IOWA STATE UNIVERSITY Digital Repository

Graduate Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

2016

Low energy LED lighting heat gain distribution in buildings

Zhikun Zhong Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd Part of the <u>Mechanical Engineering Commons</u>

Recommended Citation

Zhong, Zhikun, "Low energy LED lighting heat gain distribution in buildings" (2016). *Graduate Theses and Dissertations*. 15855. http://lib.dr.iastate.edu/etd/15855

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Low energy LED lighting heat gain distribution in buildings

by

Zhikun Zhong

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Mechanical Engineering

Program of Study Committee: Gregory M Maxwell, Major Professor Travis Sippel Steven J. Hoff

Iowa State University

Ames, Iowa

2016

Copyright © Zhikun Zhong, 2016. All rights reserved.

TABLE OF CONTENTS

LIST OF FIGURES	v
LIST OF TABLES	vi
LIST OF ACRONYMS	vii
ACKNOWLEDGEMENTS	viii
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. LITERATURE REVIEW	4
CHAPTER 3. SELECTON OF LED LUMINAIRES	6
 3.1 Standards and Programs for Evaluating LED Luminaries	6 6 7 8
CHAPTER 4. EXPERIMENTAL DESIGN	11
 4.1 Technical Approach 4.2 Conditioned Space Heat Balance	11 12 16 20 21
CHAPTER 5. TEST SETUP	23
 5.1 Test Chamber Construction 5.2 Chamber U Value 5.3 Net Radiometer Moving Rail Design 5.4 Steady state determination 5.5 Instrumentation and Data Acquisition 5.5.1 Temperature 5.5.2 Chamber differential pressure 5.5.3 Airflow rate 5.5.4 Electric power 5.5.5 Data acquisition system (DAS) 	23 30 32 34 35 36 36 37 37
CHAPTER 6. UNCERTAINTY ANALYSIS	
CHAPTER 7. OFFICIAL TEST	42
 7.1 Base Case Test 7.1.1 High-bay 7.1.2 Linear-pedant 7.1.3 Recessed troffers 7.1.4 Downlight 7.1.5 High efficacy troffer	44 50 52 55 56
7.1.6 Color tuning troffer 7.1.7 Retrofit kit troffer	57 60

7.2 Variance Case Test	62
7.2.1 Effect of supply air temperature	66
7.2.2 Effect of supply airflow rate	68
7.2.3 Effect of duct return configuration	70
7.2.4 Effect of floor finish	72
7.2.5 Effect of dimming control	74
CHAPTER 8. CONCLUSIONS	76
REFERENCES	78
APPENDIX A: SPECIFICATIONS OF LUMINAIRES BEING TESTED	80
A1. Cree High-Bay CXB	80
A2. Columbia High-Bay LLHP	
A3. Columbia LTRE 24	
A4. Columbia LTRE 22	
A5. Columbia LLT 24	91
A6. Columbia LLT 22	94
A7. Finelight HPR-HO 24	97
A8. Finelight HPR-HO 22	99
A9. Finelight HP-4 ID	101
A10. Philips Ledalite 1201	104
A11. GE DI6R	107
A12. Cree ZR24 HE	111
A13. Sigma STL100	113
A14. MaxLite RKT	115
APPENDIX B: BASE CASE TEST RESULTS	117
B1. Cree High-Bay CXB	117
B2. Columbia High-Bay LLHP	118
B3. Columbia LTRE 24	119
B4. Columbia LTRE 22	120
B5. Columbia LLT 24	121
B6. Columbia LLT 22	122
B7. Finelight HPR-HO 24	123
B8. Finelight HPR-HO 22	124
B9. Finelight HP-4 ID	125
B10. Philips Ledalite 1201	126
B11. GE DI6R	127
B12. Cree ZR24 HE	128
B13. Sigma STL100 (Cool)	129
B14. Sigma STL100 (Warm)	130
B15. MaxLite RKT	131
APPENDIX C: VARIANCE TEST RESULTS	132
C1. Columbia LTRE 24	
C2. Columbia LTRE 24 @ 65F	133
C3. Columbia LTRE 24 @ 120 cfm	134

C4. Columbia LTRE 24 @ Wood Floor	135
C5. Columbia LTRE 24 @ 50% Dimming	136
C6. Columbia LTRE 24 @ 55F	137
C7. Columbia LTRE 24 @ 30 cfm	138
C8. Columbia LTRE 24 @ Ducted Return	139
C9. Columbia LLT 22	140
C10. Columbia LLT 22 @ 65F	141
C11. Columbia LLT 22 @ 120 cfm	142
C12. Columbia LLT 22 @ Wood Floor	143
C13. Columbia LLT 22 @ 50% Dimming	144
C14. Columbia LLT 22 @ 55F	145
C15. Columbia LLT 22 @ 30 cfm	146
C16. Columbia LLT 22 (Ducted Return)	147
C17. GE DI6R	148
C18. GE DI6R @ 65F	149
C19. GE DI6R @ 120 cfm	150
C20. GE DI6R @ Wood Floor	151
C21. GE DI6R @ 50% Dimming	152
C22. GE DI6R @ 55F	153
C23. GE DI6R @ 30 cfm	154
C24. GE DI6R @ Ducted Return	155
C25. MaxLite RKT	156
C26. MaxLite RKT @ 65F	157
C27. MaxLite RKT @ 120 cfm	158
C28. MaxLite RKT @ Wood Floor	159
C29. MaxLite RKT @ 50% Dimming	160
C30. MaxLite RKT @ 55F	161
C31. MaxLite RKT @ 30 cfm	162
C32. MaxLite RKT @ Ducted Return	163

LIST OF FIGURES

Figure 4-1 Heat transfer in the test chamber	12
Figure 4-2 Sensor location inside the test chamber	15
Figure 4-3 Radiative exchange and net radiometer design	20
Figure 5-1 Test chamber with detailed dimensions	23
Figure 5-2 Test chamber side view	24
Figure 5-3 Isometric View of Test Chamber	25
Figure 5-4 Interior-A test room and test chamber plan view	26
Figure 5-5 Interior-A test room and test chamber elevation view	27
Figure 5-6 Heat Flux Sensor & Placement	29
Figure 5-7 Scanning Area of Rectangular LED Troffer Fixtures	31
Figure 5-8 The schematic layout of the rail design	31
Figure 5-9 Net Radiometer Setup	32
Figure 5-10 Typical Data Trending of Selected Variables at Steady State	34
Figure 5-11 Instrumental design	35
Figure 5-13 Low Airflow Measuring Station	36
Figure 7-1 Conditioned Space Heat Fractions for All Recessed LED Luminaires	45
Figure 7-2 Radiative Heat Fractions and Lighting Illuminance for All Recessed LED	
Luminaires	46
Figure 7-3 Radiative Heat Fractions and Lighting Illuminance for Suspended LED Luminair	es 47
Figure 7-4 Cone-Shape High-Bay with Reflector	48
Figure 7-5 Rectangular-Shape High-Bay with Direct Optics	48
Figure 7-6 3-D Scanning Area of the Net Radiometer for Suspended Luminaires	49
Figure 7-7 Direct Linear Pendant	51
Figure 7-8 Indirect/Direct Linear Pendant	51
Figure 7-9 2-ft×4-ft and 2-ft×2-ft Troffers with Partial Aperture Diffuser	52
Figure 7-10 2-ft×4-ft and 2-ft×2-ft Troffers with Uniform Diffuser	53
Figure 7-11 2-ft×4-ft and 2-ft×2-ft Troffers with Linear Details Diffuser	53
Figure 7-12 The Downlight Below and Above Ceiling Tile	55
Figure 7-13 High Efficacy Troffer	57
Figure 7-14 Color Tuning Touch Controller and CCT Combinations	58
Figure 7-15 Lighting Appearance under Different CCTs	58
Figure 7-16 The 2-ft×4-ft Troffer for Retrofit Kit Testing	61
Figure 7-17 Conditioned Space Heat Fraction of 2-ft×4-ft Troffer with Partial Aperture	
Diffuser	62
Figure 7-18 Radiative Heat Fraction of 2-ft×4-ft Troffer with Partial Aperture Diffuser	63
Figure 7-19 Conditioned Space Heat Fraction of 2-ft×2-ft Troffer with Uniform Diffuser	63
Figure 7-20 Radiative Heat Fraction of 2-ft×2-ft Troffer with Uniform diffuser	64
Figure 7-21 Conditioned Space Heat Fraction of Downlight	64
Figure 7-22 Radiative Heat Fraction of Downlight	65
Figure 7-23 Conditioned Space Heat Fraction of Retrofit Kit	65
Figure 7-24 Radiative Heat Fraction of the Retrofit Kit	66
Figure 7-25 Duct Return Configuration	70
Figure 7-26 Wood and Carpet Floor Finish	72

LIST OF TABLES

Table 3.1 Selected LED luminaires for testing	10
Table 5.1 Measured U Values & Equivalent R values in Chamber Sections	
Table 6.1 Uncertainties of Single Measured Variables	
Table 7.1 LED lighting test case	42
Table 7.2 Test Result Summary of High-Bays	50
Table 7.3 Test Result Summary of Linear Pendant	52
Table 7.4 Test Result Summary of Recessed Troffers	54
Table 7.5 Test Result Summary of Downlight	56
Table 7.6 Test Result Summary of High Efficacy Troffer	57
Table 7.7 Lighting Power and Lumen Data at Different CCT Combinations	59
Table 7.8 Test Result Summary of Color Tuning Troffer	60
Table 7.9 Test Result Summary of Retrofit Kit	61
Table 7.10 Test Result of Varied Supply Air Temperature	67
Table 7.11 Test Results of Varied Supply Airflow Rates	69
Table 7.12 Test Results of Varied Return Air Configurations	71
Table 7.13 Test Results of Varied Floor Finish	73
Table 7.14 Test Results of Varied Dimming Outputs	75

LIST OF ACRONYMS

ASHRAE	American society of heating refrigerating and air-conditioning engineers
CALiPER	Commercially available led product evaluation and reporting
CCT	Correlated color temperature
CRI	Color rendering index
DAS	Data acquisition system
DDC	Direct digital control
DLC	DesignLights consortium
DOE	U.S. department of energy
DP	Differential pressure
EPA	Environmental protection agency
ERS	Energy resource station
HVAC	Heating, ventilating, and air conditioning
IEC	Iowa energy center
IR	Infrared radiant
LED	Light-emitting diode
LW	Longwave radiation
NEEP	Northeast energy efficiency partnerships
NIST	National institute of standards and technology
QPL	Qualified product list
RTD	Resistance temperature detector
SR	Shortwave radiation
VAV	Variable air volume

ACKNOWLEDGEMENTS

I would like to take this time to express my gratitude and appreciation to my major professor Dr. Maxwell. I have a wonderful time working under his supervision and cherished every moment with him. He is not only an excellent teacher, but also a life guider. He has always been on his duty whenever I need him for help.

The research was funded by the American Society of Heating Refrigerating and Air-Conditioning Engineers (RP-1681). I received a lot of guidance from Dr. Ran Liu and Dr. Xiaohui" Joe" Zhou, who were the PI and Co-PI for this project. They were willing to teach me everything I required to successfully complete the project. I am very thankful for the cooperation and assistance from them.

I also would like to thank Dr. Hoff and Dr. Sippel for their valuable feedback and participation on my committee

CHAPTER 1. INTRODUCTION

The first lighting technology came from Thomas Edison who made the incandescent lighting bulb commercial in the 1880s. Nonetheless, that technology is now on the way out since the devices are too wasteful: 98% of the energy input ends up as heat instead of light. In 2007, Australia became the first country to ban incandescent bulbs entirely. At present, the only technology that is mature enough to take over incandescent light bulbs is fluorescent lighting, which can turn 10-15% of input power into light. But fluorescent lighting has a number of drawbacks. For example, fluorescent lamps do not work well in cold temperatures and their life span can be significantly shortened if they are turned on and off frequently. The worst is each lamp contains a small amount of mercury which is toxic. As an emerging technology, LED has the ability to make up those drawbacks. LEDs are long-lived, robust and roughly twice as efficient as fluorescents. Besides, LEDs are already widely used for computers, television sets and other consumer electronics, and are becoming a market leader for outdoor applications such as traffic lights and indicator lights on cars. (Stefano et al, 2009)

LED lights are solid-state luminaries with extremely high efficacy compared to the conventional lighting fixtures. The U.S DOE (2012) states that if about 49 million LEDs were installed in the U.S., the annual energy cost savings would be about \$675 million. Furthermore, switching conventional light to LED in the next two decades could save the U.S. \$250 billion in energy costs, reduce electricity consumption for lighting by nearly 50 percent and avoid 1,800 million metric tons of carbon emissions.

Electrical lighting is a major contributor to the heat gain in all buildings. The thermal energy from lights is transferred to the air by convection and to surrounding objects by thermal

radiation. Heat transfer by conduction contributions can be ignored (ASHRAE, 2013). As it relates to the cooling load, the convective heat gain is an instantaneous cooling load as the convective energy from the lights causes an immediate increase of air temperature. However, the radiation component of the light energy produces a delayed cooling load on the space. Radiation energy from the lights is absorbed by objects and surfaces in the space causing them to increase in temperature. These objects then transfer heat by convection to the air in the room causing the air temperature to increase at which time it becomes a cooling load. Due to the thermal mass of these objects and surfaces, there is a time-delay from when the radiant energy from the lights is absorbed to the time the heat is convected to the space. To accurately calculate the cooling load on the space due to lights, it is important to know the fraction of lighting energy that is convective and the fraction that is radiative. This is referred to as the convection radiation split. Another key factor to obtain an accurate cooling load calculation is how the thermal energy from the lights is split between conditioned space and ceiling plenum space. Although all lighting energy is converted to the heat gain of surrounding areas, only the heat which is transferred to the conditioned space is considered as cooling load.

Input power to LED lighting luminaires is converted to electrical heat and electromagnetic radiation (Khanna et al, 2014). The electrical heat contributes to the increasing temperature of the LED heat sink by conductive heat, and then promotes heat transfer to surrounding area through convection and radiation. Electromagnetic radiation includes visible light, ultraviolet (UV) and infrared radiant (IR) heat, which is absorbed by the surrounding surfaces and then reemitted to the room through the convection and radiation (Chung et al, 1998). Among electromagnetic radiation, long wave infrared radiation from the lighting is the most significant radiant heat contributing to a building's cooling load.

There are two methods for cooling load calculation described in 2013 ASHRAE Handbook Fundamentals, the Heat Balance method (HB) and the Radiant Time Series method (RTS). Both methods require knowing the convection radiation split as well as the split between space and plenum. Information about the more traditional and well established lighting systems (such as recessed fluorescent, high intensity discharge, compact florescent, etc.) has been determined and is available in the literature. (ASHRAE Handbook, 2013a). However, because LED light fixtures are an emerging lighting technology, there are no values for these factors. This study was performed at the Iowa Energy Center (Energy Resource Station) and mainly focused on the low energy LED lighting fixtures. There were two main objectives to be achieved in this study. The first objective was to determine the heat split between the conditioned space and ceiling plenum space. The second objective was to determine the fraction between convective heat and radiant heat in the conditioned space.

CHAPTER 2. LITERATURE REVIEW

General information about LED lighting technology is available in the literature and through various organizations. LED lighting technology is described by Khanna et al. (2014). In the book, the authors discuss the LED family, power conversion for LED lighting fixtures and LED applications. The performance of LED lighting is published through DesignLights Consortium (1996), Energy Star (1992) and LED Lighting Facts (2014). These sources provide various criteria used to evaluate LED lighting fixtures.

The Department of Energy Commercially Available Light-Emitting Diode Product Evaluation and Reporting Program (CALiPER) has been testing general solid-state lighting fixtures since 2006. The program provides detailed LED information and covers a wide range of lighting applications. The CALiPER Program periodically publishes snapshot reports with data from LED Lighting Facts product list that compares the LED performance to standard lighting technologies and summarizes the LED market and its trajectory

For this research project, the literature was reviewed to determine experimental methods which have been used to determine how the thermal energy from lighting fixtures is distributed in a building. Hosni et al. (1997) discussed the test method for measuring the heat gain and radiative/convective split from equipment in buildings. They tested these parameters for various office/laboratory equipment (microcomputer, monitor, printer, copier, scanner, microwave oven, etc.). Fisher et al. (2006) mainly focused on the condition space/plenum space heat split and convective/radiant heat split for conventional lighting fixtures. They built a two-floor test room for calculating the heat balance model and used a net radiometer to measure the radiant heat gain. After review those literatures above, several benefits could be shown:

• A LED marketing research should be easily done based on the qualification institution above.

- The temperature measurement in the test chamber should be intensive and sensitive enough to record the temperature distribution in each critical location and was important not only for conditioned space but also for the ceiling plenum.
- The net radiometer should be able to conduct 3-D scan in order to capture the heat transfer from all sides.

CHAPTER 3. SELECTON OF LED LUMINAIRES

One of the tasks of this project was to select a representative sample of LED luminaries to test. This was accomplished by reviewing the various standards and programs presently used to evaluate LED luminaries.

3.1 Standards and Programs for Evaluating LED Luminaries

3.1.1 DesignLights consortium

DesignLights Consortium (DLC) is a program developed by Northeast Energy Efficiency Partnerships (NEEP) in 1996. The DLC promotes quality, performance and energy efficient commercial sector lighting solutions through collaboration among its federal, regional, state, utility, and energy efficiency program members; luminaire manufacturers; lighting designers and other industry stakeholders throughout the U.S. and Canada. DLC has published Product Qualification Criteria to certify high quality and high efficient LED lighting fixtures on their Qualified Product List (DLC QPL, Version 2.1. 2014). The criteria sets minimum requirements for LED lighting from different respects including lumen output, zonal lumen density, luminaire efficacy, correlated color temperature, color rendering index and L70 lumen maintenance. The DLC Product Qualification Criteria is used in this project for selecting LED luminaries. (About DLC 1996)

3.1.2 Energy star

The Energy Star program is established by the U.S. Environmental Protection Agency (EPA) in 1992. The main object of this program is to reduce greenhouse gas emissions and hazardous wastes into the environment by setting standards, and to identify and promote energy efficient products.

Energy Star released the Luminaires Eligibility Criteria Version 1.2 on December 21, 2012. It covers conventional lighting and solid-state lighting in both residential and commercial applications. Therefore, Energy Star criteria are used in this project as minimum requirements for LED luminaires. (About Energy Star, 1992)

3.1.3 LED lighting facts

The LED Lighting Facts program was created by U.S. Department of Energy (DOE) to assure decision makers that the performance of solid-state lighting (SSL) products is represented accurately as products reach the market. The ENERGY STAR label summarizes and presents key product performance parameters including light output, power input, efficacy, color rendering index, and correlated color temperature.

The LED Lighting Facts label presents key product performance parameters such as lumens, efficacy, power, color rendering index (CRI) and correlated color temperature (CCT). The DOE Commercially Available LED Product Evaluation and Reporting (CALiPER) program periodically publishes snapshot reports with data from LED Lighting Facts product list that compares the LED performance to standard lighting technologies and summarizes the LED market and its trajectory (U.S. DOE CALiPER program, 2014). The majority range and mean value of lumen output, efficacy, CCT, and CRI are statistically presented and compared for each type of indoor LED luminaires. These data are a significant indication for current status of LED market and served as an important reference for selecting the test LED luminaires for this project. (About LED Lighting Facts, 2014)

3.2 Selected LED Luminaires

Based on the above selection criteria, fourteen LED luminaires were selected for testing. All the luminaires meet the minimum requirements of DLC and Energy Star, and in general fit the majority range of LED Lighting Facts.

Luminaires No. 1 and No. 2 are high-bay fixtures. No. 1 is a cone shape fixture with aluminum reflector and No. 2 is a rectangular-shape fixture with direct optics. These two highbay fixture types cover common applications in large commercial and industrial space where geometry necessitates high-lumen sources. (U.S. DOE Solid-State Lighting CALiPER Program, 2011)

Luminaries No. 3 through No. 8 are recessed troffers which incorporate the three major aperture styles: No. 3 and No. 4 have a partial aperture diffuser with curved lens, No. 5 and No. 6 have a uniform diffuser, and No. 7 and No. 8 have a diffuser with linear details. The different aperture styles cover the optic options for troffers currently available in the market, and were also the major categories defined in DOE CALIPER program (U.S. DOE Solid-State Lighting CALIPER Program, 2013). The troffers tested are both the common 2-ft×2-ft and 2-ft×4-ft fixture size for each aperture style. Recessed troffers comprise the majority of the fixtures tested because they encompass 50% of the market share of commercial luminaires, and they are the most common commercial lighting fixtures.

Luminaires No. 9 and No. 10 were linear pendant fixtures which are the two most common lighting distribution styles. NO. 9 is an indirect/direct type, and No. 10 is a direct type fixture (U.S. DOE Solid-State Lighting CALiPER Program, 2012). There are a large number of linear pendent LED fixtures on the market, but the two chosen for testing are among the most common types that appeared in the CALiPER testing program (U.S. DOE Solid-State Lighting

CALiPER Program, 2012). The heat gain testing results should be generally applicable to most LED linear pendants.

Luminaire No. 11 is an LED downlight with a 6-inch diameter. This is a common size for recessed downlights (U.S. DOE Solid-State Lighting CALiPER Program, 2011). The downlight model tested is a GE DI6R which has a higher efficacy (52 lm/W). It also meets the ENERGY STAR requirements, and it was one of the winners of Next Generation Luminaries Indoor 2014 Competition.

Luminaire No. 12 is a 150 lm/W fixture, and it has one of the highest efficacies for indoor illumination available in the market. Luminaires No. 13 is a color turning lighting fixture. Luminaries No. 14 is a LED retrofit kit for a 2-ft×4-ft recessed troffer. Table 3.1 lists the detailed manufacture LED lighting fixture which were tested in this project.

NO.	Category	Model	Lumen	Efficacy (Lm/W)	CRI	CCT (K)	Lumen Maintenance	Zonal Lumen	Installation	Input Power, W
1	High-bay	Cree CXB	18000	113	80	5000	100,000 L80	20-50°, 74%	Exposed	160
2	High-bay	Columbia LLHP	14350	101	70	5000	60,000 L90	20-50°, 48.1%	Exposed	142
3	Troffer 2×4 Partial Aperture Diffuser	Columbia LTRE 24	4978	120	82	4000	60,000 L80	0-60°, 76%	Ceiling Recessed	41
4	Troffer 2×2 Partial Aperture Diffuser	Columbia LTRE 22	3881	108	82	4000	60,000 L80	0-60°, 77.1%	Ceiling Recessed	36
5	Troffer 2×4 Uniform Diffuser	Columbia LLT 24	3856	95	82	3500	50,000 L80	0-60°, 82.2%	Ceiling Recessed	40.8
6	Troffer 2×2 Uniform Diffuser	Columbia LLT 22	2520	94	82	3500	50,000 L80	0-60°, 82.7%	Ceiling Recessed	26.7
7	Troffer 2×4 Diffuser with Linear Details	Finelight HPR-HO 2x4	5928	105	83	4000	168,000 L70; 100,000 L90	0-60°, 82.5%	Ceiling Recessed	56.2
8	Troffer 2×2 Diffuser with Linear Details	Finelight HPR-HO 2x2	4969	88	83	4000	100,000 L70	0-60°, 82.4%	Ceiling Recessed	56
9	Linear Pendant Indirect/Direct	Finelight HP-4 ID	3127 (55% up, 45% down)	86	83	4000	168, 000 L70; 100,000 L90	0-60°, 35.5%	Pendent	36
10	Linear Pendant Direct	Philips Ledalite 1201	2383	86	82	4000	60,000 L80	0-60°, 95%	Pendent	27.8
11	Downlight	GE DI6R	1650	52	90	3500	50,000 L70	0-60°, 99%	Ceiling Recessed	32
12	High Efficacy Troffer	Cree ZR24 HE	4000	150	90	4000	100,000 L70	0-60°, 73%	Ceiling Recessed	26
13	Color Tuning Troffer	Sigma STL100	3954	89	89	3000- 6500	50,000 L70	0-60°, 80%	Ceiling Recessed	45
14	Retrofit kit 2X4	MaxLite RKT	4275	95	82	3500	103,000 L70	0-60°, 87.5%	Ceiling Recessed	45

Table 3.1 Selected LED luminaires for testing

CRI is the Color Rendering Index

CCT is the Color Correlated Temperatur

CHAPTER 4. EXPERIMENTAL DESIGN

4.1 Technical Approach

Testing was performed at the Iowa Energy Center's Energy Resource Station (ERS) located on the DMACC campus in Ankeny, Iowa. A test chamber was built in an interior ERS test room by a local construction company. This test chamber mimics a typical office space with ceiling tiles separating conditioned space and plenum space. LED lighting fixtures were placed inside the test chamber. A VAV terminal unit was used to control the temperature inside the test chamber. The terminal unit was located outside the test chamber. The ERS test room is equipped with a unit ventilator which maintains the test room at a fixed temperature. By maintaining the interior of the test chamber at the same temperature, heat transfer through the test chamber walls and floor was minimized.

The test chamber served as a control volume for heat transfer analysis. By identifying all heat transfer paths occurring between the inside of the chamber and its surrounding, a heat balance could be established for the conditioned space and the plenum space. Figure 4.1 illustrates the heat transfer paths involved in the heat balance calculation. The arrows indicated the heat flux direction. All heat transfer was identified as either "entering" or "leaving" the conditioned space and the plenum space, and was arranged accordingly in the heat balance equations. The temperature in the test chamber was controlled as the same as the temperature in the test room. The aim was to minimize heat transfer between test chamber and test room.

Figure 4-1 Heat transfer in the test chamber

4.2 Conditioned Space Heat Balance

The steady-state energy balance for the conditioned space of the test chamber is expressed as Equation 4.1.

$$\dot{q}_{LED,space} + \dot{q}_{cond,space\ surr} + \dot{q}_{cond,ceiling} = \dot{q}_{extract,space}$$
 (4.1)

Where

 $\dot{q}_{LED,space}$ is the LED heat gain to the conditioned space.

 $\dot{q}_{cond,space surr}$ is the heat conduction through the chamber surroundings.

 $\dot{q}_{cond,ceiling}$ is the heat conduction through the ceiling tiles.

 $\dot{q}_{extract,space}$ is the heat extracted by the HVAC system.

The heat extracted from the space is calculated using Equation 4.2

$$\dot{q}_{extract,space} = \rho_{SA} \cdot Q_{SA} \cdot C_{SA} (T_{return} - T_{supply})$$
(4.2)

Where

 ρ_{SA} is the supply air density.

 \dot{Q}_{SA} is the volumetric airflow rate of the supply air and is measured by the flow station.

 C_{SA} is the specific heat of air based on the supply air temperature.

T_{return} is the return air temperature measured at the return grille.

 $T_{\mbox{\scriptsize supply}}$ is the supply air temperature measured at the diffuser.

The heat conduction through the chamber walls and floor to the surroundings is computed using Equation 4.3:

.

*q*_{cond,space surr}

$$= U_{wall,N} A_{chamber wall,N} (T_{surr,North} - T_{space,North})$$

$$+ U_{wall,S} A_{chamber wall,S} (T_{surr,South} - T_{space,South})$$

$$+ U_{wall,E} A_{chamber wall,E} (T_{surr,East} - T_{space,East})$$

$$+ U_{wall,W} A_{chamber wall,W} (T_{surr,West} - T_{space,West}) + U_{floor} A_{floor} (T_{surr,Floor} - T_{space,Floor})$$

Where

U_{wall, N,S,E,W} and U_{floor} are the overall heat transfer coefficients of the chamber enclosure.

The U values are determined for each surface based on the materials and construction used for each type of surface.

 $A_{chamber wall, N, S, E, W}$ is the chamber wall areas in the conditioned space below the chamber ceiling grid level.

 A_{floor} is the area of the chamber floor.

 $T_{\text{space, North, South, East, West, Floor}}$ is the average temperatures of the conditioned spaces.

 $T_{\text{surr, North, South, East, West, Floor}}$ is the average temperatures of the chamber surroundings.

Various temperature sensors were placed inside the test chamber to measure the air temperature near each side. Figure 4.2 illustrates the location of these temperature sensors.

Figure 4-2 Sensor location inside the test chamber

The average air temperature near the six surfaces is calculated as shown below:

$$\begin{split} T_{North} &= (T_N + T_T + T_F)/3 \\ T_{South} &= (T_S + T_T + T_F)/3 \\ T_{East} &= (T_E + T_T + T_F)/3 \\ T_{West} &= (T_W + T_T + T_F)/3 \\ T_{Floor} &= (T_N + T_S + T_E + T_W + T_F)/5 \\ T_{Top} &= (T_N + T_S + T_E + T_W + T_T)/5 \end{split}$$

During the test, the average of T_{North} , T_{South} , T_{East} , T_{West} , T_{Floor} , T_{Top} , served as the chamber inside temperature.

The heat conduction through the ceiling tiles at steady state is calculated as follows:

$$\dot{q}_{cond,ceiling} = U_{ceiling} A_{ceiling} \left(T_{plenum} - T_{space,Top} \right)$$
(4.1)

Where

U_{ceiling} is the overall heat transfer coefficient of the acoustic ceiling tiles.

A_{ceiling} is the total ceiling grid area.

 $T_{\text{space, Top}}$ is the average space top temperature and is calculated based on Equation 4.4.

 T_{plenum} is the temperature of the ceiling plenum space and is the average of $T_{plenum,NE}$ and

T_{plenum,SW}

4.3 Plenum Space Heat Balance

For the plenum space of the test chamber, the following heat balance applies:

 $\dot{q}_{LED,plenum} + \dot{q}_{cond,plenum surr}$

 $= \dot{q}_{extract,plenum} + \dot{q}_{cond,ceiling} + \dot{q}_{cond,SA duct}$

(4.6)

 $\dot{q}_{light,plenum}$ is the LED lighting heat gain to the ceiling plenum space.

The heat conduction through the chamber surroundings space at steady-state is calculated as follows:

 $\dot{q}_{cond,plenum surr}$

$$= U_{wall,N} A_{plenum \ walls,N} (T_{surr,North} - T_{plenum,North})$$

$$+ U_{wall,S} A_{plenum \ walls,S} (T_{surr,South} - T_{plenum,South})$$

$$+ U_{wall,E} A_{plenum \ walls,E} (T_{surr,East} - T_{plenum,East})$$

$$+ U_{wall,W} A_{plenum \ walls,W} (T_{surr,West} - T_{plenum,West})$$

$$+ U_{roof} A_{roof} (T_{surr,Top} - T_{plenum,Top})$$

Where

 $U_{\text{wall, N,S,E,W}}$ and U_{roof} is the heat transfer coefficients of the chamber enclosure

A_{plenum walls, N, S, E, W}, is the chamber wall areas in the plenum space.

 A_{roof} is the chamber roof area.

 $T_{surr, North, South, East, West, Top}$ is the average temperatures of chamber surroundings.

 $T_{\text{plenum, North, South, East, West, Top}}$ is the average temperature of plenum space.

The heat extracted by the HVAC system is calculated as follows:

$$\dot{q}_{extract,plenum} = \rho_{RA} \cdot Q_{SA} \cdot C_{RA}(T_{leaving} - T_{return})$$
(4.8)

Where

 ρ_{RA} is the return air density.

 \dot{Q}_{SA} is the volumetric airflow rate of the supply air measured by the flow station.

 C_{RA} is the specific heat of air based on the return air temperature.

 $T_{leaving}$ is the return air temperature measured at the return air duct.

T_{return} is the return air temperature measured at the return grille.

The heat gain through the supply air duct is calculated as follows:

$$\dot{q}_{cond,SA\,duct} = \rho_{SA} \cdot \dot{Q}_{SA} \cdot C_{SA} (T_{supply} - T_{entering})$$
(4.9)

Where

 ρ_{sA} is the supply air density

 \dot{Q}_{SA} is the volumetric airflow rate of the

C_{SA} is the specific heat of the air

 T_{supply} is the supply air temperature measured at the diffuser.

 $T_{entering}$ is the air temperature measured at the point the supply air duct.

Using the conditioned space heat balance (Equation 4.1), the lighting heat gain can be calculated directly from:

$$\dot{q}_{LED,space,dir} = \dot{q}_{extract,space} - \dot{q}_{cond,space\ surr} - \dot{q}_{cond,ceiling} \tag{4.10}$$

Using the plenum space heat balance (Equation 4.6), the LED energy to the plenum can be computed. Rearranging Equation 4.6 yields:

$\dot{q}_{LED,plenum}$

$$= \dot{q}_{extract,plenum} + \dot{q}_{cond,SA \ duct} + \dot{q}_{cond,ceiling}$$
(4.11)
- $\dot{q}_{cond,plenum \ surr}$

Alternatively, the lighting heat gain to the space can be indirectly calculated from

$$\dot{q}_{LED,space,indir} = \dot{q}_{LED} - \dot{q}_{LED,plenum}$$
(4.12)

The input power to the LED (\dot{q}_{LED}) is measured by the watt transducer.

Ideally, $\dot{q}_{LED,space,dir}$ should be equal to $\dot{q}_{LED,space,indir}$, but the two quantities may differ due to experimental and measurement uncertainties. As was done in ASHRAE RP-1281 (Fisher et al, 2006), a weighting method was adopted to calculate a final space lighting heat gain based on both values as follows:

$$\dot{q}_{LED,space} = W_{dir} \dot{q}_{LED,space,dir} + W_{indir} \dot{q}_{LED,space,indir}$$
(4.13)

 W_{dir} and W_{indir} are weighting factors and sum to 1.00. Based on the uncertainty analysis, the uncertainty of $q_{LED, space, dir}$ is larger than $q_{LED, space, indir}$. Their uncertainty ratio is expressed as 0.57/0.43 for the 2-ft×2-ft troffer and 0.55/0.45 for the 2-ft×4-ft troffer. It was therefore determined the values 0.43 and 0.45 apply to W_{dir} , while 0.57 and 0.55 apply to W_{indir} , for 2-ft×2-ft troffer and 2-ft×4-ft troffer, respectively.

As a result, the conditioned space heat gain fraction is calculated as follows:

$$F_{LED,space} = \frac{\dot{q}_{LED,space}}{\dot{q}_{LED}} \tag{4.14}$$

4.4 Radiative Heat Gain Measurement

The net radiometer is designed to measure the radiative heat generated by the LED lighting fixture in this project. The upward facing pyranometer and pyrgeometer measures the radiation exchange between the LED lighting fixture and the net radiometer and the downward facing pyranometer and pyrgeometer measures the radiation exchange between all other objects/surfaces and the net radiometer. A pyranometer is a device designed to measure the solar radiation flux density (W/m²) and a pyrgeometer is a device designed to measure the infrared radiation flux density (W/m²). Upward value minus the downward value gives the radiative heat between the LED lighting fixture and all other objects/surfaces. Figure 4.3 shows the operating principle of the net radiometer.

Figure 4-3 Radiative exchange and net radiometer design

4.5 Radiative Heat Gain calculation

The radiative heat gain from the LED fixture is calculated as follows:

$$\dot{\boldsymbol{q}}_{rad} = \boldsymbol{\Delta} \boldsymbol{L} \boldsymbol{W} + \boldsymbol{\Delta} \boldsymbol{S} \boldsymbol{W} \tag{4.15}$$

Where

 ΔLW is the longwave infrared radiative heat

 ΔSW is the shortwave solar radiative heat

The pyranometer measures the shortwave within a wavelength range from 0.3 μ m to 3 μ m and the pyrgeometer measures the longwave within a wavelength range from approximately 4.5 μ m to 100 μ m. The net radiometer measures upward longwave and downward longwave as well as upward shortwave and downward shortwave radiative heat. ΔLW is the difference between upward and downward longwave radiation. Slimily, ΔSW is the difference between upward and downward shortwave radiation.

The net radiometer was used to measure both the long and shortwave length radiation in a plane located below the LED light fixture. The scanning plane was divided into several grid points depending on the type of LED lighting fixtures and measurements were made at each grid point.

As a result, the longwave radiative heat is calculated as follows:

$$\dot{q}_{rad,LW,total} = \sum_{i=1}^{n} \dot{q}_{rad,LW,i} \cdot A_i$$
(4.16)

Similarly, the shortwave radiative heat is calculated as follows:

$$\dot{q}_{rad,SW,total} = \sum_{i=1}^{n} \dot{q}_{rad,SW,i} \cdot A_i$$
(4.17)

Where

i is the grid point where the measurement was taken.

 $\dot{q}_{rad,LW/SW,total}$ is the radiative heat measured at grid point i.

A_i is the differential area associated with grid point i.

N is the total number of grid points.

Therefore, the total radiative heat gain is the sum of the longwave and shortwave

radiation heat gain, and is calculated as follows:

$$\dot{q}_{rad,total} = \dot{q}_{rad,LW,total} + \dot{q}_{rad,SW,total}$$
(4.18)

The fraction of the total LED energy that is from the short wavelength radiation is:

$$F_{LED,rad,SW} = \frac{\dot{q}_{rad,SW,total}}{\dot{q}_{LED}}$$
(4.19)

And, the fraction of the total LED energy that is from the long wavelength radiation is:

$$F_{LED,rad,LW} = \frac{\dot{q}_{rad,LW,total}}{\dot{q}_{LED}}$$
(4.20)

Thus, the fraction of LED energy that is radiation for all wavelengths is:

$$F_{LED,rad} = \frac{\dot{q}_{rad,total}}{\dot{q}_{LED}} \tag{4.21}$$

CHAPTER 5. TEST SETUP

5.1 Test Chamber Construction

The test chamber was built in the Interior-A test room at the ERS. Construction was performed by local construction company. The test chamber serves to mimic an office environment. Figure 5.1 shows the detailed dimensions of the interior of the chamber. Figure 5.2 is a partial isometric view of the constructed test chamber. The chamber walls were framed with 22 gauge $2-in \times 4-in$ galvanized steel C studs on 16-in centers and the floor and roof were framed with 16 gauge $2-in \times 6-in$ galvanized steel joists on 16-in centers.

Figure 5-1 Test chamber with detailed dimensions

Figure 5-2 Test chamber side view

Figure 5-3 Isometric View of Test Chamber

Figure 5.3 shows the Interior-A test room and test chamber plan view. Figure 5.4 shows

the Interior-A test room and test chamber elevation view.

Figure 5-4 Interior-A test room and test chamber plan view

A-A

Figure 5-5 Interior-A test room and test chamber elevation view

5.2 Chamber U Value

The chamber heat transfer U values were first calculated with eQuest software which follows the method prescribed by ASHRAE (ASHRAE Handbook, 2013b). However, these values produced large errors in the resulting heat balance calculations. It was suspected that a large uncertainty existed with the convection heat transfer coefficient of the air film surrounding
the chamber surface. This coefficient is a function of the air velocity around the surface and was difficult to estimate.

In order to obtain more accurate U-values, a factory calibrated heat flux sensor was used to measure the heat flux through the chamber walls, roof, floor and ceiling tiles. The measurement followed the principles outlined in ASTM Standards C1046-95 (Chio et al, 2012) and C1155-95 (Dong et al, 2009). ASTM C1046 – 95 is titled "Standard Practice for In-Situ Measurement of Heat Flux and Temperature on Building Envelope Components" and ASTM C1155-95 is "Standard Practice for Determining Thermal Resistance of Building Envelope Components from In-Situ Data."

During the heat flux measurements the temperature inside the chamber was maintained at 60 °F while the temperature in the test room was maintained at 70 °F. Heat flux measurements were made at multiple locations on each surface so that an average value for each surface could be calculated. Figure 5.5 illustrates the heat flux sensor used and its application to one of the surfaces of the test chamber. The data were collected under-steady state conditions. From the measured heat flux values, the U values were calculated. The U-values are listed in Table 5.1

Chamber Section	Calculated U Value, Btu/hr-ft ² -°F	Equivalent R Value, hr-ft ² -°F/Btu
Wall	0.062	16.072
Roof	0.053	18.978
Floor	0.069	14.430
Ceiling tile	0.156	6.434

Table 5.1 Measured U Values & Equivalent R values in Chamber Sections

Figure 5-6 Heat Flux Sensor & Placement

5.3 Net Radiometer Moving Rail Design

The net radiometer was mounted to a moving rail system which allowed the instrument to be automatically controlled. The moving rail is approximately 4.9-ft long (1500 mm), 3.3-ft wide (1000 mm), and 4.9-ft height (1500 mm). Figure 5.7 shows the schematic layout of the rail design. The motion of net radiometer was automatically controlled by Arduino UNO microcontroller. Four NEMA 23 stepper motors were used: two for x-direction, one for y-direction and on the other one for z-direction.

The net radiometer traveling distance of each step was also marked on the moving rail. The control program of the stepper motor was calibrated to ensure the net radiometer reached every marked position precisely. Prior to the formal pilot test, a couple of complete test runs were conducted and all the stops by the net radiometer were observed. If the net radiometer failed to reach the desired position within any cell, the program was recalibrated.

Radiation measurements were made once the test chamber reached steady-state conditions. For this research, steady-state conditions are defined in Section 5.4.

For recessed troffer and downlight fixtures, the net radiometer only needed to travel in an x-y plane below the light fixture. For high-bay and linear pedant suspended fixtures, the zdirection motion was required. The scanning area for radiative heat measurement was proportional to the actual LED fixture's area. The scanning area was discretized into a number of cells as illustrated in Figure 5.6. For the case of a 2-ft×2-ft fixture, the number of cells in the y-direction followed that of 2-ft x4-ft fixture, while the number of cells in the x-direction was only half of 2-ft×4-ft fixture. The red dash line in Figure 5.6 indicates the mid-point of 2-ft×4-ft fixture. At each cell, the net radiometer stayed in the center of the cell for two minutes for data

30

collection. The 2-minute duration is based on ASHRAE RP-1282 (Fisher et al, 2006) which measured conventional lighting heat gain.

Figure 5-7 Scanning Area of Rectangular LED Troffer Fixtures

Figure 5-8 The schematic layout of the rail design

Figure 5-9 Net Radiometer Setup

5.4 Steady state determination

Theoretically, when a system reaches steady state, the variable under examination does not change with time. It can be expressed mathematically as the derivative of the variable under examination over the change in time and is equal to zero.

$$\frac{dV}{dt} = 0 \tag{5.1}$$

In reality, a dynamic system cannot maintain absolute zero rate of change, but the change rate should be within a certain range. In this project, the following definition was used to determine if the temperature or airflow rate had reached steady state.

$$\left|\frac{V_{t+1} - V_t}{V_t}\right| \times 100\% < TD1$$
(5.2)

and

$$\frac{V_t - V_{mean}}{V_{mean}} \bigg| \times 100\% < TD2 \tag{5.3}$$

where

 V_t is the variable reading at the time t

 V_{t+1} is the variable reading at the time t+1. For 1-minute sampling rate, V_{t+1} is the data collected at 1 minute later with respect to Vt.

 V_{mean} is the average value of the variable over the time period under examine, which is 2 hours for this project.

TD1 and TD2 is the percentage thresholds.

It was quite challenging to control a low airflow equal to 60 cfm using only a VAV box, and so a relatively large oscillation on the airflow rate was expected. The threshold values for the entering airflow rate were set 18% for TD1 and 15% for TD2. The temperatures could be controlled with smaller oscillation via the AHU and unit ventilator, so both TD1 and TD2 were set at 0.8% which is 0.48 °F at 60 °F.

Equation 5.2 ensures the system stays steadily at every minute and there is no sudden change for every data sample. Equation 5.3 examines the deviation of each data sample and ensures the overall average does not change more than the threshold over two hours.

The steady state criterion was applied for each test in this project. If the calculated result exceeded the thresholds, the test result was not valid and needed to be retested. Figure 5.9 shows a typical data trend under steady state.

Figure 5-10 Typical Data Trending of Selected Variables at Steady State

5.5 Instrumentation and Data Acquisition

The instruments used to measure temperature, differential pressure, airflow rate and electrical power are described in this section along with the data acquisition system used to read and record the data.

5.5.1 Temperature

A total of nineteen Resistance Temperature Detectors (RTD) were used for measuring temperature in this project. All of the RTDs were calibrated based on a NIST-traceable temperature reference and their accuracy are ± 0.25 °F or better.

The location of the RTDs are shown in Figure 5.10. Six RTDs were used to measure air temperature throughout the chamber, three were used to measure the air temperature in the plenum space, and six were used to measure the temperature of the chamber walls. The remaining four RTDs were used to measure the supply air temperature, the return air temperature, the supply duct air temperature discharged into the chamber, and the return air temperature at the return air grille.

Figure 5-11 Instrumental design

5.5.2 Chamber differential pressure

In order to eliminate air infiltration (or exfiltration) from the test chamber, the differential pressure between the interior of the test chamber and the interior of the test room was controlled and maintained at zero. A high-accuracy pressure transducer ($\pm 0.02\%$ full span accuracy) was mounted at the east side of exterior chamber wall, see Figure 5.7. A balance damper in the return grille was automatically positioned to control the DP and maintain as zero.

5.5.3 Airflow rate

The supply airflow rate entering the chamber was measured by the VAV airflow sensor. At the Energy Resource Station, VAV differential pressures (VAV DP) are measured using highaccuracy pressure transducers. These pressure readings are converted to airflow rate using calibrated K factors. The pressure transducer was calibrated to have an accuracy of ± 0.25 % of full scale. The VAV box serving the chamber was also balanced to achieve airflow measurement accuracy $\pm 2\%$ of reading.

Figure 5-12 Low Airflow Measuring Station

36

5.5.4 Electric power

Watt transducer was used to measure power input to the LED lighting fixture and measurement accuracy is ± 0.2 % of reading.

5.5.5 Data acquisition system (DAS)

All above sensors except the net radiometer were connected to the existing ERSTES data acquisition system. The measuring points were trended at 1-minute sampling rate. The net radiometer was connected to National Instruments' FieldPoint modules, which were portable DAS. The sampling rate was also 1 minute.

CHAPTER 6. UNCERTAINTY ANALYSIS

The uncertainties of the experimental tests and calculation were analyzed base on ASHRAE Guideline Engineering Analysis of Experimental Data 2005.

The uncertainty of a single measured variable can be calculated as follow.

$$u_{MV} = \sqrt{\sum_{i=1}^{n} u_i^2} \tag{6.1}$$

Where,

 $u_{\rm MV}$ is the overall uncertainty of a measured variable.

u_i is the individual uncertainty from error source 1 to error source n.

Table 6.1 lists the uncertainties of all directly measured variables in this project.

For a calculated variable, all directly measured variables can propagate their uncertainties to the calculated results. The uncertainty of a calculated variable can be expressed as follows

$$u_{CV} = \sqrt{\sum_{i=1}^{n} (\frac{\partial CV}{\partial MV_i} u_{MV_i})^2}$$
(6.2)

Where,

 u_{CV} is the overall uncertainty of a calculated variable.

 u_{MVi} is the uncertainty of each measured variable from 1 to i that is involved in the calculation of CV.

Variable	Individual error source	Individual uncertainty	Overall uncertainty	
Tomponotuno	Calibration accuracy	±0.02 °F	10.0202 °E	
Temperature	Reference accuracy	±0.0026 °F	±0.0202 °F	
	Flow station accuracy	3% of reading		
Airflow rate	DAS sourcing accuracy	0.08% of reading	±3% of reading	
	Sourcing device accuracy	0.01% of reading		
	Watt transducer accuracy	0.2% of reading		
Lighting power	DAS sourcing accuracy	0.07% of reading	$\pm 0.21\%$ of reading	
	Sourcing device accuracy	0.01% of reading		
De l'attachad	Short wave radiation including calibration uncertainty, sensor directional response, and sensor temperature dependence	Less than 5% of reading	5% of reading	
Radiative heat	Longwave radiation including calibration uncertainty, sensor directional response, and sensor temperature dependence	Less than 10% of reading	10% of reading	
	Heat flux sensor accuracy	5% of reading		
Heat flux for U value	DAS sourcing accuracy	0.05% of reading	5% of reading	
	Sourcing device accuracy	0.01% of reading		
Chamber DD	Calibration accuracy	±0.002 in.wc	10.002 in we	
Chamber DP	Reference accuracy	±0.0001 in.wc	±0.002 m.wc	
	Photocell sensor accuracy	$\pm 5\%$ of reading		
Lighting level	DAS sourcing accuracy	0.08% of reading	±5% of reading	
	Sourcing device accuracy	0.01% of reading		

Table 6.1 Uncertainties of Single Measured Variables

The uncertainty of the heat extraction rate was calculated as follows:

$$u_{q_extract} = \rho_{SA} C_{SA} \sqrt{(\Delta T u_Q)^2 + (\dot{Q} u_{\Delta T})^2}$$
(6.3)

Where,

u_Q is the uncertainty of measured supply air flow rate.

 $u_{\Delta T}$ is the uncertainty of measured temperature difference.

This equation assumes there are no uncertainties in the air density ρ or the air specific heat C.

The uncertainty of conductive heat rate was calculated as follows: assuming no uncertainties from the chamber superficial areas.

$$u_{F_{q_{LED},space}} = \frac{\sqrt{\left(\dot{q}_{LED}u_{q_{LED},space}\right)^2 + \left(\dot{q}_{LED,space}u_{q_{LED}}\right)^2}}{\dot{q}_{LED}^2}$$
(6.4)

Where,

 $u_{q_LED, space}$ is the uncertainty of the light conditioned space heat gain

 u_{q_LED} is the uncertainty of measured lighting power

For the radiative heat measurement, the discretized cell area were each expected to have an approximate uncertainty of $\pm 2.52 \times 10^{-6}$ m² (1/16 inches for both length and width). This equates to less than 0.01% error and 0.2% error for cell area and total fixture area, respectively. Therefore, the error in the area was ignored when analyzing uncertainties for the radiative heat gain.

The uncertainty for calculated radiative heat gain is given by:

$$u_{rad} = \sqrt{\sum_{i=1}^{n} [(u_{rad,i} \cdot A_i)^2]}$$
(6.5)

Where $u_{rad,i}$ is the uncertainty of measured radiant heat at grid point i. Equation 6.5 applies to long wave, short wave, and total radiant heat gain.

The uncertainty of the fraction of radiative heat was then calculated as:

$$u_{F_rad} = \frac{\sqrt{\left(\dot{q}_{light} u_{rad}\right)^2 + \left(\dot{q}_{rad} u_{q_{light}}\right)^2}}{\dot{q}_{light}^2}$$
(6.6)

The entire official test was completed and the following section summaries the test results and analysis. This section is divided into two parts: (1) base case test and (2) variance case test.

The base case test applied for all 14 fixtures and the variance case test only applied for fixture No. 3, No. 6, No. 11, No. 14 listed in Table 3.1. Table 7.1 lists all the test cases including the base case.

Case	Supply air temperature, °F	Supply air flow rate, cfm	Return air configuration	Floor finish	Dimming control
Base	60	60	Plenum return	Carpet	Max output
Variance by air flow	60	30	Plenum return	Carpet	Max output
		120			
Variance by return air	60	60	Duct return	Carpet	Max output
configuration					
Variance by supply air	55	60	Plenum return	Carpet	Max output
temperature	65				
Variance by floor finish	60	60	Plenum return	Wood	Max output
Variance by dimming control	60	60	Plenum return	Carpet	5V

Table 7.1 LED lighting test case

Base Case:

For the base case, air was supplied at 60 °F and 1.0 cfm/ft². The return air was plenum return configuration and the floor finish was carpet. Also, the LED was not on the dimming control which means max power was provided to LED luminaires. The ceiling tiles were in place except for the high-bay luminaires. High-bay luminaires are typically free hanging. As a result, the heat split between conditioned and plenum space was not applicable for high-bay fixtures.

Variance by airflow rate:

This case was to examine the effect of the supply air flowrate on the lighting heat gain distributions. The supply airflow rate was change to 0.5 cfm/ft^2 and 2.0 cfm/ft^2 , respectively. Other settings remained the same as the base case.

Variance by return air configuration

This case was to examine the effect of the return air configuration on the lighting heat gain distributions. In this case, the return air configuration was changed from plenum return to duct return. A 6' flexible duct was installed to connect the return air grille and return outlet of the chamber wall. Other settings remained the same as the base case.

Variance by supply air temperature

This case was to examine the effect of supply air temperature on the lighting heat gain distributions. The supply air temperature was maintained at 55 °F and 65°F for each case. Other settings remained the same as the base case.

Variance by floor finish

This case was to examine the effect of the floor finish on the lighting heat gain distributions. In this case, the carpet was removed and the wood floor was exposed. A different radiative heat gain was expected because the absorptivity/emissivity is a function of material.

Variance by dimming control

Most LED fixtures are able to accommodate dimming control. The dimming control signals range from 0V to 10V as max output. In this case, 5V signal output was adjusted compared to the maximum output. Other settings remained the same as the base case.

7.1 Base Case Test

All fourteen fixtures were tested under the base case conditions.

- Supply air temperature 60 °F
- Supply air flowrate 60 cfm
- Plenum return
- Carpet floor finish
- No dimming control

The heat split between conditioned and plenum space as well as the radiative/convective heat split was determined for each LED lighting fixtures. Figure 7.1 and Figure 7.2 illustrates the conditioned space fraction and the radiative fraction for recessed LED fixtures. Figure 7.3 shows the radiative fraction and lighting illuminance for suspended LED fixture.

Figure 7-1 Conditioned Space Heat Fractions for All Recessed LED Luminaires

Figure 7-2 Radiative Heat Fractions and Lighting Illuminance for All Recessed LED Luminaires

Figure 7-3 Radiative Heat Fractions and Lighting Illuminance for Suspended LED Luminaires

7.1.1 High-bay

Two high-bay fixtures (shown in Figures 7.4 and 7.5) were tested in this project. All ceiling tiles were removed to simulate an exposed installation in the real world. A flexible duct was connected directly from the return grille on the ceiling grid to the return cut-out of the chamber. The configuration is a ducted return and prevents possible short circuiting of supply air directly to the return.

Figure 7-4 Cone-Shape High-Bay with Reflector

Figure 7-5 Rectangular-Shape High-Bay with Direct Optics

In order to capture all radiative heat for suspended luminaires, like high-bay and linearpedant LEDs, 3-D scanning by the net radiometer was required. A rectangular shape scanning area was used in this project. Figure 7.6 illustrates the 3-D scanning area. The suspending lines and wires prevented the net radiometer from travelling on the top of the fixtures. The make-up procedure was to put a 2-ft x4-ft highly reflective material above. The manufacture of this reflect foil states the material reflect 97% of radiative energy. So the net radiometer only needed to travel on one side of X-Z plane but could measure both the bottom and top surfaces of radiative heat. The reflectance of the foil material is considered in the overall measurement uncertainty.

Figure 7-6 3-D Scanning Area of the Net Radiometer for Suspended Luminaires

The test results of high-bay fixtures are summarized in Table 7.2. As for the exposed lighting fixtures, there was no meaning to determine the heat split between conditioned space and plenum space. However, the radiative and convective heat split were determined for these fixtures. As shown in the table, 42% and 51% lighting power was converted to the radiative heat and 30% to 39% was shortwave portion. The rectangular shape high-bay generated about 10% higher fraction of total radiative heat and shortwave heat than cone shape high-bay but the longwave generated by these two fixtures were almost the same.

LED Fixture	High-Bay Cone- Shape with reflector	High-Bay Rectangular with direct optics
Number	1	2
Measured Lighting Power, W	158.50	138.13
Rated Efficacy, Lumen/W	113	101
Radiative heat fraction over lighting power		
Long wave radiative heat fraction	0.118 ± 0.004	0.115 ± 0.003
Short wave radiative heat fraction	0.299 ± 0.006	0.391 ± 0.008
Total Radiative heat fraction	0.416±0.01	0.506±0.011
Total Convective heat fraction	0.584±0.01	0.494±0.011
Illuminance 3 ft. above the floor, Foot-Candle	1620	1490
Illuminance on the floor, Foot-Candle	348	372

Table 7.2 Test Result Summary of High-Bays

7.1.2 Linear-pedant

Two types of linear-pedant fixtures were tested, one was Direct where only diffused light emanates from the bottom side of the fixture, and the other one was Direct/Indirect where diffused light emanates from both the bottom and the top sides of the fixtures. Linear-pedant fixtures also required 3-D scan which was similar to high-bay test. The same reflect foil was placed above the fixture and the function was the same to the high-bay test. The ceiling tile were put in place to mimic the actual installation of the linear-pedant. Only the heat split between radiative and convective heat was determined, since almost all heat was transferred to the conditioned space. Figure 7.7 shows the Direct fixture and Figure 7.8 shows the Direct/Indirect fixture.

Figure 7-7 Direct Linear Pendant

Figure 7-8 Indirect/Direct Linear Pendant

The test result of linear-pedant fixtures were summarized in Table 7.3. The result indicates that 55% to 61% of the total lighting power was converted into radiative energy. The longwave portion was larger than the shortwave portion especially for Direct/Indirect fixture which was 15% higher. This result was contradicted to high-bay fixtures since they were both suspended fixtures.

LED Fixture	Linear Pendant Indirect/Direct	Linear Pendant Direct
Number	9	10
Measured Lighting Power, W	37.58	24.26
Rated Efficacy, Lumen/W	86	86
Radiative heat fraction over lighting power		
Long wave radiative heat fraction	0.354 ± 0.008	0.315 ± 0.007
Short wave radiative heat fraction	0.193 ± 0.004	0.290 ± 0.006
Total Radiative heat fraction	0.547±0.012	0.605±0.013
Total Convective heat fraction	0.453±0.012	0.395±0.013
Illuminance, Foot-Candle	64.45	37.75

Table 7.3 Test Result Summary of Linear Pendant

7.1.3 Recessed troffers

Six troffers were tested in this project and they were NO. 3, 4, 5, 6, 7, 8 listed in Table 1. There were three 2-ft ×4-ft troffers and three 2-ft ×2-ft troffers, and they had three different diffuser types, e.g. partial aperture diffuser, uniform diffuser and diffuser with linear details, see Figure 7.9 through Figure 7.11. Although the high efficacy troffer, color tuning troffer and retrofit kit troffer are also recessed troffer, they are discussed separately later due to their unique features.

Figure 7-9 2-ft×4-ft and 2-ft×2-ft Troffers with Partial Aperture Diffuser

Figure 7-10 2-ft×4-ft and 2-ft×2-ft Troffers with Uniform Diffuser

Figure 7-11 2-ft×4-ft and 2-ft×2-ft Troffers with Linear Details Diffuser

The test results are summarized in Table 7.4. The result shows all six troffers had a conditioned space heat fraction larger than 40% which means more than 40% of the total lighting power was transferred into the conditioned space. With respect to the troffer size, the conditioned space heat fraction for $-ft \times 4$ -ft troffer was larger than the 2-ft $\times 2$ -ft troffer. The diffuser with linear details troffer had a smallest conditioned space heat gain compared to the other two types.

For all troffers, more than 30% of total lighting power was converted into radiative heat energy and the majority was shortwave radiation. In terms of the troffer size, a larger sized troffer generated more radiative heat than a smaller sized troffer. When the conditioned space heat gain was only considered, more than 70% was radiation and almost 60% was shortwave. This result indicates the high efficacy of LED luminaires since the shortwave radiation is correlated to visible light.

LED Fixture	Troffer 2-×4 Partial Aperture Diffuser	Troffer 2×2 Partial Aperture Diffuser	Troffer 2-×4 Uniform Diffuser	Troffer 2×2 Uniform Diffuser	Troffer 2×4 Diffuser with Linear Details	Troffer 2×2 Diffuser with Linear Details
Number	3	4	5	6	7	8
Measured Lighting Power, W	38.64	31.88	40.85	27.18	56.70	59.63
Rated Efficacy, Lumen/W	120	108	95	94	105	88
Conditioned space fraction	0.525±0.014	0.473±0.015	0.495±0.022	0.476±0.015	0.451±0.012	0.425±0.013
Plenum space fraction	0.475±0.014	0.527±0.015	0.505±0.022	0.524±0.015	0.549±0.012	0.575±0.013
Radiative heat fraction over lighting power Long wave radiative heat						
fraction Short wave radiative heat	0.092 ± 0.002	0.066 ± 0.003	0.121±0.003	0.095±0.003	0.099 ± 0.002	0.086 ± 0.002
fraction Total Radiative heat	0.319±0.007	0.267 ± 0.007	0.292±0.006	0.260 ± 0.007	0.280±0.006	0.217±0.005
fraction	0.412±0.009	$0.333 {\pm} 0.010$	$0.413 {\pm} 0.008$	0.356±0.009	$0.379 {\pm} 0.008$	0.303 ± 0.007
Total Convective heat	0.500.0.000		0 505 . 0 000	0 (11.0 000	0.(01.0.000	0 (07 . 0 007
Iraction Radiative heat fraction over	0.588±0.009	0.667±0.010	0.587±0.008	0.644±0.009	0.621±0.008	0.69/±0.00/
conditioned space heat gain Long wave radiative heat						
fraction Short wave radiative heat	0.176 ± 0.002	0.140±0.003	0.245±0.003	0.200±0.003	0.219±0.002	0.202 ± 0.002
fraction Total Padiative heat	0.607 ± 0.007	0.564 ± 0.007	0.590 ± 0.006	0.546 ± 0.007	0.621±0.006	0.509 ± 0.005
fraction Total Convective heat	0.783±0.009	0.704±0.010	0.836±0.008	0.747±0.009	0.840±0.008	0.711±0.007
fraction	0.217±0.009	0.296±0.010	0.164±0.008	0.253±0.009	0.160 ± 0.008	0.289 ± 0.007
Illuminance, Foot-Candle	78.87	59.07	78.06	46.134	104.5	83.64

Table 7.4 Test Result Summary of Recessed Troffers

7.1.4 Downlight

A popular size 6' downlight (shown in Figure 7.12) was tested in this project.

Figure 7-12 The Downlight Below and Above Ceiling Tile

Table 7.5 summarizes the test results for downlight fixture. Although the downlight has a heat sink on the top, the conditioned space heat gain does not significantly differ from recessed troffers. The test results indicated 47% of the lighting power was transferred into the conditioned space. When considering the radiative energy, only 16% of the lighting power was converted into radiation and the longwave portion was so small it could be ignored.

LED Fixture	Downlight
Number	11
Measured Lighting Power, W	28.81
Rated Efficacy, Lumen/W	52
Conditioned space fraction Plenum space fraction	0.466±0.019 0.534±0.019
Radiative heat fraction over lighting power	
Long wave radiative heat fraction	0.005 ± 0.000
Short wave radiative heat fraction	0.154 ± 0.003
Total Radiative heat fraction Total Convective heat fraction	0.159±0.003 0.841±0.003
Radiative heat fraction over conditioned space heat gain	
Long wave radiative heat fraction	0.010 ± 0.000
Short wave radiative heat fraction	0.331±0.003
Total Radiative heat fraction	0.341±0.003
Total Convective heat fraction	0.659±0.003
Illuminance, Foot-Candle	200.56

Table 7.5 Test Result Summary of Downlight

7.1.5 High efficacy troffer

A 150 lumen/W 2-ft×4-ft high efficacy troffer was tested as an example of an emerging technology, see Figure 7.13. Table 7.6 summarizes the test results and it indicates that the high efficacy troffer has the largest conditioned space fraction, shortwave radiative heat fraction and total radiative heat fraction. 59% of lighting power was transferred to the conditioned space and 51% lighting power was converted into radiative energy. A higher efficacy indicates the LED luminaires can transfer more energy into shortwave radiative heat which is visible light. The high efficacy troffer is the only fixture whose shortwave radiative heat is 40% of lighting power greater than longwave radiative heat.

Figure 7-13 High Efficacy Troffer Table 7.6 Test Result Summary of High Efficacy Troffer

LED Fixture	High Efficacy Troffer
Number	12
Measured Lighting Power, W	24.78
Rated Efficacy, Lumen/W	150
Conditioned space fraction	0.589±0.022
Plenum space fraction	0.411±0.022
Radiative heat fraction over lighting power	
Long wave radiative heat fraction	0.104 ± 0.003
Short wave radiative heat fraction	0.405 ± 0.009
Total Radiative heat fraction	0.509±0.012
Total Convective heat fraction	0.491±0.012
Radiative heat fraction over conditioned space heat gain	
Long wave radiative heat fraction	0.177 ± 0.003
Short wave radiative heat fraction	0.688 ± 0.009
Total Radiative heat fraction	0.865±0.012
Total Convective heat fraction	0.135±0.012
Illuminance, Foot-Candle	69.35

7.1.6 Color tuning troffer

In addition to the high efficacy troffer, a color tuning troffer was also tested as an emerging technology. The purpose of doing this was to check if color correlated temperature (CCT) affects the lighting heat gain distribution. This fixture is equipped with a control board which can adjust the color. There are 7 levels for each warm and cool colors so totally 49 color combination are

available. Figure 7.14 shows the control board and the color combination. Figure 7.15 illustrates the lighting color under different CCT conditions.

Figure 7-14 Color Tuning Touch Controller and CCT Combinations

Figure 7-15 Lighting Appearance under Different CCTs

Table 7.7 shows the lighting power and lumen at different CCT combination. Those data are from the manufacturer. In this project, the same lighting power and lumen output were controlled in order to perform the fair comparison. The color tuning troffer generates the same lighting power and lumen level at two different combinations whose CCT are 6244 K and 3213 K. The 6244 K and 3213 K were "cool" and "warm" colors, respectively.

	Touch Fader 49Point Wattage (W) measure data							
W7	22.5	23.2	24.7	27.1	30.7	35	39.1	43
W6	18.7	19.4	20.8	23.2	26.7	31	35	38.8
W5	14.9	15.6	17	19.1	22.9	27.2	31.2	34.8
W4	10.6	11.3	12.7	15.1	18.6	23	27	30.5
W3	6.8	7.5	9.1	11.5	15.2	19.5	23.5	27
W2	4	4.8	6.4	9.2	12.8	17.1	21.1	24.6
W1	2.5	3.3	4.7	7.5	11.3	16	20	23
W0	1.8	2.5	4.1	6.8	10.6	15	19	22.5
	C0	C1	C2	C3	C4	C5	C6	C7

Table 7.7 Lighting Power and Lumen Data at Different CCT Combinations

Touch Fader 49Point Lumen (lm) Measure Data								
W7	2048	2111	2248	2466	2794	3185	3558	3913
W6	1702	1765	1893	2111	2430	2821	3185	3531
W5	1356	1420	1547	1738	2084	2475	2839	3167
W4	965	1028	1156	1374	1693	2093	2457	2776
W3	619	683	828	1047	1383	1775	2139	2457
W2	364	437	582	837	1165	1556	1920	2239
W1	228	300	428	683	1028	1456	1820	2093
W0	164	228	373	619	965	1365	1729	2048
	C0	C1	C2	C3	C4	C5	C6	C7

Table 7.8 summarizes the test results. The cool CCT had a slight larger conditioned space heat gain than warm CCT. The cool CCT had a slightly smaller longwave heat fraction but larger shortwave heat fraction than warm CCT. When compared with 2-ft ×2-ft troffers, the color tuning troffer had a larger conditioned space heat gain.

LED Fixture	Color Tuning Troffer (Cool)	Color Tuning Troffer (Warm)
Number	13	13
Measured Lighting Power, W	23.84	23.43
Rated Efficacy, Lumen/W	89*	89*
Conditioned space fraction	0.562±0.022	0.5302±0.022
Plenum space fraction	0.438±0.022	0.4702±0.022
Radiative heat fraction over lighting power		
Long wave radiative heat fraction	0.109±0.003	0.117±0.003
Short wave radiative heat fraction	0.312±0.007	0.287 ± 0.007
Total Radiative heat fraction	0.421 ± 0.010	0.405±0.010
Total Convective heat fraction	0.579±0.010	0.595±0.010
Radiative heat fraction over conditioned space heat gain		
Long wave radiative heat fraction	0.195±0.003	0.221±0.003
Short wave radiative heat fraction	0.554 ± 0.007	0.542 ± 0.007
Total Radiative heat fraction	0.749±0.010	0.763±0.010
Total Convective heat fraction	0.251±0.010	0.237±0.010
Illuminance, Foot-Candle	46.44	43.44

Table 7.8 Test Result Summary of Color Tuning Troffer

*Note the 89 efficacy is based on 4285 K (W7+C7) CCT. The efficacies at other CCT levels are not available

7.1.7 Retrofit kit troffer

The retrofit kit LED fixture is considered an economical solution for upgrading traditional lighting to LED lighting. A 2-ft×4-ft traditional recessed troffer was disassembled for this project. The fluorescent lamps were removed from the fixture and the LED strips were installed inside. Figure 7.16 show both previous fixture and upgraded fixture.

Troffer with fluorescent lamps

Troffer with LED retrofit kit

Figure 7-16 The 2-ft×4-ft Troffer for Retrofit Kit Testing

The test results are listed in Table 7.9. The results indicate that 43% of lighting heat gain was transferred to the conditioned space and 36% of total lighting power was radiation. Both the conditioned space heat gain and radiative heat gain were slightly smaller compared to 2-ft×4-ft troffer. The lower values were suspected because this upgrade troffer was not initially designed for LED lighting.

LED Fixture	Retrofit kit 2×4
Number	14
Measured Lighting Power, W	44.91
Rated Efficacy, Lumen/W	95
Conditioned space fraction	0.425 ± 0.014
Plenum space fraction	0.575±0.014
Radiative heat fraction over lighting power	
Long wave radiative heat fraction	0.105 ± 0.003
Short wave radiative heat fraction	0.251±0.006
Total Radiative heat fraction	0.356±0.009
Total Convective heat fraction	0.644±0.009
Radiative heat fraction over conditioned space heat gain	
Long wave radiative heat fraction	0.248±0.003
Short wave radiative heat fraction	0.591±0.006
Total Radiative heat fraction	0.839±0.009
Total Convective heat fraction	0.161±0.009
Illuminance, Foot-Candle	75.89

Table 7	7.97	Fest I	Result	Summarv	of	Retrofit	Kit
I doite	•	10001	cobait	S anninai j	U 1	1000010	ILIU

7.2 Variance Case Test

Four LEDs were tested to examine the effect of supply air temperature, supply airflow rate, duct configuration, floor finish and dimming output on LED lighting heat gains. These LEDs were listed in Table 1: a 2-ft x4-ft troffer with partial aperture diffuser (NO.3), a 2-ft x2-ft troffer with uniform diffuser (NO. 6), the downlight (NO.11) and the 2-ft×4-ft troffer retrofit kit (NO.14). All the test conditions are listed in Table 2. Figure 7.17 through Figure 7.24 shows the test results.

Figure 7-17 Conditioned Space Heat Fraction of 2-ft×4-ft Troffer with Partial Aperture Diffuser

Troffer 2×4 Partial Aperture Diffuser

Figure 7-18 Radiative Heat Fraction of 2-ft×4-ft Troffer with Partial Aperture Diffuser

Troffer 2×2 Uniform Diffuser

Figure 7-19 Conditioned Space Heat Fraction of 2-ft×2-ft Troffer with Uniform Diffuser

Troffer 2×2 Uniform Diffuser

Figure 7-21 Conditioned Space Heat Fraction of Downlight

Retrofit Kit

Figure 7-23 Conditioned Space Heat Fraction of Retrofit Kit

Retrofit Kit

Figure 7-24 Radiative Heat Fraction of the Retrofit Kit 7.2.1 Effect of supply air temperature

The supply air temperature was changed from 65 °F to 60 °F and 55 °F. The test result is summarized in Table 7.10. For all luminaires excluding the 2-ft ×2-ft Uniform Diffuser troffer, increasing the supply air temperature tended to decrease the conditioned space fraction. The impact was most significant for downlight which reduced from 51% to 40%. However, the supply air temperature appears to have no significant impact on the 2-ft×4-ft troffer, the 2-ft×2-ft troffer and the retrofit kit troffer since the conditioned space fraction was within the margin of error. The results also show that changing the supply air temperature had no effect on the radiative heat gain for all fixtures.

Eisture	Supply Air	Conditioned Spa	ace/Plenum Split	Radiati	ve/Convective S	Split	Illuminones foot condia
Fixture	Temperature	Space	Plenum	Short wave	Long wave	Convective	mummance, root-candre
	55 °F	0.538±0.017	0.462±0.017	0.316±0.007	0.086±0.002	0.597±0.009	77.273
A portuge Diffusor	60 °F	0.525 ± 0.014	0.475 ± 0.014	0.319 ± 0.007	0.092 ± 0.002	0.588 ± 0.009	78.870
Aperture Diffuser	65 °F	0.493±0.016	0.503±0.016	0.321±0.007	0.097±0.002	0.582±0.009	78.300
Troffor 2.2 Uniform	55 °F	0.447 ± 0.020	0.553±0.020	0.257±0.002	0.092±0.006	0.651±0.008	46.360
Diffusor	60 °F	0.476 ± 0.022	0.524 ± 0.022	0.260 ± 0.002	0.095±0.006	0.644 ± 0.008	46.134
Diffusei	65 °F	0.461±0.021	0.539±0.021	0.262±0.002	0.099±0.006	0.639 ± 0.008	45.243
	55 °F	0.510±0.019	0.490 ± 0.019	0.154±0.003	0.004 ± 0.000	0.842 ± 0.003	203.290
Downlight	60 °F	0.466 ± 0.019	0.534±0.019	0.154±0.003	0.005 ± 0.000	0.841±0.003	200.560
	65 °F	0.403 ± 0.018	0.597 ± 0.018	0.153±0.003	0.005 ± 0.000	0.842 ± 0.003	199.590
	55 °F	0.448 ± 0.015	0.552 ± 0.015	0.249±0.006	0.099±0.002	0.652 ± 0.008	76.640
Retrofit kit 2×4	60 °F	0.425 ± 0.014	0.575 ± 0.014	0.251±0.006	0.105 ± 0.002	0.644 ± 0.008	75.890
	65 °F	0.423±0.012	0.577±0.012	0.252±0.006	0.108±0.002	0.640±0.008	76.020

Table 7.10 Test Result of Varied Supply Air Temperature

7.2.2 Effect of supply airflow rate

The supply airflow rate was changed from 30 cfm to 60 cfm and 120 cfm in this case. The test results are summarized in Table 7.11. For all luminaires, increasing the supply airflow rate tended to decrease the conditioned space heat fraction. The supply airflow rate test case showed a larger impact when compared with the supply air temperature variation case. The largest variation appeared on Troffer 2-ft×2-ft Uniform Diffuser which was 65% at 30 cfm and 44% at 120 cfm. Increasing the supply airflow rate also caused a deduction in longwave radiative heat fraction but the shortwave portion remained in the same level.

Fixture	Supply Airflow	Conditioned Sp	ace/Plenum Split	Radi	ative/Convective	e Split	Illuminance, foot-
Fixture	(cfm)	Space	Plenum	Short wave	Long wave	Convective	candle
Troffer 2x4 Dertial A parture	30	0.569 ± 0.010	0.431±0.010	0.321±0.007	0.115±0.003	0.563 ± 0.010	77.273
Diffusor	60	0.525 ± 0.014	0.475 ± 0.014	0.319±0.007	0.092±0.002	0.588 ± 0.009	78.870
Diffusei	120	0.498 ± 0.027	0.502 ± 0.027	0.315±0.008	0.059 ± 0.001	0.626 ± 0.009	79.250
	30	0.654±0.013	0.346±0.013	0.264±0.006	0.115±0.003	0.620 ± 0.009	45.765
Troffer 2×2 Uniform Diffuser	60	0.476 ± 0.022	0.524 ± 0.022	0.260±0.002	0.095 ± 0.006	0.644 ± 0.008	46.134
	120	0.443 ± 0.038	0.557 ± 0.038	0.253±0.006	0.070±0.002	0.677 ± 0.008	46.495
	30	0.559±0.012	0.441±0.012	0.154±0.003	0.006 ± 0.000	0.840 ± 0.003	200.140
Downlight	60	0.466±0.019	0.534±0.019	0.154±0.003	0.005 ± 0.000	0.841±0.003	200.560
	120	0.464 ± 0.035	0.536 ± 0.035	0.155±0.003	0.003±0.000	0.842±0.003	202.040
	30	0.462±0.010	0.538 ± 0.010	0.257±0.006	0.131±0.003	0.612±0.009	76.180
Retrofit kit 2×4	60	0.425±0.014	0.575±0.014	0.251±0.006	0.105±0.002	0.644 ± 0.008	75.890
	120	0.416±0.023	0.584±0.023	0.246±0.005	0.071±0.002	0.683 ± 0.007	76.470

Table 7.11 Test Results of Varied Supply Airflow Rates

7.2.3 Effect of duct return configuration

A 6-ft flexible return duct was installed above the ceiling tiles as shown in Figure 7.25. The return air configuration was changed from plenum return to duct return in this case. The test results are summarized in Table 7.12. The test results indicate that the duct return configuration significantly increased the conditioned space fraction for the 2-ft×4-ft troffer, 2-ft ×2-ft troffer, and retrofit kit. Since the return air was not passing through the top of the lighting fixtures where the heat sink is located, the LEDs tended to dissipate more energy downward into the conditioned space. The result of downlight was inconsistent with other fixtures due to the small cross section area of heat sink.

The duct return configuration also increased the total radiative heat gain and most was longwave portion. It is suspected that as the rising temperature of LED chips, the LED lightings generated more heat into the ambient environment.

Figure 7-25 Duct Return Configuration

Fixture	Return Air	Conditioned Spa	ace/Plenum Split	Rad	iative/Convectiv	ve Split	Illuminance,
	Configuration	Space	Plenum	Short wave	Long wave	Convective	100t-candle
Troffer 2×4 Partial	Plenum Return	0.525±0.014	0.475±0.014	0.319±0.007	0.092±0.002	0.588 ± 0.009	78.870
Aperture Diffuser	Duct Return	0.639±0.015	0.361±0.015	0.323±0.007	0.143±0.003	0.535±0.010	76.670
Troffer 2×2 Uniform	Plenum Return	0.476±0.022	0.524±0.022	0.260±0.002	0.095±0.006	0.644 ± 0.008	46.134
Diffuser	Duct Return	0.555±0.021	0.445±0.021	0.262±0.006	0.145±0.004	0.593±0.010	46.138
Downlight	Plenum Return	0.466±0.019	0.534±0.019	0.154±0.003	0.005±0.000	0.841±0.003	200.560
Downingin	Duct Return	0.431±0.020	0.569±0.020	0.153±0.003	0.009 ± 0.000	0.838±0.003	200.100
Detrofit bit 2.1	Plenum Return	0.425±0.014	0.575±0.014	0.251±0.006	0.105±0.002	0.644 ± 0.008	75.890
Keutotti Kit 2×4	Duct Return	0.523±0.014	0.4770.014	0.259±0.006	0.161±0.002	0.580 ± 0.008	75.860

Table 7.12 Test Results of Varied Return Air Configurations

7.2.4 Effect of floor finish

Different surface materials may differ the radiative heat gain due to differences in absorptivity, emissivity and reflectivity. In this test, two floor finishes was proposed: wood floor and carpet floor shown in Figure 7.26.

Figure 7-26 Wood and Carpet Floor Finish

The test results are summarized in Table 7.13. For all the luminaires, changing the floor finish from carpet to wood slightly increased the conditioned space heat fraction. However, all the space fraction was within the margin of error, so that this increase could be considered insignificant. Changing floor finish did not show significant change in both longwave and shortwave radiative heat, e.g. they were both remained in the same level.

Eixtura	Floor Finish	Conditioned Spa	ace/Plenum Split	Radia	ative/Convectiv	e Split	Illuminance,	
Fixture	FIOOI FIIIISII	Space	Plenum	Short wave	Long wave	Convective	foot-candle	
Troffer 2:4 Portial American Diffusor	Carpet	0.525±0.014	0.475±0.014	0.319±0.007	0.092±0.002	0.588 ± 0.009	78.870	
Itoffer 2×4 Partial Aperture Diffuser	Wood	0.553±0.017	0.447±0.017	0.319±0.007	0.094 ± 0.002	0.587 ± 0.009	82.730	
Troffer 2/2 Uniform Diffusor	Carpet	0.476±0.022	0.524±0.022	0.260±0.002	0.095±0.006	0.644 ± 0.008	46.134	
Troffer 2×2 Uniform Diffuser	Wood	0.481±0.020	0.519±0.020	0.258±0.002	0.096±0.006	0.646 ± 0.008	50.014	
Downlight	Carpet	0.466±0.019	0.534±0.019	0.154±0.003	0.005 ± 0.000	0.841 ± 0.003	200.560	
Downinght	Wood	0.496±0.020	0.504±0.020	0.154±0.003	0.004 ± 0.000	0.842 ± 0.003	204.710	
Detrofit hit 2x4	Carpet	0.425±0.014	0.575±0.014	0.251±0.006	0.105 ± 0.002	0.644 ± 0.008	75.890	
Kettofit Kit 2×4	Wood	0.449±0.013	0.551±0.013	0.249±0.006	0.106 ± 0.002	0.644 ± 0.008	81.870	

Table 7.13 Test Results of Varied Floor Finish

7.2.5 Effect of dimming control

Since most LED lights are capable of dimming control, this test case was to determine the lighting heat gain at different dimming output. The dimming control signal for the LED is typically a 0-10VDC type where 10 VDC corresponds with the maximum lighting output (no dimming) and 0 VDC as minimum lighting output. A 50% dimming level corresponding to a control voltage equal to 5 VDC was tested in this case in comparison to the no-dimming level implemented in the base case.

The test results are summarized in Table 7.14. The results indicate that the dimming output has no significant impact on the conditioned space fraction for the 2-ft×4-ft troffer, the downlight and the retrofit kit troffer since they were all within the margin of error. However, for the 2-ft×2-ft troffer, the conditioned space heat gain increased when the dimming signal decreased.

Although the visible light is a part of radiative heat, 5V dimming control did not show any significant changes on radiative heat fractions since the lighting power also decreased.

Einture	Dimming	Measured Lighting	Conditioned Spa	ace/Plenum Split	Radia	ative/Convectiv	e Split	Illuminance,
Fixture	Output	Power, Watt	Space	Plenum	Short wave	Long wave	Convective	foot-candle
Troffer 2×4 Partial	10V	38.64	0.525±0.014	0.475±0.014	0.319±0.007	0.092±0.002	0.588±0.009	78.870
Aperture Diffuser	5V	24.31	0.508±0.024	0.492±0.024	0.319±0.007	0.084 ± 0.002	0.597±0.009	50.064
Troffer 2×2	10V	27.18	0.476±0.022	0.524±0.022	0.260 ± 0.006	0.095 ± 0.002	0.644 ± 0.008	46.134
Diffuser	5V	14.23	0.552±0.036	0.448 ± 0.036	0.252 ± 0.006	0.093±0.002	0.656 ± 0.008	23.496
Downlight	10V	28.81	0.466±0.019	0.534±0.019	0.154 ± 0.003	0.005 ± 0.000	0.841 ± 0.003	200.560
Downingin	5V	16.79	0.478±0.031	0.522±0.031	0.169 ± 0.004	0.005 ± 0.000	0.827 ± 0.004	132.250
Retrofit kit	10V	44.91	0.425±0.014	0.575±0.014	0.251±0.006	0.105 ± 0.002	0.644 ± 0.008	75.890
2×4	5V	24.00	0.423±0.022	0.577 ± 0.022	0.263±0.006	0.100 ± 0.002	0.637 ± 0.008	43.100

Table 7.14 Test Results of Varied Dimming Outputs

CHAPTER 8. CONCLUSIONS

Fourteen LED lighting luminaires were selected and tested in this project to determine the heat split between conditioned space and plenum space as well as the heat split between convective and radiative heat. During the test, all fourteen luminaires were tested under basecase test condition. Furthermore, four selected LED luminaires were tested under variances-case test.

The base-case test results showed all the recessed LED luminaires excluding the emerging technology had a conditioned space heat gain ranging from 43% to 53% over the total lighting power. The conditioned space heat gain fraction for high efficacy troffer and color tuning troffer were 59% and 56% (cool), 53% (warm) respectively. All the recessed troffers showed a total radiative heat fraction ranging from 30% to 41% except for the downlight and high efficacy troffer which were 15% and 52% respectively. The high efficacy troffer had a largest shortwave heat gain. It was discovered the shortwave radiation was highly correlated to the lighting efficacy. For the suspended luminaires, the high-bay converted 42% to 51% of total lighting power into radiative heat while linear-pedant was ranged from 55% to 61%. Overall the linear-pedant generated more radiative heat than high-bay.

The variances-case test was to examine the effect of supply air temperature, supply airflow rate, duct configuration, floor finish and dimming output on LED lighting heat gains. The results showed the supply air flowrate and return air configuration had the most significant impact on conditioned space heat fraction. Increasing the supply airflow rate tended to decrease conditioned space heat gain. Changing from plenum return to duct return also decreased the conditioned space fraction except for downlight. Effect of floor finish and dimming output had no significant impact on conditioned space heat fraction. As for radiative heat fraction,

increasing the supply airflow rate and changing from plenum return to duct return tended to increase the longwave radiative heat fraction. Supply air temperature, dimming output and floor finish showed insignificant impact on radiative heat gain fraction.

REFERENCES

Stefano Tonzani - NATURE Vol 459 Time to Change the Bulb, 21 May 2009

ASHRAE, ASHRAE Handbook(a) – Fundamentals, Atlanta: American Society of Heating, Airconditioning and Refrigeration Engineers, Inc., 2013, Chapter 18.

ASHRAE, ASHRAE Handbook(b) – Fundamentals, Atlanta: American Society of Heating, Airconditioning and Refrigeration Engineers, Inc., 2013, Chapter 26.

Khanna V.K. Fundamentals of Solid-State Lighting – LEDs, OLEDs, and Their Applications in Illumination and Displays. Taylor & Francis Group 2014.

Chung T.-S., Loveday D.L. Numerical Modeling of Lighting/HVAC Interaction in Enclosures Part I: Light and Heat Transfer in a Room. HVAC & R Research 1998; 4:1, p 67-84.

DesignLights Consortium. About the DLC. Retrieved from: < https://www.designlights.org/content/about >

DesignLights Consortium. Product Qualification Criteria, Version 2.1. Jul. 18, 2014. http://www.designlights.org/content/qpl/productsubmit/categoryspecifications

ENERGY STAR. About ENERGY STAR. Retrived from: < http://www.energystar.gov/about >

LED Lighting Facts. Abut LED Lighting Facts. 2014. Retrieved from: < http://www.lightingfacts.com/About >

U.S. DOE CALIPER program, Snapshot Indoor LED Luminaires. Apr. 1, 2014. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/snapshot2014_indoor-luminaires.pdf

U.S. DOE Solid-State Lighting CALiPER Program, Summary of Results: Round 13 of Product Testing, Oct. 2011.

U.S. DOE Solid-State Lighting CALiPER Program, Exploratory Study: Recessed Troffer Lighting, Jun. 2013.

U.S. DOE Solid-State Lighting CALiPER Program, Application Summary Report 19: LED Linear Pendants, Oct. 2012.

U.S. DOE Solid-State Lighting CALiPER Program, Summary of Results: Round 12 of Product Testing, Jun. 2011.

D. E. Fisher, C. Chantrasrisalai, ASHRAE 1282-RP Technical Report Lighting heat gain distribution in buildings. Sep. 2006.

Bessho M., Shimizu K. Latest Trends in LED Lighting. Electronics and Communications in Japan 2012; Vol. 95, No. 1.

Choi J., Shin M., Thermal investigation of LED lighting module. Microelectronics Reliability 2012; 52: 830–835

Dong T., Narendran N. Understanding Heat Transfer Mechanisms in recessed LED Luminaires. Lighting Research Center 2009.

APPENDIX A: SPECIFICATIONS OF LUMINAIRES BEING TESTED

A1. Cree High-Bay CXB

ED Low-Bay/High-Bay Luminaire		Iowa Energy Cen	ter
Product Description		Aluminum Reflector	A
The CXB Series LED Low-Bay/High-Bay lun with illumination performance to allow one- nor multi-lamp fluorescent low-bay and hig estrike time and a compact lightweight cor- noumbent HID and fluorescent light source aignificantly reduced relamp maintenance of a luminum, clear and white acrylic with op piplications: Grocery, gymnasium, industria	ninaire delivers 13,000 median and 24,000 median lumens for-one replacement of 250W and 400W HID luminaires ph-bay fixtures. With exceptional rated lifetimes, zero struction, the CXB Series is a direct replacement for s that provides additional benefits of energy savings and tosts. The CXB Series is offered with reflector choices stional bottom lenses — making it ideal for a variety of al, retail and warehouse spaces	Write Mount Cord Mount with ML Option	
Performance Summary		1 45	7.8" (537mm) 52mm) >
Delivered Light Output: 18,000 or 24,000 m	nedian lumens		
Input Power: 160 or 240 watts			
CRI: 80			
CCT: 4000K (+/- 300K), 5000K (+/- 500K)			
Input Voltage: 120-277 VAC, 347-480 VAC			
Limited Warranty*: 10 years on luminaire			
Mounting: J-Box, pendant, hook, cord & plu	ug	-	
Weight: Maximum 14 lbs (6.4kg)		Î	
Accessories Reflector		"A"	
Wire Guards WG-A	Lenses DL16	*	16.6"> (422mm)
- 16" (406mm) Wire Guard for Aluminum Reflector WG-AP	 16" (406mm) Acrylic Clear Prismatic Drop Lens for Acrylic Reflector 	Reflector	"A" Height
ny ni	CL16	TETESTO	
- 16" (406mm) Wire Guard for Acrylic Reflector	- 16" (406mm) Acrylic Clear Conical Bottom Lens for Acrylic Reflector	CXBA16N (Aluminum)	9.0" (229mm)
- 16" (406mm) Wire Guard for Acrylic Reflector Light Engine	- 16" (406mm) Acrylic Clear Conical Bottom Lens for Acrylic Reflector	CXBA16N (Aluminum) CXBP16 (Clear Prismatic)	9.0" (229mm) 9.7" (245mm)
- 16" (406mm) Wire Guard for Acrylic Reflector Light Engine Galvanized Safety Cables	- 16° (406mm) Acrylic Clear Conical Bottom Lens for Acrylic Reflector	CXBA16N (Aluminum) CXBP16 (Clear Prismatic) CXBW16 (White Acrylic)	9.0" (229mm) 9.7" (245mm) 9.7" (245mm)
16"(406mm) Wire Guard for Acrylic Reflector Light Engine Galvanizzd Safety Cables 80:5 - 5.0"(1.5m) Cable	- 16" (406mm) Acylic Clear Conical Bottom Lens for Acylic Reflector SC-10 - 10.0" (3.0m) Cable	CXBA16N (Aluminum) CXBP16 (Clear Prismatic) CXBW16 (White Acrylic) Drop Lens	9.0" (229mm) 9.7" (245mm) 9.7" (245mm)
Te ⁶¹ (406mm) Wire Guard for Acrylic Reflector Light Engine Gelvenized Safety Cables SC-5 C(1.5m) Cable Drdering Information Ully assembled luminaire is composed of two cr xample: Reflector: CXBA16N + Light Engine: CX	- 16" (406mm) Acylic Clear Conical Bottom Lens for Acylic Reflector SC-10 - 10.0" (3.0m) Cable omponents that must be ordered separately: B A HC H 40K 8-UL 10V L715P	CXBA16N (Aluminum) CXBP16 (Clear Prismatic) CXBW16 (White Acrylic) Drop Lens	9.0° (229mm) 9.7° (246mm) 9.7° (246mm) 9.7° (246mm) 15.9° (404mm) 3.5° (90mm) (90mm) (244mm)
Control C	- 16" (406mm) Acylic Clear Conical Bottom Lens for Acylic Reflector SC-10 - 10.0" (3.0m) Cable omponents that must be ordered separately: B A HC H 40K 8-UL 10V L715P	CXBA16N (Aluminum) CXBP16 (Clear Prismatic) CXBW16 (White Acrylic) Drop Lens	9.0" (229mm) 9.7" (245mm) 9.7" (245mm) 15.9" (404mm) 3.5" (90mm) (90mm) (244mm)
Control Control Wire Guard for Acrylic Reflector Light Engine Galvanized Safety Cables SC-6 C(1.5m) Cable Ordering Information ully assembled luminaire is composed of two cr xample: Reflector: CXBA16N + Light Engine: CX Reflector: (Light Engine must be ordered separate CXBA16N	- 16" (406mm) Acylic Clear Conical Bottom Lens for Acylic Reflector SC-10 - 10.0" (3.0m) Cable omponents that must be ordered separately: B A HC H 40K 8-UL 10V L715P	CXBA16N (Aluminum) CXBP16 (Clear Prismatic) CXBW16 (White Acrylic) Drop Lens	9.0" (229mm) 9.7" (245mm) 9.7" (245mm) 15.9" (404mm) 3.5" (90mm) 9.6" (244mm)

СХВ	A	HC	M	50K	8	-	UL	10V	515P	
Product	Version	Mounting	Lumen Output	Color Temp	CRI	-	Voltage	Controls	Factory-Installed Plug (HC M	ount Only)
СХВ	A	HC Hook & Cord JP J-Box or Pendant	M 160W, 18,000 Median Lumens, 113 LPW H 240W, 24,000 Median Lumens, 100 LPW	40K 4000K 50K 5000K	8 80 CRI	-	UL 120-277V UH 347-480V	10V 0-10V Dimming ML* Multi-Level	515P 15 amp 120V Straight Blade Plug L515P 15 amp 120V Twist Lock Plug L615P 15 amp 240V Twist Lock Plug	L715P 15 amp 277V Twist Lock Plug L2420P 20 amp 347V Twist Lock Plug L820P 20 amp 480V Twist Lock Plug

* See www.cree.com/lighting/products/warranty for warranty terms * UH voltage available Dotober 2014; ML for UH voltage available December 2014


```
T (800) 236-6800 F (262) 504-5415
```

Rev. Date: V1 09/25/2014

Canada: www.cree.com/canada

CXB Series

Product Specifications

CONSTRUCTION & MATERIALS

- Die cast aluminum heatsink
- Low-profile, lightweight design provides ease of installation
- Mounting choices of direct J-Box/pendant and hook, cord & plug
- JP Mount mounts directly over existing 4" (102mm) single gang square, rectangular and octagonal junction boxes for direct mount
- JP Mount has provision to accept ¾ IP pendant (by others)
- HC Mount is provided with spring lock hook for mounting and factory installed 6' (1.8m) 16/3 AWG power cord and plug
- · Factory calibrated to hang straight

OPTICAL SYSTEM

- 16" (406mm) Anodized Matte Aluminum reflector
- 16" (406mm) Clear Acrylic reflector
- 16" (406mm) White Acrylic reflector
- LED system delivers proper uniformity & spacing

ELECTRICAL SYSTEM

- Integral, high-efficiency driver and power supply
- Input Voltage: 120-277V or 347-480V 50/60Hz
- Power Factor: > 0.9
- Total Harmonic Distortion: <20%
- Temperature rating: Designed to operate in temperatures 0°C-50°C (18,000 median lumen package); 0°C-40°C (24,000 median lumen package)

REGULATORY & VOLUNTARY QUALIFICATIONS

- cULus listed
- Suitable for damp locations
- DLC qualified. Please refer to http://www.designlights.org/QPL for most current information
- IP54 rated driver
- IP65 rated LED optics

Photometry

CXBP16/CXBA**H40K8 BASED ON CESTL REPORT TEST #: PL04029-001

Fixture photometry has been conducted by a NVLAP accredited testing laboratory in accordance with IESNA LM-79-08. IESNA LM-79-08 specifies the entire luminaire as the source resulting in a fixture efficiency of 100%.

Average Luminance Table (cd/m²)

20315 20315

6999 6999 6999

4486 4486

2346

0°

45°

55°

65°

75°

85° 660 660 660

Vertical Angle

Horizontal Angle

45° 90*

20315

4486

2346 2346

RC %:	80			
RW %:	70	50	30	10
RCR: 0	119	119	119	119
1	112	109	106	103
2	105	100	95	91
3	99	91	86	81
4	93	84	78	73
5	87	77	71	66
6	82	72	65	60
7	77	66	59	55
8	73	62	55	50
9	68	57	51	46
10	65	54	47	43

Effective Floor Cavity Reflectance: 20%

Zonal L	umen Sumn	nary	
Zone	Lumens	% Lamp	Luminaire
0-30	13590.3	N/A	54.7%
0-40	20547.3	N/A	82.7%
0-60	23667.5	N/A	95.3%
0-90	24552.8	N/A	98.8%
0-180	24842.2	N/A	100%

Reference www.cree.com/lighting for detailed photometric data

Reflector Uplight Illumination Performance	<i></i>	
Reflector	% of Uplight	
CXBA16N (Aluminum)	0%	
CXBP16 (Clear Acrylic)	1%	
CXBP16 + CL16 (Clear Acrylic w/ Conical Bottom Lens)	5%	
CXBP16 + DL16 (Clear Acrylic w/ Drop Bottom Lens)	6%	
CXBW16 (White Acrylic)	16%	
CXBW16 + CL16 (White Acrylic w/ Conical Bottom Lens)	20%	
CXBW16 + DL16 (White Acrylic w/ Drop Bottom Lens)	19%	

Ambient	Initial LMF	25K hr Projected ² LMF	50K hr Projected ² LMF	75K hr Calculated ^a LMF	100K hr Calculated ^a LMF
0°C (32°F)	1.05	0.98	0.93	0.88	0.83
5°C (41°F)	1.04	0.97	0.92	0.87	0.82
10°C (50°F)	1.03	0.96	0.91	0.86	0.81
15°C (59°F)	1.02	0.95	0.90	0.85	0.81
20°C (68°F)	1.01	0.95	0.89	0.84	0.80
25°C (77°F)	1.00	0.94	0.88	0.84	0.79
30°C (86°F)	0.99	0.93	0.88	0.83	0.78
35°C (95°F)	0.98	0.92	0.87	0.82	0.77
40°C (104'F)	0.97	0.91	0.86	0.81	0.77
45°C (113'F)	0.96	0.90	0.85	0.80	0.76
50°C (122°F)	0.95	0.89	0.84	0.79	0.75

Lumen maintence values at 25°C are calculated per TM-21 based on LM-80 data and in-situ luminaire testing ¹In accordance with ISNN TM-21-11, Projected Values represent interpolated value based on time durations that are within six times (5X) the ISNAL-M-80 ob tata test duration (nhours) for the dreview under testing (UDII) 1: e. the packade LED chip) ²In accordance with ISNN TM-21-11, Calculated Values represent time durations that exceed six times (5X) the ISSNAL-M8-0-06 total test duration (nhours) for the device under testing (UDII) 1: e. the packade LED chip)

© 2014 Cree, Inc. and/or one of its subsidiaries. All rights reserved. For informational purposes only. Content is subject to change. See www.cree.com/patents for patents that cover these products. Cree[®] and the Cree logo are registered trademarks of Cree, Inc. NEMA[®] is a registered trademark of the National Electrical Manufacturers Association. The UL logo is a registered trademark of ULLLC. T (800) 236-6800 F (262) 504-5415

Canada: www.cree.com/canada

A2. Columbia High-Bay LLHP

Colur	nbia								L.a	
<u>_IGH</u>	TING							2'	or 3' LED Premium	High Bay
Led				PROJECT	INFORMA	TION				
				Project Na	me				Тур	e
				Catalog No).				Dati	e
Highly efficient LEI Long-life, 60,000 1 2' size provides non 3' size provides non Direce distribution Operates in ambie (of (J32' F with Occ DesignLights Conse Individual optics for Extruded aluminu minimize debris bi Fixed output or O- Available with 48C	2' High Lumen show 5 Ds provide up to 101 lume hour LEDs at L90 reduce lif minal lumen packages fro selections: aisle, medium nt temperatures from SS ² upancy Sensof) or each LED allow for preci m housing acts as heat sin uildup 10V dimming available V or 347V dedicated drive	rs perwatt at 70 (Pl fecycle maintenance c m 12,000 to 27,000 m 73,850 to 42,100 a and wide C/131°F down to -40° 12' size; 3' size pending ise control of light dist ick downward sloping	C/-40°F g rribution fins	The LLHP d extrusion t Wireway ar resistant g wireway is to carry aw top of the u heat-sink s minimize c OPTICS LLHP usesi designed t point sour- choices— each LED o light when- areas.	legin is based hat serves as in dend caps and alvanneal stee spaced off the ay heat. Dual wireway. The a urface area. Dual wireway is a server lebris buildup individual spee o provide prece to the work narrow, medit perates optim e it's needed,	d on a one- heat sink for re heavy ga el. The top e heat sink 7/8" KOS an aluminum 7/8" KOS an aluminum 100 ownward si cialized op cise control plane. Thr um, or wida ally and di whether fo	piece aluminum or the LEDs. auge, corrosion- mounted allowing air flo re located on th fin design creat sloping fins tics for each LEI of light from th ree distribution e—ensure that stributes the r aisles or open	CEF All List CEF All List CEF All List Stan Dam Const Five	INCLATION wireway is fitted with two top m end mounted 7/8" KOs for ease c ss. The fixture is fitted with four gned for suspension mounting o reraft cabling. Customer supplie ware must be load rated at 1001 RTIFICATION minaires are built to UL 1598 an dards, and bear appropriate CSA Jocation I abeling is standard. I cortium* (DLC) qualified in 2' size fing. Please refer to the DLC web uct qualifications at www.desig RRANTY year warranty (Terms and Condi	ounted and of electrical mounting hole ptions such d mounting bs. per point. d 2108 labels. DesignLights e; 3' size site for specific nlights.org. tions apply).
with aircraft cablin CSA listed and suit Meets the most res Available with excl	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled		FINISH The housin standard ir paint after adhesion p	g, wireway, a n matte grey p fabrication ap rocess for ma:	nd end cap polyester po oplied with ximum dur	s are owder coat a five-stage ability.			
with aircraft cablin CSA listed and suit Meets the most res Available with excl	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled		FINISH The housin standard ir paint after adhesion p	ig, wireway, a 1 matte grey p fabrication ap rocess for ma:	nd end cap polyester po pplied with ximum dur	s are owder coat a five-stage ability.		EXAMPLE 11 HP2-	501-A-FII
with aircraft cablin CSA listed and suit Meets the most re: Available with excl	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA	ensity codes y preinstalled		FINISH The housin standard ir paint after adhesion p	ig, wireway, a 1 matte grey p fabrication ap rocess for ma	nd end cap oolyester po oplied with ximum dur	s are wder coat a five-stage ability.		EXAMPLE LLHP2-	50L-A-EU
with aircraft cablin CSA listed and suit Meets the most re- Available with excl	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 - 50	ensity codes y preinstalled	M	FINISH The housin standard ir paint after adhesion p	ig, wire way, a n matte grey p fabrication ap rocess for ma ED	nd end cap olyester po pplied with ximum dur	s are owder coat a five-stage ability.		EXAMPLE LLHP2-	50L-A-EU
with aircraft cablin (SA listed and suit Meets the most re: Available with excl RDERING LLHP MODEL	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP	ensity codes y preinstalled	M	FINISH The housin standard ir paint after adhesion p	ig, wire way, and matte grey p fabrication approversion of the second se	nd end cap olyester po poplied with ximum dur	s are owder coat a five-stage ability.		EXAMPLE LLHP2-	50L-A-EU
with aircraft cablin CSA listed and suit Meets the most re: Available with exc. RDERING LLHP MODEL HP LED Linear High Raw	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K	ensity codes y preinstalled	M RIBUTION	FINISH The housin standard ir paint after adhesion p	ig, wireway, ai n matte grey p fabrication ap rocess for mat ED DRIVER Fixed Output	nd end cap olyester po poplied with ximum dur	s are owder coat a five-stage ability. U - CUTAGE 120V-2277V	- 	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5'	50L-A-EL
with aircraft cablin CSA listed and suit Meets the most re: Available with exc RDERING LLHP MODEL HP LED Linear High Bay	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 40 4000K	ensity codes y preinstalled	M RIBUTION sile iedium	FINISH The housin standard ir paint after adhesion p	g, wireway, an matte grey p fabrication ar nocess for mat ED IRIVER EXREDUTE	nd end cap polyester po pplied with ximum dur U 120 227	sare wder coat a five-stage ability. U UUTAGE 120V-277V 120V	- F3C5 F3C10	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10'	50L-A-EL
with aircraft cablin CSA listed and suit Meets the most re: Available with exc RDERING LLHP MODEL LHP LED Linear High Bay	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K	ensity codes y preinstalled L – – DISTI A AI W W	M RIBUTION Isle iedlum /ide	FINISH The housin standard ir paint after adhesion p	g, wireway, an mattegrey p fabrication ar rocess for ma ED ED EV ER EX EQ 0-10V Dimming	nd end cap polyester po pplied with ximum dur U 120 227 347	s are owder coat a five-stage ability. U U U U U U U U U U U U U U U U U U U	- F3C10 F3C15 ccT115	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 15' 3-Conductor Cord 15' 6' Cord and Turk Lock Plum	50L-A-EU
with aircraft cablin CSA listed and suit Meets the most re- Available with exc MODEL LHP LED Linear High Bay SIZE	ng able for damp locations strictive lighting power de lusive wiHUBB technology 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K	ensity codes y preinstalled L – – DISTI A AI M M W W	M RIBUTION isle iedium ide	FINISH The housin standard ir paint after adhesion p	rg, wireway, an mattegrey p fabrication ar rocess for mat e ED ED ED EI EI EI EI EI EI EI EI EI EI EI EI EI	nd end cap odyester po poplied with ximum dur U 120 277 347 480	s are wder coat a five-stage ability. U OLTAGE 120V-277V 120V 277V 347V 480V	F3C5 F3C10 F3C15 GTL15	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 15' 6' Cord and Twist-LockPlug 15& (Add Voit 1=120, 2=277)	50L-A-EL
with aircraft cabli CSA listed and suit Meets the most re- Available with exc MODEL LHP LED Linear High Bay SIZE 2 2'	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled L – – DISTE A AI M M W W DUTPUT	M RIBUTION Isle edium /ide	FINISH The housin standard in paint after adhesion p	rg, wireway, an mattegrey p fabrication ar rocess for ma e ED ED FITE Fixed Output D-10V Dimming	nd end cap odyester po poplied with ximum dur U 120 277 347 480	s are swder coat a five-stage ability. U CUTAGE 120V-277V 120V 277V 347V 480V	F3C5 F3C10 F3C15 C6TL15 CP6TL20	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 15' 6 Cord and Twist-Lock Plug 15A (Ad4 Volt 1=120, 2=277) 6 Cord and Twist-Lock Plug	50L-A-EL
with aircraft cabli CSA listed and suit Meets the most re- Available with exc MODEL LHP LED Linear High Bay SIZE 2 2' 3 3'	ng able for damp locations strictive lighting power de lusive wiHUBB technology COLORTEMP 30 3000K 40 4000K 50 5000K LLOW LUME H High Lume	ensity codes y preinstalled L – – DISTE A AI M M W W DUTPUT en (2'size)	M RIBUTION Isle edium Iide	FINISH The housin standard in paint after adhesion p	rg, wireway, an mattegrey p fabrication ar rocess for mat ED ED FIVER Fixed Output D-10V Dimming	nd end cap odyester po polied with ximum dur U 120 277 347 480	s are owder coat a five-stage ability. U COLTAGE 120V-277V 120V 277V 347V 480V	F3C5 F3C10 F3C15 C6TL15 CP6TL20	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 6 Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 6 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277)	50L-A-EL
with aircraft cablin CSA listed and suit Meets the most re- Available with exc MODEL HIP LED Linear High Bay SIZE 2 2' 3 3'	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K LUMEN C L Low Lume H High Lume YL Very High	ensity codes y preinstalled L – – DISTL A AI M M W W DUT PUT an (2*3ze) Lumen (2*3ze) Lumen (2*3ze)	M RIBUTION isle iedium i/ide	FINISH The housin standard in paint after adhesion p	rg, wireway, an matte grey p fabrication ag rocess for max ED Fixed Output Fixed Output 010V Dimming	nd end cap odyester po polied with ximum dur V U 120 277 347 480	s are owder coat a five-stage ability. U CULTAGE 120V-277V 120V 277V 347V 480V	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 4 Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 4 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBE Enabled	50L-A-EL
with aircraft cabli CSA listed and suit Meets the most re- Available with exc MODEL LHP LED Linear High Bay SIZE 2 2' 3 3'	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled L – – DISTE A A W W V UIT PUT an (2'Size) Lumen (3'Size)	M RIBUTION isle edium ide	FINISH The housin standard in paint after adhesion p	ig, wireway, ai matte grey p matte grey p rocess for mas ED IRIVER Fixed Output DeTOV Dimming	nd end cap polyester p polyed with ximum dur U 120 277 347 480	s are owder coat a five-stage ability. U COLTAGE 120V-277V 120V 277V 347V 480V	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 051	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 6' Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 6' Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBBEnabled! Wire Guard (factory installed) Crumanoc Server 120-277	50L-A-EL
with aircraft cablii CSA listed and suit Meets the most rea Available with exc MODEL LHP LED Linear High Bay SIZE 2 2' 3 3'	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 - 50 COLORTEMP 30 3000K 40 4000K 50 5000K LUMENO L Low Lume H High Lume VL Very High SORIES EPARATELY)	ensity codes y preinstalled	M RIBUTION Isle iedlum Tide P SIZE	FINISH The housin standard in paint after adhesion p	ig, wireway, ai imatte grey p arocess for max ED ED PRIVER Fixed Output 0-10V Dimming 0-10V Dimming	nd end cap olyester po plied with ximum dur U 120 277 347 480	sare owder coat a five-stage ability. U CUTAGE 120V-277V 120V 277V 347V 480V EFFICACY	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 051	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 15' 6' Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 6' Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUB8Enabled! Wire Guard (factory installed) Occupancy Sensor 120-277 Single Rday	50L-A-EL
with aircraft cabli CSA listed and suit Meets the most re: Available with exc RDER INC LLHP MODEL LHP LED Linear High Bay SIZE 2 2' 3 3' ACCES (OBDER SE CP6TL15 6' Cord.	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled L – – DISTI A AI M M W W VUTPUT DISTRIBUTION	M RIBUTION Isle edium ride P SIZE	FINISH The housin standard in paint after adhesion p E E E E E E C C C C C C C C C C C C C	g, wireway, au mategrey p fabrication a rocess for max ED ED ENVER EXEd Output 010V Dimming 010V Dimming NOMINAL LUMENS	nd end cap olyester po plied with ximum dur U 120 277 347 480 NOMINAL WATTS	sare owder coat a five-stage ability. UUTAGE 120V-277V 120V 277V 347V 480V EFFICACY	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 051 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 15' 6' Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 6' Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBBEnabled' Wire Guard (factory installed) Occupancy Sensor 120-277 Single Relay Prewired for Dual-Lite	50L-A-EL
with aircraft cablin CSA listed and suit Meets the most res Available with exc RDER INC LLHP MODEL LHP LED LINEAR High Bay SIZE 2 2' 3 3' ACCESS (ORDER SE CP6TL15 6' Cord. 15A (Ad	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled UTION L – – DIST A AI M M W W SUITEUT In (2'size) en (2'size) Lumen (3'size) DISTRIBUTION Aisle	M RIBUTION Iste edium ride P SIZE 2'	FINISH The housin standard in paint after adhesion p E E E E C E C E C E C C E C C C C C C	g, wireway, an mattegrey p fabrication a rocess for mat ED ED EI EI EI EI EI EI EI EI EI EI EI EI EI	nd end cap odyester po object with ximum dur U 120 277 347 480 NOMINAL WATTS 143	sare owder coat a five-stage ability. U UUTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 051 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 15' 3-Condu	<u>50L-A-EL</u>
With aircraft cabli CSA listed and suit Meets the most re- Available with exc MODEL HP LED Linear High Bay SIZE 2 2' 3 3' ACCES (ODDER SE CPGIL15 6' Cord, 15A (Ad CPGTL20 6' Cord, 20 4'	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K UUMEN C L Low Lume H High Lume VL Very High SORIES EPARATELY) and Twist-Lock Plug idVort 1=720, 2=277) and Twist-Lock Plug	ensity codes y preinstalled L – – DISTE A AI M M W W DUT PUT an (2'size) Ensr: (2'size) DISTRIBUTION Alsie	M RIBUTION isle redium fide P SIZE 2' 2' 2'	FINISH The housin standard in paint after adhesion p E E E E C E E C E C E C E C E C E C E	g, wireway, an mategrey p fabrication ap rocess for material ED ED ED EV ED EV ED EV ED EV ED ED ED ED ED ED ED ED ED ED ED ED ED	nd end cap odyester po object with ximum dur U U 120 277 347 480 NOMINAL WATTS 143 281	s are swder coat a five-stage ability. U OLTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91 88 80	F3C5 F3C10 F3C15 CF115 CP6TL20 WIH WG OS1 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 6 Cord and Twist-Lock Plug 15A (Ad Volt 1=120, 2=277) 6' Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUB8Enabled' Wire Guard (factory installed) Occupancy Sensor 120-277 Single Relay Prewired for Dual-Lite LightiGear* Invester, 250 VA/ Watts (purchase separately) ²³	<u>50L-A-El</u>
with aircraft cabli CSA listed and suit Meets the most re- Available with exc MODEL HP LED Linear High Bay SIZE 2 2' 3 3' ACCES (ORD ER SE (ORD ER SE (ORD ER SE (ORD ER SE (ORD ER SE) 15A (Ad CPGTL20 6' Cord, 20A (Ac	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled TTION L – DISTL A AI M M W W DUT PUT an (2*3ze) Lumen (3*3ze) DISTRIBUTION Alsle	M RIBUTION isle edium ide SIZE 2' 2' 2' 2' 2' 2' 2' 2' 2'	FINISH The housin standard in paint after adhesion p E E E E C E F E D C C E H E U MEN PACKAGE L H Y	g, wireway, an mategrey p fabrication ar rocess for material end of the second second end of the second second second end of the second second second second end of the second second second second end of the second second second second second end of the second second second second second second second end of the second seco	nd end cap odyester po polied with ximum dur U 120 277 347 480 NOMINAL WATTS 143 281 425 214	s are swder coat a five-stage ability. U OUTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91 88 99 103	F3C5 F3C10 F3C15 CF115 CP6TL20 WIH WG OS1 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 6 Cord and Twist-Lock Plug 15A (AdV 0ti 1=120, 2=277) 6 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBE Faabled' Wire Guard (factory installed) Occupancy Sensor 120-277 Single Relay Prewire for Dual-Lite LightGear "Invester, 250 VA/ Watts (purchase separately) ²³	50L-A-El
with aircraft cabli CSA isted and suit Meets the most re- Available with exc MODEL LLHP LED Linear High Bay SIZE 2 2' 3 3' ACCES (ORDER SE CPGTLS 6' Cord. 20A (Ac LHVOMS Aircraft	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K LUMENC Low Lume H High Lume VL Very High SORIES EPARATELY) and Twist-Lock Plug Id Volt 1=120, 2=277) and Twist-Lock Plug Id Volt 1=120, 2=277) and Twist-Lock Plug	ensity codes y preinstalled TION L – – DISTE A AI M M W W DUT PUT an (2'Size) Lumen (3'Size) Lumen (3'Size) Lumen (3'Size) Lumen (3'Size)	M RIBUTION isle iedium ride P SIZE 2' 2' 3' 2' 2' 2'	FINISH The housin standard in paint after adhesion p E E E E E E C C C C C C C C C C C C C	Ig, wire way, at Imatte grey p Imatte grey p ED Image: Stormas Image: Stormas Ima	nd end cap polyester po polied with ximum dur U U U U U U U U U U U U U U U U U U U	s are swder coat a five-stage ability. U	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 0S1 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 15' 4 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) 4 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBE Enabled ¹ Wire Guard (factory installed) Occupancy Sensor 120-277 Single Relay Prewire for Dual-Lite LiphtGear "hver ter, 250 VA/ Watts (purchase separately) ²³	50L-A-EL
with aircraft cabli CSA listed and suit Meets the most re- Available with exc PRDERING LLHP MODEL LHP LED Linear High Bay SIZE 2 2' 3 3' ACCES (ORDER SE (ORDER SE CPGTL10 6' Cord. 15A (AC CPGTL20 6' Cord. 20A (AC LHVQMS) Aircraft HVQMS	ng able for damp locations strictive lighting power de lusive wiHUBB technology	ensity codes y preinstalled	M RIBUTION Isle iedium Tide SIZE 2' 3' 2' 3' 2' 3' 2' 3'	FINISH The housin standard in paint after adhesion p	eg, wireway, at matte grey p fabrication a rocess for mas ED PRIVER Exed Output 0-10V Dimming 0-10V Dimming 12,950 24,850 14,350 27,750	nd end cap polyester po polied with ximum dur U 120 277 347 480 NOMINAL WATTS 143 281 425 142 281	sare swder coat ability. U COLTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91 88 89 101 99 98	F3CS F3C10 F3C15 C6TL15 CP6TL20 WIH WG OS1 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15' 6' Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 6' Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) wiHUBBEnabled! Wire Guard (factory installed) Occupancy Sensor 120-277 Single Relay Prewired for Dual-Lite LightGear * Inverter, 250 WA/ Watts (purchase separately) ²³	50L-A-EL
with aircraft cabli CA listed and suit Meets the most re- Available with exc PRDERING LLHP MODEL LHP LED Linear High Bay SIZE 2 2' 3 3' CPGTL15 6' Cord. 158 (Ad CPGTL20 6' Cord. 158 (Ad CPGTL20 6' Cord. 158 (Ad CPGTL20 A' CORD. 158 (Ad CPGTL20	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 - 50 COLORTEMP 30 3000K 40 4000K 50 5000K UMENO Low Lume H High Lume YL Very High SORIES EPARATELY) and Twist-Lock Plug IdVolt 1=120, 2=277) Cable S' Pair Cable 10' Pair Cable 10' Pair	ensity codes y preinstalled TTION L – DISTI A AI M M W W DUTPUT en (2'size) Lumen (3'size) DISTRIBUTION Aisle Medium Wide	M RIBUTION Isle edium ride P SIZE 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴ 2 ⁴	FINISH The housin standard in paint after adhesion p E E E E E E E C UMEN PACKAGE L H YU L	eg, wireway, an rmategrey p fabrication agro- rocess for max- ED RIVER Fixed Output O-10V Dimming 0-10V Dimming 12,950 24,850 37,850 14,350 27,750 14,350 13,900	nd end cap objester po polied with ximum dur U U 120 277 347 480 NOMINAL WATTS 143 281 425 142 281 425 143	Sare wder coat ability. U U COLTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91 88 89 101 99 98 98	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 0S1 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 15' 3-Conductor Cord 15' 6' Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 4' Cord and Twist-Lock Plug 20A (Add Volt 1=20, 2=277) wiHUBE Enabled* Wire Guard (factory installed) Occupany Sensor 120-277 Single Relay Prewire dfor Dual-Lite LightGear * Inverter, 250 VA/ Watts (purchase separately) ²³	50L-A-EU
with aircraft cabli CA listed and suit Meets the most re- Available with exc NDDER INC LLHP MODEL LHP LED LINEAT High Bay SIZE 2 2' 3 3' CPGTL15 6' Cord. 15A (Ad CPGTL20 6' Cord. 15A (Ad	ng able for damp locations strictive lighting power de lusive wiHUBB technology G INFORMA 2 – 50 COLORTEMP 30 3000K 2 – 50 COLORTEMP 30 3000K 40 4000K 50 5000K ULMENC L Low Lume H High Lume VL Very High SORIES EPARATELY) and Twist-Lock Plug Id Voit 1=120, 2=277) rad Twist-Lock Plug Id Voit 1=20, 2=277) rad Voit 1=20, 2=277) rad EV Pair Cable 10' Pair Cable 10' Pair	ensity codes y preinstalled L – – DISTI A AI M M W W DUTPUT DISTRIBUTION Alsle Medium Wide	M RIBUTION isle iedium ride P SIZE 2' 2' 2' 2' 2' 2' 2' 2' 2' 2'	FINISH The housin standard ir paint after adhesion p E E E E E C E C E C E C C C C C C C C	g, wireway, an matter grey p fabrication a rocess for max ED DRIVER EXEd Output D-10V Dimming 0-10V Dimming 12,950 12,950 12,950 14,350 27,750 14,350 27,750 13,900 27,000	nd end cap objester po objest with ximum dur U U 120 277 347 480 NOMINAL WATTS 143 281 425 142 281 422 142 281 425 143 281	Sare wder coat ability. U COLTAGE 120V-277V 120V 277V 347V 480V EFFICACY 91 88 89 101 99 98 98 97	F3C5 F3C10 F3C15 C6TL15 CP6TL20 WIH WG 051 LG2EM	EXAMPLE LLHP2- OPTIONS 3-Conductor Cord 5' 3-Conductor Cord 10' 3-Conductor Cord 10' 3-Conductor Cord 15 4 Cord and Twist-Lock Plug 15A (Add Volt 1=120, 2=277) 4 Cord and Twist-Lock Plug 20A (Add Volt 1=120, 2=277) WHUBS Enabled1 Wire Guard (factory installed) Occupancy Sensor 120-277 Single Reday Prewired for Dual-Lite LightGear® Inverter, 250 WA/ Watts (purchase separately) ²³	<u>50L-A-EL</u>

¹ In-Fixture Module Antenna adds 2" to overall fixture height at specific location. ² LG2EM is prewired for one LED array when applied to high (H) or very high (VL) lumen output. ³ LG Senes must be purchased from Dual-Lite as a separate system. Visit www.dual-lite.com for product details.

Page 1/3 Rev. 10/14/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel **864.678.1000** / Website **www.columbialighting.com**

Columbia

PHOTOMETRIC DATA

LUMINAIRE DATA

Luminaire	LLHP2-50-H-M-EDU LLHP Led High Bay, Industrial 11" x 24" LED with medium distribution optics		
Ballast	(2) TRC-152Q070DT		
Ballast Factor	1.00		
Lamp	LED		
Fixture Lumens	27,674		
Watts	281.20		
Mounting	Pendant		
Shielding Angle	0° = 90 90° = 90		
Spacing Criterion	0° = 0.99 90° = 0.98		
Luminous Opening in Feet	Length: 1.58 Width: .67 Height: 0.00		

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt
0-30	13444	48.6	48.6
0-40	2075.2	75.0	75.0
0-60	27307	98.7	98.7
0-90	27674	100.0	100.0
0-180	27674	100.0	100.0

ENERGY DATA

Total Luminaire Efficiency	100%
Total Lumens Per Watt	98
ANSI/JESNA RP-1-2004 Compliance	NONCOMPLIANT
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.45 based on 3000 hrs. and \$0.08 per KWH

LUMINAIRE DATA

Luminaire	LLHP2-50-H-W-EDU		
	LLHP Led High Bay, Industrial 11" x 24" LED with wide distribution optics		
Ballast	(2) TRC-152Q070DT		
Ballast Factor	1.00		
Lamp	LED		
Fixture Lumens	27,068		
Watts	281.00		
Mounting	Pendant		
Shielding Angle	$0^\circ = 90$ $90^\circ = 90$		
Spacing Criterion	0° = 1.36 90° = 1.36		
Luminous Opening in Feet	Length: 1.58 Width: .67 Height: 0.00		

LI HP3-50-H-A-EDU

 $\begin{array}{l} 281.40\\ \hline \text{Pendant}\\ 0^\circ = 90 \quad 90^\circ = 90\\ 0^\circ = 0.94 \quad 90^\circ = 0.60\\ \hline \text{Length: } 1.83\\ \hline \text{Width: } .77 \end{array}$

Height: 0.00

1.00 LED

24,896 281.40

LLHP3-30-H-A-EDU LLHP Led High Bay, Industrial 11" x 24" LED with aisle distribution optics (2) TRC-152Q070DT

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt
0-30	6376	23.6	23.6
0-40	11167	41.3	41.3
0-60	23257	85.9	85.9
0-90	27068	100.0	100.0
0-180	27068	100.0	100.0

ENERGY DATA

Total Luminaire Efficiency	100%
Total Lumens Per Watt	98
ANSI/IESNA RP-1-2004 Compliance	NONCOMPLIANT
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.50 based on 3000 hrs. and \$0.08 per KWH

ZONAL LUMEN SUMMARY

15240

Total Lumens Per Watt ANSI/IESNA RP-1-2004 Compliance Comparative Yearly Lighting Energy Cost per 1000 Lumens

0-40

0-90 24836

0-60 20981

ENERGY DATA Total Luminaire Efficiency

 Zone
 Lumens
 % Lamp
 % Fixt.

 0-30
 11276
 45.3
 45.3

0-180 24896 100.0 100.0

61.2

84.3

99.8

61.2

84.3

99.8

100%

\$2.70 based on 3000 hrs. and \$0.08 per KWH

88 NONCOMPLIANT

Test 5763 Test Date 9/14/12

INDOOR CANDELA PLOT 180 165 150 135 20200 120 10100 105 90 75 10100 60 20200 0 15 30 45 Horiz 0-180 0.0 45.0 90.0 LED / LLHP

Page 2/3 Rev. 10/14/14

LUMINAIRE DATA

Luminaire

Ballast

Ballast Factor Lamp Fixture Lumens Watts Mounting

Mounting Shielding Angle Spacing Criterion Luminous Opening in Feet

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com HUBBELL Lighting

Columbia LIGHTING

LUMINAIRE DATA

Luminaire

Ballast Factor

Ballast

LLHP 2' or 3' LED Premium High Bay

LLHP3-50VL-A-EU LLHP Led High Bay, industrial 11" x 36" led with aisle distribution optics (3) PISE-Z2028 1.00 LED Lamp Fixture Lumens 37937 424.60 Watts $\begin{array}{l} 424.60\\ \hline Pendant\\ 0^\circ = 90 \quad 90^\circ = 90\\ 0^\circ = 0.52 \quad 90^\circ = 0.85\\ \hline Length: 0.79\\ \hline Width: 3.00 \end{array}$ Mounting Shielding Angle Spacing Criterion Luminous Opening in Feet Height: 0.02

DIMENSIONAL DATA Cross Section LLHP2, LLHP3 Top View LLHP2 Top View LLHP3 -113/8-> -113/8-113/8--> > A A 0 0 ο. 0 O 91/8 245/16 361/4 ۷ NOTE: All dimensions are in inches; dimensions and specifications are subject to change without notice. Please consult factory or check sample for verification.

Page 3/3 Rev. 10/14/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com

HUBBELL C

LED / LLHP

84

ZONAL LUMEN SUMMARY

16673

22413

0-30

0-40

0-90 37858

0-60 32116

0-180 37937

ENERGY DATA

Total Luminaire Efficiency

ANSI/JESNA RP-1-2004 Compliance Comparative Yearly Lighting Energy Cost per 1000 Lumens

Total Lumens Per Watt

Zone Lumens % Lamp % Fixt.

43.9

59.1

84.7

99.8

100.0

43.9

84.7

99.8

100.0

100%

NONCOMPLIANT

\$2.70 based on 3000 hrs. and \$0.08 per KWH

89

59.1

A3. Columbia LTRE 24

Columbia LIGHTING	2' × 4' Transition [®] LED Enclosed	High Efficiency Arch	TRE24 itectural Lens
EIGHTING EVALUATE: EVALUATE: EVALUATE: EVALUATE: EVALUATE	2' × 4' Transition® LED Enclosed PROJECT INFORMATION Project Name Catalog No. CONSTRUCTION Luminaire housing and end caps are die formed code gauge cold rolled steel. Reflector is stiffened with linear forms, profiled to a precision curve. High transmission extruded azvijle endosed bene fratures linear prisms custom frost for high efficacy without pixelation. SHIELDING Thermoplastic light seals snap into the housing at both ends of the lens to prevent light leads. Lens hinges down for easy access to LED module and electrical components. Optional gasketing available to surround the lamp cavity (standard when Wet Label option is ordered). FINISH All reflectives unfaces are finished after fabrication with unique formula high reflectivity matte white paint for soft, uniform indirect illumination. Optional	CEILING COMPATIBILIT Luminaire fits recessed exposed G integral NEC compliant T- bar clips. placed in SIdG fid (SG) style ceilin above ceiling plane. A Flange KR (f for recessed hard ceiling applicatic option allows suspension below CERTIFICATION All luminaires are built to ULT598 a bear appropriate CAA labels. Dam; IC fabel standard. Wet location fits configurations?: Emergency-equij UL 924 and Dry Location unless spi LM70, LM80, and TM21 industry st consortium ⁶ /LCQ qualified. Plear website for specific product qualifi	Type Type Date Ty Gate Ty Tid ceilings (6); four are standard. Can be gwith regress ¾" "Ky accessory is available ons. Surface Mount (SM) lifing plane. Cable Moun ow ceiling plane. and 2108 standards, and location is standard. ing available on all poed fixtures tabeled ecified. Adheres to andards. DesignLights serefer to the DLC ications at
Fixed output, step dimming or 0-10V dimming drivers Electrical components accessible from below the ceiling with modular replaceability DesignLights Consortium ⁶ (DLC) qualified Industry's only QR code for easy performance verification and future upgrade capability Available with exclusive wiHUBB technology preinstalled Five year warranty	on exposed painted surfaces. INSTALLATION An access plate is furnished with each luminaire for fast wiring access without the necessity to open the fixture or wireway.	WARRANTY Five year warranty (Terms and Con	rditions apply).
		XAMPLE LTRE24-35M	LG-RFA-ESDU
MODEL COLOR CEILING	GTYPE SHIELDING VOLTAGE	OPTIONS	5

			-			~ ~				
MODEL	COLOR		CEILIN	NG TYPE	SHIEL	DING	VOLTAG	iE		OPTIONS
LTRE Transition [®]	PERATURE		G Gric	d Lay-in ¹	RFA Ribbed	Frosted	U 120V-	277V C388	3-WireFlex	
LED Enclosed 30	3000K		SM Surf	face Mounit	Acrylic			(488	4-Wire Flex	
Architectural 35	3500K		CM Cab	ile Mount ²				(588	5-WireFlex	
Lens 40	4000K		torrestant contractor					GLR	Fast Blow Fu	lse
50	5000K							ELL14	Emergency	Battery Pack Installed, 1400 Lumens ⁴⁶⁷⁹
								NYC	NYC Compli	ant
SIZE		LUA	MEN OUTP	PUT			DRIVER	NYCU	NYC Compli	ant Union Label
24 2'×4'	ļ	LW L	ow Watt			E	Fixed Output	WIH	wiHLIBB En:	abled ^{6,8}
	1	ML N	Aedium Lume	en		ESD	Step Dimming ³	Δ.Μ.	antimicrobi	al® Daint ⁵
		HL H	igh Lumen			ED	0-10V Dimming	61	Lens Gasket	ing
		٧L	ery High Lum	nen				- мл	Wet Locatio	n1g n679
		XL E	xtra High Lur	men ¹⁰				EOD	End of Dow	/SM and CM only. Drovidos and wiring
¹ For drywall order FK24 accessories separately.			DD	ODUCT AVA				LUN	access for co	ontinuous row mounting.)
² Order hanger accessories separately.	-	6175	LUL ATM	UDUCT AVA	ILADILII T	LUMPH	_	INT	Intermediat	e (SM and CM only. Provides ends with
³ Can be converted to fixed output by tying hot leads	together.	JILE	PACKAGE	I LILMENS	WATTS	PER WAT	r T		wiring acces	ss for continuous row mounting.)
*For compatibility with Dual-Lite LiteGear® inverters installed battery pack contact Hubbell Lighting Ber installed battery pack.	in lieu of	74	TW	4275-4875	38	114-130				
⁵ Optional Antimicrobial® paint (AM option) resists by	acterial	24	M	4650 5204	41	112 120				
growth on exposed painted surfaces.		24		CC7C 247C	10	102 104				ACCESSORIES
⁶ Not available with Surface Mount ceiling types.		24	11	7006/04/0	52	100-120			(OR	DER SEPARATELY)
² Not available with Cable Mount ceiling types. ⁸ In Fixture Module Antenna adds 2"to overall future.	shaiaht st	24	V L	1223-0230	07	109-124			FK24	$2' \times 4'$ Single Flange Kit (Shipped
power feed location.	: margine ac	24	AL	00066-0050	01	103-119				separately)
⁹ Wet Location not available with battery packs.	1	Nominai Lumens	i iumen range i varv accordino	represents 3000k a to color tempera	through SOLOK. tures and other fa	ictors.		CM48	Y25CF-KIT	48" Cable Mount Kit for 2' wide Cable Mount fixtures 3 Wire
¹⁰ 2 x4 XL not a vailable with through wiring	3	See spec	cific photometr	ric test(s).						mount incores, 5 wille
Page 1/3 Rev. 10/07/14										LED / LTRE24

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel **864.678.1000** / Website **www.columbialighting.com**

Columbia

2' × 4' Transition[®] LED Enclosed High Efficiency Architectural Lens

PHOTOMETRIC DATA

LUMINAIRE DATA

LUMINAIRE DATA

Luminaire

Ballast

Watts

Ballast Factor

Lamp Fixture Lumens

Mounting Shielding Angle Spacing Criterion

Luminous Opening in Feet

LUMINAIRE DATA

Luminaire

Ballast Ballast Factor

Watts

Lamp Fixture Lumens

Mounting Shielding Angle Spacing Criterion Luminous Opening in Feet

Luminaire	LTRE24-35MLG-RFA-EDU LTRE Transition Enclosed LED, Recessed Architectural		
	2 x 4 led with frosted linear prismed lens		
Ballast	EVERLINE D15CC55UNVT-C		
Ballast Factor	1.00		
Lamp	LED		
Fixture Lumens	4649		
Watts	41.40		
Mounting	Recessed		
Shielding Angle	0° = 90 90° = 90		
Spacing Criterion	0° = 1.19 90° = 1.30		
Luminous Opening in Feet	Length: 3.94 Width: 1.85 Height: 0.00		

LTRE24-35VLG-RFA-EDU LTRE Transition Enclosed LED, Recessed Architectural

2 x 4 led with frosted linear prismed lens

EVERLINE D23CC90UNVT-F

1.00

LED 7243

66.68 Recessed

Length: 3.94 Width: 1.85

Height: 0.00

1.00 LED

8353 81.23

0° = 90 90° = 90 0° = 1.18 90° = 1.31

LTRE24-35XLG-RFA-EDU

Recessed $0^{\circ} = 90 \quad 90^{\circ} = 90$ $0^{\circ} = 1.19 \quad 90^{\circ} = 1.31$ Length: 3.94 Width: 1.85

Height: 0.00

LTRE Transition Enclosed LED, Recessed Architectural 2 x 4 led with frosted linear prismed lens EVERLINE D23CC90UNVT-F

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt.
0-30	1198	25.8	25.8
0-40	1961	42.2	42.2
0-60	3496	75.2	75.2
0-90	4649	100.0	100.0
0-180	4649	100.0	100.0

ENERGY DATA

ZONAL LUMEN SUMMARY

1886

3087

5502

7243

ENERGY DATA

Total Luminaire Efficiency

Total Lumens per Watt IESNA RP-1-1993 Compliance

Comparative Yearly Lighting Energy Cost per 1000 Lumens

0-30

0-40

0-90

0-60

Zone Lumens % Lamp % Fixt.

0-180 7243 100.0 100.0

26.0

42.6

76.0

100.0

26.0

42.6

100.0

100.0%

\$2.02 based on 3000 hrs. and \$0.08 per KWH

109 Non-Compliant

76.0

Total Luminaire Efficiency	100.0%	
Total Lumens per Watt	112	
IESNA RP-1-1993 Compliance	Non-Compliant	
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.12 based on 3000 hrs. and \$0.08 per KWH	

Test L071409302 Test Date 8/12/2014

Test L071409304 Test Date 8/13/2014

INDOOR CANDELA PLOT

Test L07 1409305 Test Date 8/13/2014

IND

Zone	Lumens	% Lamp	% Fixt.
0-30	2146	25.7	25.7
0-40	3513	42.1	42.1
0-60	6271	75.1	75.1
0-90	8353	100.0	100.0
0-180	8353	100.0	100.0

ZONAL LUMEN SUMMARY

ENERGY DATA

Total Luminaire Efficiency	100.0%
Total Lumens per Watt	103
IESNA RP-1-1993 Compliance	Non-Compliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.33 based on 3000 hrs. and \$0.08 per KWH

Page 2/3 Rev. 10/07/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel **864.678.1000** / Website **www.columbialighting.com** LED / LTRE24

HUBBELL Lighting

NOTE: All dimensions are in inches; dimensions and specifications are subject to change without notice. Please consult factory or check sample for verification.

Page 3/3 Rev. 10/07/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com

LED / LTRE24

A4. Columbia LTRE 22

	34 33 35 38 1995				2 ^ 2 11	ansitio		ciosed	підії і	inclei	icy inc	nitectural L
Led			ATC 0		PROJECT	INFORMA						
//		D			Project Nam	ie						Туре
14					Catalog No.						1	Date
Explosed high efficiency lens features linear prism acrylicand provides visual confort and high performance without pixelation of provides visual confort and high performance without pixelation and publicspaces. Enclosed lens protects against intrusion of contaminants thigh performance matte while paint standard. Optional Antimicrobial* paint (AM option) resists bacterial growth on exposed painted surfaces. East option and wet location listing available. Go(000 hour LEDs at L80 (upt to 150,000 projected life) for reduced life gryde maintenance costs Four LED color choices with excellent color consistency and 82 CRI. Controls compatible for code compliance and energy savings Electrical to typically meets most restrictive lighting power density codes. Electrical components accessible from below the ceiling with modular replaceability. DesignLights Consortium* (DLC) qualified. Industrys only QR code for easy performance verification and future upgrade capability. Available with excursive wiHUBB technology preinstalled.		on rooms, wth on eed life IRI	 CONSTRUCTION Luminaire housing and end caps are die formed code gauge cold rolled steel, Reflector is stiffened with linear forms, profiled to a precision curve. High transmission extuded acytic endosed lens features linear prisms custom frost for high efficacy without pixelation. SHELDING Thermoplastic light seals snap into the housing at both ends of the lens to prevent light leaks. Lens hinges down for easy access to LED modulu and electrical components. Optional gasketing available to surround the lamp cavity (standard when Wet Label option is ordered). FINISH All reflective surfaces are finished after fabrication with unique formula high reflectivity matte white paint for soft, uniform indirect illumination. Optional Antimicrobial* paint (AM option) resists bacterial growth on exposed painted surfaces. INTALLATION An access plate is furnished with each luminaire for fast wiring access without the necessity to open the fixture or wireway. Certification Certification Certification All definition of the action label at the necessity to open the fixture or wireway. Certification Construing access without the necessity to open the fixture or wireway. Construing access without the necessity to open the fixture or wireway. Certification Construing access without the necessity to open the fixture or wireway. Certification Current of the necessity to open the fixture or wireway. Certification Construing the first or soft open the fixture or wireway. Certification Certification Certification Certification Certification Certification Certification Certification<			LITY d Grid ceilings (G); four lips are standard. Can b ling with regress %" it (FK) accessory is ava ations. Surface Mount below ceiling plane. Ca Juct suspension below 98 and 2108 standard b. S. IC Label standard. D. cation listing available equipped fixtures labe specified. Adheres to y standards. DesignLig lease refer to the DLC alifications at lesignLights.org. Conditions apply).						
ORDERIN		ATION							EXAMI	PLE LT	RE22-3	5HLG-RFA-E
	G INFORN	40	HL		<u> </u>	RFA	– ED		EXAMI	PLE LTF	RE22-3	5HLG-RFA-ES
DRDERIN LTRE MODEL ITRE Transition® LED Endosee High Efficien Architectural Lens	IG INFORM 22 - 1 30 29 35 40 50 50 512E 22 2'×2'	40 COLOR APERATURE 3000K 3500K 4000K 5000K LU ML HL VL	HL MEN OU Medium I High Lum Very High	CEILING G Grid La SM Surfac CM Cablei ITPUT Lumen Ien ILumen	G – TYPE Mount Mount ²	RFA SHIELDIN A Ribbed Fros Acrylic	ED C Eted ESD ED ED ED ED ED ED ED ED ED E	VOL U 1 ER Jutput Imming ³ Dimming	EXAMI U IAGE 20V-277V	C388 C488 C488 GLR ELL14 NYCU WIH AM	RE22-3: OPTIC 3-WireFlex 4-WireFlex 5-WireFlex FastBow FL Emergency Installed, 14 NYC Complit. NYC Complit. WIHUBB Ena Antimicobi	SHLG-RFA-ES INS Battery Pack 00 Lumens ⁴⁷³ ant unt, Union Label bed ⁴⁷ aj ^e Paint ⁵
DRDERIN LTRE MODEL JRE Transition® LEDEnclosed High Effiden Architectural Lens	IG INFORM 22 - 4 30 9 35 40 50 SIZE 22 22 2'×2'	40 COLOR APERATURE 3000K 3500K 4000K 5000K LU ML HL VL	HL MEN OU Medium I High Lum Very High	CELLING G Grid La SM Surfac CM Cablei ITPUT .umen .umen .LUMEN PACKAGE	G – TYPE Mount ² RODUCT AVA NOMINAL	RFA SHIELDIN A Ribbed Fros Acrylic	ED C C C C C C C C C C C C C	VOL U 1 ER Dutput imming ³ Dimming	EXAMI U AGE 20V-277V	C388 C488 C488 C588 GLR ELL14 NYCU WIH AM G1 WL EOR	RE22-3: OPTIC 3-WireFlex 4-WireFlex 5-WireFlex Fast Blow FL Emergency Installed, 14 NYC Compli. wiHUBB Ena Antimicrobi Lens Gaskett Wet Locatio End ofRow	SHLG-RFA-ES INS Sattery Pack 00 Lumens ⁴⁷⁹ ant Union Label bled ⁴⁷ 41° Paint ⁶ ng ng ⁷²⁹ Ma and CM only.
CRDERIN LTRE MODEL TRE Transition® LED Endosed High Effiden Architectural Lens (ORD FK22 ZM48Y2SC3F-KIT	CESSORIES CESSORIES	40 COLOR APERATURE 3000K 35000K 4000K 5000K 5000K LU ML HL VL Kit (Shipped to 2' wide 3 Wire	HL HL MENOL Medium I High Lum High Lum SIZE 22 22 22 22 22 22 22 22 22 22 22 22 22	CEILING G Grid Li SM Surfac CM Cablei Lumen iclumen PACKAGE ML HL ULUMEN rang Will vary acc will vary acc	G – TYPE Mount Wount ² RODUCT AVAA NOMINAL LUMENS 2975-3100 3625-3875 4276-4925 cerepresents 3000 ording to color te	RFA SHIELDIN A Ribbed Fros Acrylic ILABILITY NOMINAL WATTS 30 36 44 500 mperatures and	ED ED E DRIV E Fixed ED E D E D C	VOL U 1 Dutput Imming ³ Dimming	EXAMI U AGE 20V-277V	C388 C488 C488 C488 C488 C388 C488 C488	RE22-3: OPTIC 3-WireFlex 4-WireFlex 5-WireFlex Fast Blow FL Emergency Installed, 14- NYC compli- wiHUBE Enz Antunicrobi Lens Gaskett Wet Locatio End ofRow Provides enz continuous Intermediate Provides enz continuous Intermediate	SHLG-RFA-ES INS Sattery Pack 00 Lumens ⁴⁷⁹ Int Int, Union Label bied ⁸⁷ I ^M Paint ⁶ Ing I ^M Paint ⁶ Ing I ^M SM and CM only. I Wiling access for Very mounting.) a (SM and CM only. I with wiring I thunous row

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel **864.678.1000** / Website **www.columbialighting.com**

* For Cable Mount a 2" x 3" access plate with (4) %" KOs provided in place of Mounting Collar shown.

NOTE: All dimensions are in inches; dimensions and specifications are subject to change without notice. Please consult factory or check sample for verification.

Page 3/3 Rev. 10/07/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com

Columbia LIGHTING

LTRE22 $\mathbf{2'}\times\mathbf{2'}$ Transition $^{\! 8}$ LED Enclosed High Efficiency Architectural Lens

PHOTOMETRIC DATA

LUMINAIRE DATA

Luminaire	LTRE22-35MLG-RFA-EDU LTRE Transition Enclosed LED, Recessed Architectural		
	2 x 2 led with frosted linear prismed lens		
Ballast	VD EVERLINE D10CC55UNVT-C		
Ballast Factor	1.00		
Lamp	LED		
Fixture Lumens	2988		
Watts	29.23		
Mounting	Recessed		
Shielding Angle	0° = 90 90° = 90		
Spacing Criterion	0° = 1.17 90° = 1.30		
Luminous Opening in Feet	Length: 1.93 Width: 1.93 Height: 0.00		

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt.
0-30	803	26.9	26.9
0-40	1308	43.8	43.8
0-60	2307	77.2	77.2
0-90	2988	100.0	100.0
0-180	2988	100.0	100.0

ENERGY DATA

Total Luminaire Efficiency	100.0%
Total Lumens per Watt	102
IESNA RP-1-1993 Compliance	Non-Compliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.33 based on 3000 hrs. and \$0.08 per KWH

Test L081406001 Test Date 8/21/2014

LUMINAIRE DATA

Luminaire	LTRE22-35HLG-RFA-EDU				
	LTRE Transition Enclosed LED, Recessed Architectural				
	2 x 2 led with frosted linear prismed lens				
Ballast	EVERLINE D15CC55UNVT-C				
Ballast Factor	1.00				
Lamp	LED				
Fixture Lumens	3640				
Watts	36.17				
Mounting	Recessed				
Shielding Angle	0° = 90 90° = 90				
Spacing Criterion	0° = 1.16 90° = 1.29				
Luminous Opening in Feet	Length: 1.93 Width: 1.93 Height: 0.00				

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt.
0-30	982	27.0	27.0
0-40	1597	43.9	43.9
0-60	2805	77.1	77.1
0-90	3640	100.0	100.0
0-180	3640	100.0	100.0

ENERGY DATA

Total Luminaire Efficiency	100.0%
Total Lumens per Watt	101
IESNA RP-1-1993 Compliance	Non-Compliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.38 based on 3000 hrs. and \$0.08 per KWH

Test L071409403R01 Test Date 8/11/2014

INDOOR CANDELA PLOT

LUMINAIRE DATA

Luminaire

Ballast	D15CC55UNVT-C			
Ballast Factor	1.00			
Lamp	LED			
Fixture Lumens	4278			
Watts	43.80			
Mounting	Recessed			
Shielding Angle	0° = 90 90° = 90			
Spacing Criterion	0° = 1.16 90° = 1.30			
Luminous Opening	Length: 1.93			
in Feet	Width: 1.93			
	Height: 0.00			

LTRE22-35VLG-RFA-EDU LTRE Transition Enclosed LED, Recessed Architectural

2 x 2 led with frosted linear

ZONAL LUMEN SUMMARY

Zone	Lumens	% Lamp	% Fixt
0-30	1152	26.9	26.9
0-40	1875	43.8	43.8
0-60	3300	77.1	77.1
0-90	4278	100.0	100.0
0-180	4278	100.0	100.0

ENERGY DATA

Total Luminaire Efficiency	100.0%
Total Lumens per Watt	98
IESNA RP-1-1993 Compliance	Non-Compliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.47 based on 3000 hrs. and \$0.08 per KWH

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel **864.678.1000** / Website **www.columbialighting.com**

LED / LTRE22

Cittani HUBBELL

A5. Columbia LLT 24

Columbia

$\mathbf{2'}\times\mathbf{4'},$ LED Lensed Troffer with Advanced Solid State Technology

Tota

PHOTOMETRIC DATA

LUMINAIRE DATA

Luminaire	LLT24-35LWG-A12F-ESD LLT LED, Lensed Troffer 2 x 4 LED with frosted A12 lens		
Ballast	D255CQ42UNVA-A		
Ballast Factor	1.00		
Lamp	LED		
Fixture Lumens	3856		
Watts	40.80		
Mounting	Recessed		
Shielding Angle	0° = 90 90° = 90		
Spacing Criterion	0° = 1.18 90° = 1.17		
Luminous Opening in Feet	Length: 3.81 Width: 1.81 Height: 0.00		

COEFFICIENTS OF UTILIZATION (%)

RC	C 80					7()	50			0	
RW	70	50	30	10	70	50	30	10	50	30	10	0
1	109	105	100	97	106	102	99	95	98	95	92	85
2	100	92	85	80	97	90	84	79	87	82	77	72
3	92	81	74	67	89	80	73	67	77	71	66	61
4	84	73	64	58	82	71	64	57	69	62	57	53
5	5 78	65	57	50	76	64	56	50	62	55	50	46
6	72	59	51	44	70	58	50	44	56	49	44	41
7	67	54	45	39	65	53	45	39	52	44	39	37
8	63	49	41	35	61	49	41	35	47	40	35	33
9	59	45	37	32	57	45	37	32	44	37	32	30
10	55	42	34	29	54	42	34	29	41	34	29	27

RC = Effective Ceiling Cavity Reflectance RW = Wall Reflectance

LUMINAIRE DATA

Luminaire	LLT24-35MLG-A12F-ESD LLT LED, Lensed Troffer 2 x 4 LED with frosted A12 lens
Ballast	D310CQ50UNVA-A
Ballast Factor	1.00
Lamp	LED
Fixture Lumens	4696
Watts	51.40
Mounting	Recessed
Shielding Angle	0° = 90 90° = 90
Spacing Criterion	0° = 1.18 90° = 1.17
Luminous Opening in Feet	Length: 3.81 Width: 1.81 Height: 0.00

COEFFICIENTS OF UTILIZATION (%)

	RC		8	0		70				50			0	
	RW	70	50	30	10	70	50	30	10	50	30	10	0	
	1	109	105	100	97	106	102	99	95	98	95	92	85	
	2	100	92	85	80	97	90	84	79	87	82	77	72	
	3	92	81	74	67	89	80	73	67	77	71	66	61	
	4	84	73	64	58	82	71	64	57	69	62	57	53	
œ	5	78	65	57	50	76	64	56	50	62	55	50	46	
ĕ	6	72	59	51	44	70	58	50	44	56	49	44	41	
	7	67	54	45	39	65	53	45	39	52	44	39	37	
	8	63	49	41	35	61	49	41	35	47	40	35	33	
	9	59	45	37	32	57	45	37	32	44	37	32	30	
	10	55	42	34	29	54	42	34	29	41	34	29	27	

RC = Effective Ceiling Cavity Reflectance ~ RW = Wall Reflectance

Page 2/3 Rev. 06/30/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com

	Test 5602	Test Date 8/17/12
ENERGY DATA		

Total Luminaire Efficiency	100%
Total Lumens Per Watt	95
ANSI/IESNA RP-1-2004 Compliance	Noncompliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.55 based on 3000 hrs. and \$0.08 per KWH

AVG. LUMINANCE (Candela/Sq. M.)

		0.0	22.5	45.0	67.5	90.0
	0	2530	2530	2530	2530	2530
	30	2320	2320	2305	2293	2284
gle	40	2113	2109	2086	2062	2054
An	45	1982	1973	1947	1920	1916
DCe	50	1836	1826	1797	1773	1770
nai	55	1687	1671	1641	1622	1622
E	60	1539	1523	1495	1486	1489
Je L	65	1411	1392	1367	1378	1389
rag	70	1314	1296	1278	1314	1337
Ave.	75	1266	1248	1242	1303	1345
	80	1267	1258	1285	1366	1420
	85	1361	1343	1415	1558	1594

Test 5608 Test Date 8/20/12

ENERGY DATA	
Total Luminaire Efficiency	100%
Total Lumens Per Watt	91
ANSI/IESNA RP-1-2004 Compliance	Noncompliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.61 based on 3000 hrs. and \$0.08 per KWH

AVG. LUMINANCE (Candela/Sg. M.)

		0.0	22.5	45.0	67.5	90.0
	0	3081	3081	3081	3081	3081
	30	2824	2824	2808	2792	2783
gle	40	2573	2569	2543	2512	2504
An	45	2413	2406	2373	2342	2335
ЪСе	50	2236	2224	2188	2159	2156
nai	55	2055	2036	2000	1976	1976
m	60	1876	1854	1820	1807	1814
le L	65	1717	1699	1666	1677	1692
rag	70	1602	1579	1556	1597	1625
Ave	75	1538	1520	1514	1586	1628
	80	1546	1528	1564	1663	1726
	85	1666	1630	1719	1881	1934

LED / LLT24

HUBBELL (Crimin)

92

ZONAL LUMEN SUMMARY

1223

1946

0-60 3171 82.2

3856

INDOOR CANDELA PLOT

0-40

0-90

850

0.0

0-40 2370

0-90

1000

2000

0.0 -

 Zone
 Lumens
 % Lamp
 % Fixt.

 0-30
 1223
 31.7
 31.7

0-180 3856 100.0 100.0

31.7

50.5

100.0

Horiz 0-180

90.0 --

- 45.0

ZONAL LUMEN SUMMARY
 Zone
 Lumens
 % Lamp
 % Fixt.

 0-30
 1489
 31.7
 31.7

0-60 3862 82.2

4696

INDOOR CANDELA PLOT

50.5

100.0

30 Horiz 0-180

90.0

- 45.0 --

0-180 4696 100.0 100.0

50.5

82.2

100.0

31.7

50.5

82.2

100.0

LLT24

Page 3/3 Rev. 06/30/14

© 2014 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com LED / LLT24

A6. Columbia LLT 22

Columbia

$\mathbf{2'}\times\mathbf{2'},$ LED Lensed Troffer with Advanced Solid State Technology

ENERGY DATA Total Luminaire Efficiency

PHOTOMETRIC DATA

LUMINAIRE DATA

Luminaire	LLT22-35MLG-A12F-ESD					
	LLT LED, Lensed Troffer					
	2 x 2 LED with frosted A12 lens					
Ballast	D185CQ30UNVA-A					
Ballast Factor	1.00					
Lamp	LED					
Fixture Lumens	2520					
Watts	26.70					
Mounting	Recessed					
Shielding Angle	0° = 90 90° = 90					
Spacing Criterion	0° = 1.16 90° = 1.18					
Luminous Opening in Feet	Length: 1.83 Width: 1.83 Height: 0.00					

COEFFICIENTS OF UTILIZATION (%)

RC		8	0		70				50			0	
R₩	70	50	30	10	70	50	30	10	50	30	10	0	
1	109	105	101	97	107	102	99	95	98	95	92	85	
2	100	92	86	80	97	90	84	79	87	82	77	73	
3	92	82	74	68	89	80	73	67	77	71	66	6	
4	84	73	65	58	82	72	64	58	69	62	57	53	
5	78	66	57	51	76	65	57	50	63	55	50	4	
6	72	60	51	45	70	59	50	45	57	50	44	4	
7	67	54	46	40	66	53	45	40	52	45	39	3	
8	63	50	41	36	61	49	41	36	48	41	36	3	
9	59	46	38	32	57	45	38	32	44	37	32	30	
10	55	42	35	30	54	42	35	30	41	34	29	2	

 $[\]textbf{RC} = \textit{Effective Ceiling Cavity Reflectance } \textbf{RW} = \textit{Wall Reflectance}$

LUMINAIRE DATA

Luminaire	LLT22-35HLG-A12F-ESD						
	LLT LED, Lensed Troffer						
	2 x 2 LED with frosted A12 lens						
Ballast	D255CQ42UNVA-A						
Ballast Factor	1.00						
Lamp	LED						
Fixture Lumens	3251						
Watts	35.50						
Mounting	Recessed						
Shielding Angle	0° = 90 90° = 90						
Spacing Criterion	0° = 1.16 90° = 1.18						
Luminous Opening in Feet	Length: 1.83 Width: 1.83 Height: 0.00						

COEFFICIENTS OF UTILIZATION (%)

	RC	_	8	0		70				50			0	
	RW	70	50	30	10	70	50	30	10	50	30	10	0	
	1	109	105	101	97	107	102	99	95	98	95	92	85	
	2	100	92	86	80	97	90	84	79	87	82	78	72	
	3	92	82	74	68	89	80	73	67	77	71	66	62	
	4	84	73	65	58	82	72	64	58	69	62	57	53	
œ	5	78	66	57	51	76	65	57	51	63	55	50	47	
Ä	6	72	60	51	45	70	59	50	45	57	50	44	41	
	7	67	54	46	40	66	53	45	40	52	45	39	37	
	8	63	50	42	36	61	49	41	36	48	41	36	33	
	9	59	46	38	32	57	45	38	32	44	37	32	30	
	10	55	42	35	30	54	42	35	30	41	34	29	27	
RCR	R = Ro	om Cavi	ty Ratio						50 16			8 8		

RC = Effective Celling Cavity Reflectance ~ RW = Wall Reflectance

Page 2/3 Rev. 12/30/13

© 2013 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com

LED / LLT22

(internet	HUBBELL Lighting

Test 5352 Test Date 7/6/12

ENERGY DATA	
Total Luminaire Efficiency	100%
Total Lumens Per Watt	92
ANSI/IESNA RP-1-2004 Compliance	Noncompliant
Comparative Yearly Lighting Energy Cost per 1000 Lumens	\$2.67 based on 3000 hrs. and \$0.08 per KWH

AVG. LUMINANCE (Candela/Sg. M.)

		0.0	22.5	45.0	67.5	90.0
	0	4477	4477	4477	4477	4477
	30	4008	4027	4068	4083	4090
gle	40	3575	3600	3650	3680	3692
An	45	3318	3336	3391	3423	3436
ЪС	50	3040	3060	3105	3140	3150
inal	55	2768	2779	2819	2852	2869
Ē	60	2520	25.26	2539	2571	2597
le L	65	2350	2327	2312	2335	2365
rag	70	2255	2218	2143	2161	2199
Ave	75	2285	2211	2086	2086	2111
	80	2425	2314	2166	2110	2147
	85	2729	2692	2434	2287	2360

 Zone
 Lumens
 % Lamp
 % Fixt.

 0-30
 1049
 32.3
 32.3

0-180 3251 100.0 100.0

51.2

82.8

100.0

30 Horiz 0-180 0.0 _____ 45.0 _____ 90.0 ____

51.2

82.8

100.0

1665

2690

3251

INDOOR CANDELA PLOT

0-40

0-60

700

1400

0-90

Tot	alLur	nens Pe	94			
AN: Cor	SI/IES mplia	NA RP-1 nce	Yes - VDT Normal Use			
Cor Ene	mpara rgy C	ative Yei lost per	arly Ligh 1000 Lu	ting mens	\$2.58 3000 h	based o ars. and per KWF
					100100	pc:
AV	G. L 	UMIN 0.0	ANCE	(Cande 45.0	ela/Sq. /	vi.) I 90.0
AV	G. L	UMIN 0.0 3465	ANCE 22.5 3465	(Cande 45.0 3465	ela/Sq. / 67.5	VI.) 90.0 3465

	0.0	22.5	45.0	67.5	90.0
0	3465	3465	3465	3465	3465
30	3106	3121	3151	3162	3170
40	2773	2794	2832	2853	2862
45	2573	2591	2632	2650	2664
50	2355	2370	2410	2430	2445
55	2146	2157	2185	2208	2225
60	1961	1961	1974	1993	2012
65	1825	1810	1795	1810	1833
70	1757	1729	1663	1682	1710
75	1763	1714	1627	1614	1639
80	1888	1795	1684	1629	1666
85	2102	2065	1881	1733	1807

Zone	Lumens	% Lamp	% Fixt
0-30	812	32.2	32.2
0-40	1289	51.2	51.2
0-60	2084	82.7	82.7
0-90	2520	100.0	100.0
0-180	2520	100.0	100.0

INDOOR CANDELA PLOT

550

95

LLT22

Test 5366 Test Date 7/9/12

100%

C.

Page 3/3 Rev. 12/30/13

© 2013 Columbia Lighting, a division of Hubbell Lighting, Inc. Specifications subject to change without notice. 701 Millennium Blvd. Greenville, SC 29607 / Tel 864.678.1000 / Website www.columbialighting.com LED / LLT22

HUBBELL

A7. Finelight HPR-HO 24

DESCRIPTION

HPR-LED is a highly effective recessed luminaire delivering excellent visual comfort and outstanding performance for offices, schools, healthcare, and retail applications. Advanced optical designs make HPR-LED a powerful solution for low-ceiling applications and eliminate the shadows common to other LED recessed products. HPR-LED RoHS compliant.

GLARE-FREE ILLUMINATION: A glare-free experience is attained with midpowered LEDs properly distributed and paired with a precise diffuser to eliminate pixilation.

100% SERVICEABLE FROM BELOW: The light engine and driver can be easily changed from below ceiling – and it's simple to install.

THERMAL MANAGEMENT: Mid-powered LEDs allow heat to be fully dissipated without the need for additional heat sinks.

ORDERING GUIDE

Sample Number: HPR - A - 2x4- DCO - LED-SO - 4000K - 277V - SC - C1 - OBO

HPR + F + 2x4 + DCO+ LED+HO + 4000K + 120V + SC + C1 + OBD Finelite Series HPR
* S0 = Standard Output 3403 lumens (3000K), 3786 lumens (3500K), 3721 lumens (4000K) VH0 = Very High Output 6398 lumens (3000K), 6869 lumens (3500K), 7291 lumens (4000K)
Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com
Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data.

98

LED

PHOTOMETRY

HPR-LED-SO-A-DCO (2x4) 106.1 Lumens Per Watt 3786 Lumens/35.7 Watts CRI: 83 R9: 11

CCT: 3500K ITL LM79 Report 72704

	CA	NDLEF	OWE	RSUM	MARY	
	0.0	22.5	45	67.5	ACROSS	Flux
0	1505	1505	1505	1505	1505	
5	1502	1500	1493	1490	1487	142
10	1477	1474	1467	1462	1459	
15	1435	1430	1423	1415	1414	401
20	1377	1370	1363	1358	1353	
25	1304	1301	1291	1286	1280	595
30	1217	1211	1201	1202	1192	
35	1121	1112	1105	1098	1095	690
40	1007	1002	996	988	986	
45	892	884	877	872	868	679
50	772	769	759	760	749	
55	655	650	644	639	636	576
60	535	532	527	522	519	
65	420	419	416	408	406	412
70	314	319	308	308	298	
75	220	222	214	213	210	228
80	133	132	128	127	123	
85	57	55	55	51	49	63
90	0	0	0	0	0	

PHOTOMETRY HPR-LED-HO-A-DCO (2x4) 97.1 Lumens Per Watt 5585 Lumens/57.5 Watts CRI: 82

ITL LM79 Report 72830

R9:7

CCT: 3500K

Refer to www.finelite.com for additional photometry and product information.

	CA	NDLEF	OWE	R SUM	MARY	
	0.0	22.5	45	67.5	ACROSS	Flux
0	2256	2256	2256	2256	2256	
5	2250	2248	2239	2232	2229	212
10	2213	2208	2195	2184	2182	
15	2146	2139	2124	2109	2101	598
20	2058	2049	2029	2009	2001	
25	1948	1937	1908	1893	1882	880
30	1814	1805	1769	1758	1745	
35	1671	1652	1622	1600	1594	1016
40	1509	1486	1456	1439	1430	
45	1334	1310	1283	1266	1261	996
50	1151	1140	1107	1101	1087	
55	983	961	943	930	923	846
60	808	791	771	764	759	
65	639	620	604	600	592	607
70	477	471	449	453	437	
75	336	324	314	310	303	335
80	197	192	186	187	179	
85	86	85	78	73	71	93
90	0	0	0	0	0	

Consult www.finelite.com for 3000K and 4000K photometric reports.

SPECIFICATIONS

CONSTRUCTION: Fixture assembly constructed using dieformed 20-gauge cold-rolled steel housing and ends. All components are hard-tooled to tolerances of 0.010". Driver compartment is accessible from below. High quality, UV stabilized, weather-strip pile gasket with polypropylene backing. Optical system retained using hinged door frame assembly to provide easy access to driver compartment and for servicing from below without the need of tools. Seismic brackets are integrated into the fixture assembly. Additional wire entrances are positioned on the ends of the housing to allow easy wiring access for the installer.

REFLECTORS: Die-formed 20-gauge cold-rolled steel reflectors are finished in 96 LG high reflectance matte white powder coat paint.

OPTICAL SYSTEM: Optical system components include diffuser panels and a center optic element held in place with a frame constructed from die-formed cold-rolled steel. The diffusers are UV-stabilized and impact-resistant frosted virgin acrylic, 0.120" thick. They are either angled toward the center optic or parallel to the ceiling plane.

Available options for the center optic elements:

Diffuse Center Optic: UV-stabilized and impact-resistant frosted virgin acrylic.

Slotted Center Optic: Die-formed cold-rolled steel panel with 1/16" x 1/2" rectangular hole pattern. Virgin acrylic overlay.

Round Center Optic: Die-formed cold-rolled steel panel with precision-punched 3/32" round hole pattern arranged in staggered formation. Virgin acrylic overlay.

LIGHT ENGINE: 2X4 HPR-LED-SO (4000K) delivers 3721 lumens at 35.2W, 2X4 HPR-LED-SO (3500K) delivers 3786 lumens at 35.7W, 2X4 HPR-LED-SO (3000K) delivers 3403 lumens at 35.6W, 2X4 HPR-LED-HO (4000K) delivers 5928 lumens at 56.2W, 2X4 HPR-LED-HO (3500K) delivers 5585

lumens at 57.5W, 2X4 HPR-LED-HO (3000K) delivers 4880 lumens at 53.2W, 2x4 HPR-LED-VHO (4000K) delivers 7291 lumens at 74.1W, and 2x4 HPR-LED-VH0 (3500K) delivers 6869 lumens at 73.3W, 2x4 HPR-LED-VH0 (3000K) delivers 6398 lumens at 74.1W. Light engine is made up of high performance mid-powered LEDs and is designed to distrib-ute heat properly to maximize the life of the LED. LED color temperature: 3000K, 3500K or 4000K. CRI: 83, R9:7 (4000K-VH0), CRI:86, R9: 26 (3500K-VH0), CRI:87, R9: 32 (3000K-VH0), CRI:82, R9: 7 (3500K-H0), CRI:83, R9: 11 (3500K-S0), CRI:87, R9: 32 (3000K-H0), CRI:87, R9: 33 (3000K-SO).

LUMEN MAINTENANCE: HPR-LED is rated to deliver 90% lumen maintenance (L90) to 100,000 hours and 70% lumen maintenance (L70) to 168,000 hours.

DRIVER: High performance Constant Current Reduction LED driver. Driver is fully accessible from below the ceiling. *120/277v. Power Factor = 98.7% (4000K), 97.4% (3500K-HO, 94.4% (3500K-SO), 96.8% (3000K-HO), 94.2% (3000K-SO), 98.5% (3000K-VHO). Contact factory for Emergency Battery backups. Total harmonic distortion (THD) <20%. Input current (3000K): VHO - 0.626A @ 120V, 0.287A @277V: HO - 0.458A @120V. 0.216A @ 277V: SO -0.314A @ 120V, 0.141A @ 277V. Expected driver lifetime: 170,000 hours. Lutron driver options: Lut3W- 3-wire driver, LutES - EcoSystem driver, Lut2W - 2-wire driver.

*Driver can be wired as dimming or non-dimming. Dimming is compatible with 0-10v controls with a range of 100-10%.

ELECTRICAL: 120V or 277V prewired. Fixture and electrical components are ETL listed conforming to UL 1598 in the U.S.A., and Canada; ETL listed to certified CAN/CSA

C22.2 No. 250.0. In accordance with NEC Code 410.73 (G), this luminaire contains an internal driver disconnect. Optional Chicago plenum, and emergency battery backup available. IC Rated

INTEGRATED SENSORS: HPR-LED can be specified with integrated PIR (Passive Infared) December occupancy sensors or daylight sensors. Refer to Occupancy Sensor and Daylight Sensor tech sheets for more info

MOUNTING: Standard flange design works with most lay-in ceiling types. Integral pryout tabs secure luminaire to ceiling grid from above. Fixture offers tie-in locations for tie-wire on all corners. Consult local code for appropriate tie-wire recommendations. Drywall Kit available. Surface mount version available: refer to separate tech sheet.

AIR RETURN: Refer to 2x4 Air Return tech sheet for more info

FEED: 18-gauge wire standard.

FINISH: Housing and door assembly painted with 96 LG high reflectance matte white powder coat paint. Available in matte white only

WEIGHT: Maximum weight: 2x4 - 33 lbs.

LABELS: Fixtures and electrical components are FTL listed conforming to UL1598 in the USA, and Canada and ETL listed certified to CAN/CSA C22.2 No. 250.0. In accordance with NEC code 410.73 (G) this luminaire contains an internal driver disconnect. IC-Rated. Damp location.

WARRANTY: HPR-LED comes standard with a 10-year, warranty on all components. Optional accessories such as emergency battery packs are covered by their individual manufacturer warranties.

DLC Qualified: HPR-LED 2x4 with the VHO, HO, and SO lumen outputs and Diffuse Center Optic (DCO) is qualified under the Designlights Consortium program.

Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com

Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data.

BUY AMERICAN ACT OF 2009 COMPLIANT IC - RATED

High Performance Recessed (HPR-LED) 2x4

A8. Finelight HPR-HO 22

LED High Performance Recessed (HPR-LED) 2x2 **VELITE** High Output (HO) BUY AMERICAN ACT OF 2009 COMPLIANT HPR-LED Collection 2011 IES Progress Report Selection DESIGNLIGHTS lighting facts Date Qualified Luminaire Project Туре Comments HPR-A (Angled) HPR-F (Flat) HPR-LED uses patent pending technology

DESCRIPTION

HPR-LED is a highly effective recessed luminaire delivering excellent visual comfort and outstanding performance for offices, schools, healthcare, and retail applications. Advanced optical designs make HPR-LED a powerful solution for low-ceiling applications and eliminate the shadows common to other LED recessed products. HPR-LED RoHS compliant.

GLARE-FREE ILLUMINATION: A glare-free experience is attained with midpowered LEDs properly distributed and paired with a precise diffuser to eliminate pixilation.

100% SERVICEABLE FROM BELOW: The light engine and driver can be easily changed from below ceiling - and it's simple to install.

THERMAL MANAGEMENT: Mid-powered LEDs allow heat to be fully dissipated without the need for additional heat sinks.

ORDERING GUIDE

Sample Number: HPR - A - 2x2 - DCO - LED-HO - 4000K - 277V - SC - C1 - OBO

HPR + F + 2x2 + 0co + ED-H + 4000K + 120V + SC + C1 + OBD Finelite Series HPR
* HO = High Output 4969 lumens (4000K)
Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com
Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data.

PHOTOMETRY

HPB-LED-HO-A-DCO (2x2) 88.3 Lumens Per Watt

4969 Lumens/56 Watts

ITL LM79 Report 73598

CRI: 83

B9:13.3

CCT: 4000K

- Refer to

for additional

www.finelite.com

photometry and

product information

High Performance Recessed (HPR-LED) 2x2 High Output (HO)

IC - RATED

BUY AMERICAN ACT OF 2009 COMPLIANT

CANDLEPOWER SUMMARY

1298 1141

38

0

196

550

802

914

886

742

522

283

75

0.0 22.5 45 67.5 2087 2087 2087 2087 2073 2073 2067 2065 2036 2032 2024 2016 1966 1959 1950 1941

1876 1865 1856 1846 1764 1754 1738 1735 1633 1620 1603 1602 1489 1473 1459 1453

1330 1316 1301 1295 1173 1150 1137 1135

383

HPR-LED-HO-A-DCO (2x2) 84.5 Lumens Per Watt 4834 Lumens/57 Watts CRI: 85 R9-21 CCT

ITL

PHOTOMETRY

F	7		
IV	X		7
XX	Y	1	

1493 -- Refer to www.finelite.com for additional photometry and product information

Consult www.finelite.com for 3000K photometric reports.

SPECIFICATIONS LIGHT ENGINE: 2x2 HPR-LED High Output (3000k) delivers 4351 lumens at 59W. 2x2 HPR-LED High Output (3500K)

CONSTRUCTION: Fixture assembly constructed using dieformed 20-gauge cold-rolled steel housing and ends. All components are hard-tooled to tolerances of 0.010". Driver compartment is accessible from below. High quality, UV stabilized, weather-strip pile gasket with polypropylene backing. Optical system retained using hinged door frame assembly to provide easy access to driver compartment and for servicing from below without the need of tools. Seismic brackets are integrated into the fixture assembly. Additional wire entrances are positioned on the ends of the housing to allow easy wiring access for the installer.

854 695 833 677 821 666 825 668 826 668

REFLECTORS: Die-formed 20-gauge cold-rolled steel reflectors are finished in 96 LG high reflectance matte white powder coat paint.

OPTICAL SYSTEM: Optical system components include diffuser panels and a center optic element held in place with a frame constructed from die-formed cold-rolled steel. The diffusers are UV-stabilized and impact-resistant frosted virgin acrylic, 0.120" thick. They are either angled toward the center optic or parallel to the ceiling plane.

Available options for the center optic elements:

Diffuse Center Optic: UV-stabilized and impact-resistant frosted virgin acrylic.

Slotted Center Optic: Die-formed cold-rolled steel panel with 1/16" x 1/2" rectangular hole pattern. Virgin acrylic overlay, Round Center Optic: Die-formed cold-rolled steel panel with precision-punched 3/32" round hole pattern arranged in staggered formation. Virgin acrylic overlay.

LUMEN MAINTENANCE: HPR-LED 2x2 High Output is rated to deliver 70% lumen maintenance (L70) to 100,000 hours.

DRIVER: High performance LED driver. Driver is fully accessible from below the ceiling. *120/277v. Power Factor = 95.7% (4000K), 95.5% (3500K), 97.8% (3000K). Contact factory for Emergency Battery backups. Total harmonic distortion (THD) <20%. Input current (3500K): 0.503A @ 120VAC, and 0.238A @ 277VAC. Lutron driver options: Lut3W- 3-wire driver, LutES - EcoSystem driver, Lut2W - 2-wire driver.

*Driver can be wired as dimming or non-dimming. Dimming is compatible with 0-10v controls with a range of 100-10%

ELECTRICAL: Optional Chicago Plenum available. Contact factory

INTEGRATED SENSORS: Refer to Occupancy Sensor and Daylight Sensor tech sheets for more info.

MOUNTING: Standard flange design works with most layin ceiling types. Integral pryout tabs secure luminaire to ceiling grid from above. Fixture offers tie-in locations for tie-wire on all corners. Consult local code for appropriate tie-wire recommendations, Drywall Kit available, Surface mount version available; refer to separate tech sheet.

68

AIR RETURN: Refer to 2x2 Air Return tech sheet for more

FEED: 18-gauge wire standard

0

FINISH: Housing and door assembly painted with 96 LG high reflectance matte white powder coat paint. Available in matte white only. Optional adder: Antimicrobial paint is available. Contact factory.

WEIGHT: Maximum weight: 2x2 - 16 lbs.

LABELS: Fixtures and electrical components are ETL listed conforming to 11/1598 in the USA and Canada and ETL listed certified to CAN/CSA C22.2 No. 250.0. In accordance with NEC code 410.73 (G) this luminaire contains an internal driver disconnect. IC-Rated. Damp location.

WARRANTY: HPR-LED 2x2 HO comes standard with a 5year warranty on all components.

DLC QUALIFIED: HPR-LED 2x2 HO with the Diffuse Center Optic (DCO) is qualified under the DesignLights Consortium program.

Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com

Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data

A9. Finelight HP-4 ID

High Performance 4" aperture indirect/direct pendant (HP-4 ID) is a patent pending, linear LED luminaire for offices, schools, retail and healthcare facilities. Advanced optical designs and mid-powered LEDs deliver an efficient, long-lasting luminaire free of glare and socket shadows for single and continuous lighting applications. HP-4 ID is RoHS compliant.

DIMENSIONS & DIFFUSER

A glare-free experience is attained with midpowered LEDs properly distributed and paired with a precise diffuser to eliminate pixilation. Diffusers up to 12' in length.

INDIRECT/DIRECT DIMMING Uplight and downlight can be dimmed together or individually for maximum control over your space. 0-10v controls; range 100%-10%.

SEAMLESS ILLUMINATION The optical design features seamless lenses up to 12' in length and eliminates socket shadows at joints and corners.

ORDERING GUIDE

Sample Number: HP-4 ID - 32' - SO - HO - 3500K - TG- 120V - FA - SC - C1 - OBO

HP-4 ID 4' SC Finelite Series HP-4 ID Size (4', 8', 12' Multiples Standard) Uplight Engine (SO - Standard Output, HO - High Output) LED Color Temperature (3000K, 3500K, 4000K) Uplight Diffuser Option (TG - Top Glow, F - Flush)* Voltage (120V, 277V) Mounting (FA - Fully Adjustable) Circuiting (SC - Single Circuit, Auti-Circuit) Ceiling Type (C1 - 1" T-Bar, C2 - 9/16" T-Bar, C3 - Screw Slot, C4 - Hard Ceiling) Intergrated Sensor (OBO - Occupancy Sensor, OBD - Daylight, OBB - Both)		
* Top Glow Diffuser - Standard, Flush Uplight Diffuser - Optional	Protected by one or more US p	atents: D702,391; D702,390; D700,732
Finelite, Inc. • 30500 Whipple Road • Union City, CA 945	587-1530 • 510 / 441-1100 • Fax: 5	10 / 441-1510 • www.finelite.com
Due to continuing product improvements. Finelite reserves the right to	change specifications without notice. Please visit w	ww.finelite.com for most current data.

Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data.

LED

Protected by one or more US patents: D702,391; D702,390; D700,732

Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com

Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data

D 201-

BUY AMERICAN ACT OF 2009 COMPLIANT

FINELITE High Performance 4" Aperture (HP-4) - Indirect/Direct

- SPECIFICATIONS

CONSTRUCTION: Precision cut 6061-T6 extruded aluminum body. Internal joiner system, plug-together wiring standard.

 $\ensuremath{\text{ENDCAPS:}}$ Diecast aluminum endcap. Adds 0.25" to each end.

REFLECTORS: Die-formed 20-gauge cold-rolled steel reflectors are finished in 96 LG high reflectance matte white powder coat paint.

UPLIGHT DIFFUSER: Top Glow[™] lens frost white standard, 73% transmissive, 99% diffusion. Optional: Flush frost white snap-in lens, 73% transmissive, 99% diffusion.

DOWNLIGHT DIFFUSER: Flush frost white snap-in lens, 73% transmissive, 99% diffusion.

LIGHT ENGINE: HP-4 is available with a choice of four distributions. Both the Indirect and Direct distribution can be specified in Standard Output (SO) or High Output (HO). The chart below summarizes the lumen distribution and wattage. LM79 test reports are available for each distribution. Light engine is made up of high performance mid-powered LEDs and is designed to distribute heat properly to maximize the life of the LED.

LED COLOR TEMPERATURE:

Available in 3000K, 3500K, and 4000K. See chart below.

DRIVER: High Performance constant current reduction

LED Driver. 120/277v. Power factor = (3000K) 98% - HO/BO, 96.3% - HO/SO, 96.6% - SO/HO, 95% - SO/SO, (3500K) 97.7% - HO/SO, 96.3% - HO/SO, 97% - SO/HO, 94% - SO/SO and (4000K) 97.4% - HO/HO, 96.4% - HO/SO, 96.7% - SO/HO, 93.1% - SO/SO. Total Harmonic Distortion <20%. Input Current (120v): 3000K: HO/HO = 0.631A, HO/SO = 0.474A, SO/SO = 0.315A. 3500K: HO/HO = 0.632A, 4000K: HO/HO = 0.636A, HO/SO = 0.473A, SO/HO = 0.475A, SO/SO = 0.325A. Lutron driver options: Lut3W-3-wire driver, Lut2S - EcoSystem driver, Lut2W - 2-wire driver.

*Driver is wired for dimming or non-dimming. Dimming is compatible with 0-10v controls with a range of 100-10%. Separate dimming for uplight and downlight.

LUMEN MAINTENANCE: HP-4 ID is rated to deliver 90% lumen maintenance (L90) to 100,000 hours and 70% lumen maintenance (L70) to 168,000 hours.

ELECTRICAL: 120V or 277V prewired. Optional Adders: emergency circuits, emergency battery packs, step dimming drivers. Minimum of 3' fixture length for battery packs. Maximum of one battery pack per 3' of fixture. Contact factory.

Difference of the second secon

MOUNTING: (FA) 50" fully adjustable aircraft cable standard with safety stop. Contact factory for additional lengths up to 150".

FINISHES: Finelite Signal White standard. Optional Adders: 185 colors available from Tiger Drylac's RAL color chart.

SUPPORT CABLES: Plated steel cable and hardware.

FEED: Standard with one 18 gauge/5 conductor single circuit feed controlling uplight and downlight together (power and dimming). Specify dual feeds for independent control of uplight and downlight. 14 gauge feed cord used when fixture current exceeds 5 amps.

LENGTHS: Standard 4', 8', and 12' section lengths can be combined to make longer runs. Contact factory for lengths in increments of 1' or down to the 1/16 an inch.

WEIGHT: Fixture weight = 3.4 lb/ft.

LABELS: Fixture and electrical components are ETL listed conforming to UL 1598 in the U.S.A., and Canada; ETL listed to certified CAN/CSA C22.2 No. 250.0. Fixtures will bear ETL labels.

WARRANTY: HP-4 ID comes standard with a 10-year warranty on all standard components. Optional accessories such as emergency battery packs are covered by their individual manufacturer warranties.

LED Color Temperature (CRI & R9)					
	🔺 S0/S0 🛉	🔺 SO/HO 🛉	🛉 HO/SO 🛉	🔺 HO/HO 🛉	
3000K CRI/R9	87 /35	87/34	87/34	87 /34	
3500K CRI/R9	85/19	85/21	85/21	84/ 18	
4000K CRI/R9	83/9	83/10	84/10	83/9	

Lumen Distribution - Per 4' Section (4000K)					
	🔺 SO/SO 🛉	🛉 SO/HO 🕴	🛉 HO/SO 🛉	🛉 HO/HO 🛉	
Uplight lumens	1719	1697	3259	3188	
Uplight watts	18.2	18.3	37	37.2	
Lumens per watt	95	93	88	86	
Downlight lumens	1408	2735	1431	2725	
Downlight watts	18.2	37	18.3	37.2	
Lumens per watt	77	74	78	73	

Protected by one or more US patents: D702,391; D702,390; D700,732

Finelite, Inc. • 30500 Whipple Road • Union City, CA 94587-1530 • 510 / 441-1100 • Fax: 510 / 441-1510 • www.finelite.com

Due to continuing product improvements, Finelite reserves the right to change specifications without notice. Please visit www.finelite.com for most current data.

A10. Philips Ledalite 1201

Response Daylight Single Zone (DS)

O 2014 Koninklijke Philips N.V. All rights reserved. Specifications are subject to change without notice. www.philips.com/luminaires

1201 LAGQE.pdf10.14 page 1 of 3

JUMP SUSPENDED LED

Coefficients of Utilization (%)

Avg Luminance (cd/m2)

80

Ceiling Wall:

RCR

0 1

2 345

DIRECT, RIBBED MESOOPTICS LENS - SOLIDSIDE

Photometry

0% Up / 100% Down

Total Output	2383 lm		
Efficacy	85.7 lm/W		
сст	4018K		
CRI	82		
R9	17		
Distribution	0% Up / 100% Down		
Spacing Criteria (0/90/180*)	1.27/1.68/NA		

/alues per 4ft unit

Fixture photometry has been conducted by an NVLAP accredited testing laboratory in accordance with IESNA LM-79:2008

umen maintenance of the LEDs has een tested by the manufacturer in accordance with IESNA LM-80:2008

ES files for this and other chotometric options can be downloaded online at www.lightingproducts.philips.com

Candela Distribution

Vertical		Zonal				
Angle	0	225	45	675	90	Lumens
ō	754	754	754	754	754	0
5	753	750	768	772	772	74
15	737	760	834	902	926	237
25	691	754	906	1086	1081	411
35	592	668	829	946	984	501
45	456	505	601	665	689	453
55	33.8	356	391	414	423	346
65	214	219	227	233	236	225
75	99	99	108	105	106	110
85	21	22	22	19	16	25
90	0	0	0	0	0	0
95	0	0	0	0	0	0
105	0	0	0	0	0	0
115	0	0	0	0	0	0
125	0	0	0	0	0	0
135	0	0	0	0	0	0
145	0	0	0	0	0	0
155	0	0	0	0	0	0
165	0	0	0	0	0	0
175	0	0	0	0	0	0
180	0	0	0	0	0	0

0	Vertial	Но	rizontal Ar	de
ŏ	Angte	0	45	
ō	55	4970	57 49	-3
0	65	4271	45.30	- 22
0	75	322.6	3356	3
0	85	2082	2129	

Electrical Specifications

Input. V olta ge	1207
Input. P ow e r	27.8W
Input. Cunrent.	0.236A
Power Factor	0.981

© 2014 Koninklijke Philips N.V. All rights reserved. Specifications are subject to change without notice. www.philips.com/luminaires 1201 LAGQE.pdf10.14 page 2 of 3

DIRECT, RIBBED MESOOPTICS LENS - SOLIDSIDE

Options and Details

Optics & Styles

IUMP

SUSPENDED LED

Housing

20 gauge cold-rolled skeel precision formed and welded with optional perforated patterns.

Weight

Maximum 35lb/ft.

Optical System

While light emitted from the LED sources passes through a bicrores lens where it is internally relided and labrally relioused. Light is then redireded by Miro Silver reflectors and exits through the optical lens assembly. The optical lens assembly consists of an acytic extrusion with a ribbed profile holding a layer of MesoOptics film MesoOptics homogenies the light and color to ensure consistency while controlling high angle gare and oreating an optical bakwing distribution.

Standard Driver

Dimming 0-10V, 5-100% Output is Class 2 rated.

Lumen Maintenance

At an ambient temperature of 25°C, the LED lumen maintenance expediation is L $_{80}$ (12k) >60,000 hrs.

Mounting

Variable position mounts are supplied for each joint and end. The mounts can be installed up to 18° from joints and end loadions. Tamper-resistant airoraft cable grippers provide himtle vertical adjustment capability. Airoraft cable, grimp and cable gripper are independently tested to meet stringent safety requirements.

Joints

Self-aligning joining system with hands-free pre-joining wire access

Endcaps

Endraps are decast aluminum, available in luminous sculpted (standard) on flat (optional).

Electrical

Factory pre-wired to section ends with quick-wire connectors.

Approvals

Certified to UL, CSA and IES standards.

Finish

High quality powder coated, available in matte white, black or titanium silver: Other factory and custom colors available on request.

Environment

Rated for dry or damp locations in operating ambient temperatures 0.40°C (32-104°F). Ortain furniratic components may be adversely affeded by contaminants. Damage caused by sufur, divolme, performent based solutions on other contaminants are not covered under warranty.

Due to continuing product improvements, Philips Ledalite reserves the right to change the specifications without notice.

©2014 Koninklijke Philips N.V. All rights reserved. Specifications are subject to change without notice, www.philips.com/luminaires

1201LAGQE.pdf 10.14 page 3 of 3

Philips Lighting North America Corporation 200 Franklin Square Drive Somerset. NJ 08873 Phone: 855-486-2216 Philips Lighting Company 281 Hillmount Road Markham ON, Canada L6C 2S3 Phone: 800-668-9008

106

A11. GE DI6R

Lumination[™] LED Luminaires

es 📭

Product Dimensions:

Project name ____ Iowa Energy Center

7.0 in

Date _____ Type _____

DI6R (1000, 1500, 2000 lm)

DI6R - 6" Round Aperture

Downlights Powered by Infusion™

Product Description: Lumination DI Series LED downlights are powered by the Infusion™ downlight module for exceptional efficacy and color rendering. Designed for new construction applications, the DI6R is available in four color temperatures and five lumen packages, all with 90+ CRI. Matching custom engineered reflectors ensure a 45 degree cutoff. The twist-in Infusion DLM LED module allows for tool-free replacement and upgrade as LED technology advances, ensuring the lowest total cost of ownership.

Ordering Information: A complete fixture consists of a **Housing + Reflector** For shortest lead times, order **standard reflector options shown in bold**.

1. Housing – Example: DI6R209351V10

	6 R	20	935	<u>_1V</u>	10	
		U	UMINAIRE SKU			
INTERNAL CODE	FIXTURE TYPE	MODULE LUMEN OUTPUT		VOLTAGE		
DI	6R = 6 inch round downlght	10 = 1000 LM 15 = 1500 LM 20 = 2000 LM 30 = 3000 LM 40 = 4000 LM	927 = 90CRI, 2700K 930 = 90CRI, 3000K 935 = 90CRI, 3500K 940 = 90CRI, 4000K	1V = 120V 2V ³ = 277V	10 = 0-10V Dimmin Driver	(blank) = None EL ³ = Bodine Emergency Backup with Remote
. Reflecto	r - Example: RD	DI6RWSDWT				Test Switch
R	DIGR	N _	SP			MR
		R	EFLECTOR SKU			
REFLECTOR	HOUSING TYPE	BEAM SPREAD	REFLECTOR FINISH	REFLECT COLO	ror R	FLANGE FINISH
R = Reflector	DIGR = 6" Round	W = Wide N = Narrow	SD = Semi-diffused DF = Diffused SP = Specular	Blank= Clear WE ¹ = Whea PW ¹ = Pewte GO ¹ = Gold BL ² = Black WT = White	(no color) V t Paint	VT = White Paint IR = Match Reflector

imagination at work

Accessories

ACCESSORIES	DESCRIPTION CODE	PRODUCT
C-Channel Bar Hangers 25 1/4"	внз	94890

Ordering Notes:

- Wheat, pewter, and gold anodized reflector colors available in SD = Semi-Diffuse reflector finish only
- 2. Black anodized reflectors available
- in DF = Diffused finish only
- 3. 277V input, 1000 lumen version and all EL versions are not Energy Star certified.

Housing-Only Option

Lumination DI series fixtures without LED modules are stocked in GE distribution centers for quick shipment. These fixtures can be shipped directly to job sites for rough-in, and then later fitted with the appropriate Infusion LED module and trim kit to complete the installation. The unprecedented interchangeability and flexibility of the Infusion LED module makes the prospide LED module makes this possible.

With the Housing-Only option, distributors can:

- Order just the housings for stock, and then complete the order with the appropriate Infusion LED module and reflector at a later date Order the stocked housing, module, and reflector all at once for a complete fixture in under 2 weeks ٠
- .

For the housing-only option: A complete fixture consists of a Housing + Infusion LED Module + Reflector

6" Round Housing-Only Fixtures & LED Modules

Downlig	ht Housing-Only		Compatible LED Modules			
PRODUCT CODE	DESCRIPTION CODE	PRODUCT DESCRIPTION	PRODUCT CODE	DESCRIPTION CODE	PRODUCT DESCRIPTION	
83630 83632	DIGRLL1V10HO DIGRLL2V10HO	6" Round Housing-Only, 120V, Low Lumen Platform, 0-10V 6" Round Housing-Only, 277V, Low Lumen Platform, 0-10V	99607 99608 99609 99610 99612 99613 99614 99615 99615 99616 99617 99618	DLM1000/927 DLM1000/930 DLM1000/935 DLM1000/940 DLM1500/937 DLM1500/930 DLM1500/935 DLM1500/940 DLM2000/927 DLM2000/930 DLM2000/930 DLM2000/940	1000 LM, 90 CRI, 2700K 1000 LM, 90 CRI, 3000K 1000 LM, 90 CRI, 3500K 1000 LM, 90 CRI, 4000K 1500 LM, 90 CRI, 2700K 1500 LM, 90 CRI, 3000K 1500 LM, 90 CRI, 3000K 2000 LM, 90 CRI, 2700K 2000 LM, 90 CRI, 3000K 2000 LM, 90 CRI, 3500K 2000 LM, 90 CRI, 4000K	
83633 83638	DI6RHL1V10HO DI6RHL2V10HO	6" Round Housing-Only, 120V, High Lumen Platform, 0-10V 6" Round Housing-Only, 277V, High Lumen Platform, 0-10V	99619 99620 99621 99622 99623 99623 99624 99625 99626	DLM3000/927 DLM3000/930 DLM3000/935 DLM3000/940 DLM4000/927 DLM4000/930 DLM4000/935 DLM4000/940	3000 LM, 90 CRI, 2700K 3000 LM, 90 CRI, 3000K 3000 LM, 90 CRI, 3500K 3000 LM, 90 CRI, 4000K 4000 LM, 90 CRI, 2700K 4000 LM, 90 CRI, 3500K 4000 LM, 90 CRI, 4000K	

6" Round Stocked Reflectors

PRODUCT CODE	DESCRIPTION CODE	PRODUCT DESCRIPTION
93988	RDIGRNSDMR	6" Round Reflector, Narrow Distribution, Semi-Diffuse, Polished Flange
93989	RDIGRNSDWT	6" Round Reflector, Narrow Distribution, Semi-Diffuse, White Flange
93990	RDIGRWSDMR	6" Round Reflector, Wide Distribution, Semi-Diffuse, Polished Flange
93991	RDIGRWSDWT	6" Round Reflector, Wide Distribution, Semi-Diffuse, White Flange

Photometric Data: Lumination[™] DI6R Series Downlights

Narrow Distribution

							COE	FFICIEN	TS OF L	TILIZAT	ION							
																		0%
RW	70%	50%	30%	10%	70%	50%	30%	10%	50%	30%	10%	50%	30%	10%	50%	30%	10%	0%
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	100
1	114	112	109	107	112	110	108	106	106	104	102	102	101	99	98	97	97	95
2	109	105	101	98	107	103	100	97	100	98	95	97	95	93	95	93	91	90
3	105	99	95	91	103	98	94	91	95	92	89	93	90	88	91	88	86	85
4	100	94	89	85	99	93	88	85	91	87	84	89	85	83	87	84	82	81
5	96	89	84	80	95	88	83	80	86	82	79	85	81	78	83	80	78	76
6	92	85	79	76	91	84	79	75	82	78	75	81	77	74	80	77	74	73
7	89	81	75	72	87	80	75	72	79	74	71	78	74	71	77	73	70	69
8	85	.77	72	68	84	76	71	68	75	71	68	74	70	67	73	70	67	66
9	82	73	68	65	81	73	68	65	72	68	65	71	67	64	71	67	64	63
10	79	70	65	62	78	70	65	62	69	65	62	68	64	62	68	64	61	60

NOTE: Floor Cavity Reflectance : 20%

CANDLEPOWER SUMMARY

ngle	Candela	Candela	Candela	Candela	Candela	
6	1841	2717	3682	5523	7227	
	1698	2507	3397	5095	6668	
0	1389	2050	2777	4166	5452	
5	1101	1625	2202	3303	4323	
0	833	1229	1665	2498	3268	
5	601	887	1202	1803	2359	
0	347	512	694	1041	1362	
5	148	218	295	443	580	
0	56	83	113	169	222	
5	17	26	35	52	68	
0	9	14	18	27	36	
5	5	8	11	16	21	
0	3	S	7	10	1.4	

ZONAL LUMEN SUMMARY

		NOMIN				
	Lumens	Lumens	Lumens	Lumens	Lumens	% of Fixture
0 - 30°	716	1057	1432	2148	2811	85.7
0 - 40°	812	1198	1623	2435	3186	97.2
0 - 60°	832	1227	1663	2495	3264	99.6
0 - 90°	835	1232	1670	2505	3278	100

Narrow - 1000, 1500, 2000 Lm

APPLICATION REFERENCE (Open Space)

107.1 50.0 26.8 17.8 1.92 0.90 0.48 0.32 141.5 66.0 35.4 23.6 185.1 86.4 46.3 30.8 4' on ctr. 6' on ctr. 8' on ctr. 10' on ctr. 53.6 25.0 1.08 0.50 79.0 36.9 1.50 0.70 2.58 1.20 25.8 17.6 3.36 12.4 0.36 10.3 0.30 10°c 13.4 19.8 13.1 0.65 0.84 0.18 $10^{\circ} \times 10^{\circ}$ 8.9 10.5 0.50 15.2 0.42 20.0 0 10° ceiling, Corridor: 6° W × 100° L LLF: 1.0 Initial, 80/50/20 Reflectances, Light levels on the ground 10' ceiling, Open Space: 50' × 40' × 1' LLF: 1.0 Initial, 80/50/20 Reflectances, 2.5' workplane 20' ceiling, Open Space: 50' x 40' x 20

1.04 0.71 0.50 0.42 51.6 35.1 24.8 20.6 0.75 0.51 38.1 25.9

18.3 15.2

1.33 0.91 0.64 0.53

 55.2
 1.79

 37.5
 1.22

 26.4
 0.86

 22.1
 0.72

72.2 49.1 34.5 28.9

Spacing Criteria: DI6R - Narrow = 0.58

Photometric Data: Lumination[™] DI6R Series Downlights

Wide Distribution

vvia	0150	nouri	211															
							COE	FFICIEN	TS OF L	TILIZAT	ION							
RC																		0%
RW	70%	50%	30%	10%	70%	50%	30%	10%	50%	30%	10%	50%	30%	10%	50%	30%	10%	0%
0	119	119	119	119	116	116	116	116	111	111	111	106	106	106	102	102	102	100
1	114	111	109	107	111	109	107	105	105	103	102	101	100	99	98	97	96	94
2	108	104	100	97	106	102	99	96	99	96	94	96	94	92	93	91	90	88
3	103	97	93	89	101	96	92	88	93	90	87	91	88	85	89	86	84	82
4	98	91	86	82	97	90	85	82	88	84	81	86	83	80	84	81	79	77
5	94	86	80	76	92	85	80	76	83	79	75	82	78	75	80	77	74	73
6	89	81	75	71	88	80	75	71	79	74	71	77	73	70	76	72	70	68
7	85	77	71	67	84	76	71	67	75	70	66	73	69	66	72	69	66	64
8	82	72	67	63	80	72	67	63	71	66	63	70	65	62	69	65	62	61
9	78	69	63	59	77	68	63	59	67	62	59	66	62	59	66	62	59	57
10	75	65	60	56	74	65	60	56	64	59	56	63	59	56	63	59	56	54

NOTE: Floor Cavity Reflectance : 20%

CANDLEPOWER SUMMARY

	N	OMINAL N	10DULE L	UMENS	
Angle	Candela	Candela	Candela	Candela	Candela
0	1088	1606	2177	3265	4273
5	1067	1574	2133	3200	4188
10	1007	1486	2014	3021	3953
15	925	1366	1850	2776	3632
20	818	1207	1636	2453	3211
25	670	989	1340	2010	2630
30	433	639	866	1299	1699
35	213	314	426	639	836
40	94	139	188	282	368
45	37	55	74	111	145
50	19	29	39	58	76
55	11	16	22	33	43
60	6	9	13	19	25

ZONAL LUMEN SUMMARY

		NOMIN	AL MODU	LE LUMEN	۹S	
	Lumens	Lumens	Lumens	Lumens	Lumens	% of Fixture
0 - 30°	651	961	1302	1953	2556	78.9
0 - 40°	782	1153	1563	2345	3068	94.8
0 - 60°	820	1210	1640	2460	3219	99.4
0 - 90°	825	1218	1650	2475	3239	100

leight	fc	fc	fc	fc		Dia. (ft.)		
51	30	45	60	91	119	6.2		
3'	17	25	34	51	67	8.2		
10'	11	16	22	33	43	10.3		
12'	8	11	15	23	30	12.3		
14'	6	8	11	17	22	14.4		
16'	4	6	9	13	17	16.4		
18'	3	5	7	10	13	18.5		
20'	3	4	5	8	11	20.6		

10' on ctr

 48.0
 1.79
 62.8

 32.6
 1.22
 42.6

 23.0
 0.86
 30.0

 19.2
 0.72
 25.1

ing, Co tor: 6' W x 2.33

1.12

1.33 0.91

Wide - 1000, 1500, 2000 Lm

APPLICATION REFERENCE (Open Space)

				MINAL		E LUME	NS			
	10	00		00		000	30	00	40	00
Spacing	Avg. fc	W/ft ²	Avg. fc	W/ft ²	Avg. fc	W/ft ²	Avg. fc	W/ft ²	Avg. fc	W/ft ²
4' x 4'	52.4	1.08	77.3	1.50	104.7	1.92	135.9	2.58	177.8	3.36
6' x 6'	24.5	0.50	36.1	0.70	48.9	0.90	63.5	1.20	83.0	1.57
8' x 8'	13.1	0.27	19.3	0.38	26.2	0.48	34.1	0.65	44.6	0.84
10×10	8.8	0.18	12.9	0.25	17.5	0.32	22.7	0.43	29.6	0.56
		10' cei	ling, Open Sp	ace: 50' x	40'×10'		20' ceili	ng, Open S	pace: 50' x 40)' x 20'
	LLF: 10 Initia	1. 80/50/20	Reflectances	. 2.5' work	wane					

on ctr.	23.9	0.75	35.2	1.04	T
on ctr.	16.2	0.51	23.9	0.71	T
on ctr.	11.5	0.36	16.9	0.50	I
0' on ctr.	9.6	0.30	14.1	0.42	T

10'

APPLICATION REFERENCE (Corridor)

Spacing Criteria: DIGR - Wide = 90

Product Specifications:

Construction:

- 16 gauge galvanized steel housing
 16 gauge reflectors resist dents during transporation and installation
 Custom engineered heat sinks for passive cooling at all lumen options
- Galvanized steel junction box with multiple knockouts

Installation:

.

- .
- Universal mounting brackets with over 3° of vertical adjustment accommodate several types of hanger bars Accommodates ceilings up to 1.5° thick Mount in T-bar grid or drywall ceilings LED module twists in at time of trim installation, preventing damage to module during ceiling installation .

www.gelighting.com

GE and the GE Monogram are trademarks of the General Electric Company. All other trademarks are the property of their respective owners. Information provided is subject to change without notice. All values are design or typical values when measured under laboratory conditions. GE Lighting and GE Lighting Solutions, LLC are businesses of the General Electric Company. © 2014 GE.

IND083 (Rev 10/15/14)

Optical System:

- Custom engineered reflectors for precise beam distributions and 45° cutoff to light source and source image Self-flanged design with white painted or reflector-matching trim ٠

14.1 ng, Corridor: 6' W x 100' l

LLF: 1.0 Initial, 80/50/20 Reflectances, Light levels on the ground

Standard semi-diffuse finish for ideal combination of optical efficiency and low glare

0.50 22.9 19.1 0.64

Electrical System:

- Infusion DLM LED module for exceptional performance and tool-free upgradeability
 Standard 0-10V dimming, high efficiency drivers
 Thermal protection feature in module protects LEDs from overheating in abnormal conditions

For more information and access to all of our resources, including our design tool visit: www.gelighting.con

A12. Cree ZR24 HE

111

Ordering Information Example: ZR24 40L 40K 10V

ZR24	40L HE	40K		10V	
Product	Initial Delivered Lumens	CCT	Voltage	Controls	Options
ZR24	40L 44W, 4000 Lumens - 90 LPW 40L HE 26W, 4000 Lumens - 150 LPW	35K 3500K 40K 4000K	Blank 120-277V	10¥ 0-10¥ Dimming 5%*	EB1 4+++ Emergency Backup

¹ See www.sree.com/lighting/products/warranty for warranty terms * Reference www.sree.com/lighting/Products/andoor/To/ffers/2R*Series for recommended dimming controls and wining diagrams **Acceptable to use with stands dd yD=15 dar o thger where in stallalde per installation instructions. Consult factory for non-standard grid applications ***E8 option available in US only & not available with HE types

Rev. Date: V1 09/30/2014

Canada: www.cree.com/canada

Product Specifications

CREE TRUEWHITE® TECHNOLOGY

A revolutionary way to generate high-quality white light, Cree TrueWhite® Technology is a patented approach that delivers an exclusive combination of 90+ CRI, beautiful light characteristics, and lifelong color consistency, all while maintaining high luminous efficacy - a true no compromise solution

CONSTRUCTION & MATERIALS

- · Durable cold rolled steel housing provides strength and uniformity
- Ultra-thin 3.9" (99mm) fixture height and lightweight design effectively target a broad range of plenum spaces and allow for easy installations
- · Fixture is pre-painted for enhanced smooth finish
- Provided t-bar clips and holes for mounting support wires enable recessed or suspended installation
- · Fixture sides and ends are hemmed in for safe, easy handling

OPTICAL SYSTEM

- Unique fixture design creates perfect balance of both horizontal and vertical illumination
- · Optimized smooth lens eliminates pixelation and delivers a low-glare, diffused light distribution

FLECTRICAL SYSTEM

- Cree born components including highly efficacious Cree[®] LED chips along with an integral high-efficiency Cree^o drive
- Power Factor: = 0.9 nominal
- · Input Power: Stays constant over life
- Input Voltage: 120-277V, 50/60Hz
- Battery Backup: Consult factory
- Operating Temperature Rating: Designed to operate in temperatures 0-35°C and below room side and plenum side
- Total Harmonic Distortion: < 20%

CONTROLS

- Continuous dimming to 5% with 0-10V DC control protocol
- For use with Class 2 dimming systems only. Reference www.cree.com/Lighting/Products/Indoor/Troffers/ZR-Series for recommended dimming controls and wiring diagrams

REGULATORY & VOLUNTARY QUALIFICATIONS

- UL924 (EB option)
- cULus listed
- Suitable for damp locations
- Designed for indoor use
- DLC qualified when ordered with 40L Initial Delivered Lumens. Please refer to http://www.designlights.org/QPL for most current information

Application Reference

Spacing	Initial Delivered Lumens	Lumens	Wattage	LPW	w/ft²	Average fo
8 x 8	40L HE	4.000	26	154	0.39	56
	40L	4,000	44	91	0.66	56
8 x 10	40L HE	4.000	26	154	0.33	46
	40L	4,000	44	91	0.55	46
10 x 10	40L HE	4.000	26	154	0.26	37
	40L	- 4,000	44	91	0.44	37
10 x 12	40L HE	4.000	26	154	0.21	30
	40L	4,000	44	91	0.35	30

9' ceiling: 80/50/20 reflectances; 2.5' workplane, open room. LLF: 1.0 Initial Open Space: 50' x 40' x 10

Photometry

ZR24-40L-40K BASED ON CESTL REPORT TEST #: PL02014-0005

Fixture photometry has been conducted by a NVLAP accredited testing laboratory in accordance with IESNA LM-79-08. IESNA LM-79-08 specifies the entire luminaire as the source resulting in a fixture efficiency of 100%

Average Luminance Table (cd/m²) Horizontal Angle

> 45° 90°

1,772

2240 2.81

2,498

0°

1,642

1,580 1,788

1,480 1,885

1 276

45°

55°

75°

85° 952

Vertical Angle 65°

RC %:	80			
RW %:	70	50	30	10
RCR: 0	119	119	119	119
1	107	102	97	93
2	97	88	80	74
3	88	76	68	61
4	80	67	58	51
5	73	60	50	43
6	68	54	44	38
7	63	49	40	33
8	58	44	36	29
9	55	41	32	26
10	51	37	29	24

Effective Floor Cavity Reflectance: 20%

²)	Zonal Lumen Summary							
	Zone	Lumens	% Lamp	Luminaire				
90°	0-30	990	N/A	24.4%				
1,899	0-40	1,628	N/A	40.1%				
2,014	0-60	2,949	N/A	72.6%				
2,341	0-90	4,064	N/A	100%				
2,819	0-180	4,064	N/A	100%				
3.203	Defermention							

Reference www.cree.com/Lighting/Products/Indoor/Troffers/ZR-Series for detailed photometric data

Ambient	Initial Delievered Lumens	Initial LMF	25K hr Projected ² LMF	50K hr Calculated ^{2,3} LMF	75K hr Calculated ³ LMF	100K hr Calculated ³ LMF
010 (00 5)	40L HE	1.05	0.99	0.94	0.90	0.87
0°C (32°F)	40L	1.05	0.99	0.93	0.89	0.84
F(0 (11 (F)	40L HE	1.04	0.98	0.94	0.90	0.86
5°C (41 °F) 40	40L	1.04	0.98	0.93	0.88	0.83
10°C (50°F)	40L HE	1.03	0.97	0.93	0.89	0.85
	40L	1.03	0.97	0.92	0.88	0.82
	40L HE	1.02	0.96	0.92	0.88	0.84
15°C (59°F)	40L	1.02	0.96	0.91	0.87	0.82
	40L HE	1.01	0.95	0.91	0.87	0.83
20°C (68°F)	40L	1.01	0.95	0.90	0.86	0.81
0.540 (3345)	40L HE	1.00	0.94	0.90	0.86	0.82
25°C(77°F)	40L	1.00	0.94	0.89	0.85	0.80
	40L HE	0.99	0.93	0.89	0.85	0.82
30°C (86°F)	40L	0.99	0.93	0.88	0.84	0.79
	40L HE	0.98	0.92	0.88	0.84	0.81
35°C (95°F)	40L	0.98	0.92	0.87	0.83	0.78

Lumen maintence values at 25°C are calculated per TM-21 based on LM-80 data and in-situ luminaire testing In accordance with ESMA TM-21-TI, Projected Values represent interpolated value based on time dual ons that are within six times (63) the ESMA LM-08 bits that stackation (house) for the device under testing (CUT) (a packade (EDbhg)) In accordance with ESMA TM-21-TI, Stackade Values represent time dual tans that acceed EDbhg) In accordance with ESMA TM-21-TI, Stackade Values represent time dual tans that escale (EDbhg) accorded to the stackade Values (Figure 2000) and the stackade Value (Figure 2000) and the stackade Va

[©] 2014 Cree, Inc. and/or one of its subsidiaries. All rights reserved. For informational purposes only. Content is subject to change. See www.cree.com/patents for patents that cover these products. Cree[®], the Cree logo, Cree TrueWhite[®], in the Cree TrueWhite[®], and the Cree TrueWhite[®], in the Cree TrueWhite[®], in the Cree TrueWhite[®], and the Cree TrueWhit

US: www.cree.com/lighting T (800) 236-6800 F (262) 504-5415 Canada: www.cree.com/canada

A13. Sigma STL100

COLOR TUNING LED TROFFER STL100 45W-CT

DESCRIPTION

The STL100 45W-CT represents a new approach to lighting - an approach that's dynamic, not static. No longer does your space have to look and feel the same day after day.

The STL100 45W-CT can tune the color temperature from 3000K to 6500K as well as dim the light output. This can be done using the manual touch fader, the IR remote control and occupancy sensor, or a programmable DMX controller.

The STL100 45W-CT can work individually or in groups through DMX, RS485, DALI, or IR Remote. 256 gray dimming and color temperature control is available in all networks.

The STL100 is fantastic for areas where color rendering is of the utmost importance, areas with minimal natural light, or any space that you want to make more versatile.

Frame/Cover	Al3104 / Powder coating, white
Light Plane	Polycarbonate
Mounting	Recessed
Size (W $ imes$ H $ imes$ D)	23.7in x 23.7in x 1.6in (lixture) 1.28in (Power)
Weight	5.07 lbs.
Power	45W
Lifetime	50,000+ Hours
Warranty	5 Years
Certilication/Award	UL, CE, FCC, LM79, LM80
	For ordering information phase visit

For ordering information please visit www.sigmaluminous.com 734.402.8587

MODE TYPES

NGLE	ALONG	25	45	65	ACROSS
0	1310	1310	1310	1310	1310
5	1310	1310	1310	1310	1310
15	1270	1280	1280	1280	1280
25	1200	1200	1210	1210	1200
35	1080	1090	1100	1100	1090
45	930	943	949	950	942
55	751	767	776	775	762
65	538	561	577	569	549
75	291	320	340	328	297
85	50.5	81.8	107	87	50.1
90	2.3	3.3	3.9	3.6	1.0

ZONE	LUMENS	% LUMINAIRE
0-30	1201	29.3
0-40	1902	46.4
0-60	3285	80.1
0-90	4100	100
40-90	2198	53.6
60-90	815	19.8
90-180	0	0
0-180	4100	100

11.8 in

PRODUCT SPECIFICATIONS								
Color Temperature	3,000K - 6,500K	3,000К - 6,500К						
CRI(Ra)	80~87 (CCT Deper	80~87 (CCT Dependant)						
Beam Angle	112°							
Luminous Flux (Im)	3,900							
Luminous Efficacy	91							
Illumination @1m(lx)	1,400							
Protection	IP20							
Mode Types	DMX/0-10V/Remote							
Recycling	(Enclosure)							
Networking	(max.100EA & max.distance 100m recommended)							
Dimming Control	(256 Step / DMX51	2)						
Dimming Algorithm	1 ~ 100%, Gamma	=2.2						
ELECTRICAL SPECIFICATIONS Condition Min Typical Max								
Power Consumption (W)	Power Consumption (W)			45	48			
Input Voltage (V)		AC	90	100 ~ 277	300			
Power Factor	Power Factor 0.9							

Operating Temperature (°F)

LUMI PAYBACK STARTS NOW™

-4 77 113

JS"

For ordering information please visit www.sigmaluminous.com 734.402.8587

114

A14. MaxLite RKT

MODEL SELECTION	MODEL SELECTION (Full list of order codes on pg. 2) Typical order example		Typical order example:	RKT4514U4535DV		
RKT		14	U			DV
FAMILY	NOMINAL LENGTH	NOMINAL WIDTH	INPUT VOLTAGE	INPUT WATTAGE	сст	DIMMABILITY
RKT= LED Troffer Retrofit Kit	20= 20" 45= 45"	14 = 14"	U= 120-277V	40= 40 watts 45= 45 watts	35= 3500K 41= 4100K 50= 5000K	DV= 0-10V Dimmable

ACCESSORIES					
ORDER CODE	MODEL NUMBER	DESCRIPTION			
71583	MLFPIRK	Infrared Remote Control			
70691	MLFPRWP	Remote Control Wall Plate	*****		

Add MaxLite's Infrared Remote Control to maximize efficiency without increasing labor costs. The IR remote control offers continuous dimming down to 10% and can even shut the retrofit off entirely, without requiring any additional wiring from the switch to the existing fixtures. Add the MLFPRWP wall plate to holster the remote control.

Scan the QR code with a smartphone to view the installation video or visit the following link: http://bit.ly/ledRKT

Phone: 1-800-555-5629 | Fax: 973-244-7333 | Web: www.maxlite.com | E-mail: info@maxlite.com Revised: 10-09-14

RKT - Recessed Troffer Retrofit Kits RKT SERIES

Page: 2 of 2

SPECIFICATI	ONS:	RKT2014U4035DV	RKT2014U4041DV	RKT2014U4050DV	RKT4514U4535DV	RKT4514U4541DV	RKT4514U4550DV		
ITEM	SPECIFICATION		DETAILS						
	Color Temperature (CCT)	3500K	4100K	5000K	3500K	4100K	5000K		
GENERAL PERFORMANCE	Lumens Delivered	3,630	3,580	3,935	4,275	4,275	4,500		
PERFURMANCE	Efficacy	91 lm/w	90 lm/w	98 lm/w	95 lm/w	95 lm/w	100 lm/w		
	Lumen Maintenance (L70)		103,000 hours						
	Power Consumption	40W 45W							
ELECTRICAL	Power Factor	> .90%							
	Input Voltage	120V-277V							
	Dimensions		20.75" x 13.75"		43.75" x 13.75"				
	Weight		2.85 lb		5.25 lbs				
PHYSICAL	Mounting	Self tapping hex head (4) Self tapping hex head (6)					6)		
	Ambient Temperature	0-104F							
	Certification			cETLus, DLC	, FCC, LM-80				
	Material Usage			RoHS complia	nt; no mercury				
GENTINGATION	Environment			Ind	loor				
	Warranty		10 year when inst	alled in accordance v	with factory supplied in	nstruction manual			

ORDERING*:

ORDER CODE	MODEL	WATTS	SIZE	INPUT VOLTAGE	COLOR TEMPERATURE (CCT)
72683	RKT2014U4035DV				3500K
72684	RKT2014U4041DV	40	2 X 2	120-277V	4100K
72685	RKT2014U4050DV				5000K
72937	RKT4514U4535DV				3500K
72938	RKT4514U4541DV	45	45 2 X 4	120-277V	4100K
72939	RKT4514U4550DV				5000K

Lighting layouts and spacing criteria available upon request *Please contact your MaxLite representative to order products that don't have order codes listed here.

Phone: 1-800-555-5629 | Fax: 973-244-7333 | Web: www.maxlite.com | E-mail: info@maxlite.com Revised: 10-09-14

APPENDIX B: BASE CASE TEST RESULTS

B1. Cree High-Bay CXB

NO.1 Cree High-bay							
Variables	Results	Unit	Uncertainty				
Total heat extraction	494.25 / 144.86	Btu/hr / Watt	3.02%				
Total heat conduction	-5.69 / -1.67	Btu/hr / Watt	-9.04%				
LED fixture power	540.80 / 158.50	Btu/hr / Watt	0.22%				
Illuminance at lighting center 3 ft. above floor	1620 / 17438	Foot-candle / Lux					
Illuminance at lighting center on the floor	348 / 3746	Foot-candle / Lux					
Conditioned space lighting heat gain fraction	N/A		%				
Longwave radiant heat	63.70 / 18.67	Btu/hr / Watt	1.37%				
Shortwave radiant heat	161.56 / 47.35	Btu/hr / Watt	0.69%				
Total radiant heat	225.24 / 66.01	Btu/hr / Watt	1.53%				
Long wave radiant heat fraction (total)	0.12		0.03%				
Short wave radiant heat fraction (total)	0.30		0.06%				
Total Radiant heat fraction (total)	0.42		0.09%				
Long wave radiant heat fraction (conditioned space)	N/A		%				
Short wave radiant heat fraction (conditioned space)	N/A		%				
Total Radiant heat fraction (conditioned space)	N/A		%				

B2. Columbia High-Bay LLHP

NO.2 Columbia High-bay LLHP							
Variables	Results	Unit	Uncertainty				
Total heat extraction	414.64 / 121.52	Btu/hr / Watt	3.03%				
Total heat conduction	-21.33 / -6.25	Btu/hr / Watt	-2.42%				
LED fixture power	471.33 / 138.13	Btu/hr / Watt	0.22%				
Illuminance at lighting center 3 ft. above floor	1490 / 16038	Foot-candle / Lux					
Illuminance at lighting center on the floor	372 / 4004	Foot-candle / Lux					
Conditioned space lighting heat gain fraction	N/A		%				
Longwave radiant heat	54.15 / 15.87	Btu/hr / Watt	0.55%				
Shortwave radiant heat	184.45 / 54.06	Btu/hr / Watt	1.48%				
Total radiant heat	238.64 / 64.94	Btu/hr / Watt	1.58%				
Long wave radiant heat fraction (total)	0.11		0.03%				
Short wave radiant heat fraction (total)	0.39		0.08%				
Total Radiant heat fraction (total)	0.51		0.11%				
Long wave radiant heat fraction (conditioned space)	N/A		%				
Short wave radiant heat fraction (conditioned space)	N/A		%				
Total Radiant heat fraction (conditioned space)	N/A		%				

B3. Columbia LTRE 24

NO.3 Columbia LTRE 24 (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	129.40 / 37.92	Btu/hr / Watt	3.33%
Total heat conduction	-25.72 / -7.54	Btu/hr / Watt	-2.22%
LED fixture power	131.83 / 38.64	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	79 / 849	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.525		2.67%
Longwave radiant heat	12.18 / 3.57	Btu/hr / Watt	0.43%
Shortwave radiant heat	42.07 / 12.33	Btu/hr / Watt	0.74%
Total radiant heat	54.25 / 15.90	Btu/hr / Watt	0.86%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.41		0.09%
Long wave radiant heat fraction (conditioned space)	0.18		%
Short wave radiant heat fraction (conditioned space)	0.61		%
Total Radiant heat fraction (conditioned space)	0.78		%

B4. Columbia LTRE 22

NO.4 Columbia LTRE 22			
Variables	Results	Unit	Uncertainty
Total heat extraction	83.98 / 24.61	Btu/hr / Watt	3.55%
Total heat conduction	-15.80 / -4.63	Btu/hr / Watt	-2.59%
LED fixture power	108.76 / 31.88	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	59 / 635	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.473		3.59%
Longwave radiant heat	7.20 / 2.11	Btu/hr / Watt	0.36%
Shortwave radiant heat	29.00 / 8.50	Btu/hr / Watt	0.73%
Total radiant heat	36.17 / 10.60	Btu/hr / Watt	0.81%
Long wave radiant heat fraction (total)	0.07		0.02%
Short wave radiant heat fraction (total)	0.27		0.06%
Total Radiant heat fraction (total)	0.33		0.08%
Long wave radiant heat fraction (conditioned space)	0.14		%
Short wave radiant heat fraction (conditioned space)	0.56		%
Total Radiant heat fraction (conditioned space)	0.70		%

B5. Columbia LLT 24

NO.5 Columbia LLT 24			
Variables	Results	Unit	Uncertainty
Total heat extraction	108.24 / 31.72	Btu/hr / Watt	3.68%
Total heat conduction	-15.35 / -4.50	Btu/hr / Watt	-2.65%
LED fixture power	139.40 / 40.85	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	78 / 840	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.495		3.03%
Longwave radiant heat	16.92 / 4.96	Btu/hr / Watt	0.59%
Shortwave radiant heat	40.71 / 11.93	Btu/hr / Watt	0.71%
Total radiant heat	57.63 / 16.89	Btu/hr / Watt	0.93%
Long wave radiant heat fraction (total)	0.12		0.03%
Short wave radiant heat fraction (total)	0.29		0.07%
Total Radiant heat fraction (total)	0.41		0.09%
Long wave radiant heat fraction (conditioned space)	0.25		%
Short wave radiant heat fraction (conditioned space)	0.59		%
Total Radiant heat fraction (conditioned space)	0.84		%

B6. Columbia LLT 22

NO.6 Columbia LLT 22 (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	54.29 / 15.91	Btu/hr / Watt	6.63%
Total heat conduction	-26.26 / -7.70	Btu/hr / Watt	-2.16%
LED fixture power	92.74 / 27.18	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.476		4.62%
Longwave radiant heat	8.84 / 2.59	Btu/hr / Watt	0.44%
Shortwave radiant heat	24.16 / 7.08	Btu/hr / Watt	0.60%
Total radiant heat	33.00 / 9.67	Btu/hr / Watt	0.74%
Long wave radiant heat fraction (total)	0.10		0.03%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.55		%
Total Radiant heat fraction (conditioned space)	0.75		%

B7. Finelight HPR-HO 24

NO.7 Finelight HPR-HO 24			
Variables	Results	Unit	Uncertainty
Total heat extraction	162.66 / 47.67	Btu/hr / Watt	3.10%
Total heat conduction	-10.37 / -3.04	Btu/hr / Watt	-3.52%
LED fixture power	193.47 / 56.70	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	105 / 1124	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.451		2.67%
Longwave radiant heat	19.11 / 5.60	Btu/hr / Watt	0.68%
Shortwave radiant heat	54.18 / 15.88	Btu/hr / Watt	0.96%
Total radiant heat	73.32 / 21.49	Btu/hr / Watt	1.17%
Long wave radiant heat fraction (total)	0.10		0.02%
Short wave radiant heat fraction (total)	0.28		0.06%
Total Radiant heat fraction (total)	0.38		0.08%
Long wave radiant heat fraction (conditioned space)	0.22		%
Short wave radiant heat fraction (conditioned space)	0.62		%
Total Radiant heat fraction (conditioned space)	0.84		%

B8. Finelight HPR-HO 22

NO.8 Finelight HPR-HO 22			
Variables	Results	Unit	Uncertainty
Total heat extraction	171.02 / 50.12	Btu/hr / Watt	3.44%
Total heat conduction	-20.72 / -6.07	Btu/hr / Watt	-2.45%
LED fixture power	203.47 / 59.63	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	84 / 904	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.425		3.07%
Longwave radiant heat	17.50 / 5.13	Btu/hr / Watt	0.87%
Shortwave radiant heat	44.08 / 12.92	Btu/hr / Watt	1.10%
Total radiant heat	61.59 / 18.05	Btu/hr / Watt	1.40%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.22		0.05%
Total Radiant heat fraction (total)	0.30		0.07%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.51		%
Total Radiant heat fraction (conditioned space)	0.71		%

B9. Finelight HP-4 ID

NO.9 Finelight HP-4 ID			
Variables	Results	Unit	Uncertainty
Total heat extraction	109.09 / 31.97	Btu/hr / Watt	4.13%
Total heat conduction	-9.52 / -2.79	Btu/hr / Watt	-3.46%
LED fixture power	128.22 / 37.58	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	64 / 693	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	N/A		%
Longwave radiant heat	45.38 / 13.30	Btu/hr / Watt	0.46%
Shortwave radiant heat	24.70 / 7.24	Btu/hr / Watt	0.12%
Total radiant heat	70.08 / 20.54	Btu/hr / Watt	0.47%
Long wave radiant heat fraction (total)	0.35		0.08%
Short wave radiant heat fraction (total)	0.19		0.04%
Total Radiant heat fraction (total)	0.55		0.12%
Long wave radiant heat fraction (conditioned space)	N/A		%
Short wave radiant heat fraction (conditioned space)	N/A		%
Total Radiant heat fraction (conditioned space)	N/A		%

B10. Philips Ledalite 1201

NO.10 Philips Ledalite 1201			
Variables	Results	Unit	Uncertainty
Total heat extraction	52.41 / 15.36	Btu/hr / Watt	4.96%
Total heat conduction	-22.37 / -6.56	Btu/hr / Watt	-2.24%
LED fixture power	82.77 / 24.26	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	38 / 409	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	N/A		%
Longwave radiant heat	26.07 / 7.64	Btu/hr / Watt	0.26%
Shortwave radiant heat	24.02 / 7.04	Btu/hr / Watt	0.14%
Total radiant heat	50.09 / 14.68	Btu/hr / Watt	0.30%
Long wave radiant heat fraction (total)	0.31		0.07%
Short wave radiant heat fraction (total)	0.29		0.06%
Total Radiant heat fraction (total)	0.60		0.13%
Long wave radiant heat fraction (conditioned space)	N/A		%
Short wave radiant heat fraction (conditioned space)	N/A		%
Total Radiant heat fraction (conditioned space)	N/A		%

B11. GE DI6R

NO.11 GE DI6R (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	88.02 / 25.80	Btu/hr / Watt	3.67%
Total heat conduction	-13.23 / -3.88	Btu/hr / Watt	-3.05%
LED fixture power	98.29 / 28.81	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	201 / 2159	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.466		4.08%
Longwave radiant heat	0.44 / 0.13	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.15 / 4.44	Btu/hr / Watt	0.15%
Total radiant heat	15.59 / 4.57	Btu/hr / Watt	0.15%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.33		%
Total Radiant heat fraction (conditioned space)	0.34		%

B12. Cree ZR24 HE

NO.12 Cree ZR24 HE			
Variables	Results	Unit	Uncertainty
Total heat extraction	70.57 / 20.68	Btu/hr / Watt	3.93%
Total heat conduction	-14.74 / -4.32	Btu/hr / Watt	-2.63%
LED fixture power	84.56 / 24.78	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	69 / 742	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.589		3.74%
Longwave radiant heat	8.82 / 2.58	Btu/hr / Watt	0.31%
Shortwave radiant heat	34.27 / 10.04	Btu/hr / Watt	0.64%
Total radiant heat	43.08 / 12.63	Btu/hr / Watt	0.71%
Long wave radiant heat fraction (total)	0.10		0.03%
Short wave radiant heat fraction (total)	0.41		0.09%
Total Radiant heat fraction (total)	0.51		0.11%
Long wave radiant heat fraction (conditioned space)	0.18		%
Short wave radiant heat fraction (conditioned space)	0.69		%
Total Radiant heat fraction (conditioned space)	0.87		%

B13. Sigma STL100 (Cool)

NO.13 Sigma STL100 (Cool)			
Variables	Results	Unit	Uncertainty
Total heat extraction	71.81 / 21.05	Btu/hr / Watt	3.54%
Total heat conduction	-11.36 / -3.33	Btu/hr / Watt	-3.05%
LED fixture power	81.34 / 23.84	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.562		3.91%
Longwave radiant heat	8.91 / 2.61	Btu/hr / Watt	0.44%
Shortwave radiant heat	25.34 / 7.43	Btu/hr / Watt	0.71%
Total radiant heat	34.25 / 10.04	Btu/hr / Watt	0.83%
Long wave radiant heat fraction (total)	0.11		0.03%
Short wave radiant heat fraction (total)	0.31		0.07%
Total Radiant heat fraction (total)	0.42		0.10%
Long wave radiant heat fraction (conditioned space)	0.19		%
Short wave radiant heat fraction (conditioned space)	0.55		%
Total Radiant heat fraction (conditioned space)	0.75		%

B14. Sigma STL100 (Warm)

NO.13 Sigma STL100 (Warm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	60.13 / 17.63	Btu/hr / Watt	3.84%
Total heat conduction	-12.73 / -3.73	Btu/hr / Watt	-2.85%
LED fixture power	79.93 / 23.43	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	43 / 463	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.53		4.16%
Longwave radiant heat	9.37 / 2.75	Btu/hr / Watt	0.47%
Shortwave radiant heat	22.97 / 6.73	Btu/hr / Watt	0.63%
Total radiant heat	32.34 / 9.48	Btu/hr / Watt	0.79%
Long wave radiant heat fraction (total)	0.12		0.03%
Short wave radiant heat fraction (total)	0.29		0.07%
Total Radiant heat fraction (total)	0.40		0.09%
Long wave radiant heat fraction (conditioned space)	0.22		%
Short wave radiant heat fraction (conditioned space)	0.54		%
Total Radiant heat fraction (conditioned space)	0.76		%

B15. MaxLite RKT

NO.14 MaxLite RKT (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	119.25 / 34.95	Btu/hr / Watt	3.61%
Total heat conduction	-15.62 / -4.58	Btu/hr / Watt	-2.70%
LED fixture power	153.23 / 44.91	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	76 / 818	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.425		3.29%
Longwave radiant heat	16.17 / 4.74	Btu/hr / Watt	0.57%
Shortwave radiant heat	38.45 / 11.27	Btu/hr / Watt	0.67%
Total radiant heat	54.59 / 16.00	Btu/hr / Watt	0.88%
Long wave radiant heat fraction (total)	0.11		0.03%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.25		%
Short wave radiant heat fraction (conditioned space)	0.59		%
Total Radiant heat fraction (conditioned space)	0.84		%

C1. Columbia LTRE 24

NO.3 Columbia LTRE 24 (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	129.40 / 37.92	Btu/hr / Watt	3.33%
Total heat conduction	-25.72 / -7.54	Btu/hr / Watt	-2.22%
LED fixture power	131.83 / 38.64	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	79 / 849	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.525		2.67%
Longwave radiant heat	12.18 / 3.57	Btu/hr / Watt	0.43%
Shortwave radiant heat	42.07 / 12.33	Btu/hr / Watt	0.74%
Total radiant heat	54.25 / 15.90	Btu/hr / Watt	0.86%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.41		0.09%
Long wave radiant heat fraction (conditioned space)	0.18		%
Short wave radiant heat fraction (conditioned space)	0.61		%
Total Radiant heat fraction (conditioned space)	0.78		%

C2. Columbia LTRE 24 @ 65F

NO.3 Columbia LTRE 24 (65F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	138.07 / 40.47	Btu/hr / Watt	2.99%
Total heat conduction	-18.04 / -5.29	Btu/hr / Watt	-2.44%
LED fixture power	131.47 / 38.53	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	79 / 849	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.493		3.25%
Longwave radiant heat	13.83 / 3.76	Btu/hr / Watt	0.40%
Shortwave radiant heat	42.14 / 12.35	Btu/hr / Watt	0.66%
Total radiant heat	55.97 / 16.11	Btu/hr / Watt	0.77%
Long wave radiant heat fraction (total)	0.10		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.42		0.09%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.65		%
Total Radiant heat fraction (conditioned space)	0.85		%

C3. Columbia LTRE 24 @ 120 cfm

NO.3 Columbia LTRE 24 (120 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	109.44 / 32.08	Btu/hr / Watt	4.23%
Total heat conduction	-22.07 / -6.50	Btu/hr / Watt	-2.26%
LED fixture power	132.23 / 38.75	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	79 / 849	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.498		5.42%
Longwave radiant heat	7.86 / 2.31	Btu/hr / Watt	0.25%
Shortwave radiant heat	41.59 / 12.19	Btu/hr / Watt	0.65%
Total radiant heat	49.45 / 14.50	Btu/hr / Watt	0.69%
Long wave radiant heat fraction (total)	0.06		0.01%
Short wave radiant heat fraction (total)	0.31		0.07%
Total Radiant heat fraction (total)	0.37		0.08%
Long wave radiant heat fraction (conditioned space)	0.12		%
Short wave radiant heat fraction (conditioned space)	0.63		%
Total Radiant heat fraction (conditioned space)	0.75		%

NO.3 Columbia LTRE 24 (Wood Floor)			
Variables	Results	Unit	Uncertainty
Total heat extraction	159.97 / 46.88	Btu/hr / Watt	2.86%
Total heat conduction	-22.56 / -6.61	Btu/hr / Watt	-2.31%
LED fixture power	131.84 / 38.63	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	83 / 893	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.553		3.07%
Longwave radiant heat	12.42 / 3.64	Btu/hr / Watt	0.38%
Shortwave radiant heat	42.01 / 12.31	Btu/hr / Watt	0.65%
Total radiant heat	54.43 / 15.95	Btu/hr / Watt	0.76%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.41		0.09%
Long wave radiant heat fraction (conditioned space)	0.17		%
Short wave radiant heat fraction (conditioned space)	0.58		%
Total Radiant heat fraction (conditioned space)	0.75		%

C4. Columbia LTRE 24 @ Wood Floor
NO.3 Columbia LTRE 24 (50% Dimming)			
Variables	Results	Unit	Uncertainty
Total heat extraction	99.23 / 29.08	Btu/hr / Watt	3.54%
Total heat conduction	-15.10 / -4.43	Btu/hr / Watt	-2.65%
LED fixture power	82.94 / 24.31	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	50 / 538	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.508		4.72%
Longwave radiant heat	6.96 / 2.04	Btu/hr / Watt	0.22%
Shortwave radiant heat	26.48 / 7.76	Btu/hr / Watt	0.41%
Total radiant heat	33.44 / 9.80	Btu/hr / Watt	0.47%
Long wave radiant heat fraction (total)	0.08		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.40		0.09%
Long wave radiant heat fraction (conditioned space)	0.17		%
Short wave radiant heat fraction (conditioned space)	0.63		%
Total Radiant heat fraction (conditioned space)	0.79		%

C5. Columbia LTRE 24 @ 50% Dimming

C6. Columbia LTRE 24 @ 55F

NO.3 Columbia LTRE 24 (55F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	115.26 / 33.78	Btu/hr / Watt	4.09%
Total heat conduction	-21.91 / -6.42	Btu/hr / Watt	-2.42%
LED fixture power	132.16 / 38.73	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	77 / 828	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.538		3.16%
Longwave radiant heat	11.43 / 3.35	Btu/hr / Watt	0.35%
Shortwave radiant heat	41.83 / 12.26	Btu/hr / Watt	0.65%
Total radiant heat	53.22 / 15.60	Btu/hr / Watt	0.74%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.40		0.09%
Long wave radiant heat fraction (conditioned space)	0.16		%
Short wave radiant heat fraction (conditioned space)	0.59		%
Total Radiant heat fraction (conditioned space)	0.75		%

C7. Columbia LTRE 24 @ 30 cfm

NO.3 Columbia LTRE 24 (30 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	53.53 / 15.69	Btu/hr / Watt	4.35%
Total heat conduction	-31.17 / -9.14	Btu/hr / Watt	-2.07%
LED fixture power	131.63 / 38.58	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	77 / 828	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.569		1.76%
Longwave radiant heat	15.18 / 4.45	Btu/hr / Watt	0.47%
Shortwave radiant heat	42.31 / 12.40	Btu/hr / Watt	0.66%
Total radiant heat	57.49 / 16.85	Btu/hr / Watt	0.81%
Long wave radiant heat fraction (total)	0.12		0.03%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.44		0.10%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.56		%
Total Radiant heat fraction (conditioned space)	0.77		%

NO.3 Columbia LTRE 24 (Ducted Return)			
Variables	Results	Unit	Uncertainty
Total heat extraction	103.12 / 30.22	Btu/hr / Watt	2.74%
Total heat conduction	-21.16 / -6.20	Btu/hr / Watt	-2.48%
LED fixture power	131.54 / 38.55	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	77 / 828	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.639		2.35%
Longwave radiant heat	18.80 / 5.51	Btu/hr / Watt	0.58%
Shortwave radiant heat	42.41 / 12.43	Btu/hr / Watt	0.66%
Total radiant heat	61.25 / 17.95	Btu/hr / Watt	0.88%
Long wave radiant heat fraction (total)	0.14		0.03%
Short wave radiant heat fraction (total)	0.32		0.07%
Total Radiant heat fraction (total)	0.47		0.10%
Long wave radiant heat fraction (conditioned space)	0.22		%
Short wave radiant heat fraction (conditioned space)	0.50		%
Total Radiant heat fraction (conditioned space)	0.73		%

C8. Columbia LTRE 24 @ Ducted Return

C9. Columbia LLT 22

NO.6 Columbia LLT 22 (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	54.29 / 15.91	Btu/hr / Watt	6.63%
Total heat conduction	-26.26 / -7.70	Btu/hr / Watt	-2.16%
LED fixture power	92.74 / 27.18	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.476		4.62%
Longwave radiant heat	8.84 / 2.59	Btu/hr / Watt	0.44%
Shortwave radiant heat	24.16 / 7.08	Btu/hr / Watt	0.60%
Total radiant heat	33.00 / 9.67	Btu/hr / Watt	0.74%
Long wave radiant heat fraction (total)	0.10		0.03%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.55		%
Total Radiant heat fraction (conditioned space)	0.75		%

C10. Columbia LLT 22 @ 65F

NO.6 Columbia LLT 22 (65F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	77.45 / 22.70	Btu/hr / Watt	3.89%
Total heat conduction	-14.23 / -4.17	Btu/hr / Watt	-2.65%
LED fixture power	92.70 / 27.17	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.461		4.62%
Longwave radiant heat	9.14 / 2.68	Btu/hr / Watt	0.40%
Shortwave radiant heat	24.29 / 7.12	Btu/hr / Watt	0.53%
Total radiant heat	33.43 / 9.80	Btu/hr / Watt	0.67%
Long wave radiant heat fraction (total)	0.10		0.03%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.21		%
Short wave radiant heat fraction (conditioned space)	0.57		%
Total Radiant heat fraction (conditioned space)	0.78		%

C11. Columbia LLT 22 @ 120 cfm

NO.6 Columbia LLT 22 (120 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	88.59 / 25.96	Btu/hr / Watt	4.50%
Total heat conduction	-4.15 / -1.22	Btu/hr / Watt	-7.04%
LED fixture power	92.84 / 27.21	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.443		8.58%
Longwave radiant heat	6.45 / 1.89	Btu/hr / Watt	0.28%
Shortwave radiant heat	23.54 / 6.90	Btu/hr / Watt	0.52%
Total radiant heat	29.99 / 8.79	Btu/hr / Watt	0.59%
Long wave radiant heat fraction (total)	0.07		0.02%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.32		0.07%
Long wave radiant heat fraction (conditioned space)	0.16		%
Short wave radiant heat fraction (conditioned space)	0.57		%
Total Radiant heat fraction (conditioned space)	0.73		%

NO.6 Columbia LLT 22 (Wood Floor)			
Variables	Results	Unit	Uncertainty
Total heat extraction	64.52 / 18.91	Btu/hr / Watt	3.60%
Total heat conduction	-15.39 / -4.51	Btu/hr / Watt	-2.61%
LED fixture power	92.79 / 27.19	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	50 / 538	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.481		4.16%
Longwave radiant heat	8.91 / 2.61	Btu/hr / Watt	0.39%
Shortwave radiant heat	23.89 / 7.00	Btu/hr / Watt	0.52%
Total radiant heat	32.79 / 9.61	Btu/hr / Watt	0.65%
Long wave radiant heat fraction (total)	0.10		0.03%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.35		0.08%
Long wave radiant heat fraction (conditioned space)	0.20		%
Short wave radiant heat fraction (conditioned space)	0.54		%
Total Radiant heat fraction (conditioned space)	0.73		%

C12. Columbia LLT 22 @ Wood Floor

NO.6 Columbia LLT 22 (50% Dimming)			
Variables	Results	Unit	Uncertainty
Total heat extraction	27.54 / 8.07	Btu/hr / Watt	6.81%
Total heat conduction	-16.41 / -4.81	Btu/hr / Watt	-2.52%
LED fixture power	48.56 / 14.23	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	24 / 258	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.552		6.52%
Longwave radiant heat	4.50 / 1.32	Btu/hr / Watt	0.20%
Shortwave radiant heat	12.25 / 3.59	Btu/hr / Watt	0.27%
Total radiant heat	16.72 / 4.90	Btu/hr / Watt	0.33%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.34		0.08%
Long wave radiant heat fraction (conditioned space)	0.17		%
Short wave radiant heat fraction (conditioned space)	0.46		%
Total Radiant heat fraction (conditioned space)	0.62		%

C13. Columbia LLT 22 @ 50% Dimming

C14. Columbia LLT 22 @ 55F

NO.6 Columbia LLT 22 (55F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	61.97 / 18.16	Btu/hr / Watt	3.92%
Total heat conduction	-27.57 / -8.08	Btu/hr / Watt	-2.17%
LED fixture power	92.89 / 27.22	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.447		4.47%
Longwave radiant heat	8.60 / 2.52	Btu/hr / Watt	0.38%
Shortwave radiant heat	23.85 / 6.99	Btu/hr / Watt	0.52%
Total radiant heat	32.45 / 9.51	Btu/hr / Watt	0.65%
Long wave radiant heat fraction (total)	0.09		0.02%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.35		0.08%
Long wave radiant heat fraction (conditioned space)	0.21		%
Short wave radiant heat fraction (conditioned space)	0.57		%
Total Radiant heat fraction (conditioned space)	0.78		%

C15. Columbia LLT 22 @ 30 cfm

NO.6 Columbia LLT 22 (30 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	61.18 / 17.93	Btu/hr / Watt	2.88%
Total heat conduction	-42.69 / -12.51	Btu/hr / Watt	-1.99%
LED fixture power	92.80 / 27.20	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.654		1.99%
Longwave radiant heat	10.71 / 3.14	Btu/hr / Watt	0.47%
Shortwave radiant heat	24.50 / 7.18	Btu/hr / Watt	0.54%
Total radiant heat	35.21 / 10.32	Btu/hr / Watt	0.71%
Long wave radiant heat fraction (total)	0.12		0.03%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.38		0.09%
Long wave radiant heat fraction (conditioned space)	0.18		%
Short wave radiant heat fraction (conditioned space)	0.40		%
Total Radiant heat fraction (conditioned space)	0.58		%

NO.6 Columbia LLT 22 (Ducted Return)			
Variables	Results	Unit	Uncertainty
Total heat extraction	57.17 / 16.76	Btu/hr / Watt	4.65%
Total heat conduction	-28.32 / -8.30	Btu/hr / Watt	-2.25%
LED fixture power	92.80 / 27.20	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	46 / 495	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.555		3.78%
Longwave radiant heat	13044 / 3.94	Btu/hr / Watt	0.58%
Shortwave radiant heat	24.26 / 7.11	Btu/hr / Watt	0.53%
Total radiant heat	37.70 / 11.05	Btu/hr / Watt	0.79%
Long wave radiant heat fraction (total)	0.15		0.04%
Short wave radiant heat fraction (total)	0.26		0.06%
Total Radiant heat fraction (total)	0.41		0.09%
Long wave radiant heat fraction (conditioned space)	0.26		%
Short wave radiant heat fraction (conditioned space)	0.47		%
Total Radiant heat fraction (conditioned space)	0.73		%

C16. Columbia LLT 22 (Ducted Return)

C17. GE DI6R

NO.11 GE DI6R (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	88.02 / 25.80	Btu/hr / Watt	3.67%
Total heat conduction	-13.23 / -3.88	Btu/hr / Watt	-3.05%
LED fixture power	98.29 / 28.81	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	201 / 2159	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.466		4.08%
Longwave radiant heat	0.44 / 0.13	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.15 / 4.44	Btu/hr / Watt	0.15%
Total radiant heat	15.59 / 4.57	Btu/hr / Watt	0.15%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.33		%
Total Radiant heat fraction (conditioned space)	0.34		%

C18. GE DI6R @ 65F

NO.11 GE DI6R (65F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	68.19 / 19.99	Btu/hr / Watt	3.92%
Total heat conduction	-15.02 / -4.40	Btu/hr / Watt	-2.78%
LED fixture power	97.89 / 28.69	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	200 / 2153	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.403		4.47%
Longwave radiant heat	0.48 / 0.14	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.01 / 4.40	Btu/hr / Watt	0.07%
Total radiant heat	15.59 / 4.54	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.38		%
Total Radiant heat fraction (conditioned space)	0.39		%

C19. GE DI6R @ 120 cfm

NO.11 GE DI6R (120 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	113.14 / 33.16	Btu/hr / Watt	4.74%
Total heat conduction	-4.87 / -1.43	Btu/hr / Watt	-6.66%
LED fixture power	98.60 / 28.90	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	202 / 2174	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.464		7.54%
Longwave radiant heat	0.34 / 0.10	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.25 / 4.47	Btu/hr / Watt	0.07%
Total radiant heat	15.59 / 4.57	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.33		%
Total Radiant heat fraction (conditioned space)	0.34		%

C20. GE DI6R @ Wood Floor

NO.11 GE DI6R (Wood Floor)			
Variables	Results	Unit	Uncertainty
Total heat extraction	70.27 / 20.59	Btu/hr / Watt	4.81%
Total heat conduction	-18.43 / -5.40	Btu/hr / Watt	-2.57%
LED fixture power	98.21 / 28.78	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	205 / 2206	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.496		4.03%
Longwave radiant heat	0.44 / 0.13	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.08 / 4.42	Btu/hr / Watt	0.07%
Total radiant heat	15.52 / 4.55	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.31		%
Total Radiant heat fraction (conditioned space)	0.32		%

C21. GE DI6R @ 50% Dimming

NO.11 GE DI6R (50% Dimming)			
Variables	Results	Unit	Uncertainty
Total heat extraction	31.35 / 9.19	Btu/hr / Watt	7.91%
Total heat conduction	-18.55 / -5.44	Btu/hr / Watt	-2.48%
LED fixture power	57.27 / 23.92	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	132 / 1421	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.478		6.49%
Longwave radiant heat	0.27 / 0.08	Btu/hr / Watt	0.00%
Shortwave radiant heat	9.66 / 2.83	Btu/hr / Watt	0.07%
Total radiant heat	9.92 / 2.91	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.17		0.04%
Total Radiant heat fraction (total)	0.17		0.04%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.35		%
Total Radiant heat fraction (conditioned space)	0.36		%

C22. GE DI6R @ 55F

NO.11 GE DI6R (55F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	57.66 / 16.90	Btu/hr / Watt	5.20%
Total heat conduction	-36.67 / -10.75	Btu/hr / Watt	-2.11%
LED fixture power	98.76 / 28.94	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	203 / 2185	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.510		3.73%
Longwave radiant heat	0.44 / 0.13	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.22 / 4.46	Btu/hr / Watt	0.07%
Total radiant heat	15.66 / 4.59	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.00		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.30		%
Total Radiant heat fraction (conditioned space)	0.31		%

C23. GE DI6R @ 30 cfm

NO.11 GE DI6R (30 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	39.58 / 11.60	Btu/hr / Watt	4.61%
Total heat conduction	-33.57 / -9.84	Btu/hr / Watt	-2.15%
LED fixture power	98.07 / 28.74	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	203 / 2185	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.559		2.15%
Longwave radiant heat	0.58 / 0.17	Btu/hr / Watt	0.00%
Shortwave radiant heat	15.12 / 4.43	Btu/hr / Watt	0.07%
Total radiant heat	15.70 / 4.60	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.01		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.01		%
Short wave radiant heat fraction (conditioned space)	0.28		%
Total Radiant heat fraction (conditioned space)	0.29		%

C24. GE DI6R @ Ducted Return

NO.11 GE DI6R (Ducted Return)			
Variables	Results	Unit	Uncertainty
Total heat extraction	53.11 / 15.57	Btu/hr / Watt	5.16%
Total heat conduction	-29.92 / -8.77	Btu/hr / Watt	-2.38%
LED fixture power	97.92 / 28.70	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	200 / 2153	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.431		4.64%
Longwave radiant heat	0.85 / 0.25	Btu/hr / Watt	0.00%
Shortwave radiant heat	14.98 / 4.39	Btu/hr / Watt	0.07%
Total radiant heat	15.83 / 4.64	Btu/hr / Watt	0.07%
Long wave radiant heat fraction (total)	0.01		0.00%
Short wave radiant heat fraction (total)	0.15		0.03%
Total Radiant heat fraction (total)	0.16		0.03%
Long wave radiant heat fraction (conditioned space)	0.02		%
Short wave radiant heat fraction (conditioned space)	0.35		%
Total Radiant heat fraction (conditioned space)	0.37		%

C25. MaxLite RKT

NO.14 MaxLite RKT (BASE)			
Variables	Results	Unit	Uncertainty
Total heat extraction	119.25 / 34.95	Btu/hr / Watt	3.61%
Total heat conduction	-15.62 / -4.58	Btu/hr / Watt	-2.70%
LED fixture power	153.23 / 44.91	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	76 / 818	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.425		3.29%
Longwave radiant heat	16.17 / 4.74	Btu/hr / Watt	0.57%
Shortwave radiant heat	38.45 / 11.27	Btu/hr / Watt	0.67%
Total radiant heat	54.59 / 16.00	Btu/hr / Watt	0.88%
Long wave radiant heat fraction (total)	0.11		0.03%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.25		%
Short wave radiant heat fraction (conditioned space)	0.59		%
Total Radiant heat fraction (conditioned space)	0.84		%

C26. MaxLite RKT @ 65F

NO.14 MaxLite RKT (65F)			
Variables	Results	Unit	Uncertainty
Total heat extraction	98.04 / 28.73	Btu/hr / Watt	2.78%
Total heat conduction	-12.65 / -3.71	Btu/hr / Watt	-2.80%
LED fixture power	152.58 / 44.76	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	76 / 818	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.423		2.84%
Longwave radiant heat	16.48 / 4.83	Btu/hr / Watt	0.40%
Shortwave radiant heat	38.52 / 11.29	Btu/hr / Watt	0.66%
Total radiant heat	55.00 / 16.12	Btu/hr / Watt	0.77%
Long wave radiant heat fraction (total)	0.11		0.02%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.26		%
Short wave radiant heat fraction (conditioned space)	0.60		%
Total Radiant heat fraction (conditioned space)	0.85		%

C27. MaxLite RKT @ 120 cfm

NO.14 MaxLite RKT (120 cfm)			
Variables	Results	Unit	Uncertainty
Total heat extraction	136.93 / 40.13	Btu/hr / Watt	4.10%
Total heat conduction	-3.23 / -0.95	Btu/hr / Watt	-9.02%
LED fixture power	153.84 / 45.09	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	76 / 818	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.416		5.53%
Longwave radiant heat	10.99 / 3.22	Btu/hr / Watt	0.25%
Shortwave radiant heat	37.80 / 11.08	Btu/hr / Watt	0.65%
Total radiant heat	48.83 / 14.31	Btu/hr / Watt	0.69%
Long wave radiant heat fraction (total)	0.07		0.02%
Short wave radiant heat fraction (total)	0.25		0.05%
Total Radiant heat fraction (total)	0.32		0.07%
Long wave radiant heat fraction (conditioned space)	0.17		%
Short wave radiant heat fraction (conditioned space)	0.59		%
Total Radiant heat fraction (conditioned space)	0.76		%

C28. MaxLite RKT @ Wood Floor

NO.14 MaxLite RKT (Wood Floor)			
Variables	Results	Unit	Uncertainty
Total heat extraction	130.12 / 38.14	Btu/hr / Watt	3.04%
Total heat conduction	-18.81 / -5.51	Btu/hr / Watt	-2.45%
LED fixture power	153.25 / 44.91	Btu/hr / Watt	0.22%
Illuminance at lighting center 3 ft. above floor	82 / 883	Foot-candle / Lux	
Conditioned space lighting heat gain fraction	0.449		2.90%
Longwave radiant heat	16.31 / 4.78	Btu/hr / Watt	0.38%
Shortwave radiant heat	38.21 / 11.20	Btu/hr / Watt	0.65%
Total radiant heat	54.52 / 15.98	Btu/hr / Watt	0.76%
Long wave radiant heat fraction (total)	0.11		0.02%
Short wave radiant heat fraction (total)	0.25		0.06%
Total Radiant heat fraction (total)	0.36		0.08%
Long wave radiant heat fraction (conditioned space)	0.24		%
Short wave radiant heat fraction (conditioned space)	0.56		%
Total Radiant heat fraction (conditioned space)	0.79		%

NO.14 MaxLite RKT (50% Dimming)				
Variables	Results	Unit	Uncertainty	
Total heat extraction	52.86 / 15.49	Btu/hr / Watt	4.91%	
Total heat conduction	-9.14 / -2.68	Btu/hr / Watt	-3.57%	
LED fixture power	81.90 / 24.00	Btu/hr / Watt	0.22%	
Illuminance at lighting center 3 ft. above floor	43 / 463	Foot-candle / Lux		
Conditioned space lighting heat gain fraction	0.423		5.20%	
Longwave radiant heat	8.22 / 2.41	Btu/hr / Watt	0.22%	
Shortwave radiant heat	21.53 / 6.31	Btu/hr / Watt	0.41%	
Total radiant heat	29.75 / 8.72	Btu/hr / Watt	0.47%	
Long wave radiant heat fraction (total)	0.10		0.02%	
Short wave radiant heat fraction (total)	0.26		0.06%	
Total Radiant heat fraction (total)	0.36		0.08%	
Long wave radiant heat fraction (conditioned space)	0.24		%	
Short wave radiant heat fraction (conditioned space)	0.62		%	
Total Radiant heat fraction (conditioned space)	0.86		%	

C29. MaxLite RKT @ 50% Dimming

C30. MaxLite RKT @ 55F

NO.14 MaxLite RKT (55F)				
Variables	Results	Unit	Uncertainty	
Total heat extraction	117.08 / 34.31	Btu/hr / Watt	3.88%	
Total heat conduction	-10.36 / -3.04	Btu/hr / Watt	-3.67%	
LED fixture power	153.95 / 45.12	Btu/hr / Watt	0.22%	
Illuminance at lighting center 3 ft. above floor	77 / 829	Foot-candle / Lux		
Conditioned space lighting heat gain fraction	0.448		3.35%	
Longwave radiant heat	15.22 / 4.46	Btu/hr / Watt	0.35%	
Shortwave radiant heat	38.39 / 11.25	Btu/hr / Watt	0.65%	
Total radiant heat	53.60 / 15.71	Btu/hr / Watt	0.74%	
Long wave radiant heat fraction (total)	0.10		0.02%	
Short wave radiant heat fraction (total)	0.25		0.06%	
Total Radiant heat fraction (total)	0.35		0.08%	
Long wave radiant heat fraction (conditioned space)	0.22		%	
Short wave radiant heat fraction (conditioned space)	0.56		%	
Total Radiant heat fraction (conditioned space)	0.78		%	

C31. MaxLite RKT @ 30 cfm

NO.14 MaxLite RKT (30 cfm)				
Variables	Results	Unit	Uncertainty	
Total heat extraction	94.20 / 27.61	Btu/hr / Watt	3.39%	
Total heat conduction	-30.34 / -8.89	Btu/hr / Watt	-2.13%	
LED fixture power	153.95 / 45.12	Btu/hr / Watt	0.22%	
Illuminance at lighting center 3 ft. above floor	77 / 829	Foot-candle / Lux		
Conditioned space lighting heat gain fraction	0.462		2.16%	
Longwave radiant heat	20.06 / 5.88	Btu/hr / Watt	0.47%	
Shortwave radiant heat	38.24 / 11.50	Btu/hr / Watt	0.66%	
Total radiant heat	59.30 / 17.38	Btu/hr / Watt	0.81%	
Long wave radiant heat fraction (total)	0.13		0.03%	
Short wave radiant heat fraction (total)	0.26		0.06%	
Total Radiant heat fraction (total)	0.39		0.09%	
Long wave radiant heat fraction (conditioned space)	0.28		%	
Short wave radiant heat fraction (conditioned space)	0.56		%	
Total Radiant heat fraction (conditioned space)	0.84		%	

NO.14 MaxLite RKT (Ducted Return)					
Variables	Results	Unit	Uncertainty		
Total heat extraction	111.98 / 32.82	Btu/hr / Watt	3.21%		
Total heat conduction	-24.13 / -7.07	Btu/hr / Watt	-2.83%		
LED fixture power	152.41 / 44.67	Btu/hr / Watt	0.22%		
Illuminance at lighting center 3 ft. above floor	76 / 818	Foot-candle / Lux			
Conditioned space lighting heat gain fraction	0.523		2.68%		
Longwave radiant heat	24.60 / 7.21	Btu/hr / Watt	0.38%		
Shortwave radiant heat	39.44 / 11.56	Btu/hr / Watt	1.31%		
Total radiant heat	64.04 / 18.77	Btu/hr / Watt	1.36%		
Long wave radiant heat fraction (total)	0.16		0.04%		
Short wave radiant heat fraction (total)	0.26		0.06%		
Total Radiant heat fraction (total)	0.42		0.10%		
Long wave radiant heat fraction (conditioned space)	0.31		%		
Short wave radiant heat fraction (conditioned space)	0.49		%		
Total Radiant heat fraction (conditioned space)	0.80		%		

C32. MaxLite RKT @ Ducted Return