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ABSTRACT

This thesis considers statistical issues in source localization from the received

signal strength (RSS) measurements at sensor locations, under the practical assump-

tion of log-normal shadowing. Distance information of source from sensor locations

can be estimated from RSS measurements and many algorithms directly use pow-

ers of distances to localize the source, even though distance measurements are not

directly available. The first part of the thesis considers the statistical analysis of

distance estimation from RSS measurments. We show that the underlying problem

is inefficient and there is only one unbiased estimator for this problem and its mean

square error (MSE) grows exponentially with noise power. Later, we provide the

linear minimum mean square error (MMSE) estimator whose bias and MSE are

bounded in noise power. The second part of the thesis establishes an isomorphism

between estimates of differences between squares of distances and the source loca-

tion. This is used to completely characterize the class of unbiased estimates of the

source location and to show that their MSEs grow exponentially with noise powers.

Later, we propose an estimate based on the linear MMSE estimate of distances that

has error variance and bias that is bounded in the noise variance.
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CHAPTER 1

INTRODUCTION

The increase in the emerging applications of localization in sensor networks has

stimulated significant research activity in this area, [1]. In source localization a

group of sensors at known positions jointly estimate the unknown location of a

source using some relative position information of the source. In sensor localization

a sensor estimates its own location using some information related to its relative

position to a set of sensors at known locations called anchors. This thesis concerns

only issues in source localization. More specifically, this thesis considers localization

from received signal strength (RSS) measurements under log-normal shadowing,

terms that will be defined in the sequel. Our goal is to consider statistical estimators

and study their error variance and bias.

1.1 Background and Applications

In sensor networks, acquiring location information has become vital in a num-

ber of emerging applications. In order to process a signal in sensor networks, sensors

must locate the origin of the signal source and localization issues become crucial

when there is an uncertainty about the location of the source. For example, a sen-

sor network deployed from an aircraft to monitor wildlife in a remote forest must

provide precise location information about each animal, just as a sensor network

installed to combat bioterrorism must detect as well as locate the source of a poten-

tial threat. Similarly the tasks of routing, tracking and efficiently using resources
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in large sensor networks can be facilitated by estimating the location of source or

node, [2]-[4]. Manual configuration of sensor nodes might be difficult in large scale

sensor networks, particularly if the nodes move frequently, [2]. Hence, algorithms

have to be developed to estimate the location of nodes.

An overview of the various applications of wireless location technology and

location based services is presented in [7]. With the emergence of wireless networks

and mobile devices, it has become important to provide location based services

to emergency and security applications, and to commercial applications [7]. One

example of emergency applications is providing timely and accurate location in-

formation of the mobile phone from which an E911 call is made. Other examples

include advanced public safety applications by tracking and monitoring assets, fleet

management to enhance transportation safety and ensure efficient utilization of re-

sources, and location based wireless access to enhance network security. Expanding

mobile markets will span a multibillion dollar market for services based on wire-

less location technology, [7]. Examples of such mobile marketing services include

location specific advertising that takes into account the location of the customer’s

wireless device, location sensitive billing and offering various services and plans

based on caller location to attract the customers.

The increase in the use of personal electronic devices and wireless networking

has led to significant research activity in the area of pervasive(wireless) computing,

[2]-[4]. In this area, location information is commonly considered to be an important

information as it enables a wide range of applications. Some example applications

include services which have to identify and select resources based on their proximity

to them, e.g. selecting the nearest printer in the building with matching capabilities

for the end user, notifying the end user about events happening in the vicinity.
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As discussed earlier, in large scale sensor networks and in the scenario where

sensor nodes move frequently, manual configuration of sensor nodes may not be

feasible. The existing global positioning systems (GPS) technology does not rep-

resent a feasible solution in indoor environments where a clean line of sight (LOS)

is not available, [6]. It also requires expensive hardware of unwieldy size and large

power consumption, [7]. Most of the other existing location finding algorithms ex-

ploit relative position information obtained from physical measurements like time

difference of arrival (TDOA), angle of arrival (AOA) and received signal strength

(RSS). TDOA techniques typically require a synchronous network and also demand

accurate time delay measurements, [6]. The AOA measurements can be estimated

by steering antennae in the direction of the arriving signal, [6] and typically require

expensive antenna arrays at each sensor node. RSS measurements are relatively

less expensive and easy to obtain and are therefore a suitable choice of information

for localization. RSS at a sensor is indirectly related to distance of a source from

that sensor and in the absence of noise it directly provides distance. In this thesis,

we are only concerned about localization algorithms based on RSS. We investigate

issues concerning both location and distance estimation from RSS measurements.

1.2 System Model

Suppose {x1, x2....xN} (N > 2) are known locations of the sensors which

are placed non-collinearly in a 2-dimensional space. Suppose a source located at

position y emits a signal that has strength A at a unit distance from the source and

the signal strength at a sensor located at xi is si. Define the distance between the

source and the sensor located at xi as

‖xi − y‖ = di for i ∈ {1, 2, ...N} (1.1)



4

Assume here and in the rest of the thesis that all vector norms are 2-norms. Then

with β as the path loss coefficient, in the absence of noise one has:

si =
A

dβi
(1.2)

In the noise free case, si directly provides the distance di, given the knowledge of

A and β. From here on, we will assume the knowledge of these two parameters.

A key difficulty with RSS measurements is obtaining an accurate estimate of

β. In an uncluttered environment it has a value two. In a cluttered environment its

value can be unpredictable. One way of modeling such uncertainty is through the

assumption of log-normal shadowing, where (1.2) must be replaced by

ln si = lnA− β ln di + wi (1.3)

the noise wi being independent and identically distributed (iid) Gaussian random

variables obeying: wi ∼ N(0, σ2). We assume the knowledge of noise variance σ2

throughout the thesis. The main problem of this thesis is estimating the unknown

location y of the source from the noisy RSS measurements {s1, s2, . . . , sN} under

(1.3) obtained at the sensors located at {x1, x2....xN}, given the knowledge of A, β

and σ2.

In the absence of noise, with one distance we can determine the location of the

source to within a circle in the case of two-dimensional localization, and to within a

sphere in the case of three-dimensional localization. With two distances, the location

of source can be determined to within a flip ambiguity in two dimensions. This flip

ambiguity may be resolved if some a priori information about the location of source

is available. In general, we require distances from at least three non-collinearly

placed sensors to determine the position of the source in two-dimensions. In three

dimensions, one generally requires distances from at least four non-coplanar sensors.
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1.3 Previous Approaches

There are several papers in the literature which present localization algorithms

based on the assumption that distance measurements are available, [7]-[11]. In

general, distances of sources from sensors are not directly available but need to

be estimated using TDOA or RSS measurements. Linear algorithms based on the

distance estimates are proposed in [6] and [8]. It is argued in [11] that linear

algorithms may deliver highly inaccurate estimates even with small noise levels in

the available distance measurements. In [9]-[11], nonlinear estimation approaches

are adopted and these algorithms are based on the minimization of formulated

cost functions. These algorithms generally suffer from slow convergence and locally

attractive false minima. But in most of these algorithms, the statistical analysis of

the proposed method is rarely considered and none of these algorithms are optimal

under the practical assumption of log-normal shadowing.

Several papers such as [18] and [19] present lower bounds for the localization

problem based on RSS measurements. In [19], barakin bounds are presented to

study the performance of the location estimation algorithms based on the given RSS

measurements. In [18], the accuracy and performance of the proposed algorithm

for this problem is studied by providing the Cramer-Rao bound, the concentration

eclipse and the circular error probability. Both the papers assume a Gaussian noise

model, which is not practical for most practical environments.
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1.4 Contributions

The first main contribution of this thesis is the study of distance estimation

from RSS measurements under log-normal shadowing with particular focus on bias

and variance. We derive the Cramer-Rao lower bound (CRLB) for the underlying

estimation problem to study the performance of estimation algorithms. The primary

result proves that there is a unique unbiased estimate for this problem and its mean

square error (MSE) grows exponentially with the noise power. We derive the linear

minimum mean square error (MMSE) estimate and show that its bias and MSE

are bounded in noise power unlike the unbiased estimate and maximum likelihood

(ML) estimate whose MSE grow exponentially and the Cramer-Rao bound which

increases linearly with noise power. In fact, MSE of the linear MMSE estimate is

upper bounded by the square of the distance that we are trying to estimate.

The second main contribution of this thesis is related to source location esti-

mation from RSS measurements affected by log-normal shadowing. The next result

completely characterizes the class of unbiased estimators for the underlying esti-

mation problem. The result is in some respects a negative result as we show that

MSE of all the unbiased estimators for this problem grows exponentially with noise

power. We then propose a biased estimate based on the Linear MMSE estimate of

distances and show that both the bias and MSE of this estimate are bounded in

noise power

1.5 Outline of the thesis

Chapter 2 considers estimation of powers of distances from RSS measurements

affected by log-normal shadowing. In section 2.2 we provide the CRLB for this

problem and argue that the underlying estimation problem is inefficient, i.e. no
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unbiased estimator meets the CRLB. We also provide the ML estimate and show

that both its bias and MSE grow exponentially with σ2. In section 2.3 we investigate

the class of unbiased estimators and show that there is a unique unbiased estimator

and its MSE also grows exponentially with σ2. Section 2.4 provides the linear

MMSE estimator and the comparison of its MSE with that of the unique unbiased

estimator, ML estimator and the CRLB.

Chapter 3 systematically analyzes the main estimation problem, estimating

the unknown source location from noisy RSS measurements. In section 3.2 we de-

rive the CRLB to analyze the performance of unbiased estimators. We show that

there exists no unbiased estimator which meets the CRLB, , i.e. prove that local-

ization from RSS under log-normal shadowing is inefficient. Section 3.3 considers

the direct implication of distance estimation results to source localization. We then

characterize the complete class of unbiased estimators for this problem and provide

the MSEs associated with them. In section 3.4 we propose another class of biased

estimators and argue that these estimates perform better than unbiased estimators

as far as MSE is concerned. Finally conclusion of the thesis and some interesting

problems concerning future research are presented in chapter 4.
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CHAPTER 2

DISTANCE ESTIMATION FROM RSS

2.1 Introduction

In this chapter, we consider the topic of distance estimation from received

signal strength (RSS) measurements affected by log-normal shadowing with focus

on statistical properties of bias and error variance. The first main result in this

chapter proves that there is a unique unbiased estimate of d2
i and its error variance

increases exponentially with noise power. In the second main result we present a

Linear MMSE estimator whose bias and error variance are bounded by the correct

distance and its square, respectively.

In section 2.2 we derive the Cramer-Rao Lower Bound (CRLB) for this prob-

lem of distance estimation from RSS. It is argued that the problem is insufficient

in that there is no unbiased estimator that meets the CRLB. We show that both

the bias and the mean square error of the maximum-likelihood estimator grow ex-

ponentially with noise power. This motivates us further to consider the statistical

analysis of this problem. In this regard, we first consider the nature of unbiased

estimators. In section 2.3 we show that there is a unique unbiased estimator for

this problem using the techniques on complete sufficient statistics of exponential

family of distributions presented in [20]. We show that error variance of this esti-

mator grows exponentially with σ2. In section 2.4 we provide the Linear Minimum

Mean Square Error (MMSE) estimator whose bias is bounded by the distance that

is being estimated and mean square error by the distance square irrespective of the
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noise variance.

2.2 Preliminaries

In this section, we consider the statistical analysis of the estimation of distance

d from RSS measurement s under the assumed noise model of log-normal shadowing

given by (1.3).

For notational convenience, we define:

α =
2

β
, z =

(
A

sl

)α
(2.1)

and

p = d2 (2.2)

Then (1.3) can be written as

z = pe−αw (2.3)

Then the underlying estimation problem is to estimate p from the observation of

z satisfying (2.3), given the knowledge of α and σ2. The estimator that we obtain

must work for all p > 0, α and σ2.

We now consider the derivation of CRLB for this estimation problem. Taking

the logarithm of (2.3), we obtain

ln z = ln p− αw (2.4)

Define l = lnz and observe that

l ∼ N(lnp, α2σ2)

The probability density function of l is given by

p(l, y) =
1√

(2πα2σ2)
exp

(
−(l − ln p)2

2α2σ2

)
(2.5)

and the log-likelihood function is given by

ln [p(l, y)] = −ln
[
2πα2σ2

]
− (l − ln p)2

2α2σ2
(2.6)



10

Taking the derivative of log-likelihood function, we obtain

∂ ln [p(l, y)]

∂p
=

(l − ln p)

pα2σ2
(2.7)

The Fisher information is given by

E

[(
∂ ln [p(l, y)]

∂p

)2
]

= E

[
(l − ln p)2

p2α4σ4

]
= E

[
(αw)2

p2α4σ4

]
=

1

p2α2σ2

The CRLB is given by the inverse of Fisher information. Thus CRLB for this

estimation problem is

CRLB = p2α2σ2 (2.8)

Observe that the CRLB for this estimation problem grows linearly with the

noise power. It provides the lower bound on the achievable variances by unbiased

estimators. The efficiency of an unbiased estimator provides the closeness of esti-

mator’s variance to the CRLB. An efficient estimator is an unbiased estimator that

meets the CRLB. The next step is to investigate whether there exists an efficient

estimator for this estimation problem. From [20], if the observations are perturbed

by additive Gaussian noise then an efficient estimator exists if and only if the signal

is affine in the parameter to be estimated. From (2.4), it can be observed that the

signal has a nonaffine dependence on p and an affine dependence on Gaussian noise

w. Hence, no efficient estimator exists for this problem.

This leads us to investigate the statistical properties of the Maximum Likeli-

hood Estimator (MLE). The MLE of p is obtained by finding the value of p that

maximizes the likelihood function given in (2.5). Since logarithm is a continuously

increasing function, the value which maximizes the likelihood function will also
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maximize its log-likelihood function. Hence, the MLE is given by

p̂ML = argmax
p

ln [p(l, y)] (2.9)

From (2.4) and (2.7), the MLE of p:

p̂ML = z (2.10)

From (2.3) and using the fact that for any a

E [eaw] =
1√

2πσ2

∫ ∞
−∞

eawe
−w2

2σ2 dw

= e
a2σ2

2

∫ ∞
−∞

e−
(w+aσ2)2

2σ2 dw

= ea
2σ2/2

we obtain the bias of MLE as:

E [p̂ML]− p = E[z]− p

= p
(
E[e−αw]− 1

)
= p

(
eα

2σ2/2 − 1
)

and the Mean Square Error(MSE) is given by:

E[(p̂ML − p)2] = p2E
[
(e−αw − 1)2

]
= p2E

[
e−2αw − 2e−αw + 1

]
= p2

(
e2α

2σ2 − 2eα
2σ2/2 + 1

)
.

Observe that both bias and MSE of the MLE increase exponentially with σ2.

2.3 The Best Unbiased Estimate

In previous chapter, we showed that there is no efficient estimator for this

problem. This motivates us to ask the question: What are the achievable error
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variances by the class of unbiased estimators? To this end, we completely charac-

terize the class of unbiased estimators for this problem and derive the error variances

for this class. We then present the result that there is a unique unbiased estimator

for p and show that the MSE of this only unbiased estimate grows exponentially

with noise power. The result presented is negative in the sense that this unique

unbiased estimator yields a poor MSE.

Our goal is to obtain an estimator of the form f(z, α, σ2) whose mean is p for

all p > 0, α and σ2, i.e.

E
[
f(z, α, σ2)

]
= p. (2.11)

From now onwards we will drop the arguments α and σ2 from the list of arguments

of f . Using (2.3), observe that (2.11) requires that for all p > 0 there hold:

p =
1√

2πσ2

∫ ∞
−∞

f
(
pe−αw

)
e
−w2

2σ2 dw (2.12)

Then because of (2.4) we have that for all p > 0 there holds,

p =
1√

2πσ2

∫ ∞
−∞

f(z)

z
exp

(
−(ln z − ln p)2

2α2σ2

)
dz. (2.13)

Now define

t = ln z and v =
ln p

σ2α2
(2.14)

Then for all v, (2.13) becomes:

eα
2σ2v =

1√
2πα2σ2

∫ ∞
−∞

f
(
et
)
e
−t2

2σ2α2 evtdt e
−v2σ2α2

2 . (2.15)

i.e. for all v, there holds:

exp

(
α2σ2v +

v2α2σ2

2

)
=

1√
2πσ2

∫ ∞
−∞

f
(
et
)
e
−t2

2σ2α2 evtdt. (2.16)
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Thus with v and t as domain variables

exp

(
α2σ2v +

v2σ2α2

2

)
(2.17)

and

1√
2πα2σ2

f
(
et
)
e
−t2

2σ2α2 (2.18)

are Laplace pairs. This clearly proves that f(z) is unique. Observe that (2.17) is

the moment generating function of the normal distribution obeying:

N
(
α2σ2, α2σ2

)
Thus using the definition of moment generating function and the uniqueness of

Laplace transforms, the following relationship holds:

1√
2πα2σ2

f
(
et
)
e
−t2

2σ2α2 =
1√

2πα2σ2
exp

(
−(t− α2σ2)2

2α2σ2

)
=

1√
2πα2σ2

e
−t2

2σ2α2 ete−
α2σ2

2

The above relationship directly establishes that

f
(
et
)

= e−
α2σ2

2 et (2.19)

Thus one obtains that there is a unique unbiased estimate of p and is given by

p̂u = e−
α2σ2

2 z (2.20)

The next point of interest is to examine the MSE of this only unbiased estimate.

The MSE of p̂u:

E
[
(p̂u − p)2

]
= E

[(
e−

α2σ2

2 z − p
)2
]

= p2E

[(
e−

α2σ2

2 e−αw − 1
)2
]

= p2E
[
e−α

2σ2

e−2αw − 2e−
α2σ2

2 e−αw + 1
]

= p2
(
e−α

2σ2

e2α
2σ2 − 2e−

α2σ2

2 e
α2σ2

2 + 1
)

= p2
(
eα

2σ2 − 1
)
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This shows that the MSE of the only unbiased estimate grows exponentially with

noise power. In this section we showed that there is a unique unbiased estimate of

p whose MSE rises exponentially with noise power. We also presented the MLE for

this problem and showed that both bias and MSE grow exponentially with σ2. On

the other hand, CRLB for this problem grows linearly with σ2.

2.4 The Linear MMSE Estimate

Observe that the only unbiased estimate of p is linear in z. This behooves us

to derive the linear MMSE estimate for this problem. In general, linear estimators

have well understood properties and easy to obtain because of the linearity property.

In this section, we derive the linear MMSE estimate of p, with linearity being

in the observation z. Suppose p̂v = bz is the linear MMSE estimate, then the goal

is to find a b that minimizes

E
[
(bz − p)2

]
(2.21)

From (2.3) and using the fact that E [aw] = ea
2σ2/2, we obtain:

E
[
(bz − p)2

]
= p2E

[
(be−αw − 1)2

]
= p2E

[
b2e−2αw − 2be−αw + 1

]
As p > 0, we further obtain:

∂E [(bz − p)2]

∂p
= 0⇒ bE[e−2αw]− E[e−αw] = 0

Therefore, the minimizing b obeys:

b =
E[e−2αw]

E[e−αw]
= e−

3α2σ2

2 (2.22)

Thus the linear MMSE estimate that we seek is

p̂v = e−
3α2σ2

2 z (2.23)
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Its bias is given by

E[p̂v]− p = e−
3α2σ2

2 E[z]− p

= p
(
e−

3α2σ2

2 E[e−αw]− 1
)

= p
(
e−α

2σ2 − 1
)

Further, the MSE of the estimate is:

E
[
(p̂v − p)2

]
= E

[(
e−

3α2σ2

2 z − p
)2
]

= p2E

[(
e−

3α2σ2

2 e−αw − 1
)2
]

= p2
(
e−3α2σ2

E[e−2αw]− 2e−
3α2σ2

2 E[e−αw] + 1
)

= p2
(
e−3α2σ2

e2α
2σ2 − 2e−

3α2σ2

2 e
α2σ2

2 + 1
)

= p2
(

1− e−α2σ2
)

Observe that the MSE of p̂v is bounded by p2 which is better than the MSE of

the MLE p̂ML or the unbiased estimate p̂u which grow exponentially with σ2. The

CRLB for this estimation problem grows linearly with σ2. Hence for large values

of σ2, the MSE of Linear MMSE estimate is better than the CRLB. However, this

is not surprising as the underlying estimate p̂v is biased. Observe that the bias

of p̂v is bounded by p in magnitude which is better than the bias of p̂ML which

increases exponentially with σ2. Another interesting observation is that the bias of

p̂v is always negative while the bias of p̂ML is always positive.

Figure 2.1 shows the MSEs of the unbiased estimate, the linear MMSE esti-

mator and the CRLB with the assumption of unit distance estimation. We assumed

that the path loss coefficient β to be three. In a clean environment, β is two. The

MSE’s and CRLB are calculated for σ ranging from zero to two. We can observe

that Linear MMSE estimator performs better than the unbiased estimate. In fact
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as expected, for larger noise levels the linear MMSE estimator significantly out

performs the CRLB.

Figure 2.1: Comparison of MSEs of the unbiased estimator and Linear MMSE
estimator with CRLB
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2.5 Conclusion

In this chapter, we have considered the problem of estimating the powers of

distance from RSS corrupted by log-normal shadowing. We have studied the statis-

tical properties of the estimation problem with a particular focus on bias and MSE.

We have shown that the CRLB for this problem grows linearly with σ2 and that

there is no unbiased estimate which meets CRLB. We have also demonstrated that

both bias and MSE of the MLE grow exponentially with σ2. We have also proved

that there exists an unique unbiased estimator whose MSE grows exponentially with

the noise power. The linear MMSE estimator whose bias and the MSE are bounded

in noise σ2 has been provided. The use of distance estimation as a tool for source

localization and the impact of the distance estimation results on source localization

will be discussed in the next chapter.
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CHAPTER 3

SOURCE LOCALIZATION

3.1 Introduction

The previous chapter presented the statistical analysis of distance estimation

from RSS under log-normal shadowing. We have shown that there is a unique un-

biased distance estimator from RSS values and its variance increases exponentially

with noise variance. Further, we have derived the linear MMSE estimate of pow-

ers of distances whose both bias and mean square error are bounded in the noise

power.This chapter explores the structural relationship between estimation of source

location y and the powers of distance. We will show the direct implication of results

on distance estimation to source localization. Later, we use the results obtained in

the previous chapter to directly propose an estimate of y whose bias and MSE are

bounded in σ2.

In section 3.2 we derive the CRLB for estimation of y from si under (1.3). It

is argued that the estimation problem is inefficient, as there is no unbiased estimate

of y which meets CRLB. This motivates us to investigate the statistical properties

of the class of unbiased estimators of y. In section 3.3, we demonstrate that the

problem of source localization is structurally related to distance estimation, in par-

ticular to the estimation of quantities like d2
i −d2

j . The interesting fact that there is

an isomorphism between the unbiased estimation of y and the unbiased estimation

of these quantities is demonstrated in this section. In section 3.4 we characterize

the class of unbiased estimators of y. We show that the variance of the whole class
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of unbiased estimators increases exponentially with noise power. In section 3.5 we

exploit the structural dependence of the estimation of y on the squares of distances

and propose another class of estimators of y based on the Linear MMSE estimator

of distances presented in the previous chapter. We show that the proposed class of

estimators have both bias and error variance bounded in noise power.

3.2 Preliminaries

Our goal is to investigate the statistical properties of the estimators, in par-

ticular the potential biases and error variances of the estimators. The first step in

this regard is to consider the class of unbiased estimators. As the CRLB provides

the lower bound on the error variance achievable by any unbiased estimator, the

first logical step is to obtain the CRLB.

We first make some definitions. A set of N > 2 vectors in R2 belongs to the

class XN , if the members of the set are non-collinear. For notational convenience,

define

α =
2

β
, zl =

(
A

sl

)α
(3.1)

and

pl = d2
l (3.2)

Then (1.3) can be written as

zl = e−αwld2
l (3.3)

The underlying estimation problem is to estimate y from the observation of {s1, . . . , sN},

given {x1, . . . , xN}, A,β and σ2. Given zi, for i = {1, . . . , N} (N > 2) under (3.1)

and (3.3), our goal is to obtain an estimator of the form

ŷ = f(x1, . . . , xN , z1, . . . , zN , A, β, σ
2) (3.4)

The estimator that we obtain must work for all {x1, . . . , xN} ∈ XN , all y ∈ R2, A,
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β and σ2. Now we consider the derivation of CRLB for this estimation problem.

Taking the logarithm of (3.3), we obtain:

ln zl = ln pl − αwl. (3.5)

Now define

L = [ln z1, . . . , ln zN ].

and observe that {ln z1, . . . , ln zN} are jointly normal and independent. Therefore,

it follows that for every l ∈ {1, . . . , N}:

lnzl ∼ N(lnpl, α
2σ2)

The probability density function is given by

p(L, y) =
1

(2πα2σ2)N/2
exp

(
N∑
i=1

−(ln zi − ln pi)
2

2α2σ2

)
and the likelihood function is given by

l(L, y) = −N
2

ln 2πα2σ2 −
N∑
i=1

(ln zi − ln pi)
2

2α2σ2

Using

∂pi
∂y

=
∂ ‖xi − y‖2

∂y
=
−2(xi − y)

‖xi − y‖2
we obtain that

∂l(L, y)

∂y
=

N∑
i=1

(ln zi − ln pi)

α2σ2

2(xi − y)

‖xi − y‖2

From (3.5) and (3.1), we have that

∂l(L, y)

∂y
=

N∑
i=1

−βwi
σ2

(y − xi)
‖xi − y‖2

For notational convenience define

U =

[
(x1 − y)

‖x1 − y‖2
, . . . ,

(xN − y)

‖xN − y‖2

]
Then it follows that

∂l(L, y)

∂y
= − β

σ2
Uw
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where w = [w1, · · · , wN ]T , and

E

[
∂l(L, y)

∂y

∂l(L, y)

∂y

T
]

=
β2

σ4
UE[wwT ]UT

From the assumption that wi are iid Gaussian random variables with zero

mean and variance σ2, it follows that E[wwT ] = σ2I, where I is an identity matrix.

Therefore, it follows that

E

[
∂l(L, y)

∂y

∂l(L, y)

∂y

T
]

=
β2

σ2
UUT

The above calculations provide the Fisher Information Matrix for this estima-

tion problem as follows:

F =
β2

σ2

N∑
i=1

(xi − y)(xi − y)T

‖xi − y‖4
(3.6)

The CRLB comprises the diagonal elements of the inverse of the Fisher In-

formation. Thus observe that the CRLB for this problem grows linearly with noise

power. As the CRLB provides the lower bound on the achievable error variances

by unbiased estimators, the next step is to investigate whether there exists an ef-

ficient estimator, i.e. an unbiased estimator that meets CRLB. From [20], if the

observations are perturbed by additive Gaussian noise then an efficient estimator

exists if and only if the signal is affine in the parameter to be estimated. From

(3.5), it can be observed that the signal has a nonaffine dependence on y and an

affine dependence on Gaussian noise wi. Hence, no efficient estimator exists for this

problem. This motivates us to investigate the statistical properties of the class of

unbiased estimators of y, in particular the achievable error variances by the whole

class of unbiased estimators of y.
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3.3 Characterization of Unbiased Estimates

The main aim of this section is to characterize the whole class of unbiased

estimators of y and analyze their statistical properties. In section 3.3.1 we first

relate the problem of source localization to distance estimation. We show that

source localization is structurally connected to the estimation of linear functions of

quantities such as d2
i − d2

j . We prove that the class of unbiased estimators of y is

limited by the class of unbiased estimators of quantities of the form d2
i − d2

j . In

section 3.3.2, we prove that for a given i and j, there is a unique unbiased estimator

for d2
i − d2

j . In section 3.3.3, we use the results obtained so far to characterize the

whole class of unbiased estimators of y. We also provide and analyze the statistical

quantities of bias and error variance of this class of unbiased estimators.

3.3.1 Source Localization and Distance Estimation

We first make the following definitions useful in establishing the relationship

between localization and distance estimation. Recall that a set of N > 2 vectors in

R2 belongs to the class XN , if the members of the set are non-collinear. For a given

N > 2 and the set of vectors {x1, x2, · · · , xN} ∈ XN , consider the set of matrices R

with members of the following form

R = [ xi1 − xj1, xi2 − xj2, · · · , xik − xjk ]T (3.7)

where the members of R satisfy the following properties

a) All the indices il, jm belong to {1, 2, · · · , N}.

b) For each l, il 6= jl.

c) For each l 6= m, {il, jl} 6= {im, jm}

d) It is a rank 2 matrix.
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Observe that (d) is satisfied as long as the sensors are noncollinear. We define

the following vectors corresponding to a given R ∈ R

D =
[
d2
i1 − d2

j1, d
2
i2 − d2

j2, · · · , d2
ik − d2

jk

]T
(3.8)

and

K =
[
‖xi1‖2 − ‖xj1‖2, ‖xi2‖2 − ‖xj2‖2, · · · , ‖xik‖2 − ‖xjk‖2

]T
(3.9)

and

Z = [ zi1 − zj1, zi2 − zj2, · · · , zik − zjk ]T (3.10)

For a given R ∈ R, the corresponding D defined in (3.8) is called an admissible

and the corresponding Z defined in (3.10) is called an observation vector. We now

establish a relation between y and R ∈ R, and its corresponding admissible D and

K. Consider a set of vectors {x1, x2, · · · , xN} ∈ XN and equations

‖xi1 − y‖2 = d2
i1 and ‖xj1 − y‖2 = d2

j1

where i1, j1 ∈ {1, . . . , N}. Subtracting one equation from the another gives the

following equation,

2 (xi1 − xj1)
T y = ‖xi1‖2 − ‖xj1‖2 + d2

j1
− d2

i1

Performing the above analysis repeatedly and writing the equations in the form of

a matrix gives the following relationship

2Ry = K +D (3.11)

Since R (having rank 2) has full column rank, its pseudo-inverse exists and is given

by

R+ = (RTR)−1RT (3.12)
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Then, the position of the source can be given by the following relationship

y =
1

2
R+K +

1

2
R+D (3.13)

The above relations (3.11),(3.13) directly prove the following theorem.

Theorem 3.3.1 Assume that N > 2 and (3.5) holds for i = {1, . . . , N}. Sup-

pose that f(x1, . . . , xN , z1, . . . , zN , A, β, σ
2) is an unbiased estimator of y for all

{x1, . . . , xN} ∈ XN , all y ∈ R2, A, β and σ2. Then for every R ∈ R and cor-

responding K and D,

2Rf(x1, . . . , xN , z1, . . . , zN , A, β, σ
2)−K (3.14)

is an estimate of corresponding D. Conversely, suppose g(z1, . . . , zN , A, β, σ
2) is an

estimator of D for all A, β and σ2. Then for corresponding R ∈ R and correspond-

ing K,

1

2
R+K +

1

2
R+g(z1, . . . , zN , A, β, σ

2) (3.15)

is an unbiased estimate of y for all {x1, . . . , xN} ∈ XN , all y ∈ R2, A, β and σ2

The above theorem establishes that the class of estimators of y is limited by

the class of estimators of the set of admissibles corresponding to the set of matrices

R. Every element of an admissible D corresponding to any R ∈ R is of the form

d2
i − d2

j , where i, j ∈ {1, . . . , N}. This motivates us to investigate the class of

unbiased estimators of the quantity d2
i − d2

j , for a given i, j ∈ {1, . . . , N}.

3.3.2 Unbiased Estimation of d2
i − d2

j

Observe that under (1.1), the resulting sets of distances {d1, . . . , dN} cover

almost all RN
+ as we vary the elements of the set of anchors {x1, . . . , xN} over all

XN and the source y over all R2. For convenience, define the following vectors,

w = [w1, . . . , wN ]′, z = [z1, . . . , zN ]′ (3.16)
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p = [p1, . . . , pN ]′ = [d2
1, . . . , d

2
N ]′ (3.17)

Consider (3.1),(3.2) and (3.3) for i = {1, . . . , N} where N > 2, then for a given i,j

our goal is to obtain an estimator of the form h(z, α, σ2) such that

E
[
h(z, A, β, σ2)

]
= pi − pj (3.18)

The estimator that we obtain must work for almost all pi ≥ 0, pj ≥ 0 and all A, β

and σ2. From now onwards, we will drop the arguments A, β and σ2 from the list

of arguments of h.

Lemma 3.3.1 Consider (3.3) for i = {1, . . . , N} where N > 2 and wl ∼ N(0, σ2)

are mutually uncorrelated Gaussian random variables. Suppose h(z) is an unbiased

estimate of pi−pj for almost all pi ≥ 0,pj ≥ 0. Then h(z) is unique and is given by

h(z) = e−α
2σ2/2(zi − zj) (3.19)

Proof: Suppose h(z) is an unbiased estimate of pi − pj for almost all pi ≥ 0,

pj ≥ 0. This requires that for almost all possible values of pi > 0 and pj > 0 there

holds:

pi − pj =
1

(2πσ2)N/2

∫
RN
h(z) exp

(
−

N∑
i=1

w2
i

2σ2

)
dw (3.20)

Then because of (3.3), we have that for almost all non-negative pi and pj, there

holds:

pi − pj =
(−1)N

(2πσ2α2)N/2

∫
RN+

h(z)∏N
i=1 zi

exp

(
−

N∑
i=1

(ln pi − ln zi)
2

2σ2α2

)
dz (3.21)

Now define

ti = ln zi , vi =
ln pi
σ2α2

(3.22)

and also

t = [t1, . . . , tN ]′ , v = [v1, . . . , vN ]′ .
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Then for all possible vi, (3.21) becomes:

eσ
2α2vi − eσ2α2vj =

(−1)N

(2πσ2α2)N/2

∫
RN
h(et1 , · · · , etN ) exp

(
−‖vσ

2α2 − t‖2

2σ2α2

)
dt

=
(−1)N

(2πσ2α2)N/2

∫
RN
h(et1 , · · · , etN ) e

−t′t
2σ2α2 ev

′tdt e
−v′vσ2α2

2

i.e. for all possible vi, there holds:

(−1)N

(2πσ2α2)N/2

∫
RN
h(et1 , · · · , etN ) e

−t′t
2σ2α2 ev

′tdt =
(
eσ

2α2vi − eσ2α2vj
)(

e
v′vσ2α2

2

)
Thus with v and t as the two domain variables(

eσ
2α2vi − eσ2α2vj

)(
e
v′vσ2α2

2

)
and

(−1)N

(2πσ2α2)N/2
h(et1 , · · · , etN ) e

−t′t
2σ2α2

may be viewed as the Laplace pairs. This clearly indicates that h(z) is unique. Now

it suffices to show that (3.19) is an unbiased estimate. From (3.3) and using the

fact that

E
[
e−αwi

]
= eα

2σ2/2 (3.23)

we obtain that

E [h(z)] = e−α
2σ2/2

(
piE[e−αwi ]− pjE[e−αwj ]

)
= pi − pj (3.24)

Hence the lemma holds.

3.3.3 Class of Unbiased Estimators of y

In section 3.3.1, we showed that the class of unbiased estimates is limited by

an isomorphism with the class of unbiased estimators of quantities like d2
i − d2

j . In

Section 3.3.2, we proved that there is a unique unbiased estimator for d2
i − d2

j for

a given i and j. Now combining Theorem 3.3.1 and Lemma 3.3.1 would directly
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prove the following theorem which characterizes all unbiased estimators of y.

Theorem 3.3.2 Assume that N > 2 and (1.3) holds for i = {1, . . . , N}. Suppose

that ŷ is an unbiased estimator of y for all {x1, . . . , xN} ∈ XN , all y ∈ R2, A, β

and σ2. Then for every R ∈ R and corresponding K and D,

ŷ =
1

2
R+
(
K + e−α

2σ2/2Z
)

(3.25)

Proof: From theorem 3.3.1,

1

2
R+K +

1

2
R+g(z, A, β, σ2) (3.26)

characterizes all the unbiased estimates of y, where R ∈ R and its corresponding

K and g(z1, . . . , zN , A, β, σ
2) is unbiased estimate of corresponding D. From lemma

3.3.1, g(z, A, β, σ2) is unique and is given by

g(z, A, β, σ2) = e−α
2σ2

Z

Hence the theorem holds and (3.26) characterizes the whole class of unbiased esti-

mators of y.

The next point of interest is the mean square error or the error variances that are

achievable by the class of unbiased estimators. Let us first make the following defi-

nitions. Define the matrix X of dimension N × 2 with the positions of the sensors

as follows.

X = [ x1, x2, · · · , xN ]T (3.27)

For some R ∈ R defined in (3.7), let us define the following corresponding matrix

V based on the indices il, jl of distances in matrix R. The elements of matrix V are

given by

V (l,m) =


1 il = m

−1 jl = m

0 elsewhere

(3.28)
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Lemma in Appendix-A gives the relationship between the matrices X, R and its

corresponding matrix V as follows

R = V X (3.29)

With the similarity between the structure of R defined in (3.7) and the structure of

corresponding D defined in (3.8) and corresponding Z defined in (3.10), the analogy

of Lemma holds for matrices D and Z. Hence the following relationships follow:

D = V p (3.30)

Z = V z (3.31)

where vectors p and z are defined in (3.16) and (3.17). From (3.26), it follows that

ŷ − y =
1

2
R+
(
e−α

2σ2/2Z
)

(3.32)

Thus, the mean square error is given by

E
[
(ŷ − y)(ŷ − y)T

]
=

1

4
R+C1R

+T (3.33)

where

C1 = E
[
(e−α

2σ2/2Z −D)(e−α
2σ2/2Z −D)T

]
(3.34)

Because of 3.30 and 3.31, C1 can be re-written as

C1 = E
[
V (e−α

2σ2/2z − p)(e−α2σ2/2z − p)TV T
]

= V UV T (3.35)

where

U = E
[
(e−α

2σ2/2z − p)(e−α2σ2/2z − p)T
]

(3.36)

From the definition of p and z defined in (3.17) and (3.16), the elements of matrix

U can be written as

U(i, j) = E
[
(e−α

2σ2/2zi − d2
i )(e

−α2σ2/2zj − d2
j)
]

(3.37)



29

From equation (3.3) and using the fact that E [eawi ] = ea
2σ2/2, the ith diagnol

element of C1 is

U(i, i) = E
[
(e−α

2σ2/2zi − d2
i )

2
]

= d4
i E

[
(e−α

2σ2/2e−αwi − 1)2
]

= d4
i

(
e−α

2σ2

E
[
e−2αwi

]
− 2e−α

2σ2/2E
[
e−αwi

]
+ 1
)

= d4
i (e

α2σ2 − 1)

Using similar analysis as above, the off-diagnol element U(i, j) of C1 is given by

U(i, j) = E
[
(e−α

2σ2/2zi − d2
i )(e

−α2σ2/2zj − d2
j)
]

= d2
i d

2
j E

[
(e−α

2σ2/2e−αwi − 1)(e−α
2σ2/2e−αwj − 1)

]
Because wi are mutually uncorrelated and using the fact that E[awi] = ea

2σ2/2, it

follows that:

U(i, j) = d2
i d

2
jE
[
(e−α

2σ2/2e−αwi − 1)
]
E
[
(e−α

2σ2/2e−αwj − 1)
]

= 0

From the above analysis, the elements of U are given by

U(i, j) =

 0 for i 6= j

d4
i (e

α2σ2 − 1) for i = j
(3.38)

Thus U = (eα
2σ2 − 1) diag (d2

1, . . . , d
2
N)

From (3.33), (3.35) and (3.38), the mean square error is given by

E
[
(ŷ − y)(ŷ − y)T

]
=

(eα
2σ2 − 1)

4
R+V diag

(
d2

1, . . . , d
2
N

)
V TR+T (3.39)

In view of this, the mean square error of the class of unbiased estimators of y defined

in (3.25) grows exponentially with σ2.
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3.4 The Proposed Biased Estimate

In this section, we exploit the structural relationship between the estimation

of y and the distance estimation, and we propose the class of estimators of y based

on the linear MMSE estimator of d2
i presented in the previous chapter. In section

2.4, We showed that the linear MMSE estimate of d2
i is e−3α2σ2/2zi. The proposed

class of estimators of y based on this estimate of d2
i is given by

ŷv =
1

2
R+
(
K + e−3α2σ2/2Z

)
(3.40)

Now let us investigate the bias and MSE for the proposed class of estimators. Using

the fact that E [e−αwi ] = eα
2σ2/2, the bias of the proposed estimator is:

ŷv − y =
1

2
R+
(
e−3α2σ2/2E[Z]−D

)
=

1

2
R+
(
e−3α2σ2/2eα

2σ2/2D −D
)

=
1

2
R+D

(
e−α

2σ2 − 1
)

Observe that proposed estimate has bias bounded in σ2. The mean square error is

given by

E
[
(ŷv − y)(ŷv − y)T

]
=

1

4
R+C2R

+T (3.41)

where

C2 = E
[
(e−3α2σ2/2Z −D)(e−3α2σ2/2Z −D)T

]
(3.42)

Because of (3.30) and (3.31), C2 can be re-written as

C2 = E
[
V (e−3α2σ2/2z − p)(e−3α2σ2/2z − p)TV T

]
= VWV T (3.43)

where

W = E
[
(e−3α2σ2/2z − p)(e−3α2σ2/2z − p)T

]
(3.44)
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From the definition of p and z defined in (3.17) and (3.16), the elements of matrix

W can be written as follows

W (i, j) = E
[
(e−3α2σ2/2zi − d2

i )(e
−3α2σ2/2zj − d2

j)
]

(3.45)

From equation (3.3) and using the fact that E [eawi ] = ea
2σ2/2, the ith diagnol element

of C2 is

W (i, i) = E
[
(e−3α2σ2/2zi − d2

i )
2
]

= d4
i E

[
(e−3α2σ2/2e−αwi − 1)2

]
= d4

i

(
e−3α2σ2

E
[
e−2αwi

]
− 2e−3α2σ2/2E

[
e−αwi

]
+ 1
)

= d4
i (1− e−α

2σ2

)

Using similar analysis as above, the off-diagnol element W (i, j) of C2 is given by

W (i, j) = E
[
(e−3α2σ2/2zi − d2

i )(e
−3α2σ2/2zj − d2

j)
]

= d2
i d

2
j E

[
(e−3α2σ2/2e−αwi − 1)(e−3α2σ2/2e−αwj − 1)

]
Because of wi are mutually correlated and using the fact that E[awi] = ea

2σ2/2, it

follows:

W (i, j) = d2
i d

2
jE
[
(e−3α2σ2/2e−αwi − 1)

]
E
[
(e−3α2σ2/2e−αwj − 1)

]
= d2

i d
2
j(1− eα

2σ2

)2

Hence the mean square error of the proposed estimate is given by

E
[
(ŷv − y)(ŷv − y)T

]
=

1

4
R+VWV TR+T (3.46)

where

W (i, j) =

 d2
i d

2
j(1− e−α

2σ2
)2 for i 6= j

d4
i (1− e−α

2σ2
) for i = j

(3.47)

Observe that both the diagonal and off-diagonal elements of W are bounded
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in σ2, unlike the diagonal elements of U in case of unbiased estimators. This is even

better than the linear dependence of CRLB on noise power. However, this is not

surprising as the underlying estimate is biased. Under large noise variances, the

proposed class of estimators performs better than CRLB.

3.5 Conclusion

In this chapter, we have considered statistical issues involved in estimating

the source location from RSS measurements affected by log-normal shadowing. We

have derived the CRLB for this problem and have shown that there is no unbiased

estimator which meets the CRLB. We have also completely characterized the class

of unbiased estimators of y and showed that the MSE of each of its members grows

exponentially with σ2. We have proposed another class of biased estimators based

on the linear MMSE estimator of the squares of distances. Finally, we have carried

out the statistical analysis of this proposed class and showed that each of its member

has both bias and variance bounded in σ2.
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CHAPTER 4

CONCLUSION

As sensor networks emerge as a key technology with localization as a fundamental

component of wide range of applications, the study of area of localization has become

important. In this thesis we have considered source localization from RSS under

log-normal shadowing. In summary, the literature survey work showed that study

of statistical issues in localization using RSS measurements under the practical log-

normal fading is rarely presented and many algorithms presented earlier assume that

distance measurements are available even though in general, distance information

is not directly available and needs to be obtained through various readily available

information like TOA, TDOA information or RSS measurements. All these factors

motivated the development of this thesis.

We have studied the statistical properties of distance estimation and its impli-

cation to source localization from RSS measurements under log-normal shadowing.

The first major contribution of this thesis is the study of the problem of distance

estimation under the assumed noise model. We have shown that the underlying

estimation problem is inefficient. Continuing further, we have presented results

showing that the only unbiased estimator and ML estimator of distances has an

exponentially growing MSE indicating unacceptable performance. As a remedy, we

have derived the linear MMSE estimate and have demonstrated that it enjoys a su-

perior MSE. In the main problem of this thesis, we have studied source localization

directly. We characterized the class of all unbiased estimators for this problem and
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showed that their error variances grow exponentially with noise power. Then we

considered a class of biased estimators of y based on the linear MMSE estimator

of squares of distances and have demonstrated that both its bias and variance are

bounded in the noise variance.

Concerning future research, an interesting topic would be to consider the class

of estimators with minimum error variances subject to the constrain that the norm

of the bias gradient is upper bounded by a constant. The norm of the bias gradient

is particularly interesting since it directly provides the maximum variation of bias

over the neighborhood of parameter to be estimated and is unaffected by constant

bias terms. Even if the constant bias terms are large, they can be easily removed.

Other future topics include investigation of class of linear MMSE estimators of y

and the study of their statistical properties.
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APPENDIX

SELECTED LEMMA’S

Lemma .0.1 Given the matrix X with the positions of the sensors as defined in

(3.27). Consider some R ∈ R as defined in (3.7) and the corresponding V matrix

as defined in (3.28), then following relationship holds

R = V X (.1)

Proof : The result is clearly obvious, but yet formally proved here.

Consider any arbitrary l ∈ {1, 2, · · · , k}. From the properties the members of

R satisfy (as defined in (3.7)), we have that for il, jl ∈ {1, 2, · · · , n} and il 6= jl.

Hence, by the structure of matrix V , as defined in (3.28), we have that

1. There are exactly two non-zero elements in the lth row of matrix V .

2. Those two non-zero elements are V (l, im) and V (l, jm).

3. V (l, im) = 1 and V (l, jm) = −1

From the definition of matrix multiplication, the lth row of product of matrices

V and X is given by
∑
m

V (l,m)xTm. From the above described properties of elements

of V , we have that the lth row of V X is (xTil − xTjl) , which is equal to the lth row of

the matrix R.

We have essentially shown that the lth row of V X is equal to the lth row of R. Since,

l was arbitrary, it is true for all l ∈ {1, 2, · · · , k}. Hence, we have that

R = V X

Thus, the lemma holds.
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