86 24.14

ckt2 28.10 38.40 40.10 4.31 22.11 10.11 36.46 43.96 17.36 20.21

ckt3 25.63 58.50 41.42 54.20 48.31 27.15 62.43 38.30 60.36 49.47

ckt4 36.23 59.05 52.27 27.79 43.69 90.80 73.28 52.06 39.37 52.95

ckt5 59.76 40.72 51.90 38.52 54.44 105.85 48.45 54.45 39.32 58.86

ckt6 51.03 51.75 44.63 42.55 35.78 111.25 66.56 61.57 50.39 43.58

ckt7 38.00 49.19 52.63 47.85 65.85 -14.53 57.41 60.88 51.42 67.66

Average 37.53 47.78 44.21 33.83 42.21 52.12 55.20 48.24 40.58 45.27

Table 2.6: WSA reductions with limited preferred fill

is arranged in a manner identical to that in Table 2.5. From Table 2.6 one can

notice that using limited preferred fill only the test pattern counts increase, on

average, by only 37.53% instead of 144.83% when preferred fill is used without

limited random fill, the average percentage reduction in average WSA for the first

capture cycle is however reduced to 47.78% from 64.29%. Similar reductions in the

percentage reductions of peak as well as the percentage reductions of WSA during

second capture cycle can be noted. From the second set of data in Table 2.6, one

can also note that the percentage increase in pattern counts is moderated when

limited preferred fill is used with modified ATPG procedure. These results show

that a good tradeoff between power dissipation and test pattern count is achieved

using limited preferred fill.

2.5 A Post-Processing procedure for low power
test

In this SubSection details how to apply preferred fill as a post-processing

method are given. Preferred Fill will be combined with Adjacent fill to reduce
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both capture and shift power. Experimental results for both SAFs and TDFs for

the post-processing procedure will be shown both for benchmark and industrial

circuits. This will prove the effectiveness of preferred fill for different fault models.

2.5.1 Details of the Proposed Procedure

The procedure takes a set of fully specified tests T and modifies the tests in

T to obtain a new test set T’ with reduced WSA during scan shift as well as during

capture cycles. The procedure has the following steps:

Step 1: Order the tests in a given set of fully specified tests.

Step 2: Fault simulate the ordered set of tests and note the faults detected by a

test.

Step 3: Relax, fill (using PF ) and fault simulate the tests in the order they appear

in the ordered test set.

Next we give details of how the steps given above were performed.

Step 1: The tests in a given set of tests T are ordered in decreasing order of WSA

caused by the first capture cycle of the test application. Note that for stuck-at

tests there is only one capture cycle and for delay tests (we used LOC tests) there

are two capture cycles and we use the WSA for the first capture cycle in this case

for ordering tests. Let the ordered test set be T0.

Step 2: The tests in T0 are simulated in reverse order using fault dropping. When

a test ti is simulated the set of faults Fi detected by it are recorded. Fi is called

the target fault set of ti.

Step 3: This step has three procedures which are iterated. Next we give these as

Steps 3.1, 3.2 and 3.3. We also discuss the choices we made in each step.

Step 3.1: Remove the test ti from the top of the ordered test set T0 and relax it by

un-specifying some of the specified entries in the test. When we say relaxing a test

we mean relaxing the initialization vector of a two-pattern test for TDFs or the
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test for stuck-at faults. Methods to relax fully specified tests are given in [49][50].

We used the procedure of [49] in our work. The original procedures in [49] and [50]

considered relaxing stuck-at tests. We extended the procedure in [49] to relax the

initialization vector V1 of a two-pattern LOC test (V1, V2).

Relaxation of tests must be done such that the fault coverage by the modified

tests is not lower than that of the original test set. This is achieved by providing a

target fault set, which must be detected by a relaxed test. In [51] the target fault

set for a test is determined by using what is called double detection fault simulation

[51]. Double detection fault simulation drops faults only after they are detected

two times. In [49] the set of target faults for a test are determined by simulating a

fully specified test when it is picked for relaxation. In our procedure, initially the

set of target faults for each test are Fi found in Step 2 given above. Reverse order

simulation of an ordered test as done in Step 2 to determine sets of target faults

has several beneficial effects as discussed in Observation 1 given in this section after

describing Step 3.2 and Step 3.3.

Step 3.2: After relaxing a test we fill 50% of the unspecified values of PPIs using

their preferred fill values and the remaining are filled next using adjacent fill. The

PPIs whose values are filled with preferred values are selected randomly. If the

WSA of the (first) capture cycle of the modified (LOC) test is higher than that for

the unmodified test the modified test is discarded and the corresponding original

test is retained in its place.

Step 3.3: Fault simulate the test filled in Step 3.2 and drop all detected faults

from the target fault sets for each test in T0. The test set T0 is updated by deleting

tests with empty target fault sets. Steps 3.1 to 3.3 are repeated if T0 is not empty.

Observation 1: The rationale behind the test ordering we use in Step 1 above

is the following. In Step 3.1 when a test is relaxed it is clearly advantageous to

relax maximum number of entries in it. The extent to which this is done depends
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on the order in which the tests are processed and the sets of target faults of tests.

For a test ti that appears earlier in the ordered test the number of faults in its

target set Fi are smaller since the target faults are determined by reverse order

fault dropping fault simulation in Step 2. Hence the tests at the top of the ordered

list which originally have high WSA have smaller sets of target faults. Thus, during

relaxation we expect to maximally relax these tests. Additionally as we continue

relaxing tests from the top of the ordered test set the sets of target faults for

the remaining tests keeps reducing (in Step 3.3) which again allows for maximal

relaxation of the tests.

Observation 2: In Step 3.2, one can fill different proportions of unspecified values

with preferred and adjacent fills. For the ISCAS-89 benchmark circuits equal

proportions for preferred fill and adjacent fill gave the best results in simultaneously

reducing WSA both during scan shift and capture cycles of stuck-at and TDF tests.

Observation 3: In the procedure given above some tests in the original test set T

may be dropped. A test tj is dropped if in Step 3.3 its set of target faults is found

to be empty during updating of test set T0.

2.5.2 Experimental Results

The proposed method was implemented in C++ language and experiments

were conducted on a Pentium XEON 2.8 GHz PC with 1.5 GB of RAM. For ISCAS-

89 benchmark circuits, the original fully specified stuck-at test sets are from [52]

and the original LOC test sets for TDFs were generated using an academic tool.

In Table 2.7, we give the results of applying the proposed procedure to stuck-

at fault test sets for ISCAS-89 circuits. After the circuit name we give the number

of tests that remain after the proposed procedure is used. Then we give the

WSA reductions in peak capture and in average scan shift under the columns

Peak Capture and Average Shift, respectively. The run time is shown under the
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Circuit #Tests
WSA Reduction % CPU

(Sec.)
Peak Capture Average Shift

s1423 24 22.40 12.39 0.15

s5378 100 35.26 26.00 3.45

s9234 111 16.56 26.79 7.40

s13207 235 41.78 27.46 21.63

s15850 97 32.31 36.24 12.8

s35932 12 0.15 15.44 7.13

s38417 87 23.74 29.40 24.34

s38584 114 48.79 29.47 38.10

Average 97.5 27.62 25.40 14.38

Table 2.7: WSA reduction for stuck-at tests

column CPU in seconds. In Table 2.8, we give similar data as in Table 2.7 for LOC

transition fault tests. The reductions in peak capture WSA for each of the two

capture cycles are given under the columns 1st and 2nd, respectively. In the second

column of Table 2.8, the numbers shown in the parenthesis are the differences in

test pattern counts between the tests after applying the proposed procedure and

the original tests.

From Tables 2.7 and 2.8, it can be seen that the proposed procedure reduces

both the peak WSA during capture cycles and the average WSA during scan shifts

for all the circuits. For stuck-at faults, on average, the reductions in the peak

WSA of capture cycles and the average WSA of scan shifts are 27.62% and 25.4%,

respectively.

As we discussed earlier, it is important to reduce average switching activity

during scan shift and the peak switching activity caused by capture cycles for scan

tests. However, for the sake of completeness we computed the reduction in the
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Circuit #Tests

WSA Reduction
CPU
(Sec.)Peak Capture Average

Shift
1st 2nd

s1423 82 28.69 25.52 34.71 7.17

s5378 165(-2) 26.97 25.89 16.19 7.42

s9234 324(-4) 35.79 14.10 45.84 38.15

s13207 368(-9) 31.07 26.64 32.28 66.57

s15850 181(-2) 39.49 8.15 54.40 40.37

s35932 40 16.24 21.85 31.53 41.48

s38417 222 26.81 14.80 44.35 109.12

s38584 292 36.65 37.78 51.11 173.82

Average 209.5 30.21 21.84 38.80 60.51

Table 2.8: WSA reduction for TDF tests

average WSA of capture cycles and the peak WSA of scan shifts for TDF tests.

This data is given in Table 2.5.2. It can be seen that both the average WSA

of capture cycles and peak WSA of scan shifts also reduced when LOC tests are

modified using the proposed procedure.

Next we compare the peak WSA reduction of capture cycles for stuck-at

tests achieved by the proposed method and the method in [37]. Both methods

use post-processing steps on tests obtained a normal run of ATPG using random

fill of unspecified values in test cubes. The original test sets used by the post-

processing steps in both cases are the highly compact test sets from [52]. It should

be pointed out that the method in [37] may increase the test pattern count and it

focuses on reducing the peak WSA of capture cycles. Instead, the proposed method

simultaneously reduces both the WSA during capture and the WSA during scan

shift without increasing test pattern count. Moreover, the method in [37] measures
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Circuit
Ave. Capture WSA %Red. %Red. in Peak

WSA of Scan Shift
1st 2nd

s1423 32.96 30.97 10.98

s5378 42.31 44.59 6.86

s9234 33.38 16.66 14.08

s13207 41.76 26.21 22.65

s15850 40.99 34.72 3.40

s35932 18.61 13.58 6.93

s38417 24.02 19.95 26.00

s38584 33.11 21.08 25.51

Average 33.39 25.97 14.55

Table 2.9: Reduction in average WSA of capture cycle and
peak WSA of scan shift for TDF tests

the power reduction during capture cycles by the number of state element changes in

the capture cycles. For this reason we also computed the numbers of state element

changes when the proposed method is used. In Table 2.10, we give the results from

[37] and the results by using the proposed method with 50% preferred fill and 50%

adjacent fill of unspecified values in relaxed tests. After the circuit name, we give

the number of test patterns, the reduction in the peak number of the state element

changes during capture cycles and the run times in seconds. The results from [30]

are given under column heading with [37] and the results for the proposed method

are given under PF+AF. We highlight the entries for the number of test patterns

and the reduction percentage of the number of state element changes when they are

the larger of the two methods. It can be seen that the proposed method achieves

better reduction of the number of state element changes for five out of eight circuits

and always have smaller or equal test pattern count for all the circuits. On average,



48

Circuit
#Tests %Red. of Peak SC CPU (Sec.)

[30] PF+AF [30] PF+AF [30] PF+AF

s1423 27 24 40.82 32.65 7.6 0.15

s5378 106 100 16.67 36.27 20.3 3.45

s9234 133 111 20.16 16.94 62.7 7.40

s13207 235 235 24.74 44.21 66.9 21.63

s15850 101 97 40.07 59.57 114.2 12.80

s35932 13 12 40.44 18.86 114.4 7.13

s38417 91 87 16.78 26.61 224.9 24.34

s38584 121 114 50.38 58.27 479.5 38.10

Average 103 98 31.26 36.67 136.3 14.38

Table 2.10: Comparison between [30] and the proposed method

the proposed method reduces the peak state element change by 36.67% while the

method of [37] reduces it by 31.26%. Furthermore, the run times for the proposed

method are much lower than those for the method in [37].

The results after applying the proposed method to industrial circuits are given

in Table 2.11. The results are given when 50% preferred fill and 50% adjacent fills

are used for stuck-at fault tests. After the circuit name we give the numbers of

faults and scan cells in the circuits. Next we give the percentage reduction in

average and peak WSA of capture cycles. Due to extremely high run times to

compute WSA during scan shift operation, the number of changes in the states of

scan cells or equivalently the number of transitions of states in scan cells during

scan shift is counted instead. We report the percentage reductions in the average

and peak number of state transitions during scan shift in the last two columns.

From Table 2.11, it can be seen that the peak WSA during capture is reduced by
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Circuit
#Flts
(Mill.)

#Scan
Cells

50% PF + 50% AF

Capture WSA Scan Shift

Reduction % Transition Reduction

Average Peak Average Peak

ckt1 0.63 20.2K 39.67 52.95 96.77 86.28

ckt2 1.85 70.3K 46.46 48.37 97.49 49.69

ckt3 2.84 44.9K 51.00 41.96 90.51 81.21

ckt4 4.17 133.7K 54.51 49.20 95.35 68.24

Average 47.91 48.12 95.03 71.36

Table 2.11: Results for industrial circuits

48.12% on average while the average percentage reduction in the number of state

transitions of scan cells during scan shift is reduced by 95.03% on average. These

results demonstrate the effectiveness of the proposed method to large industrial

designs.

2.6 Conclusions

In Section 2.3 a new technique called preferred fill is presented to address

the problem of larger than normal peak current and power dissipation during the

fast capture cycles of broadside delay fault testing. Preferred fill uses circuit signal

probabilities to fill unspecified values in test cubes. Since the signal probabilities

can be computed once in a preprocessing step preferred fill fills all the unspecified

values in a test cube simultaneously. The time to compute signal probabilities and

hence preferred fill are negligible and hence the method is scalable to large designs.

Since preferred fill is used only to fill unspecified values in test cubes, achievable

fault coverage is not affected. Preferred fill is shown to achieve substantial

reductions in peak and average power dissipation in benchmark and industrial
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circuits.

Preferred Fill was proven to be applicable to the stuck-at fault model in

Section 2.5. Also when used in the post-processing scheme it does not increase

test set size. The method in its two forms requires no hardware overhead. When

combined with adjacent fill it can provide reductions in both capture and shift

power. In both its forms it can be easily integrated to existing ATPG flows.

The main trade-off between the potential forms of using preferred fill is that

if it is used to replace random fill it requires no extra computing effort but pattern

count increases. On the other hand if it isused as a post-processing method

computing effort increases substantially due to the required relaxation step but

pattern count is held constant or even reduced.

Further research in this topic should focus on how to compatibilize preferred

fill with existing compression techniques like EDT or broadcast scan.
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CHAPTER 3

TEST POINT INSERTION

As digital circuits grow in gate count so does the data volume required for

manufacturing test. To address this problem several test compression techniques

have been developed. This paper presents a novel and scalable technique for

inserting observation points to aid compression by reducing pattern count and

data volume. Experimental results presented for industrial circuits demonstrate

the effectiveness of the method.

3.1 Introduction

Test point insertion has been studied in the literature for a long period of

time. Most of the previous work done on test point insertion (TPI) has been

in the area of logic Built-In Self Test (BIST) [12][13]. The goal of BIST oriented

TPI is to decrease the pattern count needed to achieve the desired fault coverage by

increasing the testability of hard to detect random pattern resistant faults. Mainly,

two techniques have been used to identify target sites for test point insertion: exact

fault simulation [53][54] and approximate testability measures [55][56][57].

In recent years, with the invention and commercialization of test compression

techniques such as EDT [14] and Broadcast Scan [58], logic BIST has become less

utilized and deterministic test gained more importance.

When compression, along with ATPG, is utilized the relevant variables that

determine its performance are the fill rate (percent of specified bits in test patterns)

of the patterns created by the ATPG engine, the number of patterns and the total

data volume, defined here as the sum of the specified positions before X-fill in every

test cube in the test set. These parameters determine to what extent the scan chains

should be segmented for compression and this in turn determines the maximum
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achievable compression ratio. The usual result after applying compression is that

the pattern count is similar to ATPG without compression, but the data volume is

reduced and hence tester time needed for the circuit under test (CUT) decreases.

Thus, two objectives gain relevance for test point insertion in deterministic

test: enhanced compaction (pattern count reduction) and data volume reduction.

Pattern count reduction impacts test cost by directly reducing test time. Each

pattern takes a fixed amount of time to be loaded from the tester to the CUT,

depending on the maximum length of the scan chains. If fewer test vectors are

needed, less tester time will be used. Fill rate reduction, when pattern count

remains fixed, allows higher compression ratios by properly adjusting the maximum

scan chain length. This in turn results in shorter test application time per pattern

and, again, a reduction in tester time utilization. The objective of our work is to

develop a technique that will identify locations for observation points (OPs) that

enhance pattern compaction, i.e. reduce the pattern count, and reduce the specified

bits prior to X-fill.

The remainder of the chapter is organized in the following manner: Section 3.2

reviews the related existing literature in TPI. Section 3.3 explains how to find the

possible locations for OPs and describes the proposed method. Section 3.4 gives

experimental results based on industrial designs, Section 3.5 gives experimental

results on large ISCAS circuits and Section 3.6 concludes the paper.

3.2 Previous works

Previously, some papers have been published that insert test points (TP)

with the objective of enhancing compaction to reduce test application time

[59][60][61][62][63]. They will be described in this section.

In [59], a method was proposed that combines approximate testability

measures from Controllability/Observability Program (COP) and Sandia Control-
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lability/Observability analysis program (SCOAP) and Test Counts, which is the

number of times a line must become zero (one) during the application of a test

set. Three methods are derived and compared, one based on COP, another on

SCOAP and a third that integrates Test Counts. The type of test point inserted

is a transparent scan cell at the output of a gate. A transparent scan cell behaves

as a buffer during the circuit normal mode and as a scan cell in test mode. The

authors ran experiments for the three methods on ISCAS circuits and for the COP

and Test Count methods on small industrial designs using the single stuck-at fault

model, inserting in industrial designs around one TP per thousand gates (more TPs

in the smaller circuits). For the industrial designs an average reduction in pattern

count of 36.39% for the COP method and 39.26% for the Test Count method was

obtained. The average time required to compute the Test Count test points was

59.49% of the ATPG time required for the baseline (pre-TP insertion) ATPG run,

but the ATPG time after TP was reduced to 43.58% of the original. In [60] an

extension of the methods in [59] to work with transition faults is given by the same

authors. Results are obtained for ISCAS circuits and a subset of the industrial

designs of [59].

In [61], a method for inserting OPs to enhance test compaction for the single

stuck-at fault model is presented. The method starts from a compact test set and

reduces it by combining two of its test vectors (τ0, τ1) into one. It achieves this by

targeting the faults detected by both τ0 and τ1 with a new test pattern τ0,1 and

adding OPs to detect the activated but unobserved faults. If every fault detected

by τ0 and τ1 is detected by τ0,1 after inserting observation points, the two initial

tests are replaced by τ0,1. Results are given for some ISCAS benchmark circuits.

In [62] and [62] the authors introduce a method based on fault detection

probabilities and value assignment probabilities to enhance compaction of patterns.

The authors propose algorithms to search the circuit lines for test point locations,
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both control and observe, based on these metrics. In both works, a set of three

industrial designs are used to prove the effectiveness of the method. In [63] the

designs are broken into their constituent blocks and test points are inserted in the

blocks with the highest pattern count. The main purpose was to reduce tester time,

measured as a function of test pattern count, achieving a reduction of 33.62% in

this metric.

Another work [64], does not share the same objective of improving compaction

in deterministic test, it is designed for BIST but it introduces several concepts

relevant for TPI. Also, it is implemented in a commercial tool which is available

and will be used for comparison purposes. Given these facts, and for the sake of

completeness, some of its key new concepts are discussed here. Multi-Phase Test

Point Insertion (MTPI) utilizes the AND-OR type of control point. It introduces

the control points at the outputs of gates to control the value of a stem and in this

way improve its controllability. In MTPI several control points are controlled by

the same input. This reduces the extra logic that needs to be inserted. The test

patterns are divided into a small number of phases. During each phase a subset

of control points are enabled, increasing the testability of certain faults (possibly

blocking others), while the rest are disabled. OPs on the other hand, are always

enabled. To reduce the number of scan cells needed to capture the OPs values,

several observation points are wired together through XOR gates (this concept is

not novel to MTPI). To find the test point locations MTPI simulates a small number

of random patterns and based on them it calculates signals with low controllability

as potential control points and signals with low observability as potential OPs.

3.3 The proposed method

The principal step in OP insertion is the addition of a branch to the output of

a gate. This branch in turn feeds an extra output of the circuit, preferably a scan
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cell and not a primary output. The addition of a scan cell to the circuit introduces

an area penalty. When the number of scan cells added to a circuit becomes large

this area penalty may become unacceptable due to design constraints. Due to

this there is a limit on the number of OPs that can be inserted, and not all gates

can be chosen. This calls for careful selection of the observation points. Since

an XOR gate takes less area than a scan cell, two OPs can be observed together

using an XOR gate. In this way more observation points can be inserted with

similar area overhead. We will not discuss the problem of how many OPs can be

inserted because it depends on design constraints. Instead, we will focus on finding

a heuristic that successfully identifies the best observation points for a given circuit

in an orderly manner. The first identified OPs should give the greatest benefit in

compaction and data volume reduction. Progressively adding more OPs would add

diminishing returns.

OPs cannot be used to reduce pattern count for the path delay or the

transition fault models. For path delay faults, an OP will observe only the first

part of the path. The industry currently uses the transition fault model to also

detect small delay defects. This requires propagating the fault effect (FE) through

a path that has the smallest slack. An OP will reduce the combined delay of the

fault and the gates that the FE traverses, increasing in this way the minimum delay

that the test set can detect. This makes the insertion of OPs risky for these fault

models, therefore we will not analyze the effectiveness of OPs for them.

In this work we will focus on identifying OPs for the single stuck-at fault

model. We will target the SAF fault list of a circuit using combinational patterns.

The remainder of this paper assumes stuck-at faults and combinational test patterns

in the discussion.
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1. For each fault targeted as a primary objective do:

(a) Compute Propagation Path from PO to fault site

(b) Compute Essential Input Assignments

(c) Compute Propagation Input Assignments per gate in the Propagation
Path

(d) Store in database

When ATPG/data gathering phase is complete:

2. For the desired number of observation points do:

(a) Check each gate cost function

(b) Select OP as the gate output with higher cost function

(c) Update database removing assignments after OP

Figure 3.1: OP selection process flow

3.3.1 Overview of the proposed procedure

The proposed procedure first runs ATPG on the circuit. When a cube is

created for a target fault it is immediately analyzed to extract one of the FE

propagation paths. Then the input assignments needed to propagate the FE

through the propagation path are identified. These input assignments are divided

into two categories: essential and propagation, defined later. With this information

a database is created. After the ATPG is done with test generation a post-

processing step on the database is done to select OPs. After each OP selection

the database is updated to reflect the presence of the newly identified OP. When

the desired number of OPs is identified they are inserted into the circuit and ATPG

is run again to create the final test set. Figure 3.1 shows an overview of the flow

of this process.

If the ATPG heuristics that choose the propagation path and the gate input

to justify a required value are changed, the information contained in the database
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will change and the OPs inserted will be different.

3.3.2 Creating a database from the ATPG run

The goal for this step is to create a database of input assignments for each

test cube that is created when ATPG is targeting a fault as a primary objective.

Each input assignment will be associated with a gate in the FE propagation path.

This database will be used to select the OPs.

Every time a fault is targeted by ATPG as a primary target and a cube is

successfully created for it, the propagation path of the fault is traced backward

from the detection gate, PO or pseudo-primary output (PPO) of a scan cell, to

the fault site. Only the first encountered propagation path is recorded, even if the

fault has multiple paths. The tracing operation is linear in the circuit depth.

Once one FE propagation path is found we record for every gate in it

the input, meaning both primary inputs and pseudo-primary inputs, assignments

necessary to propagate the fault effect to the gate output. In the case of the

fault site, and if the fault is at one of the gate inputs, we combine the activation

assignments with the assignments made to propagate the fault to the gate output.

The reason behind this is that a fault should not be observed at its fault site.

The earliest point of observation is the output of g. This is because the only

way to insert an OP is at the output of a gate, if we try to insert an OP at a

branch a new fault will appear between the OP and the gate input which is fed

by the branch, which is equivalent to say that the OP is at the stem. We will

call the set consisting in the union of the activation input assignments and the

propagation input assignments needed to propagate the FE to the output of the

fault site essential input assignments. The rest of the input assignments will be

called propagation input assignments and the will be associated with a gate in the

FE path.
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Observation 1 : Since we need to propagate a FE to a gate output to observe

it, essential input assignments cannot be avoided with OPs. On the other hand,

propagation input assignments can be eliminated with OPs, since the OP eliminates

the need to sensitize part of the observation path.

To find the input assignments that a gate needs to propagate a FE, we trace

every input of a gate in the identified propagation path backwards. If a gate has a

controlling value at its output one or more of its inputs is set to a controlling value.

In this case, we will mark as required the first input that is set to a controlling value.

If during this process we encounter a gate g that was already transited to justify

a value for a gate that appears earlier in the propagation path, we stop tracing.

In this case the inputs assigned to justify a value in g are needed to propagate

the FE through multiple gates but we only assign those inputs to the gate in the

propagation path of the FE that has the lower gate level. We do this because if

an observation point is added in the propagation path to remove some of the input

assignments the ones belonging to a gate with a lower level will still be necessary

even if they are not needed in the upper level gate.

Observation 2 : By ending the tracing at a previously traced gate, the operation

becomes linear in the number of gates of the input cone of the detection gate.

Observation 3 : If a fault has multiple propagation paths, every propagation path

after the first can be treated as assignments needed in the faulty circuit that will

map into assignments needed in the good circuit eventually.

In Figure 3.2 we illustrate the process of mapping a faulty circuit value into

required good circuit values. In this figure, required values are underlined and

the first propagation path of the fault effect is in italics. First it is important to

observe that to activate f we need a zero in one of the inputs of g1, this is the

essential assignment for f. We can consider this a case in which a faulty circuit

value (0/1 at the output of g1) maps into a required good circuit value (0 at one
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Figure 3.2: Mapping faulty circuit to good circuit

of its inputs). We consider the propagation path < g1, g3 > as the primary and

the other (< g1, g2, g3 >) as assignments in faulty circuit that will map by tracing

back into assignments in good circuit or paths that will end up in the fault site.

If we analyze Figure 3.2 we see that to propagate the fault effect through g3 only

the one in the fault circuit is needed at the output of g2, and that the zero in the

good circuit is unnecessary. Then if we trace back the one in the faulty circuit at

the output of g2 we find the fault site and a one in good circuit. This process can

always be applied since the presence of any faulty circuit value can be explained

by the presence of the fault and the input assignments, which are good circuit

assignments.

After this process is complete no faults remain in the fault list, because either

they were targeted by ATPG or dropped by fault simulation. For every fault that

was targeted as a primary objective and a cube was created for it we have one of

its propagation paths and for every gate g in the FE propagation path we have the

inputs that were assigned to a logic value to propagate through g.

Figure 3.3 illustrates the process of creating a database from the cubes created

by the ATPG. Fault f is located at input a of gate G1. The sets of input assignments

A and B of the cones feeding a and b cannot be avoided by inserting OPs. Thus the
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Figure 3.3: Input assignment identification process

sets of inputs assignments A and B will be identified as essential to f and the sets

C and G will be classified as propagation input assignments. The set of assignments

C − A ∪ B will be associated with G2 since it is the required set of propagation

input assignments to propagate through G2. The set of assignments G−A∪B∪C

is associated to G3 for the same reason. If we observe the output of gate G2, we

will not need G−A ∪B ∪ C, the set of inputs assignments to set g to a zero that

are not required for setting a value in a gate of lower level in the FE path. Also,

if we observe the output of gate G1 the input assignments G ∪ C − A ∪ B are not

needed to detect the fault. In this example the best OP will be the output of gate

G1 but given the presence of multiple faults and reconvergent fanout in the circuit

several contributions coming from faults in different parts of the circuit changes

the outcome.

Next we introduce two methods to locate OPs. One is designed to reduce
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pattern count and the other to reduce data volume, defined as the sum of the

specified inputs in all test cubes before random fill.

3.3.3 Conflict reduction (CR) oriented method

Two faults cannot be targeted with a single test when a conflict exists in

the assignments needed to activate and propagate them to an output. This inter-

fault conflict differs from the usual meaning of the term conflict, which is between

assignments to create a test for a target fault. Here the word conflict is used to

refer to the inter-fault conflict.

Given a circuit input and a set of test cubes for every circuit fault (the

database), the number of compatibility conflicts created by the cubes in it is

minE0 + P0, E1 + P1, where E0 is the number of times the input was set to 0

to excite the fault and to propagate it to the output of the gate which the fault is

associated with i.e. the number of the cubes with zero essential input assignments

in that input, and P0 is the number of times the input was set to 0 to propagate

through a gate other than the one at which the fault is located i.e. the number

of cubes with zero propagation input assignments. All avoidable conflicts can be

eliminated by observing every gate output in the circuit, and then the remaining

conflicts will be minE0, E1. Then for a given input the number of avoidable conflicts

will be minE0 + P0, E1 + P1 −minE0, E1.

The database records the extra input assignments needed to propagate the FE

through every gate in the FE propagation path. If an observation point is inserted

at the output of a gate g, all the input assignments that are needed to propagate

a FE in every cube through an upper level gate are not needed any more. We will

consider that a conflict is removed only if the input assignment removed is of the

same logic value as minE0, E1 because this is the minimum achievable conflicts for

that input.
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Now we can compute for every gate in the circuit how many conflicts will be

removed if its output is observed. We will select the output of a gate g that will

remove the most conflicts for every circuit input as our first OP. After this we will

search through the FE propagation path of every cube and remove all the input

assignments of gates in the propagation paths that come after g. Then we will

repeat this in the actualized list of FE propagation paths and inputs assignments

until we have identified the desired number of OPs. In this work we identified up

to one OP per five hundred gates in the circuit.

3.3.4 Data volume reduction (DVR) oriented method

Using the same information from the FE propagation paths we derived a

second technique oriented at reducing the number of specified positions in the test

cubes before random fill. After collecting the information from the cubes we will

assign to each gate output a cost function. This cost function is simply the sum

over all the cubes of the number of input assignments that will become unnecessary

if that gate output were to be observed. The gate output with the highest cost

function will be selected as the first OP and the input assignments that come after

that gate will be removed from the cubes. After that the second iteration will select

the second best OP and so on.

Both methods yielded very similar results due to the high correlation in the

sets of OPs identified. The more input assignments that an observation point will

remove the more likely that those removed input assignments will remove input

conflicts. The data volume reduction (DVR) method runs faster (4̃X) than the

conflict reduction (CR) method. This is the only significant difference in the results

for the two methods.
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3.4 Experimental results on industrial designs

All the results in this section are using the single stuck-at fault model tested

with combinational patterns. In all instances Test Coverage (TC) was the same, or

slightly higher, than without TPs. The insertion of OPs never reduced TC and any

increase, when it happened, although beneficial, is not reported because it is not

the target in this work. Only relative run times are given since absolute times vary

from one computer to another. Also the relative run time results have some noise

due to the varying loads on the computers running the experiments. All results

shown were obtained using a commercial ATPG tool.

In Table 3.1, the circuit name is given in the first column. The gate count

in the circuit under test rounded to the nearest thousand is given in the second

column. After this we show the ratio between time spent in observation point

identification for the CR method and the ATPG time. The other two columns

show respectively the original pattern count and data volume, measured in bits

before filling the unspecified values, needed to test the circuits. It can be seen from

Table 3.1 that the OP identification process will take approximately twice the time

of a regular ATPG run. In the last row N/A means non-applicable.

In Table 3.2, one of the circuits for which the ATPG runs faster (due to

its small size) is used to analyze the effectiveness of the method and how much

additional benefit we can obtain from inserting progressively more OPs. In Table

3.2, the first column has the number of observation points, and then under the

test case name there are two columns: the first is the number of patterns that

the ATPG produced and the second is the specified bits before X-filling of the

entire test set. Here we employed the CR method to identify OPs. It can be seen

from Table 2 that as more OPs are inserted further reduction in pattern count and

data volume (sum of specified bits) is achieved. There are very few exceptions in

which the curve is not monotonic. This behavior can be attributed to the ATPG



64

Circuit KGates OPI/ATPG (time) Pattern Count Data Volume

C 210 210 0.49 1002 733330

C 260 260 0.37 8745 4357725

C 419 419 0.15 4613 3082955

C 845 845 0.47 1029 749927

C 2007 2007 1.11 2325 2766406

C 2225 2225 1.49 28038 9843423

C 2500 2500 1.07 7525 5457533

C 2508 2508 1.52 4729 7621035

Average N/A 0.83 N/A N/A

Table 3.1: Observation Point Selection time

heuristics that order the fault list producing noise when a few new faults (due to

the observation points) are added to the fault list.

In Table 3.3, a comparison between the CR and DVR methods is conducted

for the eight circuits in the experiment. In Table 3.3, the first column shows the

number of OPs inserted relative to the circuit gate count, the next column PC

Red% shows the average percentage pattern count reduction for the eight circuits

in the experiment for both the CR and DVR methods. Last, under the column

labeled DV Red%, the same information is shown for the average percentage data

volume reduction. It can be seen from the experimental data that both methods

perform similarly for the same number of OPs. The difference is minimal and can

be attributed to the fault order.

In Table 3.4, a comparison between our method and MTPI [64] is done for

the circuits whose netlists were available in Verilog format. This was necessary to

run MTPI on them. While MTPI was devised for BIST, we used if for comparison

in deterministic test due to its availability. In Table 3.4, after the circuit name we
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# of OP
Inserted

C 260

# Patterns Data Volume

None 8745 4357725

1 8130 4156080

2 7454 3948161

3 6889 3768812

4 6101 3536561

5 5532 3364807

6 4774 3144804

7 4133 2967506

8 3727 2782390

9 3726 2602537

10 3681 2415063

11 3649 2253949

12 3661 2173013

1 / 40 KGates 4774 3144804

1 / 20 KGates 3660 2170960

1 / 10 KGates 3654 2135085

1 / 5 KGates 3666 2074099

1 / 2 KGates 3673 1929533

1 / 1 KGate 3675 1734588

1 / 500 Gates 3667 1534205

Table 3.2: Results for C 260
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# of OPs
/# Gates

PC Red % DV Red %

CR DVR CR DVR

1/ 10000 28.06 30.38 17.90 19.44

1/ 5000 32.22 32.42 21.18 22.53

1/ 1000 37.84 37.47 29.51 30.74

1/ 500 41.44 41.55 34.50 34.40

Table 3.3: CR vs. DVR

Circuit
PC Red % DV Red %

DVR MTPI DVR MTPI

C 260 58.50 5.22 62.29 5.60

C 419 68.01 53.00 54.31 13.39

C 2007 16.42 7.52 56.73 18.31

C 2225 13.45 6.69 32.58 2.91

C 2508 57.04 37.97 9.07 13.11

Average 42.68 22.08 43.00 10.66

Table 3.4: DVR vs. MTPI

show the pattern count reduction both for the DVR method and MTPI. In the last

column we show the data volume reduction for both methods. It can be seen from

the data that DVR clearly outperforms MTPI when applied to deterministic test.

In Table 3.5, results obtained using an industrial compression tool based on

EDT [14] are shown for the circuits using the DVR method to compute OPs. In

Table 3.5, after the circuit name, under the column Original, we show the original

pattern count using EDT. Under the column Red% we show the percentage pattern

count reduction when inserting one OP per 500 circuit gates after the tool was done
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Circuit Original Red % @ Same TC Scan Chains

C 210 1122 47.27 47.27 5

C 260 9051 57.65 60.74 4

C 419 7509 51.44 67.16 19

C 845 1096 30.02 30.02 16

C 2007 2997 22.06 42.01 8

C 2225 27825 14.34 15.42 14

C 2500 6359 12.19 14.62 64

C 2508 5750 53.55 57.60 32

Average N/A 36.06 41.85 N/A

Table 3.5: Results with EDT

generating patterns. Then, under the column @ Same TC, we show the percentage

pattern count reduction at the same test coverage that was achieved without OPs.

Last, under the column Chains, we show the number of scan chains that each

circuit has. Since the number of scan chains of every circuit in the sample was

small we only use one scan channel for each circuit. Due to the fact that we

were not interested in benchmarking compression but to compare results with and

without OPs we did not reconfigure the scan chains to obtain a better compression

ratio. Since compression is being used, we do not report data volume which is

proportional to pattern count. From the large reductions obtained it can be seen

that the insertion of the OPs under compression greatly reduces test set length.

3.5 Experimental results on benchmark circuits

In this section results for the CR and DVR methods for ISCAS benchmark

circuits are given for the sake of completeness. Both methods fail to provide with

pattern count reduction for these circuits as it can be seen in Tables 3.6, 3.7, 3.8
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and 3.9. It is important to notice the reasons so a discussion will be provided next.

Both methods analyze the resulting cubes of a ATPG run performed on the

original circuit and based on that they compute observation locations. This is done

under several assumptions:

1. There is enough cubes created by the ATPG so that the database created has

enough statistical information.

2. A large enough number of the faults targeted by ATPG are hard to detect

faults (in the sense that random fill has small chance to detect them).

3. Enough faults targeted in the original ATPG run are targeted again after

observation point insertion by ATPG.

4. Several retargeted faults when targeted again use the same decision order in

the J-frontier and in the D-frontier.

These assumptions can be summarized into two. First, the ATPG runs pre

observation point insertion and post observation point insertion are similar. Second,

pattern count is high. While pattern count depends on the CUT design, DFT

techniques applied to it and the ATPG algorithm used to create the test set it can

be observed a correlation between pattern count and circuit size (and number of

faults too).

For ISCAS benchmark circuits this assumptions do not hold because they are

small circuits. They have a very low gate count and number of faults. The test

sets created by ATPG have a very low pattern count with only one case above two

hundred patterns. Then the database does not have enough information to properly

locate observation points. Nor there is many hard to detect faults targeted, nor

the pre-insertion and post-insertion ATPG runs are similar.

For these reasons the effect of the extra logic inserted (as observation points)

does not reduce the pattern count in the same percentages than in industrial
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Circuit Original 10K 5K 1K 500

c2670 71 - 74 69 75(-8)

c3540 144 - 149 139 130

c5315 96 96 92 87 85

c6288 36 35 34 38 39

c7552 125 128 119 113(-18) 116(-18)

Table 3.6: CR pattern count results for ISCAS85

circuits. In some cases pattern count increases due to the extra faults added to the

fault list. This extra faults belong to the inserted logic. The effect that they have

is resorting the fault list, changing the ATPG run.

It is also important to notice that as observation points were added a few

redundant faults became testable. Since the original pattern count was very low,

the extra patterns due to these newly detectable faults can impact severely on

pattern count.

In Table 3.6 pattern count results are presented for the CR method for the

largest five ISCAS85 benchmark circuits. In Table 3.6 after the circuit name,

under column Original, we show the original pattern count without any observation

points. Then, under columns 10K, 5K, 1K and 500 we show pattern count results

when one observation point is inserted every ten thousand, five thousand, one

thousand and five hundred faults in the original fault list respectively. The quotient

is rounded up to obtain an integer number of observation points. When the number

of redundant faults was reduced we show this reduction in parenthesis in the same

table cell after the pattern count result. The original number of redundant faults

is not shown but in can be found in [65].

Tables 3.7, 3.8 and 3.9 are organized in the same manner as Table 3.6. Table

3.7 shows results for the DVR method on the same subset of ISCAS85 circuits
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Circuit Original 10K 5K 1K 500

c2670 71 - 73 75 66

c3540 144 - 149 134 134

c5315 96 96 92 90 82

c6288 36 35 37 36 37

c7552 125 128 119 109(-18) 116(-18)

Table 3.7: DVR pattern count results for ISCAS85

Circuit Original 10K 5K 1K 500

s5378 132 133 133 133 125

s9234 192 184 162(-8) 142(-48) 136(-48)

s13207 291 283 274 265(-2) 245(-26)

s15850 159 155 149 136 131(-22)

s35932 45 45 45(-6) 49(-38) 48(-69)

s38417 136 137 142 115 112(-1)

s38584 186 189 180 170 166(-1)

Table 3.8: CR pattern count results for ISCAS89

than Table 3.6. Table 3.8 shows results for the CR mehtod on the largest seven

ISCAS89 circuits. Table 3.9 shows results for the DVR method on the same subset

of ISCAS89 circuits than Table 3.8.

3.6 Conclusions

In this paper we presented a new observation point insertion technique to

enhance compaction and reduce data volume for scan based test. The method

analyzes the cubes created via ATPG and based on them inserts the test points.
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Circuit Original 10K 5K 1K 500

s5378 132 140 133 129 122

s9234 192 184 162(-8) 142(-48) 137(-48)

s13207 291 294(-16) 283(-16) 265(-21) 246(-24)

s15850 159 163 153 139(-45) 141(-48)

s35932 45 45 45(-6) 42(-24) 47(-60)

s38417 136 139 137 120 110(-1)

s38584 186 179 182 169(-18) 157(-19)

Table 3.9: DVR pattern count results for ISCAS89

Because of this the method is ATPG heuristics dependent. Since the method

run times do not exceed those of test pattern creation the technique is scalable

to large industrial designs. Experimental results with industrial designs showed

substantial reductions in pattern count and total specified positions before X-filling.

Comparisons with other test point insertion methods demonstrate the advantages

of the method. Experiments with industrial test compression tools show that under

compression environments the technique is applicable and achieves large benefits

in test duration and therefore test cost.
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CHAPTER 4

A SCALABLE METHOD FOR THE GENERATION OF SMALL
TEST SETS

This Chapter presents a scalable method to generate close to minimal size

test pattern sets for stuck-at faults in scan based circuits. The method creates

sets of potentially compatible faults based on necessary assignments. It guides the

justification and propagation decisions to create patterns that will accommodate

most targeted faults. The technique presented achieves close to minimal test

pattern sets for ISCAS circuits. For industrial circuits it achieves much smaller

test pattern sets than other methods in designs sensitive to decision order used in

ATPG.

4.1 Introduction

For scan based circuits the test application time is proportional to the test

set size and the length of the longest scan chain. Hence, it is important to

reduce test set size by generating compact test sets in order to reduce test cost.

In recent years, with the introduction of test compression techniques, test cost

has been reduced. Test compression techniques introduce test generation time

overhead. This overhead has been initially compensated by the utilization of

faster Automatic Test Pattern Generator (ATPG) engines. However, faster ATPG

engines may create abnormally large test sets for some circuits under test (CUTs).

This weakness in the ATPG heuristics must be overcome to avoid abnormal pattern

counts for some CUTs. At the same time test generation must be completed in a

reasonable time to cope with large industrial designs.

The techniques to obtain a compact test set can be classified into static

and dynamic compaction methods. Static compaction methods are applied to

already generated test sets to further reduce their size by removing redundant
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tests. Some of these methods do not alter the tests in the set [6][66]. Others, after

relaxing the test vectors in the set, attempt to target faults detected by a vector so

that they will be detected by other vectors in the set, rendering the initial vector

redundant [50][67]. Dynamic compaction methods attempt different heuristics to

accommodate detection of more faults by a test pattern while it is being created

[68]. The basic principle of dynamic compaction is to create a test cube for a

fault, called primary or parent fault, and use the resulting specified positions as

constraints to target other faults, called the secondary or child faults. The best

results in test set size are obtained by methods using both static and dynamic

compaction techniques.

This work focuses on opportunistically achieving close to minimal test sets

using dynamic compaction techniques. The objective is not to create minimal test

sets but to get consistently close to minimal test counts with a fast algorithm

that can be applied to large industrial designs. An ATPG engine based on the

D-algorithm using new ways to guide decisions in order to accommodate detection

of more faults by the same test vector is developed. The guidance is based on a

preprocessing step that computes cliques of faults based on some of their necessary

assignments. After the preprocessing step, the faults in a clique are targeted for

test generation. Each time a decision is to be made by the ATPG, an attempt to

avoid violating the necessary assignments of the remaining faults in the clique is

made.

The rest of this chapter is organized in the following manner. Section 4.2

describes earlier works on compact test set generation related to the present

work and others that achieve related results. Section 4.3 presents the dynamic

compaction algorithm proposed. Experimental results are given in Section 4.4.

Section 4.5 concludes the chapter.
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4.2 Earlier Works

Terms related to test generation procedures and used later in the paper are

defined below [6].

Definition 1: J-frontier is the set of all gates whose output value is known but is

not implied by its input values.

Definition 2: D-frontier is the set of all gates whose output value is unknown and

they have one or more error signals on their inputs.

In [69], the authors combine dynamic and static techniques to generate

minimal or close to minimal test sets. Dynamic fault ordering, a technique to

sort the fault list during test generation, based on the computation of independent

fault sets (IFS) is used. IFS are sets of faults in which no two faults can be detected

by the same test vector. In [69], after the generation of a test vector the largest IFS

remaining is placed on top of the fault list and a new fault is selected as a target

for test generation from the IFS. Another heuristic, rotating backtrace, based on

the rotation of gate inputs selected to justify values in the J-frontier, is employed

to facilitate detection of yet undetected faults. Double detection, which requires

each fault to be detected twice before being dropped from the fault list, is used as

a dynamic compaction technique to create test vectors that detect earlier detected

faults [51]. This facilitates dropping of tests generated earlier by performing reverse

order fault simulation. Extremely compact test sets are created in [51] at the

expense of large computational times. This reduces the method’s applicability to

larger designs. In [52], a similar trade-off between test set generation time and test

set size is proposed. Using similarly oriented techniques, smaller test set sizes are

achieved at the expense of additional computing time. We will compare the results

obtained with the proposed method to those obtained in [52] and [51].

In [70] a method, called SCOAP, to guide ATPG decisions is introduced.

SCOAP is aimed at measuring the complexity of justifying a line value and
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observing a gate. It does this by creating scalar estimates of how many circuit

inputs are necessary to control and observe each gate. Its complexity is linear in

the circuit gate count. SCOAP has the disadvantage that it fails in the presence

of reconvergent fanout by either underestimating or overestimating the scalar

measures. Also it is static in the sense that it does not take into account yet

undetected faults for ATPG guidance.

The work in [71] uses necessary assignments (NA) for sensitizing selected

paths in order to create compact test sets to detect transition faults through longest

testable paths. A NA clique of faults, is a subset of faults such that necessary

assignments of any pair of paths in the clique do not conflict. In [71], the collection

of NAs for all paths in a clique are called clique assignments (CA). Next, tests to

satisfy all necessary assignments of CA are derived. These tests sensitize all paths

and detect the corresponding transition faults in a clique. The paths chosen are

first verified to be sensitizable and the target transition faults are detected when the

paths are sensitized. So, the problem of creating a test for these faults is reduced to

justifying the necessary assignments for sensitizing the faults. In [71] it is pointed

out that once a clique C is formed, it is very rare that the necessary assignments

in the corresponding CA cannot be simultaneously justified.

In this work the focus is on stuck-at faults. We also form cliques of faults

based on necessary assignments that do not conflict. However, not all necessary

assignments to detect a fault can be used. We use a limited set of necessary

assignments for the activation and propagation of faults in forming cliques of faults.

The collection of the necessary assignments for faults in the clique CA are used to

guide J-frontier and D-frontier decisions by the ATPG when generating a test for

a fault. In this way, we attempt to avoid conflicts with CA. Thus, it is possible

that the ATPG will violate some necessary assignments in CA in searching for a

test. This will happen when the ATPG cannot create a test for a given fault in the
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restricted search space compatible with CA.

4.3 The proposed method

The objective of both static and dynamic compaction is to produce smaller

test sets. As discussed before in Section 4.2 some compaction procedures attempt

to find optimal test sets with computationally intensive techniques.

This section describes two scalable methods we propose for generating test

sets of near minimal size. Section 4.3.1 describes the necessary assignments of a

fault and which ones are considered by our methods. Section 4.3.2 describes the

single detections (SDA) algorithm. Section 4.3.3 provides an example of the SDA

method and Section 4.3.4 describes the proposed extra detections (EDA) method.

4.3.1 Necessary assignments

For a fault f, necessary assignments (NA) are every line value necessary for

the detection of the fault. This includes values to activate f and propagate its effect

to a fanout stem or an output. The number of necessary assignments to detect a

stuck-at fault can be increased, for example, by determining dominators [72] and

using learning techniques [73][74].

We use necessary assignments obtained by using simple forward and backward

implications on the fault-free circuit only. Specifically, we do not use dominator

analysis and learning techniques. Thus, implications stop at the first fanout stem

or output reached from the fault site and the backward implications stop when

inputs of a gate are not uniquely implied by its output. We illustrate the necessary

assignments we use by determining them for the fault f in Figure 4.1. The necessary

assignments we use for fault f are shown in bold and are underlined. For fault f,

many additional necessary assignments can be found using dominators and learning.

These are shown in italics without underlines. It should be noted that not all
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Figure 4.1: Necessary assignments for f

1. Compute NA-estimates (NAest).

2. Sort the fault list F by decreasing order of NAest.

3. Pick first untargeted fault as parent fault fp and compute NA.

4. Add the NA of fp to CA and fp to C.

5. ∀f ∈ F :

(a) If f cannot be activated: continue.

(b) If f does not have an X-path: continue.

(c) Compute NA for f with CA as constraints.

(d) If NO conflict: add NA to CA and f to C.

6. Generate a test for fp guided by CA.

7. If success: Target every f ∈ C guided by CA.

8. Random fill and fault simulate using fault dropping the created test pattern.

9. If F not empty: goto 3.

Figure 4.2: A pseudocode of the SDA method

underlined assignments in bold are normally regarded as necessary assignments.

For example the outputs of gates B and D. In our method we use these values as

necessary assignments for fault F.
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4.3.2 Single detections algorithm (SDA)

The key concept in the single detections algorithm (SDA) is the addition of

a pre-processing step to test generation. This pre-processing step screens faults to

determine which ones should be targeted for detection by a test and determines

how ATPG decisions are made. It does this by computing NAs for the faults. If

two faults have conflicting NAs they cannot be detected with the same pattern.

If they have compatible NAs they will be targeted with the same pattern and the

J-frontier and D-frontier decisions will be guided, using the computed NA, in an

attempt to facilitate detecting the faults with a single test.

SDA works in the following way. It orders the faults placing the ones with

larger number of NAs first. However, instead of ordering on actual number of

NAs per fault we use an easily computed approximation of the NA count. We call

this NAest. This is done to avoid determining the NA of all faults upfront since

during test generation only the NA of faults that remain undetected are needed.

The NAest computation time for the entire fault list is linear in the gate count of

the circuit. The motivation for ordering the faults in decreasing order of NAest is

that faults with larger NAest will tend to have more conflicts with other faults and

restrict to a larger degree the number of additional faults that can be detected by

a single test. After this preprocessing step test generation is started.

The first untargeted fault fp from the ordered fault list is selected as a parent

fault and added to a clique C. The NA of fp are computed and added to the set

of clique assignments CA. Next the NA of a yet undetected fault f is checked for

compatibility with CA. If f can be activated and has an X-path under CA, NA of

f with CA as constraints are computed. If there is a conflict CA is restored and f

discarded. Else f is added to C and CA is updated with the computed NA of f.

After C is formed, every fault except fp in C is sorted. The sorting criterion

is the number of previous times that f was targeted as a secondary target fault. If f
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was targeted more times it is placed higher in the list. If two faults were attempted

the same number of times, sorting places first the fault whose NAest value is larger.

In this way more restrictive faults are placed first in the list to be targeted.

After C is sorted fp is targeted by the ATPG. Every time a J-frontier decision

or a D-frontier decision has to be made by the ATPG we attempt to maximize

the compatibility of the decision with CA. If a test cube is formed for fp, every

f ∈ C will be targeted as secondary fault for detection by the same test in order

of appearance in the sorted clique C.

Once all the faults in C are targeted the unspecified values in the final test

cube are randomly filled, the resulting test vector is fault simulated and all the

detected faults are dropped. This process is repeated until the fault list F has

no more faults which were not targeted as parent faults. In Figure 4.2, we give a

pseudocode of the ATPG flow.

4.3.3 An example of SDA method

Consider the circuit of Figure 4.3 with f1, f2 and f3 being the only faults

remaining in the fault list F. The gate whose output is labeled m is a multiplexer.

Lets us assume that the faults are originally ordered in ascending order of their

indices. Next we discuss the effect of applying SCOAP and random decision order

as well as the SDA algorithm in generating tests for the faults.

If SCOAP based guidance is applied to a test for f1 a D-algorithm based

ATPG will face two decisions. One in the J-frontier when justifying line f=1 and the

other in the D-frontier when propagating g=D through g1 or g2. Since the circuit

is symmetrical the choices could be c=1 for justifying f=1 and g1 to propagate

the error value on g. This will result in a test vector that cannot accommodate

detection of any of the other two faults. This is because f2 is blocked since c is set

to 1 and f3 is blocked because the select input p of the multiplexer will be 0 to
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Figure 4.3: An example illustrating SDA method

propagate the error value on g1. This is illustrated in Figure 4.4. When targeting

f2, the same choice in the D-frontier will be faced and SCOAP based guidance will

again lead to the same result. For these faults SCOAP based guidance will lead to

three test patterns.

Instead if random decision order is used, the D-algorithm, when faced with the

same decisions has a 50% chance to decide among two choices for each decision.

Computing the probabilities for different sets of tests to detect the faults using

random decisions, with probability 0.25 a single pattern to detect all faults will be

obtained, with probability 0.625 two patterns to detect all faults will be created

and with probability 0.125 three patterns will be created.

If the SDA algorithm is used, NAs for the faults in F will be computed. As

there is no conflict in the necessary assignments a clique C including all the faults

in F will be formed. The necessary assignments for all the faults in F are displayed

in Figure 4.3. When the J-frontier decision on f is to be made the SDA algorithm

will choose d to set f=1 to avoid conflict with c=0 which is part of the CA of the

fault clique C. When the D-frontier decision in g is to be made, SDA algorithm

will choose branch g2 to avoid conflicting with the assignment p=1, which is also

part of the CA. The pattern created in this way can detect faults f2 and f3. Thus

the SDA algorithm will produce one test vector to detect all the faults.
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Figure 4.4: Test for f1 using SCOAP

4.3.4 Extra detections algorithm (EDA)

In order to reduce the pattern count obtained using the SDA procedure given

above we used the following observation in deriving a modified procedure called

extra detections algorithm (EDA).

As test generation proceeds, the number of yet undetected faults decreases

and the sizes of the cliques of compatible faults constructed from the undetected

faults decreases. We can increase the sizes of cliques by adding faults that have been

detected by tests generated earlier. This causes some faults to be detected several

times without increasing the size of the test set compared to that obtained by

using the SDA algorithm. Multiple detection of faults improves the quality of tests

by increasing the probability of detection of unmodeled faults. This observation

was the motivation behind the recent work called Embedded Multi-Detect ATPG

[75]. Additionally, as observed in [51], the extra detections of earlier detected faults

causes some of the tests generated earlier to become unnecessary and they can be

dropped using static compaction techniques [51][66].

We modify the formation of cliques in the SDA algorithm to obtain the EDA

algorithm. In the SDA algorithm the fault cliques are formed from yet undetected

faults. In the EDA algorithm after considering the yet undetected faults to form

the cliques we consider faults already detected in increasing order of the number

of times they are detected. In order to increase the probability of dropping earlier
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generated tests we use the following heuristics in processing the already detected

faults. We only keep the faults that are detected less than ten times, dropping the

faults at the tenth detection. For each fault we record the first pattern that detects

it and the number of faults detected by the pattern for the first time. For each

earlier generated pattern we record the number of faults uniquely detected. We use

this number when considering faults that are detected exactly one time by earlier

tests.

When we consider adding already detected faults to a clique we first consider

faults detected only once in the following order. If the pattern p that detects a

fault f uniquely detects fewer faults, then f is placed in the clique ahead of other

faults. This heuristic increases the probability of dropping patterns that uniquely

detected fewer faults since faults not uniquely detected by such patterns are already

detected by other patterns.

While considering faults detected two or more times we use the following

heuristics. Faults are considered in increasing order of the number of times they

are detected. Let faults f and g be detected the same number of times and patterns

p and q detect f and g for the first time respectively. We place f ahead of g if

pattern p detected fewer faults for the first time than pattern q.

4.4 Experimental results

In this section, experimental results for ISCAS benchmark circuits and

industrial designs are presented. All results for ISCAS circuits were obtained using

a 3.6-GHz processor. Results for industrial circuits were obtained using a 2.8-GHz

processor. The proposed procedures were implemented as add on to a commercial

ATPG based on the D-algorithm.
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CUT
Pattern Count

SDA EDA SC LB MT CT

c432 37 37 32 27 27 29

c499 52 52 52 52 52 52

c880 23 21 20 13 16 21

c1355 85 85 84 84 84 84

c1908 115 111 107 106 106 106

c2670 56 49 47 44 44 45

c3540 104 103 99 80 84 91

c5315 51 52 50 37 37 44

c6288 26 22 *21 6 12 14

c7552 92 88 83 65 73 80

Total 641 620 595 514 535 566

Table 4.1: Pattern count results for ISCAS85
benchmark circuits
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CUT
Time (sec) BCE

SDA EDA MT CT SDA EDA SC

c432 0.06 0.23 6.2 7 80.05 83.94 81.96

c499 0.07 0.64 17.4 5 92.92 92.98 92.98

c880 0.07 0.24 10.4 12 84.52 84.96 84.09

c1355 0.28 1.86 29.4 16 92.33 92.38 92.28

c1908 0.34 1.78 78.9 55 91.16 91.47 90.99

c2670 0.32 1.21 73.3 130 90.42 92.27 92.01

c3540 0.78 3.26 178.1 262 89.11 89.81 89.39

c5315 0.63 2.69 265.4 362 89.18 91.11 90.61

c6288 3.03 14.42 65.6 398 96.73 95.89 95.63

c7552 1.38 7.80 794.7 1311 94.28 95.88 95.57

Total 6.96 34.13 1519.4 2558 90.07 91.07 90.55

Table 4.2: Run time and BCE for ISCAS85 benchmark
circuits
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4.4.1 Results on ISCAS circuits

Tables 4.4.1 4.4.1, 4.4.1, 4.4.1, 4.4.1 and 4.4.1 show results for the ISCAS

benchmark circuits set. In Tables 4.4.1, 4.4.1 and 4.4.1, after the circuit name the

pattern counts for different test generation methods are shown. In Tables 4.4.1,

after the circuit name, under column Time (sec) the run times for the different

methods are shown. Next, under column BCE the bridge coverage estimates,

computed as in [76], are shown for some test generation methods. In Tables

4.4.1 4.4.1, 4.4.1, 4.4.1, 4.4.1, the abbreviation SDA refers to the single detections

method, EDA refers to the extra detections method, SC is for static test compaction

of [66] used on tests obtained using method EDA, LB is the highest known lower

bounds on the test set sizes from [52], MT is the method in [52] and CT is the

method in [51]. Run times for SC are not shown since they were negligible. For the

largest ISCAS circuit (s38584), it took 0.14 seconds to perform SC on the test set

obtained using EDA. The results for the ISCAS89 benchmark circuits set is broken

into two tables with totals in the last (Part b) of them to fit them into the page

format.

From these tables we can see that the proposed algorithms approach and even

sometimes match the lower bounds known for ISCAS circuits. Only in the three

circuits marked (*) the method failed to approach the lower bound and produced

a high pattern count. In one case (**), both the proposed methods produced the

smallest test set known so far. The run times for different methods cannot be

directly compared since [52] was run on a 200-MHz Pentium Pro PC, [51] was run

on a SUN SPARC 2 and the proposed methods were run on a 3.6-GHz processor.

Given the disparity of the capabilities of the computers used we can only focus on

the run time trends relative to circuit sizes to discern to discern the scalability of

different methods. To illustrate this, in Figure 4.5 we plot the run times of methods

SDA, EDA, MT and CT normalized by dividing the run time by the number of
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CUT
Pattern Count

SDA EDA SC LB MT CT

s208 32 32 32 27 27 27

s298 24 24 24 23 23 24

s344 15 15 15 13 13 15

s349 15 15 15 13 13 14

s382 27 27 25 25 25 25

s386 65 64 64 63 63 63

s400 25 25 25 24 24 24

s420 70 70 *68 43 43 43

s444 25 25 24 24 24 24

s510 56 56 55 54 54 54

s526 52 52 52 49 49 50

s526n 52 52 51 49 49 50

s641 24 24 23 21 21 22

s713 24 24 22 21 21 22

s820 97 97 96 93 93 94

s832 97 97 97 94 94 94

s838 146 146 *140 75 75 75

s953 81 79 78 76 76 76

Table 4.3: Pattern count results for ISCAS89
benchmark circuits. Part a
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CUT
Pattern Count

SDA EDA SC LB MT CT

s1196 131 131 120 113 113 118

s1238 138 138 129 121 121 124

s1423 26 27 26 20 20 26

s1488 106 106 102 101 101 101

s1494 104 104 102 100 100 100

s5378 108 104 102 97 97 103

s9234 142 136 125 100 105 108

s13207 236 236 236 233 233 235

s15850 99 96 95 91 95 95

s35932 11 11 **10 9 12 13

s38417 83 79 78 62 68 85

s38584 119 118 117 93 110 115

Total 2230 2210 2148 1927 1962 2019

Table 4.4: Pattern count results for ISCAS89
benchmark circuits. Part b
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CUT
Time (sec) BCE

SDA EDA MT CT SDA EDA SC

s208 0.03 0.05 0.4 0.8 81.40 83.94 83.94

s298 0.03 0.05 0.7 1.5 80.89 81.72 81.72

s344 0.01 0.06 0.7 1.5 79.78 80.50 80.50

s349 0.02 0.02 0.7 1.7 80.04 80.67 80.67

s382 0.03 0.12 0.8 1.7 83.94 85.77 84.49

s386 0.06 0.11 3.1 3.8 74.71 76.78 76.78

s400 0.04 0.09 0.8 1.8 82.48 84.36 84.36

s420 0.07 0.16 2.9 3.2 82.99 84.72 84.21

s444 0.04 0.13 0.9 2.3 82.62 84.46 83.72

s510 0.07 0.21 3.6 6.0 84.79 85.51 85.26

s526 0.04 0.19 3.0 4.9 83.64 85.96 85.96

s526n 0.08 0.17 3.3 4.9 83.78 85.86 85.66

s641 0.05 0.17 2.1 3.1 83.09 85.90 85.45

s713 0.07 0.21 2.8 4.6 84.70 89.01 87.86

s820 0.20 0.32 34.1 19 73.19 74.31 74.06

s832 0.14 0.33 80.1 20 73.12 74.09 74.09

s838 0.21 0.51 15.3 13 84.38 85.05 84.51

s953 0.13 0.44 30.3 25 85.52 86.13 85.93

Table 4.5: Run time and BCE for ISCAS89 benchmark
circuits. Part a
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CUT
Time (sec) BCE

SDA EDA MT CT SDA EDA SC

s1196 0.25 0.68 43.6 48 84.41 86.53 85.61

s1238 0.24 0.70 127.4 102 84.35 86.12 85.39

s1423 0.16 0.69 205.3 32 87.05 89.58 89.24

s1488 0.23 0.68 75.1 40 81.46 82.52 81.64

s1494 0.25 0.72 80.4 43 80.94 82.16 81.79

s5378 0.73 2.96 131.5 216 92.19 94.86 94.75

s9234 1.49 6.18 3157.1 1085 87.41 90.40 89.74

s13207 2.90 10.04 1178.4 1096 88.84 93.44 93.44

s15850 3.13 12.86 9252.2 1375 91.50 94.17 94.11

s35932 2.32 5.26 11334.5 8388 75.14 75.73 74.56

s38417 7.21 26.39 28955.8 13210 92.89 94.77 94.69

s38584 8.05 29.76 38538.9 14446 92.31 95.17 95.12

Total 28.28 100.26 93265.8 40199.8 83.45 85.34 84.97

Table 4.6: Run time and BCE for ISCAS89 benchmark circuits.
Part b
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faults in the circuit. The normalized run times are given on a logarithmic scale. It

can be seen that the run time per fault of SDA and EDA procedures are essentially

constant where as the run times for MT and CT methods increase dramatically as

the circuit size grows.

Bridge coverage estimate was proposed in [76] as a measure of detection of

unmodeled defects. From the last three columns of Tables 4.4.1, 4.4.1 and 4.4.1, we

note that the BCE for tests generated using EDA is higher than that of the tests

generated using SDA even though the test set sizes of EDA are smaller. The BCE

of test sets obtained after reducing the test sets of EDA by using static compaction

are also higher. Thus we conclude that EDA produces smaller but higher quality

test sets. Of course EDA requires longer run times compared to SDA.

4.4.2 Results on industrial designs

The results on four industrial circuits are given in Table 4.7. After the circuit

name we give the circuit gate count in thousands of gates followed by pattern

counts by various test generation methods. Here Rand and SCOAP stand for test

generation procedures using random decision order and SCOAP based decision

order, respectively. The results given under Rand and SCOAP are obtained after

performing the static compaction technique [66] on the test sets. Method SDASC

represents the use of SD followed by static compaction and the other methods

are the same as given earlier in Table 4.4.1. Next three columns give run times

relative to the run time of the Rand procedure. In the last two columns we give

the bridge coverage estimate for SC and the best BCE of Rand and SCOAP based

test generation methods.

From Table 4.7 we conclude that the proposed test generation methods

produce the smaller test sets for all circuits. It can be noted that for some circuits

the random decision order based method gives much smaller test sets than the
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Figure 4.5: Run times for the various methods
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CUT KG
Pattern Count

Rand Scoap SDA SDASC EDA SC

c-210 210 899 1192 659 653 634 615

c-260 260 8489 3632 3641 3639 3631 3301

c-419 419 1228 1256 1247 1243 1145 1077

c-845 845 905 5565 515 515 515 503

Table 4.7: Pattern count for industrial designs

CUT
Time (norm. to Rand) BCE

Scoap SDA EDA SC Best R-S

c-210 1.86 1.72 3.89 95.45 91.47

c-260 0.59 1.37 2.91 87.93 81.31

c-419 2.29 0.81 2.51 97.95 92.95

c-845 5.37 1.15 2.53 93.08 99.30

Table 4.8: Run time and BCE for industrial designs

SCOAP based decision order but for other circuits it produces larger test sets.

However the proposed methods consistently give smaller test sets for all circuits.

The BCE of the test sets generated using EDA followed by static compaction are

typically higher than the BCE of the Rand and SCOAP methods. Only for circuit

c-845 the BCE of SC is lower than the best BCE of Rand and SCOAP due to the

fact that their test set sizes are several times larger than the one for SC.

4.5 Conclusions

A scalable dynamic compaction technique that relies on preprocessing to

determine guidance for the ATPG decisions was proposed. The proposed method
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generates minimal or close to minimal test sets, except in three cases, for ISCAS

benchmark circuits. For industrial designs it outperforms the best results of

Random and SCOAP based decision guidance by always producing similar or better

test set sizes.
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CHAPTER 5

CONCLUSIONS

As transistor count in digital circuits grow so does gate count in them. Run

time for software tools that create test sets for digital circuits grows with gate count.

The complexity of manufacturing test increases with transistor count. Another

trend is the increase in computers capabilities which alleviates the problem. Given

this situation and the fact that these problems are NP-hard, as stated in the

introductory discussion, every solution must be based on heuristics and therefore

its scope should be temporal and not definitive.

This dissertation focused on two problems: pattern count increase and low

power test.

For low power test, a new heuristic called preferred fill was proposed. The

method is based on a fast pre-processing step that computes the most likely values

to be held by a digital circuit and replaces random fill with these precomputed

values. In this way, preferred fill reduces capture power by statistically matching

the inputs of digital circuits to their responses to the inputs. Preferred fill can be

used during test generation in replacement of random fill, or it can be used in a

post-processing step for a pre-existing test set.

The properties of this solution are given next. It achieves substantial

reduction in capture power. It is scalable to industrial designs because the pre-

processing step used to compute the preferred values is linear in the gate count

of the circuit. Preferred fill requires no additional hardware overhead as it is a

software solution to low power test. It can also be combined with other existing

techniques. When combined with adjacent fill it reduces both peak capture and

average shift power dissipation.
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The method trade off, when used during test generation, is the observed

increase in test set size versus the reduction in power dissipation with no increase

in computational effort. When used as a post-processing step on an already created

test set the trade off is in computational effort against the reduction in power

dissipation. The increase in computational effort in this case is due to the necessary

relaxation step and not to the computation of preferred values.

For the pattern count increase problem two solutions were proposed: obser-

vation point insertion and a guidance algorithm for ATPG.

The observation point insertion approach aims at reducing test set size by

making compatible sets of previously incompatible faults. To achieve this objective

the cubes created during the ATPG run are analyzed and this information is stored

in a database. Then the database is analyzed and the best observation point is

selected based on a heuristic cost function. Then the database is updated and the

process iterated until the desired number of observation points is achieved.

Given the nature of the process described above, the observation points

computed in this way are dependant on the ATPG heuristics. How the ATPG

justifies the J-frontier, propagates the D-frontier and selects the next target fault

will affect the database and therefore the observation locations computed.

Given the statistical nature of the method, it is necessary that the circuit is

large enough and the ATPG produces several cubes when it targets the circuit

faults. Otherwise, the database will not have enough information to produce

effective observation points.

The method is usable for stuck-at faults achieving great reductions in pattern

count and therefore in test application time. This also holds true under compression

environments, as experiments using an EDT-based tool confirmed. Inserting

observation points for transition delay faults is risky. The same idea, on which

the technique is based, can be applied to gross delay faults because they will be
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detected anyway. However, transiton delay test sets are currently used in industry

to detect small delay faults. In this case, the insertion of an observation point

shortens the propagation path of the fault effect, and therefore the accumulated

delay may be less than the clock period rendering the fault undetected. For this

reason, no research was done to extend the method to transition faults.

For this method, the trade off is between pattern count reduction and its

benefit on test application time and circuit area. As observation points are added,

new scan cells are needed for them. This effect is minimal because the method

achieves substantial reductions in pattern count with only one observation point

per thousand gates. Extra computational effort is also needed to analyze the

cubes and the database, modify the netlist and re-run the ATPG. But since these

operations are in the same run time order of the initial ATPG run, the method can

be performed on industrial designs.

The guidance algorithm for ATPG is based on a pre-process step that

computes necessary assignments for faults and forms a set of potentially compatible

faults. Then, based on the set of necessary assignments it guides the J-frontier

and D-frontier decisions for each fault to avoid violating other faults necessary

assignments, when possible. Otherwise it attempts to create a test for the fault

with a minimum number of conflicts with the set necessary assignments. It also

sorts the fault list to target it in a better manner based on heuristics. These

heuristics depend on an estimation of how many necessary assignments the fault

has and therefore an estimation of how incompatible the fault is with other faults.

The method was researched for stuck-at faults, but it can be extended to

other fault models using the same principle. Since transition and propagation path

delay faults have more necessary assignments than stuck-at faults, the task is harder

for the older model (stuck-at). Stuck-at faults have D-frontier decisions to guide,

while propagation path delay faults do not. It was noticed in the experiments
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performed (but not previously mentioned in this thesis) that the more necessary

assignments that we computed, wheter it was using learning or dominators, the

better the method performed.

The necessary assignments clique formation method can be applied to any

circuit size achieving close to minimal pattern count in ISCAS circuits. Its trade

off is the extra computational effort needed for the pre-processing step against the

pattern count reduction that it achieves. Since the pre-processing step is based on

simple ATPG to compute trivial necessary assignments it is less computationally

expensive than the cube creation step making the method scalable.

5.1 Future Research

The three different techniques proposed in this dissertation share the objective

of contributing to dilucidate current manufacturing test problems. But their

continuation must follow different paths that will be described next.

For the low power test technique, preferred fill, there is a need to compatibilize

it with compression environments. Presently, almost every digital circuit manufac-

turer uses compression to reduce data volume and test application time. Preferred

fill principles are not incompatible with EDT or broadcast scan but more research

is needed to integrate those techniques. If preferred fill is integrated into the flow of

a compression technique, a viable solution for low power test for industrial designs

will be created.

The test point insertion technique is incomplete in the sense that only a

method for observation point computation is presented. A technique for the

localization of control points that is both scalable and compatible with the

observation points needs to be developed. Moreover a general method that can

decide when to insert an observation point and when to insert a control point is

necessary. The control-observe point methods must have synergy i.e. the next

test point to insert must be in the optimal location given the previous test points
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inserted. In this way, they will break the inter-fault dependencies better, producing

smaller test sets.

The ATPG guidance algorithm needs sensitivity analysis to be performed

on it. The different parts of the method work well together but their individual

impact both in pattern count and run time is unknown. Also, the method is

scalable due to its practically linear growth in run time with circuit size but its

current implementation is a phase that can be described as research code i.e. it

was developed to prove a point, not to be a tool. If the method is to be used in

a commercial tool, a proper analysis on its effects on run time, when compared

to other guidance methods, is needed. For this, development on the technique is

needed, which is beyond the scope of the present work.

For the ATPG guidance algorithm, more research is necessary to adapt it

to all the currently used fault models, such as transition, path propagation delay,

four-way bridging faults, etc. This will prevent the existence of different ATPG

methods for different fault models, which is sub-optimal for commercial tools.
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