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PUBLIC ABSTRACT

This thesis discuses source localization and tracking under the condition when

there is no much knowledge about the source and the background. A stationary and

mobile source is to be localized and track using sensor upon receiving its signal by

sensors. In reality the property of the signal from the source at a given environment

may not be well known. Giving an assumption the signal received from the source is

inversely proportional to the distance from the given sensor we are able to develop

four algorithms.

In this thesis we first show how we can localize a stationary source using the

signal received by fixed sensors. This is done upon comparing the signal received

by pair of sensors. This was found to perform well even under the consideration of

background noise. Localization of the stationary source is also done using a mobile

sensor, in which we let a sensor move around the region of interest and use the signal

to localize the position of the source.

A tracking of moving source is also discussed in which fixed sensors measured

signals are used to localize the source position at each moment which constitute the

trajectory of the moving source.

This thesis has an impact to the society in combating to the recently growing

threat of terrorism. This way we would be able to localize and track the radioactive

material before it makes major damage to the society.
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ABSTRACT

This thesis considers source localization and tracking when both the signal

propagation model and the source motion dynamics are unknown. Algorithms are

developed for different scenarios. The algorithms are discussed when a source is

stationary or mobile, under the condition when sensors are fixed or mobile. These

algorithms exploit the strictly decreasing properties of the model in terms of distance,

but do not depend on the form and the values of the models. Therefore, these algo-

rithms could be applied when the signal propagation models and the source motion

are unknown. The only assumption made is that the signal propagation strength

decreases in distance. For a given performance specification, the optimal number and

placement of the sensors is also discussed. Convergence and other properties of the

algorithms are established under various noise assumptions.
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CHAPTER 1
INTRODUCTION

In this thesis we present some simple, effective algorithms in localizing and

tracking a source without any information about its propagation model. The specific

goal is to discover an effective, applicable and simple algorithm that can be applied

to a number of different applications related to source localization and tracking, such

as wireless communications, radioactive sources, and other applications. We assume

that we do not have much information about the properties and dynamic motion

of the source except the assumption that the propagation strength is inversely pro-

portional to the distance of the source from the agent. This assumption is actually

fairly reasonable. A number of models used in source localization and tracking in

the litrature apply in some specific applications and are less effective in some other

applications. Consequently the proposed algorithms are different from most previous

works done in the area of source localization and tracking literature and can be ap-

plied to many applications without too much information on the signal propagation

model and the motion dynamics. By contrast, the proposed algorithms are applicable

and simulation supports the theoretical analysis.

1.1 Related works and our motivation

Over the last few years the problem of source localization and tracking has

received tremendous attention in the literature [7, 16, 18, 21, 29] and there has been

much effort in developing algorithms for such problems. The problem has an applica-
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tion in a wide range of areas, including wireless communication [8, 16, 20, 21, 23, 26],

detection of radioactive materials [3, 10, 18, 19], airborne plume monitoring [11, 12,

25], mobile sensor networks [15, 16], as well as others. With all these important

applications, numbers of algorithms have been proposed. For instance, smuggling of

nuclear material poses a serious national security threat and therefore identification,

localization and tracking of radioactive nuclear material have been extensively studied

in other related literature [3, 19, 22, 29].

Some of the proposed algorithms in literature of source localizations and track-

ing are based on time difference of arrival or angle of arrival model [8, 26, 27]. These

algorithms measure the time or angle difference between sensors data and exploit the

cross correlation. These types of algorithms work in the context of wireless communi-

cation [4, 9] but may not be applicable in other applications, like radioactive material

detection, since no time delay could be measured. In wireless communication we can

have a formulation that comes from the time difference of arrival to the different

agents, whereas in the literature of radioactive source localization we can only mea-

sure the number of photons emitted by the sources. In this case, it is difficult, may

be even impossible, to measure the time difference of arrival at different sensors.

Other algorithms that have been used in the literature are based on the model

of how the signal propagates [3, 28]. These approaches are useful in some applications

but can be problematic in others, where having a reasonable model of how a signal

propagates is not an easy task. In addition, even when a model is available, these

models often have a number of unknown parameters that have to be estimated. As a
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result, such models are less effective or accurate. The most popular algorithm in the

field is based on the received signal strength and the consequent triangulation or its

variants. Suppose the exact relationship between the received signal strength and the

distance between the unknown source and the sensor is available, then the distance

between the source and the sensor can be uniquely determined based on the received

signal strength. Equivalently, for a two dimensional problem, the unknown source

lies on a circle with the sensor at its center with a known radius. With three or more

noncollinear sensors, the unknown source location can be calculated. To improve the

performance in the presence of noise, some robust algorithms are proposed [16] which

are robust under various conditions.

To apply the signal-strength based algorithms, the relationship between the

signal strength and the distance between the source and the sensor has to be available.

This condition can be realistic in some applications but may not be realistic in others.

For example, a path loss parameter characterizes the relationship between Received

Signal Strength (RSS) measurements and distances and is notoriously uncertain, [24],

and also could vary from as little as two to as high as eleven. A very common model

in the literature for the received signal strength s at a given sensor position xi [3, 19]

is

s(xi) =
A∗

d∗2i
e−c

∗d∗i (1.1)

where φ∗ = [A∗, c∗]> is a constant parameter vector that characterizes the signal

strength, y∗ is the unknown source location, d∗i = ‖xi − y∗‖ is the distance between

the sensor at xi and y∗, A∗ is the received signal strength at a unit distance from
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the source when c∗ = 0, and c∗ is the decaying rate due to, e.g., communication

media or shielding material when the signal is Gamma ray count emanating from a

radioactive source, [18, 19, 29]. Work in the litrature assumes that A∗ and c∗ are

known or assumes c∗ to be 0 [19]. So, the value of d∗i can be uniquely determined

from the value of s(xi), [7, 21].

How to localize and track the source y∗ based on the received signal strength

s(xi)’s if A∗ and c∗ are unknown is an interesting and longstanding open question. In

some applications, the relationship between the signal strength and the distance in

between could be more complicated than (1.1) or only partially known, or completely

unknown. For instance, in the presence of backscattering Gamma ray counts from

radioactive materials, a model could be A∗

d∗αi d∗2i
e−c

∗d∗i for some unknown α > 0 [17]

which is obviously different from (1.1).

Localization from such uncertain signal models is an important, interesting but

non-trivial problem. The results reported in this thesis address this question when

there is only one source present and the received signal strength has a monotonal

decreasing property in distance.

More formally, we assume that the received signal at the sensor location x(t)

at time t is

s(x(t)) = g(‖x(t)− y∗(t)‖) + e(t) = g(d∗(t)) + e(t) (1.2)

where x(t) ∈ Rn is the sensor location at time t, y∗(t) ∈ Rn the unknown source

location at time t, d∗(t) = ‖x(t)−y∗(t)‖ the distance between x(t) and y∗(t), e(t) the

measurement noise at time t, and g is an unknown scalar function strictly decreasing
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in ‖x(t) − y∗(t)‖. Further, let y(t) ∈ Rn be an estimate of y∗(t) at time t and

d(t) = ‖x(t) − y(t)‖ of d∗(t). We consider both the settings where a single mobile

sensor or multiple sensors make measurements located at time tj at xi(tj). Given a

number of measurements s(xi(tj)) at xi(tj), i, j = 1, 2, ..., the goal is to find y∗(t)

from the measurements s(xi(tj)) and the sensor location xi(tj).

1.2 Our contribution

The contribution of this thesis is to provide applicable algorithms for source

localizations and tracking in cases where the source propagation model is not fully

known, but it is monotonic in distance between the source and sensors. This has a

number of applications as we discussed in the previous section.

1.3 Overview

The organization of this thesis is as follows. Three algorithms are developed

along with their properties in Chapter two for a stationary source. Given the knowl-

edge of a region where the source lies and a performance specification, this section also

answers the question of how one should optimally place the sensors, and how many

sensors should be used. Chapter three formulates robust tracking algorithms for a

moving source. Simulations are presented in Chapter four. Chapter five discusses

conclusion and future works.
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CHAPTER 2
A STATIONARY SOURCE

In this chapter, we consider the case of a stationary source y∗. Hence, we will

treat the source location y∗ to be independent of time t. Both stationary and mobile

sensors will be considered. Further, the following constitutes a standing assumption

for this thesis.

Assumption 2.0.1. The function g(d) in (1.2) is a (possibly unknown) scalar func-

tion strictly decreasing in d, and is positive and twice differentiable for all d > 0.

Further, the noise in (1.2) has finite variance, and is zero mean and independent

from noise at other locations.

2.1 Fixed location sensors

To illustrate ideas, first consider a noise free case. Since no relation is available

between the signal strength and distance from the source, the localization cannot

be performed by estimating the distance. However, in the absence of noise, the

measurements s(xi1), s(xi2) from sensors at xi1 and xi2, respectively, satisfy

s(xi1) < s(xi2)⇔ d∗i1 > d∗i2 ⇔ ‖xi1 − y∗‖ > ‖xi2 − y∗‖.

Indeed exploiting this and other inequalities is the core of this thesis. Let li = xi1−xi2

be the line segment connecting the points xi1 and xi2 and define

Fi = {y ∈ Rn | s(xi1) < s(xi2)} (2.1)

= {y ∈ Rn | ‖xi1 − y∗‖ > ‖xi2 − y∗‖}.
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O

O

l/2

l/2

xi1

xi2

Fi

Figure 2.1: The set Fi.

Thus Fi is the half space of Rn defined by a hype-plane that (1) is equidistant from

xi1 and xi2 and (2) has the line li as its normal direction as shown in Figure 2.1. (The

lower half of the space if s(xi1) > s(xi2)).

Consider nowK pairs of measurements at location pairs xi1, xi2 i ∈ {1, 2, ..., K}.

Define the feasible set F

F =
K⋂
i=1

Fi =
K⋂
i=1

{y ∈ Rn | s(xi1) < s(xi2)} (2.2)

Obviously the y∗ ∈ F and, in fact, F describes all possible y∗’s that are consistent

with the data set, an idea reminiscent of the membership set [2]. We give a two
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dimensional example here. Let 4 measurements at xi, i = 1, 2, 3, 4, satisfy

s(x3) > s(x2), s(x2) > s(x1), s(x1) > s(x4)

then, Fi, i = 1, 2, 3 and F =
⋂3
i=1 Fi can be constructed as shown in Figure 2.2 that

describes all possible y∗ consistent with the measurements.

s(x1)

s(x2)
s(x3)

s(x4)

→

→

←

←

↓

↓

F→

Figure 2.2: Illustration of the set F

Instead of finding a single estimate of y∗, this approach yields a set F that

comprises all possible y∗ consistent with the data. From a practical point of view,

the localization accuracy is satisfactory if the “size” of F is small. The exact shape

and size of F depends on many factors. In general, sufficiently rich sensor placement

results in a small F and makes F converge to a singleton as K →∞ [1]. The condition

will be discussed in the next section.
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2.1.1 Minimal sensor number and optimal sensor placement

Suppose I ∈ Rn is the region to be monitored. Without loss of general-

ity, we assume that I is a bounded hyper-rectangle in Rn. Clearly, the feasible set

F of (2.2) derived in the previous section is a convex polytope. The accuracy of

localization can be quantified in terms of the volume or the diameter of F . We fo-

cus on volume here, noting that extension to diameters is trivial. Given the source

y∗, and m sensors at x1, ..., xm, there are K = m(m − 1)/2 pairs of measurements,

{s(x1), s(x2)}, ..., {s(x1), s(xm)}, ..., {s(xm−1), s(xm)}. Suppose F (y∗, x1, ..., xm) is the

resulting feasible set. Define

V (y∗, x1, ..., xm) = Volume of F (y∗, x1, ..., xm) (2.3)

This volume measures the localization performance. The smaller the volume, better

the localization. If there is no a priori knowledge of y∗, we may assume that y∗ is

uniformly distributed in I. Define the average performance

Vave(x1, ..., xm) =
1

V ol(I)

∫
y∗∈I

V (y∗, x1, ..., xm)dy∗ (2.4)

where V ol(I) is the volume of I and 1
V ol(I)

is the probability of y∗ at any point in I.

This is the average performance and is independent of the actual source location y∗.

Thus, given m, the optimal placement of m sensors obeys

(x∗1, ..., x
∗
m) = arg min

x1,....,xm
Vave(x1, ..., xm). (2.5)

Clearly, Vave(x
∗
1, ..., x

∗
m) is a non-increasing function of m. In fact, it goes to zero as

m→∞.
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Theorem 2.1.1. Suppose the region of interest I ∈ Rn is a bounded hyper-rectangle

and x∗1, ..., x
∗
m are as in (2.5). Then,

lim
m→∞

Vave(x
∗
1, ..., x

∗
m) = 0.

Proof. From the definition of x∗1, ..., x
∗
m, as Vave(x

∗
1, ..., x

∗
m) is nonincreasing, it suffices

to show that there exists a sequence of m and a sequence of sensors x1, ..., xm for

which Vave(x1, ..., xm) defined in (2.4) goes to zero. To this end, partition I in each

dimension into L equal parts so that I is the union of Ln boxes, whose volumes go to

zero as L increases. Place sensors at each corner of the boxes. Then, Vave(x1, ..., xm)

is proportional to the volume of each box and converges to zero as L→∞. Further,

Vave(x
∗
1, ..., x

∗
m) ≤ Vave(x1, ..., xm). This completes the proof.

The sensor sequence used in the proof of Theorem 2.1.1 is of course sub-

optimal. To achieve effective sensor placement, we first pose the following problem

whose solution may not be tractable. Then, we postulate a suboptimal though compu-

tationally tractable solution. Indeed, consider the problem: Given the region I ∈ Rn

and a performance specification cs > 0, find the minimum number m of sensors and

the corresponding optimal placement of sensors so that

Vave(x
∗
1, ..., x

∗
m) ≤ cs (2.6)

As posed, this is an intractable problem for several reasons. First, the calculation

of (2.4) is non-trivial because an analytic expression of V (y, x1, ..., xm) as a function

of y is practically impossible even with a modest m. Secondly, the minimization

of (2.5) is even harder. Note that Vave is a non-linear, non-convex and possibly
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non-continuous function of xi’s and even with a modest m, it is unlikely to have an

analytic expression of Vave in terms of the xi. Our approach in this thesis is not to find

the global minimum, but a sub-optimal solution with a much lower computational

complexity e.g., linear in m so that the problem of the ”minimum” number of sensors

and their placement satisfying the specified performance cs can be solved quickly.

Before presenting the idea, note that though an analytic expression of Vave(x1, ..., xm)

is impossible, it can be computed numerically by sampling: Select y1, ..., yL as L

uniformly distributed independent samples in I and calculate V (yi, x1, ..., xm), i =

1, 2, ..., L. These are themselves independent variables with bounded means and vari-

ances. Let

V̄ L
ave(x1, ..., xm) =

1

L

L∑
i=1

V (yi, x1, ..., xm) (2.7)

According to Law of Large Numbers for Random Functions, we have

lim
L→∞

V̄ L
ave(x1, ..., xm) = Vave(x1, ..., xm)

in probability. Our proposed suboptimal solution, with a much lower complexity, is

based on the so called forward/backward selection, a well studied in the statistics

literature [13]. Given a number m, the selection starts with two sensors at x1 and

x2 that result in a F with its volume being Vave(x1, x2) = 1
2
V ol(I). Such a solution

is optimal only if two sensors are given and easy to find, but needs not be unique.

Then, one more sensor is added and its location is searched over I. More precisely, let

z1, z2, .., zL be independent samples in I according to the uniform distribution. Let

x3 = argmin
zi

V̄ L
ave(x1, x2, zi) (2.8)
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for some L, where V̄ L
ave is defined in (2.7). Similar to (2.7) as L → ∞, x3 is a good

estimate of

x∗ = argmin
x
Vave(x1, x2, x)

Fix the third sensor at x3 and then the process is repeated for x4, x5, ..., xm one by one

until all m sensors and their placement are determined. Once the forward selection

is done in the order of 1, 2, ...,m, the backward selection starts. First it frees x1 and

searches all x ∈ I and replaces x1 by x that minimizes Vave(x, x2, ..., xm). The process

continues for x2, ..., xm one by one until all sensors are checked.

Now we are in a position to state the forward/backward selection algorithm

for the optimal placement of sensors, given the region I and the number m. Fix a

large number L > 0.

Forward selection:

Step 1: Choose any two sensor locations x1 and x2 that provide a F with the average

volume Vave(x1, x2) = 1/2V ol(I).

Step 2: Let the number of sensors chosen be l. Add one more sensor.

• Generate L sensor location samples z1, ..., zL ∈ I uniformly and independently

in I.

• For each zi, generate L source samples yi1, ..., yiL uniformly and independently

in I.

• For each zi, yij, j = 1, 2, ..., L, together with previously chosen x1, x2, ..., xl, cal-

culate

V (yij, x1, ..., xl, zi), and
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V̄ L
ave(x1, ..., xl, zi) =

1

L

L∑
j=1

V (yij, x1, ..., xl, zi)

• Determine the optimal sensor placement

xl+1 = argminziV̄
L
ave(x1, ..., xl, zi)

Step 3: If l + 1 = m stop and go to the backward selection. Otherwise, go back to

Step 2.

Backward selection:

Step 1: Fix x2, x3, ..., xm. Generate L sensor location zi’s uniformly and independently

in I. For each zi, generate L source location yij’s uniformly and independently in I.

Calculate V̄ L
ave(zi, x2, ..., xm) = 1

L

∑L
j=1 Vave(yij, zi, x2, ..., xm) and find

x = argmin
zi

V̄ L
ave(zi, x2, ..., xm)

Replace zi by x and rename x by x1.

Step 2: Continue the process for x2, x3, ..., xm.

Now the algorithm for the optimal number and placement of the sensors for a

given performance specification cs > 0 can be summarized into one sentence. Apply-

ing the forward/backward selection algorithm for m = 3, 4, ..., the minimum number

m and the corresponding sensor placement satisfying V̄ L
ave(x1, x2, ..., xm) ≤ cs solves

the problem.
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2.1.2 Minimizing noise effect

The previous results are derived assuming no noise. In the presence of noise

s(xi(tj)) = g(‖xi(tj)− y∗(tj)‖) + e(tj)

at time tj, where e(tj)’s are assumed to be independent and identically distributed

random noise with zero mean and finite variance. The set F was defined based on

s(xi1(tj)) < s(xi2(tj)) which may or may not be consistent with the actual inequality

g(‖xi1(tj) − y∗(tj)‖) < g(‖xi2(tj) − y∗(tj)‖). To guarantee, with a high probability,

that s(xi1(tj)) < s(xi2(tj)) implies g(‖xi1(tj)− y∗(tj)‖) < g(‖xi2(tj)− y∗(tj)‖), some

averaging is needed to average out the effect of the noise. Since both the source and

sensors are stationary, i.e., y∗(t) = y∗ and x(t) = x, a time average is an efficient way

to go. Let s(xi1(tj)), s(xi2(tj)) , j = 1, 2, ..., L be L measurements from sensors at xi1

and xi2. Define

s̄(x) =
1

L

L∑
j=1

s(x(tj)) = g(‖x− y∗‖) +
1

L

L∑
j=1

e(tj)

This implies

s̄(xi1)− s̄(xi2) = g(‖xi1 − y∗‖)− g(‖xi2 − y∗‖)

+
1

L

L∑
j=1

(ei2(tj)− ei1(tj))

By Law of Large Numbers, the last term goes to zero as L → ∞ with probability

one. In other words, with a high probability for a large L, s̄(xi1(tj)) < s̄(xi2(tj))

implies g(‖xi1(tj) − y∗(tj)‖) < g(‖xi2(tj) − y∗(tj)‖). In applications, the equation

s(xi1)− s(xi2) < 0 in (2.1) should be replaced by

Fi = {y ∈ Rn | s̄(xi1) < s̄(xi2)} (2.9)
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for some L.

The above result is asymptotic. For a finite L, the probability bound can also

be calculated though conservative. Clearly given s̄(xi1(tj)) − s̄(xi2(tj)) = −ε < 0,

g(‖xi1(tj)− y∗(tj)‖) < g(‖xi2(tj)− y∗(tj)‖) if∣∣∣∣∣ 1L
L∑
j=1

(ei2(tj)− ei1(tj))

∣∣∣∣∣ ≤ ε

Let σ2 be the variance of e(tj). By the Chebyshev inequality

Prob {g(‖xi1(tj)− y∗(tj)‖) < g(‖xi2(tj)− y∗(tj)‖)}

≥ Prob

{∣∣∣∣∣ 1L
L∑
j=1

(ei2(tj)− ei1(tj))

∣∣∣∣∣ ≤ ε

}
≥ 1− 2σ2

Lε2
→ 1

as L→∞. This provides a probability bound of confidence for a finite L.

2.2 A mobile sensor

We now consider source localization by a mobile sensor. The unknown source is

still stationary. The problem is straightforward if the relation of the signal strength

versus distance is available,which, however, is not assumed to be available in the

thesis. Thus, the localization has to rely on other relations. Suppose there is

a mobile sensor moving in a non-colinear, but otherwise arbitrary fashion as il-

lustrated in Figure 2.3 for a two dimensional case. Again, if the mobile sensor

makes m measurements at x1, ..., xm, it produces m(m − 1)/2 pairs of data set,

{s(x1), s(x2)}, ..., {s(x1), s(xm)}, ..., {s(xm−1), s(xm)}.
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Figure 2.3: Sensor path.

2.2.1 Exploiting equality relation

Suppose along the sensor path, there are K pairs of points, {xi1, xi2}Ki=1 at

which s(xi1) = s(xi2). Then we have d∗i = ‖xi1− y∗‖ = ‖xi2− y∗‖ for an unknown d∗i ,

i = 1, ..., K. Nonetheless, as

‖xi1 − y∗‖2 = ‖xi2 − y∗‖2

this does imply that

(xi1 − xi2)Ty∗ =
1

2
(‖xi1‖2 − ‖xi2‖2)

or equivalently  (x1,1 − x1,2)T

...
(xK,1 − xK,2)T

 y∗ =
1

2

 ‖x1,1‖2 − ‖x1,2‖2

...
‖xK,1‖2 − ‖xK,2‖2

 (2.10)
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Indeed, for this section we make an assumption here.

Assumption 2.2.1. There exist K ≥ n and pairs of points {xi1, xi2}Ki=1 on the path

executed by the sensor, for which s(xi1) = s(xi2), i = 1, ..., K, and at least n of the

vectors xi1 − xi2 are linearly independent.

This assumption is satisfied by generic trajectories of the mobile sensor. Clearly,

under this assumption, the matrix on the left hand side of (2.10) has rank n and the

solution of y∗ is unique as summarized below.

Theorem 2.2.1. Under Assumptions 2.0.1 and 2.2.1, the unknown source location

y∗ can be uniquely calculated by solving (2.10).

Evidently, the knowledge of g(·) is immaterial and, beyond that, it satisfies

the standing assumption.

2.2.2 Robustness

Small error analysis:

A key idea of the approach is that in the absence of noise

s(xi1) = g(d∗i1) = g(d∗i2) = s(xi2)⇒ d∗i1 = d∗i2

where d∗ij = ‖xij − y∗‖, j = 1, 2. The statement is however no longer true in the

presence of noise. In the presence of noise, for j ∈ {1, 2}, s(xij) can be written as

s(xi,j) = g(d∗i,j) + vi,j = g(d∗i,j + δdi,j),
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for some unknown δdij. Therefore, instead of d∗i1 = d∗i2, we have in the presence of

noise that s(xi1) = s(xi2) implies

d∗i1 + δdi1 = d∗i2 + δdi2

Now observe that under assumption 2.0.1, the unknown noise obeys:

vij = g(d∗ij + δdij)− g(d∗ij) =
∂g

∂d∗ij
δdij + h.o.t., j = 1, 2

where h.o.t. denotes high order terms. This implies

(d∗i1 + δdi1)2 = (d∗i2 + δdi2)2 ⇒

‖xi1 − y∗‖2 − ‖xi2 − y∗‖2 = d∗2i1 − d∗2i2 =

2 ∗ d∗i2
1
∂g
∂d∗i2

vi2 − 2 ∗ d∗i1
1
∂g
∂d∗i1

vi1 + h.o.t

= βi2vi2 − βi1vi1 + h.o.t.

for some bounded βi1 and βi2. Let

ei = βi2vi2 − βi1vi1, i = 1, 2, ..., K

which are mutually independent, zero mean, and have finite variance. In summary,

in the presence of small noise, (2.10) becomes (x1,1 − x1,2)T

...
(xK,1 − xK,2)T

 y∗ =
1

2

 ‖x1,1‖2 − ‖x1,2‖2

...
‖xK,1‖2 − ‖xK,2‖2

 (2.11)

+
1

2

 e1
...
eK

+ h.o.t.

We then have the following Theorem whose proof is omitted as it follows from stan-

dard well known results.
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Theorem 2.2.2. Under Assumptions 2.0.1 and 2.2.1, suppose y is the least squares

solution of (2.10). Then for sufficiently small noise variance, y → y∗ + O(h.o.t.) in

probability as K →∞.

Weighted least squares:

Essentially, the analysis above is a small noise analysis so that higher order

terms can be ignored. The translation is that the approach should work well if the

noise is small, but the performance can not be guaranteed and deteriorates when

the noise gets too large. To further improve performance, recall the Least Squares

solution (2.11) minimizes

min
y

K∑
i=1

((xi1 − xi2)Ty − 1

2
(‖xi1‖2 − ‖xi2‖2))2

The error (xi1 − xi2)Ty − 1
2
(‖xi1‖2 − ‖xi2‖2) carries equal weight for each i. In many

applications, while the noise has approximately the same energy level everywhere,

the signal strength s(x) declines with the distance between the sensor and the source.

Suppose g(‖xi1− y∗‖) >> g(‖xj1− y∗‖) but vi1 and vj1 have similar energy. s(xi1) =

g(‖xi1− y∗‖) + vi1 is much more reliable than s(xj1) = g(‖xj1− y∗‖) + vj1 and so the

former should carry much more weight than the later. Based on this observation, we

consider the weighted least squares

min
y

K∑
i=1

[w(i)((xi1 − xi2)Ty − 1

2
(‖xi1‖2 − ‖xi2‖2))]2 (2.12)

The weight w(i) can be chosen, e.g., as
√
s(xi1) or s(xi1).
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Simulations presented later, confirm that while algorithms with w(i) = 1,
√
s(xi1), s(xi1),

work well if the noise is small, for larger noise the weighted least squares algorithms

perform substantially better than the unweighted one.

2.2.3 Exploiting inequality relation

The algorithm (2.10) is based on the idea that s(xi1) = s(xi2) ⇒ d∗i1 = d∗i2 in

the absence of noise. An advantage is that the exact relation d∗i1 = d∗i2 can be exploited

in developing the algorithm. Yet a switch from s(xi1) = s(xi2) to s(xi1) < s(xi2) or

s(xi1) > s(xi2) also provides useful information, as was discused in the previous

section.

Clearly in the absence of noise

s(xi1) < s(xi2)⇔ d∗i1 > d∗i2 ⇔ ‖xi1 − y∗‖ > ‖xi2 − y∗‖.

There are two important observations. First, the aim of the algorithm here is

not to find a single estimate of y∗ but to find the region or the set F that contains all

possible y∗ consistent with the data. From a practical point of view, the localization

accuracy is satisfactory if the “size” of F is small. The exact shape and size of F

depend on many factors. In general, a sufficient rich input sequence results in a small

F and makes F converge to a singleton as K → ∞ [1]. The exact sufficient rich

condition will be discussed in the next section.

The second observation is that the sets Fi and F in (2.2), derived in the absence

of noise, may not be valid even for a small noise. To make the algorithm robust with
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respect to noise, these sets have to be modified as

Fi = {y ∈ Rn | s(xi2)− s(xi1) > δ} (2.13)

F =
K⋂
i=1

Fi =
K⋂
i=1

{y ∈ Rn | s(xi2)− s(xi1) > δ}, (2.14)

for some δ > 0. The slack variable δ > 0 balances the robustness and efficiency of

the algorithm. Note that

0 < s(xi2)− s(xi1)− δ = g(d∗i2)− g(d∗i1) + vi2 − vi1 − δ

implies that

d∗i1) > d∗i2), if δ > |vi1 − vi2|. (2.15)

Hence, a large δ makes the algorithm less efficient in terms of data usage but more

robust because it tolerates a larger noise δ > |vi1 − vi2|. A small δ is just opposite.

The choice of δ has to take a priori information about the noise into consideration.

Consider, for example an indepedent and identically distributed noise with

support (−ε, ε) for some ε > 0. In such a case, let δ = 2ε. Then, the equation

(2.15) is always true even in the presence of noise and the set F of (2.14) accurately

describes all possible y∗ that is consistent with the data even in the presence of

noise. In summary, the algorithm discussed in this section that finds the set (2.14) is

particularly effective for bounded noise.
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2.2.4 Exploiting dynamics

y∗

ds(x(ti))
dt

> 0

(y − x(ti))
T dx(ti)

dt
= 0

x(t)

dx(ti)
dt

α

y∗

ds(x(ti))
dt

< 0

(y − x(ti))
T dx(ti)

dt
= 0

x(t)

dx(ti)
dt

β

Figure 2.4: The set (y − xi)T dxidt = 0.

In the previous sections, static properties of the unknown source y∗ in relation

to the sensor locations are investigated. In this section, we exploit the dynamic

relationship of y∗ in relation to the sensor location. Suppose a mobile sensor moves in

Rn with the location x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn at time t and continuously

receives the signal s(t) = s(x(t)) = g(d∗(t)), where d∗(t) = ‖x(t)− y∗‖. Suppose the

derivative

s′(t) =
ds

dt
=

ds

dx1

dx1

dt
+ ...+

ds

dxn

dxn
dt

exists. Obviously s′(t) > 0 implies that the sensor is getting close to the source y∗

and s′(t) < 0 the sensor moves away from the source y∗. Now suppose there is a ti
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such that s′(ti) = s′(x(ti)) > 0. From Figure 2.4, if s′(ti) > 0 at x(ti), the angle α

between y∗ − x(ti) and

dx

dt

∣∣∣∣
ti

=

[
dx1

dt

∣∣∣∣
ti

, · · · , dxn
dt

∣∣∣∣
ti

]>

satisfies |α| < π/2. Let (y − x(ti))
Tdx/dt = 0 be the hyper-plane in Rn which passes

through x(ti) and take dx
dt

∣∣
ti

as its normal direction. Then, the unknown y∗ has to be

in the half space defined by

F+ti = {y ∈ Rn | (y − x(ti))
T dx

dt

∣∣∣∣
ti

> 0} (2.16)

and further

y∗ ∈ F+ =
⋂
i

F+ti (2.17)

Similarly, s′(tj) < 0 implies |β| > π/2 as shown in Figure 2.4 and the unknown

y∗ must be in the half space defined by

F−tj = {y ∈ Rn | (y − x(tj))
T dx

dt

∣∣∣∣
tj

< 0} (2.18)

and further

y∗ ∈ F− =
⋂
j

F−tj (2.19)

In short, the unknown source location y∗ must lie in the set

y∗ ∈ F = F+

⋂
F− (2.20)

Just as the discussion of the feasible set in the previous section, the algorithm

(2.20) does not give rise to a single estimate of y∗ but does provide a set that captures
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all possible y∗. The set F is referred to as the feasible set again and this algorithm

can be more powerful than algorithms providing a single estimate.

To illustrate, we give a two dimensional example as shown in Figure 2.5. The

area of interest is rectangle. The sensor path consists of 2 line segments in parallel to

the horizontal and vertical axis respectively. In the figure, let x(t1) and x(t2) be two

points on the sensor path so that y∗ − x(t1) and y∗ − x(t2) are perpendicular to the

sensor path. Clearly, s′(x(ti−δt)) > 0 and s′(x(ti+δt)) < 0, i = 1, 2, for small enough

δt > 0. From the discussion above, the unknown y∗ is on the left hand side of F+(t1−δt)

as in (2.16) and the right hand side of F−(t1+δt) as in (2.18). These two lines can be

made arbitrarily close by letting δt → 0. Similarly, y∗ must be sandwiched between

F−(t2+δt) and F+(t2−δt), and again F−(t2+δt) and F+(t2−δt) can be made arbitrarily close

by letting δt→ 0. Therefore, by letting δt→ 0,

y∗ ∈ F+(t1−δt) ∩ F+(t2−δt) ∩ F−(t1+δt) ∩ F−(t2+δt) → {y∗}

or the feasible set contains only one point y∗. The idea can be easily extended to any

dimensional space Rn.

Theorem 2.2.3. Let the region of interest I be a hyper-rectangle in Rn whose axes

are parallel to the coordinate axes respectively and let the sensor path be n line seg-

ments lk, k = 1, 2, ..., n. Each line lk is parallel to the kth axis. Let x(tk) be a point

on the line lk so that y∗ − x(tk) is perpendicular to the line lk (such an x(tk) always

exists). Construct F+tk of (2.16) and F−tk of (2.18) at x(tk − δt) and x(tk + δt)

respectively for small enough δt > 0. Then, y∗ ∈ F ∈
⋂n
k=1(F+(tk−δt) ∩ F−(tk+δt)).
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←←

↑

↑

x(t1)

x(t1 − δt)x(t1 + δt)

x(t2)

x(t2 − δt)

x(t2 + δt)

sensor path

↓

F
−(t1+δt) F+(t1−δt)

←→

F+(t2−δt)

F
−(t2+δt)

↓

↑

y∗

Figure 2.5: Illustration of F .

Further let δt→ 0,

y∗ ∈ F → {y∗}.

Proof: Clearly, y∗ ∈
⋂

(F+(tk−δt) ∩F−(tk+δt)) that is hyper-rectangle with the diagonal

length √√√√ n∑
k=1

(x(tk + δt)− x(tk − δt))2

which converges to zero as δt→ 0. This completes the proof.

In fact having n lines in the sensor path is not necessary. What is important is

that s(t) have n local maxima. Suppose s(t1) is a local maximum. Then s′(t1−δt) > 0

and s′(t1 + δt) < 0 for small enough δt > 0. The corresponding half spaces F+(t1−δt)

and F−(t1+δt) can be constructed at x(t1 − δt) and x(t1 + δt) respectively, and y∗ ∈
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F+(t1−δt)
⋂
F−(t1+δt). Further, the two planes (y − x)Tdx/dt at t1 ± δt that define the

half spaces are almost parallel and converge to each other as δt → 0. Based on this

observation, the following result can be established.

Theorem 2.2.4. Let the region of interest I be in Rn and x(t) be the sensor path.

Suppose s(t) achieves n local maxima at x(t1), x(t2), ..., x(tn). Construct F+(tk−δt) of

(2.16) and F−(tk+δt) of (2.18) at x(tk−δt) and x(tk+δt) respectively for small enough

δt > 0. Then, y∗ ∈ F ∈
⋂n
k=1(F+(tk−δt) ∩ F−(tk+δt)). Further, let dx

dt

∣∣
t1
, ..., dx

dt

∣∣
tn

be

linearly independent. Then, as δt→ 0,

y∗ ∈ F ∈
n⋂
k=1

(F+(tk−δt) ∩ F−(tk+δt))→ {y∗}.

From the above observations we make a few comments.

• Not all samples of s(t) or s′(t) are equally important in establishing the feasible

set F . The crucial roles are played by the local maxima of s(t).

• The derivation of the feasible set F is in the continuous time. In practice, only

sampled data is available. To this end, let ∆t > 0 be the sampling interval and

s(k∆t) the measurements. What we are looking for are the local maxima of

s(k∆t), the times k∆t and the sensor location x(k∆t).

• To average out the effect of noise, a smoothing version of s can be applied,

e.g. s(k∆t) = 1
2M+1

∑k+M
i=k−M s(i∆t). M balances the sensitivity to noise and

the accuracy of the algorithm. Note the weights do not have to be equal. In

fact numerical differentiation from noisy sampled data is an extensively studied

topic and a number of well developed algorithms are available in the literature,
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e.g, the Lanczos differentiator, the Savitzky-Golay filter and orthogonal function

projection [14] all of which can be applied here.

• Suppose s(k1∆t) is a local maximum. The corresponding F+(k1−m)∆t and F−(tk+m)∆t

can be constructed at x((k1 −m)∆t) and x((k1 + m)∆t) respectively. A small

m makes F small but may miss the true but unknown value y∗ if the noise is

large.
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CHAPTER 3
A MOVING SOURCE

In this chapter, we consider tracking a moving source using stationary sensors,

without explicit knowledge of the source dynamics. Localization of the source y∗(tj) at

time tj is completely based on the measurements obtained at tj. If a priori knowledge

on the movement of the source is available, it can be incorporated into the localization

and tracking algorithm. However in reality, any assumption on the unknown source

movement is unrealistic, particularly for a non-cooperating source.

Since no motion model is assumed and y∗(tj) is completely characterized by

the information at tj, the tracking problem of y∗(tj) is actually obtaining a sequence

of location estimates of y∗(t) at t = t1, t2, .... Thus, the method presented in chapter

two can be applied as summarized below.

Tracking algorithm:

Step 1: Given the performance specification cs > 0, apply the algorithm for the opti-

mal number and placement of the sensors in chapter two to find the minimum number

m and the corresponding sensor placement satisfying the performance specification.

Step 2: At each tj, collect measurement s(xi(tj)), i = 1, 2, ....,m and construct F (tj)

as in equation (2.2). F (tj) characterizes the unknown source y∗(tj) location at time

tj.

Though, the tracking algorithm is similar to the case for a stationary source

and sensors, the effect of noise is completely different. In chapter two, the source

is stationary and time averaging works well. For a moving source, time averaging
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is complicated as both y∗(t) and s(x(t)) = g(‖x − y∗(t)‖) + e(t) are time varying.

We discuss the ways to deal with noise for a moving source in the following two sub

sections.

3.1 Threshold approach

The problem with noise is again that s(xi1(tj)) < s(xi2(tj)) does not necessarily

imply g(‖xi1(tj) − y∗(tj)‖) < g(‖xi2(tj) − y∗(tj)‖). Thus, the resulting Fi(tj) based

on s(xi1(tj)) < s(xi2(tj)) could provide completely false conclusion on the unknown

source location y∗(tj). To make the algorithm robust, the definition of Fi(tj) is

modified as

Fi(tj) = {y ∈ Rn | s(xi1(tj)− s(xi2(tj)) ≤ −c < 0} (3.1)

for some c > 0 and

F (tj) =
⋂

Fi(tj) (3.2)

The addition of c > 0 robustifies the algorithm. The question is how to choose c? The

answer depends on the level of confidence in g(‖xi1(tj)−y∗(tj)‖) < g(‖xi2(tj)−y∗(tj)‖)

given s(xi1(tj)) < s(xi2(tj)). As the sensors are stationary, s(xi1(tj))−s(xi2(tj)) ≤ −c

implies g(‖xi1(tj)−y∗(tj)‖) < g(‖xi2(tj)−y∗(tj)‖) if and only if −c+ei1(tj)−ei2(tj) <

0. We consider two cases.

1. Bounded noise: Suppose e(t) is unknown but bounded, i.e., |e(t)| < ε for all

t. Then let c = 2ε which implies −c + ei1(tj) − ei2(tj) < 0. Simply put,

s(xi1(tj)−s(xi2(tj)) ≤ −c guarantees g(‖xi1(tj)−y∗(tj)‖) < g(‖xi2(tj)−y∗(tj)‖)

or Fi(tj) is always correct by such a choice.
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2. Random noise: For simplicity, we assume that the noise in the rest of this section

is independent and identically distributed Gaussian with zero mean and finite

variance σ2. Then ei1(tj)−ei2(tj) is also independent and identically distributed

Gaussian of zero mean and variance 2σ2. Given s(xi1(tj))−s(xi2(tj)) ≤ −c, the

probability

Prob{g(‖xi1(tj)− y∗(tj)‖) < g(‖xi2(tj)− y∗(tj)‖)}

= Prob{−c+ ei1(tj)− ei2(tj) < 0} ≥


0.978 if c = 2

√
2σ

0.991 if c = 3
√

2σ
→ 1 if c→∞

Thus with c = 3
√

2σ, s(xi1(tj))−s(xi2(tj)) ≤ −c implies g(‖xi1(tj)−y∗(tj)‖) <

g(‖xi2(tj)− y∗(tj)‖), i.e. F (tj) is correct, with a high level of confidence.

From the above analysis, a large c makes the algorithm very robust. The price

paid is that all the measurements that do not satisfy s(xi1(tj))− s(xi2(tj)) ≤ −c are

discarded. Thus, c balances the robustness of the algorithm with efficient data use.

Another critical factor is the localization accuracy or the size of F (tj). When the

number m of the sensors increases, the size of F (tj) decreases. With an increasing

c, the consistency between s(xi1(tj)) − s(xi2(tj)) ≤ −c and g(‖xi1(tj) − y∗(tj)‖) <

g(‖xi2(tj)− y∗(tj)‖) gets larger and at the same time, the number of constraints that

satisfy s(xi1(tj)) − s(xi2(tj)) ≤ −c decreases that lead to a large size F (tj). The

conclusion is that to make the algorithm robust and maintain the same accuracy, the

number of sensors has to increase while c increases.
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Figure 3.1: Violated Constraints

3.2 Majority voting and a few violated constraints

In some applications, the number of the sensors may not be large. In such a

scenario, a large threshold c is not possible and c has to be small. The question is

what can one do to reduce the effect of noise? With large noise and just a few sensors,

the options are limited. Consider instead the case where the noise is small. In this

case:

• Most of the constraints remain valid and only a small number of constraints are

violated, though which precise ones are violated is unknown. This suggests the

use of majority voting.

• Further, by deleting violated constraints, the resulting F (tj) constructed by
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the remaining constraints is acceptable as long as there are just a few violated

constraints.

Then, the effect of noise can be reduced by the idea of majority voting and a few

violated constraints [1] by identifying and removing these violated constraints. Note

that there are two types of violated constraints. The first occurs when for some i, k

Fi(tj)
⋂
Fk(tj) or equivalently F (tj) is empty. Consider Figure 3.1a where the true

F (tj) =
⋂3
i=1 Fi(tj) exists. Because of noise, F3(tj) is falsely constructed that makes

F (tj) empty.

The second violation is more subtle. Let us say F1(tj) is falsely constructed

because of noise as in Figure 3.1b, where “o” is the unknown source y∗(tj) and the

polytope is
⋂K
i=2 Fi(tj) without F1(tj). Obviously, F1 would be known to be false

if y∗(tj) were available. However, y∗(tj) is not available and so there is no way of

knowing if F1 is correct or false. However under the assumption that
⋂K
i=2 Fi(tj) is

small and acceptable, the intersection of F1 and
⋂K
i=2 Fi(tj) is even smaller and not

far from y∗(tj), thus making the localization result not exact but acceptable.

Now the question is how to detect if only a small number of constraints are

violated and further to identify such violated constraints. Note that F (tj) =
⋂
Fi(tj)

and each Fi(tj) is a half space defined by a hyper-plane which is in the form of aTi x ≤ bi

for some ai ∈ Rn and bi ∈ R. If some constraints are violated, the equation Ax ≤ b

does not have any solution for x, where A =

a
T
i
...
aTK

, b =

 b1
...
bK

. To find the violated
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constraints, one may consider

min ‖p‖2

subject to Ax ≤ b+ p, p ≥ 0

where p ∈ Rn as suggested in [5]. If one removes the constraint aTi x ≤ bi if pi > 0, the

remaining equation Ax ≤ b still admits a solution. Thus the remaining constraints

are consistent and F (tj) is non-empty. Recall our goal is to find and remove the

minimum number of violated constraints that results in a non-empty F (tj). The vast

compressive sensing literature [6] recommends the use of the 1-norm rather than the

2-norm. In summary, the robust tracking algorithm for a small noise can be stated

as follows:

1. At each tj, collect s(xi1(tj))− s(xi2(tj)) ≤ −c < 0 for some small c > 0 and the

corresponding constraint aTi x ≤ bi that define the half space Fi(tj).

2. Solve the optimization problem,

min ‖p‖1

subject to Ax ≤ b+ p, p ≥ 0
(3.3)

3. Remove aTi x ≤ b from the constraint or equivalently discard Fi(tj) if pi > 0 and

construct F (tj) from the remaining Fi’s.

4. F (tj), j = 1, 2, ... characterizes the trajectory of the unknown y∗(tj).



34

CHAPTER 4
NUMERICAL EXAMPLES

We simulated a numerical example with the received signal strength

s(x(t)) = g(‖x(t)− y∗(t)‖) + e(t)

=
100

‖x(t)− y∗(t)‖2
e−0.01‖x(t)−y∗(t)‖ + e(t) (4.1)

No information of g was used in the simulation.

4.1 Numerical examples for stationary source

First considered was a case that the unknown source was fixed at y∗ = [0, 0]>

and the sensor locations were also stationary. The region I to be considered was

30 units long and 30 units wide or with the area of 900 unit squares. Suppose the

performance specification was V̄ L
ave(x

∗
1, ..., x

∗
m) ≤ 1 (unit squares) with L = 50. By

applying the optimal number and placement of the sensors in chapter two for each m

as shown in Figure 4.1, it was shown the optimal performance of V̄ L
ave(x

∗
1, ..., x

∗
14) =

1.28 (unit squares) and the optimal performance of V̄ L
ave(x

∗
1, ..., x

∗
15) = 0.6212 (unit

squares). Thus, we determined the placement of 15 sensors, using the algorithm in

(2.9) of Chapter 2 with L = 10.

To this end we set e(t) = 0.1η with η ∼ N(0, 1) and is independent and

identically distributed. The algorithm resulted in F =
⋂
Fi shown in Figure 4.2 with

the area 0.0570 (unit squares) where “O” is the unknown location of y∗.

We then considered a mobile sensor whose path was described in Figure 2.3.

More precisely, the path had two pieces. The first piece, whch is a function of time,
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Figure 4.1: Optimum performance of V̄ L
ave(x

∗
1, ..., x

∗
m) to different number of sensors

at time t was x(t) = [t,−0.1455t − 3]> for t ∈ [−7, 1] and the second one x(t) =

[t, exp(0.5(t − 1)) − 2]> for t ∈ [1, 5]. In simulation, only the sampled s(i∆t) =

s(x(i∆t))’s were available for ∆t = 0.02. The noise e = αη and α adjusted the noise

contribution.

The least squares algorithms (2.12) with various weights were applied. Along

the path, 40 pairs of xi1, xi2’s were chosen so that

s(xi1) = g(‖xi1 − y∗‖) + ei1 = g(‖xi2 − y∗‖) + ei2 = s(xi2)
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Figure 4.2: The feasible set F .

Figure 4.3 which are the averages of 50 Monte Carlo runs and Table 1 show the

estimation errors ‖y−y∗‖2 for the weights w(i) = 1, w(i) =
√
s(xi1) and w(i) = s(xi1)

respectively for different α’s. The simulation results confirmed the theory, i.e. all three

algorithms work well if the noise is small (α ≤ 0.4) and the weighted least squares

algorithms perform substantially better when the noise is not small (α ≥ 0.6). In

fact considering that the search was in a rectangle of 30 by 30, the algorithms with

all three weights performed reasonably well for all α ≤ 1.
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Figure 4.3: Estimation errors for various α.

The feasible set approach (2.14) was simulated. The sensor path is the same

as before. Only four sets of measurements along the path were used at

{
(
−0.8020
−1.5938

)
,

(
1.600
−0.6501

)
}, {
(
−2.6020
−1.8349

)
,

(
0.1
−3.015

)
},

{
(
2.7980
0.4541

)
,

(
−2.0020
−1.7771

)
}, {
(
2.7980
0.4541

)
,

(
0
−3

)
}

as shown in Figure 4.4 as d, x, o, s respectively. For simulation, noise was assumed

to be independent and identically distributed uniform in (−0.5, 0.5) and the slack
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variable δ = 2 ∗ 0.5 = 1. Figure 4.4 shows Fi, i = 1, 2, 3, 4, which is a half space

represented by a line segment in the figure, and the feasible set F =
⋂
Fi which

provides all possible y∗ consistent with the data.
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0
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x

x

s

s

d

d

o

o

F←

Figure 4.4: The feasible set F =
⋂
Fi.

The algorithm (2.20) exploiting dynamics was also implemented with M = 30

and l = 5 to smooth out s(k∆t)’s as discussed in the previous chapter. The noise

was independent and identically distributed Gaussian of N(0, 4). Two local maxima

of s(i∆t) were found at t1 = 73∆t = 1.46 and t2 = 777∆t = 15.54. Then, F+(t1−l∆t),

F−(t1+l∆t), F+(t2−l∆t) and F−(t1+l∆t) were constructed. From Figure 4.5, the true but
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Figure 4.5: The feasible set F =
⋂
Fi.

unknown y∗

y∗ ∈ F ∈ F+(t1−l∆t) ∩ F−(t1+l∆t) ∩ F+(t2−l∆t) ∩ F−(t1+l∆t)

and F could be made further small by reducing l.

4.2 Numerical examples for moving source

Finally, tracking of a moving source was considered. The unknown source

path was a random Brownian motion y∗(tj), j = 1, 2, .., 20 in I. Three cases were

simulated, no noise, small noise and significant noise. Figure 4.6 shows the tracking

results F (tj), j = 1, 2, ..., 20 with no noise by applying the Tracking algorithm in

chapter three with 15 sensors, where “O”’s are the true but unknown y∗(tj) at tj and
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α = 0.6 α = 1

w(i) = 1 (0.2050,−0.4963)T (−0.5992, 0.0631)T

w(i) =
√
s(xi1) (0.1452,−0.3692)T (0.2311,−0.5568)T

w(i) = s(xi1) (0.0372,−0.0936)T (0.0566,−0.1735)T

Table 4.1: Estimates for different weights.

the arrows indicates the direction of source motion. The gray areas are F (tj)’s.
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Figure 4.6: The feasible sets for a moving source

We then added a small noise 0.1η. Since only very few constraints were violated

determined by (3.3), the algorithm of a few violated constraints developed in chapter

three was applied. The result shown in Figure 4.7 is surprisingly good.
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Figure 4.7: Algorithm employing the idea of a few violated constraints for small noise

The addition of a larger noise 0.5η resulted in the violation of too many con-

straints for the method of a few violated constraints to work. Thus instead (3.1)

was applied, but still with 15 sensors and the threshold c = 3
√

2. Because of the

large number of violated constraints the performance as shown in Figure 4.8 was pre-

dictably poor. With 40 sensors, however, the performance shown in Figure 4.9, was

much better.
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Figure 4.8: Large noise and small number of sensors
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

Four algorithms for source localization are presented in this thesis that are

particularly useful when the signal propagation model is not completely known. The

only assumption was that the propagation model is monotonic with the distance

between the source and sensors. Using this assumption we were able to come up

with algorithms that could be applied when the signal strength model is unavailable.

When choosing an algorithm, it is important to keep in mind that no single algorithm

is perfect and applicable to any situation. One must take into consideration such

factors as prior information on the unknown noise, shape of the source, number

of measurements and others. For a practical application, often a combination of

algorithms works best. For instance, even for a stationary source and stationary

sensors, the robust algorithms based on the threshold developed in Chapter three for

a moving source can be applied in addition to time averaging. One important feature

of the algorithms we developed is also that it is applicable to many applications of

source localization and tracking in which the propagation model is not known but

monotonic with the distance of the source from the sensors.
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5.2 Future work

Motivated from the work we have done, there are a number of natural exten-

sions that can be made from the algorithms presented in the thesis. Of even great

importance is the need to develop an algorithm using combined information of time

averaging and thresholding. But an important future work is to develop an algorithm

to deal with localizing and tracking multiple sources under the condition that there is

no full knowledge of the propagation model of the source, assuming the propagation

model is monotonic in distance of the sources from the sensor.
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