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ABSTRACT

Reacting gas–solid flows occur in nature and many industrial applications. Emerging

carbon-neutral and sustainable energy generation technologies such as CO2 capture and biofuel

production from fast pyrolysis of biomass are examples of reacting gas–solid flows in industry.

Fundamental scientific understanding of reacting gas–solid flows is needed to overcome techno-

logical barriers for the successful development of these technologies. Multiphase computational

fluid dynamics (CFD) simulations are increasingly being used for scale-up of reactors from

laboratory to pilot to full-scale plants, and also for evaluation of different design options.

Device-scale CFD simulations of reacting gas-solid flow are based on statistical descriptions

that require closure models for interphase exchange of momentum, heat, and species. The

predictive capability of multiphase CFD simulations depends on the accuracy of the models

for the interphase exchange terms. Therefore, multiphase CFD simulations require accurate

physics-based multiphase flow models of heat and mass transfer as well as chemical reaction

rates. Particle-resolved direct numerical simulation (PR-DNS) is a first-principles approach to

provided transformative insights into multiphase flow physics for model development. PR-DNS

of reacting gas–solid flows can provide accurate quantifications of gas–solid interactions.

The primary objective of this work is to develop improved closure models for CFD simu-

lations in reacting gas–solid flows using the PR-DNS approach. A computational tool called

particle-resolved uncontaminated-fluid reconcilable immersed boundary method (PUReIBM)

has been developed as a part of this work to perform PR-DNS of heat and mass transfer

in reacting gas-solid flows. A pseudo-spectral (PS) version of the PUReIBM simulation of

flow past a fixed homogeneous particle assembly and freely evolving suspension of particles

with heat transfer has provided PR-DNS data that are used to develop closure models in the

Eulerian-Eulerian two-fluid average fluid temperature equation and probability density function

transport equation, and validate the assumptions in multiphase flow statistical theories.
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A fully finite-difference (FFD) version of PUReIBM is also developed to account for wall-

bounded flow. The FFD PR-DNS is validated by a suite of test cases and used to perform

a detailed comparison with experimental data by using the same setup. In order to extend

unclosed models to account for wall effect, wall effect on drag and heat transfer of particle as-

semblies are studied using FFD PR-DNS. In order to validate the assumption of the isothermal

particle in the case of flow past a fixed bed of particles, a preliminary study of the transient

heat transfer from a single particle is performed by FFD PR-DNS. A better understanding of

the role of heat and mass transfer in reacting gas–solid flow is gained by using FFD PR-DNS to

simulate mass transfer in flow past a sphere with a first-order chemical reaction on the particle

surface for low and high Reynolds number. These capabilities of the PR-DNS approach pro-

vide insight into flow physics and have provided data that has been used to develop improved

heat transfer models for gas-solid flow.
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CHAPTER 1. OVERVIEW

1.1 Background

A gas–solid flow represents the flow of gas through solid particles, which is commonly

encountered in nature as well as in industrial processes. In nature, a snowstorm in the win-

ter impacts the economy and society by damaging agriculture and impeding transportation

(Gordon and Taylor (2009)). In industrial applications, carbon-neutral technologies such as

chemical looping combustion (Shen et al. (2008)) and CO2 capture (Abanades et al. (2004);

Yi et al. (2007)) that use carbonate sorbent particles to absorb CO2 offer the promise of carbon-

neutral energy generation to reduce greenhouse gas emissions. Another example of the use of

gas–solid flow is in sustainable energy generation technologies from renewable sources such as

biomass pyrolysis that are a promising way to reduce the nation’s dependence on fossil fuels.

In sustainable energy generation technologies such as biofuel production from biomass par-

ticles, heat and mass transfer between gas and solid phases as well as chemical reaction kinetics

are important phenomena. For instance, pyrolysis of biomass is one of the ways to extract

bioenergy from biomass particles, resulting in the production of bio-oil over a range of oper-

ating temperature. Pyrolysis is a thermochemical conversion technology that involves heating

the organic material in biomass in the absence of oxygen (nitrogen is the gas phase). The prod-

uct yields from the pyrolysis processes depend on the operating temperature in the biomass

reactor (Brown (2011)). Fast pyrolyzers are designed to maximize the production of bio-oil in

a product stream that typically comprises 50-70% bio-oil, 10-30% biochar, and 15-20% syngas

by mass. This is accomplished by high heating rates at operating temperature around 500◦C.

Other processes such as slow pyrolysis of biomass produce mainly charcoal at the operating

temperature around 500◦C with lower heating rates (approximately 35% biochar, 30% bio-oil,
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and 35% syngas by mass), whereas gasification of biomass is designed to maximize production

of syngas and produce very little char or bio-oil at the operating temperature 750◦C − 1000◦C

(Bridgwater et al. (1999); Wright et al. (2008); Laird et al. (2009)). Among the pyrolysis pro-

cesses, biomass fast pyrolysis is one of the most promising technologies to produce bio-fuel

(Brown (2011)) since bio-oil is finally upgraded into biofuel.

In order to maximize biofuel production, the design of reactors for biomass fast pyrolysis

requires high heat transfer rates (generating the heat required for the fast pyrolysis process)

and controlled reaction temperature (operating temperature). For a fixed-geometry reactor,

three parameters are typically used to control the process of fast biomass pyrolysis: (i) inlet

temperature of nitrogen gas, (ii) flow rate of nitrogen gas, and (iii) feed rate of biomass. It

is worth noting that these three parameters are related to three non-dimensional parameters.

The flow rate and inlet temperature of nitrogen gas can be related to the Reynolds number and

Nusselt number. Once the solid phase and the gas phase are mixed, the feed rate of biomass

can be related to the solid volume fraction. If the flow rate of nitrogen gas is fixed, considering

the gas–solid system as a heat exchanger in which nitrogen gas transfers heat to biomass (the

temperature of nitrogen gas is higher than the biomass particle temperature initially), the

relation between flow rate of nitrogen gas and biomass particles is determined by

ṁbQ = ṁgcpg (Tg,in − Tg,out) , (1.1)

where ṁb is the flow rate of biomass particles, ṁg is the flow rate of nitrogen gas, cpg (J/kg-K)

is the specific heat capacity of nitrogen gas, Q (J/kg) is the heat required for fast pyrolysis

of biomass, Tg,in (K) and Tg,out (K) are the inlet and exit temperatures of nitrogen gas, re-

spectively. Given the flow rate of biomass particles, and measurement of the inlet and outlet

temperature of nitrogen gas in this gas–solid system, the heat energy Q for maintaining con-

trolled reaction temperature can be determined. The heat energy Q normally includes the

heat energy required to take the biomass particles to the reaction temperature and the energy

required to initiate and complete the pyrolysis reactions.

However, this energy balance analysis gives only a global estimate for the design of the

system due to absence of information regarding the temperature distribution and the local
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temperature gradient representing high heat transfer rates inside this system. In biomass fast

pyrolysis, the temperature distribution and the local temperature gradient through the reactor

are strongly influenced by hydrodynamic fields in this reacting gas–solid flow. This complex

coupling between momentum, heat and mass transfer processes can be seen in Fig. 1.1. Due

to biomass particle motions, there exist locally intense velocity fluctuations in the gas phase

(Mehrabadi et al. (2015)). These gas–phase velocity fluctuations contribute significantly to

local mixing of the temperature and species fields. This mixing results in the variation of

temperature or species gradients. Therefore, local mixing can influence the product yield

since chemical reaction in both gas and solid phases are Arrhenius type with strong nonlinear

dependence on temperature.

Figure 1.1: A example of coupling between momentum, heat and mass transfer in reacting
gas-solid flow encountered in biomass pyrolysis.

The intensity of local mixing also determines how fast the biomass particles can be heated

up to the desired reaction temperature in which the biomass particles mostly convert into

the expected product yields. Once biomass particle temperature reaches the desired reaction

temperature, chemical reactions start to convert the biomass particles into different products.

Since the reaction rates representing chemical reaction in biomass fast pyrolysis are of the
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Arrhenius form, they are highly temperature-dependent. For instance, in the process of tar

vapor reaction into gas, reaction rate constants that related to reaction rates vary from 10−12s−1

at temperature 300K to 10−1s−1 at temperature 800K. Since the chemical reaction source

term is a function of the reaction rate constants, this huge variation in reaction constants

requires knowledge of the temperature distribution. In addition, since the mass transfer between

biomass particles (solid phase) and gas is accompanied by heat release (or absorption) during

chemical reactions, gas-solid heat transfer is affected by mass transfer (see Fig. 1.1). This effect

of mass transfer on heat transfer is difficult to analyze in a global energy balance. Therefore,

accurate representation of the detailed information on the reaction rate in both

fluid and solid phases as well as the coupling between heat and mass transfer is

needed.

In spite of the lack of detailed information on heat and mass transfer, many efforts to de-

sign and optimize the gas–solid reactors have been made using theoretical and experimental

studies for gas–solid flow (as discussed in Section 1.2). However, because theoretical studies

are restricted to simple problems, and experimental studies are expensive and cannot provide

complete quantitative information inside the reactors, accurate prediction of gas–solid flow still

remains a challenge for industrial applications. In order to overcome these difficulties, multi-

phase computational fluid dynamics (CFD) is a cost-effective tool that is increasingly being

used in the design of technological applications as shown in Fig. 1.2. CFD models for simu-

lating biomass fast pyrolysis have been developed using commercial (Papadikis et al. (2009a);

Boateng and Mtui (2012)) as well open-source software (Xue et al. (2011, 2012)). Although

the CFD model predictions for a laboratory-scale reactor are in reasonable agreement with

experimental measurements of product yields for cellulose and red-oak pyrolysis at the reactor

outlet for selected operating conditions, there is considerable scope for improvement of the

CFD model for design and scale-up of industrial-scale reactors.
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Figure 1.2: Impact of improved understanding of reacting gas–solid flow. Multiphase CFD

simulations are increasingly being used to improve design of industrial applications such as

chemical looping combustion, biomass fast pyrolysis, and CO2 capture. The fundamental

understanding of reacting gas-solid flow using particle-resolved direct numerical simulation

(PR-DNS) will improve closure models for multiphase CFD simulations.

Device-scale CFD simulations can be performed using the Eulerian-Eulerian (EE) two-

fluid (TF) approach (Anderson and Jackson (1967); Drew (1983)) in which averaged equations

for conservation of mass, momentum, energy and species are written for each phase, with

coupling terms representing the interphase interactions, or the transported probability density

function (PDF) approach (Zhu et al. (2000); Minier and Peirano (2001); Pai and Subramaniam

(2009); Subramaniam (2013)) in which transport equations for the PDF of a set of variables
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represent the hydrodynamic and/or thermo-chemical state of each phase. These equations

contain unclosed terms that need to be modeled, and the predictive capability of multi-

phase CFD simulations depends on the models for interphase exchange of species, momentum,

and heat. While numerical accuracy is also very important in multiphase CFD simulations

(Pai and Subramaniam (2006); Garg et al. (2009)), it is fair to say that even numerically ac-

curate simulations cannot be predictive without the correct physical sub-models. Therefore,

multiphase CFD simulations require accurate physics-based multiphase flow models of heat

and mass transfer as well as the chemical reaction source term.

One of the critical hurdles in the development of heat and mass transfer models for mul-

tiphase flow is the absence of temperature and species measurements inside the particle-laden

flow for model validation. Detailed experimental measurements alone cannot improve multi-

phase flow models. To provide insight into the microscale physico-chemical interactions and

develop improved models for CFD simulation of biomass fast pyrolysis, particle-resolved direct

numerical simulation (PR-DNS) of time–dependent three–dimensional velocity, temperature,

and species fields is developed in this thesis. PR-DNS is a first-principles high-fidelity simu-

lation method that has already provided transformative insights into multiphase flow physics

for model development (Tenneti and Subramaniam (2014)). It is used as a promising tool to

provide fully characterized microscale data on reaction rates in both gas and particle phases

as well as on the coupled gas–solid heat and mass transfer for development of multiphase CFD

models for reacting gas–solid flow.

1.2 Existing work

The key modeling requirements that emerge from multiphase CFD study are the need for

physics-based closures. The unclosed terms appearing in CFD simulations are divided into:

(1) interphase exchange (e.g., drag, Nusselt number), (2) spatial flux (e.g., covariance of gas-

phase velocity fluctuations), (3) diffusion (e.g., average heat conduction), (4) source terms (e.g.,

chemical reaction sources in species mass fraction), and (5) source terms due to interphase mass

transfer (see Eq. J.12 in Appendix J). A summary of these terms is provided in Table 1.1.

In the EE TF approach, standard models are available for many of these terms (Benyahia et al.
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(2012)) but some terms (such as transport of temperature-velocity covariance) are often ne-

glected in CFD simulations. Recent PR-DNS studies by several researchers (Hill et al. (2001a,b);

Beetstra et al. (2007b); Yin and Sundaresan (2009); Tenneti et al. (2010, 2011)) have yielded

computational drag laws that have improved existing models. The PR-DNS approach that

is used in this thesis has also recently been used to develop models for drag (Tenneti et al.

(2011)), pseudo-turbulent kinetic energy (Mehrabadi et al. (2015)), and the source of granular

temperature (Tenneti (2013)) in the hydrodynamic problem of gas–solid flow (see Table 1.1).

These models shown in the green boxes in Table 1.1 can be easily incorporated into multi-fluid

CFD codes.

In this thesis, closure models for heat and mass transfer in reacting gas–solid flow are de-

veloped for the EE TF approach using the PR-DNS approach. CFD of heat and mass transfer

in reacting gas–solid flow that solve for the average scalar (temperature and species) transport

equation requires models for (1) average interphase scalar (heat and mass) flux, (2) transport

of the scalar-velocity covariance, (3) conduction in the gas phase, (4) chemical reaction source

term in both gas phase and interphase, and (5) source terms due to nonzero interphase mass

transfer such as blowing effect from particle surface (see Table 1.1). In the existing standard

model for heat (mass) transfer, the average interphase heat (mass) flux is calculated from a

Nusselt (Sherwood) number correlation that quantifies the dependence on solid volume fraction

εs and the Reynolds number based on mean slip velocity. The heat and mass transfer corre-

lations (Kunii and Smith (1961); Littman et al. (1968); Cybulski et al. (1975); Gunn (1978))

that are currently used in state-of-the-art multiphase CFD simulations (Syamlal et al. (1993))

were developed to fit experimental data that were obtained in the late 1970s (Cybulski et al.

(1975); Gunn and Desouza (1974); Wakao et al. (1977); Wakao and Kaguei (1982)). The sec-

ond unclosed term–the transport of the scalar-velocity covariance–is often neglected. This

term can be relevant to pseudo-turbulent or turbulent scalar diffusivity that is analogous to

that in single-phase turbulence. In gas-solid heat transfer from fixed bed of particles, the ra-

tio of pseudo-turbulent or turbulent thermal diffusivity to the molecular diffusivity is found to

have a Pen dependence (Koch and Brady (1985); Kuwahara et al. (1996); Pedras and de Lemos

(2008); Jeong and Choi (2011); Özgümüş et al. (2013)), where Pe is the Péclet number, and n



8

is an exponent that depends on the dominant mechanism of thermal dispersion. Average heat

conduction (or species diffusion) in the gas phase is normally modeled in term of average tem-

perature (or species mass fraction) gradient (Benyahia et al. (2012)). In addition, the average

chemical reaction source term is related to the reaction rate constant that in the simplest model

would be evaluated at the average temperature. The source term resulting from the nonzero

interphase mass transfer may be considered in an improved Sherwood number correlation. This

term (5) are outside the scope of this thesis.

In the transported PDF approach to gas-solid flow without zero interphase mass transfer,

a composition PDF transport equation for two-phase flow requires closure models for (1) the

interphase scalar (heat and mass) flux conditional on composition, (2) velocity fluctuation con-

ditional on composition (the scalar-velocity covariance can be obtained by the integral of this

term), (3) mixing in the gas phase conditional on composition (diffusion term). The existing

models for these unclosed terms are extensions of the closure models for single-phase flow (Pope

(2000); Fox (2003); Haworth (2010)). The mixing terms and velocity fluctuation conditional

on composition for two-phase flow are normally modeled by the interaction by exchange with

the mean (IEM) models (Fox (2003)) and a gradient-diffusion model that introduces a turbu-

lent diffusion term (Marchisio et al. (2001); Carrara and DesJardin (2006, 2008)), respectively.

Vegendla et al. (2009) modeled interphase heat/mass transfer term in the two-point composi-

tion PDF transport equation for gas-solid flow in terms of heat/mass transfer coefficient and

temperature/concentration difference between solid and gas phases. Although single-phase clo-

sure models (Vegendla et al. (2009)) have been extended to model the unclosed terms of the

composition PDF transport equation in gas-solid flow and provided the reasonable results, the

extension of single-phase closure models needs to be validated. Therefore, in EE TF and trans-

ported PDF approaches, the challenge is to develop accurate models for these unclosed terms

in the equations based on the microscale physicochemistry.

In order to address the critical challenge in developing models for heat and mass transfer

in reacting gas–solid flow, theoretical analysis and experimental measurements have been at-

tempted. However, it is difficult to develop models that are valid over a wide range of solid

volume fraction and mean slip Reynolds number based on theoretical and experimental meth-
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ods for gas–solid heat and mass transfer. In this section, the existing theoretical, experimental,

and numerical studies on heat and mass transfer in gas–solid flow are summarized.

Table 1.1: Models for unclosed terms have already been available (green) and need to be
improved or proposed (orange) from PR-DNS of reacting gas–solid flow. Models for unclosed
terms are not discussed in this thesis (gray).

1.2.1 Theoretical solutions

In order to obtain analytical solutions for gas-solid flow, theoretical studies of heat and

mass transfer in gas–solid flow are limited to creeping flow past an isolated sphere, ordered

spheres, or flow past random assemblies of spheres. Analytical solutions for heat transfer

(Acrivos and Taylor (1962); Taylor (1963a)) and mass transfer (Taylor (1963b); Hartunian and Liu

(1963); Gupalo and Ryazantsev (1972)) on an isolated sphere were obtained used matched

asymptotic expansions for Stokes flow and low Reynold number (Re ≪ 1). In the solutions for

mass transfer (Taylor (1963b); Hartunian and Liu (1963); Gupalo and Ryazantsev (1972)), the

Sherwood number was calculated based on the first-order and second-order chemical reaction

at the sphere surface. The limiting case of heat transfer with isothermal particle or mass trans-

fer with fast reaction (Re→ 0, Pe→ 0) in the analytical solutions also give a useful reference

value for the Stokes Nusselt number or Sherwood number, which is known analytically to be 2

(Clift et al. (1978)). Creeping flow past ordered spheres was also studied by Pfeffer and Happel

(1964). They performed an analytical study using an idealised concentric “unit cell” with as-



10

sumed fluid temperature boundary conditions at its frictionless “free surface” or outer radial

(fluid) boundary. They noted that while in an actual packed bed these fluid envelopes will be

distorted, for the analysis they assumed a spherical cell. This assumption is hard to justify

especially at higher solid volume fraction because distortion of the fluid envelopes can signif-

icantly change the scalar gradients. Nevertheless, the unit cell solutions are assumed to be

representative of packed and fluidized beds. Using the free surface model, Pfeffer and Happel

(1964) obtained an average Stokes Nusselt number value of about 13 for Stokes flow in a particle

bed with a solid volume fraction of 0.6. Sorensen and Stewart (1974) studied fully-developed

creeping flow through a simple cubic arrangement of spheres using stream-function expansions

and a variational approach for the velocity field, and approximating functions and a collocation

procedure for the temperature field. However, their non-standard Nusselt number definitions

that is a function of Péclet number and bulk temperature cannot be easily compared with other

results.

The analytical treatment of heat and mass transfer in flow past random assemblies of par-

ticles is nontrivial since governing equations for heat and mass transfer problems normally

behave non-linearly with random particle configurations. Due to the averaging procedure over

different configurations of particles drawn from an ensemble at the same solid volume frac-

tion, the boundary conditions at particle surfaces need to be imposed at random locations.

Average quantities such like average Nusselt or Sherwood number corresponding to gas–solid

heat or mass transfer depend on the gradients of the resulting random temperature or con-

centration fields at particle surfaces. Gunn (1978) estimated the average surface heat flux

based on the difference in phase-averaged temperature in gas and solid phases and an aver-

age length scale obtained from an assumed distribution of flow channel widths. His analytical

results of Nusselt number for fixed bed of particles were restricted at low Reynolds number.

Koch and Brady (1985) solved the convection-diffusion equation for mass (heat) transfer in

Stokes flow through fixed beds using an asymptotic analysis that is valid in the dilute limit

(low solid volume fraction). In their analysis, Koch and Brady (1985) assumed a linear con-

centration profile that varies slowly (on the length scale of the one-particle problem) in the

axial direction. Koch and Brady (1985) obtained the dependence of the effective diffusivity on
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the Péclet number and the ratio of the particle-fluid solubilities (particle-fluid thermal ratio

inertia). Koch’s work provides early evidence that in fixed particle beds the presence of bulk

convective motion induces fluid velocity fluctuations (mechanical dispersion) because of the

presence of particles, and this is an important factor affecting macrotransport. Acrivos et al.

(1980) found that under the condition that solid volume fraction of particles is far larger than

the square of Péclet number, the fluid heating produced a significant nonlinear temperature

gradient throughout a fixed bed of particles. In other words, in slow flow the fluid heating

effect is significant in a fixed bed of particles. At finite Reynolds number, the non-linearity of

the governing equations and the randomness in particle positions and velocities pose significant

obstacles to theoretical analysis.

1.2.2 Experimental measurements

Due to the limitations of theoretical analysis, experimental measurements of gas–solid flow

are often used to provide correlations. Experimental measurements of gas–solid heat and mass

transfer are also challenging because of limited optical access. Various experimental techniques,

such as axial heat conduction (Kunii and Smith (1961)), step response (Handley and Heggs

(1968)), frequency response (Littman et al. (1968); Gunn and Desouza (1974)), and shot re-

sponse (Shen et al. (1981); Wakao et al. (1977)) have been used to study heat transfer in

gas–solid fixed-bed reactors over the last several decades (Wakao and Kaguei (1982)). How-

ever, these experimental studies report values for the Nusselt number or Sherwood number in

packed beds (εs ≈ 0.6) that differ by three or four orders of magnitude (Wakao and Kaguei

(1982)). Since most experimental measurements of heat and mass transfer in gas–solid flow are

intrusive, flow disturbances caused by the probes are a source of uncertainty. Furthermore, the

gas–solid heat transfer rate is inferred from point-wise temperature measurements using simpli-

fied one–dimensional models of heat transfer that are based on assumptions such as the neglect

of axial conduction in the fluid phase. Therefore, the validity of the assumptions implicit in

these simplified one–dimensional models used in the inferential procedure is also a source of

uncertainty.

Recently, non-intrusive laser optical measurement techniques including particle image ve-
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locimetry (PIV) and planar laser-induced fluorescence (PLIF) are developed for research and

diagnostics into flow and combustion processes. These techniques are capable of measuring

an entire two-dimensional cross section of the flow field simultaneously with a high degree of

accuracy. For instance, combination of PIV and PLIF allows us to visualize and measure the

concentration and temperature field in fluid flow. With index of refraction matching to avoid

the light refraction and resulting image distortions, the flow inside a bed of particles can be

visualized, which cannot be measured using traditional experimental techniques.

However, these non-intrusive techniques such as PIV and PLIF have their limitations. For

instance, regular PIV only gives two components of velocity in a two dimensional plane. Even

though stereoscopic PIV can be used for visualization of all three components of velocity field,

this technique is still limited to measurement in a two dimensional plane. For PLIF measure-

ment of concentration, fluorescence can arise from other species, especially from hydrocarbons

in high pressure reacting flows. Also, since the fluorescence of the dye is a function of the laser

light intensity, temporal and spatial variation of laser light intensity needs to accounted for.

Although the challenges in experimental measurement still limit the accuracy of the results

from experiments, for the practicing engineer Nusselt (Sherwood) number correlations have

been developed to provide relatively simple functional forms to estimate the average interphase

heat or mass flux in reacting gas–solid flow based on experimental data. For instance, in a

fixed particle bed, based on the findings of Gunn and Desouza (1974), Wakao et al. (1979)

reevaluated published data on unsteady heat transfer and combined those with re-assessed

steady-state heat transfer data, to develop the following correlation for the Nusselt number in

packed beds:

Nu = 2 + 1.1Pr1/3Re0.6. (1.2)

This correlation yields an average Stokes Nusselt number of exactly 2 for a packed bed. To

account for effect of the solid volume fraction, Gunn (1978) proposed a single correlation for

particle-to-fluid heat and mass transfer in fixed beds using experimental data, which is written
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as the following function of Reynolds number Re, bed porosity εb, and Prandtl number Pr:

Nu = (7 − 10εb + 5ε2
b)(1 + 0.7Re0.2Pr1/3) + (1.33 − 2.4εb + 1.2ε2

b )Re0.7Pr1/3. (1.3)

This correlation is valid in the bed porosity range 0.35 ≤ εb = 1−εs ≤ 1.0 and Re ≤ 105. It has

been widely used in CFD simulations of two–phase flows (Syamlal et al. (1993)) to simulate

heat and mass transfer in gas–solid flows. For the case of mass transfer, the Schmidt number

is substituted for the Prandtl number, resulting in a correlation for the Sherwood number.

Besides the development of the correlation for interphase transfer using experimental data,

various experimental techniques for measuring the solute concentration field have been reviewed

by Delgado (2006). A similar review of experimental techniques for measuring the tempera-

ture field is given by Özgümüş et al. (2013). These field data have been used to calculate

hydrodynamic dispersion and thermal dispersion in porous media or packed beds for gas-solid

flow, respectively. The hydrodynamic dispersion or thermal dispersion is defined based on the

concentration-velocity covariance by Koch and Brady (1985) or the temperature-velocity co-

variance by Kaviany (2012) and Whitaker (1999), and a gradient-diffusion model. Empirical

correlations have been proposed for the calculation of the hydrodynamic or thermal dispersion

coefficients over the entire range of practical values of Schmidt number (or Prandtl number)

and Péclet number.

1.2.3 PR-DNS Simulation

The aforementioned limitations of theoretical and experimental methods motivate us to use

PR-DNS approach to provide insight into the physico-chemical interactions and develop im-

proved closure models for multiphase CFD simulations. PR-DNS approach is a first-principles,

model-free method that has already provided transformative insights into multiphase flow

physics for model development (Tenneti and Subramaniam (2014)). The principal features

involved in any PR-DNS methodology are that i) solving the fluid flow by imposing appro-

priate boundary conditions at the particle surfaces, ii) computing the fluid dynamic forces

acting on the particles, and iii) evolving the velocities and positions of the particles due to the

action of the fluid forces and additional forces due to interparticle interactions such as colli-
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sions. It is important to note that unlike point-particle direct numerical simulation (PP-DNS)

approach (Squires and Eaton (1991); Elghobashi and Truesdell (1993); Boivin et al. (1998);

Sundaram and Collins (1999); Mashayek and Taulbee (2002)) that treat a size particle as a

point particle and use the drag model to compute the drag of a particle, the particle velocities

are evolved by explicitly computing the fluid forces acting on the particles and does not use

any drag model.

Development of PR-DNS methodology needs to address two main challenges. One is how

efficiently to solve for a flow that is subject to boundary conditions at moving particle surfaces.

The other is how to develop models for different gas-solid flow regimes based on PR-DNS.

When PR-DNS is used to develop models for averaged quantities, multiple independent simu-

lations (MIS) of microscale realizations corresponding to the same macroscale system need to

be preformed to guarantee that the statistical description for gas-solid flow is correct.

Recently, various PR-DNS methodologies have been developed to overcome these chal-

lenges. The methodologies can be broadly categorized as those that rely on a body-fitted

mesh (Nomura and Hughes (1992); Hu et al. (2001); Bagchi and Balachandar (2003, 2004);

Burton and Eaton (2005)) to impose boundary conditions at particle surfaces and those that

employ regular Cartesian grids (Peskin (1981); Yusof (1996); Scardovelli and Zaleski (1999);

Patankar et al. (2000); Glowinski et al. (2001); Ladd and Verberg (2001); Oguz and Prosperetti

(2001); Sharma and Patankar (2005); Uhlmann (2005); Kim and Choi (2006); Tabaczynski

(2001); Apte et al. (2009); Garg (2009); Lucci et al. (2010)). These methods are briefly sum-

marized in Garg et al. (2010b) and Tenneti et al. (2011). The principal disadvantage with

body-fitted mesh approaches is that repeated re-meshing and solution projection are required

for moving interfaces. For methods using regular Cartesian grids, there is no re-meshing that

result in much faster solution times for moving particle simulations. However, because the grid

does not conform to the particle surface, special strategies are needed to generate an accu-

rate solution by imposing boundary conditions on the particle surface. Once the interpolation

strategies represent the particle surface accurately, PR-DNS methodologies have the capability

to solve the flow around complex solid-phase geometries quickly.

PR-DNS of gas-solid flows can provide accurate quantification of gas-solid interaction and
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has been used by several researchers to build computational drag models (Hill et al. (2001a,b);

Van der Hoef et al. (2005); Beetstra et al. (2007a); Yin and Sundaresan (2009); Tenneti et al.

(2011)). In recent years, several researchers have also extended PR–DNS to investigate heat

and mass transfer in gas–solid flow. Two-dimensional PR–DNS studies (Yu et al. (2006);

Feng and Michaelides (2009)) on simulating gas–solid flow in an infinite channel with an isother-

mal particle have been reported. Massol et al. (2004) studied heat transfer in a fixed array of

monodisperse spheres using three-dimensional PR–DNS. However, their formulation uses a

source/sink term that is strictly valid only for those cases where fluid heating is negligible

during the time it takes the flow to transit the computational domain. This restriction holds

only for dilute suspensions at high Reynolds number (Acrivos et al. (1980)). Deen et al. (2012)

and Tavassoli et al. (2013) used three-dimensional PR–DNS with inflow and outflow boundary

conditions to compute the gas–solid heat transfer coefficient and Nusselt number that are com-

pared with Gunn (1978) correlation. Deen et al. (2014) also simulated coupled heat and mass

transfer in a fixed bed of particles with chemical reaction at the surface of the particles in time

and compared the PR-DNS results with one-dimensional heterogeneous model.

Recently, Tenneti et al. (2011) and Garg et al. (2010b) have developed a PR–DNS approach

based on the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method

(PUReIBM) that is used to solve for flow past arbitrary arrangements of solid spherical par-

ticles. PUReIBM is a PR-DNS approach for gas–solid flow where the Navier-Stokes equations

with no-slip and no-penetration boundary conditions on each particle’s surface are solved using

a forcing term that is added to the momentum equations. Complete details of the PUReIBM

hydrodynamic solver are discussed by Tenneti et al. (Tenneti et al. (2011); Tenneti (2013);

Tenneti et al. (2010); Tenneti and Subramaniam (2014)) and Garg et al. (2010b).

1.3 Research objectives

The principal goal of this work is to use the PR-DNS approach to provide detailed in-

formation on the coupling between heat and mass transfer in both fluid and solid

phases. The PR-DNS approach enables the development of predictive models for momentum,

heat and mass transfer in reacting gas–solid flow. The specific research objectives of this thesis
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that will lead us to this goal in Fig. 1.3 are described as follows: 1) develop the PR-DNS ap-

proach to account for heat and mass transfer in reacting gas–solid flow; 2) develop the PR-DNS

approach to account for walls and validate the PR-DNS approach by comparisons with numer-

ical and experimental data; 3) quantify and model unclosed heat transfer terms in the TF fluid

temperature equation and the composition PDF transport equation using PR-DNS data; 4)

quantify and model mass transfer on particles in reacting gas–solid flow using PR-DNS data;

and 5) validate the assumptions in multiphase flow statistical theories using PR-DNS data.

These specific research objectives are described below in further detail.

Figure 1.3: Schematic showing specific research objectives leading to the development of a
two–fluid model for reacting gas-solid flow. The PR-DNS approach is used to produce data of
velocity, temperature and species fields. The data obtained from performed PR-DNS will be
used to propose closure models for the average gas-solid transfer, axial conduction in the fluid
phase, transport of velocity-temperture covanience. Another objective of this work is to use
PR-DNS to provide data to compare with experimental data.

1.3.1 Development of the PR-DNS approach

In order to study heat transfer in gas–solid flow, the hydrodynamic solver of PR-DNS de-

veloped by Tenneti et al. (Tenneti et al. (2011); Tenneti (2013); Tenneti et al. (2010)) and

Garg et al. (2010b) is extended to solve the fluid temperature equation as shown in Chap-

ter 2. The PR-DNS approach is based on a pseudo-spectral (PS) scheme with the immersed
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boundary method (PS PR-DNS). Using this PR-DNS approach, fluid heating is accounted for

in thermally fully–developed flow with periodic domains using a thermal self–similarity condi-

tion (Tenneti et al. (2013)). The scalar solver of PS PR-DNS is validated by comparing the

PR-DNS results with analytical solutions, and existing experimental and numerical data.

Although the convergence and accuracy of PS PR-DNS are validated in a suite of test

cases, its applications are restricted by periodic boundary conditions. In order to overcome

these difficulties, a fully finite-difference (FFD) scheme version of PR-DNS is developed in

Chapter 7. The momentum and scalar transport equations are solved using a fully finite–

difference scheme in all directions in FFD PR-DNS instead of using Fourier transforms in

the cross-stream directions as in PS PR-DNS. This allows us to implement various boundary

conditions such as inflow/outflow boundary condition to simulate a wall-bounded flow. The

hydrodynamic and scalar solvers of FFD PR-DNS are developed and validated in several test

cases in Chapter 7. The FFD PR-DNS solvers are also parallelized to perform simulations of

a large domain with high grid resolutions such as simulation of the experimental test section

in Chapter 8. A complete test section of the experiments provided by Mahdi Ramezani and

Michael G. Olsen in Iowa State University is simulated by FFD PR-DNS and the side-by-

side comparison between numerical and experimental data is reported for the purpose of the

validation of the FFD PR-DNS approach. In order to study mass transfer in gas–solid flow, the

scalar solver of FFD PR-DNS is extended to study mass transfer with surface chemical reactions

in Chapter 10. The third type boundary condition that involves the first-order surface chemical

reaction and species diffusion is imposed on the surface of particles. The PR-DNS results are

validated by 2D analytical solution for low Reynolds number.

1.3.2 Quantification and model development for reacting gas–solid flow

Model development for multiphase CFD simulations requires physics-based closures for

unclosed terms (corresponding to the cells in Table 1.1). Using PS PR-DNS, a drag model

and a granular temperature model have been proposed by Tenneti et al. (2011), and a model

for fluid velocity covariance has been proposed by Mehrabadi et al. (2015) using homogeneous

particle assembly simulations (see green cells in Table 1.1). In this thesis, model development
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for the other unclosed terms (see orange cells in Table 1.1) in the two–fluid equation is discussed

based on PR-DNS data for temperature and species fields.

To solve the average fluid temperature equation of the two–fluid equations requires closure

models for (I) the average gas–solid heat transfer, (II) transport of the temperature-velocity

covariance, (III) conduction in the gas phase, and (IV) chemical reaction source term (third col-

umn in Table 1.1). In Chapter 3, the average gas–solid heat transfer (term I) is first quantified

using sufficiently many realizations of PS PR-DNS data for steady flow past a homogeneous

fixed particle assembly. A model for the average gas–solid heat transfer is then developed in

terms of the Nusselt number and the bulk fluid temperature over a wide range of solid volume

fractions and Reynolds numbers based on mean slip velocity. The improved model for average

gas–solid heat transfer is also compared with the existing standard model. The transport of

the temperature-velocity covariance (term II, the second cell in the first row of Table 1.1) is

currently neglected in EE TF CFD simulations but models for velocity covariance (the first

cell in the first row of Table 1.1) have been recently proposed by Mehrabadi et al. (2015) using

PS PR-DNS. Mehrabadi et al. (2015) found that velocity covariance is significantly important

compared with the kinetic energy associated with the mean slip velocity. In Chapter 4, the

temperature-velocity covariance and its transport are quantified, and its magnitude is com-

pared with the average gas–solid heat transfer using PS PR-DNS data. Then a model for

temperature-velocity covariance is proposed by introducing pseudo–turbulent thermal diffusiv-

ity that is analogous to the turbulent diffusivity in single-phase turbulence. The dependence of

the effective diffusivity ( the ratio of pseudo–turbulent thermal diffusivity to molecular thermal

diffusivity) on Péclet number is quantified. This dependence is explained using a wake scaling

analysis. In Chapter 4, the average conduction in the fluid phase (term III) is also quantified

and modeled in terms of the bulk fluid temperature. A budget analysis of these terms in the

average fluid temperature equation in a steady gas-solid flow is preformed to quantitatively

compare the importance of these terms in this gas–solid heat transfer problem.

In the transported PDF approach, the composition PDF transport equation for two-phase

flow also contains unclosed terms even though (IV) the chemical reaction source term in the

gas-phase is closed. In Chapter 6, the composition PDF transport equation for two-phase
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flow is derived and its unclosed terms as (I) the average gas–solid heat transfer conditional

on composition, (II) velocity fluctuation conditional on composition, (III) gas-phase mixing

conditional on composition are identified. Then possible closure models for these unclosed

terms are discussed. Since the mixing time scale that represents the rate of mixing of scalar

(temperature or species) in the gas phase is an important parameter in single-phase closure

models, its values for different solid volume fractions are also extracted from PS PR-DNS data.

Analogous to the heat transfer problem, the average species mass fraction equation for

mass transfer problem also includes (1) average gas–solid mass transfer, (2) transport of the

species-velocity covariance, (3) diffusion in the gas phase, and (4) average reaction rate (fourth

column in Table 1.1). Unlike the heat transfer problem, mass transfer is often coupled with

heat transfer in reacting gas–solid flow. For the purpose of model development for mass trans-

fer in gas–solid flow, the mass transfer problem needs to be simplified. In Chapter 10, the

mass transfer problem in gas–solid flow is decoupled from heat transfer, and simulated using

FFD PR-DNS. Preliminary results are obtained for the case of steady flow past a sphere with

a first-order chemical reaction on the sphere surface over a range of Reynolds number. Heat

transfer is neglected in this simulation. The FFD PR-DNS results are then compared with

2D analytical solutions of the mass transfer problem at low Reynolds number. The Sherwood

number obtained from PR-DNS data is also compared with existing Sherwood number corre-

lations with and without chemical reactions. Mass transfer with heat transfer in fixed beds of

particles needs to be simulated to develop models for average gas-solid mass transfer, but that

is deferred to future work. Once the PR-DNS data from mass transfer problem is ready, the

model for transport of the species-velocity covariance and diffusion in the gas phase (see the

third column in Table 1.1) can be developed using a similar approach as in the heat transfer

problem.

The above models for unclosed terms are developed based on homogeneous fixed particle

assemblies in a thermal fully–developed flow. However, in a real fixed bed reactor, the system

is bounded by the walls of reactor. In order to extend the proposed models to account for wall

effect on the fixed particle beds, the FFD PR-DNS is also used to simulate a flow past a particle

assembly in a square duct in Chapter 7. Preliminary FFD PR-DNS results are provided to
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analyze the wall effect on hydrodynamics and heat transfer.

1.3.3 Validity of assumptions in multiphase flow theories and closure models

The PR-DNS data are not only used to develop improve closure models but also allow us

to validate the assumptions in multiphase flow theories and assumptions for closure models.

Scale separation between macroscales and microscales in continuum theories of multiphase flow

is assumed on the basis that the characteristic length scale of macroscopic quantities is larger

than that of organized mesoscale structure (characterized by higher order statistics such as the

particle pair correlation or two-point correlations in the fluid). In Chapter 5, the assumption of

scale separation implied in continuum theories of multiphase flow is validated by using PS PR-

DNS results of gas-solid heat transfer in freely evolving suspensions and fixed bed of particles.

The key feature of the gas-solid heat transfer problem–the inhomogeneity of the temperature

field is in the streamwise direction–results in the inhomogeneous variation of the mean or

bulk fluid temperature along the streamwise direction. Using a length scale obtained from the

inhomogeneous temperature field, a criterion for scale separation in the gas-solid heat transfer

problems is proposed.

Since quantification of unclosed terms in the average fluid temperature equation in Chap-

ters 3 and 4 is based on the data obtained from the homogeneous fixed assemblies of isothermal

particles in a thermal fully–developed flow, this raises the question whether or not the statistical

quantities such as average Nusselt number vary much if the particles move such as in a fluidized

bed of particles. The PR-DNS results in Chapters 2–4 show that the mean fluid temperature

can vary significantly over a few particle diameter, and it might be expected that particle mo-

tion in this mean temperature gradient can result in a change in the statistical quantities such

as average Nusselt number. Therefore, heat transfer in a freely evolving suspension of gas–solid

flow is compared with that in fixed bed of particles in Chapter 5.

In addition, the average heat transfer models are proposed using the PR-DNS data that

assume all particles to be the isothermal particles in Chapter 3 which means that the particle

temperature is independent of time and space. However, in reality, the isothermal particles

assumption may not hold if the particle temperature experiences high heating rates as formed
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in biomass fast pyrolysis. It is necessary to validate heat transfer models by studying transient

heat transfer on particles, which considers the variation of the particle temperature in time.

In Chapter 9, a preliminary study of transient heat transfer in a steady gas-solid flow past

a sphere in a duct using inflow/outflow boundary condition is performed using the FFD PR-

DNS approach. This is a test case for verifying the capability of FFD PR-DNS to simulate

transient heat transfer since the full-developed flow formulation of PS PR-DNS is not suitable

for simulating variation of the particle temperature. In this transient heat transfer problem, the

solid temperature of the sphere is assumed to be uniform but dependent of time. In addition to

solving the gas-phase energy equation, the solid temperature evolves by solving the solid-phase

energy equation. It is worth noting that in order to validate heat transfer models in EE TF

CFD simulations, the transient heat transfer problem in a fixed bed of particles in gas–solid

flow need to be studied over a wide range of Reynolds number and solid volume fraction in the

future work.

1.4 Accomplishments

The tasks completed thus far to achieve the above research objectives are listed in Table

1.2-1.4. The details of these accomplishments are discussed in the following chapters.

1.5 Outline

The description of the scalar solver of PS PR-DNS formulation and validation of its per-

formance are described in Chapter 2. Quantification and model development for the unclosed

terms in average fluid temperature equation are discussed in Chapters 3 and 4. Using the PS

PR-DNS data, the assumption of scale separation in multiphase flow theories is valid in Chap-

ter 5. The transported PDF approach is introduced to study scalar fluctuation and its unclosed

terms are identified in Chapter 6. In Chapter 7, the hydrodynamic and scalar solvers of FFD

PR-DNS that accounts for wall effect of heat and mass transfer in gas-solid flow are developed

and validated. The FFD PR-DNS methodology to perform simulations of a duct flow without

or with particles is presented in Chapter 7. A detailed comparison of FFD PR-DNS data and
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experimental data for flow past a train of particles is report in Chapter 8. A transient heat

transfer study from a sphere in a duct is also given using FFD PR-DNS in Chapter 9. In Chap-

ter 10, the FFD PR-DNS scalar solver is extended to account for mass transfer on a sphere with

a first-order surface chemical reaction, and the PR-DNS data are compared with 2D analytical

solutions. The summary of the findings and future works are presented in Chapters 11 and 12.
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Table 1.2: (i) Accomplishments corresponding to research objectives.

Tools/Methods Results Conclusions (in Chapters)

Pseudo-spectral
(PS) PR-DNS

1. Developed the scalar solver of PS
PR-DNS and validated the scalar solver by
using several test cases
2. Simulated flow past a fixed homogeneous
particle assembly with heat transfer for a
few Reynolds numbers and solid volume
fractions

Developed and validated
the scalar solver of PS
PR-DNS to account for
heat transfer in gas–solid
flow (Chapter 2)

Simulated a flow past a fixed homogeneous
particle assembly with heat transfer over a
range of Reynolds numbers and solid volume
fractions in gas–solid flow

Established the PR-DNS
dataset using PS PR-DNS
approach (Chapters 3
and 4)

1. Extended the scalar solver of FFD
PR-DNS to account for particle motion in
the acceleration frame
2. Performed a simulation of a freely
evolving suspension of particles at
particle-gas density ratio of 100

Extended the scalar solver
of FFD PR-DNS to account
for particle motion
(Chapter 5)

Fully
finite-difference
(FFD) PR-DNS

1. Developed and parallelized the
hydrodynamic and scalar solvers of FFD
PR-DNS to simulate wall-bounded flow that
allows for various boundary conditions
2. Validated the hydrodynamic and scalar
solvers of the FFD PR-DNS in a suite of test
cases by comparing analytical solutions,
experimental and numerical data
3. Simulated a flow past a fixed
homogeneous particle assembly with heat
transfer in a square duct

Developed and validated
the FFD PR-DNS approach
to simulate wall-bounded
flow with particles
(Chapter 7)

Extended scalar
solver of FFD

PR-DNS

1. Extended the scalar solver of FFD
PR-DNS to account for the first-order
chemical reaction on the particle surface
2. Simulated mass transfer in a fixed sphere
for low and high particle Reynolds number
in a reacting gas-solid flow
2. Validate the PR-DNS results with 1D and
2D analytical solutions of mass transfer in a
sphere at low Reynolds number

Extended the scalar solver
of FFD PR-DNS to account
for mass transfer with a
first-order surface chemical
reaction (Chapter 10)
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Table 1.3: (ii) Accomplishments corresponding to research objectives.

Theory/
Modeling Results Conclusions

Found that even velocity field is homogeneous in
the case of flow past a fixed homogeneous particle
assembly, the temperature field is inhomogeneous
along axial location

Explored the behaviors of
the inhomogeneous
temperature field in a
fixed particle assembly
(Chapter 2)

Flow physics

1. Obtained a characteristic length scale from the
bulk fluid temperature field using PS PR-DNS
data of homogeneous fixed assemblies and freely
evolving suspension of particles
2. Compared bulk fluid temperature and average
Nusselt number obtained from the case of flow past
the fixed assembly and freely evolving suspension
of particles
3. Proposed a criterion for scale separation in the
gas-solid heat transfer problem

Developed a criterion for
scale separation
(Chapter 5)

1. Derived the transport equation for scalar
variance
2. Derived the phase-conditional single-point
velocity-composition PDF transport equation
3. Quantified the scalar variance and mixing time
scale for different solid volume fractions at high
speed flow in gas-solid heat transfer

Studied scalar fluctuation
by flow past a fixed
assembly of particles
(Chapter 6)

1. Compared the results of FFD PR-DNS data
with experimental data obtained from the same
experimental setup in a duct for the cases of
laminar pure duct flow, flow past a sphere and a
train of five spheres
2. Found the effect of the separation distance on
the wall boundary layer growth and the wake
behind spheres

Validated both
experimental and
PR-DNS approaches and
studied the wake behind
the spheres (Chapter 8)

1. Investigated wall effect on drag force and heat
transfer of a single particle in a square duct by
varying the distance between the particle and duct
wall
2. Simulated flow past a fixed particle assembly in
a square duct with heat transfer

Investigated wall effect
on velocity (or drag
force) and heat transfer
of a single particle and
particle beds in a square
duct using FFD PR-DNS
(Chapter 7)
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Table 1.4: (iii) Accomplishments corresponding to research objectives.

Theory/
Modeling Results Conclusions

1. Performed simulations of flow past a fixed
sphere with accounting for variation of the sphere
temperature in time
2. Studied the effect of the finite particle-fluid
thermal inertia ratio on the quantities such as
Nusselt number
3. Found that Nusselt number become steady-state
in a small time scale

Studied the variation of
the particle temperature
in time (Chapter 9)

Flow physics

1. Studied the dependence of mass transfer at
particle surface on chemical reaction rate constant
and species diffusion coefficient
2. Investigated mass transfer on a sphere at high
Reynolds number (up to 100) in a reacting
gas–solid flow
3. Compared the Sherwood number obtained from
PR-DNS with the existing Sherwood number
correlation with and without the surface chemical
reaction

Studied the dependence
of mass transfer on
parametrized space using
FFD PR-DNS
(Chapter 10)

Quantified and modeled average gas–solid heat
transfer

Developed closure models
for average gas–solid heat
transfer in the two–fluid
equation (Chapter 3)

Model
development

1. Quantified and modeled velocity–temperature
covariance term and fluid–phase axial conduction
term in the average fluid temperature equation
using PS PR-DNS data
2. Proposed correlations for effective thermal
diffusivity using wake scaling analysis and implied
model

Developed closure models
for fluid–phase axial
conduction and
velocity–temperature
covariance in the
two–fluid equation
(Chapter 4)

1. Identified unclosed terms in the
phase-conditioned single-point
velocity-composition joint PDF transport equation
2. Discussed the possible closure models for the
phase-conditioned single-point composition PDF
transport equation
3. Propose a correlation for the PDF of fluid
temperature by fitting the PS PR-DNS data
4. Quantified the mixing time scale for two-phase
flow in the mixing model

Discussed the possible
closure models for the
composition PDF
transport equation using
PR-DNS data
(Chapter 6)
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CHAPTER 2. ROLE OF FLUID HEATING IN DENSE GAS–SOLID

FLOW AS REVEALED BY PARTICLE–RESOLVED DIRECT

NUMERICAL SIMULATION

This chapter is an article titled “Role of fluid heating in dense gas–solid flow as revealed by

particle-resolved direct numerical simulation” published in International Journal of Heat and

Mass transfer (Tenneti et al. (2013)). This article is authored by S. Tenneti, B. Sun, R. Garg

and S. Subramaniam. My contribution is to perform the simulations of the flow past a fixed

assembly of particles over a range of mean slip Reynold numbers and solid volume fractions

and analyze the numerical data.

Heat transfer is important in gas–solid flows that are encountered in many industrial appli-

cations such as energy generation. Computational fluid dynamics (CFD) simulations of heat

transfer in gas–solid flow are based on statistical theories that result in averaged equations

(e.g., EE TF model). These averaged equations require accurate models for unclosed terms

such as the average gas–solid heat flux. The average gas–solid or interphase heat flux is closed

in terms of the Nusselt number Nu, which is specified as a function of the solid volume fraction

εs, mean flow Reynolds number Rem and Prandtl number Pr. In developing closure models for

the average interphase heat flux it is assumed that the gas–solid flow is locally homogeneous

i.e., the effect of fluid heating (or cooling) on the average fluid temperature is neglected. How-

ever, continuous heating (or cooling) of the fluid along the flow direction causes the average

fluid temperature to become inhomogeneous. In this work we develop a particle–resolved di-

rect numerical simulation (PR–DNS) methodology to study heat transfer in steady flow past

statistically homogeneous random assemblies of stationary particles. By using an analogy with

thermally fully developed flow in pipes, we develop a thermal similarity condition that ensures

a statistically homogeneous Nusselt number, even though the average fluid temperature field
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is inhomogeneous. From PR–DNS results we find that the effect of fluid heating cannot be

neglected for gas–solid systems with high solid volume fractions and low mean flow Reynolds

numbers. These results indicate that the assumption of scale separation implicit in two–fluid

models is not always valid.

2.1 Introduction

Gas–solid flows occur in many industrial applications such as energy generation, food, chem-

ical, and pharmaceutical processing. Carbon-neutral energy generation using biomass (Azar et al.

(2006)) or chemical looping combustion (CLC) (Shen et al. (2008)), and CO2 capture from flue

gases using dry sorbents (Yi et al. (2007); Abanades et al. (2004)) are examples of emerging

technologies (Wall (2007)) where an improved understanding of gas-solid heat transfer is cru-

cial for process and component design. For instance, accurate prediction of the fluid–phase

temperature field is very important for the CLC application because the reaction rates in com-

bustion chemistry are highly temperature dependent. Similarly, in the CO2 capture process

using potassium–based dry sorbents the carbonation reaction is exothermic and the regenera-

tion of the sorbent is endothermic (Yi et al. (2007)). Hence, gas–solid heat transfer is crucial

for maximizing process efficiency. Both CLC and CO2 capture technologies can be implemented

using fluidized beds, and typical particle diameter values range from 50–150 µm. These parti-

cles are typically larger than the Kolmogorov length scale of turbulent dissipation η. Moreover,

gas–solid flow in fluidized beds can have a solid volume fraction ranging from near close–packed

(64% for random configurations of monodisperse spheres) to as low as 5% in the riser region.

A fundamental understanding of heat transfer in fluid flow past finite sized particles (D > η)

over a wide range of solid volume fraction and flow Reynolds number is therefore important

for process design.

Computational fluid dynamics (CFD) simulations (Kashiwa and Gaffney (2003); Sun et al.

(2007); Syamlal et al. (1993)) of gas–solid flow are increasingly being used as an efficient ap-

proach for design optimization because experiments are often costly and time-consuming. In

two–fluid CFD simulations of gas–solid flow, the averaged equations governing mass, momen-

tum, and energy conservation are solved. Figure 2.1 shows a schematic of the computational
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domain in a CFD simulation of gas–solid flow. In every grid cell, governing equations for aver-

aged quantities such as volume fraction, velocity and temperature are solved for both phases.

Since these equations are obtained using a statistical averaging procedure (Drew and Passman

(1998)), the average interaction terms corresponding to mass, momentum, and energy exchange

between different phases need to be modeled. For example, two–fluid CFD formulations for

heat transfer in gas–solid flow require closure of the average gas–solid heat transfer 〈Qg−s〉.

The average interphase heat flux 〈Qg−s〉 is modeled in terms of an average Nusselt number and

the difference between the average fluid and solid–phase temperature
〈
T (f)

〉
−
〈
T (s)

〉
. This

Nusselt number is usually given by a correlation that depends on solid volume fraction εs, mean

slip Reynolds number Rem and the Prandtl number Pr.

Figure 2.1: Schematic of a CFD simulation of gas–solid flow. In every computational grid cell,
governing equations for the averaged quantities in both phases are solved. Here, u(f) is the
average fluid–phase velocity, T (f) is the average fluid–phase temperature, u(s) is the average
solid–phase velocity and T (s) is the average solid–phase temperature. In this schematic, Qg−s

denotes the average gas–solid interphase heat transfer.

Correlations for the Nusselt number corresponding to gas–solid heat transfer are typically

obtained from a combination of experimental and theoretical studies. However, the exper-

imental data from which these empirical correlations are deduced vary by orders of magni-

tude (Wakao and Kaguei (1982); Ronald and Christopher (2009)). Experimental measurement

of heat transfer in gas–solid flow is challenging because of limited optical access and hence most

measurements are intrusive. Theoretical studies of heat transfer in gas–solid systems are lim-

ited to creeping flow past ordered (Pfeffer and Happel (1964); Sorensen and Stewart (1974))

and random assemblies of spheres (Gunn (1978); Acrivos et al. (1980)). The randomness in

particle positions and velocities together with the nonlinearity of the governing equations make

the analytical treatment intractable at finite Reynolds numbers. Particle-resolved direct nu-
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merical simulation (PR–DNS) of heat transfer in gas-solid flow is a first-principles, model-free

simulation method that can used to gain better understanding of heat transfer in gas-solid

flow. Furthermore, PR–DNS can be used to specify closure models for the unclosed average

interphase interaction terms that arise in CFD simulations of gas–solid flow.

In applying closure models for the average interphase interaction terms such as the av-

erage interphase momentum transfer and interphase heat flux, it is assumed that the gas–

solid flow is locally homogeneous. In other words, the average fluid and solid–phase velocities

and temperatures are assumed to be uniform in the grid cell. Therefore, in order to specify

closure models for the unclosed terms it is natural to simulate a statistically homogeneous

gas–solid suspension using PR–DNS. Indeed, PR–DNS has been used successfully to solve

the hydrodynamic problem and to provide a closure model for the average gas–solid momen-

tum transfer. The closure for the average interphase momentum transfer is popularly known

as a “drag law” and several researchers have extracted computational drag correlations for

gas–solid flow by simulating steady flow past statistically homogeneous random assemblies of

stationary spherical particles (Hill et al. (2001a,b); Van der Hoef et al. (2005); Beetstra et al.

(2007a); Yin and Sundaresan (2009); Holloway et al. (2010); Tenneti et al. (2011)) in periodic

domains. Tenneti et al. (2011) have rigorously shown that the evolution equation for the vol-

ume averaged fluid–phase momentum obtained from this setup is consistent with statistically

homogeneous ensemble–averaged equations. This problem setup ensures that the flow field is

statistically homogeneous and statistics such as the average interphase momentum transfer can

be easily obtained by volume averaging.

In the heat transfer problem, the assumption of a statistically homogeneous average fluid

temperature implies that the effect of heating (or cooling) by the particles does not change the

average fluid temperature significantly. However, continuous heating (or cooling) of the fluid

by the particles along the flow direction can cause the average fluid temperature to vary in

that direction. The extent of this variation of the average fluid temperature depends on the

solid volume fraction and mean flow Reynolds number. Although the hydrodynamic problem

is statistically homogeneous, for some regimes of gas–solid flow it is conceivable that anisotropy

in the fluid velocity results in a statistically inhomogeneous fluid temperature field. Therefore,
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PR–DNS methodologies that are used to specify a closure model for the average Nusselt number

in terms of the average solid volume fraction and mean flow Reynolds number must account

for this inhomogeneity in the fluid temperature field. In this work we present a PR–DNS

methodology to study heat transfer in statistically homogeneous gas–solid flow in periodic

domains that accounts for the inhomogeneity in the temperature field. We use the analogy of

flow in a fixed bed of particles with thermally fully developed flow in internal pipes to develop

a thermal similarity condition that guarantees a statistically homogeneous Nusselt number.

Using this new formulation we examine the regime of validity of the assumption of statistical

homogeneity in the average fluid temperature field that is implicit in two–fluid CFD models.

We use the Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method

(PUReIBM) (Garg et al. (2010b); Tenneti et al. (2011, 2010)) to solve for heat transfer in gas–

solid flow. We employ three–dimensional Cartesian grids to solve for the velocity, pressure, as

well as the temperature fields. Dirichlet boundary conditions for both velocity and temperature

at the surface of the particle are imposed via an immersed boundary (IB) forcing that is added

to the momentum and temperature equations, respectively. The idea behind the extension of

the IB method to the temperature equation is similar to the one used by Feng and Michaelides

(2008) to study heat transfer in particle–laden flow with solid to fluid density ratio in the range

1.001–1.1.

The rest of the chapter is organized as follows. The problem description and the assumptions

made to simplify the problem are described in section 2.2. The formulation of the heat transfer

problem that is simulated in the particle–resolved DNS methodology is discussed in section 2.3.

The governing equations are developed in section 2.4 and the numerical method used in our

PR–DNS approach is described in section 2.5. The results obtained from PR–DNS of heat

transfer in gas–solid flow are discussed in section 2.6 and finally the principal conclusions of

this work are summarized in section 2.7.

2.2 Problem description

A schematic of the problem setup that is used in this work to study gas–solid heat transfer

in a homogeneous suspension of randomly distributed spherical particles is shown in Fig. 2.2.
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Figure 2.2: Schematic showing contours of steady temperature field in a flow through fixed bed
of particles (solid volume fraction 0.1 and Reynolds number 20). In this schematic, 〈W〉 is the
mean slip velocity between the solid and the fluid–phase. The fluid enters the domain at a bulk
temperature of Tm,in and all the particles are held at a uniform constant temperature Ts.

The figure shows a random assembly of spherical particles in a unit cell, which repeats

infinitely in all three directions. A steady flow is established by imposing a mean pressure gra-

dient that corresponds to a mean flow Reynolds number that is defined based on the magnitude

of mean slip velocity between the two phases as follows:

Rem =
|〈W〉| (1 − εs)D

νf
. (2.1)

Here |〈W〉| is the magnitude of the mean slip velocity between the solid and fluid phases, which

is in the direction shown in Fig. 2.2, D is the particle diameter and νf is the kinematic viscosity

of the fluid. The bulk temperature of the fluid at the “inlet” of this unit cell is Tm,in and all

the particles are held at a uniform constant temperature of Ts. The bulk temperature of the

fluid is the flux–weighted average temperature in a plane perpendicular to the direction of the

mean slip velocity (see section 2.3 for a detailed definition). The difference in the bulk fluid

temperature and the surface temperature of the particle drives gas–solid heat transfer. Here

we consider only gas–solid flow so the Prandtl number is chosen to be 0.72. We neglect viscous

heating, radiation and the effect of temperature change on the momentum equation due to

density variation (free convection effects). The simplifying assumptions used in our problem

setup are justified in Appendix A. We now develop a formulation that can be used to study

the gas–solid flow heat transfer problem described in this section.
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2.3 Formulation of the heat transfer problem

In order to use the problem setup shown in Fig. 2.2 to quantify the average Nusselt num-

ber, we must ensure that the heat transfer problem admits a statistically homogeneous Nusselt

number. In other words, a thermally fully developed flow must be established in the fixed bed.

Flow through a fixed bed of spheres is anisotropic due to finite mean slip velocity 〈W〉 between

the solid and fluid phases. This directionality in the flow implies that fluid downstream of a par-

ticle is heated up (or cooled down) by interphase heat transfer. This continuous heating of the

fluid by the particles results in a mean fluid temperature that is inhomogeneous (Acrivos et al.

(1980)) in the coordinate directed along the mean flow. However, since Nusselt number is a

non-dimensional interphase heat flux, if the driving force (temperature difference between bulk

fluid and particles) has the same variation as that of the interphase heat flux along the flow

coordinate, it is possible to obtain a statistically homogeneous Nusselt number. In this section

we develop a formulation that renders the Nusselt number statistically homogeneous, although

the interphase heat flux and the mean fluid temperature are inhomogeneous.

In order to understand the heat transfer problem in statistically homogeneous suspensions

we draw analogy from forced convection heat transfer in internal pipe flow. Statistically ho-

mogeneous gas–solid flow is analogous to fully developed pipe flow in two respects. Firstly, the

flow field is statistically axisymmetric (Mehrabadi et al. (2015)), similar to the fully developed

flow field in a pipe. Secondly, the average area occupied by the fluid (or the area fraction)

in any plane perpendicular to the streamwise direction is constant in a statistically homoge-

neous suspension, and hence can be compared to a pipe with a constant area of cross section.

Therefore, in an average sense we expect the heat transfer problem in statistically homogeneous

gas–solid suspensions with isothermal particles to be similar to thermally fully developed flow in

pipes with isothermal walls. For internal pipe flow, the flow is said to be thermally fully devel-

oped when the scaled temperature is not varying in the streamwise direction (Incropera et al.

(2006)), i.e.,

∂

∂x||

(
T (x, t) − Ts

Tm(x||, t) − Ts

)
= 0. (2.2)

Without loss of generality we will assume that the flow direction is along the x–axis. In the
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definition of the scaled temperature given above, Ts is the temperature of the isothermal pipe

wall and Tm is called the “mixing–cup” or “bulk” temperature, which is defined as follows:

Tm(x||) =

´

Af
(uT ) · e‖dAf
´

Af
u · e‖dAf

, (2.3)

where e‖ is the unit vector along the streamwise direction and Af is the area occupied by

the fluid in a plane perpendicular to the streamwise direction. The thermally fully devel-

oped condition implies that for a pipe with constant cross–sectional area and isothermal walls,

the local heat transfer coefficient at the wall (or Nusselt number) is independent of axial loca-

tion (Incropera et al. (2006)). In other words, the local wall heat flux scaled by the temperature

difference
(
Tm(x||) − Ts

)
is a constant. By using an analogy with pipe flow, the average Nus-

selt number in gas–solid flow will be statistically homogeneous if we ensure that the scaled

temperature field θ, which is defined below is statistically homogeneous:

θ(x, t) =
T (x, t) − Ts

〈Tm〉 (x||, t) − Ts
. (2.4)

In this definition, 〈Tm〉 (x||, t) is the ensemble–averaged bulk temperature and Ts is the uniform

temperature at which all the particles are maintained. In the next section we discuss the

governing equations and boundary conditions for the problem of heat transfer past stationary

isothermal particles in periodic domains that ensure that the normalized interphase heat flux

is statistically homogeneous.

2.4 Governing Equations

The fluid temperature field T , in the absence of viscous heating, radiation and free convec-

tion effects, obeys the following convection–diffusion equation:

∂T

∂t
+
∂(ujT )

∂xj
= αf

∂2T

∂xj∂xj
, (2.5)

where αf = kf/ρfcpf . Here kf is the thermal conductivity, ρf is the thermodynamic density,

and cpf is the heat capacity of the fluid respectively. Equation 2.5 needs to be solved in the

fluid together with the Dirichlet boundary condition of T = Ts at the surface of the particles.

At the boundaries of the computational domain, periodic boundary conditions are applied on
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the scaled temperature θ (cf. Eq. 2.4). In the definition of θ for a random particle assembly,

Eq. 2.3 gives an area–averaged estimate for the bulk temperature 〈Tm〉.

Since the boundary conditions at the domain boundaries are in terms of θ, it would appear

to be easier to rewrite Eq. 2.5 in terms of θ and solve directly for θ. However, the evolution

equation for θ contains additional terms that represent the evolution of the bulk temperature

Tm. Therefore, in order to solve for θ we need to solve an additional equation for Tm. Moreover,

solving for the evolution equation for Tm requires the computation of heat flux from every

particle that intersects the plane perpendicular to the mean flow at each x location in the

direction of the mean flow. Since there is a finite number of particles in the computational

domain, the solution may suffer from statistical error. Therefore, it turns out to be easier

to transform the periodic boundary conditions on θ to obtain similarity conditions on the

temperature field T (x, t) and solve Eq. 2.5 for T (x, t).

In order to simplify the thermal similarity conditions and also to homogenize the boundary

conditions on the particle surfaces we define a non-dimensional temperature field φ (x, t)as

follows:

φ (x, t) =
T (x, t) − Ts

Tm,in − Ts
(2.6)

where, Tm,in is the bulk temperature at x = 0. Using this definition of the non dimensional

temperature, it is easy to see that the non dimensional bulk temperature φm(x‖) has a similar

definition:

φm

(
x‖, t

)
=
Tm(x‖, t) − Ts

Tm,in − Ts
. (2.7)

Substituting Eq. 2.6 in Eq. 2.5 gives the governing equation for the non dimensional tempera-

ture:

∂φ

∂t
+
∂(ujφ)

∂xj
= αf

∂2φ

∂xj∂xj
. (2.8)

The isothermal boundary conditions on the particle surface reduce to φ = 0.

In order to understand the periodicity conditions and also for ease of implementation we

introduce a quantity called the heat ratio rh which is defined as:

rh =
Tm,in − Ts

Tm,out − Ts
, (2.9)
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where Tm,out is the bulk temperature at x = L and L is the length of the box. The heat ratio

is the ratio of the bulk temperature at the inlet (x‖ = 0) to the bulk temperature at the outlet

(x‖ = L). In other words the heat ratio is simply the inverse of the non dimensional bulk

temperature at x‖ = L i.e.,

rh =
1

φm,out
. (2.10)

The heat ratio quantifies by how much a fluid particle heats up when it leaves the box and

so this quantity depends solely on the flow structure and the interphase heat transfer in the

domain. A control volume analysis of the governing equation for φ reveals the following relation

for the heat ratio:

rh =
Tm

(
x‖

)
− Ts

Tm

(
x‖ + L

)
− Ts

=
Tm

(
x‖ ± a

)
− Ts

Tm

(
x‖ + L± a

)
− Ts

, (2.11)

where a is any displacement in the streamwise direction. The periodic boundary conditions on

φ now appear in a very simple form:

φ(0, y, z) = rhφ(L, y, z),

φ(x‖, 0, z) = φ(x‖, L, z),

φ(x‖, y, 0) = φ(x‖, y, L). (2.12)

An important point to be noted is that the heat ratio, or the amount by which the fluid gets

heated up (or cooled down) when it reaches the end of the box, is an unknown quantity and it

is part of the solution. In this formulation the thermal similarity conditions (cf. Eq. 2.12) are

defined in terms of the heat ratio. So the heat transfer problem has to be solved iteratively until

the heat ratio converges. In the next section we describe the immersed boundary methodology

that is used to solve the heat transfer problem in statistically homogeneous suspensions.

2.5 Solution Approach

The complete details of the hydrodynamic PUReIBM solver are discussed elsewhere (Garg et al.

(2010b); Tenneti et al. (2011)). Here the discussion is limited to the solution of the heat transfer

problem in statistically homogeneous suspensions using PUReIBM. In PUReIBM, we employ

Cartesian grids and solve the mass and momentum conservation equations at all the grid points
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(including those lying inside the particles). Similarly the nondimensional temperature field is

also solved at all grid points. The governing equation for φ that is solved in PUReIBM is

∂φ

∂t
+
∂(ujφ)

∂xj
= −

∂qφ
j

∂xj
+ Isfφ, (2.13)

where qφ = αf ∇φ is the heat flux, and fφ is the additional immersed boundary (IB) forcing

term that is nonzero only in the solid phase. The immersed boundary forcing fφ accounts for

the presence of the solid particles in the domain by ensuring that the isothermal boundary

condition φ = 0 is satisfied on the surface of the solid particles.

The surface of the solid particle is represented by a discrete number of points called bound-

ary points. For spherical particles, the boundary points are specified by discretizing the sphere

in spherical coordinates. In Fig. 2.3, a schematic describing the computation of the IB forcing

is shown for the equatorial plane passing through the spherical particle. Another set of points

called exterior points are generated by projecting these boundary points onto a sphere of radius

r + ∆r, where r is the radius of the particle (see exterior point represented by an open circle

on the dashed line in figure 2.3). Similarly, the boundary points are projected onto a smaller

sphere of radius r − ∆r and these points are called interior points. In our simulations ∆r is

taken to be same as the grid spacing. The IB forcing is computed only at the interior points. At

these points the fluid temperature is forced in a manner similar to the ghost cell approach used

in standard finite-difference/finite-volume based methods (Patankar (1980)). For the boundary

condition φ = 0 used in this work, the value of φ at the interior points is forced to be opposite

in magnitude to the value of φ at the corresponding exterior points.

The distinctive feature of PUReIBM is that the forcing fφ is computed only at points lying

inside the solid particles. This ensures that the fluid–phase temperature field is not contami-

nated by the scalar IB forcing term fφ, just as the fluid–phase velocity field is not contaminated

by the hydrodynamic IB forcing. The consequences of fluid velocity contamination by IB forc-

ing are discussed in detail by Tenneti et al. (2011). The computation of fφ is similar to the

computation of the IB forcing for the velocity field. The IB forcing term fn+1
φ at the (n+ 1)th

time–step is specified to cancel the remaining terms in the governing equation for φ and force
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Interior Point

φi

Exterior Point

∆r

φs

∆r

r

φe

Figure 2.3: A schematic showing the computation of the immersed boundary forcing fφ for
an isothermal particle. The solid circle represents the surface of the particle at r. Open dot
shows the location of one exterior point at r+ ∆r (only one exterior point is shown for clarity,
although there is one exterior point for each interior point) and filled dots show the location of
interior points at r− ∆r where the immersed boundary forcing is computed. In the schematic,
φe represents the temperature at the exterior point, φs is the surface temperature while φi is
the temperature at the interior point.

the nondimensional temperature to its desired value φd at the interior points:

fn+1
φ =

φd − φn

∆t
+ Cn

φ −

∂q

φ
j

∂xj




n

(2.14)

where Cn
φ is the convective term at the n time step.

The heat transfer equation (cf. Eq. 2.13) in PUReIBM is solved using a pseudo-spectral

method, with a Crank–Nicolson scheme for the viscous terms, and an Adams-Bashforth scheme

for the convective terms. The use of Fourier transforms in the cross stream directions and the

Crank–Nicolson scheme in the streamwise direction results in an independent set of cyclic tridi-

agonal systems that are solved using the Sherman–Morrison formula. The coefficient matrices

in the tridiagonal systems depend on the heat ratio rh which is not known a priori. The tem-

perature field is initialized with rh = 1 and the simulation is performed iteratively till the value

of the heat ratio converges. It must be noted that in this work we use the steady velocity field

that is obtained from the hydrodynamic solver and the velocity field is not advanced during

the solution of the heat transfer problem.
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2.6 Results and Discussion

The hydrodynamic solver in the PUReIBM methodology has been extensively validated

using a comprehensive suite of test cases (Tenneti et al. (2011)). In order to check the accuracy

of the IB methodology for temperature and also to verify the thermal similarity boundary

condition, we simulate convective heat transfer in a square duct. The no slip walls of the duct

for the velocity field as well as the isothermal condition at the walls for the temperature field

are generated using the IB methodology described in the previous section.

Using an analytical calculation, Shah and London (1978) found that the Nusselt number

for a thermally fully developed laminar flow in a square duct is 2.976. We compare the Nusselt

number obtained from PUReIBM simulations for three different Reynolds numbers with the

analytical solution in table 2.1. We see that the results obtained from PUReIBM simulations

agree very well with the analytical solution. The numerical convergence of Nusselt number

with grid resolution for a Reynolds number of 100 is shown in Figure 2.4a.

Table 2.1: Comparison of Nusselt number obtained from PUReIBM simulation of duct flow for
three different Reynolds numbers with the Nusselt number derived from an analytical calcula-
tion.

Reynolds number PUReIBM Analytical

20 3.013 2.976
50 3.029 2.976
100 3.033 2.976

In this figure we plot the relative error between the analytical and numerical solution. We see

that the Nusselt number obtained from PUReIBM simulations converge to the analytical value

given by Shah and London (1978). In figure 2.4b we plot the contours of the scaled temperature

θ (cf. Eq. 2.4) along the flow direction. This plot verifies that the thermal similarity condition

applied at the ends of the domain generates a thermally fully-developed flow. These tests

confirm the accuracy and numerical convergence of the PUReIBM temperature solver and also

the correctness of the application of the thermal similarity condition.

We now study heat transfer in statistically homogeneous gas–solid flow using PUReIBM PR-

DNS of steady flow and heat transfer past stationary, isothermal particles in periodic domains.
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Figure 2.4: 2.4a Convergence characteristics of Nusselt number with grid resolution for internal
duct flow at a Reynolds number of 100 are shown in. In this plot Nua referes to the analytical
value of the Nusselt number obtained by Shah and London (1978), ∆x is the size of the grid
cell and H is the channel height. 2.4b Contours of the scaled temperature θ are shown in three
planes along the direction of the flow shown by the arrow.

Particle centers are initialized corresponding to a specified mean solid volume fraction εs. The

particles are fixed in a random equilibrium configuration they attain following elastic collisions

(in the absence of ambient fluid) starting from a lattice arrangement with a Maxwellian ve-

locity distribution. The elastic collisions are simulated using a soft–sphere discrete element

model (Cundall and Strack (1978); Garg et al. (2010a)). The pair correlation function at equi-

librium specifies the particle configuration for random assemblies. Steady flow is established in

the fixed bed by imposing a mean pressure gradient that corresponds to a mean flow Reynolds

number. The hydrodynamic solver has been extensively validated in a comprehensive suite of

tests (Tenneti et al. (2011)). The steady velocity field that is established in the fixed bed is

used to evolve the temperature in pseudo–time until the heat ratio reaches a steady state.

The heat transfer problem is statistically inhomogeneous only in the direction of the mean

flow and hence all statistics are estimated using area averages in planes perpendicular to the

mean flow. Each random particle configuration is termed a realization of the gas–solid flow

corresponding to a specified volume fraction and pair correlation function. The streamwise
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variation of Nusselt number for the ω realization is defined as

Nu
(
x‖;ω

)
=

q′′
(
x‖;ω

)
D

kfP
(
Tm

(
x‖;ω

)
− Ts

) . (2.15)

In this definition, q
′′
(
x‖;ω

)
is the interphase heat flux from the particles to the fluid that is

averaged in the cross plane at the location x, and P is the perimeter formed by cutting the

particles with the plane. The streamwise variation of Nusselt number obtained from a single

realization is prone to statistical uncertainty due to finite number of particles in the computa-

tional domain. Therefore, the streamwise variation of Nusselt number from a single realization

must be averaged over multiple independent simulations (MIS), each corresponding to a differ-

ent realization of the particle configuration, to get a better estimate for the ensemble–averaged

streamwise Nusselt number. If the streamwise Nusselt number obtained from averaging over

several realizations is independent of the spatial location, we can say that the Nusselt number

is statistically homogeneous. In that case volume averaging can also be used to improve this

estimate.

From the PUReIBM heat transfer simulations we verify that the thermal similarity bound-

ary condition produces a statistically homogeneous streamwise Nusselt number. Figure 2.5

shows the streamwise variation of Nusselt number (top panels) for a fixed bed with a solid

volume fraction of 0.4 and mean flow Reynolds number of 100. In Fig. 2.5 we compare the

local Nusselt number obtained from averaging over 50 MIS (Fig. 2.5a) with that obtained from

averaging over 5 independent realizations (Fig. 2.5b). We see that the Nusselt number obtained

from 50 MIS is constant along the flow direction. The Nusselt number from 5 MIS shows some

variation along the axial direction. The finite size of the computational domain in the cross

stream direction and also the small number of independent realizations are responsible for this

streamwise variation in the Nusselt number. To see this more clearly, the variation of the area

occupied by the fluid Af along the flow direction is also shown in Fig. 2.5 (bottom panels).

Recall that one of the conditions for statistical homogeneity of Nusselt number is that the area

occupied by the fluid should be constant along the flow direction. The figures indicate that the

estimate for the average area occupied by the fluid can vary along the flow direction and also

at any given axial location there are fluctuations in the area across realizations (indicated by
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error bars). The amplitude of the fluctuation in the area is found to be about 7% when the

averaging is performed over 5 MIS. From convergence studies, we found that 50 realizations

are required to reduce the amplitude in the fluctuation of the area to 2%. Similar requirements

on the number of independent realizations were reported by Xu and Subramaniam (2010) in

their study of particles in upstream turbulence. Figure 2.5a shows that the variation as well

as the level of fluctuations in the Nusselt number and the area fraction are reduced when the

averaging is performed over 50 MIS. We conclude that for statistically homogeneous assemblies,

the formulation developed for the heat transfer problem ensures that the local Nusselt number

is statistically homogeneous.

(a) (b)

Figure 2.5: Variation of Nusselt number and the area occupied by the fluid–phase along the
direction of the mean flow, obtained from PUReIBM simulations of heat transfer in a fixed bed
at a volume fraction of 0.4 and mean flow Reynolds number of 100. The local Nusselt number
is reported by averaging over 2.5a 50 and 2.5b 5 MIS.

Due to the statistical homogeneity of the Nusselt number in the streamwise direction, we

can compute the average Nusselt number 〈Nu〉 by averaging Nu(x‖) along the axial direction.

Figure 2.6 shows compares the average Nusselt number obtained from PUReIBM simulations

with the Nusselt number predicted by Gunn’s correlation (Gunn (1978)). From the figure we

see that the average Nusselt number increases with both solid volume fraction and mean flow

Reynolds number and this behavior is consistent with the trend predicted by the correlation. It
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must be noted that the Nusselt number correlation given by Gunn (1978) is a fit to experimental

data obtained by several researchers for packed beds (εs = 0.6). Given that the experimental

data itself has a wide variation, the agreement between the PUReIBM DNS and the correlation

is excellent.

Figure 2.6: Behavior of the average Nusselt number 〈Nu〉 with mean flow Reynolds number for
two solid volume fractions. Symbols indicate data obtained from PUReIBM simulations while
the solid lines are obtained from Gunn’s correlation (Gunn (1978)).

In addition to the average Nusselt number, the nature of inhomogeneity of the fluid tem-

perature field or fluid heating is important in modeling the average interphase heat transfer

〈Qg−s〉. We plot the non-dimensional bulk temperature φm along the flow direction for two

mean flow Reynolds numbers (1 and 100) and two solid volume fractions (0.2 and 0.4) in

Fig. 2.7a. In this setup the particles are cooler than the incoming fluid and so the effect of the

particles is to reduce the bulk fluid temperature. The results confirm the fact that the tem-

perature field is not homogeneous in the flow direction. We see that the inhomogeneity in the

nondimensional bulk temperature is especially apparent at high solid volume fraction and low

Reynolds number. This spatial inhomogeneity is found to arise from the effect of fluid cooling,

which is more pronounced at high solid volume fraction and low Reynolds number. This result

is more easily evident when we consider the behavior of heat ratio rh. Recall that the heat

ratio gives a measure of the fluid cooling because (1 − rh) /rh = (Tm,out − Tm,in) / (Tm,in − Ts).

Two limiting cases are of interest. If there is negligible fluid cooling, then Tm,out ≈ Tm,in, and

rh ≈ 1, in which case (1 − rh) /rh ≈ 0. The other limiting case is of extreme cooling such that

Tm,out ≈ Ts, in which case (1 − rh) /rh ≈ −1. Figure 2.7b shows a plot of this measure of fluid

cooling, and we see that (1 − rh) /rh is close to -1 at low mean slip Reynolds numbers and this



43

corresponds to near maximal cooling. As the Reynolds number increases the amount of cooling

reduces and (1 − rh) /rh departs from -1 towards zero.

(a) (b)

Figure 2.7: 2.7a Variation of the nondimensional bulk fluid temperature along the axial direc-
tion for two mean flow Reynolds numbers (1 and 100) and two solid volume fractions (0.2 and
0.4). 2.7b Behavior of heat ratio with Reynolds number for two solid volume fractions (0.2 and
0.4).

The inhomogeneity in the mean fluid temperature has certain implications on modeling the

average gas–solid heat transfer in two–fluid models. In treating the solid phase as a continuum

in the two–fluid models there is an implicit assumption of separation of scales. It is assumed

that the mean solid phase velocity and temperature vary on length scales that are much larger

than the length scales over which the microstructure varies. And in turn, it requires the mean

fluid temperature also to vary on similar length scales. However, the scale of variation of φm

in Fig. 2.7a indicates that the mean fluid temperature can be inhomogeneous on the scale of

the particle diameter. Therefore, the inhomogeneity of the average fluid–phase temperature

cannot be neglected for all values of the solid volume fraction and mean slip Reynolds number

in the CFD implementations of models for average gas–solid heat transfer. Consequently, these

results indicate that in general a more sophisticated multiphase large-eddy simulation (LES)

approach is necessary to properly account for the effects of fluid cooling (or heating) over all

values of the solid volume fraction and mean slip Reynolds number.
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2.7 Conclusions

In this work we present a particle–resolved direct numerical simulation methodology to

study heat transfer in statistically homogeneous gas–solid flow. The Particle–resolved Uncontaminated–

fluid Reconcilable Immersed Boundary Method (Tenneti et al. (2011)) (PUReIBM) has been

extended to investigate heat transfer in fixed periodic assemblies of monodisperse spherical

particles held at a constant uniform temperature. Periodic arrangement of particles induces

a velocity field that is periodic in all three directions. Since the mean fluid velocity has a

direction and all the particles are held at the same temperature, the resulting temperature field

will not be periodic. In order to be consistent with the periodic arrangement of the particles, a

thermal similarity boundary condition is applied on the temperature field by drawing analogy

from thermally fully developed flow in pipes. The extension of PUReIBM to solve for the

temperature field is validated by solving the heat transfer problem in a square duct. Numerical

convergence and the validity of the thermal similarity condition in flow past random assemblies

of spheres is verified. From PUReIBM PR–DNS of heat transfer in fixed particle assemblies, we

establish that the formulation developed for heat transfer results in a statistically homogeneous

average Nusselt number. We conclude that fluid heating (cooling) in gas–solid systems results

in an inhomogeneous bulk fluid temperature. However, two–fluid CFD models that are used to

solve for heat transfer in gas–solid systems employ the assumption of local homogneity of the

bulk fluid temperature. Based on the PR–DNS results presented here, we conclude that for

εs < 0.4 and Rem > 10, the bulk fluid temperature decays over a few particle diameters. The

inhomogeneity of the bulk fluid temperature in these gas–solid flow systems can be accounted

for in two–fluid CFD models by an appropriate choice of the grid size. However, for gas–solid

flow systems with εs > 0.4 and Rem < 10 the bulk fluid temperature decays over a length

scale that is on the order of a particle diameter. In such regimes, the assumption of separation

of scales that is implicit in the underlying continuum formulation itself breaks down. Hence,

more sophisticated subgrid models for the bulk fluid temperature are required for CFD of heat

transfer in gas–solid systems of high solid volume fraction and low mean flow Reynolds number.
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CHAPTER 3. MODELING GAS-SOLID HEAT TRANSFER USING

PARTICLE RESOLVED DIRECT NUMERICAL SIMULATION:

AVERAGE GAS-SOLID HEAT TRANSFER

This chapter is an article titled “Modeling average gas–solid heat transfer using particle-

resolved direct numerical simulation” published in International Journal of Heat and Mass

Transfer. This paper is authored by B. Sun, S. Tenneti and S. Subramaniam.

The purpose of this chapter is to develop gas–solid heat transfer models using Particle-

resolved Direct Numerical Simulations (PR–DNS). Gas–solid heat transfer in steady flow through

a homogeneous fixed assembly of monodisperse spherical particles is simulated using the Particle-

resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). PR–

DNS results are obtained over a range of mean slip Reynolds number (1-100) and solid volume

fraction (0.1-0.5). Fluid heating is important in gas–solid heat transfer, especially in dense

low-speed flows, and the PUReIBM formulation accounts for this through a heat ratio which

appears in the thermal self–similarity boundary condition that ensures thermally fully de-

veloped flow. The average volumetric interphase heat transfer rate (average gas–solid heat

transfer) that appears in the average fluid temperature evolution equation is quantified and

modeled using PR–DNS results. The Nusselt number corresponding to average gas–solid heat

transfer is obtained from PR–DNS data, and compared with Gunn’s Nusselt number correla-

tion (Gunn (1978)). A new Nusselt number correlation is proposed that fits the PR–DNS data

more closely and also captures the Reynolds number dependence more accurately. It is shown

that the use of Nusselt number correlations based on the average bulk fluid temperature in the

standard two–fluid model for gas–solid heat transfer is inconsistent, and results in up to 35%

error in prediction of the average gas–solid heat transfer. Using PR–DNS data, a consistent

two–fluid model is proposed that improves the predicted average gas–solid heat transfer.
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3.1 Introduction

Gas–solid heat transfer is important in many emerging technologies such as carbon-neutral

energy generation using biomass (Azar et al. (2006)), chemical looping combustion (Shen et al.

(2008)), and CO2 capture (Abanades et al. (2004); Yi et al. (2007); Miller et al. (2012)). An

improved understanding of gas–solid heat transfer is crucial for process and component design in

the development of these technologies. CFD simulations (Syamlal et al. (1993); Kashiwa and Gaffney

(2003); Sun et al. (2007)) of multiphase flow are increasingly being used as an efficient alterna-

tive to experiments for process and design optimization, because experiments are often costly

and time-consuming. Since the averaged equations governing mass, momentum, and energy

that are solved in multiphase CFD simulations are obtained by using a statistical averaging pro-

cedure (Anderson and Jackson (1967); Drew and Passman (1998)), terms such as the average

interphase transfer of momentum and energy between different phases need to be modeled.

Specifically, in the absence of mass transfer between phases the average fluid temperature

equation from two–fluid theory (Syamlal et al. (1993); Garg (2009)) reads as follows:

∂

∂t

{
ρfεf cpf 〈T (f)〉

}

︸ ︷︷ ︸
+

∂

∂xj

{
ρfεf cpf 〈u(f)

j 〉〈T (f)〉
}

︸ ︷︷ ︸
=

〈
∂If

∂xj
qj

〉

︸ ︷︷ ︸

unsteady term mean flow convection (1) average gas–solid

heat transfer

− ∂

∂xj
〈Ifqj〉

︸ ︷︷ ︸
− ∂

∂xj

{
ρf cpf 〈Ifu

′′(f)
j T ′′(f)〉

}

︸ ︷︷ ︸

(2) average conduction (3) transport of temperature-

in the fluid phase velocity covariance

,

(3.1)

and it contains the following unclosed terms: 1) average gas–solid heat transfer, 2) average

conduction in the fluid phase, and 3) transport of temperature-velocity covariance. In Eq. 3.1,

ρf and cpf are the density and specific heat of the fluid phase, respectively, qj = −kf∂T/∂xj

is the heat flux vector and εf = 〈If 〉 is the volume fraction of the fluid phase, where If (x, t)

is the fluid-phase indicator function that is unity if the point x lies on the fluid-phase at time

t, and zero otherwise. If ψ(x, t) is any field (velocity or temperature), then its phasic average
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〈ψ(f)〉(x, t) (average fluid velocity 〈u(f)
j 〉 and average fluid temperature 〈T (f)〉) is its average

value conditional on being in the fluid phase, which is defined as:

〈
ψ(f)

〉
(x, t) =

〈If (x, t)ψ(x, t)〉
〈If (x, t)〉 . (3.2)

We use angle brackets to denote ensemble–averaging of random fields over all particle configu-

rations, and an overbar to indicate spatial averages1 Using the phasic average, the fluctuating

components of the fluid velocity and temperature in Eq. 3.1 are defined as u′′(f)
j = uj − 〈u(f)

j 〉

and T ′′(f) = T−
〈
T (f)

〉
, where these fluctuations depend on spatial location and time, although

for brevity this dependence is not explicitly shown. The average fluid velocity is obtained by

solving the averaged momentum and mass conservation equations. In order to solve Eq. 3.1 for

the average fluid temperature, closure models are needed for terms (1)–(3). In a typical two–

fluid simulation of gas–solid flow, this equation is coupled to a similar averaged temperature

equation for the solid phase (Hrenya and Morris (2014)), but this work only focuses on models

for average gas–solid heat transfer term in the average fluid temperature equation.

Although there has been theoretical analysis and experimental measurements of gas–solid

heat transfer, it is difficult to develop models for the unclosed terms that are valid over a

wide range of solid volume fraction and mean slip Reynolds number using these approaches.

For instance, theoretical studies of heat transfer in gas–solid flow are limited to creeping flow

past an isolated sphere (Clift et al. (1978)), ordered spheres (Sorensen and Stewart (1974);

Pfeffer and Happel (1964)), or moderate flow past random assemblies of spheres (Gunn (1978);

Acrivos et al. (1980)). At finite Reynolds number, the nonlinearity of the governing equa-

tions and the randomness in particle positions and velocities pose significant obstacles to

theoretical analysis. Experimental measurement of gas–solid heat transfer is also challeng-

ing because of limited optical access. Various experimental techniques, such as axial heat

conduction (Kunii and Smith (1961)), step response (Handley and Heggs (1968)), frequency

response (Littman et al. (1968); Gunn and Desouza (1974)), and shot response (Wakao et al.

(1977); Shen et al. (1981)) have been used to study heat transfer in gas–solid fixed-bed reactors

over the last several decades (Wakao and Kaguei (1982)). However, these experimental studies

1For this problem these spatial averages appear as either a cross-sectional average of a random field that still
depends on the particle configuration, or as a streamwise average of an inhomogeneous ensemble–averaged field.
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report values for the Nusselt number in packed beds (εs ≈ 0.6) that differ by three or four

orders of magnitude (Wakao and Kaguei (1982)). Since most experimental measurements of

heat transfer in gas–solid flow are intrusive, the flow disturbance caused by the probes is also a

source of uncertainty. Furthermore, the gas–solid heat transfer rate is inferred from point-wise

temperature measurements using simplified one–dimensional models of heat transfer that are

based on assumptions such as the neglect of axial conduction in the fluid phase. Therefore,

the validity of the assumptions implicit in these simplified one–dimensional models used in the

inferential procedure is also a source of uncertainty.

This motivates us to use particle–resolved direct numerical simulation (PR–DNS), which

is a first-principles, model-free simulation method that solves for the instantaneous three–

dimensional velocity and temperature fields representing the flow and heat transfer around

each particle. PR–DNS can be used to quantify the unclosed terms in Eq. 3.1, since these

terms can be directly calculated from the instantaneous three–dimensional velocity and tem-

perature fields. Indeed, several researchers have successfully extracted correlations for the aver-

age interphase momentum transfer in gas–solid flow by simulating steady flow past statistically

homogeneous fixed assemblies of spherical particles (Hill et al. (2001a,b); Van der Hoef et al.

(2005); Beetstra et al. (2007a); Yin and Sundaresan (2009); Tenneti et al. (2011)) in periodic

domains. In recent years, researchers have also used PR–DNS to investigate heat transfer

in gas–solid flow. Two-dimensional PR–DNS studies (Yu et al. (2006); Feng and Michaelides

(2009)) on simulating gas–solid flow in an infinite channel with an isothermal particle have

been reported. Haeri and Shrimpton (Haeri and Shrimpton (2013)) set up a staggered tube

bank to study convective heat transfer in gas-solid flow with inflow and outflow boundary

conditions. Massol and Simonin (Massol et al. (2004)) studied heat transfer in a fixed array

of monodisperse spheres using three-dimensional PR–DNS. However, their formulation uses a

source/sink term that is strictly valid only for those cases where fluid heating is negligible dur-

ing the time it takes the flow to transit the computational domain. This restriction holds only

for dilute suspensions at high Reynolds number (Acrivos et al. (1980)). Deen et al. (2012, 2014)

and Tavassoli et al. (2013) used three-dimensional PR–DNS with inflow and outflow bound-

ary conditions to compute the gas–solid heat transfer coefficient and Nusselt number that are
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compared with Gunn’s correlation (Gunn (1978)). Feng and Musong (2014) found that the en-

trance effect of heat transfer on particles in the fluidized bed is to produce high heat transfer

rate on particles. However, these studies did not quantify all the unclosed terms in the average

fluid temperature equation (Eq. 3.1).

Recently, Tenneti et al. (2013) have shown that fluid heating can be accounted for in three-

dimensional PR–DNS of thermally fully–developed flow in periodic domains using a thermal

self–similarity condition. In that work, the role of fluid heating and the Nusselt number for gas–

solid heat transfer was reported for a limited range of Reynolds number Rem and volume fraction

εs. This study builds on the work of Tenneti et al. (2013) to comprehensively characterize the

dependence of Nusselt number on solid volume fraction and mean slip Reynolds number, and

to quantify and model the average gas–solid heat transfer.

Gunn (1978) developed a Nusselt number correlation for average gas–solid heat transfer

that is a fit to experimental data from many sources that vary by several orders of magni-

tude (Wakao and Kaguei (1982)). Gunn’s Nusselt number correlation can be used to compute

the average gas–solid heat transfer, and it is widely used to model the first unclosed term

of the right-hand side (RHS) of Eq. 3.1 (average gas–solid heat transfer) in CFD simulation

of gas–solid heat transfer (Benyahia et al. (2012)). Tavassoli et al. (2013) and Tenneti et al.

(2013) have used PR–DNS to quantify the average Nusselt number to compare with Gunn’s

correlation over a limited range of Reynolds number and volume fraction. However, the perfor-

mance of Gunn’s correlation needs to be assessed over a wide range of these parameters using

PR–DNS. Additionally, the Nusselt number is computed in terms of the average bulk fluid

temperature in Gunn’s correlation (Gunn (1978)) and in the PR–DNS by Tenneti et al. (2013)

and Tavassoli et al. (2013). However, in the two–fluid model, the difference between average

fluid temperature (instead of the average bulk fluid temperature) and average solid temperature

is used to compute the average gas–solid heat transfer. We address the question whether using

the average fluid temperature in the two–fluid model is consistent with the Nusselt number

definition, and whether this model is appropriate to accurately compute the gas–solid heat

transfer.

The rest of the paper is organized as follows. In Section 3.2, we describe the heat transfer



50

problem in a fixed particle assembly and discuss the assumptions needed to simplify this prob-

lem. In Section 3.3, the PR–DNS approach that is used to solve this heat transfer problem is

briefly described. The computation of the unclosed average gas–solid heat transfer term in the

two–fluid model from PR–DNS data is then described. In Section 3.4, numerical convergence

and the choice of numerical parameters are discussed. In Section 3.5 we compute the average

Nusselt number and propose an new Nusselt number correlation for gas–solid heat transfer

using PR–DNS data. We evaluate the accuracy of a standard two–fluid model for the average

gas–solid heat transfer rate by comparison with PR–DNS data and propose an improved model

in Section 3.6 . Finally, Section 3.7 discusses the applicability of the results and in Section 3.8

we summarize the principal findings of this work.

3.2 Gas–solid heat transfer in flow past a fixed assembly of particles

We consider gas–solid heat transfer in a steady flow past a homogeneous fixed assembly

of monodisperse spherical particles as Fig. 3.1 shows.Although the hydrodynamic problem is

statistically homogeneous, the mean fluid velocity is anisotropic. This directionality in the flow

implies that fluid that is downstream of a particle is heated up (or cooled down) by interphase

heat transfer, relative to fluid that is upstream of the particle. In other words, when we have

forced convection heat transfer in a fixed assembly of particles with finite mean slip velocity

〈W〉 =
〈

u(f)
〉

−
〈
u(s)

〉
, where

〈
u(f)

〉
and

〈
u(s)

〉
are the average velocities in the fluid phase and

solid phase, the fluid temperature varies with streamwise location in the particle assembly, and

the average fluid temperature cannot be assumed to be uniform. With this heating or cooling of

fluid by particles, the thermal problem becomes statistically inhomogeneous in the streamwise

direction. This feature of heat transfer in gas–solid flows is well established (Acrivos et al.

(1980)).

The inhomogeneity of the fluid temperature in a fixed particle assembly implies that in

order to model unclosed terms in the average fluid temperature equation (Eq. 3.1), the average

gas–solid heat transfer needs to be extracted from spatially varying surface statistics. However,

spatially varying surface statistics converge slowly (Xu and Subramaniam (2010)) even with a

large number of realizations, where each realization corresponds to a different particle configura-
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Figure 3.1: Schematic of steady flow with mean slip velocity 〈W〉 through a fixed assembly of
isothermal particles. The temperatures in the fluid phase and solid phase are Tf (x, t) and Ts,
respectively. The inlet and outlet of the domain are at x‖ = 0 and x‖ = L, respectively.

tion with the same solid volume fraction and pair correlation function. However, Tenneti et al.

(2013) showed that if the flow is thermally fully–developed, then the Nusselt number is sta-

tistically homogeneous even though the average fluid temperature varies in the streamwise

direction. Therefore, in a thermally fully–developed flow, the average Nusselt number can

be computed by volume–averaging using fewer realizations. Tenneti et al. (2013) developed a

thermal self-similarity condition for gas–solid heat transfer in steady flow past a statistically

homogeneous fixed assembly of particles that results in a thermally fully–developed flow. The

same boundary condition has also been used by Tyagi and Acharya (2005) for simulating heat

transfer in duct flow. We briefly summarize Tenneti et al. (2013) formulation of thermally

fully–developed gas–solid flow here for completeness.

The assumptions made to simplify this heat transfer problem are the same as in Tenneti et al.

(2013); Tenneti and Subramaniam (2014), namely: (i) isothermal particles with a single spa-

tially uniform temperature for all particles that is constant in time, and (ii) neglect of radiation

and free convection. A detailed justification for these assumptions can be found in Tenneti et al.

(2013). Constant gas properties are also assumed for simplicity of the computation. The fluid

temperature field T (x, t), in the absence of viscous heating, radiation and free convection effects,
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obeys the following convection–diffusion equation:

∂T

∂t
+
∂(ujT )

∂xj
= αf

∂2T

∂xj∂xj
, (3.3)

where αf = kf/ρf cP f is the thermal diffusivity in the fluid phase , and kf is the thermal con-

ductivity in the fluid phase. Equation (3.3) needs to be solved in the fluid with the Dirichlet

boundary condition of T = Ts at the surface of the particles, where Ts is the uniform tempera-

ture at which all the particles are maintained. As noted earlier, the average fluid temperature

varies in the streamwise direction due to fluid heating (or cooling) by the particles. Since

interphase heat transfer is driven by the difference between the temperatures in the solid and

fluid phases, this results in an average interphase heat flux that also varies along the stream-

wise direction. The ratio of the response (average heat flux) to the driving force (average

temperature difference) determines the Nusselt number, that in general also varies along the

streamwise direction. However, if the flow is thermally fully–developed (as in internal pipe

flow, see Incropera et al. (2006) for example), then the locally scaled excess fluid temperature

field 2 θ, defined as:

θ(x, t) =
T (x, t) − Ts

〈Tm〉 (x||, t) − Ts
, (3.4)

is statistically homogeneous at steady state and does not vary in the streamwise or axial

direction x|| (Tenneti et al. (2013)), i.e.,

∂θ

∂x||
=

∂

∂x||

(
T (x) − Ts

〈Tm〉 (x||) − Ts

)
= 0. (3.5)

In the above definition, 〈Tm〉 (x||, t) is the ensemble–averaged bulk fluid temperature or ”mixing–

cup” temperature, which is defined as the average of the bulk fluid temperature on each real-

ization ω (corresponding to a particle configuration, which occurs with probability dPω), such

that

〈Tm〉 (x||, t) =

ˆ

ω∈Ω
Tm(x||, t;ω) dPω , (3.6)

where the bulk fluid temperature on each realization is

Tm(x||, t;ω) =

´

Af
(uT ) · e‖dAf
´

Af
u · e‖dAf

, (3.7)

2For simplicity this quantity is later referred to as simply the scaled fluid temperature.
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where e‖ is the unit vector along the streamwise direction and Af is the area occupied by

the fluid in a plane perpendicular to the streamwise direction. In general for any function

Q(x||, t;ω) that is defined for a realization ω, we define the ensemble-average as

〈Q〉 (x||, t) =

ˆ

ω∈Ω
Q(x||, t;ω) dPω . (3.8)

The thermally fully–developed condition implies that at steady state the local wall heat flux

scaled by the temperature difference
(
〈Tm〉 (x||) − Ts

)
is a constant. In other words, the spatial

variation of interphase heat flux in response to the temperature difference occurs in such a way

that the heat transfer coefficient (or the Nusselt number) at each axial location remains the

same throughout the bed. The advantage of establishing a thermally fully–developed flow is

that there are no entrance length effects and the average Nusselt number can be calculated

by averaging over all the particles in the bed, rather than accounting for its variation in the

streamwise direction. This is accomplished by implementing a thermal self–similarity condition,

which requires periodic boundary conditions on the scaled fluid temperature (Tenneti et al.

(2013)).

For reasons detailed in Tenneti et al. (2013), it is easier to transform the periodic boundary

conditions on θ to obtain similarity conditions on the temperature field T (x, t) and solve Eq. 3.3

for T (x, t). Simplification of the thermal similarity conditions and homogenization of the

boundary conditions on the particle surfaces is accomplished by defining a non–dimensional

excess temperature field 3 φ(x, t) as follows:

φ(x, t) =
T (x, t) − Ts

〈Tm,in〉 − Ts
, (3.9)

where 〈Tm,in〉 is the average inlet bulk fluid temperature that is defined by Eq. 3.6 in terms

of the inlet bulk fluid temperature Tm,in, which is given by Eq. 3.7 evaluated at x|| = 0.

Using this definition of the non–dimensional temperature, it is easy to see that the average

non–dimensional bulk fluid temperature 〈φm〉 has a similar definition:

〈φm〉(x||, t) =
〈Tm〉(x||, t) − Ts

〈Tm,in〉 − Ts
. (3.10)

3For simplicity this quantity is referred to as the non–dimensional temperature.
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Substituting Eq. 3.9 in Eq. 3.3 gives the governing equation for the non–dimensional tem-

perature:

∂φ

∂t
+
∂(ujφ)

∂xj
= αf

∂2φ

∂x2
j

. (3.11)

The isothermal boundary conditions on the particle surface reduce to φ = 0. The periodic

boundary conditions on φ now appear in a very simple form:

φ(0, y, z) = rhφ(L, y, z),

φ(x‖, 0, z) = φ(x‖, L, z),

φ(x‖, y, 0) = φ(x‖, y, L), (3.12)

where rh is the heat ratio, which is defined as:

rh =
〈Tm,in〉 − Ts

〈Tm,out〉 − Ts
. (3.13)

In this definition of the heat ratio 〈Tm,out〉 is the average bulk fluid temperature at x‖ = L, and

L is the length of the box. The heat ratio is the ratio of the excess bulk fluid temperature at

the inlet (x‖ = 0) to the excess bulk fluid temperature at the outlet (x‖ = L). In other words,

the heat ratio is simply the inverse of the average non–dimensional bulk fluid temperature at

x‖ = L i.e.,

rh =
1

〈φm〉out
. (3.14)

The heat ratio quantifies by how much a fluid particle heats up when it leaves the box and

so this quantity depends solely on the flow structure and the interphase heat transfer in the

domain. Note that the heat ratio, or the amount by which the fluid gets heated up (or cooled

down) when it reaches the end of the box, is an unknown quantity and is obtained as a part of

the solution.

There is a useful relation that shows that the non–dimensional temperature (Eq. 3.9) is

simply the product of the scaled temperature (Eq. 3.4) and the average non–dimensional bulk

fluid temperature (Eq. 3.10):

φ(x, t) =

(
T (x, t) − Ts

〈Tm〉(x||, t) − Ts

)(
〈Tm〉(x||, t) − Ts

〈Tm,in〉 − Ts

)
= θ(x, t)〈φm〉(x||, t). (3.15)
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Multiplying the above equation by the fluid indicator function If , taking the expectation (see

Eq. 3.8), and using the definition in Eq. 3.2 leads to the corresponding relation between the

phase–averaged counterparts:

〈φ(f)〉(x, t) = 〈θ(f)〉(x, t)〈φm〉(x||, t), (3.16)

Also noting that the θ field is statistically homogeneous at steady state reveals that the inho-

mogeneity in the steady average fluid temperature field arises solely from the inhomogeneity in

the bulk fluid temperature:

〈φ(f)〉(x||) = 〈θ(f)〉〈φm(x||)〉. (3.17)

In the next section we describe the numerical method that is used to solve the heat transfer

problem and extract unclosed terms.

3.3 Numerical method

The gas–solid heat transfer problem described in Sec. 2 can be solved using our PR–DNS

approach, which is called the Particle-resolved Uncontaminated-fluid Reconcilable Immersed

Boundary Method (PUReIBM) (Tenneti et al. (2011); Tenneti and Subramaniam (2014); Tenneti

(2013)).

3.3.1 PUReIBM formulation

Complete details of the PUReIBM hydrodynamic solver are discussed by Tenneti et al.

(Tenneti et al. (2011); Tenneti (2013); Tenneti et al. (2010)) and Garg et al. (2010b). The

extension of the PUReIBM hydrodynamic solver to account for the temperature equation in

gas–solid heat transfer is described in Tenneti et al. (2013). Here we briefly review the numer-

ical approach to solve the gas–solid heat transfer problem in a fixed assembly of isothermal

particles.

It is worth noting that the equations in Section 3.2 are formulated in terms of the ensemble–

averaged bulk fluid temperature (see Eqs. 3.9 and 3.13). The solution to these equations can

be accomplished by simultaneously solving Eq. 3.11 in parallel for several different particle

configurations subject to the boundary conditions is Eqs. 3.12 and 3.14 on a parallel computer.
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In this setup each particle configuration and corresponding fluid temperature field is stored

on a node, and the ensemble–averaged bulk fluid temperature is communicated to all nodes

at the end of each time step. However, it turns out that the statistical variability of the bulk

fluid temperature and heating ratio in different particle configurations is small, provided the

computational domains are sufficiently large. Therefore, our approach has been to replace the

ensemble–averaged bulk fluid temperature with the bulk fluid temperature in that realization.

In this case the scaled fluid temperature for each realization is rewritten as follows,

θ(x, t;ω) =
T (x, t;ω) − Ts

Tm(x||, t;ω) − Ts
, (3.18)

and the non–dimensional fluid temperature is rewritten as

φ(x, t;ω) =
T (x, t;ω) − Ts

Tm,in(ω) − Ts
. (3.19)

This effectively decouples the temperature solution in different particle configurations and

allows the solution in each realization to proceed independently. Ensemble-averaged quantities

are computed from the individual steady temperature fields corresponding to each realization,

as described in the next section. The small statistical variability in the bulk fluid temperature

and heating ratio from one realization to another justify this decoupling approach. We can

use Eqs. 3.18 and 3.19 at steady state to infer the following useful relation between the non–

dimensional, scaled and bulk fluid temperature fields from each realization, which is the analog

of Eq. 3.15:

φ(x;ω) =

(
T (x;ω) − Ts

Tm(x||;ω) − Ts

)(
Tm(x||;ω) − Ts

Tm,in(ω) − Ts

)
= θ(x;ω)φm(x||;ω). (3.20)

In PUReIBM (see Chapter 2), the following non–dimensional fluid temperature equation is

solved at all grid nodes

ρfcpf

[
∂φ

∂t
+
∂(ujφ)

∂xj

]
= −

∂qφ
j

∂xj
+ Isfφ, (3.21)

where qφ
j = −kf∂φ/∂xj is the heat flux per unit temperature difference, Is is the solid-phase

indicator function, and fφ is the scalar Immersed Boundary (IB) direct forcing in the solid

phase. The immersed boundary forcing accounts for the presence of the solid particles in the

domain by ensuring that the isothermal boundary condition φ = 0 is satisfied on the surface
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of each solid particle. The surface of the solid particle is represented by a discrete number of

points called boundary points. For spherical particles, the boundary points are specified by

discretizing the sphere in spherical coordinates. Another set of points called exterior points

are generated by projecting these boundary points onto a sphere of radius r + ∆r, where r is

the radius of the particle. Similarly, the boundary points are projected onto a smaller sphere

of radius r − ∆r and these points are called interior points. In our simulations ∆r is taken to

be same as the grid spacing. The IB forcing is computed only at the interior points. At these

points the fluid temperature is forced in a manner similar to the ghost cell approach used in

standard finite-difference/finite-volume based methods (Patankar (1980)). For the boundary

condition φ = 0 used in this work, the value of φ at the interior points is forced to be opposite

in magnitude to the value of φ at the corresponding exterior points.

A distinctive feature of PUReIBM is that the scalar IB forcing fφ is computed only at

points lying inside the solid particles. This ensures that the fluid–phase temperature field is

not contaminated by the scalar IB forcing term fφ, just as the fluid–phase velocity field is not

contaminated by the hydrodynamic IB forcing. The consequences of fluid velocity contamina-

tion by IB forcing are discussed in detail by Tenneti et al. (2011). The computation of fφ is

similar to the computation of the IB forcing for the velocity field. The scalar IB forcing at the

(n + 1)th time-step fn+1
φ is specified to cancel the remaining terms in the governing equation

and forces the non–dimensional temperature φn to its desired value φd at the particle surface:

fn+1
φ = ρf cpf

φd − φn

∆t
+ ρfcpfC

n
φ +


∂q

φ
j

∂xj




n

(3.22)

where Cn
φ = [∂(ujφ)/∂xj ]n is the convective term at the nth time-step. The non–dimensional

fluid temperature equation (Eq. 3.21) is solved using a pseudo-spectral method, with the Crank-

Nicolson scheme for the viscous terms, and an Adams-Bashforth scheme for the convective

terms. Fourier transforms are used in the cross-stream directions and a finite–difference scheme

is used in the streamwise direction (Yusof (1996)). Implementation of the periodic boundary

conditions in Eq. 3.12 results in an independent set of cyclic tridiagonal systems that are

solved using the Sherman-Morrison formula (Tenneti (2013)). Details on the numerical method

can be found elsewhere (Tenneti et al. (2011, 2013); Tenneti (2013); Garg et al. (2010b)). A
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noteworthy feature of this approach is that the heat ratio rh in Eq. 3.12 is an unknown quantity

and is solved iteratively. The temperature field is initialized with rh = 1 and the simulation is

marched in pseudo time until the value of the heat ratio converges.

3.3.2 Relation of PR–DNS data to unclosed terms

In order to quantify the unclosed terms in the average fluid temperature equation in Eq. 3.1

from PR–DNS data, the correspondence between PR–DNS data and the unclosed terms needs to

be established. The thermal fully–developed condition guarantees that terms like the Nusselt

number and the scaled fluid temperature θ are statistically independent of the streamwise

direction as shown by Tenneti et al. (2013). Therefore, we use volume-averaging over the fluid

domain to compute those terms. However, since the average fluid temperature varies along

the streamwise direction, terms like the average gas–solid heat transfer are not statistically

homogeneous and they depend on the streamwise direction. For such terms we use a cross-

sectional average, for instance, the average gas–solid heat transfer is computed from the local

volumetric interphase heat transfer rate. In order to define the local volumetric gas–solid heat

transfer rate q
′′′

φ (x||;ω) (see Eq. B.8), the PR–DNS instantaneous fluid temperature equation

(Eq. 3.1) is integrated over the cross-sectional area of fluid region Af in the y − z plane

perpendicular to the streamwise direction x|| (see details in Appendix B). Cross-sectionally

averaged terms such as the local volumetric interphase heat transfer rate q
′′′

φ (x||;ω) only depend

on the streamwise coordinate.

For cross-sectionally averaged terms such as the local volumetric interphase heat transfer

rate, the numerical value from PR–DNS data for every realization ω would equal the corre-

sponding average in the limit that the cross-sectional area of the domain tends to infinity. In

practice, acceptable convergence can be obtained with large domain sizes, but the domain size

is limited by computer memory. However, even domains that are large enough such that two–

point correlations decay to zero may not provide good particle statistics especially at low solid

volume fraction. However, the statistical variability in the PR–DNS estimate of the unclosed

terms arising from finite number of particles in each domain can be reduced by averaging over

multiple independent simulations (MIS) or realizations. For instance, the average gas–solid
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heat transfer term is estimated from PR–DNS data as
〈
∂If

∂xj
qφ

j

〉
(x||) ≈ 1

M

M∑

ω=1

{
q

′′′

φ (x||;ω)
}
, (3.23)

where q
′′′

φ (x||;ω) is given by Eq. B.8 (see Appendix B for details) and M is the number of

realizations. The choice of number of MIS depends on the statistic being estimated. We find

that mean values and second moments converge fairly quickly within 4 or 5 realizations. Higher–

order statistics would require a larger number of realizations to reduce statistical variability.

3.4 Simulation Results and Numerical Convergence

We have performed PR–DNS simulations over a range of mean slip Reynolds number Rem =

1-100 and solid volume fraction εs = 0.1-0.5 in gas–solid flow with Prandtl number of 0.7, as

summarized in Table 3.1. Before discussing the results, we establish numerical convergence of

the simulation method for steady gas–solid heat transfer in a fixed particle assembly.

Table 3.1: Parameters for simulation of heat transfer in steady flow past random fixed as-
semblies of particles. The physical parameters are the solid volume fraction εs and the mean
slip Reynolds number Rem. The numerical parameters are the ratio of the box length to the
particle diameter L/D and the grid resolution Dm = D/∆x. The number of particles Np is
determined by εs and L. Five independent simulations of each case are simulated to reduce
statistical variability.

εs Rem L/D Np Dm

0.1 1, 5, 10, 20, 30, 40, 50, 100 7.5 80 20
0.2 1, 5, 10, 20, 30, 40, 50, 100 7.5 161 20
0.3 1, 5, 10, 20, 30, 40, 50, 100 5 71 30
0.4 1, 5, 10, 20, 30, 40, 50, 100 5 95 30
0.5 1, 5, 10, 20, 30, 40, 50, 100 4 61 40

3.4.1 Numerical convergence

Numerical convergence and accuracy of the scalar solver in PUReIBM have been established

in Tenneti et al. (2013). The principal numerical parameters relevant to this study are the

grid resolution Dm = D/∆x, domain size L/D and the number of independent simulations.

Since these are steady calculations, the time-marching is done in pseudo–time. The Courant-

Friedrich-Lewy (CFL) number based on mean slip velocity and grid size is always less than 0.5.
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In a previous study (Garg et al. (2010b)) we have shown that the code is stable for this choice

of CFL number, and yields convergent solutions with this choice of pseudo–time step.

3.4.2 Grid resolution

Tenneti et al. (2013) compared PUReIBM simulations of steady heat transfer in a duct

with an analytical result and showed that the simulation results converge accurately to the

analytical value with increasing grid resolution. Here we demonstrate numerical convergence

of the Nusselt number for steady heat transfer in flow past random assemblies of monodisperse

spherical particles.

Figure 3.2(a) shows the convergence characteristics of the volumetric mean Nusselt number

(see Eq. B.18 in Appendix B) with respect to grid resolution Dm = D/∆x, where D is the

particle diameter and ∆x is the grid spacing. We choose the box length to be L/D = 4 so that

different grid resolutions can be tested within available computational resources. Elsewhere

we have used the decay of scaled fluid temperature autocorrelation to justify the choice of box

length. All simulations here are repeated with the same random particle configuration. The

relative error in the volumetric mean Nusselt number between the coarsest grid Dm = 20 and

the finest grid Dm = 70 is about 11%. The volumetric mean Nusselt number at εs = 0.4 and

Rem = 20 also converges to an asymptotic value of 7.8 with increasing grid resolution.

3.4.3 Number of realizations

Besides the grid resolution, the statistical variability arising from finite number of particles

can be an issue as discussed in Section 3.3.2. In order to obtain good statistics, we need

to reduce the statistical variability in the PR–DNS estimate of the unclosed terms arising

from finite number of particles by averaging over MIS corresponding to independent particle

configurations. The choice of the number of MIS depends on the convergence of statistics

as Figure 3.2(b) shows. This figure shows the convergence of average Nusselt number with

increasing number of MIS at εs = 0.4 and Rem = 20, along with the 95% confidence intervals

corresponding to each set of MIS. We conclude that we can estimate the true average (obtained

with 70 realizations) using 5 realizations, while recognizing that the 95% confidence intervals
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(a) (b)

Figure 3.2: (a) Convergence characteristics of the volumetric mean Nusselt number (see
Eq. B.18) with grid resolution Dm = D/△x for heat transfer in a random assembly of spheres
at Rem = 20 and εs = 0.4. The same random particle configuration with L/D = 4 is used
for all grid resolution values. (b) Dependence of average Nusselt number on number of MIS
or realizations at Rem = 20 and εs = 0.4. Symbols indicate average Nusselt number and error
bars indicate 95% confidence intervals. The red and blue filled symbol represent the average
Nusselt number obtained using 2 and 5 realizations, respectively.

with 5 realizations correspond to about 15% of the true average value. Hence, we use 5 MIS

for all simulations to obtain the average Nusselt number over a range of Reynolds number and

volume fraction.

3.4.4 Choice of numerical parameters

In addition to the grid resolution and number of realizations, the box length is also a

numerical parameter, and we have discussed its choice elsewhere. In that work it is shown that

the scaled temperature autocorrelation decays within a box of length 5D for a solid volume

fraction of 0.4 and Reynolds number 100 (lower Reynolds number cases decay to zero within

shorter separation distances). Based on this comprehensive study of the dependence of our

PR–DNS heat transfer results on the principal numerical parameters, we have chosen values

for grid resolution and number of independent simulations that minimize numerical error within

the available computational resources (see Table 3.1). However, since we have explored a wide

parameter range, each of these choices does incur some numerical error, and we estimate that
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in the worst case scenario where all the errors add cumulatively, the maximum numerical error

in the average Nusselt number would be 15–20%.

We can estimate the maximum numerical error using an error model similar to that Garg et al.

(2007) and Xu and Pope (1999) used. The total numerical error in the average Nusselt number

is defined as

ǫNu = {Nu}V,Dm
− 〈Nu〉 , (3.24)

where {Nu}V,Dm
is the numerical estimate. This total numerical error contains contributions

from grid resolution and finite number of particles. In order to calculate the total numerical

error in the average Nusselt number, the total numerical error ǫNu can be decomposed as

ǫNu = ΣNu +DNu = ΣNu +BNu + SNu, (3.25)

where ΣNu is the statistical error, and DNu is the deterministic error and is further decomposed

into bias error BNu and discretization error SNu. Note that it is infeasible to determine these

coefficients for the entire parameter range of solid volume fraction and Reynolds number with

current computational resources. Therefore, we construct the error model based on available

PR-DNS data and apply it to find the maximum error in the worst case scenario that corre-

sponds to the lowest grid resolution. Based on this error model, the total numerical error for

the worst case scenario with grid resolution Dm = 20 is 18.5%, with the major contribution

of 12% coming from the discretization error (statistical error contributes 4.5% and bias error

contributes only 2%). Of all the simulations, only two cases corresponding to εs = 0.1 and

εs = 0.2 use a grid resolution Dm = 20. All the other cases simulated use higher grid resolution

Dm ≥ 30 and therefore incur less discretization error, and consequently less total error. Note

that the difference between existing correlations such as Gunn’s correlation and the measured

data (see Figure 3.3) is several orders of magnitude larger than this error. It is also worth

noting that the total numerical error that we have estimated in our ”worst case” scenario with

Dm = 20 is still low compared to the usual error associated with convection heat transfer

correlations that is estimated at about 25% (see Chapter 7.2.6 in Incropera et al. (2006)).
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Figure 3.3: Comparison of Nusselt number from experimental data in packed beds with Gunn’s
correlation and PR-DNS data at εs = 0.5. The triangles represent PR-DNS data with 95%
confidence and the solid line represents Gunn’s correlation (1978) at εs = 0.5 that is close to a
packed bed. The open circles represent the experimental data from Gunn and Desouza (1974),
the open squares represent experimental data from Littman and Sliva (1970), and the range
inside dashed line represents Barker’s experimental data (Barker (1965)) in a packed bed.

3.5 Nusselt number corresponding to average gas–solid heat transfer

We now compare our PR–DNS data with Gunn’s Nusselt number correlation (Gunn (1978))

for gas–solid heat transfer that is widely used in two–fluid CFD models. We propose a new

Nusselt number correlation for gas–solid flow that more closely matches our PR–DNS data and

that also captures the Reynolds number dependence more accurately. The Nusselt number

data obtained from our PUReIBM simulations are also compared with another gas–solid heat

transfer PR–DNS reported by Tavassoli et al. (2013). We also compute the average gas–solid

heat transfer in the two–fluid model using the Nusselt number from PR–DNS and compare it

with the average gas–solid heat transfer extracted directly from PR–DNS. We find discrepancies

that we are able to explain and reduce by proposing an improved model for average gas–solid

heat transfer that is based on our model for the average bulk fluid temperature.
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3.5.1 Computation of Nusselt number from PR–DNS

For gas–solid heat transfer, Gunn’s Nusselt number correlation (Gunn (1978)) of exper-

imental data is used to compute the average gas–solid heat transfer in Eq. 3.28. Gunn’s

correlation (Gunn (1978)) is written as the following function of Reynolds number Re, bed

porosity εb, and Prandtl number Pr:

Nu = (7 − 10εb + 5ε2
b )(1 + 0.7Re0.2Pr1/3) + (1.33 − 2.4εb + 1.2ε2

b )Re0.7Pr1/3. (3.26)

This correlation is valid in the bed porosity range 0.35 ≤ εb = 1 − εs ≤ 1.0 and 1 ≤ Re ≤ 105.

We extend Tenneti et al. (2013) comparison of Nusselt number obtained from PR–DNS with

Gunn’s correlation to comprehensively compare Nusselt number over the range of Reynolds

number Rem and volume fraction εs given in Table 3.1. Figure 3.4 shows the dependence of

average Nusselt number on Reynolds number at low and high solid volume fractions.The lines

in Fig. 3.4(a) (line with symbols in Fig. 3.4(b)) are the Nusselt number obtained from Gunn’s

correlation (Gunn (1978)) that is a fit to a collection of experimental data obtained from many

sources. As expected, at a given volume fraction the average Nusselt number increases with

Reynolds number due to an increase in the magnitude of the convection term. While the

overall trend of the Nusselt number dependence on Reynolds number is captured by Gunn’s

correlation, it predicts a higher value of Nusselt number with Reynolds number than seen in

the PR–DNS data. Gunn’s correlation is within 20% of the PR–DNS data, and there are slight

differences in the dependence on Reynolds number.

In order to place this comparison in context it should be noted that Gunn’s correlation is

an inspired fit to experimental data that vary by several orders of magnitude (see Fig. 3.3).

On this scale, the difference between PR-DNS and Gunn’s correlation of 20% is infinitesimal in

comparison to the discrepancy between the correlation and the measurements themselves. An

estimate of the contribution of free convection shows that it contributes less than 13% of the

average Nusselt number even in the cases where it is expected to be important (low Reynolds

number). The differences between the PR-DNS data and the experiment are more likely to

arise from (i) experimental uncertainties (note the wide variation among the experimental

studies themselves), (ii) assumption of constant gas properties in the simulations, (iii) the model
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(a) (b)

Figure 3.4: Dependence of the average Nusselt number in random particle assemblies on mean
slip Reynolds number Rem for (a) low solid volume fraction (εs ≤ 0.2), and (b) higher solid
volume fraction (εs ≥ 0.3) for gas–solid flow with Pr = 0.7. The symbols are the average
Nusselt number from PR–DNS data and error bars indicate 95% confidence intervals using 5
MIS. The lines with symbols represent Gunn’s correlation Gunn (1978). The lines without
symbols represent the new PUReIBM Nusselt number correlation in Eq. 3.27.

assumption for axial conduction that is used to interpret the Nusselt number in the experimental

reports, and (iv) at higher Reynolds number, the neglect of transport of temperature–velocity

covariance in the 1-D model used to infer the Nusselt number in the experiments.

Figure 3.5 shows the dependence of the average Nusselt number on solid volume fraction for

different Reynolds numbers. At a given Reynolds number, as the solid volume fraction increases

so does the average Nusselt number. The dependence on solid volume fraction is explained on

the basis that as the isothermal particle surfaces come closer, the temperature gradient in the

fluid phase between them increases. In Fig. 3.5 we again see a systematic difference between

Gunn’s correlation and the PR–DNS data at a solid volume fraction of 0.5.

3.5.2 Nusselt number correlation from PR–DNS

In order to provide a correlation that better fits the PR–DNS data and to capture its

dependence on Reynolds number more accurately, the following Nusselt number correlation for
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(a) (b)

Figure 3.5: Dependence of the average Nusselt number in random particle assembly on solid
volume fraction εs (a) at low Reynolds number: Rem = 1, 20 and 40, and (b) higher Reynolds
number: Rem = 50 and 100, for gas–solid flow with Pr = 0.7. The symbols (open circle, open
square, and downward triangle) are the average Nusselt number from PR–DNS data and error
bars indicate 95% confidence intervals using 5 MIS. The other symbols (upward triangle and
star) at εs = 0.1, 0.3, and 0.5 are the data from Tavassoli et al. (2013). The lines represent the
PR–DNS Nusselt number correlation.

gas–solid flow is proposed by fitting our PR–DNS data:

Nu = (−0.46 + 1.77εb + 0.69ε2
b )/ε3

b + (1.37 − 2.4εb + 1.2ε2
b )Re0.7Pr1/3. (3.27)

For simplicity of notation we drop the angle bracket notation in the expression for this correla-

tion of average Nusselt number. This correlation is valid in the bed porosity range 0.5 ≤ εb ≤ 1.0

and 1 ≤ Re ≤ 100. The first term in the new correlation accounts for the dependence of the Nus-

selt number on volume fraction. It is developed using the same ε3
b dependence as Tenneti et al.

(2011) employed to propose their PUReIBM drag correlation. This confirms in a limited sense

the existence of a Reynolds analogy between drag and heat transfer in gas–solid flows. The

second part of the PUReIBM correlation is the same as Gunn’s correlation (see Eq. 3.26), and

it completely represents the dependence of Nusselt number on Reynolds number. Note that in

Gunn’s correlation the first term also has a dependence on Reynolds number. As the Reynolds

number and solid volume fraction tend to zero (εb → 1), this new PUReIBM correlation also

yields the limiting value for the Nusselt number of 2, corresponding to conduction from a
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sphere.

In Fig. 3.5 the lines without symbols represent the PUReIBM Nusselt number correlation

from PR–DNS data. The average difference between PR–DNS data and the PUReIBM corre-

lation is about 7% for the range of Reynolds numbers considered. Fig. 3.5 also shows that the

PUReIBM correlation closely fits most of the PR–DNS data except at low Reynolds number

Rem = 1.

Figure 3.5(b) shows that our PR–DNS data compare with the average Nusselt number

from Tavassoli et al. (2013). They also reported that the differences between their selected PR–

DNS results and Gunn’s correlation are about 20%. Their average Nusselt number values are

always larger than those from our PR–DNS data. One possible explanation for this difference

could be the difference in the setup of the gas–solid heat transfer problem in the two studies.

In the Tavassoli et al. (2013) study the flow domain includes both a thermally developing

entrance region and a thermally fully–developed region, whereas in our setup there is only a

thermal fully–developed region. Therefore, it is possible that Tavassoli et al. (2013) obtained a

higher value of the heat transfer coefficient (and Nusselt number) since the local heat transfer

coefficient in the thermally developing entrance region for gas–solid flow is much higher than

that in the thermal fully–developed region.

An important point to note is that the Nusselt number in Gunn’s correlation as well as

in our PR–DNS is computed in terms of the difference between the bulk fluid temperature (as

shown in Fig. 3.6(a)) and the particle temperature. However, the two–fluid model (cf. Eq. 3.1)

calculates the average gas–solid heat transfer in terms of the difference between the average

fluid temperature (as shown in Fig. 3.6(b)) and the particle temperature. In Fig. 3.6(a), the

average non–dimensional bulk fluid temperature from PR-DNS data denoted by open symbols

decays rapidly due to fluid cooling in the streamwise direction. The same trend is also observed

in the average non–dimensional fluid temperature as shown in Fig. 3.6(b). However, since the

average non–dimensional bulk fluid includes the effect of the local velocity (cf. Eq. 3.6), we

show in the following that it is inconsistent to use the Nusselt number defined in terms of

the difference between the bulk fluid temperature and the particle temperature in the two–

fluid model for average gas–solid heat transfer. Computational results quantify the magnitude
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of discrepancy arising from this inconsistency, and we then propose an improved model that

reduces the discrepancy.

(a) (b)

Figure 3.6: Axial variation of average non–dimensional bulk fluid temperature in Eq. 3.10 and
cross-sectional average non–dimensional fluid temperature (Eq. 3.17) from PR–DNS data for
εs = 0.1 and 0.5 at mean slip Reynolds number of 1 and 100. Error bars in both panels (shown
only below the symbols in (a) for clarity) represent 95% confidence intervals inferred from 5
MIS.

3.6 Improved two–fluid model for average gas–solid heat transfer

A widely used two–fluid model (Benyahia et al. (2012)) for the average gas–solid heat trans-

fer rate 〈qj∂If/∂xj〉 (cf. Eq. 3.1) is written in terms of the difference between average fluid

temperature
〈
T (f)

〉
and average solid temperature

〈
T (s)

〉
as

q
′′′

T F =
6kfεsNum

D2

(〈
T (s)

〉
−
〈
T (f)

〉)
, (3.28)

where εs is the solid volume fraction, and Num is a model for the Nusselt number that is usually

taken from a correlation to experimental data. This expression for the average volumetric gas–

solid heat transfer rate q
′′′

T F is valid for steady heat transfer in a homogeneous assembly of fixed

monodisperse spherical particles, and is derived in Appendix C.

In order to verify the performance of this two–fluid model for average gas–solid heat transfer,

we compute the average volumetric interphase heat transfer rate q
′′′

T F from the two–fluid model
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as

q
′′′

T F =
6εskf Nu

D2

(〈
T (s)

〉
−
〈
T (f)

〉)

(see Eq. D.11 in Appendix D) where the PR–DNS data for average Nusselt number in Figs. 3.4

and 3.5 are used. Note that since 〈T (f)〉 varies significantly along x‖ in many cases, the two–fluid

definition of 〈T (f)〉 in Eq. 3.28 is appropriately modified as

〈T (f)〉 =
1

L

ˆ L

0
〈T (f)〉(x||) dx||

(see Eq. D.10 in Appendix D) when it is used in the two–fluid model.

Figure 3.7: Variation of the normalized average volumetric heat transfer rate q
′′′

DNS (cf.
Eq. D.12) with axial location x|| at Rem = 50 and εs = 0.4. The symbols represent the
normalized average volumetric heat transfer rate q

′′′

DNS and error bars indicate 95% confidence
intervals using 5 MIS. q

′′′

DNS is normalized by h0(Tm,in − Ts)/D, where h0 is the heat trans-
fer coefficient from the limiting value of Nusselt number Nu0 = h0D/kf = 2 (at Rem → 0

and εs → 0). The dotted line, dashed line, and dot-dashed line represent q
′′′

DNS in Eq. D.12,
q

′′′

cT F −model in Eq. D.8, and q
′′′

T F in Eq. D.11, respectively.

We also directly compute the average volumetric interphase heat transfer rate q
′′′

DNS from

PR–DNS data that is a statistical estimate of 〈q′′′

φ 〉 (see Eq. D.12 in Appendix D). Figure 3.7

shows a comparison of the normalized average volumetric interphase heat transfer rate from

the two–fluid model and PR–DNS at Rem = 50 and εs = 0.4. The magnitude of the normalized

average volumetric interphase heat transfer rate q
′′′

DNS has a large drop from 9.1 to 0.65 over

the length of the particle bed. This decay of q
′′′

DNS with axial location x|| indicates that the

gas–solid heat transfer is not homogeneous over L = 5D. The normalized difference between

q
′′′

DNS and q
′′′

T F is about 19%. Fig. 3.9(a) shows that the normalized difference between q
′′′

DNS
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and q
′′′

T F ranges from 5% to 36% over a range of Reynolds number and solid volume fraction, and

increases with increasing solid volume fraction, with the maximum value occurring at εs = 0.5.

The average volumetric interphase heat transfer rate predicted by the two–fluid model q
′′′

T F is

considerably different from q
′′′

DNS , even though the Nusselt number is taken from PR–DNS

data. One reason for this difference is because of the inconsistency in using a Nusselt number

based on the difference between bulk fluid temperature and the particle surface temperature in

conjunction with a temperature difference based on the average fluid temperature in Eq. 3.28

to obtain the two–fluid model for the average volumetric interphase heat transfer rate q
′′′

T F .

As noted earlier, the average Nusselt number in a fixed assembly of particles from PR–DNS is

obtained in terms of the difference between the bulk fluid temperature and solid temperature as

Eq. B.14, and not the difference between the average fluid temperature and solid temperature.

Thus, the difference between the two average volumetric interphase heat transfer rates results

from using the average fluid temperature in the two–fluid model. Using a temperature difference

based on the bulk fluid temperature is the correct way to compute the average volumetric

interphase heat transfer rate in the two–fluid model, but the bulk fluid temperature is not

solved as a field variable in the two–fluid model.

Our approach to remedy this problem is to express the average fluid temperature in the

two–fluid model expression (Eq. 3.28) in terms of the bulk fluid temperature. In Appendix D,

we use the relation between the average bulk fluid temperature and cross-sectional average fluid

temperature in Eq. 3.17 to propose the following consistent two–fluid model for the average

volumetric interphase heat transfer rate:

q
′′′

cT F −model =
6πεskf Nu

4D2
〈
θ(f)

〉
(〈
T (s)

〉
−
〈
T (f)

〉)
, (3.29)

where the average scaled fluid temperature 〈θ(f)〉 can be extracted from PR–DNS data. In fact,

since the scaled fluid temperature θ is statistically homogeneous we can legitimately use volume

averaging and subsequent ensemble–averaging over different particle configurations to compute

〈θ(f)〉 as
〈
θ(f)

〉 ∼= 1/M
∑M

ω=1

{
θ(f)

}
(ω), where

{
θ(f)

}
(ω) =

´

Vf
θ(x;ω)dV/Vf . Figure 3.8

shows the variation of the average scaled fluid temperature 〈θ(f)〉 with Reynolds number and

volume fraction. For a given Reynolds number, the average scaled fluid temperature increases
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with increasing volume fraction. We also observe that the average scaled fluid temperature

is only weakly dependent on Reynolds number. Based on this PR–DNS data we propose the

following correlation for the average scaled fluid temperature

〈
θ(f)

〉
= 1 − 1.6εs(1 − εs) − 3εs(1 − εs)4 exp(−Re0.4

m εs) (3.30)

that fits PR–DNS data with an average error of 5%. This correlation is a function of solid

volume fraction and Reynolds number, and can be used to relate the mean fluid temperature

to the bulk fluid temperature. In the limiting case of infinite dilution (i.e. solid volume fraction

εs → 0), the average scaled fluid temperature
〈
θ(f)

〉
is equal to one. This limiting value is

consistent with the fact that for flow without particles the temperature field is uniform.

Figure 3.8: Variation of the average scaled fluid temperature
〈
θ(f)

〉
over Reynolds number of

1− 100 and volume fraction of 0.1− 0.5. Error bars represent 95% confidence intervals inferred
from 5 MIS.

Using the expressions for average volumetric interphase heat transfer rate in Appendix D,

Fig. 3.7 shows that the difference between q
′′′

cT F −model (see Eq. D.8) and q
′′′

DNS (see Eq. D.12) is

about 8% and less than the difference between q
′′′

T F and q
′′′

DNS at a solid volume fraction of 0.4.

Thus, although q
′′′

DNS is inhomogeneous along the axial location, q
′′′

cT F −model is still close to the

PR–DNS data. Figure 3.9(b) compares the average volumetric interphase heat transfer rate

from this consistent two–fluid model and PR–DNS data over a wide range of Reynolds number

and solid volume fraction. The maximum value of the difference between q
′′′

DNS and q
′′′

cT F −model

is about 12%. For the cases where scale separation holds (εs =0.1, Rem ≥ 20) we find that the

difference is very low (the maximum of the difference is about 7%). Therefore, for the scale
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separated cases the consistent two–fluid model that uses the bulk fluid temperature difference

is very accurate. Thus, the consistent model that uses the bulk fluid temperature difference

with the Nusselt number correlation based on the bulk fluid temperature results in significant

improvement of the predicted average gas–solid heat transfer rate.

For the rest of the cases the error most probably arises from the spatial inhomogeneity of

the average fluid temperature in the domain (cf. Eq. D.10 and Fig. 3.7). Even so, for most of

the cases the difference between q
′′′

DNS and q
′′′

cT F −model is below 12%, whereas as noted earlier

the difference between q
′′′

DNS and q
′′′

T F (see Fig. 3.9(a)) are in the range of 5-36%. However,

these errors should be interpreted cautiously since they relied on having the spatial variation

of the average fluid temperature from the PR–DNS, which would not be the case in practical

application of the two–fluid model. Nevertheless, this improved consistent two–fluid model (see

Eq. 3.29) for the average volumetric interphase heat transfer rate that uses the average scaled

fluid temperature
〈
θ(f)

〉
correlation (see Eq. 3.30) can be directly used in existing multiphase

CFD codes that are based on the two–fluid model.

(a) (b)

Figure 3.9: Comparison of average volumetric interphase heat transfer rate over a range of solid
volume fraction and mean slip Reynolds number with q

′′′

DNS (see Eq. D.12) from PR–DNS data:
(a) the standard two–fluid model (see Eq. D.11), and (b) the newly improved consistent two–
fluid (cTF) model (see Eq. D.8). The average Nusselt number and average fluid temperature
in both models are taken from PR–DNS.
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3.7 Discussion

The results for gas–solid heat transfer presented here have been obtained under certain

simplifying assumptions. Here we discuss the applicability of the results and identify areas

for future work that would extend these results. As noted earlier, the principal assumptions

in this work are: (i) isothermal particles with a single spatially uniform temperature for all

particles that is constant in time, and (ii) neglect of radiation and free convection. Clearly the

Nusselt number correlation can depend on the temperature boundary condition at the particle

surface. A more faithful description would involve a coupled solution of the conduction problem

inside each sphere. Such computations would certainly be more computationally expensive

but are not out of reach for future studies. An intermediate simpler approach would be to

assume a uniform temperature inside each solid particle (infinite conductance limit that can be

characterized by the Biot number) and yet allow each particle’s temperature to vary in time.

Table 3.2 shows the Biot number for typical particles encountered in the applications that

motivate this study. In each of these applications it seems that a uniform particle temperature

is a reasonable assumption for small particle diameters, and only in the biomass application

with large particle diameters is spatial temperature inhomogeneity inside the particle likely to

be important. Smaller particle diameters also more closely satisfy the neglect of free convection,

as discussed in detail in Tenneti et al. (2013).

It is also useful to estimate the validity of the assumption of a constant particle temperature

that is not varying in time. Table 3.2 also shows the ratio of the particle thermal response time

to the mean flow through time over a particle diameter. This shows that the particle thermal

response time is usually much larger than the flow through time with the ratio ranging from 10

to 3895. The typical box size in the PR-DNS simulations is at most 8D and therefore only in

the case of biomass particles do we expect the particle temperature to change on a time scale

comparable to the transit time for the flow through the domain. In future studies it would be

relatively simple to use a lumped capacitance model and allow particle temperatures to vary

in time.

Since the Nusselt number correlation inferred from PR–DNS in this study is obtained using
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Table 3.2: Typical particle properties and non–dimensional parameters such as the Biot num-
ber and the time scale ratio τLc/τflow that are encountered in gas–solid heat transfer applica-
tions such as CO2 capture (Yi et al. (2007)), chemical looping combustion (CLC) (Shen et al.
(2008)), and biomass pyrolysis (Xue et al. (2011, 2012)). In CO2 capture the gas phase is CO2

and the solid phase is NaCO3; in CLC the gas phase is CO and the solid phase is CaSO4; in
biomass pyrolyisis the gas phase is N2 and the solid phase is bagasse. The Biot number is
defined as Bi = hD/ks, where the heat transfer coefficent is computed by h = Nukf/D, and
the Nusselt number is in the range 2 − 20 from our simulations. The particle thermal response
time for a sphere is defined as τLc = ρscp,sV/Ash = ρscp,sD/6h, and the flow through time is
τflow = D/| 〈W〉 |.

D

(µm)
ρs

(kg/m3)
cp,s

(kJ/kg·K)
ρf

(kg/m3)
cp,f

(kJ/kg·K)
ρscp,s/

ρf cp,f

ks

(W/m·K)
kf

(W/m·K)
Bi τLc/

τflow

CO2

cap-
ture

401 2394 3.93 1.77 0.85 6254 0.5 0.017 0.06-
0.7

36-
1897

CLC 100 2960 2.1 0.44 1.1 12843 0.9 0.052 0.11-
1.2

74-
3895

Biomass 500 400 2.27 0.42 1.22 1772 0.6 0.054 0.18-
1.8

10-
537

data from heat transfer in fixed beds (in fact, so is Gunn’s correlation), care should be taken

when applying it to fluidized beds. The results from this study show that the mean fluid

temperature can vary significantly over a few particle diameters, and it might be expected

that particle motion in this mean temperature gradient can result in a change in the Nusselt

number. Note that in the hydrodynamic problem there is no mean velocity gradient because

the velocity field is homogeneous. Therefore, in the hydrodynamic problem the drag force and

pseudo–turbulent kinetic energy for high Stokes number particles in freely evolving suspension

are well approximated by fixed–bed computations (see Tenneti (2013) and Mehrabadi et al.

(2015)). Heat transfer in freely evolving suspension of gas–solid flow should be performed for

a complete verification but these are outside the scope of this study.

Although simulating a thermally fully developed flow allows us to propose Nusselt number

correlations with relatively low statistical variability, this study does not account for entrance

length effects. Now that we have the thermally fully developed results in hand, we plan to

investigate the effect of entrance length on the heat transfer problem by using inflow/outflow

boundary conditions in future reports.
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The Nusselt number correlation proposed in this work is restricted to gas–solid flow. Simu-

lation of heat transfer in liquid-solid flow requires considerably higher grid resolution to resolve

the thermal boundary layers that correspond to high Prandtl number. It is of interest to con-

sider whether the Nusselt number correlation proposed in this work can also be used to compute

the Sherwood number in a mass transfer problem on the basis of the Reynolds analogy. How-

ever, if mass transfer is strongly coupled to heat transfer, as is often the case in gas-solid flows,

then the Sherwood number will depend not only on the Reynolds number and Schmidt num-

ber, but also on the Lewis number. The validity of the Reynolds heat/mass transfer analogy

in gas-solid flows is a worthwhile topic for future study. Finally, it should be noted that these

results are applicable to steady heat transfer and they do not account for the effect of unsteady

mean temperature effects on the Nusselt number in gas–solid flow.

3.8 Conclusions

PR–DNS simulations of gas–solid heat transfer in steady flow through a homogeneous fixed

assembly of particles is used to verify the assumptions underlying the continuum formulation

of averaged equations, and to quantify the average gas–solid heat transfer term in the average

fluid temperature equation over a range of mean slip Reynolds numbers (1-100) and volume

fractions (0.1-0.5). PR–DNS data for the Nusselt number as a function of Reynolds number

Rem and volume fraction εs is compared with Gunn’s correlation (Gunn (1978)). The average

Nusselt number computed from PR–DNS data is close to Gunn’s correlation with an average

difference of 20%. A new PUReIBM Nusselt number correlation is proposed using PR–DNS

data with an average difference of 7% that captures the Reynolds number dependence more

accurately. This correlation is valid in a range of 0.5 ≤ εb ≤ 1.0 and 1 ≤ Re ≤ 100.

The average gas–solid heat transfer in the two–fluid model is computed based on the average

Nusselt number and the difference between average particle temperature and average fluid

temperature, which can result in 5% to 36% difference when compared with the average gas–

solid heat transfer obtained directly from PR–DNS data. These results indicate that rather

than the average fluid temperature, it is the bulk fluid temperature that is the correct choice

to compute average gas–solid heat transfer in gas–solid flow. Using a relation between the
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average bulk fluid temperature and average fluid temperature, an improved model for the

average gas–solid heat transfer is developed in terms of average scaled fluid temperature
〈
θ(f)

〉
,

average Nusselt number 〈Nu〉, volume fraction εs, and the difference between the average fluid

temperature
〈
T (f)

〉
and average solid temperature

〈
T (s)

〉
. This model can be directly used for

computing the average gas–solid heat transfer in two–fluid computations.
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CHAPTER 4. PSEUDO-TURBULENT HEAT FLUX AND AVERAGE

GAS-PHASE CONDUCTION DURING GAS-SOLID HEAT TRANSFER

This chapter is an article titled “Pseudo-turbulent heat flux and average gas-phase conduc-

tion during gas-solid heat transfer: flow past random fixed particle assemblies” that has been

published in Journal of Fluid Mechanics. This article is authored by B. Sun, S. Tenneti, S.

Subramaniam, D. L. Koch.

Fluctuations in the gas-phase velocity can contribute significantly to the total gas-phase

kinetic energy even in laminar gas-solid flows (Mehrabadi et al. (2015)), and these pseudo–

turbulent fluctuations can also enhance heat transfer in gas-solid flow. In this work, the pseudo–

turbulent heat flux arising from temperature-velocity covariance, and average fluid-phase con-

duction during convective heat transfer in a gas-solid flow are quantified and modeled over a

wide range of mean slip Reynolds number and solid volume fraction using Particle-resolved

Direct Numerical Simulations (PR-DNS) of steady flow through a random assembly of fixed

isothermal monodisperse spherical particles. A thermal self-similarity condition on the local

excess temperature is used to guarantee thermally fully-developed flow (Tenneti et al. (2013)).

The average gas-solid heat transfer rate for this flow has been reported elsewhere (Sun et al.

(2015)). Although the mean velocity field is homogeneous, the mean temperature field in this

thermally fully-developed flow is inhomogeneous in the streamwise coordinate. An exponential

decay model for the average bulk fluid temperature is proposed. The pseudo–turbulent heat

flux that is usually neglected in two-fluid models of the average fluid temperature equation is

computed using PR-DNS data. It is found that the transport term in the average fluid temper-

ature equation corresponding to the pseudo–turbulent heat flux is significant when compared

to the average gas-solid heat transfer over a significant range of solid volume fraction and mean

slip Reynolds number that was simulated. For this flow setup a gradient-diffusion model for
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the pseudo–turbulent heat flux is found to perform well. The Péclet number dependence of the

effective thermal diffusivity implied by this model is explained using a scaling analysis. Axial

conduction in the fluid phase, which is often neglected in existing one-dimensional models, is

also quantified. As expected, it is found to be important only for low Péclet number flows.

Using the exponential decay model for the average bulk fluid temperature, a model for average

axial conduction is developed that verifies standard assumptions in the literature. These mod-

els can be used in two-fluid simulations of heat transfer in fixed beds. A budget analysis of the

mean fluid temperature equation provides insight into the variation of the relative magnitude

of the various terms over the parameter space.

4.1 Introduction

An improved understanding of gas-solid heat transfer is crucial for design and scale-up of

process equipment in many industries, such as biomass fast pyrolysis (Brown (2011)), chemical

looping combustion (Shen et al. (2008)), and CO2 capture (Abanades et al. (2004); Yi et al.

(2007)). Instead of conducting expensive experiments, multiphase computational fluid dynam-

ics (CFD) (Syamlal et al. (1993); Kashiwa and Gaffney (2003); Sun et al. (2007)) are increas-

ingly being used for reactor scale-up from laboratory to pilot and full-scale plants, and also for

evaluation of different design options (Halvorsen et al. (2003)). Device-scale multiphase CFD

simulations are usually based on the Eulerian-Eulerian two-fluid model (Anderson and Jackson

(1967); Drew and Passman (1998)) in which averaged equations for conservation of mass, mo-

mentum, energy are given for each phase, with coupling terms representing the interphase

interactions. These equations contain unclosed terms that need to be modeled accurately, since

the predictive capability of multiphase CFD simulations depends on the accuracy of models for

interphase exchange of species, momentum, and heat.

In the absence of mass transfer between phases, the average fluid temperature equation
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from two-fluid theory (Syamlal et al. (1993); Garg (2009)) reads as follows:

∂

∂t

{
ρfεf cpf 〈T (f)〉

}

︸ ︷︷ ︸
+

∂

∂xj

{
ρfεfcpf 〈u(f)

j 〉〈T (f)〉
}

︸ ︷︷ ︸
=

〈
∂If

∂xj
qj

〉

︸ ︷︷ ︸

unsteady term mean flow convection (1) average gas–solid

heat transfer

− ∂

∂xj
〈Ifqj〉

︸ ︷︷ ︸
− ∂

∂xj

{
ρfcpf 〈Ifu

′′(f)
j T ′′(f)〉

}

︸ ︷︷ ︸

(2) average conduction (3) pseudo–turbulent

in the fluid phase heat flux term

, (4.1)

and it contains the following unclosed terms: 1) average gas-solid heat transfer, 2) average

conduction in the fluid phase, and transport term involving the pseudo–turbulent heat flux

ρfcpf 〈Ifu
′′(f)
j T ′′(f)〉 arising from temperature-velocity covariance. In Eq. 4.1, ρf and cpf are

the density and specific heat of the fluid phase, respectively, qj = −kf∂T/∂xj is the heat flux

vector and εf = 〈If 〉 is the volume fraction of the fluid phase, where If (x, t) is the fluid-phase

indicator function that is unity if the point x lies on the fluid-phase at time t, and zero otherwise.

If ψ(x, t) is any field (velocity or temperature), then its phasic average 〈ψ(f)〉(x, t) (average

fluid velocity 〈u(f)
j 〉 and average fluid temperature 〈T (f)〉) is its average value conditional on

being in the fluid phase, which is defined as:

〈
ψ(f)

〉
(x, t) =

〈If (x, t)ψ(x, t)〉
〈If (x, t)〉 . (4.2)

We use angle brackets to denote ensemble-averaging of random fields over all particle configura-

tions, and an overbar to indicate spatial averages (in this problem these spatial averages appear

either as a cross-sectional average of a random field that depends on the particle configuration,

or as a streamwise average of an inhomogeneous ensemble-averaged field). Using the phasic

average, the fluctuating components of the fluid velocity and temperature in Eq. 4.1 are de-

fined as u′′(f)
j = uj − 〈u(f)

j 〉 and T ′′(f) = T −
〈
T (f)

〉
, where these fluctuations depend on spatial

location and time, although for brevity this dependence is not explicitly shown. The average

fluid velocity is obtained by solving the averaged momentum and mass conservation equations.

In order to solve Eq. 4.1 for the average fluid temperature, closure models are needed for terms

(1)–(3). In a typical two-fluid simulation of gas-solid flow, this equation is coupled to a similar
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averaged temperature equation for the solid phase (Hrenya and Morris (2014)), but this work

only focuses on models for the unclosed terms in the average fluid temperature equation. In

a recent study (Sun et al. (2015)) the average gas-solid heat transfer term was quantified and

modeled. This study focuses on quantification and modeling of the pseudo–turbulent heat flux

that arises from the temperature-velocity covariance, and average conduction in the fluid phase.

The transport term (3) in the average fluid temperature equation (Eq. 4.1) arises from

correlation of gas-phase velocity and temperature fluctuations that result in a pseudo–turbulent

heat flux, and it is typically neglected in CFD simulations. These gas-phase velocity fluctuations

can arise from turbulence inherent in the gas-phase, or they can be generated by wakes resulting

from the interaction of particles with the mean slip velocity between the gas and solid phases.

The second mechanism can generate gas-phase velocity fluctuations even in laminar gas-solid

flow and these are termed pseudo-turbulent velocity fluctuations. They arise due to spatio-

temporal fluctuations in the fluid velocity, and in steady flows their primary contribution is

from the spatial variation of fluid velocity due to the presence of particles in a flow with a

nonzero mean slip velocity. The kinetic energy associated with these fluctuations is called

the pseudo-turbulent kinetic energy (PTKE). Tenneti (2013) and Mehrabadi et al. (2015) have

quantified PTKE in fixed particle assemblies and freely evolving suspensions, and have shown

that the level of PTKE is a significant fraction of the kinetic energy associated with the mean

slip velocity. Similarly, the temperature-velocity covariance results in a pseudo-turbulent heat

flux (PTHF), which needs to be quantified in non-isothermal gas-solid flow.

The study of pseudo–turbulent heat flux in fixed bed heat transfer is closely related to

the mass transfer problem of a solute dispersing in a porous medium or a bed of particles.

Together these may be termed the passive scalar transport problem provided the effects of free

convection can be neglected. There are several theoretical studies related to hydrodynamic

dispersion in a random fixed bed of particles (Koch and Brady (1985, 1987a,b)) or a periodic

porous medium (Brenner and Gaydos (1977); Brenner (1980); Edwards et al. (1991)) in Stokes

or low Reynolds number flow. Koch and Brady (1985) solved the convection-diffusion equation

for mass transfer in Stokes flow through fixed beds using an asymptotic analysis that is valid in

the dilute limit (low solid volume fraction). In their analysis, Koch and Brady (1985) assumed
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a linear concentration profile that varies slowly (on the length scale of the one–particle problem)

in the axial direction. Koch and Brady (1985) decompose the mean flux as the sum of a mean

convective term and an effective diffusive flux, which includes the covariance of concentration

and velocity (the analog of PTHF). They obtained the dependence of the effective diffusivity

Deff on the Péclet number (P = Ua/Df ), which characterizes the ratio of convective effects

to diffusive effects. Here U is the superficial fluid velocity, a is the particle diameter and

Df is the molecular diffusivity of the solute. At low Péclet number (P = Ua/Df < 1) they

obtained a P 2 dependence, whereas at high Péclet number they obtained terms proportional to

P and P ln(P ). The linear dependence is attributed to the mechanical dispersion mechanism

while the P ln(P ) dependency is attributed to a non–mechanical dispersion mechanism that

arises from the no–slip boundary condition (obtained from a boundary layer analysis). Koch’s

work provides early evidence that in fixed particle beds the presence of bulk convective motion

induces fluid velocity fluctuations (mechanical dispersion) because of the presence of particles,

and this is an important factor affecting macrotransport.

Hydrodynamic dispersion as described by Brenner and others treats the dispersion of

solute particles through periodic porous media (Brenner (1980); Lowe and Frenkel (1996);

Manz et al. (1999); Capuani et al. (2003); Mostaghimi et al. (2012)) or randomly placed par-

ticles (Maier et al. (2000, 2003)). Brenner (1980) showed that by considering the evolution

equation of the transition probability density P (R, t|R′, t = 0) for the spatial position of

solute molecules, one can formally arrive at the convection–diffusion equation governing the

instantaneous concentration c(R, t) (or solute number density) field, which is nothing but the

unnormalized probability density of solute molecule position P (R, t). It has been established

by several authors (Brenner (1980); Pope (1998)) that the mean squared displacement of solute

molecules, which Brenner showed can be obtained from moments of the transition probabil-

ity density of the solute particles, is related to the effective diffusivity. The moments of the

transition probability density lead to the B–field in periodic porous media.

Thermal dispersion in fixed beds or porous media defined by Kaviany (2012) and Whitaker

(1999) based on temperature-velocity covariance and a gradient-diffusion model were studied

experimentally (Yagi et al. (1960); Özgümüş et al. (2013)) and numerically (Kuwahara et al.
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(1996); Pedras and de Lemos (2008); Jeong and Choi (2011)). In the above experimental and

numerical works, local thermal equilibrium between solid and fluid phases is assumed to be valid

and solid surface temperature evolves with the fluid temperature in time. Several numerical

studies (Kuwahara et al. (1996); Pedras and de Lemos (2008); Jeong and Choi (2011)) that

simulated flow past a 2D or 3D ordered array of objects with interphase heat transfer in a

periodic media at high Péclet number found a Pen scaling of the thermal dispersion, which n was

close to 2. Different from the studies on thermal dispersion, Acrivos et al. (1980) theoretically

analyzed Stokes flow past a fixed bed of spheres with interphase heat transfer and studied the

case of arbitrary conductivities in the fluid and solid phases without assuming local thermal

equilibrium. They considered interphase heat transfer at low Reynolds number and low Péclet

number and found that it is important to account for the effect of heat transfer on the mean

temperature field. Assuming a locally linear mean temperature field they only focused on the

analysis of mean temperature conditional on particle location for Péclet number number far

less than unity.

The present study considers a similar scalar transport problem as Koch and Brady (1985),

but for heat transfer in flow through a random arrangement of isothermal particles over a

wide range of Reynolds number and solid volume fraction. The assumption of isothermal

particles with nonzero interphase transfer precludes a direct comparison with the findings

of Koch and Brady (1985), even if the scaling of effective diffusivity with Péclet number were

to hold outside the Stokes flow regime. The problem in our study is formulated in an Eule-

rian frame and the pseudo–turbulent heat flux is directly obtained by statistically averaging

the product of the instantaneous Eulerian velocity and concentration/temperature fields. Our

formulation accounts for the finite size of particles and resolves the fluid–particle interface,

without resorting to drag models as in White and Nepf (2003). Essentially we generate the

microtransport fields in the presence of interphase transfer, which when averaged manifest as

macrotransport. We also do not assume the spatial variation of the mean fluid temperature

field. In fact, we show that the need to account for fluid heating (Acrivos et al. (1980)) auto-

matically results in a mean fluid temperature variation that is naturally obtained as part of the

solution by assuming a thermally fully-developed flow. This fluid heating resulting from the
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interphase heat transfer is also absent in the studies of Brenner and others who assumed a linear

concentration gradient with zero interphase mass transfer (Brenner (1980); Lowe and Frenkel

(1996); Manz et al. (1999); Maier et al. (2000, 2003); Capuani et al. (2003); Mostaghimi et al.

(2012)). The effect of the interphase transfer on transport can be quantified by the product

of Damkohler number and Péclet number (Bekri et al. (1995)) which is the Nusselt number in

our setup.

The term corresponding to average conduction in the fluid phase in the average fluid tem-

perature equation is often neglected, or modeled using one-dimensional models. These one-

dimensional models for axial conduction are in fact used to interpret experimental data (Littman et al.

(1968); Gunn and Desouza (1974); Wakao et al. (1979); Wakao and Kaguei (1982)). In these

one-dimensional models (Littman et al. (1968); Gunn and Desouza (1974); Wakao et al. (1979);

Wakao and Kaguei (1982)), axial conduction in the fluid phase (average conduction is denoted

axial conduction in the one-dimensional context) is calculated in terms of the second derivative

of the average fluid temperature, and the axial (fluid) thermal dispersion coefficient which is

obtained from experimental measurements. Although it is to be expected that relative mag-

nitude of average conduction in the fluid phase compared to interphase gas-solid heat transfer

will decrease with increasing Péclet number (PeD = RemPr =| 〈W〉 | D/αf ,where the Reynolds

number is based on the mean slip velocity between the phases and particle diameter D, with

αf being the thermal diffusivity in the fluid phase), there is lack of quantitative data on av-

erage conduction in the fluid phase in flow through fixed or fluidized beds, and its variation

with Reynolds number and volume fraction. Owing to this lack of quantitative data, the

one-dimensional model for axial conduction has also not been verified.

Although theoretical analyses and experimental measurements have been used to study

dispersion in fixed beds, it is difficult to develop models for the unclosed terms corresponding

to the PTHF and average fluid–phase conduction that are valid over a wide range of solid

volume fraction and mean slip Reynolds number using these approaches. At finite Reynolds

number, the nonlinearity of the governing equations and the randomness in particle positions

and velocities pose significant obstacles to theoretical analysis. Experimental measurement of

gas-solid heat or mass transfer is also challenging because of limited optical access. Various ex-
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perimental techniques such as frequency response or a pulse input that are reviewed by Delgado

(2006) have been used to measure longitudinal (axial) dispersion in porous media for gas-solid

flow. Early experimental measurements of gas–solid heat transfer (Kunii and Smith (1961);

Handley and Heggs (1968); Littman et al. (1968); Gunn and Desouza (1974); Shen et al. (1981);

Wakao et al. (1977)) used point-wise temperature measurements using simplified one-dimensional

models of heat transfer that are based on assumptions such as the neglect of axial conduction

in the fluid phase. Therefore, such measurements cannot be used to quantify the average

axial conduction. Measurement of the temperature-velocity covariance requires simultaneous

field measurements of velocity and temperature in a gas-solid flow. While such planar measure-

ments are possible using laser-based techniques such as simultaneous particle image velocimetry

(PIV) (Adrian (1991, 2005)) and planar laser-induced fluorescence (PLIF) (Van Cruyningen et al.

(1990); Crimaldi (2008)), these are difficult to deploy in dense gas-solid flow.

In order to overcome these difficulties in theoretical analysis and experimental measure-

ments of gas-solid heat transfer, we use a particle-resolved direct numerical simulation (PR-

DNS) approach to quantify unclosed terms and develop models for them. The PR-DNS

methodology can be used to accurately quantify the unclosed terms in Eq. 4.1, since these

unclosed terms can be directly calculated from the instantaneous three-dimensional velocity

and temperature fields. In recent years, the average interphase momentum transfer in gas-solid

flow has been quantified by simulating steady flow past statistically homogeneous fixed as-

semblies of spherical particles (Hill et al. (2001a,b); Van der Hoef et al. (2005); Beetstra et al.

(2007a); Yin and Sundaresan (2009); Tenneti et al. (2011)) using PR-DNS. More recently, heat

transfer in gas-solid flow (Yu et al. (2006); Feng and Michaelides (2009); Deen et al. (2012);

Tavassoli et al. (2013); Haeri and Shrimpton (2013); Deen and Kuipers (2014)) has also been

reported using PR-DNS approaches. However, these studies did not quantify all the unclosed

terms in the average fluid temperature equation (Eq. 4.1).

In order to quantify and model unclosed terms in the two-fluid model, Tenneti et al. (2013)

have developed three-dimensional PR-DNS of thermally fully-developed flow in periodic do-

mains using a thermal self-similarity condition that accounts for fluid heating by the particles.

The role of fluid heating by particles and the Nusselt number for gas-solid heat transfer were
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reported for a limited range of Reynolds number Rem and volume fraction εs. Sun et al. (2015)

used the same PR-DNS of thermally fully-developed flow past fixed particle of assemblies to

develop an improved model for the average gas-solid heat transfer rate (see the term (1) in

Eq. 4.1). In that work, a new Nusselt number correlation corresponding to average gas-solid

heat transfer was proposed over a range of Reynolds number 1 ≤ Rem ≤ 100 and volume frac-

tion 0.1 ≤ εs ≤ 0.5. Following the same methodology of Tenneti et al. (2013) and Sun et al.

(2015), we consider gas-solid heat transfer in steady flow past a homogeneous fixed assembly

of monodisperse spherical particles to quantify and model the pseudo–turbulent heat flux and

average conduction in the fluid phase in Eq. 4.1.

The rest of the paper is organized as follows. In Section 4.2, we describe the heat transfer

problem in a fixed particle assembly and discuss the assumptions used to simplify this prob-

lem. In Section 4.3, the PR-DNS approach that is used to solve this heat transfer problem is

briefly described. In Section 4.4, we quantify and model the axial variation of the mean fluid

temperature using PR-DNS data. In Section 4.5, the PTHF arising from temperature-velocity

covariance is quantified and a model for the PTHF is proposed. In Section 4.6, we quantify

the average fluid-phase conduction term from PR-DNS data and verify its model. We also

perform a budget analysis of the average fluid temperature equation (Eq. 4.1) and discuss the

relative magnitude of terms at steady state as a function of solid volume fraction and mean slip

Reynolds number in Section 4.7. Finally, the principal findings of this work are summarized in

Section 4.8.

4.2 Problem description

A canonical problem that is useful for understanding the physical mechanisms in heat trans-

fer as well as for developing models for the unclosed terms is steady flow past a homogeneous

assembly of monodisperse spherical particles. As Fig. 4.1 shows, in this gas-solid heat transfer

setup the fluid is heated up or cooled down by the difference between the solid- and gas-phase

temperature. The directional nature of the flow (the mean fluid velocity is anisotropic) implies

that although the hydrodynamic problem is homogeneous, the average fluid temperature can-

not be assumed to be uniform. Due to this heating or cooling of fluid by particles, the thermal
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problem becomes statistically inhomogeneous in the streamwise direction. This feature of heat

transfer in gas-solid flows is well established (Acrivos et al. (1980)).
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Figure 4.1: Contours of the steady (a) axial velocity and (b) temperature field in flow past a
fixed particle assembly. The corresponding (c) average axial fluid velocity (see Eq. 4.2) and (d)
average non-dimensional fluid temperature along the axial location x‖ (see Eqs. 4.2 and 4.7) are
shown in the bottom panel. In this figure 〈W〉 is the mean slip velocity between the solid and

fluid phase, Tf is the fluid temperature,
〈
u

(f)
‖

〉
is the average axial fluid velocity,

〈
T (f)

〉
is the

average fluid temperature in the axial location,
〈
T (s)

〉
is the average solid temperature, and

Tm,in is the inlet bulk fluid temperature. At particle surfaces the no-slip and no-penetration
boundary conditions are imposed on the fluid velocity, and the isothermal boundary condition is
imposed on the fluid temperature. Periodic boundary conditions are imposed on the fluctuating
velocity and pressure fields at domain boundaries, and the self-similarity boundary condition
is used for the fluid temperature (see Eq. 4.13).

The inhomogeneity of the fluid temperature in a fixed particle assembly has implications

for the quantification of unclosed terms in the average fluid temperature equation (Eq. 4.1).

Specifically, if statistics calculated at the gas-solid interface, such as the average gas-solid heat

transfer, vary along the streamwise coordinate, then these need to be extracted from spatially
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varying surface statistics. Xu and Subramaniam (2010) noted that spatially varying surface

statistics converge slowly even with a large number of realizations, where each realization cor-

responds to a different particle configuration with the same solid volume fraction and pair cor-

relation function. However, Tenneti et al. (2013) and Sun et al. (2015) showed that if the flow

is thermally fully-developed, then the Nusselt number is statistically homogeneous even though

the average fluid temperature and average gas-solid heat transfer varies in the streamwise di-

rection. A statistically homogeneous Nusselt number can be computed by volume averaging

that yields fast convergence with even a few realizations. For this reason, Tenneti et al. (2013)

developed a thermal self-similarity condition for gas-solid heat transfer in steady flow past a

statistically homogeneous fixed assembly of particles that results in a thermally fully-developed

flow. The same boundary condition has also been used by Tyagi and Acharya (2005) for sim-

ulating heat transfer in duct flow. We briefly summarize Tenneti et al. (2013) formulation of

thermally fully-developed gas-solid flow here.

The following assumptions are used to simplify this heat transfer problem. Particles are

assumed to be isothermal with a single spatially uniform temperature for all particles that is

constant in time. Radiation and free convection effects are neglected. A detailed justification

for these assumptions can be found in Tenneti et al. (2013). Under these conditions, the fluid

temperature field T (x, t) obeys the following convection-diffusion equation:

∂T

∂t
+
∂ (ujT )

∂xj
= αf

∂2T

∂xj∂xj
, (4.3)

where αf = kf/ρf cP f is the thermal diffusivity in the fluid phase, and kf is the thermal

conductivity in the fluid phase. Note that the above gas properties are assumed to be constant

for this heat transfer problem. This equation needs to be solved in conjunction with the

Dirichlet boundary condition T = Ts at the surface of the particles, where Ts is the uniform

temperature for all the particles. If the flow is thermally fully-developed (as in internal pipe

flow, see Incropera et al. (2006) for example), then the locally scaled excess fluid temperature

field θ, defined as:

θ(x, t) =
T (x, t) − Ts

〈Tm〉 (x||, t) − Ts
, (4.4)

does not vary in the streamwise or axial direction x|| at steady state (Tenneti et al. (2013)),
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i.e.,

∂θ

∂x||
=

∂

∂x||

(
T (x) − Ts

〈Tm〉 (x||) − Ts

)
= 0. (4.5)

This thermal self-similarity condition also ensures that the θ field is statistically homogeneous

at steady state. For simplicity θ is later referred to as simply the scaled fluid temperature.

In the above definition, 〈Tm〉 (x||, t) is the ensemble-averaged bulk fluid temperature, which is

defined as the average of the bulk fluid temperature on each realization ω (corresponding to a

particle configuration, which occurs with probability dPω), such that

〈Tm〉 (x||, t) =

ˆ

ω∈Ω
Tm(x||, t;ω) dPω , (4.6)

where the bulk fluid temperature on each realization is

Tm(x||, t;ω) =

´

Af
(uT ) · e‖dA
´

Af
u · e‖dA

, (4.7)

where e‖ is the unit vector along the streamwise direction and Af is the area occupied by

the fluid in a plane perpendicular to the streamwise direction. In general for any function

Q(x||, t;ω) that is defined for a realization ω, we define the ensemble-average as

〈Q〉 (x||, t) =

ˆ

ω∈Ω
Q(x||, t;ω) dPω . (4.8)

The thermally fully-developed condition implies that at steady state the local wall heat flux

scaled by the temperature difference
(
〈Tm〉 (x||) − Ts

)
is a constant. The advantage of estab-

lishing a thermally fully-developed flow is that there are no entrance length effects. Note that

the entrance length region can contribute very high Nusselt number values that can contaminate

the true Nusselt number in a gas-solid flow. Thermally fully-developed flow is accomplished

by implementing the thermal self-similarity condition (cf. Eq. 4.5), which requires periodic

boundary conditions on the scaled fluid temperature (Tenneti et al. (2013)).

For reasons detailed in Tenneti et al. (2013), it is easier to transform the periodic boundary

conditions on θ to obtain similarity conditions on the temperature field T (x, t) and solve Eq. 4.3

for T (x, t). Simplification of the thermal similarity conditions and homogenization of the

boundary conditions on the particle surfaces is accomplished by defining a non-dimensional

excess temperature field (for simplicity this quantity is referred to as the non-dimensional
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temperature) φ(x, t) as follows:

φ(x, t) =
T (x, t) − Ts

〈Tm,in〉 − Ts
, (4.9)

where 〈Tm,in〉 is the average inlet bulk fluid temperature that is defined by Eq. 4.6 in terms of

the inlet bulk fluid temperature Tm,in, which is given by Eq. 4.7 evaluated at x|| = 0. Using

this definition of the non-dimensional temperature, the non-dimensional bulk fluid temperature

φm(x||, t;ω) on a realization ω is defined as,

φm(x||, t;ω) =
Tm(x||, t;ω) − Ts

〈Tm,in〉 − Ts
, (4.10)

and the average non-dimensional bulk fluid temperature 〈φm〉 has a similar definition:

〈φm〉(x||, t) =
〈Tm〉(x||, t) − Ts

〈Tm,in〉 − Ts
. (4.11)

We solve the governing equation for the non-dimensional temperature derived by substituting

Eq. 4.9 in Eq. 4.3 as:

∂φ

∂t
+
∂(ujφ)

∂xj
= αf

∂2φ

∂x2
j

. (4.12)

In this non-dimensional temperature equation, the isothermal boundary conditions on the par-

ticle surface reduce to φ = 0. The periodic boundary conditions on φ appear in a very simple

form:

φ(0, y, z) = rhφ(L, y, z),

φ(x‖, 0, z) = φ(x‖, L, z),

φ(x‖, y, 0) = φ(x‖, y, L), (4.13)

where rh is the heat ratio, which is defined as:

rh =
〈Tm,in〉 − Ts

〈Tm,out〉 − Ts
. (4.14)

In the definition of the heat ratio, 〈Tm,out〉 is the average bulk fluid temperature at x‖ = L, and

L is the length of the box. The heat ratio quantifies by how much a fluid particle heats up when

it leaves the box and so this quantity depends solely on the flow structure and the interphase

heat transfer in the domain. Note that the heat ratio, or the amount by which the fluid gets

heated up (or cooled down) when it reaches the end of the box, is an unknown quantity and is

obtained as a part of the solution.
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4.3 Numerical method

The gas-solid heat transfer problem described in Section 4.2 can be solved using our PR-

DNS approach, which is called the Particle-resolved Uncontaminated-fluid Reconcilable Im-

mersed Boundary Method (PUReIBM) (Garg et al. (2010b); Tenneti et al. (2011); Tenneti

(2013); Tenneti and Subramaniam (2014)). The gas–phase velocity and pressure fields in

the gas-solid heat transfer problem are solved using the following conservation equations for

mass and momentum:

∂ui

∂xi
= 0, (4.15)

∂ui

∂t
+
∂ (uiuj)

∂xj
= − 1

ρf
gi + νf

∂2ui

∂xj∂xj
+ Isfu,i, (4.16)

where νf is the fluid-phase kinetic viscosity, gi represents the pressure gradient, and fu,i is the

additional immersed boundary (IB) direct forcing term. Complete details of the PUReIBM hy-

drodynamic solver are discussed by Garg et al. (2010b) and Tenneti et al. (Tenneti et al. (2011);

Tenneti (2013); Tenneti et al. (2010)), while the scalar solver is discussed in Tenneti et al.

(2013). Here we briefly review the numerical approach to solve the gas-solid heat transfer

problem for steady flow past a fixed assembly of isothermal spherical particles.

It is worth noting that the equations in Section 4.2 are formulated in terms of the ensemble-

averaged bulk fluid temperature (see Eqs. 4.9 and 4.14). The solution to these equations can

be accomplished by simultaneously solving Eq. 4.12 in parallel for several different particle con-

figurations subject to the boundary condition in Eq. 4.13 on a parallel computer. In this setup

each particle configuration and corresponding fluid temperature field is stored on a node, and

the ensemble-averaged bulk fluid temperature is communicated to all nodes at the end of each

time step. However, it turns out that the statistical variability of the bulk fluid temperature and

heating ratio in different particle configurations is small, provided the computational domains

are sufficiently large. Therefore, the ensemble-averaged bulk fluid temperature is replaced by

the bulk fluid temperature in that realization in our approach. In this case the scaled fluid

temperature for each realization is rewritten as

θ(x, t;ω) =
T (x, t;ω) − Ts

Tm(x||, t;ω) − Ts
, (4.17)
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and the non-dimensional temperature is rewritten as

φ(x, t;ω) =
T (x, t;ω) − Ts

Tm,in(ω) − Ts
. (4.18)

This effectively decouples the temperature solution in different particle configurations and

allows the solution in each realization to proceed independently. Ensemble-averaged quantities

(see Eq. 4.8) are computed from the individual steady temperature fields corresponding to each

realization, as described in Sections 4.5 and 4.6. The small statistical variability in the bulk fluid

temperature from one realization to another justifies this decoupling approach (Tenneti et al.

(2013)).

In PUReIBM the following non-dimensional fluid temperature equation is solved at all grid

nodes

ρfcpf

[
∂φ

∂t
+
∂(ujφ)

∂xj

]
= −

∂qφ
j

∂xj
+ Isfφ, (4.19)

where qφ
j = −kf∂φ/∂xj is the heat flux per unit temperature difference, Is is the solid-phase

indicator function, and fφ is the scalar Immersed Boundary (IB) direct forcing in the solid

phase (Tenneti et al. (2013)). The scalar IB forcing fφ is computed only at grid points located

inside the solid particles. This ensures that the fluid temperature field is not contaminated

by the scalar IB forcing fφ. The scalar IB forcing at the (n + 1)th time-step fn+1
φ is speci-

fied to cancel the remaining terms in the governing equation and forces the non-dimensional

temperature φn to its desired value φd at the particle surface:

fn+1
φ = ρfcpf

φd − φn

∆t
+ ρfcpfC

n
φ +


∂q

φ
j

∂xj




n

. (4.20)

In the above equation Cn
φ = [∂(ujφ)/∂xj ]n is the convective term at the nth time-step. De-

tails of the numerical method and validation tests for the hydrodynamic solution (Garg et al.

(2010b); Tenneti et al. (2011); Tenneti (2013)) as well as the temperature calculation (Tenneti et al.

(2013); Tenneti (2013); Sun et al. (2015)) appear elsewhere.

Using the PUReIBM approach we have performed PR-DNS simulations over a wide range of

mean slip Reynolds number Rem = 1-100 and solid volume fraction εs = 0.1-0.5 in homogeneous

fixed particle assemblies with Prandtl number of 0.7, as summarized in table 4.1. In order to

access a range of Péclet number (PeD = RemPr =| 〈W〉 | D/αf , where αf being the thermal



92

Table 4.1: Parameters for simulation of heat transfer in steady flow past random fixed as-
semblies of particles. The physical parameters are the solid volume fraction εs and the mean
slip Reynolds number Rem. The numerical parameters are the ratio of the box length to the
particle diameter L/D and the grid resolution Dm = D/∆x. The number of particles Np is
determined by εs and L. Five independent simulations of each case are simulated to reduce
statistical variability.

εs Rem L/D Np Dm

0.1 1, 5, 10, 20, 30, 40, 50, 100 7.5 80 20
0.2 1, 5, 10, 20, 30, 40, 50, 100 7.5 161 20
0.3 1, 5, 10, 20, 30, 40, 50, 100 5 71 30
0.4 1, 5, 10, 20, 30, 40, 50, 100 5 95 30
0.5 1, 5, 10, 20, 30, 40, 50, 100 4 61 40

diffusivity in the fluid phase) and thereby deduce scaling behavior, a few simulations are also

presented for Prandtl numbers of 0.01, 0.1, 0.7 and 1 at Rem = 1 and 100 and εs = 0.1. The

convergence of relevant heat transfer characteristics such as the Nusselt number with numerical

parameters has been established previously (Sun et al. (2015)). The choice of grid resolution

and the number of realizations for these simulations is based on those findings. PR-DNS data

from these simulations are now analyzed to quantify and model the PTHF and average fluid-

phase conduction.

4.4 Inhomogeneity of fluid temperature in a fixed particle assembly

A key feature of this gas-solid flow is the variation of mean fluid temperature in the stream-

wise direction which arises from fluid heating or cooling by the particles. Note that this mean

field variation is often assumed in analytical treatments. Here we have obtained it as part of

the solution by imposing the thermally fully developed condition at the inlet and outlet domain

boundaries. Since it plays an important role in both the PTHF transport term and average

fluid-phase conduction, we first quantify and characterize its behavior.

In Section 4.2 we noted that this gas-solid heat transfer problem for steady flow through

a fixed homogeneous assembly of particles is analogous in an average sense to internal forced

convection in a pipe. For the case of constant pipe wall temperature, the bulk fluid temperature
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in thermally fully-developed internal pipe flow (Incropera et al. (2006)) can be expressed as

dTm(x||)

dx||
=
d(Tm(x||) − Ts)

dx||
= − Ph

ṁcpf
(Tm(x||) − Ts), (4.21)

where h is the local heat transfer coefficient that is independent of x|| in thermally fully-

developed flow, ṁ is the mass flow rate, and P is the perimeter of the pipe cross section.

Integrating Eq. 4.21, the following expression for the non-dimensional bulk fluid temperature

φm = (Tm(x||)−Ts)/(Tm,in −Ts) can be obtained in terms of the Nusselt number Nu = hD/kf :

φm(x||) = exp

(
−PNukf

ṁcpfD
x||

)
. (4.22)

For our case of a statistically homogeneous fixed random assembly of particles, the analogous

expression for the axial variation of φm(x‖;ω) at steady state for one realization is

dφm(x‖;ω)

dx‖
= −

P (x||;ω)Nu(x||;ω)kf

ṁcpfD
φm(x‖;ω), (4.23)

where the steady flow rate through the homogeneous fixed assembly of particles is ṁ =

Aρf | 〈W〉 |εf and P (x||;ω) is the perimeter of spheres intersecting the plane at x|| on real-

ization ω (see Fig. D.1 in Appendix D). Taking the ensemble-average of Eq. 4.23 results in

d 〈φm〉 (x‖)

dx‖
= −

〈
P (x‖)Nu(x‖)φm(x‖)

〉
kf

ṁcpfD
= −

〈
P (x‖)

〉 〈
Nu(x‖)

〉 〈
φm(x‖)

〉
kf

ṁcpfD
. (4.24)

Note that in general the average of a product of random variables is not equal to the product

of the averages. Here we are not assuming that the variables φm(x‖), Nu(x‖) and P (x‖) are

uncorrelated, but that any dependence of φm(x‖) and Nu(x‖) on P (x‖) is captured in the

definition of the average heat transfer coefficient (see Eq. D.2 in Appendix D and following

discussion). Thus, the expression for the average non-dimensional bulk fluid temperature is

written as

〈φm〉 (x||) = exp


−

〈
P (x||)

〉 〈
Nu(x||)

〉
kf

ṁcpfD
x||


 . (4.25)

For the average bulk fluid temperature in thermally fully-developed gas-solid flow represented

by Eq. 4.25, we replace Nu(x||) with the average Nusselt number 〈Nu〉 (see Eqs. B.15 and B.17)

and P (x||) with the average perimeter 〈P 〉, (see Appendix D) , to obtain

〈φm〉 (x||) = exp
(

−6πεs

4

〈Nu〉
RemPr

x||

D

)
= exp

(
−λ

x||

D

)
, (4.26)
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where the mean slip Reynolds number Rem = | 〈W〉 |D(1 − εs)/νf , the Prandtl number Pr =

νf/αf = (µf/ρf )/(kf/ρf cpf ), and the ratio 〈P 〉/A = 6πεs/(4D) (cf. Eq. D.5) have been

substituted. The non-dimensional coefficient λ given by

λ =
6πεs 〈Nu〉
4RemPr

, (4.27)

determines the rate of decay of the bulk temperature with axial distance. The PR-DNS data

for 〈φm〉 as a function of axial distance shown in Fig. 4.2(a) indicate an exponential decay.

We find that the following exponentially decaying model

(a) (b)

Figure 4.2: Axial variation of average non-dimensional bulk fluid temperature and average
non-dimensional fluid temperature from PR-DNS: (a) Comparison of the exponential decay
model (lines) for the average non-dimensional bulk fluid temperature (see Eq. 4.28) with PR-
DNS data (open symbols). (b) Cross-sectionally average of non-dimensional fluid temperature
(see Eq. 4.34) from PR-DNS data for εs = 0.1 and 0.4 at two different Reynolds numbers (open
symbols). Error bars in both panels represent 95% confidence intervals inferred from 5 MIS.

〈φm〉 (x||) = e−λmx||/D, (4.28)

with the non-dimensional decay coefficient λm given by

λm =
6πεs 〈Nu〉

4(Rem + 1.4)Pr
, (4.29)

fits the PR-DNS data for axial variation of non-dimensional bulk fluid temperature shown in

Fig. 4.2(a). This model for 〈φm〉 is similar to Eq. 4.27 with a minor difference arising from fitting

the data. The average Nusselt number 〈Nu〉 in λm is taken from PR-DNS data corresponding
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to the Rem, Pr and εs values for each case. Figure 4.2(a) compares this exponential decay

model for the average non-dimensional bulk fluid temperature with PR-DNS data for two

different volume fractions. The average error is 2.4% at εs = 0.1 and 3.8% at εs = 0.4 for a

Reynolds number of Rem = 100. While in analytical treatments (Acrivos et al. (1980)) this

variation is assumed to be linear, an important finding from our study is that the imposition of

thermal self–similarity conditions at the inlet and outlet boundaries results in a thermally fully

developed flow with an exponential decay of the mean fluid temperature. As we show later,

this has important implications for the pseudo–turbulent (effective) thermal diffusivity that is

inferred from the data.

There is a useful relation that shows that the non-dimensional fluid temperature (Eq. 4.9)

is simply the product of the scaled fluid temperature (Eq. 4.4) and the average non-dimensional

bulk fluid temperature (Eq. 4.11):

φ(x, t) =

(
T (x, t) − Ts

〈Tm〉(x||, t) − Ts

)(
〈Tm〉(x||, t) − Ts

〈Tm,in〉 − Ts

)
= θ(x, t)〈φm〉(x||, t). (4.30)

Multiplying the above equation by the fluid indicator function If , taking the expectation (see

Eq. 4.8), and using the definition in Eq. 4.2 leads to the corresponding relation between the

phase-averaged counterparts:

〈φ(f)〉(x, t) = 〈θ(f)〉(x, t)〈φm〉(x||, t), (4.31)

Also noting that the θ field is statistically homogeneous at steady state reveals that the inho-

mogeneity in the steady average fluid temperature field arises solely from the inhomogeneity in

the bulk fluid temperature:

〈φ(f)〉(x||) = 〈θ(f)〉〈φm(x||)〉. (4.32)

The above relation implies 〈φ(f)〉 ∼ exp
(
−λx||/D

)
since the average scaled fluid temperature

〈
θ(f)

〉
is statistically homogeneous and does not depend on the axial location (it is only a

function of Reynolds number and solid volume fraction).

Figure 4.2(b) shows the average non-dimensional fluid temperature 〈φ(f)〉 that is computed

by ensemble-averaging the cross-sectional average of the non-dimensional fluid temperature
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{
φ(f)

}
cs

, given by
{
φ(f)

}
cs

(x||;ω) =
1

Af

ˆ

Af

φ(x;ω)dA, (4.33)

to obtain

〈φ(f)〉(x||) ≈ 1

M

M∑

ω=1

{
φ(f)

}
cs

(x||;ω). (4.34)

The average non-dimensional bulk fluid temperature from PR-DNS data is denoted by symbols

in Fig. 4.2(a), and it decays exponentially due to fluid cooling in the streamwise direction. The

effect of fluid cooling (or heating) by particles is significant at high solid volume fraction and low

Reynolds number, and it occurs over progressively shorter length scales as solid volume fraction

increases and Reynolds number decreases. The variation of
〈
φ(f)

〉
in Fig. 4.2(b) indicates that

the average non-dimensional fluid temperature can be inhomogeneous on the scale of a few

particle diameters. With this understanding and exponential decay model for the average

bulk temperature and average fluid temperature in hand, we now turn to quantification and

modeling of the PTHF and average conduction in the fluid phase.

4.5 Pseudo-turbulent heat flux

In TF CFD simulations the PTHF term is typically neglected. Since Tenneti (2013)

and Mehrabadi et al. (2015) have reported that PTKE is an significant fraction of the ki-

netic energy associated with the mean slip velocity in fixed particle assemblies, this suggests

that the PTHF could also be significant in the gas-solid heat transfer problem. The finding in

the previous section that the average fluid temperature decays exponentially in the streamwise

direction has several important implications for the PTHF term. In single-phase flows it is

well known that scalar fluctuations cannot be sustained in the absence of mean temperature

gradients. However, if a linear mean temperature gradient is imposed, then the resulting fluctu-

ating temperature field is homogeneous (Sirivat and Warhaft (1983); Subramaniam and Pope

(1998)). Sirivat and Warhaft (1983) performed a fundamental scalar mixing experiment by im-

posing a linear cross-stream temperature gradient and studying the correlation between tem-

perature and velocity fluctuations. The gas-solid heat transfer problem that we describe in
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this paper is interesting because it offers a similar setup wherein temperature fluctuations are

sustained due to an exponentially decaying streamwise mean temperature gradient.

Another interesting feature of this flow relates to the transport term involving the PTHF.

Note that in statistically homogeneous flow this transport term is zero. Indeed in the case of the

statistically homogeneous hydrodynamic problem where the mean fluid velocity is homogeneous

there is no fluid–phase Reynolds stress transport term (Mehrabadi et al. (2015)). Therefore,

although the magnitude of the Reynolds stress in that case was reported by Mehrabadi et al.

(2015) as the PTKE, its transport could not be quantified or modeled. On the other hand, the

inhomogeneous mean temperature field in this corresponding gas-solid heat transfer problem

gives us the opportunity to quantify and model the transport term involving the PTHF.

We now deduce an important property of the PTHF in our problem setup. We show that

for this flow setup the inhomogeneity in the temperature-velocity covariance arises solely from

inhomogeneity in the non-dimensional bulk temperature. This observation is later used to pro-

pose a gradient-diffusion model for the pseudo-turbulent heat flux. Substituting the definition

of the non-dimensional fluid temperature fluctuation φ′′(f) (x) = φ (x) − 〈φ(f)〉
(
x‖

)
into the

expression for the ensemble-averaged PTHF
〈
Ifu

′′(f)
i φ′′(f)

〉 (
x‖

)
, noting that the average of

the fluctuating fluid velocity
〈
Ifu

′′(f)
i

〉
is zero due to statistical homogeneity of the velocity

field, and using the relation φ = 〈φm〉 θ between the non-dimensional bulk fluid temperature

φm and the scaled fluid temperature θ (see Eq. 4.30), results in the following simplification of

the ensemble-averaged PTHF:

〈
Ifu

′′(f)
i φ′′(f)

〉 (
x‖

)
=
〈
Ifu

′′(f)
i θ

〉
〈φm〉

(
x||

)
. (4.35)

Note that although
〈
Ifu

′′(f)
i φ′′(f)

〉
is inhomogeneous in x‖, the covariance of velocity and

scaled temperature
〈
Ifu

′′(f)
i θ

〉
is expected to be statistically homogeneous, since both the fluid

velocity field ui and the scaled fluid temperature field θ are statistically homogeneous. Inter-

estingly, in this particular thermally fully-developed steady gas-solid heat transfer problem,

the inhomogeneity in the temperature-velocity covariance arises solely from inhomogeneity of

the non-dimensional bulk temperature. It should be noted that in general the initial condition

of the fluctuating temperature field will not permit this simplification. Nevertheless, this sim-
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plification provides a strong justification for the gradient-diffusion model that we later use to

model the PTHF.

The results reported in this study correspond to the simulation of the unsteady temperature

equation (see Eq. 4.19) with a steady velocity field that is a converged hydrodynamic solution

to flow past the particle configuration. This solution approach is valid because temperature is

a passive scalar in the regime of gas-solid heat transfer considered in this study. We have also

simulated a case with fully coupled instantaneous velocity and temperature fields to account for

any unsteady effects as shown in Fig. 4.3. We do not find significant differences in the PTHF

between the steady results of the fully coupled simulation and that obtained from coupling with

the steady velocity field. This is because the primary contribution to the PTHF arises from

spatial fluctuations of velocity and temperature that are adequately captured by our averaging

procedure. Here we provide the first report of PTHF data in gas-solid flow from PR-DNS.

Figure 4.3: Variation of
〈
Ifu

′′(f)
‖ θ

〉
with non-dimensional time for the case with mean slip

Reynolds number of 100 and solid volume fraction of 0.1. The solid line represents the evolution
of
〈
Ifu

′′(f)
‖ θ

〉
for a computation where the scalar solver is coupled to the instantaneous velocity

field. The open circle represents the value of
〈
Ifu

′′(f)
‖ θ

〉
obtained with the scalar solver using

a frozen velocity field, and the error bars are obtained from 5 realizations.

4.5.1 Computation of PTHF

First we describe the computation of the PTHF from our PR-DNS setup, and then the

computation of the corresponding transport term. In our thermal fully-developed gas-solid flow,

the fluid velocity is statistically homogeneous whereas the fluid temperature is inhomogeneous
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along the axial location x‖. Therefore, any average involving fluid temperature has to be

computed over a cross-sectional plane at a given axial location. Here the PTHF is computed

from PR-DNS data using cross-sectional averages over M realizations as

〈
Ifu

′′(f)
i φ′′(f)

〉 (
x‖

)
≈ 1

M

M∑

ω=1

{
1

A

ˆ

A
Ifu

′′(f)
i φ′′(f) (x;ω) dA

}
, (4.36)

where the fluid velocity fluctuation for each realization is defined as

u
′′(f)
i (x;ω) = ui (x;ω) −

{
u

(f)
i

}
V

(ω) , (4.37)

and where
{
u

(f)
i

}
V

is the volumetric mean fluid velocity that is computed as

{
u

(f)
i

}
V

(ω) =

1

V

ˆ

V
If (x;ω) ui (x;ω) dV

1

V

ˆ

V
If (x;ω) dV

=
1

Vf

ˆ

V
IfuidV . (4.38)

The non-dimensional temperature fluctuation φ′′ (x;ω) for each realization is defined as

φ′′ (x;ω) = φ (x;ω) −
{
φ(f)

}
cs

(
x‖;ω

)
, (4.39)

where
{
φ(f)

}
cs

is the cross-sectional average of the non-dimensional temperature along axial

location (see Eq. 4.33). Note that in our problem setup due to the periodicity in the y and z

directions only the PTHF along the axial coordinate
〈
Ifu

′′(f)
‖ φ′′(f)

〉
is non-zero. Therefore, we

only discuss the axial component of the PTHF in the following.

Since the PTHF is computed using the cross-sectional average in Eq. 4.36 (unlike the Nusselt

number, which is computed using a volume average since it is statistically homogeneous), it

is susceptible to higher statistical variability than the Nusselt number. Figure 4.4 shows the

axial variation of the ensemble-averaged PTHF
〈
Ifu

′′(f)
‖ φ′′(f)

〉
for Rem = 100 and εs = 0.4.

The square symbols are the ensemble-average from 5 MIS while the downward triangles are the

ensemble-average from 50 MIS. Both averages are very close, indicating convergence. However,

as expected, the one-sided error bars from 5 MIS (denoted below the square symbols) are larger

than the error bars from 50 MIS (above the downward triangles). Since the ensemble-averaged

PTHF obtained from 50 MIS is within the range of the error bars of
〈
Ifu

′′(f)
‖ φ′′(f)

〉
obtained

from 5 MIS, we use 5 MIS to quantify the PTHF over a range of mean slip Reynolds numbers

and solid volume fractions.
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Figure 4.4: Variation of the ensemble-averaged PTHF normalized by the magnitude of mean
slip velocity |〈W〉| along axial location x‖ over 5 and 50 MIS at Rem = 100 and εs = 0.4. The
square and triangle symbols represent the PTHF obtained using 5 and 50 MIS, respectively.
One-sided error bars indicate 95% confidence intervals.

Figure 4.4 also shows that the PTHF decays along the axial coordinate. In the hydrody-

namic solution of this gas-solid flow, the PTKE
〈
Ifu

′′(f)
i u

′′(f)
i

〉
/2 does not change with axial

location since the velocity field is statistically homogeneous. However, in the heat transfer

problem, the fluid temperature variance
〈
Ifφ

′′(f)φ′′(f)
〉

decays (result not shown here) because

the mean temperature gradient decays along the axial coordinate. Correspondingly, the co-

variance of temperature and velocity also decays. This corresponds to the decay of 〈φm〉 (see

Fig 4.2(a)) that is shown to be the sole source of inhomogeneity in the PTHF (see Eq. 4.35).

As shown in Eq. 4.35, another way to compute the PTHF is to obtain
〈
Ifu

′′(f)
i θ

〉
, and

then multiply it by the average non-dimensional bulk fluid temperature 〈φm〉. Since the scaled

temperature field θ is homogeneous, we also expect
〈
Ifu

′′(f)
i θ

〉
to be statistically homogeneous

along the axial coordinate. Figure 4.5 shows the ensemble-averaged axial value of
〈
Ifu

′′(f)
i θ

〉

(only the magnitude of
〈
Ifu

′′(f)
‖ θ

〉
is non-zero due to the periodicity in the y and z directions),

which is computed by
〈
Ifu

′′(f)
i θ

〉
≈ 1

M

M∑

ω=1

{
Ifu

′′(f)
i θ

}(
x‖;ω

)
, (4.40)

for 5 and 50 MIS. Again the two ensemble-averaged values are reasonably close to each other,

with higher MIS yielding smaller error bars, as expected. The ensemble-average using 50

MIS clearly shows that
〈
Ifu

′′(f)
‖ θ

〉
is statistically homogeneous. Therefore,

〈
Ifu

′′(f)
‖ θ

〉
can be
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computed using a volume average. For Rem = 100 and εs = 0.4, the volume-averaged value of
〈
Ifu

′′(f)
‖ θ

〉
(i.e.

〈
Ifu

′′(f)
‖ θ

〉
= 1

L

´ L
0

〈
Ifu

′′(f)
‖ θ

〉(
x‖

)
dx‖, for convenience we drop the overbar

later) is about 0.22 from five MIS and 0.20 from 50 MIS. This indicates that the volume-

averaged value with fewer realizations is close to the one from 50 MIS. Therefore,
〈
Ifu

′′(f)
‖ θ

〉

can be calculated as a volume average from five realizations and only depends on mean slip

Reynolds number and solid volume fraction.

Figure 4.5: Variation of
〈
Ifu

′′(f)
‖ θ

〉
normalized by mean slip velocity |〈W〉| along axial location

x‖ at Rem = 100 and εs = 0.4. The red and blue symbols represent the PTHF obtained using
5 and 50 realizations, respectively. One-sided error bars indicate 95% confidence intervals.

In order to develop a model for the PTHF, we characterize the dependence of
〈
Ifu

′′(f)
‖ θ

〉

on mean slip Reynolds number and solid volume fraction as shown in Fig. 4.6. Since θ is

non-dimensional, we expect
〈
Ifu

′′(f)
‖ θ

〉
to scale with | 〈W〉 | and therefore increase with mean

slip Reynolds number (Rem = (1 − εs)| 〈W〉 |D/νf ) for a fixed solid volume fraction. For a

fixed solid volume fraction (see Fig. 4.6(a)), the volume average of
〈
Ifu

′′(f)
‖ θ

〉
normalized by

the magnitude of the mean slip velocity | 〈W〉 | is not constant but decreases slightly with

increasing mean slip Reynolds number, indicating that the dependence of
〈
Ifu

′′(f)
‖ θ

〉
on |〈W〉|

is not exactly linear. The mean value of
〈
Ifu

′′(f)
‖ θ

〉
is not very sensitive to mean slip Reynolds

number but lies in the range 0.2-0.34 for 1 ≤ Rem ≤ 100. Figure 4.6(b) shows that for a fixed

Reynolds number
〈
Ifu

′′(f)
‖ θ

〉
/| 〈W〉 | first increases with increasing solid volume fraction up to

εs = 0.2, and then decreases for εs > 0.2. In order to develop a PTHF model in Sec. 4.5.3, a

correlation for
〈
Ifu

′′(f)
‖ θ

〉
is given by fitting PR-DNS data:
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(a) (b)

Figure 4.6: Dependence of
〈
Ifu

′′(f)
‖ θ

〉
on (a) mean slip Reynolds number at εs = 0.1−0.5, and

(b) solid volume fraction at Rem = 1, 50 and 100. The symbols are
〈
Ifu

′′(f)
‖ θ

〉
from PR-DNS

data and the lines are the correlation by fitting PR-DNS data in Eq. 4.41. Error bars indicate
95% confidence intervals using 5 MIS.

〈
Ifu

′′(f)
‖ θ

〉
= (1 − εs)

(
0.2 + 1.2εs − 1.24ε2

s

)
exp (−0.002Rem) | 〈W〉 |. (4.41)

This correlation shown by the lines in Fig. 4.6 fits the data with an average deviation of 8%.

It is valid in the range of 0.1 ≤ εs ≤ 0.5 and 1 ≤ Rem ≤ 100. Note that the homogeneity of
〈
Ifu

′′(f)
‖ θ

〉
in Eq. 4.35 also implies that, in thermally fully-developed homogeneous flow the

source of inhomogeneity in PTHF arises solely from the average bulk fluid temperature. More

importantly, inhomogeneity of PTHF implies that the transport term corresponding to the

PTHF in Eq. 4.1 is non-zero.

In the following, we first quantify the magnitude of PTHF relative to convective mean flux

and then propose a model for it in Sec. 4.5.3. In Sec. 4.5.4 the Péclet number dependence of the

effective thermal diffusivity is explained using a wake scaling analysis. In Sec. 4.5.5 we quantify

the magnitude of the transport term involving the PTHF relative to the average gas-solid heat

transfer term in Eq. 4.1.
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4.5.2 Relative importance of the PTHF to convective mean flux

In order to verify the importance of PTHF, we compare the PTHF with the convective

mean flux εf 〈u(f)
i 〉〈φ(f)〉 that appears in Eq. 4.1. Based on the expression for the PTHF in

Eq. 4.35 and the relation for
〈
φ(f)

〉
in Eq. 4.32, the ratio of the PTHF to the convective mean

flux can be written as
〈
Ifu

′′(f)
i φ′′

〉 (
x‖

)

εf

〈
u

(f)
i

〉 〈
φ(f)

〉 (
x‖

) =

〈
Ifu

′′(f)
i θ

〉
〈φm〉

εf

〈
u

(f)
i

〉 〈
φ(f)

〉 =

〈
Ifu

′′(f)
i θ

〉

εf

〈
u

(f)
i

〉 〈
θ(f)

〉 . (4.42)

Since all the terms in the last expression of the above equation are homogeneous, the ratio

of the PTHF to the convective mean flux is independent of axial location. Since
〈
Ifu

′′(f)
i θ

〉
,

〈
u

(f)
i

〉
and

〈
θ(f)

〉
are functions of mean slip Reynolds number and volume fraction, this ratio

also depends only on mean slip Reynolds number and solid volume fraction.

It can be shown that the ratio of PTHF to the convective mean flux is independent of axial

location. The reason for this homogeneity lies in the important property of the PTHF that

we deduce in the paragraph preceding equation (4.35). There we used the relation φ = 〈φm〉θ

to show in equation (4.35) that the spatial inhomogeneity in the PTHF
〈
If u′′(f)φ′′(f)

〉(
x‖

)

arises solely from the inhomogeneity of the non-dimensional bulk temperature 〈φm〉. When the

PTHF is divided by the convective mean flux, the only spatially inhomogeneous terms appear

as a ratio 〈φm〉 /
〈
φ(f)

〉
. However, by virtue of equation (4.32) this ratio is simply 1/

〈
θ(f)

〉
,

which is statistically homogeneous because the locally scaled excess fluid temperature field θ

is statistically homogeneous. In order to verify this independence of the ratio of the PTHF

to the convective mean flux on axial location, Figure 4.7(a) shows the axial variation of this

ratio using 5 and 50 realizations. Although the ratio obtained from 5 realizations has more

statistical variability than the one from 50 MIS, neither shows any systematic dependence on

axial location. This finding confirms the statistical homogeneity of this ratio in Eq. 4.42.

Figure 4.7(b) shows a comparison of the axial PTHF with the convective mean flux εf 〈u(f)
‖ 〉〈φ(f)〉

over a range of mean slip Reynolds numbers and solid volume fractions. Note that again due

to the periodicity in the y and z directions, we only compare the axial value
〈
Ifu

′′(f)
‖ θ

〉
with

εf 〈u(f)
‖ 〉〈φ(f)〉. The symbols denote the ratio of the PTHF to the convective mean flux. For a

fixed Reynolds number, the ratio increases with increasing solid volume fraction in most cases.
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For Rem = 100, the PTHF is about 40% of the convective mean flux at εs = 0.1 but about 70%

of the convective mean flux at εs = 0.5. The increase in the magnitude of the PTHF results

from higher fluctuations at higher solid volume fraction. For a fixed solid volume fraction, the

ratio of the PTHF to the convective mean flux tends to decrease slightly with increasing mean

slip Reynolds number. Overall, the magnitude of PTHF is in the range 40% to 100% of the

convective mean flux. Therefore, the PTHF is a significant fraction of the total convective flux

even at low solid volume fraction.

(a) (b)

Figure 4.7: (a) Axial variation of the ratio of the PTHF to the convective mean flux at Rem =
100 and εs = 0.4. The open circles and the squares represent the ratio obtained from 5 MIS
and 50 MIS, respectively. Error bars indicate 95% confidence intervals from 5 MIS (blue) and

50 MIS (red). (b) Comparison of the PTHF with convective mean flux εf 〈u(f)
‖ 〉〈φ(f)〉 in the

range 1 ≤ Rem ≤ 100 and 0.1 ≤ εs ≤ 0.5. The open symbols represent the ratio of the PTHF
and εf 〈u(f)

‖ 〉〈φ(f)〉 obtained from PR-DNS data. Error bars indicate 95% confidence intervals
from 5 MIS.

4.5.3 Model for pseudo-turbulent heat flux

Since the PTHF is found to be significant for gas-solid heat transfer, the transport term

involving the PTHF needs to be modeled in CFD simulations based on the two-fluid model (see

Eq. 4.1). In order to develop a model for the PTHF, we introduce a gradient-diffusion model

by analogy with turbulent scalar flux models in single-phase flow (Fox (2003)):

Ruφ =

〈
Ifu

′′(f)
j φ′′(f)

〉 (
x‖

)

〈If 〉 = −αjk,P T

∂
〈
φ(f)

〉

∂xk
, (4.43)
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where αjk,P T is the pseudo-turbulent thermal diffusivity. Note that in general the thermal

diffusivity is a tensor rather than a scalar. However, in our gas-solid heat transfer problem,

the only non-zero component of the PTHF is the axial component which is aligned with the

gradient of the mean fluid temperature. Therefore, we can only deduce one component α||,|| of

the pseudo-turbulent thermal diffusivity tensor from the PR-DNS data, as follows:

Ru‖φ =

〈
Ifu

′′(f)
‖ φ′′(f)

〉 (
x‖

)

〈If 〉 = −αP T

∂
〈
φ(f)

〉

∂x‖
, (4.44)

where αP T = α||,||.

Once the pseudo-turbulent thermal diffusivity αP T is computed, the transport term in-

volving the PTHF at a given axial location can be obtained in terms of the pseudo-turbulent

thermal diffusivity αP T and average non-dimensional fluid temperature
〈
φ(f)

〉
as:

∂

∂x||

{
ρf cpf

〈
Ifu

′′(f)
‖ φ′′(f)

〉 (
x‖

)}
=

∂

∂x||


−εfρf cpfαP T

∂
〈
φ(f)

〉

∂x||


 . (4.45)

A model for the pseudo-turbulent thermal diffusivity αP T can be derived by substituting

the relation
〈
φ(f)

〉
=
〈
θ(f)

〉
〈φm〉 in Eq. 4.32, then substituting Eq. 4.35 into Eq. 4.44, and

replacing 〈φm〉 with the exponential decay model 〈φm〉 = exp
(
−λx‖/D

)
(see Eq. 4.28) to

obtain:

αP T = −

〈
Ifu

′′(f)
‖ θ

〉
exp

(
−λx‖/D

)

−εf

〈
θ(f)

〉
λ
D exp

(
−λx‖/D

) =
D

λ

〈
Ifu

′′(f)
‖ θ

〉

(1 − εs)
〈
θ(f)

〉 . (4.46)

Using the correlation for
〈
Ifu

′′(f)
‖ θ

〉
given in Eq. 4.41, the expressions for λ given in Eq. 4.29

and the average scaled fluid temperature
〈
θ(f)

〉
from Sun et al. (2015), the final expression for

αP T is

αP T =
4D (Rem + 1.4) Pr

6πεs 〈Nu〉

(
0.2 + 1.2εs − 1.24ε2

s

)
exp (−0.002Rem) | 〈W〉 |

[1 − 1.6εs(1 − εs) − 3εs(1 − εs)4 exp(−Re0.4
m εs)]

, (4.47)

It is noteworthy that in this model αP T scales as D| 〈W〉 |. Also as expected αP T is independent

of axial location and depends only on Rem, εs, and Pr (note that 〈Nu〉 is also a function of

Rem, εs, and Pr (cf. Eq. 27 in Sun et al. (2015)).

In order to evaluate the performance of this model for the pseudo-turbulent thermal diffu-

sivity αP T , we compare αP T obtained from direct quantification of the PTHF
〈
Ifu

′′(f)
‖ φ′′(f)

〉



106

using PR-DNS data in Eq. 4.44 with the model expression given by Eq. 4.47. Figure 4.8 shows

the dependence of the ratio αP T /αf (αf is the constant molecular thermal diffusivity that is

equal to νf/Pr) on mean slip Reynolds number and solid volume fraction.

Figure 4.8: Dependence of the pseudo-turbulent thermal diffusivity normalized by the molecular
thermal diffusivity in the fluid phase αf for gas-solid flow on mean slip Reynolds number and
solid volume fraction. The symbols represent the average values from PR-DNS data using 5
MIS. The lines represent the model for the pseudo-turbulent thermal diffusivity for εs = 0.1,
0.3 and 0.5.

The symbols denote the values of αP T/αf extracted from PR-DNS data which show that

the pseudo-turbulent thermal diffusivity is two orders of magnitude larger than its molecular

counterpart. In Fig. 4.8 the pseudo-turbulent thermal diffusivity αP T increases with increasing

mean slip Reynolds number for a fixed solid volume fraction. This increase is due to the increase

in the magnitude of u′′(f) with increasing Reynolds number.

For a fixed Reynolds number, Fig. 4.8 shows that as the solid volume fraction increases the

pseudo-turbulent thermal diffusivity decreases. Since the pseudo-turbulent thermal diffusivity

αP T can be conceived as arising from the product of a velocity scale u′′(f) (or equivalently the

velocity scale | 〈W〉 |, since the two are related by a correlation for kf given in Mehrabadi et al.

(2015)), and a length scale ℓ, the dependence for fixed Reynolds number must arise from

a change in the length scale associated with αP T . Looking at the expression for αP T in

Eq. 4.46, we can see that such a length scale dependence on solid volume fraction can arise from

D/λ (1 − εs),
〈
θ(f)

〉
or
〈
Ifu

′′(f)
‖ φ′′(f)

〉
. Since the velocity field and the scaled temperature field

θ are statistically homogeneous, the Eulerian two-point correlation corresponding to
〈
Ifu

′′(f)
‖ θ

〉
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is:

ρu‖θ(r) =

〈
If (x)θ′′(f)(x) · If (x + r)u′′(f)

‖ (x + r)
〉

〈
If (x)θ′′(f)(x) · If (x)u′′(f)

‖ (x)
〉 , (4.48)

and it can be computed to infer a length scale associated with
〈
Ifu

′′(f)
‖ φ′′(f)

〉
. Note that

in the above equation
〈
Ifu

′′(f)
‖ θ′′(f)

〉
is equal to

〈
Ifu

′′(f)
‖ θ

〉
because θ =

〈
θ(f)

〉
+ θ′′(f) and

〈
Ifu

′′(f)
‖

〉
= 0.

Figure 4.9: Decay of the scaled fluid temperature-velocity fluctuation cross correlation functions
with separation distance r obtained from steady flow past a random configuration of spheres
at a solid volume fraction of 0.1 and 0.4, and mean slip Reynolds numbers of 100. The box
length is L = 7.5D for solid volume fraction of 0.1 and L = 5D for for solid volume fraction of
0.4, respectively.

Figure 4.9 shows the Eulerian two-point cross-correlation corresponding to scaled temperature-

velocity for solid volume fractions of 0.1 and 0.4.The decay of the cross-correlation to zero

within the computational domain establishes the adequacy of the domain size. In dispersion

without interphase heat transfer, the temperature fluctuations are only driven by velocity fluc-

tuations. Since the temperature-velocity correlation would be arising from the velocity-velocity

correlation, the velocity-velocity correlation length (which is related to the Brinkman length

for Stokes flow) is the important length scale for hydrodynamic dispersion (Koch and Brady

(1985)). However, for the present study with interphase heat transfer, the temperature fluctua-

tions arise from both the velocity fluctuation and the interphase heat transfer. The fluctuations

from the interphase heat transfer may not scale with the velocity fluctuation. Therefore, this

temperature-velocity cross-correlation is the relevant important correlation for our problem

rather than the velocity-velocity correlation. The cross-correlation curves in Fig. 4.9 for the
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two volume fractions have comparable length scales. The length scale (Lu‖θ =
´∞

0 ρu‖θ(r)dr)

for the case with a solid volume fraction of 0.1 is 0.114, while for a solid volume fraction of

0.4 it is 0.078. While this is a 46% increase, it alone cannot explain the 230% increase in

αP T that is seen in Fig. 4.9. This implies that the length scale in the θ field is only weakly

sensitive to solid volume fraction. Thus,
〈
Ifu

′′(f)
‖ θ

〉
is not solely responsible for the change in

length scale with solid volume fractions that is observed in αP T . Also the scaled fluid tempera-

ture
〈
θ(f)

〉
varies only slightly with Reynolds number and solid volume fraction (see Sun et al.

(2015), Fig. 8). Clearly, only the length scale D/λ (1 − εs) is important in determining the

magnitude of the pseudo-turbulent thermal diffusivity αP T . According to the expression for λ

(see Eq. 4.27), with increasing solid volume fraction, the length scale D/λ (1 − εs) decreases.

This explains the decrease of the pseudo-turbulent thermal diffusivity αP T with solid volume

fraction in Fig. 4.8.

Figure 4.8 also compares the model for the pseudo-turbulent thermal diffusivity (see Eq. 4.47)

with the PR-DNS data. The lines represent the model for αP T given by Eq. 4.47 at selected

solid volume fractions. This figure shows that the model has a good agreement with PR-DNS

data with an average difference of 18%. Therefore, this model for the pseudo-turbulent thermal

diffusivity can be used to compute the transport term involving the PTHF in the average fluid

temperature equation (Eq. 4.1) if we assume a simpler isotropic form of the pseudo-turbulent

diffusivity tensor given in Eq. 4.43.

4.5.4 Scaling of pseudo-turbulent thermal diffusivity with Péclet number

Theoretical studies on hydrodynamic dispersion in fixed beds for Stokes/low Reynolds num-

ber flow predict the dependence of the effective diffusivity on the Péclet number (Brenner

(1980); Carbonell and Whitaker (1983); Eidsath et al. (1983)). Koch and Brady (1985) derived

linear and Pe ln(Pe) dependencies in the effective diffusivity by solving the convection-diffusion

equation for mass transfer with no source or sink of mass within the particles in Stokes flow

using an asymptotic analysis that is valid in the dilute limit (low solid volume fraction). The

analysis of Koch and Brady (1985) is for the case with no source or sink of mass within the

particles, which is an important distinction from the present work. Here the Péclet number
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is defined as Pe = Ua/Df , where U is the average velocity through the bed, a is the particle

radius and Df is the molecular diffusivity of the scalar. The linear dependence is attributed to

the mechanical dispersion mechanism while the Pe ln(Pe) dependency is attributed to a non–

mechanical dispersion mechanism that arises from the no–slip boundary condition (obtained

from a boundary layer analysis).

While the Koch and Brady (1985) analysis is valid for Stokes flow at dilute solid volume

fraction, the results of the present study span a range of Reynolds number from 1 to 100 and

solid volume fraction values from 0.1 to 0.5. Furthermore, since in our heat transfer problem

we impose the isothermal boundary condition on particle surfaces, we cannot compare directly

with the results of Koch and Brady (1985). Acrivos et al. (1980) analyzed Stokes flow past a

fixed bed with heat transfer at low Péclet number when the local mean temperature profile is

approximately linear, rather than exponential, corresponding to the decay length of the mean

temperature being larger than the Brinkman screening length. However, the cases studied here

correspond to Pe ≥ 1. Here we deduce the scaling of the effective thermal diffusivity with

Péclet number in two ways. The first is based on correlations developed from the PR-DNS

data for the average bulk fluid temperature and Nusselt number. We then present a scaling

analysis similar to that described in Koch (1993) which is appropriate for Rea ≫ 1, where

Rea = U‖a/νf is the Reynolds number based on the radii of particle, U‖ is the mean fluid

velocity (which is the mean slip velocity for fixed particles considered in this study).

In Appendix E we derive a model for the effective thermal diffusivity based on the correla-

tions developed for the average bulk fluid temperature and Nusselt number. This reveals the

scaling of the effective thermal diffusivity with Péclet number as:

αP T + αf

αf
=

C1C3

C2

(
C4 + C5Re0.7

m Pr1/3
)Pe2

D + 1, (4.49)

where the coefficients C1 through C5 are functions of only the solid volume fraction. In fig-

ure 4.10, we compare this model evaluated at Pr = 0.7 for a fixed solid volume fraction (εs = 0.1)

with PR-DNS data. This derived model (represented by the red solid line) is very close to our

PR-DNS data that are obtained for cases with different Prandtl number values. For these

values the factor preceding the square of the Péclet number is approximately constant. This
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good agreement with the PR-DNS data shows that the effective thermal diffusivity has a Pe2
D

scaling (see also the match with the blue dashed line representing 1 + 0.25Pe2
D).

Figure 4.10: Variation of (αP T + αf ) /αf with Péclet number PeD = |〈W〉|D/αf at Rem = 1
(up-triangle), Rem = 100 (down-triangle) with Pr = 0.01, 0.1, 0.7 and 1, and Rem = 10 − 50 at
Pr = 0.7 (square) for solid volume fraction of 0.1. The dashed line represents the 1 + 0.25Pe2

scaling and the solid line represents the model in Eq. 4.49. The dotted line represents the
0.065Pe2

D [ln (1/Pr) + 1] + 1 scaling at Rem = 100 for different Prandtl numbers (0.01 ≤ Pr ≤
0.7) in Eq. F.11.

The dependence of effective thermal diffusivity on Péclet number can also be explained

on the basis of scaling arguments in the hydrodynamic and and thermal wakes behind a

particle. The wake structure can be deduced from the conditionally averaged fluid velocity
〈
IfU‖

〉
c
(r = X−Xp|Xp) and conditionally averaged scaled fluid temperature

〈If (T − Ts) / (〈Tm〉 − Ts)〉c (r = X−Xp|Xp) ,

where Xp and r are the particle position and the relative separation between the particle and

field point in the fluid, respectively. These conditional averages correspond to averaging the

fluid velocity or temperature field over members of an ensemble where each particle’s center

has been translated to the origin.

Figure 4.11 shows that for dilute flow there exists a distinct hydrodynamic wake at Rem=100,

and a distinct thermal wake behind the particle at both large and small Péclet number. It is

observed in Fig. 4.11(b) and (c) that the thermal wake is longer and thinner at higher Péclet

(or higher Prandtl number) than at lower Péclet number. The distance over which wake can
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(a) Rem = 100: Velocity field
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(c) Pr=1

Figure 4.11: Contour plot of (a) the conditionally averaged fluid velocity that is defined as〈
IfU‖

〉
c
/ |〈W〉|, (b)-(c) the conditionally averaged scaled fluid temperature that is defined

as 〈If (T − Ts) / (〈Tm〉 − Ts)〉c based on 〈Tm〉 for solid volume fraction of 0.1 and mean slip
Reynolds number of 100 (a). The conditional average is obtained from 5 MIS.

diffuse due to the viscous diffusion in the cross-stream direction over the time it takes for the

fluid to convect a distance x‖ in the streamwise direction is
√(

νfx‖/U‖

)
. We can identify the

width of the hydrodynamic wake rW M in the near-wake and far-wake regions as follows. For

x‖ < aRea, the diffusion of momentum in the near-wake region occurs over a smaller distance

than the O(a) size of the region disturbed by the particle. For x‖ > aRea in the far-wake region
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the wake thickness is larger than the particle size leading to:

rW M =





∼ O(a), x‖ < aRea
(
νfx‖

U‖

)1/2

= a

(
x‖

aRea

)1/2

, x‖ > aRea

. (4.50)

The velocity fluctuation can be derived from the momentum balance equation πr2
W MρfU‖u

′′
‖ =

F leading to

u′′
‖

U‖
= CD

a2

r2
W M

= CD
aRea

x‖
=





∼ O(CD), x‖ < aRea

CD
aRea

x‖
, x‖ > aRea

, (4.51)

where F = CDρfU
2
‖πa

2 is the drag force and CD is the drag coefficient corresponding to a fixed

particle bed. Essentially this says that in the near-wake region the fluid velocity does not vary

much (u′′
‖ − U‖ = O

(
U‖

)
) whereas in the far-wake region the fluctuation is far less than the

mean velocity (u′′
‖ = u− U‖ ≪ U‖).

Similarly, the width of the thermal wake rW H can be estimated on the basis of thermal

diffusivity as

rW H =





∼ O(a) x‖ < aPea

a
(

x‖

aP ea

)1/2
x‖ > aPea

, (4.52)

and the temperature fluctuation can be derived from the energy balance equation

πr2
W Hρf cpfU‖T

′′ = Qpf = 4πa2h (Ts − 〈Tm〉)

as

T ′′

(Ts − 〈Tm〉) =
4h

ρfcpfU‖

a2

r2
W H

=
4h

ρf cpfU‖

aPea

x‖
=





∼ O

(
4h

ρfcpfU‖

)
, x‖ < aPea

4h

ρfcpfU‖

aPea

x‖
, x‖ > aPea

,(4.53)

where Pea = U‖a/αf is the Péclet number based on the radius of the particle, and rW H is

the width of the thermal wake. The thermal wake for x‖ < aPea depends on whether the

temperature field is disturbed throughout on O(a) region at the back of the particle or only
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in a thinner region where the thermal boundary layer separates from the particle. We assume

that it is an O(a) region and this assumption is verified by the thermal wakes in Fig. 4.11(b)

and (c).

The unconditional ensemble-averaged PTHF
〈
Ifu

′′(f)
‖ T ′′(f)

〉
is calculated from the wake

scaling analysis as the particle number density np times an integral over the probability density

function (pdf) of the conditionally averaged particle position f :

〈
Ifu

′′(f)
‖ T ′′(f)

〉
= np

ˆ Lw

0

ˆ ˆ

fdx‖dydz, (4.54)

where np is the particle number density defined as the ratio of the average number of particles

to the volume of the domain, and Lw is the length of the wake that represents the velocity

contour surrounding the particle where the value of the conditionally ensemble-averaged velocity

reaches | 〈W〉 | (note that since the particles are stationary, the mean slip velocity is equal to the

unconditionally averaged fluid velocity). Note that the full length of the far wake is not attained

in the computational domain as shown in Fig. 4.11(a) due to hydrodynamic interactions with

neighbor particles (note that the two-point velocity correlation has decayed to zero within the

computational domain, indicating that the domain is large enough for this to not be an artifact

of periodicity). In this study we have Pr ≤ 1, and the thermal far-wake and hydrodynamic

near-wake region overlap in the interval aPea < x‖ < aRea. By inserting Eqs. 4.50-4.53, and

integrating over the near-wake, intermediate, and far-wake regions, the PTHF yields

〈
Ifu

′′(f)
‖ T ′′(f)

〉
= Pea

[
k2 ln

(
1

Pr

)
+ k3 ln

(
Lw

aRea

)
+ k1

]
, (4.55)

where k1, k2, and k3 are undetermined coefficients arising from the scaling estimates and

uncertainty in the limits of the integral (see Appendix F). In the above expression, the ln (1/Pr)

term comes from the intermediate region and the constant term comes from the near wake.

Note that since hydrodynamic interactions with neighbor particles cause the velocity to decay

before achieving a far-wake behavior, ln (Lw/aRea) is not present in practice. The detailed

derivation can be found in Appendix F. Substituting this expression for the PTHF into the

expression for the pseudo-turbulent thermal diffusivity:

αP T = −

〈
Ifu

′′(f)
‖ T ′′(f)

〉 (
x‖

)

∂ 〈IfT 〉
∂x‖

∼

〈
Ifu

′′(f)
‖ T ′′(f)

〉 (
x‖

)

∂ (Ts − 〈Tm〉)
∂x‖

, (4.56)
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and using the decay length scale of the bulk and mean fluid temperature D/λ to write the

gradient as (Ts − 〈Tm〉) /(D/λ) results in

αP T + αf

αf
=
CDPe

2
D

π2

[
B2 ln

(
1

Pr

)
+B3 ln

(
Lw

aRea

)
+B1

]
+ 1, (4.57)

where B1 − B3 are again undetermined coefficients. Note that using the correct length scale

based on the mean temperature gradient is crucial to recovering the scaling observed in PR–

DNS.

The wake analysis of the scaling of the effective thermal diffusivity with Péclet number is

compared with PR-DNS data in Fig. 4.10. The results obtained from the wake scaling analysis

(the dotted line) agree well with the PR-DNS data (the symbols) at Rem=100 for Pr < 1. The

Pe2
D scaling itself comes from there being a wake and from realizing that decay length is the

scaling to use for mean temperature gradient. Therefore, this analysis of the hydrodynamic

and thermal wakes behind the particle gives a physical explanation for the existence of a Pe2
D

scaling in effective thermal diffusivity in the regime of high Reynolds number and low Prandtl

number.

4.5.5 Relative importance of the PTHF in gas-solid heat transfer

We have found that the PTHF is significant when compared with the convective mean flux,

especially for high solid volume fraction. In order to quantify the importance of the transport

term involving the PTHF

〈Tuφ〉
(
x||

)
≡ ∇ ·

{
ρfcpf

〈
If u′′(f)φ′′(f)

〉}
, (4.58)

we need to compute the streamwise derivative of
〈
If u′′(f)φ′′(f)

〉
since the PTHF is only sta-

tistically inhomogeneous along the axial coordinate. However, as shown in Fig. 4.4, given that

the ensemble-averaged statistical estimate in Eq. 4.36 has statistical variability, this can yield

noisy results. In order to circumvent this difficulty, we integrate the transport term over the

computational domain to express the mean value of the transport term involving the PTHF in
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the domain in terms of boundary values of the PTHF as follows:

〈Tuφ〉 =
〈
Tu‖φ

〉
=

1

L

ˆ

L

∂

∂x||

{
ρf cpf

〈
Ifu

′′(f)
|| φ′′(f)

〉} (
x‖

)
dx‖

=
1

L

([
ρf cpf

〈
Ifu

′′(f)
|| φ′′(f)

〉]
out

−
[
ρf cpf

〈
Ifu

′′(f)
|| φ′′(f)

〉]
in

)
, (4.59)

where L is the length of the domain, [·]in and [·]out are obtained at the inlet and outlet of the

computational domain, respectively. Note that due to periodic boundary conditions in the y

and z directions the flux term in those directions is zero.

In the two-fluid equation (see Eq. 4.1), since the gas-solid heat transfer is considered as a

significant term, the importance of the transport term involving the PTHF can be quantified

by comparing it with the average gas-solid heat transfer term (see Eq. 4.64). Figure 4.12 shows

a comparison of the transport term involving the PTHF scaled by the average gas-solid heat

transfer over a range of mean slip Reynolds numbers and solid volume fractions. The color

symbols represent the ratio of the transport term involving the PTHF to the average gas-solid

heat transfer.For a fixed Reynolds number beyond Rem = 10, the transport term involving the

PTHF is about 50% of the average gas-solid heat transfer at εs = 0.5, and it drops to about

30% of the average gas-solid heat transfer at εs = 0.1. This increase in the transport term

involving the PTHF with increasing solid volume fraction is similar to the findings of Tenneti

(2013) and Mehrabadi et al. (2015) for PTKE in a fixed particle assembly. For a fixed solid

volume fraction, the ratio of transport term involving the PTHF to the average gas-solid heat

transfer does not vary significantly beyond Rem = 10, but reduces to 15% − 20% at Rem = 1.

Therefore, we conclude that the transport term involving the PTHF is important compared

to average gas-solid heat transfer for high solid volume fraction, and it cannot be neglected in

CFD simulations based on the two-fluid model.

Note that for low Reynolds number (Rem = 1) Fig. 4.12 shows that the ratio of PTHF

to gas-solid heat transfer reduces. This results from the fact that the total convective term

(mean convective heat flux and PTHF) needs to balance axial conduction in the fluid phase

and average gas-solid heat transfer in the average temperature equation in the steady flow (see

Eq. 4.1). A budget analysis of these terms that is described later in this paper illustrates this

point.
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Figure 4.12: Comparison of transport term involving the PTHF (see Eq. 4.59) with the average
gas-solid heat transfer (see Eq. B.11) in the range 1 ≤ Rem ≤ 100 and 0.1 ≤ εs ≤ 0.5. The
symbols represent the transport term involving the PTHF obtained from PR-DNS data. Error
bars indicate 95% confidence intervals from 5 MIS. For clarity, only half error bars for the
circles are shown in this figure.

4.6 Average conduction in the fluid phase and its model

Average conduction in the fluid phase represents the divergence of the average heat flux

in the fluid phase. Since the velocity and temperature fields are statistically homogeneous

in cross-stream planes in our gas-solid flow problem that is described in Sec. 4.2, there is

no average conduction in the cross-stream directions. We now establish the correspondence

between PR-DNS data and the unclosed axial fluid-phase conduction term in Eq. 4.1.

Average axial conduction in the fluid phase is calculated from the PR-DNS temperature

field (see Eq. B.10 in Appendix B and details leading up to it) by

∂

∂xj

〈
Ifq

φ
j

〉 (
x‖

)
≈ 1

M

M∑

ω=1





1

A

ˆ

A

∂Ifq
φ
||(x, t;ω)

∂x||
dA



 , (4.60)

where qφ
j = −kf∂φ/∂xj is heat flux vector based on the non-dimensional temperature field

φ(x, t) = (T (x, t) − Ts) /(Tm,in − Ts) ( Tm,in is the inlet bulk fluid temperature), kf is the

thermal conductivity in the fluid phase, and ω = 1, . . . M on the right hand side represents M

realizations of the particle configuration from which the expression in curly braces is computed

and subsequently averaged over. The integrand on the right hand side of Eq. 4.60 represents

the sole nonzero contribution to average conduction that arises from Ifq
φ
||(x, t;ω), the axial

component of the non-dimensional heat flux in the fluid phase on a realization ω. The axial



117

conduction term from a particular particle configuration is averaged over the cross-sectional

plane with area A that is located at x||. Since the non-dimensional fluid temperature decays

exponentially in the axial coordinate, both the non-dimensional heat flux and the average axial

conduction term vary along the axial coordinate. More details regarding the computation of

the axial conduction term can be found in Appendix B.

Figure 4.13 shows the ensemble-averaged PR-DNS values (the open circles) for the nor-

malized axial conduction in the fluid phase at a mean slip Reynolds number Rem = 5 for

two different solid volume fraction values of 0.1 and 0.4. The reference scale for the axial

(a) εs = 0.1 (b) εs = 0.4

Figure 4.13: Normalized axial conduction in the fluid phase
∂

∂x||

〈
Ifq

φ
||

〉 (
x‖

) D2

kf
at Rem = 5

for solid volume fraction of 0.1 and 0.4. The open circles are the PR-DNS data averaged over
5 MIS and the solid line represents the model.

conduction term based on the non-dimensional temperature φ is kf/D
2, where D is the par-

ticle diameter. Note that this corresponds to a normalization of kf (Tm,in − Ts)/D2 for the

axial conduction term in the dimensional average fluid temperature equation (Eq. 4.1). As

shown in Fig. 4.2(b), the average non-dimensional fluid temperature
〈
φ(f)

〉
decays exponen-

tially along the axial direction because the fluid is progressively cooled as it passes over the

particles. For low Reynolds number the average fluid temperature decays to zero within 4D

for the case with a solid volume fraction of 0.1, and within less than D for a solid volume

fraction of 0.4 (cf. Fig. 4.2(b)). The axial conduction term shown in Fig. 4.13 is negative be-

cause the average non-dimensional fluid temperature decays exponentially with axial location
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〈
φ(f)

〉
∼ exp (−λx‖/D), and therefore for a statistical homogeneous particle assembly (where

εf = 1 − εs is independent of x), we have

∂

∂x‖

〈
Ifq

φ
‖

〉
= −kfεf

∂2
〈
φ(f)

〉

∂x‖∂x‖
∼ −kfεf (λ/D)2 exp(−λx‖/D) (4.61)

(details of the derivation are shown in Appendix G).

Figure 4.14 shows contours of the magnitude of the heat flux vector
∣∣∣If qφ

∣∣∣ normalized by

the reference scale kf/D
2 for the same cases in Fig. 4.13 with mean slip Reynolds number

Rem = 5 for solid volume fraction values of 0.1 and 0.4.As we go deeper into the bed the

heat flux in the fluid phase also goes to zero because the fluid temperature becomes relatively

uniform. Only for small values of the axial location x||/D do we see nonzero heat flux values,

and the dependence of the heat flux contours with solid volume fraction is consistent with

the average fluid temperature plots shown in Fig. 4.2. Therefore, axial conduction becomes

progressively smaller along the axial coordinate, and this drop is more pronounced for higher

volume fraction. This indicates that the magnitude of the average axial conduction term that is

the second derivative of the average fluid temperature is higher for higher solid volume fraction

because of the rapid decay of the average fluid temperature (cf. Eq. 4.61), with higher λ values

encountered for higher solid volume fractions (see the model for the non-dimensional decay

coefficient λm in Sec. 4.4).
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Figure 4.14: Contours of the magnitude of the heat flux vector
∣∣∣If qφ

∣∣∣ normalized by the

reference scale kf/D
2 at Rem = 5 for solid volume fraction of 0.1 and 0.4.
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4.6.1 Verification of the fluid-phase axial conduction model

Since average axial conduction in the fluid phase is modeled in terms of the second derivative

of
〈
φ(f)

〉
, a model for axial conduction in the fluid phase can be developed by using the

expression for
〈
φ(f)

〉
(〈φ(f)〉 ∼ exp

(
−λx||/D

)
) and Eq. 4.32 given in Sec 4.4. Using these

relations, the model for axial conduction in the fluid phase is:

∂

∂x‖

〈
Ifq

φ
‖

〉
= −kfεf

∂2
〈
φ(f)

〉

∂x‖∂x‖
≈ −kfεf

〈
θ(f)

〉
(λ/D)2 exp(−λx‖/D). (4.62)

A comparison of the average axial conduction in the fluid phase from PR-DNS data and the

above model is shown in Fig. 4.13. For the case of solid volume fraction of 0.1 in Fig. 4.13(a),

the normalized axial conduction in the fluid phase (normalized by the reference scale kf/D
2)

obtained from PR-DNS data shows some scatter about the model prediction in Eq. 4.62, al-

though the average trend is captured by the model. The scatter in the PR-DNS data is because

of the finite number of realizations and statistical variability in
〈
φ(f)

〉
, and should reduce with

more realizations. Computational resources limit these results to five realizations of the par-

ticle configuration. Nevertheless, the model does a fairly good job of capturing the trend in

the PR-DNS data. For the case with solid volume fraction εs = 0.4 shown in Fig. 4.13(b), the

PR-DNS data shows scatter within the length L = 2D, but the model still captures the trend

of axial conduction in the fluid phase. This results from the fact that at the same Reynolds

number, the fluid temperature at high solid volume fraction (0.4) decays faster to approach the

particle surface temperature than the one at low solid volume fraction (0.1) (see Fig. 4.2).

4.6.2 Relative importance of fluid-phase axial conduction in average gas-solid heat

transfer

We now quantify the relative importance of the fluid-phase axial conduction ∂
〈
Ifq

φ
‖

〉
/∂x‖

with respect to average gas-solid heat transfer
〈
q′′′

φ

〉
(see Eq. B.11) over the range of solid

volume fraction and mean slip Reynolds number considered in this work. Since both of terms

are spatially inhomogeneous and vary with axial location x‖, it is convenient to define volumetric

averages of these quantities. We quantify the average volumetric axial conduction in the fluid

phase by spatially averaging axial conduction in the fluid phase over the domain length L to
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obtain:
〈
q′′′

cond

〉
=

1

L

ˆ L

0

∂

∂x‖

〈
Ifq

φ
‖

〉 (
x‖

)
dx||. (4.63)

In order to validate the assumption of neglecting axial conduction in the fluid phase in one-

dimensional models that are used to interpret experimental data, we compare this term with

average gas-solid heat transfer that is

〈
q′′′

φ

〉
=

1

L

ˆ L

0

〈
q′′′

φ

〉 (
x‖

)
dx||, (4.64)

where
〈
q′′′

φ

〉
is the local average interphase heat transfer rate (see Eq. B.11). Figure 4.15

compares the average volumetric axial conduction in the fluid phase
〈
q′′′

cond

〉
with the average

gas-solid heat transfer
〈
q′′′

φ

〉
at selected volume fractions over a range of Reynolds number

values.For a fixed solid volume fraction, the ratio
〈
q′′′

cond

〉
/
〈
q′′′

φ

〉
decreases rapidly with increasing

mean slip Reynolds number and goes to almost zero at high mean slip Reynolds number of

100. The scaled average volumetric axial conduction also increases with solid volume fraction

at each Reynolds number. This results from higher temperature gradients (and heat flux) due

to increase in the proximity of particle surfaces at high solid volume fraction. For the case of

solid volume fraction of 0.4, the average volumetric axial conduction in the fluid phase
〈
q′′′

cond

〉

is about 84% of the average gas-solid heat transfer
〈
q′′′

φ

〉
at Rem = 1 but only 3% at Rem = 20.

These findings imply that in the low Reynolds number regime, there are high gradients of

heat flux in the fluid phase. It is clear that the average volumetric axial conduction in the

fluid phase
〈
q′′′

cond

〉
is important only for Rem < 20 (when compared to average gas-solid heat

transfer). Therefore, the neglect of axial conduction in one-dimensional models that are used

to infer the Nusselt number corresponding to average gas-solid heat transfer from inlet/outlet

temperature measurements is justified for Rem > 20. In the low Reynolds number regime

Rem < 20 (or low Péclet number since in gas-solid flow Prandtl number can be less than the

order of one) this assumption is not justified. Now in order to understand the balance of various

terms in Eq. 4.1 we perform a budget analysis in the following section.
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Figure 4.15: Dependence of the ratio of average volumetric axial conduction in the fluid phase

to average gas-solid heat transfer
〈
q′′′

cond

〉
/
〈
q′′′

φ

〉
on mean slip Reynolds number at solid volume

fraction εs = 0.1 and 0.4. The symbols are the values of the ratio from PR-DNS data and error
bars indicate 95% confidence intervals from 5 MIS.

4.7 Budget analysis and relative magnitude of terms

Figure 4.16 shows a budget analysis of the two-fluid equation (Eq. 4.1) at steady state

for selected values in the parameter space of Reynolds number and solid volume fraction. At

steady state, the remaining terms in Eq. 4.1, viz. fluid-phase axial conduction, transport

term involving the PTHF, and mean convection, are compared with the average gas-solid heat

transfer term
〈
q′′′

φ

〉
in the following form:

∂

∂xj

{
ρfεf cpf 〈u(f)

j 〉〈T (f)〉
}

︸ ︷︷ ︸
+

∂

∂xj

{
ρfcpf 〈Ifu

′′(f)
j T ′′(f)〉

}

︸ ︷︷ ︸

mean flow convection pseudo–turbulent

heat flux

+
∂

∂xj
〈Ifqj〉

︸ ︷︷ ︸
=

〈
∂If

∂xj
qj

〉

︸ ︷︷ ︸

average conduction average gas-solid

in the fluid phase heat transfer

, (4.65)

In the above equation the average gas-solid heat transfer on the right hand side is negative

(fluid loses heat to cold particles), and each term on the left hand side is also negative (mean

fluid temperature and temperature-velocity covariance decay with axial distance into the bed).

The absolute value of the terms on the left hand side normalized by absolute value of the
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average gas-solid heat transfer sum to unity. In Fig. 4.16, the average axial conduction in the

fluid phase is denoted by the blue bars. It is highest at εs = 0.5 and for all volume fraction

values it decreases with increasing mean slip Reynolds number. It is about 80% of the average

gas-solid heat transfer at εs = 0.5 and Rem = 1 but less than 1% of the average gas-solid heat

transfer at Rem = 100.

The normalized transport term involving the PTHF is denoted by the green bars in Fig. 4.16.

This term is about 10-20% of the average gas-solid heat transfer at Rem = 1 and increases with

Reynolds number to about 50% of the average gas-solid heat transfer at Rem = 100. The

dependence of the normalized transport term involving the PTHF on solid volume fraction

shows a moderate increase for Rem = 10 and 100, but there is slight decrease with solid volume

fraction at Rem = 1 as observed in Fig. 4.12.

Fig. 4.16 also shows the relative magnitude of the mean convection term in the parameter

space of mean slip Reynolds number and solid volume fraction. For a fixed solid volume

fraction, the relative magnitude of mean convection is less than 30% for low Reynolds number

Rem = 1, but greater than 50% for high Reynolds number Rem = 100. Therefore, for high

Reynolds number Rem > 10, the average gas-solid heat transfer, mean flow convection, and

PTHF dominate the mean fluid energy balance. This budget analysis of the two-fluid equation

in Eq. 4.65 gives insight into the relative importance of each of the terms in the gas-solid heat

transfer problem.

4.8 Conclusions

PR-DNS simulations of gas-solid heat transfer in steady flow through a homogeneous fixed

assembly of particles are used to quantify the pseudo–turbulent heat flux arising from corre-

lation of temperature and velocity fluctuations, and the average fluid-phase conduction terms

that appear in the average fluid temperature equation. These simulations are performed over

a range of mean slip Reynolds numbers (1− 100) and volume fractions (0.1− 0.5) for a Prandtl

number of 0.7. A few cases are also presented using different Prandtl numbers in the range

0.01 ≤ Pr ≤ 1 to access a range of Péclet number. PR-DNS results reveal that the average bulk

fluid temperature and the average fluid temperature decay exponentially due to fluid cooling
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Figure 4.16: Budget of average fluid temperature equation in Eq. 4.1: the normalized axial
conduction in the fluid phase, transport term involving the PTHF, and mean convection by

the average gas-solid heat transfer
〈
q′′′

φ

〉
for Rem = 1, 10, 100, and εs = 0.1, 0.3, and 0.5 using

5 MIS. Q represents absolute magnitude of these terms. The color columns represent axial
conduction in the fluid phase (blue, on the bottom of the bar), the transport term involving
the PTHF (green, on the middle of the bar), and mean convection (red, on the top of the bar),
respectively.

by the particles. An exponential decay model for the average bulk fluid temperature is pro-

posed with a decay lengthscale that depends on the problem parameters. The non-uniformity

in the mean fluid temperature generates fluctuations in the temperature field that correlate

with velocity fluctuations.

PR-DNS data show that the pseudo-turbulent heat flux (PTHF) transport is a significant

contributor to the evolution of the average fluid temperature in gas-solid heat transfer. The

term arising correlation of fluctuations in velocity and temperature cannot be neglected because

the transport term involving the PTHF is about 10% of the average gas-solid heat transfer. A

gradient-diffusion model for the PTHF is proposed in terms of the average fluid temperature

gradient and a pseudo-turbulent thermal diffusivity. It is found that the qualitative features

of the dependence of effective diffusivity on Péclet number are captured by a wake analysis
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that is applicable to high Reynolds number flows (Koch (1993)). The PTHF model can be

implemented in current CFD simulations of gas-solid heat transfer using the two-fluid model.

PR-DNS results also show that axial conduction in the fluid phase can be significant for

Rem < 20. These results shows that the neglect of axial conduction in one-dimensional models

that are used to infer the Nusselt number corresponding to average gas-solid heat transfer from

inlet/outlet temperature measurements is not justified for Rem < 20. Based on the exponential

decay model for the bulk fluid temperature, a simple model for average axial conduction in the

fluid phase is proposed. This model captures the trends of average axial conduction in the fluid

phase with mean slip Reynolds number and solid volume fraction in fixed particle assemblies.

A budget analysis of the two-fluid equation also indicates that average gas-solid heat trans-

fer, mean convection, and PTHF terms are the dominant contributions for Rem > 10 in a flow

through homogeneous fixed particle assemblies. Using PR-DNS we have developed models for

the PTHF and average conduction in the fluid phase.
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CHAPTER 5. VALIDITY OF LOCAL CLOSURE MODELS BASED ON

THE SCALE SEPARATION ASSUMPTION IN CONTINUUM

THEORIES OF MULTIPHASE FLOW

This chapter is a manuscript titled “Validity of local closure models based on the scale

separation assumption in continuum theories of multiphase flow: need for fluctuation hydro-

dynamics” that is prepared to submit to Journal of Fluid Mechanics-Rapids.

Scale separation between macroscales and microscales in continuum theories of multiphase

flow is assumed on the basis that the characteristic length scale of macroscopic quantities is

larger than that of organized mesoscale structures (higher order statistics such as two-point

correlations), and this forms the basis for local closure models. The aim of this chapter is to

validate the assumption of scale separation implied in continuum theories of multiphase flow by

using particle-resolved direct numerical simulation (PR-DNS) results of gas-solid heat transfer

in freely evolving suspensions and fixed bed of particles. The key feature of this gas-solid heat

transfer problem is the inhomogeneous variation of mean and bulk fluid temperature in the

streamwise direction. Using a characteristic length scale obtained from the inhomogeneous

mean fluid temperature field, a criterion for scale separation in the gas-solid heat transfer

problem is proposed. In many cases, the scale separation assumption is not valid and it is found

that this assumption is only valid in dilute flow. Therefore, the local closure models that are

frequently used based on scale separation assumption in the continuum theories of multiphase

flow such as Eulerian-Eulerian two-fluid theory are not always valid in gas-solid flow. A non-

local closure model developed for this gas-solid heat transfer problem in Sun et al. (2015) can

overcome the failure of local closure models even though the scale separation assumption is not

valid.
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5.1 Introduction

A full description of multiphase flow provides far more information than practical appli-

cations need. Instead, statistical descriptions of multiphase flow are widely used to provide

information on macroscopic average quantities that are practical to engineers and designers.

Statistical approaches of multiphase flow (Drew and Passman (1998); Pai and Subramaniam

(2009)) resulting in continuum theories can be categorized based on (a) whether each phase

is represented using a random field (RF) or stochastic point process (SPP) description, (b)

whether each phase is represented in an Eulerian or Lagrangian reference frame, and (c) the

level of closure in the statistical theory (Subramaniam (2013)). The RF approach leads to the

widely used Eulerian-Eulerian two-fluid (TF) theory in its ensemble-averaged (Drew (1983);

Drew and Passman (1998)) or volume-averaged form (Anderson and Jackson (1967)), while the

SPP approach leads to the kinetic theory of multiphase flow (Brilliantov and Pöschel (2010);

Koch (1990)), Chapman-Enskog expansions (Chapman and Cowling (1953)), and other mo-

ment methods such as quadrature-based moment methods (Fox et al. (2008)).

The equations resulting from there continuum theories contain unclosed terms such as

average interphase momentum or heat transfer that need to be modeled. These unclosed

terms denoted generically as 〈U〉 (x, t) at a space-time location (x, t) are modeled in terms

of known flow statistics at the same space-time location generically denoted as 〈Q〉 (x, t) (in

general, 〈U〉 (x, t) = f (〈Q〉 (x, t))). For instance, the mean drag 〈F 〉 (x, t) is modeled as a

function f
(〈

u(f)
〉

(x, t) ,
〈

u(s)
〉

(x, t) , ...
)

in terms of local mean fluid velocity
〈
u(f)

〉
and

local mean particle velocity
〈
u(s)

〉
. These local closure models rely on the assumption of

scale separation. This scale separation assumption is analogous to the continuum hypothe-

sis in single phase (Batchelor (2000)) where the macroscale variation of hydrodynamic vari-

ables such as bulk density appears on scales far larger than the microscale (molecular size) or

mesoscale (range of interaction of molecules such as mean free path) (Subramaniam (2013)).

In the RF approach, the length scale of mean fields (macroscale) is assumed to be larger than

the length scale of higher order statistics such as the two-point density-density correlation

〈Iβ (x) Iβ (x + r)〉 (Sundaram and Collins (1999)), where Iβ (x) is an indicator function.ă In
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the SPP approach, the length scale of variation of the hydrodynamic variables such as the

average number density or the average particle velocity are assumed to be larger than the

length scale of higher order statistics such as particle pair correlation (Subramaniam (2013);

Stoyan et al. (1995); Stoyan and Stoyan (1995)).

Since local closure models form the basis of widely used multiphase flow simulation tech-

niques such as computational fluid dynamics (CFD) of two-fluid model (TFM) (Syamlal et al.

(1993)), CFD–discrete element method (DEM) (Zhou et al. (2010)), large eddy simulations

(LES)–DEM (Fox (2012)) etc, there are far-reaching implications of these scale separation

assumptions to the local closure models that are used in these simulation techniques. The

breakdown of scale separation in the multiphase flow context also implies that fluctuating

hydrodynamics are important. Note that these fluctuations are not the same as turbulent

fluctuations, which are a continuum phenomenon. The rigorous treatment of fluctuating hy-

drodynamics requires the solution of the density of these fluctuation that manifest in the pair

separation space.

Anderson and Jackson (1967)’s assumption that there exists a length scale over which is

much larger than individual particles averaging can be done is widely used in TFM. Similarly,

in the CFD–DEM simulations (Zhou et al. (2010)), local average used in CFD implies that the

average quantities such as fluid velocity in a computational grid cell is larger than a few particle

diameters. In multiphase flow models, the idea of local homogeneity of the mean fields is used

for instance in the local model for average heat transfer in the two-fluid context (Syamlal et al.

(1993)) which is 〈Qpf 〉 (x, t) = f
(〈
T (f)

〉
(x, t) ,

〈
T (s)

〉
(x, t) , ...

)
.

These assumptions on local closure models based on scale separation implicit in continuum

theories of multiphase flow have not been validated. Existing experiments and numerical sim-

ulations do not conclusively address the question of the validity of scale separation although

the formation of clusters in fluidized beds arising due to particle-fluid (hydrodynamic) and

particle-particle interactions indicate that scale separation may not exist. Capecelatro et al.

(2014, 2015) showed that clusters on the order of 10 − 100 particle diameters can form in LES-

DEM simulations of fully-developed fluidized bed. The evidence from other experiments such

as Cocco et al. (2010) support Capecelatro et al. (2014, 2015)’s findings by observing clustering
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formation with mean number of particles in a cluster over a range of 10 − 30 in fluidized bed

risers using high-speed particle imaging. This formation of clustering indicates that density-

density correlations or pair correlations have length scales on the order of cluster scales rather

than a few particle diameters.

The validity of these assumptions on scale separation can be ascertained by direct numer-

ical simulations such as PR-DNS approach (Tenneti and Subramaniam (2014)). In terms of

extending local closure models to account for nonlocal effects, Koch and Brady (1987b,a) found

that microscale transport (microscale mixing) affects the average scalar quantities (mesoscale

or macroscale) over short time scales, whereas this microscopic effect disappears after a suffi-

ciently long time has elapsed. They analytically solved the ensemble-averaged scalar transport

equation by imposing a constant average scalar gradient (Koch and Brady (1985)) and adding

point source/sink terms (Koch and Brady (1987a,b)). This finding implies that the scale sepa-

ration assumption strongly depends on the microscale transport process. However, these works

cannot verify scale separation. Therefore, the PR-DNS is used to capture detailed information

at the microscale (particle diameter) around particles. The information at the macroscale or

mesoscale (a few or more particle diameters) can be obtained from microscopic PR-DNS data

(Tenneti and Subramaniam (2014)). For instance, the macroscopic average quantities such as

average bulk (mixing-cup) fluid temperature obtained from PR-DNS results of flow past a fixed

bed of particles (Deen et al. (2012); Tenneti et al. (2013); Tenneti and Subramaniam (2014);

Tavassoli et al. (2013); Sun et al. (2015)) indicated that heating up or cooling down the fluid

by particles can occur on scale of a particle diameter in certain parameter ranges, thereby

precluding the separation of scales needed for local closure models based on the continuum

assumption in TFM or CFD-DEM.

The remainder of this paper is organized as follows. We give a brief description of physical

problems to validate the scale separation assumption in § 5.2 and the numerical method in §

5.3. In § 5.4 we analyze PR-DNS results and propose a criterion for ascertaining the validity

of the assumption. The solution for the failure of the scale separation assumption is discussed.

We summarize our findings and conclude in § 5.5.
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5.2 Problem description

In order to validate the scale separation assumption, we first choose a canonical heat trans-

fer problem of a freely evolving suspension of monodisperse spherical particles in a gas-solid

flow. Then we develop a criteria over a range of the parameter space by performing fixed

bed calculations in a gas-solid flow, which yield results that are close to freely evolving sus-

pensions for isothermal high Stokes number particles, but at considerably less computational

cost. The reason to choose this heat transfer problem is that in this gas-solid heat trans-

fer setup the fluid is heated up or cooled down by particles results in a non-uniform average

fluid temperature field, although the hydrodynamic problem is homogeneous (Tenneti et al.

(2013); Tenneti and Subramaniam (2014); Mehrabadi et al. (2015); Sun et al. (2015)). The

heat transfer problem is statistically inhomogeneous in the streamwise direction. Therefore,

scale separation can be verified by comparing the characteristic length scale of variation of

mean quantities such as average bulk fluid temperature (see Fig. 5.1(a)) with a characteristic

length scale from higher order statistics such as particle pair correlation or Eulerian two-point

correlation of temperature and velocity (see Sun et al. (2016)). A summary of the characteris-

tic length scales that are normally used in gas-solid heat transfer is listed in Table 5.1. In this

work, we only discuss the validity of the scale separation assumption by using the scales in fluid

phase. The other scales such as the particle pair correlation ℓg(r) are discussed in somewhere

else (Mehrabadi et al. (2015)).

Table 5.1: The characteristic length scale used for heat transfer in gas-solid flow. ℓ〈φm〉 and
ℓ〈φ(f)〉 represent the characteristic length scale of mean fluid temperature and bulk fluid temper-

ature, respectively. ℓuφ and ℓuθ represent the characteristic length scale of the cross-correlation
of fluid velocity and fluid temperature, and the cross-correlation of fluid velocity and scaled
fluid temperature, respectively. ℓ〈φ(s)〉 represents the characteristic length scale of mean solid

temperature and ℓg(r) represents the characteristic length scale of the particle pair correlation.

Fluid phase Solid phase

Mean quantities scales ℓ〈φm〉 or ℓ〈φ(f)〉 ℓ〈φ(s)〉
Two-point correlation scales ℓuφ or ℓuθ ℓg(r)

The continuity, momentum and fluid temperature equations governing this gas-solid heat
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transfer problem in the absence of free-convection and radiation are

∂ui

∂xi
= 0, (5.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρf
gi + νf

∂2ui

∂x2
j

, (5.2)

and

ρfcpf

[
∂T

∂t
+ uj

∂T

∂xj

]
= kf

∂2T

∂x2
j

, (5.3)

respectively, where νf is the fluid-phase viscosity, gi is the pressure gradient, kf is the fluid

thermal conductivity, ρf is the fluid-phase density, cpf is the specific heat capacity in the fluid

phase. For a freely evolving suspension, the particles move under the influence of hydrodynamic

and collisional forces, and are represented in a Lagrangian frame of reference at time t by

{X(i)(t), V(i)(t), i = 1...Np}, with X(i)(t) and V(i)(t) being the position and velocity of

the ith particle, respectively, and Np being the total number of particles. The position and

translational velocity of the ith particle evolve according to Newton’s second law as

dX(i)(t)

dt
= V(i)(t), (5.4)

m
dV(i)(t)

dt
= B + F

(i)
h (t) +

Np∑

j=1
j 6=i

F
(c)
ij (t), (5.5)

where B is any external body force that is zero in this case, F
(i)
h is the hydrodynamic force

(calculated from the velocity and pressure fields at the particle surface) and F
(c)
ij is the contact

force on the ith particle as a result of collision with jth particle. More details about PR-

DNS of freely evolving suspension of particles using the PUReIBM approach can be found

in Tenneti et al. (2010) and Mehrabadi et al. (2015).

5.3 PR-DNS approach

The gas-solid heat transfer problems described in Section 5.2 can be solved using our PR-

DNS approach, which is called the Particle-resolved Uncontaminated-fluid Reconcilable Im-

mersed Boundary Method (PUReIBM) (Garg et al. (2010b); Tenneti et al. (2010, 2011, 2013);
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Tenneti and Subramaniam (2014)). Complete details about solving governing equations and

implementing boundary conditions by PUReIBM for a fixed bed simulation can be found in

Tenneti et al. (2011, 2013). For a freely evolving suspension simulation in a gas-solid flow,

Tenneti et al. (2010) developed a different simulation setup that performs the PR-DNS in an

accelerating reference frame to overcome a difficulty in simulating a freely evolving suspension

in the laboratory frame with periodic boundary conditions. The equations of motion in Eqs. 5.4

and 5.5 are solved in an accelerating frame of reference that moves with the mean velocity of

the particles. The advantage of this setup is that the desired mean flow Reynolds number is

specified as an input parameter so that we are able to solve the problem with reasonable time

steps that resolve the flow. Here, we briefly show the formulation for the gas-solid heat transfer

in a freely evolving suspension.

Since the particles are accelerating in the laboratory frame E, the new reference frame E

moving with the mean particle velocity is a non-inertial frame of reference. Let the velocity

and acceleration of with E respect to the laboratory frame E be V(t) and A(t), respectively.

The transformation rules between the two frames are:

X(t̄) = X(t) −
ˆ t

0
V(t′)dt′, (5.6)

for position vectors (such as particle center location), and

U(x̄, t̄) = U(x, t) − V(t), (5.7)

for the fluid velocity field, and

φ(x̄, t̄) = φ(x, t), (5.8)

for the scalar field (Pope (2000)). Then the governing equations in PR-DNS approach for the

mass, momentum and scalar transport in the accelerating frame are

∂ui

∂xi
= 0, (5.9)
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∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρf
gi + νf

∂2ui

∂x2
j

−Ai + Isfui
, (5.10)

and

ρfcpf

[
∂φ

∂t̄
+ uj

∂φ

∂x̄j

]
= kf

∂2φ

∂x̄2
j

+ Isfφ, (5.11)

where fui
and fφ are the immersed boundary (IB) forcing terms for the velocity and scalar

field, respectively (Tenneti et al. (2011, 2010)), and φ is the non-dimensional fluid temperature

as

φ(x, t;ω) =
T (x, t;ω) − Ts

〈Tm,in〉 − Ts
. (5.12)

where Ts is the solid temperature, 〈Tm,in〉 is the ensemble-averaged inlet bulk fluid temperature

that is obtained at axial location x|| = 0 in terms of the bulk fluid temperature

Tm(x||, t;ω) =

´

Af
(uT ) · e‖dA
´

Af
u · e‖dA

, (5.13)

e‖ is the unit vector along the streamwise direction, Af is the area occupied by the fluid in a

plane perpendicular to the streamwise direction, and the ensemble-averaged quantities 〈Q〉 is

obtained from 〈Q〉 (x||, t) =
´

ω∈ΩQ(x||, t;ω) dPω , Pω is the probability of a particle configuration

ω occurring. The momentum equation in Eq. 5.10 in the accelerating frame has an acceleration

term compared to the original momentum equation in Eq. 5.2. However, the formulation of

the scalar equation in Eq. 5.11 for a freely evolving suspension is the same as that in fixed

particle assembly simulation in Eq. 5.3. Note that in the accelerating frame, the velocity in the

convection term is the relative velocity between the accelerating frame and fluid obtained from

Eq. 5.10. Therefore, we straightforwardly use the same method for the fixed particle assembly

simulation to solve the fluid temperature equation in Eq. 5.11 without revising the formulation

in Tenneti et al. (2013).

In order to solve the above fluid-phase equations in Eqs. 5.10 and 5.11, the same boundary

conditions are imposed as those used in the fixed bed simulations (Tenneti et al. (2011, 2013)).

The no-slip and no-penetration boundary conditions are used for the particle velocity, and

the isothermal boundary condition (constant particle temperature) is used for the particle
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temperature. A thermal self-similarity boundary condition is imposed at the domain boundary

to ensure that the flow is thermally fully-developed (Tenneti et al. (2013)). In order to solve

the equations of motion in Eqs. 5.4 and 5.5, particle-particle interactions are treated using a

soft-sphere model in a DEM solver (Tenneti et al. (2010)).

5.4 Results and discussions

Recalling the setups in § 5.2, a key feature of the gas-solid flow with heat transfer in freely

evolving suspension is the variation or inhomogeneity of mean fluid temperature in the stream-

wise direction which arises from fluid heating or cooling by the particles. The inhomogeneous

fluid temperature field is solved by imposing thermal self-similarity boundary conditions in

the PR-DNS approach (Tenneti et al. (2013)). Since the macroscopic average quantities are

computed from the PR-DNS results of the temperature field in the microscale, the scale sepa-

ration assumption can be verified. Note that under certain conditions (Pai and Subramaniam

(2009)) there is an equivalence between the corresponding levels of closure in the RF and SPP

approaches such that Pai and Subramaniam (2009) established the relations between the RF

and SPP descriptions at the single-point probability density function (PDF) level of closure.

Therefore, in the following discussions we only focus on the validation of the scale separation

assumption in the Eulerian-Eulerian TF theory of the RF approach in its ensemble-averaged

sense.

5.4.1 Length scale for average bulk fluid temperature

We first perform a simulation of freely evolving suspension of particles at a mean slip

Reynolds number of 20 and solid volume fraction of 0.1 with the solid/fluid density ratio of

100. We initialize the velocity field, particle velocities and locations from a hydrodynamic

solution of the freely evolving suspension in which the hydrodynamic quantities such as drag

and granular temperature have reached steady-state (Mehrabadi et al. (2015)). The velocity

and temperature solutions are fully coupled in the freely evolving suspension simulation.

Figure 5.1(a) shows the variation of the ensemble-averaged non-dimensional bulk fluid tem-

perature obtained by averaging over time along axial location. The ensemble-averaged non-
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dimensional bulk fluid temperature is a key variable to quantify the inhomogeneous variation

of fluid temperature field (instead of the mean fluid temperature due to less variation of bulk

fluid temperature (see Sun et al. (2015))). The ensemble-averaged non-dimensional bulk fluid

temperature 〈φm〉 is obtained based on the non-dimensional bulk fluid temperature along the

axial direction x|| is

(a) (b)

Figure 5.1: (a) Variation of average non-dimensional fluid temperature 〈φm〉 with non-
dimensional axial location x‖/D at Rem = 20 and εs = 0.1. The triangles represent the average
fluid temperature obtained from 5 snapshots in freely evolving suspension chosen at different
times. The circles represent the average fluid temperature obtained in a fixed bed of particles.
The error bars represent the 95% confidence over five realizations or snapshots of particle con-
figurations. (b) Time history of average Nusselt number {Nu}V in time (non-dimensional time
t̂ = t |〈W〉| /D, where |〈W〉| is the mean slip velocity) at Rem = 20 and εs = 0.1 in a freely
evolving suspension of particles. The solid line represents the volume-averaged Nusselt number
obtained in freely evolving suspension. The symbol represents the average Nusselt number
obtained in a fixed bed of particles and the error bar represents the 95% confidence over five
realizations of particle configurations.

φm(x||, t;ω) =
Tm(x||, t;ω) − Ts

〈Tm,in〉 − Ts
. (5.14)

Note that we name the ensemble-averaged non-dimensional bulk fluid temperature as the av-

erage bulk fluid temperature for short. For the freely evolving suspension simulation five

snapshots are chosen at different times (for non-dimensional time is greater than 80 in Fig.

5.1(b)) and then averaged to obtain 〈φm〉. As Fig. 5.1(a) shows, the average bulk fluid temper-
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ature in the freely evolving suspension simulation decays rapidly with axial location. Within

a length of 9D, 〈φm〉 decreases to about 20% of its inlet value. The decay rate of 〈φm〉 can

be obtained by an exponential decay model for average bulk fluid temperature (see Chapters 3

and 4) expressed as

〈φm〉 (x||) = exp
(
−λx||/D

)
, (5.15)

where the coefficient λ determines the rate of decay of the average bulk fluid temperature with

non-dimensional axial distance x||/D. By fitting the PR-DNS data, the decay rate is obtained

about λ = 0.17 in this dilute flow. Based on the decay rate, we can define a characteristic

length scale ℓ〈φm〉 = D/λ that characterizes the variation of macroscopic average quantities

such as average bulk fluid temperature (also see Table 5.1).

In order to quantify this characteristic length scale over a range of a parameter space, a

parametric study for this length scale can be performed easily in fixed particle bed simulations

(Tenneti et al. (2013); Sun et al. (2015)) instead of the freely evolving suspension simulations.

Therefore, we compare the results obtained from freely evolving suspension simulation with

that of a fixed bed simulation for the same Reynolds number and solid volume fraction to see if

fixed bed simulations are the good approximation to the freely evolving suspension simulations.

Fig. 5.1(a) shows that the moving particles (freely evolving suspension) result in a slight smaller

length scale D/λ = 1/0.17 compared with the fixed particles cases D/λ = 1/0.13. This finding

indicates that moving particles result in a faster decay of the average bulk fluid temperature

field in the streamwise direction, which is physically reasonable. This could be because the

motion of particles results in more mixing that is more effective in cooling down the fluid. It is

also possible that particles that are colder than fluid move around to cool down the nearby fluid

in the freely evolving suspension, relative to the fixed bed. We note that this small difference

that is seen for isothermal particles could be significantly increased if the particles have lower

thermal inertia and if their temperature changes significantly with time. In addition, analogous

to the drag force in the hydrodynamic problem (Tenneti et al. (2010); Mehrabadi et al. (2015)),

the average Nusselt number that is an important output to quantify heat transfer in gas-solid

flow (Sun et al. (2015)) is also computed in both simulations. Fig. 5.1(b) shows the time history

of the volume-averaged Nusselt number {Nu}V (t) = 1
L

´ L
0 Nu(x||, t)dx||, where L is the length
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of the computational box, Nu(x||, t) is the cross-sectional average Nusselt number (Sun et al.

(2015)). The volume-averaged Nusselt number decays very quickly at early time and then

smoothly tends to a steady value. The difference in the average Nusselt number between the

fixed particle assembly (the circle) and freely evolving suspension simulations (the solid line)

is about 10%.

Based on these results from PR-DNS simulations of freely evolving suspension, we find that

the statistics of the velocity field and temperature field obtained from freely evolving suspension

are not very different from the fixed bed simulation results. It is plausible that a fixed assembly

of isothermal particles is a good approximation to freely evolving suspensions with isothermal

high-Stokes number particles. Therefore, we use the data obtained from fixed bed simulations

to present the length scale ℓ〈φm〉 = D/λ as below and develop a criterion for scale separation

in the next section.

Figure 5.2(a) shows the decay rate λ obtained from the PR-DNS data over a range of

mean slip Reynolds numbers Rem (1 − 100) and solid volume fractions εs (0.1 − 0.5) for a

Prandtl number of 0.7. It indicates that for a fixed solid volume fraction, the characteristic

length scale ℓ〈φm〉 = D/λ increases with increasing Reynolds numbers. For a fixed Reynolds

number, the length scale reduces more in a dense flow than in a dilute flow. This is because

the heat transfer between particle and fluid phases increases with higher solid volume fraction.

Using this characteristic length scale ℓ〈φm〉, we can collapse of the PR-DNS data for average

bulk fluid temperature 〈φm〉 with scaled axial distance λx||/D for selected mean slip Reynolds

number and solid volume fraction values as shown in Figure 5.3. All the values of 〈φm〉 over

the entire range of Rem and εs simulated lie in the range between the symbols for the cases

(Rem, εs) = (1, 0.3) and (5, 0.5). For values of scaled axial distance λx||/D ≤ 4 from the

inlet plane, the average bulk fluid temperature collapses perfectly on to the straight line in the

log-linear plot, indicating that the PR-DNS data verifies exponential decay of 〈φm〉. Therefore,

although the fluid cools down at different rates (depending on the solid volume fraction and

mean slip Reynolds number), as one proceeds down the particle assembly in the streamwise

direction, this exponential decay law allows us to develop a criterion for departure from local

homogeneity of the average bulk fluid temperature using the characteristic length scale ℓ〈φm〉.
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(a) (b)

Figure 5.2: (a) The decay rate λ obtained with PR-DNS data for a range of solid volume
fraction and mean slip Reynolds number. Symbols are averages from PR-DNS data using 5
independent realizations. The horizontal short dash-dot line at λ = 0.25 indicates the boundary
that separates the cases satisfying the assumption of local homogeneity (λ < 0.25 below the
line) from those that do not (λ > 0.25 above the line). (b) Dependence of the characteristic
length scale for average bulk fluid temperature ℓ〈φm〉 on mean slip Reynolds number Rem and
Prandtl number Pr for a solid volume fraction of 0.1 based on the criterion ℓ〈φm〉 > ℓu‖θ = 4D.
The triangle symbols represent the cases with ℓ〈φm〉 > ℓu‖θ = 4D and the square symbols
represent the cases with ℓ〈φm〉 > ℓu‖θ = 4D. The dashed line represents the critical Péclet
number Pecr = 7 defined based on the particle diameter.

5.4.2 Criterion for validity of scale separation assumption

In the EE TF theory, the mean fluid temperature as well as the mean solid temperature

are assumed to be spatially uniform or locally homogeneous. This assumption underlying

the continuum formulation of the TFM is valid if there exists a scale separation between

macroscales and microscales. A macroscopic length scale ℓmacro can be defined as the charac-

teristic length scale of variation of the mean fluid temperature by ℓmacro = 〈T (f)〉/
∣∣∣∇〈T (f)〉

∣∣∣

(Tenneti and Subramaniam (2014)), where
〈
T (f)

〉
= 〈If (x, t)T (x, t)〉 / 〈If (x, t)〉 is the ensemble-

averaged fluid temperature. A characteristic length scale for the microscopic variation denoted
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Figure 5.3: Variation of average bulk fluid temperature along scaled axial distance for selected
Reynolds numbers and volume fractions with 5 independent realizations. The other cases lie
within the limits of the symbols in this figure and are not shown for clarity.

by the Eulerian two-point cross-correlation length scale ℓu‖θ
1 (see Table 5.1) corresponds to

〈
Ifu

′′
||(x)θ′′(x + r)

〉
, where u‖ is the streamwise velocity and θ′′ = θ −

〈
θ(f)

〉
is the scaled

temperature fluctuation in Chapter 4. Note that in an inhomogeneous temperature field, a

scaled fluid temperature θ that is scaled by the bulk fluid temperature Tm is used to calculate

the cross-correlation instead of fluid temperature itself (Sun et al. (2015)). This is because the

θ field is homogeneous and provides the data of the entire computational domain for statistical

estimate instead of computing ℓu‖φ from less data of cross-sectional plane of the computational

domain. From PR-DNS of flow past a fixed bed of particles in Sun et al. (2015), it is found

that ℓu‖θ ∼ 3 − 4D . In other words, if ℓmacro ≫ ℓu‖θ, then the length scale ℓmacro of variation

of macroscale quantities such as mean fluid temperature is significantly greater than the char-

acteristic microscale associated with the characteristic length scale ℓu‖θ. Note that in TF CFD

simulations (Syamlal et al. (1993)) the mean fluid temperature is used to represent the mean

value in a computational grid cell whose characteristic length is at least a few particle diame-

ters. Therefore, if scale separation holds and the mean temperatures are locally homogeneous

then local closure models such as model for gas-solid heat transfer (Syamlal et al. (1993)), are

valid in the TF theory and the CFD simulations should converge for grid sizes on the order of

1Other definitions could include the length scale ℓθθ of the scaled temperature auto-covariance and this yields
similar estimates.
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a few particle diameters.

In the heat transfer problems of freely evolving suspension and fixed bed of particles, the

macroscale length scale ℓmacro can be represented by the characteristic length scale ℓ〈φm〉. The

magnitude of the length scale ℓ〈φm〉 relative to ℓu‖θ determines whether the scale separation

assumption is valid, or not. Note that the length scale ℓu‖θ corresponding to the temperature-

velocity two-point correlation is the physically relevant length scale which determines whether

there is scale separation, and it is independent of the length of the bed. As noted earlier, ℓu‖θ

denotes the length scale over which the average fluid temperature is required to be uniform

or homogeneous. Then it is clear that in the TF theory if the uniform length scale ℓ〈φm〉 =

D/λ ≥ ℓu‖θ = 4D then the assumption of locally homogeneous mean fluid temperature or scale

separation is valid, whereas if ℓ〈φm〉 < ℓu‖θ then it is not.

Based on this criterion ℓ〈φm〉 ≥ ℓu‖θ = 4D , one can identify the region in the parameter

space of solid volume fraction and Reynolds number (or Péclet number) that satisfies the

assumption of local homogeneity in Fig. 5.2(a). The horizontal line corresponding to λ = 0.25

in Fig. 5.2(a) demarcates the region where scale separation holds (λ < 0.25, below the line),

and the region where it does not hold (λ > 0.25, above the line). Only the cases with low solid

volume fraction and high Reynolds number (εs = 0.1 and Rem ≥ 7, εs = 0.2 and Rem ≥ 20,

εs = 0.3 and Rem ≥ 50) satisfy the criterion of local homogeneity of the average bulk fluid

temperature or scale separation. For these cases, local closure models in the TF theory are

valid. However, with increasing solid volume fraction and decreasing Reynolds number, λ

increases beyond the threshold value as shown in Fig. 5.2(a). For these cases, the average bulk

fluid temperature is inhomogeneous on the length scale ℓu‖θ ≈ 3 − 4D and drops much more

than 60% that is corresponding to 〈φm〉 for non-dimensional axial location λx‖/D > 1 in the

inset of Fig. 5.3. In these cases there is no scale separation between the macroscopic variation

of the average bulk fluid temperature and the microscopic variation on the scale ℓu‖θ.

For a fixed solid volume fraction we can also differentiate scale separation cases from non-

scale separation ones. Fig. 5.2(b) shows the variation of the length scale of average bulk fluid

temperature ℓ〈φm〉 for a solid volume fraction of 0.1 for different mean slip Reynolds number and

Prandtl number values. Naturally from the evolution equation for the mean fluid temperature
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we expect its decay length scale to only depend on the Péclet number, and not on the Reynolds

and Prandtl numbers independently. The triangles represent cases with ℓ〈φm〉 ≥ ℓu‖θ = 4D

and the squares represent the cases with ℓ〈φm〉 < ℓu‖θ = 4D. The dashed curve represents a

constant critical Péclet number Pecr = 7, confirming our expectation that it is only the Péclet

number that determines the length scale. For Pem < Pecr = 7 (Pem = RemPr) the average

fluid temperature decays dramatically over ℓu‖θ = 4D and no scale separation assumption can

be hold. Therefore, the parametric study again confirms that there exists a criterion for scale

separation.

In the absence of scale separation, fluctuations become important and the equations of

fluctuating hydrodynamics need to be considered. In other words, due to high fluid cooling (or

heating) the bulk fluid temperature can vary significantly over the length scale ℓu‖θ ≈ 3 − 4D,

and consequently local closure models cease to be valid. The existing TF model for average

gas-solid heat transfer will need to be modified to account for the variation in the bulk fluid

temperature on such small scales.

5.4.3 Nonlocal closure model

Since local closure models such as existing TF model for average gas-solid heat trans-

fer are not valid in dense flow, one has to develop nonlocal closure models (analogous to

Koch and Brady (1987b,a)) to account for the significant variation of mean quantities over

small scales. In the inhomogeneous fluid temperature field of gas-solid heat transfer, the ex-

isting TF model for average gas-solid heat transfer (Syamlal et al. (1993)) that can be derived

using volume-averaging (see Sun et al. (2015) for details) as

q
′′′

T F =
6kfεs 〈Nu〉

D2



〈
T (s)

〉
−
〈
T (f)

〉
 (5.16)

(〈Nu〉 is the average Nusselt number) assumes the homogeneity of the fluid temperature field

over the characteristic length scale ℓu‖θ. The expression
〈
T (f)

〉
= 1

V

´

V

〈
T (f)

〉
(x) dV (V is the

control volume) in Eq. 5.16 does not consider the local large variation of mean fluid temperature

along the streamwise direction in which the mean fluid temperature
〈
T (f)

〉
(x) is statistically

inhomogeneous (see Section 5.2). Sun et al. (2015) has resolved this issue by adding up local
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gas-solid heat transfer over a length in the streamwise direction. Based on the same setup in

Section 5.2, Sun et al. (2015) has proposed an consistent TF (cTF) closure model for average

gas-solid heat transfer as

q
′′′

cT F =
6πεskf 〈Nu〉
4D2

〈
θ(f)

〉
(〈
T (s)

〉
−
〈
T (f)

〉)
. (5.17)

The difference between TF model and cTF model is that the cTF model is derived by integrating

the local gas-solid heat transfer expression in the cross-sectional plane over a length as

〈
q

′′′

φ

〉 (
x||

)
=

6πεskf 〈Nu〉
4D2

〈φ(f)〉
(
x||

)

〈
θ(f)

〉 (5.18)

instead of volume-averaging of the fluid temperature. Note that
〈
θ(f)

〉
is only a function of

the Reynolds number and solid volume fraction due to the homogeneity of the θ field. The

detailed derivation of Eq. 5.17 can be found in Sun et al. (2015).

The effect of the scale separation assumption on the closure models can be seen by the

comparison of the TF model and the cTF model as shown in Figure 5.4. This figure shows

the comparison of the average volumetric interphase heat transfer rate from this TF model

and cTF model with the PR-DNS data over the decay rate or the characteristic length scale

ℓ〈φm〉 = D/λ for two solid volume fractions. In dilute flow (εs = 0.1), the maximum value of the

difference between the average volumetric interphase heat transfer rate from PR-DNS q
′′′

DNS (see

Sun et al. (2015)) and q
′′′

T F is about 10% whereas the maximum value of the difference between

q
′′′

DNS and q
′′′

cT F is about 4%. It is worth noting that the maximum value of the difference using

TF model is in the region that the scale separation assumption is not valid. Over a range of the

length scale ℓ〈φm〉, we find that the difference between the cTF model and the PR-DNS data

is small compared to the difference between the TF model and the PR-DNS data. In dense

flow (εs = 0.5), the similar behavior has been observed. With increasing the length scale or

decreasing the decay rate λ, the difference between q
′′′

DNS and q
′′′

T F decreases even thought the

scale separation assumption does not hold for all the cases. The maximum of the difference,

which is about 11% in cTF model, is far smaller than that in TF model. This implies that

for all the cases the cTF closure model that uses the bulk fluid temperature difference is more
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accurate than the TF model. This cTF model can be used in TF CFD simulations even though

the assumption of the scale separation does not hold.

(a) (b)

Figure 5.4: Comparison of the average volumetric interphase heat transfer rate from the TF
model and the cTF model with PR-DNS data over the decay rate or the characteristic length
scale ℓ〈φm〉 for the solid volume fraction of (a) εs = 0.1 and (b) εs = 0.5. The circles represent
the data obtained from the TF model and the triangles represent the data from the cTF model.

5.5 Conclusion

We revisit the scale separation assumption in continuum theories of multiphase flow that

underlies the validity of local closure models and point out that this assumption needs to be

validated. Using high fidelity PR-DNS, gas-solid heat transfer in a freely evolving suspension

of particles is chosen to verify the scale separation assumption. Fixed bed simulations, whose

results are very close to those of freely evolving suspensions for isothermal high Stokes number

particles, are used to perform parametric studies develop a criteria for scale separation. The

average bulk fluid temperature from PR-DNS data decays exponentially over a characteristic

length scale D/λ, where λ is the decay rate of the average bulk fluid temperature. An expo-

nential decay model for the average bulk fluid temperature is used to verify the assumption of

scale separation implicit in the continuum formulation of two-fluid equations by checking the

local homogeneity of the average bulk fluid temperature at the microscale (on the order of 3−4

particle diameters). The length scale D/λ defines the scale of inhomogeneity of the average

bulk fluid temperature and is used to develop a criterion that ensures the validity of the local
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homogeneity assumption or scale separation in the TF theory, model or CFD simulation. For

(Pem ≥ 7, εs = 0.1), (Rem ≥ 20, εs = 0.2) and (Rem ≥ 50, εs = 0.3), the length scale over which

the average bulk fluid temperature decays is greater than 3 ∼ 4 particle diameters, and the

scale separation assumption underlying local closure models in the TF theory are valid. The

criterion for the validity of scale separation also holds for freely evolving suspensions since the

fixed assembly of isothermal particles is a good approximation to freely evolving suspensions

with isothermal high-Stokes number particles. An consistent TF model for average gas-solid

heat transfer has been proposed to resolve the situation that scale separation does not hold. Ac-

curate prediction of gas-solid flows where scale separation does not hold requires consideration

of fluctuation hydrodynamics and the development of closure models.
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CHAPTER 6. TEMPERATURE FLUCTUATIONS IN GAS-SOLID

FLOW

This chapter is a manuscript titled “Temperature fluctuations in gas-solid flow” that is

under preparation.

In gas-solid flows, mixing of chemical species and their reactions both in the gas phase

and at particle surfaces are important in industrial applications. Current computational fluid

dynamics (CFD) closure models represent only the mean species mass fraction and mean gas-

phase temperature that are used to determine Arrhenius-type reaction rates that are highly

non-linear in terms of temperature. However, it is well known from the studies of single-

phase turbulent reacting flow that the reaction rate evaluated at the mean temperature is a

poor model for the average reaction rate in Arrhenius-type reactions due to the high level of

temperature fluctuations resulting from turbulence. Therefore, transport of the probability

density function (PDF) of composition (species mass fraction and temperature) is effectively

used to model such turbulent reacting flows (Pope (1985); Haworth (2010)).

The purpose of this chapter is to study gas-phase temperature fluctuations (relevant to

mixing) in gas-solid flow using the PDF transported approach and PR-DNS approach. The

temperature variance is used to quantify the level of the temperature fluctuations in gas-solid

flow. The transport equation for temperature variance is derived and its unclosed terms are

identified. Then PR-DNS of a steady flow past a homogeneous fixed bed of particles with heat

transfer is used to quantify the temperature variance in gas-solid heat transfer. The mixing

time scale used in closure models for the average temperature dissipation rate is quantified

using PR-DNS data. Since the single-point PDF of fluid temperature provides closure of the

mean reaction rate in gas phase in reacting gas-solid flow, the PDF of fluid temperature is

extracted from PR-DNS data. The phase-conditioned single-point velocity-composition PDF
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transport equation that can be used to obtain the temperature PDF is derived, and its unclosed

terms are identified. Modeling efforts for gas-solid reacting flow are discussed. Further model

development is needed to model the interphase transfer terms in the velocity-composition PDF

transport equation and validate closure models for gas-solid reacting flow.

6.1 Introduction

Mixing of chemical species and their reactions both in the gas phase and at the particle

surfaces is important in many gas-solid flow applications such as biomass fast pyrolysis that also

involves gas-phase reactions. Multiphase computational fluid dynamics (CFD), in which aver-

aged equations for conservation of mass, momentum, energy are given for each phase with cou-

pling terms representing the interphase interactions, are increasingly being used for simulations

of these reacting gas-solid flow (Halvorsen et al. (2003)). Generally, the average chemical reac-

tion source term in the averaged energy equation is simply assumed to be 〈Sφα
(φ)〉 = Sφα

(〈φ〉)

for modeling reacting flow in CFD simulations (Fox (2003)), where the composition φ repre-

sents the species mass fraction (Y α) or enthalpy (cPT ) (Syamlal et al. (1993)), and Sφα
is the

chemical reaction source term that is a function of reaction rate vector that is formed by reac-

tion rate constants. However, it is well known from single-phase reactive turbulence that the

reaction rate evaluated at the mean temperature is a poor model for the average reaction rate

in Arrhenius-type reactions due to the high level of temperature fluctuations resulting from

turbulence.

The level of the mixing of scalars (chemical species) also depends on the intensity of scalar

fluctuations. Scalar fluctuations arise from velocity fluctuations that in turn arise from different

mechanisms in gas-solid flow. In single-phase turbulence, the level of velocity fluctuations

results from the intensity of turbulence (Pope (2000)). However, in gas-solid flow the gas-

phase velocity fluctuations can arise from turbulence inherent in the gas-phase, or they can

be generated by wakes resulting from the interaction of particles with the mean slip velocity

between the gas and solid phases. The second mechanism can generate gas-phase velocity

fluctuations even in laminar gas-solid flow and these have been termed pseudo-turbulent velocity

fluctuations in Mehrabadi et al. (2015).
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In gas-solid flow, the studies of the pseudo-turbulent velocity fluctuations in fixed particle

beds and freely evolving suspensions (Mehrabadi et al. (2015)) have shown that the level of

these fluctuations is a significant fraction of the kinetic energy associated with the mean slip

velocity. Similarly, in a gas-solid flow with heat or mass transfer, the cross correlation between

temperature and velocity fluctuations (see Chapter 4) cannot be neglected, especially in dense

flows. Thus, pseudo-turbulent velocity fluctuations enhance mixing and heat/mass transfer

(see Chapters 3 and 4).

Scalar fluctuations have been quantified by the scalar variance that is used to identify the

mixing time scale in single-phase turbulence (Pope (2000); Fox (2003)). As in single-phase

turbulence, the time scale for scalar mixing is defined as τφ = kφ/εφ, where kφ and εφ represent

the scalar variance and the scalar dissipation, respectively. The scalar mixing time scale τφ

is proportional to the turbulence time scale, such as τφ = τ/Cφ, where τ = ke/εe and Cφ is

a constant. Here ke represents the turbulent kinetic-energy velocity fluctuation and εe is the

dissipation rate of ke in Pope (2000) and Fox (2003). Different values of Cφ have been reported

in the literature reviewed by Haworth (2010). However, in a gas-solid flow, the mixing time

scale has not been reported. In this work, the mixing time scale in gas-solid flow is quantified

for the case of steady flow past a fixed bed of particles with heat transfer. It is worth noting that

due to the presence of the solid phase, there exist other time scales related to the characteristic

length scale of the solid phase. For instance, in gas-solid heat transfer, the molecular time

scale τφmol
∼ D/αf (where D is the particle diameter, and αf is the thermal diffusivity) is

used to determine the importance of thermal diffusion in gas-solid flow. These time scales

are expected to be used to develop mixing models in gas-solid flow as those in single-phase

turbulence (Haworth (2010); Fox (2003); Celis and da Silva (2015)).

Although the scalar variance charaterizes scalar fluctuations in reacting flows, the mean

chemical reaction rate is not closed at this level. However, if the single-point scalar probably

density function (PDF) is known then the mean chemical reaction rate in the gas phase is

closed. The scalar variance that is used to compute the mixing time scale can be computed

from PDF as a second moment, since the scalar PDF contains statistical information of all

moments such as in single-phase turbulence (Pope (2000); Haworth (2010)). Recent studies
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by several authors (Pozorski and Minier (1999); Zhu et al. (2000); Minier and Peirano (2001);

Peirano and Minier (2002); Carrara and DesJardin (2006, 2008); Vegendla et al. (2009)) have

extended the transported PDF approach to two-phase flows. Analogous to the derivation of

Pope (1985) for the single-point velocity-composition PDF transport equation in single-phase

turbulence, Pai and Subramaniam (2009) derived the phase-conditioned single-point velocity

PDF transport equation in two-phase flow.

Unlike the phase-conditioned PDF of velocity-composition in two-phase flow, the single-

phase velocity-composition PDF is well studied (Pope (1985); Fox (2003)). In single-phase

flow, mixing and fluid acceleration terms in the single-point velocity-composition PDF transport

equation need closure models. However, in two-phase flow, due to the existence of phase inter-

faces, there are interphase transfer terms of mass, momentum and energy that also appear in the

phase-conditioned PDF transport equation (Minier and Peirano (2001); Carrara and DesJardin

(2006, 2008); Zhu et al. (2000); Pai and Subramaniam (2009)). These interphase terms also

need closure models since the phase-conditioned PDF does not contain statistical information

pertaining the interface. Just as in the case of the single-point PDF there is no length-scale

information (Pope (1985); Fox (2003)), and in particular information concerning the charac-

teristic length scale between two solid surfaces is absent. Although a two-point (both points

represent the location) PDF contains statistical information of characteristic length scale, the

two-point PDF is not the focus of this work.

To solve the PDF transport equation, closure models for unclosed terms that appear in the

PDF transport equation (see Eq. 6.16) need to be given. In single-phase flow, the unclosed

mixing and fluid acceleration terms in the composition PDF transport equation are normally

modeled by the interaction by exchange with the mean (IEM) models (Fox (2003)) and a

gradient-diffusion model that introduces a turbulent diffusion term (Carrara and DesJardin

(2006, 2008)), respectively. However, in two-phase flow, in addition to the unclosed mixing and

fluid acceleration terms, the interphase transfer term in the single-point phase-conditioned PDF

transport equation (Pai and Subramaniam (2009)) also needs to be modeled. Vegendla et al.

(2009) modeled interphase mass transfer term in the two-point composition PDF transport

equation in terms of mass transfer coefficient and concentration difference between solid and
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gas phases. Although single-phase closure models (Vegendla et al. (2009)) have been extended

to model the unclosed terms of the PDF transport equation in gas-solid flow and provided the

reasonable results, the extension of single-phase closure models needs to be validated.

In order to validate and improve the closure models for the PDF transport equation, direct

numerical simulation (DNS) has been widely used to gain a better understanding of the dynam-

ics and to provide reference data for test cases. Single-phase DNS is used to provide DNS data

and compare with the results of the PDF approaches (Pope (2000); Haworth (2010)). Similar

to single-phase DNS, particle-resolved DNS (PR-DNS) for two-phase flow that fully resolves

the droplet or particle by imposing boundary conditions at each particle or droplet’s surface

can be also used to develop closure models. In this work, we will extract the temperature PDF

in gas-solid flow from PR-DNS data to understand the behavior of the temperature PDF in

dilute and dense flows.

The rest of the chapter is organized as follows. In Section 6.2, we derive the temperature

variance transport equation and quantify the temperature variance in a gas-solid heat transfer

problem and mixing time scale that is used in closure models for gas-solid flow is quantified

using the PR-DNS data. In Section 6.3, we extract the PDF of fluid temperature from PR-

DNS data for different solid volume fractions. In Section 6.4, the phase-conditioned single-point

velocity-composition PDF transport equation is derived and its unclosed terms are identified.

The modeling efforts for these unclosed terms in the PDF transport equation are discussed.

Finally, the principal findings are summarized in Section 6.5.

6.2 Temperature variance

6.2.1 Temperature variance equation

Since the scalar variance characterizes scalar fluctuations, the transport equation for scalar

variance in two-phase flow is important to understand the evolution of scalar fluctuations. We

first derive the transport equation for scalar variance in the Eulerian-Eulerian (EE) frame and

then compare the scalar-variance transport equation for two-phase flow with that for single-

phase flow. In a gas-solid heat transfer problem, a scalar represents the enthalpy that is in terms
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of fluid temperature and the scalar variance transport equation becomes fluid temperature

variance transport equation. The quantification of the temperature variance in the transport

equation is provided.

The scalar variance can be defined by the Favre-averaged scalar variance

Φ̃(β)
αα =

〈
ρIβφ

′′(β)
α φ

′′(β)
α

〉

〈ρIβ〉 , (6.1)

where 〈〉 represents the ensemble average, Iβ is the indicator function in β phase, φ(β)
α is the

mass fraction of species (φα =Yα) or the enthalpy (φα = cpT ) in phase β, ρ = ρ(φ) is the

density that depends on the set of scalars φ, φ′′(β)
α = φα −

〈
φ̃

(β)
α

〉
is the scalar fluctuation, and

〈
Q̃(β)

〉
= 〈ρIβQ〉 / 〈ρIβ〉 is the Favre-averaged of Q in phase β (see details in Appendix H).

The transport equation for scalar variance can be derived from the scalar transport equation

or the PDF transport equation (see Appendix L). The details of the derivation from the PDF

transport equation is shown in Appendix L. Here, we only show the final expression for the

scalar-variance transport equation, which reads:

∂

∂t

[
〈ρIβ〉 Φ̃(β)

αα

]
+

∂

∂xk

[
〈ρIβ〉 Φ̃(β)

αα

〈
Ũ

(β)
k

〉]

= −2
〈
ρIβu

(β)
k φ′′(β)

α

〉 ∂
〈
φ̃

(β)
α

〉

∂xk
− ∂

∂xk

〈
ρIβu

(β)
k φ′′(β)

α φ′′(β)
α

〉

+2
〈

−φ′′(β)
α

∂ (IβJ
α
k )

∂xk

〉
+ 2

〈
φ′′(β)

α Jα
k

∂Iβ

∂xk

〉
+
〈

2ρIβφ
′′(β)
α Sα

〉

+
〈
φ′′(β)

α φ′′(β)
α S(β)

ρ

〉
, (6.2)

where u(β)
k = Uk−

〈
Ũ

(β)
k

〉
is the fluctuation of the velocity in phase β, Jα

k is the flux of the scalar

α, Sα is the chemical reaction source/sink term, S(β)
ρ is the interphase mass transfer due to the

velocity of the phasic interface in phase β. Assuming Fick’s law, the flux of scalar α is defined

as Jα
k = −Γα∂φα/∂xk, where Γα is the molecular diffusivity of the scalar α. The description

of each term in the above equation is as follows. The two terms on the left-hand side represent

the unsteady and convective derivative of the phasic-Favre scalar variance. On the right-hand

side, the first term represents the scalar-variance production, the second term represents scalar-

variance flux term, the third term represents the diffusion of fluctuations, and the fourth term
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represents the interphase transfer with scalar fluctuation. The fifth term represents the source

or sink of scalar fluctuations due to chemical reaction. The final term represents the source in

the transport equation due to mass transfer at the interface (the average of this term appears

in the phasic mean mass conservation equation).

In this work, we focus on the quantification of fluid temperature variance in the transport

equation in a non-reacting gas-solid flow. The non-reacting gas-solid flow we choose to study

is the steady flow past a fixed homogeneous particle assembly with heat transfer that was

described in Chapters 2-5. In this heat transfer problem the velocity field is homogeneous

whereas the temperature field is inhomogeneous in the axial direction x‖ due to particle heating

(or cooling). The assumptions made for this heat transfer problem are (i) no chemical reaction

source/sink Sα, (ii) neglect of radiation and free convection (iii) no mass transfer at the interface

S
(β)
ρ , (iv) steady flow, and (v) constant density. Therefore, based on these assumptions, the

scalar-variance transport equation in Eq. 6.2 can be simplified as

〈
Ũ

(β)
k

〉
∂

∂xk

[
ρ 〈Iβ〉 Φ̃(β)

αα

]
= −2ρ

〈
Iβu

(β)
k φ′′(β)

α

〉 ∂
〈
φ

(β)
α

〉

∂xk
− ρ

∂

∂xk

〈
Iβu

(β)
k φ′′(β)

α φ′′(β)
α

〉

+Γ(β)
α

∂2
〈
Iβφ

′′(β)
α φ

′′(β)
α

〉

∂xk∂xk
+ Γ(β)

α

〈
Iβ
∂φ

′′(β)
α

∂xk

∂φ
′′(β)
α

∂xk

〉

+2
〈
φ′′(β)

α Jα
k

∂Iβ

∂xk

〉
, (6.3)

where
〈
Q(β)

〉
= 〈IβQ〉 / 〈Iβ〉 is the ensemble average of the variable, Γ(β)

α is the molecular

diffusivity of the scalar α in phase β. The details of the simplification can be found in Appendix

L. Compared to the steady-state constant-density transport equation for scalar variance in

single-phase turbulence (Fox (2003)), which reads:

〈Uk〉 ∂

∂xk

〈
φ′′

αφ
′′
α

〉
= −2

〈
ρukφ

′′
α

〉 ∂ 〈φα〉
∂xk

− ∂

∂xk

〈
ρukφ

′′
αφ

′′
α

〉
+ Γα

∂2 〈φ′′
αφ

′′
α〉

∂xk∂xk
− 2Γα

〈
∂φ′′

α

∂xk

∂φ′′
α

∂xk

〉
,

(6.4)

it is clear that the scalar-variance production term (the first term on the right-hand side of

Eqs. 6.3 and 6.4), the scalar-variance flux term (the second term), and the scalar dissipation

term (the fourth term) appear in both the transport equations. The first four terms on the
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right-hand side of Eq. 6.4 in single-phase turbulence are identical to the first four terms on the

right hand side of Eq. 6.3 in two-phase flow. Only the fifth term in Eq. 6.3 does not appear in

Eq. 6.4 since there is no interphase transfer in single-phase flow.

In single-phase turbulence, the transport equation for scalar variance has three unclosed

terms: (i) the scalar-variance production, (ii) the scalar-variance flux, and (iii) the scalar

dissipation. For two-phase flow, there is another unclosed interphase transfer term (the fifth

term on the RHS of Eq. 6.3) due to the presence of the interface between phases. In order to

solve the transport equation for scalar variance, the unclosed terms in the transport equation

have to be modeled. In single-phase turbulence, the scalar-variance production term is modeled

by a gradient-diffusion model (Pope (2000); Fox (2003)). The scalar-variance flux term is also

modeled by the gradient-diffusion model or modified gradient-diffusion model (Fox (2003)) as

〈ukφ
′′
αφ

′′
α〉 ∼ 〈ukuk〉 ∂ 〈φ′′

αφ
′′
α〉 /∂xk. The scalar dissipation term is normally modeled by the

equilibrium model (Spalding (1971)) that is in terms of ke, εe, and 〈φ′′
αφ

′′
α〉. Closure models

for corresponding terms in gas-solid flow need to be developed and PR-DNS (Sun et al. (2015,

2016)) provides the data for such a study. In this work, we only provide the PR-DNS data for

the scalar variance, and the validity of closure models for the scalar-variance transport equation

in two-phase flow is deferred to future work. The same approach used for the average fluid

temperature equation in Chapters 3 and 4 can be followed here also.

6.2.2 Quantification of temperature variance

The temperature variance in the gas-solid heat transfer problem can be quantified using PR-

DNS data that have been generated in Chapters 2-5. Figure 6.1 shows the axial variation of non-

dimensional fluid temperature variance 〈Ifφ
′′(f)φ′′(f)〉 that is computed by ensemble-averaging

the cross-sectional average of the the non-dimensional fluid temperature
{
Ifφ

′′(f)φ′′(f)
}

cs
, given

by
{
Ifφ

′′(f)φ′′(f)
}

cs
(x||;ω) =

1

Af

ˆ

Af

φ′′(f)φ′′(f)dA, (6.5)

to obtain

〈Ifφ
′′(f)φ′′(f)〉(x||) ≈ 1

M

M∑

ω=1

{
Ifφ

′′(f)φ′′(f)
}

cs
(x||;ω), (6.6)
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where ω is one realization of the random particle configuration. Note that the non-dimensional

fluid temperature is defined as φ = (T − 〈Tm,in〉) / (Ts − 〈Tm,in〉) in Chapter 2, where 〈Tm,in〉

is the bulk fluid temperature at the inlet of the computation domain, and Ts is the solid

temperature. Since the average non-dimensional fluid temperature
〈
φ(f)

〉
is inhomogeneous

in the axial direction, 〈Ifφ
′′(f)φ′′(f)〉 is also inhomogeneous in the axial direction and decays

with axial location due to fluid cooling as shown in Fig. 6.1 for both dilute and dense flows.

Compared with the decay rate of 〈Ifφ
′′(f)φ′′(f)〉 in dilute flow (εs = 0.1), 〈Ifφ

′′(f)φ′′(f)〉 in dense

flow (εs = 0.4) decays much faster for this high Reynolds number of 100. This results from

the increase of velocity fluctuations with solid volume fraction as shown in Mehrabadi et al.

(2015). It appears that the high velocity fluctuations result in high temperature fluctuations.

Figure 6.1: Variation of the temperature variance
〈
Ifφ

′′(f)φ′′(f)
〉

with axial locations for solid
volume fraction of 0.1 and 0.4 at mean slip Reynolds number of 100. The error bars above
the symbols correspond to 5 realizations of random particle figuration. One-sided error bars
indicate 95% confidence intervals.

Although 〈Ifφ
′′(f)φ′′(f)〉 is statistically inhomogeneous along axial location, 〈Ifφ

′′(f)φ′′(f)〉

can be split into a homogeneous piece and an inhomogeneous piece by using the scaled fluid tem-

perature θ that was discussed through Chapters 2-4. Based on the relation 〈φ(f)〉 = 〈φm〉〈θ(f)〉,

〈Ifφ
′′(f)φ′′(f)〉 can be expressed as

〈
Ifθ

′′(f)θ′′(f)
〉

〈φm〉2 in which
〈
Ifθ

′′(f)θ′′(f)
〉

is statisti-

cally homogeneous due to the homogeneity of the θ field. Figure 6.2 shows the variation

of
〈
Ifθ

′′(f)θ′′(f)
〉

with axial locations for dilute and dense flows at mean slip Reynolds num-

ber of 100. As we expected,
〈
Ifθ

′′(f)θ′′(f)
〉

is homogeneous along the axial location for both
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dilute and dense flows. The value of
〈
Ifθ

′′(f)θ′′(f)
〉

in dense flow is higher than that in dilute

flow, which again confirms that higher temperature fluctuations exist in dense flow at this high

speed (mean slip Reynolds number of 100). Due to the homogeneity of
〈
Ifθ

′′(f)θ′′(f)
〉

, the

volume-average of
〈
Ifθ

′′(f)θ′′(f)
〉

can be obtained as

〈
Ifθ′′(f)θ′′(f)

〉
=

1

L

ˆ L

0

〈
Ifθ

′′(f)θ′′(f)
〉 (
x‖

)
dx‖. (6.7)

Note that for simplicity, we still use
〈
Ifθ

′′(f)θ′′(f)
〉

as the volume-average of
〈
Ifθ

′′(f)θ′′(f)
〉

instead of
〈
Ifθ′′(f)θ′′(f)

〉
. Therefore, the fluid temperature variance can be computed by using

the
〈
Ifθ

′′(f)θ′′(f)
〉

. The normalized fluid temperature variance can be computed using this

homogeneity of
〈
Ifθ

′′(f)θ′′(f)
〉

as follows:

〈
Ifφ

′′(f)φ′′(f)
〉

〈
φ(f)

〉2 =

〈
Ifθ

′′(f)θ′′(f)
〉

〈φm〉2

〈
θ(f)

〉2 〈φm〉2
=

〈
Ifθ

′′(f)θ′′(f)
〉

〈
θ(f)

〉2 . (6.8)

In the above equation,
〈
θ(f)

〉
is given in Chapter 3. Figure 6.3 shows the variation of the fluid

temperature variance normalized by the square of average fluid temperature with solid volume

fraction at the mean slip Reynolds number of 100. Compared with average fluid temperature,

the fluid temperature variance becomes larger with solid volume fraction. If one knows the

average fluid temperature,
〈
Ifφ

′′(f)φ′′(f)
〉

can be computed in each cross-sectional plane.

6.2.3 Mixing time scale

Here, we would also like to use the PR-DNS data to extract the mixing time scale that is an

important parameter for developing closure model for mixing. Figure 6.4 shows a preliminary

results for the ratio of the mixing time scale τφ = kφ/εφ to the molecular time scale τφmol
=

D/αf with solid volume fractions at mean slip Reynolds number of 100. Note that for the same

Reynolds number cases, τφmol
does not change since αf is constant for Prandtl number of 0.7

in gas-solid flow. The fluid temperature variance in gas-solid flow is defined as

kφ = 2
〈
Ifφ

′′2
〉
, (6.9)
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Figure 6.2: Variation of the scaled fluid temperature variance
〈
Ifθ

′′(f)θ′′(f)
〉

for solid volume
fraction values of 0.1 and 0.4 at mean slip Reynolds number of 100. One-sided error bars
represent 95% confidence intervals inferred from five different realizations of random particle
configuration.

and the dissipation of fluid temperature is defined as

εφ = 2αf

〈
If
∂φ

∂xi

∂φ

∂xi

〉
. (6.10)

Fig. 6.4 shows that τφ/τφmol
decreases with increasing solid volume fraction. This reduction

of the mixing time scale indicates that the mixing rate of the fluid temperature increases,

due to pseudo-turbulent fluctuations. This behavior also confirms that velocity fluctuations

(Mehrabadi et al. (2015)) enhance mixing of fluid temperature in pseudo-turbulent dense gas-

solid heat transfer. It is also seen that the molecular time scale τφmol
is larger than τφ by more

than one order of magnitude even in a dilute flow (εs = 0.1).

6.3 PDF of fluid temperature

Besides using the scalar-variance transport equation to obtain the scalar variance, the scalar

variance can be also computed from the PDF of scalar. Based on the PR-DNS data of the

case of a flow past a fixed particle beds with heat transfer, the PDF of fluid temperature

can be extracted. Figure 6.5(a) shows the PDF of non-dimensional fluid temperature φ at

different axial locations x‖. The peak in the PDF of the fluid temperature becomes steeper

with increasing downstream distance x‖ (x‖/D = 0 represents the upstream). The shift of
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Figure 6.3: Variation of the non-dimensional fluid temperature variance that is defined

as
〈
Ifφ

′′(f)φ′′(f)
〉

(normalized by the average non-dimensional fluid temperature
〈
φ(f)

〉2
) for

solid volume fraction values of 0.1 − 0.4 at mean slip Reynolds number of 100. The error
bars represent 95% confidence intervals inferred from five different realizations of the particle
configuration.

the center of PDF of the fluid temperature towards ψ = 0 implies that the fluid temperature

distribution at x‖/D = 4 is much closer to the particle surface temperature.

Since the PDF of fluid temperature varies with axial location, it is not easy to develop a

model or correlation for PDF of fluid temperature. Instead of fluid temperature, the PDF of

scaled fluid temperature θ is a better choice, since the scaled fluid temperature is homogeneous

and self-similar as discussed in Chapters 2-4. The cumulative distribution function (CDF) of

the scaled fluid temperature Fθ can be computed as follows:

Fφ (ψ) = P {φ < ψ} = P {〈φm〉 θ < ψ} = P

{
θ (y, z) <

ψ

〈φm〉 (x||)

}
= Fθ

(
ψ

〈φm〉 (x||)

)
,

(6.11)

where 〈φm〉 is the bulk fluid temperature (see Chapters 3 and 4) and only depends on the

axial location. Then the PDF of scaled fluid temperature fθ(Θ) can be obtained by using the

derivative of the CDF as

fφ(ψ) =
dFφ (ψ)

dψ
=

d

dψ
Fθ


 ψ

〈φm〉
(
x||

)


 =

1

〈φm〉
(
x||

)fθ(Θ). (6.12)
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Figure 6.4: Variation of the mixing time scale for scalar variance τφ = kφ/εφ normalized by
the molecular time scale τφmol

with solid volume fractions (0.1 − 0.4) at mean slip Reynolds
number of 100. The error bars represent the 95% confidence intervals from five realizations of
the random particle configuration.

Therefore, the PDF of the fluid temperature at any location can be recovered from the PDF of

the scaled fluid temperature by dividing 〈φm〉
(
x||

)
. Figure 6.5(b) shows the PDF of the scaled

fluid temperature for different solid volume fractions. For the same mean slip Reynolds number

of 100, the shape of PDF of the scaled fluid temperature becomes steeper with increasing solid

volume fraction. The center of the PDF also moves towards Θ = 0. The high solid volume

fraction results in more heat transfer and cooling the flow much quicker. It is worth noting that

in Fig. 6.5(b), the left tail of the PDF does not go to zero since the scaled fluid temperature is

close to zero near the particle surface due to the isothermal boundary condition.

The shape of the PDF fθ in two-phase flow is different from the shape of PDF of scalar

in single-phase turbulence (Gaussian distribution) because of the interphase transfer term in

two-phase flow. In other words, in two-phase flow, the shape of the PDF of scalar is determined

not only by the mixing term in the PDF transport equation but also by the interphase transfer

term. A correlation for the PDF of the scaled fluid temperature by fitting the PDF fθ from PR-

DNS data is being investigated. The correlation for the temperature PDF will give a candidate

presumed PDF for use in presumed PDF approaches in two-phase flow. However, one concern

is that the presumed PDF in two-phase flow is likely to depend on the temperature boundary

condition at the particle surface. In single-phase flow a beta PDF or a set of delta functions
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(a) (b)

Figure 6.5: (a) The PDF of non-dimensional fluid temperature extracted in the cross section
are located in axial location x‖/D = 0 (black square), x‖/D = 2 (blue circle), and x‖/D = 4
(red circle) for solid volume fraction of 0.4 and mean slip Reynolds number of 100. (b) The
variation of the PDF of scaled fluid temperature θ with solid volume fractions (0.1 − 0.4) at
mean slip Reynolds number of 100.

is normally used as presumed PDF (Fox (2003)). Compared to the presumed PDF approach

that approximates the shape of the PDF, the transported PDF approach does not require any

assumptions regarding prior shape of the PDF because the shape of the PDF is computed

using the corresponding PDF transport equation. In the following section, the transported

PDF approach is present.

6.4 Transported PDF approach

Based on the discussions in the previous sections, the scalar PDF is of importance because

it contains statistical information of all moments and can compute average gas-phase reaction

rate in closed form. Since the PR-DNS approach is time-consuming to obtain the scalar PDF

and is not currently feasible for in device-scale simulations, the transported PDF approach can

be used to obtain the scalar PDF in an efficient way, as is done in single-phase flows involving

combustion or turbulent mixing (Haworth (2010)). In this section, the transport equation for

the phase-conditioned single-point velocity-composition joint PDF is derived. We then discuss

the unclosed terms that need to be modeled.
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6.4.1 Phase-conditioned single-point velocity-composition joint PDF transport

equation

Using the statistical representation of two-phase flow in Appendix H, the phase-conditioned

single-point velocity-composition joint PDF transport equation can be derived. This derivation

of PDF transport equation is given using two methods. One is the delta function method

in Appendix I that is an extension of Pai and Subramaniam (2009)’s approach that derived

the phase-conditioned single-point velocity PDF transport equation. The other is the test

function method in Appendix J that is used to derive a single-phase velocity-composition single-

point PDF transport equation by Pope (1985). Using the definition of phase-conditioned PDF

in Appendix H, the phase-conditioned single-point velocity-composition joint PDF transport

equation is derived using these two methods. Here, we briefly describe the final expression for

the phase-conditioned single-point velocity-composition joint PDF transport equation.

With the continuity equation

∂ρ

∂t
+
∂ρUj

∂xj
= 0, (6.13)

the momentum equation (A is the fluid acceleration)

ρ
DUk

Dt
= ρAk, (6.14)

and the composition equation (Θ is the rate of change of composition that is composed of a

diffusion and a reaction source term)

ρ
Dφα

Dt
= ρΘα, (6.15)

the PDF transport equation for two-phase flow is obtained using the delta function method

(Pope (1981)), in a manner similar to Pai and Subramaniam (2009) for phase-conditioned ve-

locity PDF transport equation, as
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∂F
Uφ|Iβ

∂t
+ Vk

∂F
Uφ|Iβ

∂xk
= − ∂

∂Vk

[
〈ρIβAk |V,ψ 〉

F
Uφ|Iβ

〈ρIβ |V,ψ 〉

]

− ∂

∂ψα

[
〈ρIβΘα |V,ψ 〉

F
Uφ|Iβ

〈ρIβ |V,ψ 〉

]

+
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk

∣∣∣V,ψ
〉 F

Uφ|Iβ

〈ρIβ |V,ψ 〉 . (6.16)

where F
Uφ|Iβ

(V,ψ,x, t) = 〈ρ (φ) Iβ (x, t) δ (U (x, t) − V) δ (φ (x, t) −ψ)〉 is the Favre mass

density conditional on phase β, V and ψ are the velocity and composition sample space vari-

ables, and U (I)
k is the velocity of the phasic interface. The description of each term in Eq. 6.16

is as follows. The two terms on the left-hand side represent the unsteady and convective deriva-

tive of the phasic Favre mass density. On the right-hand side, the first term represents the

transport in velocity space due to fluid acceleration, the second term represents the transport

in composition space due to mixing and reaction, and the third term represents a source in the

transport equation due to mass transfer at the interface in the phasic mean mass conservation.

Since Pai and Subramaniam (2009, 2012) have already discussed the first and third term on the

right-hand side of Eq. 6.16, we will only focus on the second term related to the compositions

on the right-hand side of Eq. 6.16 in the following sections.

6.4.2 Unclosed terms in the PDF transport equation

The conditional mean rate of change of composition term 〈ρIβΘα |V ,ψ 〉 in the second term

on the right-hand side of the PDF transport equation (see Eq. 6.16) can be expanded using the

expression corresponding to diffusion flux and chemical reaction source/sink as:

ρΘα(x, t) = −∂Jα
i

∂xi
+ ρSα (6.17)

as

〈ρIβΘα |V,ψ 〉 =
〈[

−∂ (IβJ
α
i )

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

] ∣∣∣V,ψ
〉
. (6.18)

where Jα
i is the flux of the scalar α. Assuming Fick’s law, the scale flux Jα

i = −Γα∂φα/∂xi,

where Γα is the molecular diffusivity of the scalar α. Since we focus on the scalar PDF, the
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phase-conditioned single-point composition PDF transport equation is obtained from Eq. 6.16

(see Appendix K) as

∂Fφ|Iβ

∂t
+
∂

[〈
Ũ

(β)
k

〉
Fφ|Iβ

]

∂xk
+
∂
[
〈uk |ψ 〉 Fφ|Iβ

]

∂xk
= − ∂

∂ψα

[〈
−∂ (IβJ

α
i )

∂xi

∣∣∣∣∣ψ
〉

Fφ|Iβ

〈ρIβ |ψ 〉

]

− ∂

∂ψα

[〈
Jα

i

∂Iβ

∂xi

∣∣∣∣∣ψ
〉

Fφ|Iβ

〈ρIβ |ψ 〉

]

− ∂

∂ψα

[
〈IβρSα |ψ 〉

Fφ|Iβ

〈ρIβ |ψ 〉

]
. (6.19)

Note that the above equation neglects the interphase mass transfer term (the third term on the

right-hand side of Eq. 6.16). The first term on the right-hand side in Eq. 6.19 represents scalar

diffusion in phyiscal space in phase β conditional on composition. The second term on the right-

hand side is the interphase transfer term. The third term on the right-hand side represents

the chemical reaction source/sink term in phase β. Since the PDF transport equation is a

single-point description of the two-phase flow that lacks the length scale information such as

gradient, the first term is an unclosed term that is evaluated at a single location in space-time

coordinates. Since the phase-conditioned single-point velocity-composition joint PDF also lacks

information about the phase interface, the second term is also unclosed. It is worth noting that

the chemical reaction source/sink term in the solid phase (the counterpart of the third term in

Eq. 6.19), also needs to be modeled, whereas chemical reaction source/sink term in the gas phase

is treated exactly without approximation in the PDF transport equation. In addition, since the

second term on the left-hand side of Eq. 6.19 contains the velocity conditional on composition,

this term needs to be modeled. The closure models for these unclosed terms need to be given

in order to solve the PDF transport equation. In the following section, candidate models for

the unclosed interphase and diffusion terms of the PDF transport equation are discussed and

the mixing time scale that is often used in mixing models (Fox (2003)) is computed from the

PR-DNS data.
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6.4.3 Model development

Unlike in two-phase flow, many closure models for the PDF transport equation in a single-

phase turbulence have been proposed and used in turbulent mixing and combustion problems.

The unclosed velocity fluctuation conditional on scalar, which is the third term in the left-

hand side of Eq. 6.19 of the single-point composition PDF transport equation for single-phase

turbulence, is closed by using a gradient-diffusion model (Raman et al. (2004)) that introduces

a turbulent diffusion term. The unclosed diffusion them conditional on scalar (the first term

in the right-hand side of Eq. 6.19) representing the micromixing term, can be closed by using

different approaches. In the case of non-reacting single-phase turbulent flows, the micromixing

model (Fox (2003)) must fulfill some constraints concerning the shape of the PDF: the mean

values must be constant, the variance decay must be exponential, and the asymptotic shape of

the PDF must be Gaussian. One widely used model for the micromixing term is the interaction

by exchange with the mean (IEM) model (Fox (2003); Raman et al. (2004); Cassiani et al.

(2005)). The IEM model assumes a linear relaxation of the scalar toward its mean value as

〈
Γα

∂2φα

∂xi∂xi
|ψα

〉
=

1

τφ
(〈φα〉 − ψα) . (6.20)

Note that the mixing time scale is defined early as τφ = kφ/εφ, where the scalar fluctuation is

kφ = 2
〈
φ′′2

α

〉
and the scalar dissipation is εφ = 2Γ

〈
(∂φα/∂xi)

2
〉

.

However, closure models for two-phase flow has not yet been developed much, partic-

ularly with considering the interphase transfer between two phases. The single-phase clo-

sure models such as gradient-diffusion model and mixing model have been extended to mod-

eling two-phase flow. The interphase transfer term is modeled by Vegendla et al. (2009);

Prasad Vegendla et al. (2012) as a function of heat or mass transfer coefficient and the differ-

ence between the temperature or mass fraction in gas and solid phases. However, the interphase

term 〈−Jα
i ∂Iβ/∂xi |ψ 〉 in Eq. 6.19 is conditional on ψ, but the current model (Vegendla et al.

(2009); Prasad Vegendla et al. (2012)) does not account for this conditional effect in the in-

terphase transfer model. These closure models need to be validated. Based on these closure

models, the PDF transport equation for two-phase flow can be solved using a Monto-Carlo
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type particle method (Pope (1994); Fox (2003)) that can be used to express the PDF transport

equation in terms of equivalent stochastic differential equations (SDE) to simulate the evolu-

tion of the notional or computational particles (Vegendla et al. (2009); Prasad Vegendla et al.

(2012); Popov and Pope (2014)). We note that the correct scalar PDF can be only obtained

from this type particle method based on a adequately resolved velocity field. For instance,

Popov and Pope (2014) performed a simulation of bluff body stabilized flame using large eddy

simulation approach for the velocity field and the transported PDF approach for evolving scalar

field.

6.5 Conclusion

Temperature variance in gas-solid flow is studied using the transported PDF and PR-DNS

approaches. The transport equation for fluid temperature variance is derived using the single-

point velocity-composition joint PDF transport equation for two-phase flow. The PR-DNS of

a flow past a homogeneous fixed bed of particles with heat transfer is used to quantify the fluid

temperature variance in gas-solid heat transfer. The mixing time scale in two-phase flow used

in a IEM model is quantified. We found that in a dense flow, the mixing of fluid temperature

is enhanced due to the high intensity of the velocity fluctuations. Since the scalar PDF can be

used to compute scalar variance, PDF of fluid temperature is extracted from the PR-DNS data

and the shape of PDF is closed to log-normal but is not equal to zero in the lower limit. The

phase-conditioned single-point velocity-composition PDF transport equation is derived and its

unclosed terms are identified. Modeling efforts for single-phase turbulence and two-phase flow

are discussed. Further modeling efforts are needed to model the interphase transfer term in the

PDF transport equation and the validity of closure models in two-phase flow are also needed.
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CHAPTER 7. FULLY FINITE-DIFFERENCE PR-DNS METHOD:

APPLICATION TO HYDRODYNAMICS AND HEAT TRANSFER ON

PARTICLES IN A DUCT FLOW

This chapter is a manuscript titled “Application to hydrodynamics and heat transfer on

particles in a duct flow using particle–resolved direct numerical simulation approach” that is

under preparation.

In previous Chapters 2-6, the thermally fully-developed flow has been achieved using the

PS PR-DNS approach in a periodic domain. In order to study wall-bounded flow with in-

flow/outflow boundary conditions, the PS PR-DNS approach does not work appropriately.

The aim of the chapter is to develop a PR-DNS approach to account for wall-bounded flow

with inflow/outflow boundary conditions. A fully finite-difference (FFD) scheme version of

PR-DNS for hydrodynamic and scalar solver is developed based on the frame of PR-DNS of

Tenneti et al. (Tenneti et al. (2011, 2013); Tenneti (2013)) and Garg et al. (2010b) who de-

veloped the PS scheme version of PR-DNS to simulate gas–solid flow by imposing periodic

boundary conditions. The hydrodynamic and scalar solvers of the FFD PR-DNS are validated

in a suite of test cases including fully–developed duct flow, flow past simple cubic and face

centered cubic particle arrangements, and developing duct flow with and without a single par-

ticle. In the case of developing duct flow without or with a fixed sphere, the inflow/outflow

boundary condition with traction boundary condition is used to simulate developing flow in a

square duct. A flow past a fixed homogeneous particle assembly in a square duct with heat

transfer is also simulated. The preliminary PR-DNS results obtained from this case show the

duct wall effect on fluid velocity and temperature in gas–solid flow.
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7.1 Introduction

Many industrial applications such as chemical looping combustion and fluidized beds are

the system of wall-bounded gas–solid flows. In such a system, since solid particles and walls

of the reactors affect velocity or temperature profiles, it results in intrinsically multiscale

(Tenneti and Subramaniam (2014)). For instance, in a circulating fluidized bed (Lim et al.

(1995)) statistical homogeneous velocity far from the walls of reactors is observed in the

macroscale. However, near walls the velocity is non-linear because of the development of the

momentum boundary layers and particle aggregations in the microscale (Lim et al. (1995)). In

order to study such gas–solid flow in a wall-bounded system, experimental measurements and

numerical simulations have been employed.

Experimental measurement of gas–solid flow is challenging because of limited optical access

that result in the lack of resolution of the detailed flow. Experimental measurement tech-

niques such as pressure drop signal (Ergun (1952); Mauret and Renaud (1997a,b)), electrore-

sistivity probes (Park et al. (1969); Rigby et al. (1970)), photographing with ordinary cameras

(Pyle and Harrison (1967); Godard and Richardson (1969)) have been used to measure the ve-

locity and pressure in gas–solid fixed-bed reactors over the last several decades (Wakao and Kaguei

(1982)). Since most experimental measurements of gas–solid flow are intrusive, flow disturbance

caused by the probes is a source of uncertainty. Recently, non-intrusive laser optical measure-

ment techniques such as Magnetic Resonance Imaging (MRI) (Gladden (1999)), particle image

velocimetry (PIV), and planar laser-induced fluorescence (PLIF) are developed for research

and diagnostics into flow and combustion processes. These techniques are capable of measur-

ing an entire two-dimensional cross section of the flow field simultaneously with a high degree

of accuracy. For instance, combination of PIV and PLIF allows us to visualize and measure the

concentration and temperature field in fluid flow. With index of refraction matching to avoid

the light refraction and resulting image distortions, the flow inside a bed of particles can be

visualized, which cannot be measured using transitional experimental techniques.

However, these non-intrusive techniques such as PIV and PLIF have their limitations. For

instance, regular PIV only gives two components of velocity in a two dimensional plane. Even
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though stereoscopic PIV can be used for visualization of all three components of velocity field,

this technique is still limited to measurement in a single two dimensional plane. For PLIF

measurement of concentration, fluorescence can cause from other species, especially from hy-

drocarbons in high pressure reacting flows. Also, since the fluorescence of the dye is a function

of the laser light intensity, temporal and spatial variation of laser light needs to accounted for.

The limitations of experimental measurements motivate researchers to employ numerical

simulation as an alternative tool to study wall-bounded gas-solid flow. The continuum models

such as a two–fluid model (Anderson and Jackson (1967); Drew (1983)) in which both the

fluid phase and the solid phase are treated as continuous media or two–fluid DEM (Sun et al.

(2007)) are used for macroscale industrial device-scale simulation. However, the TF CFD

simulation needs closure models from microscale physics since particle-fluid and particle-particle

interactions at the microscale affect the quantities at the macroscale. Recently, the microscale

physics is addressed by particle-resolved direct numerical simulation (PR–DNS). This approach

accounts for the solid-fluid interaction by solving the Navier-Stokes equation with the initial

value problem for the motion of the particles simultaneously. At the microscale, PR–DNS

provides an accurate and efficient numerical approximation to the evolution of such a complete

description of gas–solid flow. The PR-DNS is a first-principles approach to develop accurate

closure models for gas–solid flow. The review of existing PR-DNS approaches has been done

elsewhere (Tenneti et al. (2011); Tenneti and Subramaniam (2014)).

Tenneti et al. (2011) and Garg et al. (2010b) have developed a PR-DNS approach that

is a pseudo-spectral (PS) formulation of PR-DNS to solve and develop models in gas–solid

flow. This approach has been successfully applied for simulations of fixed and freely evolv-

ing suspension of particles in a fully-developed region of gas–solid flow (Tenneti et al. (2011);

Tenneti and Subramaniam (2014); Tenneti et al. (2010); Mehrabadi et al. (2015)). However, it

has not yet accounted for wall-bounded flow with particles in these simulations. In this work, a

fully finite-difference (FFD) formulation of PR-DNS base on the similar frame of PS PR-DNS

is developed for accounting for wall effect and inflow/outflow boundary conditions.

In order to study wall effect on particles in gas–solid flow, the test case of a developing

duct flow with particles is used to mimic flow past particles in a wall-bounded system. In
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the simulations of developing duct flow, one has to deal with an outlet boundary condition

that guarantees numerical condition should not disturb upstream flow. In order to overcome

this issue (Tsynkov (1998)), different outlet boundary conditions such as non-reflecting outlet

boundary condition derived from a wave equation (Orlanski (1976); Jin and Braza (1993);

Forestier et al. (2000)) have been proposed. In this work, the open and traction boundary

condition which is efficient for fluid-solid interactions (Liu (2009); Coutand and Shkoller (2005);

Guermond et al. (2005)) is imposed as outlet boundary conditions. The open and traction

boundary condition developed by Poux et al. (2011) has been successfully used to simulate

incompressible flows with objects.

This chapter is organized as follows. In Section 7.2, the description of the duct flow with

particles is given. A fully finite-difference scheme of the PR-DNS approach is developed to

solve the above physical problem in Section 7.3. In Section 7.4, the hydrodynamic and scalar

solvers of the FFD PR-DNS are parallelized and validated by a suite of test cases. Using this

FFD PR-DNS, wall effect on a single particle and particle assembly are studied in gas–solid

flow in Section 7.5. Finally, the principal findings of this chapter is summarized in Section 7.6.

7.2 Problem description

The purpose of this work is to study a flow past particles with heat transfer in a square

duct as a setup in Fig. 7.1. The figure shows that a steady flow past a random assembly of

spherical particles in a square duct with uniform velocity Uin and temperature Tf,in along the

axial location x‖, where the walls are located in y and z directions. The mass, momentum

conservation, and scalar equations to describe this above problem that has constant density

wall-bounded flow with heat transfer are

∂ui

∂xi
= 0 (7.1)

and

∂ui

∂t
+ Si = − 1

ρf
gi + νf

∂2ui

∂x2
j

. (7.2)
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respectively. Where Si = ∂(uiuj)/∂xj is the convection, ρf is the fluid-phase density, νf is the

kinetic viscosity, g represents body forces (e.g., hydrostatic pressure gradient or gravity). The

scalar (fluid temperature in this work) equation in the absence of viscous heating, radiation

and free convection effects is

ρfcpf

(
∂T

∂t
+ ST

)
= kf

∂2T

∂x2
j

, (7.3)

where T (x, t) is the temperature field, ST = ∂(ujT )/∂xj is the convection, kf is the thermal

conductivity in the fluid phase, cpf is the constant pressure specific heat capacity in the fluid

phase. No–slip and isothermal boundary conditions at the particle surface is imposed. Dirichlet

boundary condition at x = 0 and Neumann boundary condition at x = L are used for the

domain boundary conditions. The isothemal wall boundary condition is also used for all walls

in y and z directions.
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Figure 7.1: Schematic of the temperature contour of flow past a fixed assembly of spheres in a
square duct. The temperature of the spheres is Ts. The uniform velocity Uin and temperature
Tf,in are specified at the inlet of the square duct, respectively. The non–dimensional fluid
temperature φ is defined as φ = (T − Ts) / (Tf,in − Ts). At the surface, the non–dimensional
fluid temperature φ is equal to zero in this case.

7.3 Solution approach

The above heat transfer problem can be solved using PR–DNS approach, which is called the

Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM).
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This PUReIBM has been developed based on pseudo–spectral (PS) scheme and used to study

homogeneous suspensions of isothermal particles in gas–solid flow by Tenneti et al. (Tenneti et al.

(2011, 2013); Tenneti and Subramaniam (2014)) and Garg et al. (2010b). However, this PS

PR-DNS approach is restricted to study problems with periodic boundary condition. In or-

der to simulate wall–bounded fluid–solid flows and impose various boundary conditions such as

Dirichlet boundary condition or flux boundary condition, a fully finite-difference (FFD) scheme

version of PR-DNS is developed to simulate the fluid–solid flow with heat or mass transfer in

this chapter.

7.3.1 FFD PR-DNS approach

The fluid–solid flow with heat transfer problem is solved using Eq. 7.1-7.3 by introducing

the indicator function

Iβ =





1 point (x, t) lies in phase β

0 otherwise

,

as

∂ui

∂t
+ Si = − 1

ρf
gi + νf

∂2ui

∂x2
j

+ Isfu (7.4)

and

ρfcpf

(
∂T

∂t
+ ST

)
= kf

∂2T

∂x2
j

+ IsfT , (7.5)

where fu and fT are the additional immersed boundary (IB) direct forcing terms that are

nonzero only in the solid phase. The IB direct forcing accounts for the presence of the solid

particles in the domain by ensuring that the no–slip and no–penetration, and isothermal bound-

ary conditions are satisfied on each particle surface. Complete details about the IB forcing can

be found in Tenneti et al. (2011) and Garg et al. (2010b).

The main difference between the PS and FFD PR-DNS is that in the FFD PR-DNS the

equations Eqs. 7.1, 7.4 and 7.5 are solved using a fully finite–difference scheme in all directions,
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instead of using Fourier transforms in the cross-stream directions. This allows us to implement

various boundary conditions such as walls and inflow/outflow. With appropriate boundary

conditions the governing equations in Eqs. 7.1, 7.4 and 7.5 are discretized on the uniform

Cartesian grid and solved at each time step. The spatial discretization of the equations in

Eqs. 7.1, 7.4 and 7.5 is performed by a second-order finite–difference scheme on a fully-staggered

grid. On a fully-staggered grid, the velocity or momentum variables are located at the cell faces

while the scalar variables such as pressure and scalar are stored at cell centers. We perform

the time discretization of the momentum equation as :

un+1
i − un

i

△t
= −(

3

2
Sn

i − 1

2
Sn−1

i ) − 1

ρf
∇qn+1 +

νf

2
∇2(un

i + un+1
i ) + Isf

n+1
u,i , (7.6)

where the IB forcing is

fn+1
u,i =

ud
i − un

i

△t
+ Sn

i +
1

ρf
gn

i − νf
∂2un

i

∂x2
j

. (7.7)

For the temporal discretization of the momentum equation, the Adams-Bashforth scheme is

used for the convective terms, and the Crank-Nicolson scheme is used for the viscous terms. In

order to solve the discretized momentum equation (Eq. 7.6), a two-step fractional step method

is used. The first step to obtain the intermediate velocity field u∗
i is computed from

u∗
i − un

i

△t
= −(

3

2
Sn

i − 1

2
Sn−1

i ) − 1

ρf
∇qn +

νf

2
∇2(un

i + u∗
i ) + fn+1

u,i . (7.8)

Since the velocity in the n+ 1th step un+1
i is required to satisfy the divergence-free condition,

the second step is to solve the Poisson equation (Eq. 7.9) to correct the velocity field based on

the intermediate velocity field as shown in Eq. 7.10:

△t

ρ
∇2ϕ = ∇ · u∗

i , (7.9)

and

un+1
i = u∗

i − △t

ρ
∇ϕ. (7.10)

The pressure at the n+ 1th step is also updated based on the pressure at the previous step
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pn+1 = pn + φ− νf △t

2
∇2φ. (7.11)

The discretized temperature equation is also solved implicitly using the same temporal dis-

cretization for the solution of the momentum equation in Eq. 7.6:

T n+1 − T n

△t
= −(

3

2
Sn

T − 1

2
Sn−1

T ) +
αf

2
∇2(T n + T n+1) + fn

T , (7.12)

where the IB direct forcing term f is

fn+1
T =

T d
i − T n

i

△t
+ Sn

T − kf
∂2T n

∂x2
j

. (7.13)

For the spatial discretization of the convection and diffusion terms of the above temperature

equation, the same schemes to solve the momentum equations are used to solve these terms in

discretized temperature equation (Eq. 7.12). The sparse matrices generated from Eqs. 7.6, 7.9

and 7.12 are solved using the open software Portable Extensible Toolkit for Scientific Compu-

tation (PETSc).

7.3.2 Boundary conditions

The above governing equations need to be solved with the appropriate boundary conditions.

In Chapter 2, the thermal self-similarity boundary condition has been developed to simulate

the thermal fully–developed flow using periodic boundary condition in PS PR-DNS approach.

In PS PR-DNS, the boundary condition is restricted to periodic boundary condition whereas

in FFD PR-DNS, various boundary conditions can be used to solve various problems. For

instance, Neumann boundary condition at the exit of the computational domain such as zero

velocity gradient is used to simulations of developing free flow or duct flow for outflow boundary

condition. However, this kind of boundary conditions normally has the non-physical reflection

at the exit (Jin and Braza (1993)). In order to reduce the effect at the exit of domain, open

and traction boundary conditions can be imposed in the computational domain. Poux et al.

(2011) used open and traction boundary conditions to avoid non-physical reflection and also

achieve the higher rate of convergence in space and time. Following their implement of this
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boundary condition, the open and traction boundary boundary condition for developing duct

flow in FFD PR-DNS is described briefly as below.

For simplicity let Ω be a 3D bounded domain with n unit normal to the domain boundary

Γ = ∂Ω. The domain boundary Γ can be split into two part ΓD and ΓN that represent the

Dirichlet boundary condition and Neumann boundary condition, respectively. Therefore, the

velocity and pressure fields in the domain Ω satisfy

u = f on ΓD, (7.14)

and

(µ∇u − pI) · n = 0 on ΓN , (7.15)

where I is the unit tensor, f is the boundary condition. In the case of developing duct flow

with or without particles, f = 0 for the wall boundary and f is uniform for the inlet velocity

while the outlet boundary condition is imposed as Eq. 7.15. Details of the implement of open

and traction boundary conditions can be found in Poux et al. (2011).

7.4 Numerical convergence and accuracy

The FFD PR-DNS approach has been developed and parallelized (see Appendix M). A

suite of tests are used to validate the convergence and accuracy of the FFD PR-DNS approach

in the following sections. The test cases includes fully–developed duct flow, flow past a simple

cubic (SC) array of particles, and developing duct flow with and without a single sphere using

inflow/outflow boundary condition.

7.4.1 Thermal fully–developed flow in a square duct

First, in order to investigate the accuracy of the FFD PR-DNS approach, we simulate

a thermal fully-developed flow in a square duct. The numerical results from the FFD PR-

DNS are compared with the analytical solution for the fully-developed flow in a square duct

(Shah and London (1978)). The analytical solution for the streamwise velocity is
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where 2a and 2b are the height and width of the cross-section of a rectangle duct, respectively,

and um is the mean velocity in the streamwise direction. In the case of a square duct, a is set

equal to be b. Numerical results obtained from the FFD PR-DNS are also compared with those

obtained from the PS PR-DNS. Note that in the PS PR-DNS, IB forcing is used to implement

the wall of the square duct to satisfy no-slip and no-penetration, and isothermal boundary

conditions.

Figure 7.2(a) shows that error of streamwise velocity profile between numerical results and

analytical solution along the central line in the cross section of the square duct. It is clear that

the error in the velocity profile obtained using the PS PR-DNS is higher than the one using the

FFD PR-DNS. The error of streamwise velocity in the entire domain of the duct is also shown

in Fig. 7.2(b) using the L2-norm of the error. The L2-norm of the error is defined as

ξ‖u‖2
=


 1

NyNz

Ny∑

j=1

Nz∑

k=1

(
unum

j,k − uana
j,k

uana
m

)2



1/2

, (7.17)

where Ny and Nz is the number of grid nodes in y and z direction. In Fig. 7.2 the spatial

accuracy of the FFD PR-DNS is observed to be the second-order in the L2 norm, whereas the

accuracy of the PS PR-DNS is only the first-order accurate. One hypothesis to explain the

first-order accuracy in the PS PR-DNS is that only one layer of grid nodes is used to implement

the IB forcing so that there are not enough points to represent the Eulerian IB forcing (see

details in Tenneti et al. (2011)).

For heat transfer problem, Table 7.1 shows the Nusselt number obtained from the analytical

solution and numerical results, as well as its relative error between them.The analytical solution

for the Nusselt number in the case of the thermal fully–developed flow in a square duct is 2.976

(Shah and London (1978)). In the PS PR-DNS, the Nusselt number is 3.029, whereas the

Nusselt number is 2.980 in the FFD PR-DNS. The relative error using the FFD PR-DNS is

smaller than the one using PS PR-DNS. This results from the second-order accuracy in the
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(a) (b)

Figure 7.2: (a) Error between numerical results (Dm = D/△x = 90) and analytical solution
along the central line in the cross section of the duct. The solid line represents the error of the
velocity obtained from PS PR-DNS, and the dashed line represents the error of the velocity
obtained from FFD PR-DNS. (b) Accuracy of PS and FFD PR-DNS in the duct flow using the
L2-norm of the error. The symbols represent the L2-norm error using PS and FFD PR-DNS.
The dashed line represents the line of slope of 1 and inidicates first-order convergence and the
solid line represents the line of slope of 2 and inidicates second-order convergence.

FFD PR-DNS and the first-order accuracy in the PS PR-DNS.

Table 7.1: Comparison of Nusselt number between numerical results (PS and FFD PR-DNS)
and the analytical solution (ANA) with grid resolution Dm = 50 at Rem = 50. The relative
errors are calculated based on the analytical solution from Shah and London (1978).

FFD PS ANA

Nusselt number 2.980 3.029 2.976

relative error 0.13% 1.78% -

7.4.2 Flow past a SC array of particles

In order to ascertain the convergence characteristics of the FFD PR-DNS, a flow past a SC

array of particles is considered. In this case, the simulation setup is the flow past a SC array

of particles in a periodic domain. The drag force is defined by Tenneti et al. (2011) as
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where Np is the number of particles in the entire domain, and τji = −p′δji + µf (∂ui/∂xj +

∂uj/∂xi) is the stress tensor, and
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is the mean pressure gradient (see details in Tenneti et al. (2011)). The above terms are

normalized by the Stokes drag force FSt = 3πνfD (1 − εs) |〈W〉| acting on an isolated sphere

with a mean slip velocity |〈W〉|.

Convergence characteristics of the normalized drag force with grid resolution Dm is investi-

gated as shown in Fig. 7.3. It shows that using the PS and the FFD PR-DNS, the normalized

drag force converges beyond Dm = 45 for this SC case. Going to a finer grid reveals that the

normalized drag force converges to a value of about 7.20 using the PS PR-DNS and about 7.15

using the FFD PR-DNS. The difference of the normalized drag force between FFD PR-DNS

and PS PR-DNS results from the finite-difference scheme and pseudo-spectral scheme. The

convergence test will be useful for the choice of numerical parameters for simulations later.

Figure 7.3: Convergence characteristics of the normalized drag force with grid resolution Dm

(a) for a SC case of mean slip Reynolds number Rem = 20 (based on the mean slip velocity) and
solid volume fraction εs = 0.2. FSt is the drag force of a sphere in Stokes flow. The open circles
and the black circles represent the drag force obtained from FFD PR-DNS and PS PR-DNS,
respectively.
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7.4.3 Flow past a fixed sphere

The third test case is a flow past a fixed sphere in an open field, which is a benchmark

test for the accuracy of any numerical simulation approach. Using the parallel FFD PR-DNS

solver (see details in Appendix M) flow past a spherical particle in a large domain can be

simulated in order to avoid the effect of boundary conditions on the sphere. Note that in the

PS PR-DNS with periodic boundary conditions it is not possible to simulate flow past a fixed

sphere in an open field because of the mirror images of the particle that appear due to periodic

boundary conditions. In this case, steady flow past a sphere with a uniform velocity Uin in the

inlet is simulated in a computational domain of dimensions 20D × 20D × 20D, where D is the

diameter of the sphere. Except for the inlet boundary condition, Neumann boundary conditions

are imposed on all the domain boundaries. No-slip and no-penetration boundary conditions

are imposed at the sphere surface. The Reynolds number is defined as Re = ρfDUin/µf and

is varied from 20 to 140. The sphere is represented using 30 grid points on the diameter.

Figure 7.4 shows drag coefficient of the sphere in the case of flow past a sphere in the large

domain. The drag coefficient is defined as CD = 2Fd/(ρfU
2
inA), where Fd is the drag force,

and A = πD2/4 is the frontal area of the sphere. The drag coefficient from FFD PR-DNS

shows an excellent agreement with existing numerical data (Pepiot and Desjardins (2010)) and

experimental data (Clift et al. (1978)). It indicates that the parallel FFD PR-DNS has the

capability to capture flow physics accurately.

7.4.4 Developing duct flow

In a real system, it is not easy to define a fully–developed flow region since the flow needs

to be developed in association with the entrance length effect. In addition, the flow is often

bounded by the walls of reactors. Wall effect on the flow and particles need to be considered

in many cases. In order to study the entrance length effect and wall effect on particles and

fluid flow, the simulation of developing duct flow with inflow/outflow boundary conditions is

performed using FFD PR-DNS. Figure 7.5(a) shows the contour plot of axial velocity field for a

developing laminar flow in a square duct. The extended inlet with free-slip boundary condition
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Figure 7.4: Drag coefficient CD of the sphere in the case of flow past a fixed
sphere with Reynolds numbers in a computational domain of 20Dx20Dx20D: the trian-
gles represent the FFD PR-DNS results, and the circles represent the numerical results
from Pepiot and Desjardins (2010) and standard drag coefficient of a sphere from Clift et al.
(1978).

is introduced before the uniform flow enters the square duct. That is because Williams (1993)

reported that the setup of the uniform velocity in the inlet of the duct for simulating developing

laminar flow results in retarded growth of the wall boundary layer near the entrance of the duct.

He found that the numerical result can match the experimental data with the extension of the

upstream flow by adding a free-slip velocity boundary condition. However, he used only one

extended length Lext to simulate the developing duct flow. In this work, the effect of different

lengths of the extended domain on the velocity along the center of the duct is studied as

shown in Fig. 7.5(b). It is observed that the relative error between the experimental data

(Goldstein and Kreid (1967)) and numerical results is about 18% for Lext/L = 1/40 but 3.5%

for Lext/L = 1/10. This indicates that a slug flow still exists when using a small extended

domain, whereas using a longer extended domain (Lext/L = 1/4) the velocity in the center of

the duct shows a good agreement with the experimental data.

Good agreement between numerical results using the FFD PR-DNS and experiments of Goldstein and Kreid

(1967) can also be seen in Fig. 7.6. This figure shows that the velocity profile at the differ-

ent axial locations of the square duct is developing along the streamwise direction. At the

non–dimensional location x̂ = x/D/Re = 0.02 , the average difference between numerical data

(denoted by lines) and experimental data (denoted by symbols) is only about 3%. At x̂ = 0.1,
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(a) (b)

Figure 7.5: (a) Sketch of developing flow in a square duct and contour of the streamwise
velocity in the middle plate. The extended domain is used and uniform velocity is given
in the inlet of the domain. (b) Comparison of the streamwise velocity from FFD PR-DNS
with Goldstein and Kreid (1967) experimental data (denoted by the triangle) along the center
of the square duct in laminar flow. The lines represent the FFD PR-DNS results using the
different ratio of extended lengths Lext to the total length L of the computational domain.
The bulk fluid velocity is Um

(
x‖

)
= 1

Af

´

Af
UdA. The Reynolds number is based on the duct

height D and inlet uniform velocity.

the flow is almost developed since velocity profile is close to the analytical solution for the

fully–developed duct flow. Thus, the FFD PR-DNS can be used to simulate wall-bounded

flows with inflow/outflow boundary conditions accurately.

Similar to the setup of the hydrodynamic problem, the heat transfer in the same square

duct is simulated with the inlet uniform temperature and isothermal walls. Figure 7.7 shows

that variation of local Nusselt number along the axial location in the duct flow at steady state.

The local Nusselt number is defined as

Nux =
hD

kf
=

(∂T/∂n) mean

Tm − Ts
=

(∂φ/∂n) mean

φm
, (7.20)

where D is the height of the square duct, Tm is the bulk fluid temperature, Ts is the wall

temperature, and n is the normal direction of duct wall. For convenience, the non–dimensional

fluid temperature in Eq. 7.20 is defined as
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Figure 7.6: Comparison of the velocity profile along the streamwise direction U‖ in a square duct
flow: FFD PR-DNS compared with Goldstein and Kreid (1967) experimental data (triangles
and circles) and the analytical solution of fully–developed flow (plus). Um is the bulk fluid
velocity.The Reynolds number is based on the The lines represent the FFD PR-DNS data, the
triangles and circles represent the experimental data, and the crosses represent the analytical
solution of the velocity in a fully–developed duct flow. The bulk fluid velocity is Um

(
x‖

)
=

1
Af

´

Af
UdA. The Reynolds number is based on the duct height and inlet uniform velocity.

φ =
T − Ts

Tm,in − Ts
, (7.21)

and the non–dimensional bulk fluid temperature is

φm =
Tm − Ts

Tm,in − Ts
, (7.22)

where Tm,in is the bulk fluid temperature in the inlet of the domain. The mean temperature

gradient in the wall normal direction is computed at each cross section to obtain Nusselt

number according to Eq. 7.20. Fig. 7.20 reveals that at the normalized axial location x̂ that

is greater than 0.04, the flow becomes thermal fully–developed flow and the local Nusselt

number approaches the analytical solution of Nusselt number in the thermally fully–developed

region (Shah and London (1978)). The entrance effect for heat transfer in the square duct is

clearly seen. This test case validates the accuracy of the scalar solver of FFD PR-DNS by

demonstrating that it approaches the analytically predicted value of the Nusselt number in a
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thermally developing duct flow.

Figure 7.7: Variation of local Nusselt number along the axial location in the developing duct
flow. The Reynolds number is based on the height of the square duct D. The line represents
the numerical results from FFD PR-DNS data and the star represents the analytical solution
of Nusselt number for thermally fully–developed flow in a square duct in Shah and London
(1978).

7.5 Gas–solid heat transfer in a duct flow

In order to identify the fully–developed flow region in a duct and the study the wall effect

on particles, the convergence characteristics for flow past a sphere with heat transfer is first

established in gas–solid flow using FFD PR-DNS. Then the wall effect on drag force and Nusselt

number of a fixed sphere in the developing duct flow is investigated by varying the distance

between the wall and sphere. Finally, the preliminary results from the case of flow past a fixed

particle assembly in a square duct with heat transfer is obtained using FFD PR-DNS. Using

these PR-DNS data, the further analysis will be given in the future work.

7.5.1 Convergence test of hydrodynamics and heat transfer in gas–solid flow

In order to choose appropriate numerical parameters for simulations of developing duct

flow with particles later, a convergence test of the hydrodynamic and scalar solvers of the FFD

PR-DNS is given below for the case of developing flow in a square duct with a fixed sphere.

Figure 7.8 shows a sketch of heat transfer on a fixed sphere in a square duct flow. In this case,

the height and the length of the square duct are H/D = 3 and L/D = 12, respectively. The

particle Reynolds number Rep based on the sphere diameter and inlet uniform velocity is 100.
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Figure 7.8: Sketch of flow past a fixed sphere in a square duct with heat transfer. D is
the diameter of the sphere, H is the height of the square duct, and L is the length of the
computational domain. The uniform velocity Uin and temperature Tin are given at axial
location x = 0.

Convergence characteristics of the drag coefficient and Nusselt number of the sphere with

grid resolution Dm at Rep = 100 are shown in Fig. 7.9. Fig. 7.9(a) shows variation of the drag

coefficient CD with grid resolution Dm. In this figure, the relative error in the drag coefficient

of the sphere between Dm = 40 and Dm = 86 is about 5%. The drag coefficient converges to

a value of 2.2 for Dm > 40. For gas–solid heat transfer problem, the Nusselt number of the

sphere is defined as

Nup =
hD

kf
, (7.23)

where the heat transfer coefficient is obtained from

qtotal = −
ˆ

As

kf
∂T

∂n
dA = hAs (Ts − Tin) (7.24)

where qtotal is the total heat transfer from the sphere to the gas phase, n is the normal direction

of the sphere surface, As = πD2 is the surface area of the sphere. Note that the Prandtl number

in this case of gas–solid flow is 0.7 that corresponds to air at standard conditions. Figure 7.9(b)

shows that the relative error of the Nusselt number between the grid resolution Dm = 40 and

Dm = 66 is about 3%. For Dm ≥ 40, the Nusselt number of the sphere converges to a value

of 7.9. These results indicates that the hydrodynamic solver requires higher grid resolution to

obtain convergent results for the drag coefficient than the scalar solver requires for the Nusselt

number. This result is consistent with the fact that for Pr = 0.7 the thermal boundary layer
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of the sphere is thicker than the hydrodynamic boundary layer. In the following section, the

choice of numerical parameters for the simulation of developing duct flow with particles is based

on this results of this convergent test.

(a) (b)

Figure 7.9: Convergence characteristics of (a) the drag coefficient (square) and (b) Nusselt
number (triangle up) of the sphere with grid resolution Dm = D/∆x in the computational box
of H/D = 3 and L/D = 12 at Rep = 100, where ∆x is the grid spacing.

7.5.2 Wall effect on drag force of a sphere

Since the presence of walls can affect the flow around a sphere, which can in turn influence

the drag force of a sphere, the validated FFD PR-DNS is used to study the wall effect on

flow past a fixed sphere in a square duct by varying the ratio of height of the duct to sphere

diameter H/D (see Fig 7.8). Due to the restriction of computational resources, a small test

domain is used with L/D = 4 and the maximum ratio of height to particle diameter H/D = 4.

The length of the extended domain is 1/10 of the streamwise length L. The sphere is located

at x/L = 0.3 with a uniform velocity at x/L = 0.

Figure 7.10 shows variation of the normalized drag force with the ratio H/D at a sphere

Reynolds number of 20. The normalized drag force denoted by the circle symbols decreases

with increasing H/D. The decrease of the normalized drag force with H/D results from the
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acceleration of flow between the sphere and the wall that produces large stress on the surface

of the sphere as seen in Fig. 7.11. Since the mass flow is fixed in this problem (fixed Reynolds

number) the reduction in available area (relative to a periodic arrangement of particles) result-

ing from introduction of the wall causes the flow velocity to increase in the gap between the

sphere and the wall. In this figure, it is observed that the pressure and velocity gradient in the

normal direction on the particle surface for H/D = 2 is larger than the one for H/D = 4. The

effect of the duct wall on the particle will vanish for H/D → ∞ as Fig. 7.10 shows that the

normalized drag force tends to be the value for the drag force of a sphere in a unbounded flow.

Figure 7.10: Variation of the normalized drag force of a sphere with the ratio H/D at Rem = 20
and Dm = 25 and comparison with the experimental data denoted by dashline from Schlichting
(1968) for unbounded flow. The symbols represent the FFD PR-DNS results for the case of
flow past a sphere in a square duct.

7.5.3 Heat transfer in dense gas–solid flow within a duct

The main objective to develop FFD PR-DNS approach is to account for wall effect on

particle beds that are widely used in industrial applications. In Ch. 2-4, the flow past a fixed

particle assembly with heat transfer in the gas–solid flow has been simulated in the thermal

fully–developed region using PS PR-DNS. However, in a real fixed bed reactor, there exists the

entrance length before the fluid flow transits from developing region into the fully-developed



183

(a) (b)

Figure 7.11: (a) The relative pressure and (b) velocity gradient in the normal direction on the
sphere surface along the polar angle θ ( 0 ≤ θ ≤ π) in the x − y plane corresponding to the
cases in Fig. 7.8. Uin is the inlet velocity and Pin is the inlet pressure.

region. In addition, the walls of the reactors also affect the flow with heat transfer. In order

to extend the simulations to account for wall effect on particles, we need to go beyond a single

particle in a duct and simulate heat transfer in gas–solid flow in a square duct. Before simulating

larger domains, a test case of flow past a particle assembly with L/D = 5 is simulated in order

to obtain some insight regarding the effect of the duct wall on multiple particles. The setup

for flow past a particle assembly in a square duct is shown in Fig. 7.12. Differences between

this setup and the periodic domain setup used in earlier PS PR-DNS of homogeneous gas–

solid flow are worth noting (see details in Ch. 2). In the PS PR-DNS simulation, flow past

a homogeneous particle assembly is simulated using periodic boundary conditions in all three

directions, whereas in FFD PR-DNS simulation a homogeneous particle assembly (L/D = 5

in three directions) is placed in the middle of a square duct. Steady flow in the duct past

the particle assembly is simulated using inflow/outflow boundary conditions in the streamwise

direction x‖ and wall boundary conditions in the y and z directions. In addition, a buffer

zone (B/D = 2) is needed to obtain the correct inlet velocity distribution, and an extended

simulation domain (T1/D = 1) at the inlet ensures that all the particles are contained inside

the square duct. An extended simulation domain at the outlet (T2/D = 4) avoids the reflective
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boundary effects at the outlet of the duct. The use of a gap between the duct and the fixed

bed of particles (S/D = 1) avoids unnecessarily high resolution requirements arising from the

need to resolve the distance between the walls and the particles.

Figure 7.12: Sketch of flow past a homogenous particle assembly with heat transfer in a square
duct. D is the diameter of the sphere, H is the width of the square duct, L is the length of the
square duct, S is the distance between wall and the boundary of particle bed, B is the length
of the buffer zone, T1 and T2 is an extra length.

In the homogeneous particle assembly region (L/D = 5), the solid volume fraction is set to

0.2 (calculated from NπD3/6L3, where N is the number of particles in this region). Uniform

velocity Uin and temperature Tf,in are specified at the inlet to the computational domain. The

isothermal boundary condition is imposed at the surfaces of all particles. The initial fluid

temperature is higher than the particle temperature. Based on the convergence test results

presented in Sec. 7.5.2, we use a grid resolution of Dm = 25 for particles at Rep = 50 since

the grid resolution required for this case at low Reynolds number is less than that for a higher

Reynolds number.

Figure 7.13(a) shows contours of the fluid velocity field in a plane passing through the center

of the square duct at y/D = 3.5. It can be seen that the presence of the particle assembly

reduces the magnitude of the fluid velocity but the fluid accelerates in the gap between the

wall and particles. This phenomena is also observed in a fluidized bed, where the fluid velocity

profile is relatively flat in the middle of the bed but is higher near the walls. Figure 7.13(b)

shows contours of the non–dimensional fluid temperature field in the same plane. The hot fluid
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is cooled down by particles and walls. However, the particles are more effective at transferring

heat from the fluid than the wall because of the greater surface area for heat transfer per axial

length of the duct.

(a) (b)

Figure 7.13: Contour plot of (a) instantaneous axial velocity and (b) non–dimensional fluid
temperature field in a plane passing through the center of the square duct (y/D = 3.5) for the
setup.

Figure 7.14 shows the variation of the bulk fluid velocity with axial location

Um

(
x‖

)
=

1

Af

ˆ

Af

UdA, (7.25)

and non–dimensional bulk fluid temperature with axial location

φm

(
x‖

)
=

´

Af
φUdA

´

Af
UdA

. (7.26)

The bulk fluid velocity rapidly increases due to the sudden reduction of the fluid area. The

fluctuation of bulk velocity in the bed region mainly results from the small cross-sectional area.

With large cross-sectional area, we expect to see a relatively constant value for the bulk fluid

velocity in the bed region. Fig. 7.14(b) shows that the non–dimensional bulk fluid temperature

decays in both the bed region and in the particle-free region (x‖/D > 6). However, the rate of

decay in the bed is faster than in the region free of particles. This implies that heat transfer

in the bed region is of primary importance. This test case can be considered as a snapshot
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of instantaneous flow in a riser and gives insight about the effect of fixed particle assembly on

heat transfer in a square duct. Further analysis about this case will be given in the final thesis.

(a) (b)

Figure 7.14: Variation of (a) the bulk fluid velocity Um and (b) the non–dimensional bulk
fluid temperature φm along the axial location x‖/D. The fixed particle assembly is located
between the two dash lines. The circles represent the value of bulk fluid velocity and bulk fluid
temperature in the two plots.

7.6 Conclusion

A fully finite-difference (FFD) PR-DNS approach was developed based on PUReIBM to

account for walls and various boundary conditions. The hydrodynamic and scalar solvers of

FFD PR-DNS were parallelized and validated by a suite of test cases including fully developed

duct flow, flow past a simple cubic (SC) particle arrangement, flow past a sphere in open field,

and developing duct flow with and without a single particle using inflow and outflow boundary

conditions. The FFD PR-DNS data obtained from these test cases had a good agreement with

analytical solutions, and existing numerical and experimental data. A flow past a fixed particle

assembly in a square duct with heat transfer was also simulated. It showed that the effect of

entrance length on the velocity and temperature field disappeared fast. Using FFD PR-DNS,

the effect of walls on particles can be quantified and modeled in the future work.
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CHAPTER 8. DETAILED EXPERIMENTAL AND NUMERICAL

INVESTIGATIONS OF VELOCITY FIELD IN A SQUARE DUCT

This chapter is a manuscript titled “Detailed three-dimensional experimental and numerical

investigations of hydrodynamic interactions between flow and particles in a square duct” that

is under preparation. In this manuscript, my contribution is the development of the numerical

approach and performing the simulations to compare with experimental data. The experimental

data are provided by Mahdi Ramezani and Michael G. Olsen of Iowa State University.

The purpose of this chapter is to validate the PR-DNS approach by a detailed comparison

with experimental data. The PR-DNS approach is used to simulate the flow around spheres in

the test section of the experiments of flow through a square duct. The high-resolution particle

image velocimetry (PIV) measurement and high-fidelity PR-DNS approach are developed first.

Detailed comparisons of the velocity field between experiments and simulations are performed

for the cases of pure laminar duct flow, flow past a fixed sphere in a duct, and flow past a train

of five spheres inside a duct. All comparisons of the velocity fields between the simulations

and experiments show a good agreement. In addition, the effect of the interparticle distance

in a train of spheres on the wake behind spheres and the wall boundary layer is discussed. The

direct comparisons not only validate both experimental measurement and numerical approach

but also establish a standard dataset for by other researchers.

8.1 Introduction

Fundamental understanding of hydrodynamic interactions in gas/liquid-solid flow is impor-

tant to design industrial reactors such as porous medium or fixed bed reactors. For instance,

in these types of reactors, velocity fluctuations in gas/liquid phase are generated due to the
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presence of the solid phase. The level of velocity fluctuations affects the quantification of the

parameters such as hydrodynamic dispersion (Koch and Brady (1985)) that relies on fluid ve-

locity fluctuations at the microscopic structure. Although theoretical analysis such as boundary

layer analysis (Schlichting and Gersten (2003)) can provide some detailed information of hy-

drodynamic interactions, the limitations of theoretical analysis such as assuming low speed flow

or dilute flow are obstacles to providing the detailed information on high-speed dense flow.

As a complement to theoretical analysis, experimental measurements are widely used to

provide the detailed information of hydrodynamic interactions. In the early experimental tech-

niques (Wakao and Kaguei (1982); Delgado (2006)) such as frequency response or a pulse input,

the measurements of the flow are intrusive. Furthermore, the point-wise measurements can-

not quantify velocity fluctuations accurately due to the disturbance from the intrusive flow

measurement probes. Recently, nonintrusive planar measurements such as particle image ve-

locimetry (PIV) (Adrian (1991, 2005)) have been developed. Such planar measurements with

laser-based techniques have provided accurate, detailed, quantitative measurement of velocity

field in gas/liquid-solid flow such as flow past a single sphere. The accuracy of PIV mea-

surements can be improved by increasing the spatial resolution at the cost of reducing the

field-of-view (Adrian (2005)).

However, PIV measurements are difficult to deploy in dense gas/liquid-solid flow due to

limited optical access. In order to overcome the difficulty in experimental measurements of

velocity field in dense gas-solid flow, numerical approaches have been developed to predict flow

field. Before using numerical approaches to perform further analysis, a numerical approach has

to be validated by experimental data. A standard validation for all numerical approaches is to

compare experimental data on flow past a particle in a open field at different Reynolds numbers

(Clift et al. (1978)). Beyond the standard test, Johnson and Patel (1999) used dye injection

experiments to validate their numerical results of the structure of a wake behind an isolated

sphere at high Reynolds number up to 300. Ten Cate et al. (2002) studied a single sphere

settling under gravity using PIV measurement to validate the results obtained from lattice-

Boltzmann method. They captured the full transient behavior of both the sphere motion

and the fluid motion. Tang et al. (2016) performed a pseudo-2D fluidized bed simulation and
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compared statistics of axial solids flux between PR-DNS data with PIV experimental data.

In this work, a detailed quantitative comparison between experiments and numerical simu-

lations on flow past the fixed spheres in a square duct is performed. The numerical setup mimics

the complete test section of the duct flow experiment. Earlier experimental studies on fixed

multiple particles systems have been reported, such as using two spheres (Tsuji et al. (1982);

Zhu et al. (1994); Liang et al. (1996); Chen and Wu (2000)), three spheres (Liang et al. (1996);

Ozgoren (2013); Pinar et al. (2013)) or more than four spheres (Liang et al. (1996)). Numeri-

cal simulations have also been performed for two spheres (Folkersma et al. (2000); Tsuji et al.

(2003); Prahl et al. (2007); Yoon and Yang (2007, 2009)) in uniform upstream uniform velocity

in a open field. Compared to these existing works, we not only simulate the developing flow

around spheres but also account for the effect of the duct wall and inflow/outflow conditions

using both approaches.

Once a numerical approach is valid, the approach can be used to extract more detailed

information on velocity fluctuations that results from the presence of the spheres even in a

laminar flow (Mehrabadi et al. (2015)). The experimental measurement is hard to capture the

detailed velocity fluctuations around spheres. The intensity of the velocity fluctuations can

be affected by the structure of the wake behind the spheres. The studies of the structure of

the wake behind two sphere have been reported by numerical simulations (Tsuji et al. (2003);

Prahl et al. (2007); Yoon and Yang (2007, 2009)). They found that the different types of the

structure of the wake relies on the interparticle distance that affects the the velocity fluctuations.

The rest of the paper is organized as follows. In Section 8.2, the experimental setup for

flow past spheres in a square duct is briefly described. In Section 8.3, the detailed comparisons

of velocity fields between experiments and numerical simulations are performed by the cases of

an internal flow in a square duct, steady flow past a fixed sphere and a train of five spheres in

a square duct. In the case of flow past a train of five spheres, a discussion on the effect of the

interparticle distance on the structure of the wake behind spheres and the wall boundary layer

growth is also given. Finally, the principal findings of this work are summarized in Section 8.4.
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8.2 Experimental setup

In order to validate PR-DNS data by experimental data, the cases of an internal flow in a

square duct, steady flow past a sphere and a train of five spheres in a square duct are considered

in both experiments and simulations. Since the PR-DNS approach has been developed in

Chapter 7, only the experimental approach and setup are briefly given in this chapter for

completeness. The details on the experimental method, apparatus, and results are provided by

Ramezani and Professor Olsen of Iowa State University.

The experimental apparatus used in this study is shown in Fig. 8.1. The test section

consists of a square cross section water tunnel with Hexp = 149mm width and Lexp = 610mm

length made of clear acrylic. A stationary arrangement of fused silica spheres with the diameter

of D = 15mm are placed inside the duct that are held by means of a 2mm sting attached to

the back wall of the section. This wall of the section is removable and allows for varying the

arrangement of the spheres from one experiment to the other.

Figure 8.1: Schematic of the test section setup in the experiment. The green sheet represents
the position of laser sheet. The case of five sphere arrangement in the apparatus is shown
here. All the parameters are marked in the figure. The numerical setup is the same as this
experimental setup.

A PIV system from LaVision® Co. is used to measure velocity fields, which incorporates a

NewWave Research® Gemini double pulsed Nd-YAG laser illuminating the middle plane of the

test section, three double frame FlowMaster 3s cameras recording images of the corresponding
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flow field, and the DaVis 7.2 software acquisition and processing data fields. Macro lenses with

50 mm focal length set at an aperture of 5.6 f# were mounted on cameras that gives a sufficient

depth of field for the measurements. Simple linear optics are used for maintaining a laser sheet

thickness of 1 mm throughout the width of the channel and special care was taken in order

to make sure that the plane of laser slices the center plane of the glass spheres. Calibration

of the cameras using a pinhole model (Tsai (1987)) is usually considered accurate when the

cameras are at a normal angle to the walls of the test section. But since the current setup is

considered a 3 media environment, calibration was done using a 3rd order polynomial function

(Soloff et al. (1997)) in order to make it possible for accurately matching the images from all

the cameras.

The condition of flow at the inlet of the duct plays an important role in the measurements. A

digital inverter system controlling the centrifugal pump using an active feedback of an ultrasonic

flow meter delivers the desired constant flow rate to the system. In order to attain a uniform

inlet flow to the test section, several layers of perforated stainless steel sheets with varying

arrangements are installed in the upstream flow conditioner that provides a uniform flow of

deionized water into the test section. PIV data of the flow in the duct shows the variation

of velocity in the profile to be less than 10 percent across the width and turbulence intensity

of flow to be less than 1% for the range of Reynolds number from 500 to 20000 based on the

width of the test section (from 50 to 2000 based on the diameter of the spheres).

8.3 Comparison of velocity fields

In order to minimize all possible factors that could result in any difference between numerical

and experimental data, the numerical setup is the same as the experimental setup. In the

numerical setup, the length from the entrance of the duct to the outlet of the duct is L/D = 51

and the width of the duct is H/D = 10. Note that in order to avoid the effect of the outlet

boundary condition on spheres, the length of the duct in the numerical setup is longer than that

in the experimental setup (Lexp/D = 41). In addition, an extended upstream zone is needed in

the numerical setup to capture the correct wall boundary layer growth before the flow enters the

square duct is Z/D = 10. The validity of using the extended zone in the numerical approach
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is given in Section 7.4.4 of the Chapter 7. In the following sections, three cases including a

laminar duct flow, steady flow around a single sphere in the duct, and steady flow past a train

of five spheres in the duct are compared using numerical and experimental approaches.

8.3.1 Pure laminar duct flow

We first would like to guarantee that the boundary conditions in the numerical approach

are the same as the experimental conditions for the case of a laminar duct flow. Our results are

compared with the existing experimental results of Goldstein and Kreid (1967) for verification

of the experimental facility and numerical approach. Direct comparisons are made in a laminar

duct flow by running different experimental and numerical cases at various Reynolds numbers,

where the Reynolds number is based on the width of the square duct. Two numerical simulations

and experimental tests are presented in Fig. 8.2(a) showing the non-dimensional centreline

velocity versus the non-dimensional axial location x/HReH in the duct. The numerical results

at the Reynolds number ReH = 20 shows a good agreement with results of Goldstein and Kreid

(1967) in the developing and developed regions. The reason to choose the cases at the Reynolds

number ReH = 850 is to guarantee the same velocity field in both approaches before the case

of flow past a sphere is performed at this same Reynolds number. Both the numerical and

experimental results match the experimental results of Goldstein and Kreid (1967) very well for

the different Reynolds number cases. Note that the experimental facility used here is relatively

short in non-dimensional units (x/HReH). The experiments were intentionally designed to

be in this flow regime in order to see the interaction of a flat velocity profile rather than a

parabolic velocity profile with spherical particles. It is also worth noting that the full length of

the experimental setup is in the developing region and covers a relatively short region by design

in order to enable a study of the interaction of an almost flat velocity profile with spherical

particles.

We also compare the axial velocity profile at x/HReH = 0.0023 from both the numerical

and experimental data in Fig. 8.2(b) to check if there is any discrepancy, since a sphere will

be installed at this position (x/HReH = 0.0023) in the next test case. Fig. 8.2(b) shows that

the axial velocity profile at x/HReH = 0.0023 obtained from PR-DNS falls within the error of
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(a) (b)

Figure 8.2: A laminar developing flow comparisons in a duct. (a) Comparison of the cen-
terline velocity Ucenter between the experimental and numerical data. The circles represent
the experimental data of Goldstein and Kreid (1967). The blue and red solid lines represent
the numerical results obtained from the PR-DNS approach. The other lines represent the
present experimental results obtained from PIV measurement. The Reynolds number ReH is
based on the width or height of the duct and the inlet uniform velocity. (b) Comparison of
the axial velocity profile Ux/Ub at x/HReH = 0.0023 between the numerical results (the red
line) and the present experimental data (the symbols). The bulk fluid velocity is defined as
Ub (x) =

´

Af
UxdA/Af , Af is the fluid cross-sectional area.

the experimental data and is almost same as the time-averaged axial velocity obtained from

the experiments. This implies that the wall boundary layer growth in the experiment is the

same as the prediction from the numerical approach. The comparison of axial velocity profiles

is taken to be an indication that the boundary conditions imposed in our PR-DNS approach,

such as inflow/outflow boundary condition is the same as those in the experiments. Therefore,

in the next test case, we add spheres into the duct flow for comparison of the velocity fields

using both approaches.

8.3.2 A single sphere

In order to validate the capability of the PR-DNS approach to capture the flow field around

a sphere accurately, we compare the velocity field obtained from experiments with the PR-

DNS data for the case of steady flow past a single sphere in a square duct. The center of the
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sphere is located at xp/D = 27.2 in the experiment. The same setup is used in the PR-DNS

configuration for the sphere. Note that for convenience, we set the center of the sphere at the

origin in the following figures.

Figure 8.3 shows contours of the axial velocity Ux (top panel) and the cross-stream velocity

Uy (bottom panel) from PR-DNS and the contour lines from experimental measurements in

the square duct at ReD = 85 (the Reynolds number is based on the diameter of the sphere D).

Here the experimental field of view is very small and is focused on the area around the sphere

in order to provide a higher resolution for velocity vectors around the sphere and to avoid any

complication with resolving the near zero velocity in the vortex region downstream the sphere

due to the dynamic range of PIV. In the top panel of Fig. 8.3, the length of the wake behind

the particle obtained from PR-DNS data is almost same as that obtained from experimental

measurement. The solid lines representing the experimental data match very well with the color

contour levels representing the PR-DNS data. In the bottom panel, there are a few differences

in the cross-stream velocity between the PR-DNS data and experimental data that results from

the challenge of experimental measurement of small magnitudes of the cross-stream velocity.

The length of the wake Lw in the simulation shows Lw/D = 1.20 and the experiment shows

Lw/D = 1.25 even though the width of the wake is not affected. The length of the wake for

a sphere in a free flow is expected to be Lw/D = 0.9 (Taneda (1956)) and our case shows a

longer wake due to the containment inside the duct.

Other comparisons can be extracted from the field data of Fig. 8.3 that provide an easier

verification of the results. Figure 8.4 shows the comparison of the streamwise variation of the

axial velocity along the centreline of the duct. The streamwise variation of the axial velocity

from PR-DNS matches very well with experimental data at location upstream of the sphere.

There exists the slight difference of velocities between PR-DNS and experiment downstream

of the sphere. This difference results from the change of the momentum of the fluid in the

experiment due to the sting attached to the sphere. After four particle diameters, the velocity

from PR-DNS again overlaps the experimental data. It implies that the disturbance of the

sting disappears.

We also compare cross-sectional profile of the axial velocity between PR-DNS and experi-
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Figure 8.3: Contour of the axial velocity (top) and cross-stream velocity (bottom) obtained
from PR-DNS data (color contours) and experimental measurement (contour lines) at ReD = 85
in a square duct with the height H/D = 10 and the position of the sphere at xp/D = 27.2.

mental data in the cross-sectional lines as shown in Fig. 8.5. Four locations in Fig. 8.5(b) that

are close to the sphere are chosen to check if the details of velocity field around the sphere

can be captured. For the four different locations, we observe that the cross-sectional profile of

the axial velocity profile obtained from PR-DNS data fall within the error of the experimental

data. The comparisons from different locations indicate that PR-DNS data is validated by the

experimental data and can capture details around the sphere accurately.

8.3.3 Five spheres

After validating the PR-DNS data by experimental data for the single sphere case, we

compare the velocity fields obtained from experiments and PR-DNS data for two cases of a

train of five spheres in a square duct. In the experimental setup, the five sphere are aligned
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(a) (b)

Figure 8.4: (a) Comparison of the streamwise variation of the axial velocity between the PR-
DNS and experimental data along the centreline of the square duct at ReD = 85 for the position
of the sphere xp/D = 27.2. The red circles represent the PR-DNS data and the black triangles
present the experimental data along the centreline shown in (b). The error bars represent the
standard deviation obtained by time-averaging from experiments. (b) The contour of the axial
velocity from experimental data indicates the position of the extracted data (y/D = 0).

along the centerline of the duct and the center of the middle of five spheres is located at

xp/D = 29.6. The interparticle distance Ls between the center of two neighbor spheres is equal

and is Ls/D = 1.38 for the first case in Fig. 8.6 and Ls/D = 2.19 for the second case in Fig.

8.7. All the experimental data collection for these cases with five spheres are performed at the

Reynolds number ReD = 100, which corresponds to ReH = 1000 based on the width of the

square duct. The flow inside the duct is in the developing region in order to have a flat velocity

profile interact with the train of spheres. The reason to choose the two cases with different

interparticle distances is to study the effect of the interparticle distance on the wake behind

the spheres.

Comparisons of the results between simulations and experiments are first shown as overlaid

contours of axial and cross-stream components of velocity. Figs. 8.6 and 8.7 show the contour

plots of numerical results in color and the experimental results as lines both showing similar

levels. This is a very detailed comparison and even though the uncertainty bands cannot be

shown. It is clear that the results from simulation and experiment agree with each other. Note
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(a) (b)

Figure 8.5: (a) Comparison of the cross-sectional profile of the axial velocity between PR-
DNS and experimental data along the cross-sectional lines (shown in (b)) of the square duct at
ReD = 85 for the position of the sphere xp/D = 27.2. The lines represent the PR-DNS data and
the symbols present the experimental data. The error bars are obtained by time-averaging from
experiments. (b) Contours of the cross-sectional profile of the axial velocity from experimental
data. The dashed lines represent the positions of the extracted data (x/D = 0, 0.5, 1, and 1.5)
corresponding to the profiles in (a).

that the contour levels of the experimental and numerical approaches correspond very closely

in the regions close to the train of spheres. However, some discrepancies are seen in the area

between the spheres and wall, and also in the wall boundary layer where the experiments show

a higher velocity than the simulations. This implies that only using an integrated quantity

such as drag force on the sphere as a verification can prove to not be reliable for numerical

validation.

In the top panels of Figs. 8.6 and 8.7, the length wakes behind the last sphere are almost

the same for two different interparticle distances. This can be confirmed by the axial velocity

profile along the centreline of the spheres train in Fig. 8.8. The rate of the increase of the axial

velocity after the last sphere (downstream of the train) for Ls/D = 2.19 (see Fig. 8.8(b)) is

almost the same as that for for Ls/D = 1.38 (see Fig. 8.8(a)). The details on axial velocity

profile along cross-stream lines downstream the train of five spheres in Fig. 8.9 shows that the

axial velocities in the downstream at x/D = 3.3, 4.3 and 5.8 for Ls/D = 1.38 have almost the
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Figure 8.6: Contour of the axial velocity (top) and cross-stream velocity (bottom) obtained from
PR-DNS data (color contours) and experimental measurement (contour lines) at ReD = 100 in
a square duct with the height H/D = 10 and the interparticle distance Ls/D = 1.38.

same growth as those at x/D = 4.9, 5.9 and 7.4 for Ls/D = 1.38 within one diameter of sphere,

respectively. Note that for Ls/D = 1.38 the edge of the last sphere is located at x/D = 3.3

(see Fig. 8.6) while for Ls/D = 2.19 the edge of the last sphere is located at x/D = 4.9. The

locations correspond to 1, 3, and 6 sphere diameters downstream the last sphere in the train

arrangement. For y/D > 1.5, the axial velocity in the downstream returns to the mainstream

velocity as shown in Fig. 8.9 for the two cases. The flow downstream of the spheres seems to

be balancing very similarly irrespective of the configuration of the particle train.

However, for the larger interparticle distance case (Ls/D = 2.19), there exists a small wake

between spheres as shown in the top panel of Fig. 8.7. The existence of small wakes can also

be seen in Fig. 8.8(b). It is seen that the negative velocity between the spheres is higher for

the first two sphere and the intensity reduces with moving to the more downstream spheres.

However, for the small interparticle distance (Lg/D = 1.38), the train of five spheres is similar

to a single long particle since the velocity between two neighbor spheres is close to zero as

shown in Fig. 8.8(a). The effect of interparticle distance on the wake in the two cases is similar



199

Figure 8.7: Contour of the axial velocity (top) and cross-stream velocity (bottom) obtained from
PR-DNS data (color contours) and experimental measurement (contour lines) at ReD = 100 in
a square duct with the height H/D = 10 and the interparticle distance Ls/D = 2.19.

to the observation and wake analysis in a fixed bed of particles in Chapter 4. In dense flow,

small interparticle distance between particles in a fixed bed of particles results in a small wake

length behind each particle (see the discussion on the conditionally ensemble-averaged velocity

field in Chapter 4). We can only observe the near-wake behind particles in dense flow.

We also investigate the effect of spheres on the duct wall boundary layer using the detailed

comparisons. Fig. 8.8 shows that the arrangement of the sphere affects the wall boundary layer

growth. For the case of Ls/D = 1.38, the velocity at the location (y/D = 4) close to the

duct wall slowly decreases along the axial location x/D in Fig. 8.8(a) whereas for the case of

Ls/D = 2.19 the axial velocity at y/D = 4 slowly increases, then decreases beyond the last

sphere of the train in Fig. 8.8(b). Recall that for a pure laminar duct flow, the axial velocity

at such location of y/D = 4 decreases along the axial location during the wall boundary layer

growth before the flow becomes fully developed. This implies that the larger interparticle

distance arrangement slows down the growth of the wall boundary layer within the length of

the train of spheres. This effect of the train of spheres on the wall boundary layer can be also
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(a) (b)

Figure 8.8: Comparison of the axial velocity profile between PR-DNS and experimental data
along the centerline (y/D = 0) of the square duct, the line close to the train of spheres
(y/D = 1), and the line inside the wall boundary layer (y/D = 4) at ReD = 100 for the
interparticle distance (a) Ls/D = 1.38 and (b) Ls/D = 2.19. The lines represent the PR-
DNS data and the symbols present the experimental data. The error bars are obtained by
time-averaging from experiments.

observed at y/D = 4 in Fig. 8.9(a) and 8.9(b), although the values of the axial velocity almost

overlap each other at different axial locations for the two cases.

Comparison of the cross-stream component of velocity can be more difficult due to the

cross-stream velocity components being approximately one order of magnitude smaller than

the streamwise velocity component in most of the field. The difficulty is merely due to the

inherent limitation of the PIV method for capturing a wide range of velocity vectors, which

is limited by the dynamic range of this method (Goldstein and Kreid (1967)). Errors in PIV

measurements are minimized by increasing the distance particles move between laser pulses,

since this reduces the effect of sub-pixel displacement interpolation errors on the measured

velocity. When cross-stream velocities are small relative to streamwise velocities, the measured

cross-stream velocities will be more dependent on sub-pixel interpolation and have greater

potential measurement error. Moreover, near zero velocity measurements suffer more from any

small misalignment in either the laser sheet or the cameras. Despite these potential limitations,

comparisons in cross-stream velocity here shown in Fig. 8.10 have an outstanding agreement

between simulations and experiments with less than 2% average difference in the results.
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(a)

Figure 8.9: Comparison of the axial velocity profile between PR-DNS and experimental data
along different cross-stream lines in the downstream of the train of five spheres at ReD = 100
for the interparticle distance (a) Ls/D = 1.38 and (b) Ls/D = 2.19. The locations plotted
here correspond to 1, 3, 6, and 10 sphere diameters downstream the last sphere in the train
arrangement. The lines represent the PR-DNS data and the symbols present the experimental
data. The error bars are obtained by time-averaging from experiments.

Fig. 8.10 shows a comparison of the cross-stream velocity component along axial profiles

close to the wall (four sphere diameters from the train centreline) and close to the train of

spheres (one sphere diameter from the train centreline). Other locations are not shown due

to all values being virtually identical to the y/D = 4.0 results. It can be observed that the

cross-stream velocity features are well captured by the numerical simulations. The peaks in

these figures show that the flow is expelled away from the spheres and the first sphere shows a

much higher intensity comparing to the rest of the spheres. In the area between the spheres, for

the more packed case studied, there is virtually no entrainment of fluid and the corresponding

valleys have positive velocities whereas for the less packed case, there is small negative velocities

showing an entrainment of fluid between the particles. The biggest valley on the far right side

of the figures corresponds to the vertical wake region downstream the train of particles where

a major entrainment of flow occurs.
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(a) (b)

Figure 8.10: Comparison of the cross-stream velocity between the PR-DNS and experimental
data along the line close to the train of spheres (y/D = 1) and the line close to the duct wall
(y/D = 4) at ReD = 100 for the interparticle distance (a) Ls/D = 1.38 and (b) Ls/D = 2.19.
The lines represent the PR-DNS data and the symbols present the experimental data. The
error bars are obtained by time-averaging from experiments.

8.4 Conclusion

In this work we directly compared experimental data with numerical data for a flow past

spheres in a square duct in details. We first developed high-resolution PIV measurement

and high-fidelity numerical approach. The validation of the PR-DNS approach is established

by comparing the axial velocity in the cases of a pure laminar duct flow and flow past a

single sphere in a duct. Detailed comparisons of the velocity field between experiments and

simulations were performed using the flow inside a duct around a train of five spherical particles.

Different interparticle arrangements of the train of five spheres were studied. Comparisons of

velocity fields showed a good agreement between the simulations and experiments, especially

in the areas closer to the train of particles and also for axial and cross-stream velocity field at

different locations. We also found that number of spheres and spacing does not affect the wake

length behind the train of spheres but had an effect on the wake between two neighbor spheres

and the wall boundary layer growth.

Comparisons shown here verified that the PR-DNS approach is capable of accurately cal-

culating flow for different arrangements of particles. It was also shown that some discrepancies
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exist farther from the train of particles. Even though those areas are of less interest in mul-

tiphase fluid simulations, further investigations will be performed in order to find the reason

for this discrepancy. Current experimental measurements showed only one center slice of the

flow field assuming symmetry in the field, but more detailed investigations require a full cross

section of the duct to be measured and compared for finding the cause of the differences. Us-

ing the PR-DNS approach and PLIF measurement, the comparison will be extended to heat

transfer in water-solid flow in future work.



204

CHAPTER 9. TRANSIENT HEAT TRANSFER IN GAS-SOLID FLOW

This chapter is a part of the manuscript titled “Verification of the assumption of the isother-

mal particle in gas-solid heat transfer” that is under preparation.

Closure models for gas-solid heat transfer developed in Chapters 3 and 4 are based on the

assumption that the particle temperature is constant and independent of time. This assumption

may or may not validate in a real system such as biomass fast pyrolysis in which the particle

temperature varies with time due to heating or cooling by the flow. In order to validate the

range of the closure models presenting, we relax the assumptions of the isothermal particle by

considering the variation of the particle temperature in time (Bi ≪ 1).

The only way to check the validity of the assumption is to perform simulations of the same

identical case of fixed bed particles (used in Chapters 3 and 4) in which the temperature of

particles allows to vary with time. However, the thermal fully-developed assumption used in

Chapters 3 and 4 may not allow us to use the previous PR-DNS approach since the parti-

cle temperature is no more constant. Instead of imposing self-similarity boundary conditions

that guarantee the thermal fully-developed flow, the inflow/outflow boundary condition in the

streamwise direction has to be imposed. The purpose of this chapter is to extend current

FFD code developed in Chapter 7 to account for the variation of the particle temperature in

transient gas-solid heat transfer problem with the inflow/outflow boundary conditions. In this

case, we do not have the thermal fully-developed assumption. Once the FFD PR-DNS has the

capability to simulate transient heat transfer from a sphere, simulation of the transient heat

transfer from a fixed bed of particles can be performed in future work.

In this chapter, the particle temperature of the sphere is assumed to be uniform but de-

pendent of time in this transient heat transfer problem. In addition to solving the gas-phase

energy equation, the particle temperature evolves by solving the solid-phase energy equation.
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The effect of the particle-to-fluid thermal inertia ratio on the particle temperature and average

Nusselt number is studied. The time variation of average Nusselt number at the flow and

interphase heat transfer time scales is also investigated.

9.1 Introduction

Heat transfer between solid and gas phases plays an important role in many industrial

applications such as chemical looping combustion or biomass fast pyrolysis. In order to

understand the heat transfer process in an industrial device, computational fluid dynamics

(CFD) simulations are widely used to perform device-scale simulations. Specifically, in the

absence of mass transfer between phases the average fluid temperature equation in CFD sim-

ulations (Syamlal et al. (1993); Garg (2009)) reads as follows:

∂

∂t

{
ρfεf cpf 〈T (f)〉

}

︸ ︷︷ ︸
=

〈
∂If

∂xj
qj

〉

︸ ︷︷ ︸
− ∂

∂xj
〈Ifqj〉

︸ ︷︷ ︸

unsteady term (1) average gas–solid (2) average conduction

heat transfer in the fluid phase

+
∂

∂xj

{
ρfεf cpf 〈u(f)

j 〉〈T (f)〉
}
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− ∂

∂xj

{
ρfcpf 〈Ifu

′′(f)
j T ′′(f)〉

}

︸ ︷︷ ︸
+ρfεf 〈ST (φα)〉︸ ︷︷ ︸

mean flow convection (3) transport of temperature- (4) chemical reaction

velocity covariance source/sink term

,

(9.1)

and it contains the following unclosed terms: (1) average gas–solid heat transfer, (2) average

conduction in the fluid phase, (3) transport of temperature-velocity covariance, and (4) chemical

reaction source/sink term. In Eq. 3.1, ρf and cpf are the density and specific heat of the fluid

phase, respectively, qj = −kf∂T/∂xj is the heat flux vector, the composition φα represents the

species mass fraction (Y α) or enthalpy (cPT ), ST is the chemical reaction source/sink term, and

εf = 〈If 〉 is the volume fraction of the fluid phase, where If (x, t) is the fluid-phase indicator

function that is unity if the point x lies on the fluid-phase at time t, and zero otherwise. If

ψ(x, t) is any field (velocity or temperature), then its phasic average 〈ψ(f)〉(x, t) (average fluid

velocity 〈u(f)
j 〉 and average fluid temperature 〈T (f)〉) is its average value conditional on being
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in the fluid phase, which is defined as:

〈
ψ(f)

〉
(x, t) =

〈If (x, t)ψ(x, t)〉
〈If (x, t)〉 . (9.2)

We use angle brackets to denote ensemble–averaging of random fields over all particle configu-

rations, and an overbar to indicate spatial averages. Using the phasic average, the fluctuating

components of the fluid velocity and temperature in Eq. 3.1 are defined as u′′(f)
j = uj − 〈u(f)

j 〉

and T ′′(f) = T−
〈
T (f)

〉
, where these fluctuations depend on spatial location and time, although

for brevity this dependence is not explicitly shown. The average fluid velocity is obtained by

solving the averaged momentum and mass conservation equations. In order to solve Eq. 3.1 for

the average fluid temperature, closure models are needed for terms (1)–(4). In Chapters 3 and

4 the heat transfer closure models have been developed to model the unclosed terms (1)–(3).

The term (4) has been also discussed in Chapter 6.

However, these closure models have been developed based on the assumption of the isother-

mal particles in fixed beds of particles which the particle temperature is constant and does

not vary with time. This assumption of the isothermal particles results in steady-state av-

erage Nusselt number that is used in the closure model for average gas-solid heat transfer.

Whether or not the steady-state Nusselt number can be still obtained in fixed bed of particles

if the assumption does not hold needs to be studied. There are far-reaching implications of

the validity of the assumption of the isothermal particle to the closure models since existing

time-independent Nusselt number correlations such as the Nusselt number correlation of Gunn

(1978) have been widely used in time-dependent CFD simulations (Xue et al. (2011, 2012);

Papadikis et al. (2009b)).

One way to validate the assumption of the isothermal particles is to allow the particle

temperature to vary in time. This time variation of the particle temperature is known as

transient heat transfer in two phases. For instance, in biomass fast pyrolysis that requires

moderately high heat to fully convert biomass to liquid at the most efficient rate, the biomass

particle is usually heated up from room temperature to the high desired temperature in fixed

or fluidized bed reactors. During this process, the time variation of particle temperature affects

the reaction rate of species of the biomass particles. The change of the reaction rate can affect
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interphase heat transfer between the solid and gas phases and results in the phase change.

However, even before examining the dependence of the reaction rate on temperature, there

exists an initial stage of fast pyrolysis that temperature variation is significant in time over

that the particle temperature influences chemical reactions of biomass. Over that range, it is

important to check if the average Nusselt number tends to be constant or not.

This initial stage of fast pyrolysis of biomass has been observed in Di Blasi et al. (2013)’s

experiment which measured the time evolution of the temperature of beech wood particles in

the fixed bed particles and weight loss of fixed bed particles as shown in Figure 9.1. This figure

shows that for less than 100s, the temperature of fixed particles at different positions (from the

center to the surface of the fixed bed) increases in time whereas there is no weigh loss of the

biomass particles (represented by the dashed lines) during this time scale. This experimental

data implies that for t < 100s the biomass particles have not been converted into gas or liquid.

Based on the properties and flow conditions provided by Di Blasi et al. (2013), the estimated

interphase heat transfer time scale (O(10−4)) is far less than the converting or volatilizing time

scale (O(102)) for the initial stage of fast pyrolysis of biomass particles in the fixed bed reactor.

The transient heat transfer without chemical reactions can be checked in this region.

Figure 9.1: Copy of Di Blasi et al. (2013)’s figure about time history of particle temperature
(solid lines) at several radial positions (r = 0, 0.5, 1, 1.5, 1.9 cm) and weight loss characteristics
(dashed line) versus time for the packed bed at a heating temperature 800K. The positions
r = 0 and r = 1.9cm correspond to the center and the edge of the packed bed of particles.

A few studies of the simple problem of transient heat transfer from a spherical parti-
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cle were performed. Michaelides and Feng (1994) and Feng et al. (1996) observed the his-

tory effect on the transient heat transfer from the sphere at small Péclet number, analogous

to the Basset history force in the particle equation-of-motion. Balachandar and Ha (2001)

and Feng and Michaelides (2000) have extended the transient analysis to the case of high

Reynolds number and Péclet number, respectively. Both works showed the dependence of the

time history of Nusselt number on Reynolds number. We plan to study the transient heat

transfer in a fixed bed of particles and validate the assumption of the isothermal particles.

However, the earlier works in Chapters 2-4 cannot be easily extended to study the transient

heat transfer problem. The PR-DNS approach that has been developed in Chapter 7 has to be

used for this problem by imposing inflow/outflow boundary conditions. In this chapter, we first

extend the PR-DNS approach in Chapter 7 to study the transient heat transfer from a sphere

in flow through a duct. This case is similar to the case of Balachandar and Ha (2001) where

they studied the free thermal evolution of a spherical particle subjected to a uniform isothermal

ambient flow. Once the approach has the capability to study the transit heat transfer from a

single particle, we will study the transient heat transfer from a fixed bed of particles in future

work.

The rest of the chapter is organized as follows. In Section 9.2, the energy equation for

transient heat transfer in gas-solid flow is described. In Section 9.3 the PR-DNS approach that

is extended to solve this transient heat transfer problem is briefly described. In Section 9.4, the

time evolution of the particle temperature and average Nusselt number for different particle-

to-fluid thermal inertia ratios are shown. Finally, the principal findings are summarized in

Section 9.5.

9.2 Description of transient heat transfer in gas-solid flow

Heat transfer in steady flow past isothermal spherical particles by assuming that the Biot

number is far less than 0.1 and the ratio of particle-to-fluid thermal inertia for a sphere is

infinite has been studied in Chapters 2 and 5. In this steady-state heat transfer, the particle

temperature is constant and independent of time. The only way to verify the validity of the

assumption of the isothermal particle is to perform simulations of the same identical case of
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fixed bed particles with allowing the particle temperature to vary in time. However, the thermal

fully-developed assumption used in Chapters 3 and 4 may not allow us to study the non-constant

particle temperature case. This results from the fact that the scaled fluid temperature field

θ(x, t) =
T (x, t) − Ts

〈Tm〉 (x||, t) − Ts
(9.3)

(〈Tm〉 is the ensemble-average bulk fluid temperature) is no longer statistically homogeneous.

In other words, due to the time-dependent particle temperature Ts(x, t), the θ field varies in

the streamwise or axial direction x|| (Tenneti et al. (2013)), i.e.,

∂θ

∂x||
=

∂

∂x||

(
T (x, t) − Ts(x, t)

〈Tm〉 (x||, t) − Ts(x, t)

)
6= 0. (9.4)

Therefore, the self-similarity boundary condition that is implemented in Chapters 2-4 is not ap-

propriate for the transient heat transfer problem. Instead of imposing self-similarity boundary

condition, the inflow/outflow boundary condition has to be used in the streamwise direction.

The purpose of this work is to extend current FFD PR-DNS code developed in Chapter 7

to account for the time variation of the particle temperature in the transient gas-solid heat

transfer problem.

In order to validate the extended FFD PR-DNS approach, transient heat transfer from a

single sphere is first studied. Once the extended FFD PR-DNS has the capability to simulate

transient heat transfer on a sphere correctly, the transient heat transfer from a fixed bed of

particles can be studied in future work. The test case of steady flow past a sphere with non-

constant particle temperature is performed in a square duct. The reason to choose this case

is that this case not only consider the time variation of the particle temperature but also the

effect of the duct walls. The details of the setup of this case can be seen in Figure 9.2.

The momentum equation and the gas-phase energy equation governing this transient heat

transfer problem are described in Chapter 7. In order to evolve the particle temperature Ts(t)

with time, the solid-phase energy equation for each particle also needs to be solved. The particle

temperature is determined by the solid-phase energy equation that is applied to each particle

as

ρscps
∂Ts

∂t
= ks

∂2Ts

∂xj∂xj
+Qs, (9.5)
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whereQs is the heat source term, ks is the thermal conductivity in the solid phase, ρs is the solid

density, cps is the constant pressure specific heat capacity in the solid phase. Note that similar

to what Feng and Michaelides (2009) did for the solid phase, the particles that have an uniform

temperature is considered, which is valid if Bi ≪ 1. Therefore, instead of solving the above

solid-phase energy equation, the average solid-phase energy equation obtained by integrating

the equation over the solid volume Vs is used to determine the transient temperature of the

particles as

Vsρscps
dTs

dt
=

ˆ

As

ks∇Ts · nsdA+

ˆ

Vs

QsdV, (9.6)

where ns is the outward normal vector (from solid to fluid). Since the heat flux at the interface

between the solid and fluid phases is continuous as ks∇Ts = kf ∇Tf , the total heat transfer

from solid to fluid can be expressed using kf ∇Tf as

ˆ

As

ks∇Ts · nsdA = −
ˆ

As

kf ∇Tf · nfdA. (9.7)

Therefore, the total energy
´

As
ks∇Ts · nsdA can be computed from the gradient of fluid tem-

perature.

It is worth noting that Feng and Michaelides (2009) discussed that for particles that have

different temperatures than the fluid, the presence of this term creates a temperature gradient

within the fluid, which would modify the fluid properties. For relatively small temperature

difference between the particles and fluid, the Boussinesq approximation has been often used

to compute the effect of free convection (the purpose to do this is to avoid to change the fluid

properties). In our case, in order to avoid to consider the free convection (Gr/Re2
D ≪ 1),

the transient heat transfer cases at high particle Reynolds number (ReD = 100) are simu-

lated. Thus, this transient heat transfer problem does not need to consider free convection

as Feng and Michaelides (2009) did.
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9.3 Numerical approach

The equations governing the transient heat transfer problem can be solved using the FFD

PR-DNS approach in Chapter 7. Based on the governing equations in the Section 9.2, the

equations for simulating this transient heat transfer problem can be described as follows. In

FFD PR-DNS approach, the momentum equation is

∂ui

∂t
+ Si = − 1

ρf
gi + νf

∂2ui

∂x2
j

+ Isfu, (9.8)

the gas-phase energy equation is

ρf cpf
∂Tf

∂t
+ uj

∂Tf

∂xj
= kf

∂2Tf

∂x2
j

+ IsfT , (9.9)

and the solid-phase average energy equation is

Vsρscps
dTs

dt
=

ˆ

As

kf ∇Tf · nfdA+

ˆ

Vs

QsdV. (9.10)

where fu and fT are the immersed boundary forcing. The details on the procedure of solving the

momentum and the gas-phase energy equations can be found in in Chapter 7. The solid-phase

average energy equation is solved explicitly as

Vsρscps
T n+1

s − T n
s

△t
=

ˆ

As

kf ∇Tf · nfdA+

ˆ

Vs

QsdV, (9.11)

By solving the above solid-phase average energy equation with gas-phase energy equation in

each time step, the transient heat transfer problem can be simulated in our PR-DNS approach.

For simplicity, we set the heat source term Qs = 0 and focus on the study of the effect of the

particle-to-fluid thermal inertia ratio ρscps/ρfcpf (for biomass fast pyrolysis the value is close

to 2000) on heat transfer.

9.4 Result and discussion

In this section, unlike the studies of transient heat transfer from a sphere in a uniform

flow (Feng and Michaelides (2000); Balachandar and Ha (2001)), we focus on the transient



212

heat transfer problem in a duct flow. The inlet condition corresponds to a uniform velocity

and temperature. The non-dimensional fluid temperature is defined as

φ =
T − Ts,i

T∞ − Ts,i
, (9.12)

where T∞ is the uniform inlet temperature, Ts,i is the initial sphere temperature (non-dimensional

time t̂ = t/τf = 0, where τf = D/U∞ is the flow time scale, D is the sphere diameter and U∞

is the inlet velocity). Thus, the non-dimensional inlet temperature is φ = 1. The temperature

of the duct wall is the same as the initial sphere temperatures (φ = 0), which is less than

the inlet fluid temperature and is constant in time and space. The height of the duct H is

H = 3D and the length of the duct L is L = 10D. The fixed sphere is located in the center

of the duct and its initial temperature is set to φ = 0 as shown in Figure 9.2. Once the flow

and temperature fields reach steady-state, the sphere temperature is allowed to evolve in time

according to Eq. 9.11.
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Figure 9.2: Contour plot of flow past a cool sphere (φ = 0) in a duct at the initial time t = 0
at ReD = 100 and Pr = 0.7 in x − z plane. The uniform non-dimensional temperature in the
inlet of the duct is φ = 1. The red region presents high temperature region. The duct entrance
is located in x/D = 0.

Figure 9.3 shows the time history of the non-dimensional particle temperature φs defined

as

φs =
Ts(t) − T∞

Ts,i − T∞
(9.13)

for three particle-to-fluid thermal inertia ratio values ρscps/ρf cpf for the same particle Reynolds

number (100) based on the sphere diameter and Prandtl number (0.7), where Ts(t) is the time-
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dependent sphere temperature. In Fig. 9.3(a) the sphere temperature increases with time while

the average Nusselt number (Nu = hD/kf , where h is the average heat transfer coefficient)

decreases and approaches an asymptotic value for t̂ ≥ 1. We observe the same behavior for high

thermal inertia ratio in Figs. 9.3(b) and (c) that the Nusselt number goes to an asymptotic

value for t̂ ≥ 1 although the average Nusselt numbers are obtained from different thermal

inertia ratios. These trends are similar to that found in other works (Feng and Michaelides

(2000); Balachandar and Ha (2001)) for unbounded flow past a sphere at Pr = 0.7 for different

particle Reynolds numbers.

(a) (b)

(c)

Figure 9.3: Time history of non-dimensional sphere temperature φs and Nusselt number for
the particle-to-fluid thermal inertia ratio ρscps/ρf cpf equal to (a) 10, (b) 1000, and (c) 2000.
The solid lines represent the non-dimensional sphere temperature and the dash lines represent
the average Nusselt number. U∞ is the inlet uniform velocity.

The effect of particle-to-fluid thermal inertia ratio ρscps/ρfcpf on the average Nusselt num-

ber is not easy to observe whereas the sphere temperature is affected significantly in Fig. 9.3.

For for ρscps/ρf cpf = 10, the non-dimensional sphere temperature drops to 0.03 at t̂ = 25
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whereas for ρscps/ρf cpf = 1000, the non-dimensional sphere temperature is still 0.95 at t̂ = 25.

It is worth noting that for ρscps/ρf cpf = 2000 since the sphere temperature only decreases

10% for t̂ = 100 and Nusselt number does not vary in time for t̂ ≥ 1. Besides the flow time

scale, the evolving time can be also normalized by the interphase heat transfer time scale as

τpf = Vsρscps/hAs. Since the flow time scale is far less than the time scale of the interphase heat

transfer (τpf/τf = ρscpsVsPrReD/ρf cpfDAsNu > 20 for ρscps/ρf cpf ≥ 10 and ReD = 100), the

time scale that the Nusselt number reaches steady-state much faster than the time scale of

interphase heat transfer. Therefore, even though the sphere temperature varies in time, there

exists the steady value of Nusselt number for the applications such as fast pyrolysis of biomass

particle (ρscps/ρf cpf ≈ 2000).

Although there exists the time scale that the average Nusselt number can reach steady-

state in PR-DNS simulation, it is important to know if there also exists in the experiment of

biomass fast pyrolysis. If yes, we can conclude that even though the particle temperature varies

in time, there exists the steady-state Nusselt number for this transient heat transfer from a

sphere. If not, we need to develop Nusselt number correlation to account for the transient heat

transfer. Based on the experimental data from Di Blasi and Branca (2003), we can verify the

above hypothesis. First, Di Blasi and Branca (2003) estimated the Biot number about 7 − 25

for the particle radius 2 − 10 mm at bed temperature Tr = 807K. Based on their estimation,

the Biot number for our biomass fast pyrolysis is about 1.4 since Xue et al. (2011) assumed the

size of the biomass particle to be 400 µm.

Then we can estimate the time scale for fast pyrolysis and verify the above hypothesis.

In the experiment of Di Blasi and Branca (2003), the minimum fluidization velocity at atmo-

spheric pressure is 0.036m/s and a superficial velocity is about 8 times higher than that at

minimum fluidization conditions for all cases. Therefore, the velocity in the non-dimensional

time is U∞ = 0.288m/s. The size of biomass used in Xue et al. (2011) is 400 µm whereas

in Di Blasi and Branca (2003) the minimum particle size used is 2mm. However, they gave

a correlation on characteristic heating times with particle size as shown in Fig. 9.4. Based

on these correlations, the corresponding heating time can be estimated for the small size of

biomass such as 400 µm. In this figure, the heating time t5 represents that the conversion
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process is practically terminated. Using t5 correlation in Fig. 9.4, the heating time t5 for the

size of biomass D = 400µm is about 16s. Therefore, the non-dimensional time to complete

the fast pyrolysis is t̂5 = t5/τf = 11520. Compared with t̂ ≥ 1, the non-dimensional time

t̂5 = t/τf = 11520 indicates that the average Nusselt number becomes a steady value at very

early stage of the pyrolysis.

Figure 9.4: Copy of Di Blasi and Branca (2003)’s figure about characteristic heating times t1 −
t5 at the particle center as functions of the particle diameter for the fluidized bed temperature
Tr = 807K. The times t1 − t5 represent the stages of heating.

In the other experiment of Di Blasi et al. (2013), they measured the time evolution of the

particle temperature at several radical positions and total weight loss of biomass particles in

a fixed bed of biomass particles as show in Fig. 9.1. The time history of the total weigh loss

of particles shows clearly that there exists the time scale (τconv ≈ 100s) in which there is

almost no weight loss or conversion of biomass particles into liquid or gas. This implies that

within this time scale the particle temperature increases most due to the high heat rate from

external heat flux. Based on the parameters (gas velocity of1.3cm/s and particle diameter of

0.5cm) provided by Di Blasi et al. (2013), the flow time scale is far less than this time scale

of conversion of biomass particles (τf/τconv = O(10−3)). Therefore, the steady-state Nusselt

number appears in the initial stage of fast pyrolysis of biomass particles. This finding allows

us to use the steady-state Nusselt number correlation to develop heat transfer model. The

assumption of the isothermal particle does not affect the existence of the steady-state Nusselt

number. However, further studies on the effect of the isothermal and non-isothermal particles

on the magnitude of Nusselt number needs to be performed. We expect that even in the fixed

bed of particles, the steady-state Nusselt number can be still obtained with or without the
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assumption of isothermal particles.

9.5 Conclusion

The assumption of the isothermal particle used in model development needs to be validated.

Transient heat transfer in a fixed bed of particle is considered as the only way to check the

assumption. Before performing simulations of transient heat transfer in a fixed bed of particle,

the FFD PR-DNS approach is first extended to account for time-dependent solid-phase tem-

perature. Transient heat transfer for steady flow past a fixed particle in a duct flow is simulated

using the extended FFD PR-DNS approach. The sphere temperature is assumed to be uniform

inside sphere and is dependent of time. The average solid-phase energy equation is used to

evolving the sphere temperature. Then PR-DNS simulations is performed in an inflow/outflow

setup for three values of the particle-to-fluid thermal inertia ratio: 10, 1000 and 2000 (the last

value corresponds most closely to biomass particles in air). Finally, we show the effect of finite

particle-fluid thermal inertia ratio on gas-solid heat transfer based on PR-DNS results. The

average Nusselt number became the steady value in a very short time compared with the flow

and interphase heat transfer time scales. The existing experimental data (Di Blasi and Branca

(2003); Di Blasi et al. (2013)) confirms that in the initial stage of biomass fast pyrolysis the

steady-state Nusselt number can be obtained. Future studies on transient heat transfer in a

fixed bed of particles will validate the assumption of the isothermal particle and verify if the

current heat transfer models in CFD simulation can be still used even though the particle

temperature varies in time.
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CHAPTER 10. MASS TRANSFER IN STEADY FLOW PAST A

NON-POROUS PARTICLE

This chapter is a manuscript titled “Mass transfer from a non-porous sphere in reacting

gas-solid flow” that is under preparation.

Mass transfer in reacting gas-solid flow is as much important as heat transfer in industrial

applications such as in the process of biomass fast pyrolysis. Simulating mass transfer in such

scale-up industrial reactors needs predictive computational models of reacting gas-solid flows.

Current mass transfer models which were developed in the late 1970s are used in state-of-the-art

computational codes for device-scale simulations of multiphase flow. Model development for

mass transfer needs to be performed, which is analogous to heat transfer model development

in Chapters 3 and 4. To achieve this objective, the first setup is to fundamentally understand

the canonical problem of mass transfer from a single particle in reacting gas-solid flow. In this

work, simulation of this mass transfer problem in reacting gas-solid flow is performed. Then

mass transfer in a fixed bed of particles will be studied and used to develop mass transfer

models in future work.

In this chapter, mass transfer in steady flow past a non-porous sphere with the surface

chemical reaction is studied. The convection-diffusion equation is used to describe this mass

transfer problem with the surface chemical reaction in gas-solid flow, and the effect of chemical

reaction appears as the boundary condition on the sphere surface. By solving the convection-

diffusion equation, the steady-state solutions of this mass transfer problem are obtained as a

function of relevant characteristic length and time scales. The non-dimensional parameters

that results from characteristic length and time scales for this mass transfer problem includes

the Reynolds number, the Schmidt number that is defined as the ratio of momentum diffusivity

and mass diffusivity, the Péclet number that is defined as the product of Reynolds number and
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Schmidt number, and the Damköhler number that is defined by the ratio of mixing time scale to

chemical reaction time scale. This mass transfer problem is solved using an analytical approach

and particle-resolved direct numerical simulation (PR-DNS), respectively. By imposing the

first-order chemical reaction boundary condition on the surface of a sphere, the 1D analytical

solution is derived based on the velocity field in Stokes flow, which is valid only for very low

Péclet number. The 2D analytical solutions of the concentration field and Sherwood number

obtained from Gupalo and Ryazantsev (1972) are used to compare with the 1D analytical

solution in Stokes flow for different Damköhler numbers. The PR-DNS approach is extended

to study the 3D mass transfer problem with the first-order surface chemical reaction. The

PR-DNS results of the mass transfer problem are validated by the 2D analytical solutions of

Gupalo and Ryazantsev (1972) at low Reynolds number less than unity. The dependence of

mass flux and average sherwood number on Damköhler number is also shown using PR-DNS

data.

10.1 Introduction

Mass transfer in reacting gas-solid flow is of fundamental importance in various chemical

engineering applications such as chemical looping combustion (CLC) and biomass fast pyrolysis.

Since experimental studies of mass transfer in gas-solid flow for industrial device-scale are

limited, computational fluid dynamics (CFD) simulation that needs closure models to close

the unclosed terms of the averaged equations (Syamlal et al. (1993)) is widely used to simulate

heat and mass transfer problem in gas-solid flow. However, current models for average reaction

rates as well as heat and mass transfer correlations which were developed in the late 1970s

are used in state-of-the-art computational codes for device-scale simulations of gas-solid flow.

More accurate models need to be developed for the problems relevant to the mass transfer. In

order to improve current closure models, a numerical approach is first developed to solve mass

transfer problems in this chapter. Then once the numerical approach is validated, it can be

used to perform simulations of fixed or fluidized bed of particles to develop statistical models

which are analogous to the models developed for heat transfer problem in Chapters 3 and 4.

Due to the existence of solid phase, whether or not mass transfer and chemical reaction
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inside solid phase needs to be considered has to check in reacting gas-solid flow. For instance,

one major application of gas-solid mass transfer process is the catalysis of CO2 such that the

exhaust gas CO2 in CLC is absorbed by the sorbents (solid) such as zeolite particles (Lee et al.

(2014)). In the zeolite particles both chemical reaction and pore diffusion exist. Whether or not

chemical reactions inside the particle (normally represented by a volumetric chemical reaction

rate constant kV whose SI units are 1/s) are important depends on particle properties and the

ratio of the volumetric chemical reaction rate constant to pore diffusion. If most of the gas

is consumed at the particle surface very quickly (which responds to a small chemical reaction

time scale τchem = D/ks relative to the pore diffusion time scale τdiff = D2/DsA, where ks is

the surface chemical reaction whose SI units are m/s and DsA is the pore diffusion coefficient of

specie A in solid phase), very little gas will diffuse into the porous particle. This is equivalent

to mass transfer with surface chemical reaction in a non-porous particle. Another scenario is

that the gas cannot be consumed at the surface of particles, but due to the slow diffusion inside

the particles (which responds to a large pore diffusion time scale τdiff = D2/DsA), less gas

enters the pores and most of the reactions take place at the surface of particle. This case can

be also considered as only a surface chemical reaction problem because the ratio of two time

scales (τdiff/τchem = D2ks/DsA) is far less than unity. Although many practical cases need

to consider volumetric chemical reactions and pore diffusion, the surface chemical reaction is

easier to represent first. It is also interesting to see the effect of surface chemical reaction

on mass transfer between gas and solid phases that is represented by the Sherwood number.

Therefore, in this work, in order to understand the effect of surface reaction on mass transfer,

we only consider the surface chemical reaction on a non-porous particle as the first setup.

Mass transfer on a non-porous particle with surface reactions involves more characteristic

length and time scales than that in single-phase reactive turbulence. Due to the existence of

the particle there exist the characteristic length scale of the particle is the particle diameter D,

the diffusion length scale is ℓdiff =
√
DbAD/U (DbA is the bulk diffusion coefficient of specie

A in the gas phase and U is the slip velocity between solid and gas phases), the mixing time

scale in gas phase is τφ = R2/DbA (R is the particle radii), and the chemical reaction time

scale is τα = R/ks. These characteristic length and time scales forms the non-dimensional
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parameters which control the behavior of the mass transfer problem. For instance, the Péclet

number is defined as Pe = DU/DbA or the product of Reynolds number Re = DU/νf and

Schmidt number Sc = νf/DbA (νf is the kinematic viscosity) that represents the ratio of the

advective transport rate to the rate of diffusive transport. The ratio of the mixing time scale to

the chemical time scale is the Damköhler number (Da = τφ/τα = ksR/DbA, Fox (2003)) which

indicates if the chemical reaction controls mass transfer. In the case of CO2 capture by zeolite

particles (Lee et al. (2014)), the Damköhler number is about Da ≈ 2.5 × 10−9 indicating that

chemical reaction controls gas-solid mass transfer since the chemical time scale is much larger

than the mixing time scale. In contrast, for combustion problem fast reactions occurring in

thin reaction-diffusion zones result in a large Da (Fox (2003)).

Theoretical studies of mass transfer in reacting gas-solid flow have focused on solving

the convection-diffusion equation with surface chemical reactions (Hartunian and Liu (1963);

Taylor (1963b); Gupalo and Ryazantsev (1972)). Several analytical solutions of steady mass

transfer from a sphere in Stokes flow or at finite low Reynolds number flow have been reported

(Hartunian and Liu (1963); Taylor (1963b); Gupalo and Ryazantsev (1972); Bell et al. (2013)).

Hartunian and Liu (1963) used matched asymptotic expansions to solve the two-dimensional

convection-diffusion equation associated with Oseen’s velocity field (Proudman and Pearson

(1957)) for flow past a sphere at low Reynolds number flow (Re ≪ 1). They obtained an

analytical solution for the concentration field around the sphere in gas-solid flow and their so-

lution is a function of particle Péclet number and Damköhler number. Gupalo and Ryazantsev

(1972) not only considered the effect of Péclet number on the concentration field but also

accounted for the dependence of the concentration field on Schmidt number Sc explicitly by

using a stream function that is in terms of Schmidt number and Péclet number at small finite

Reynolds number.

Based on the analytical solutions for this mass transfer problem with surface chemical

reactions, the Sherwood number correlations representing mass transfer between solid and

gas phases have been also given. Taylor (1963b) extended the work of Hartunian and Liu

(1963) to derive an expression for the Sherwood number with first-order and second-order

surface chemical reactions. This Sherwood number correlation depends on Péclet number
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(Pe = ReSc,Re ≪ 1) and Damköhler number (0 < Da < ∞). Since the analytical solution

of the concentration field obtained from Gupalo and Ryazantsev (1972) is also a function of

Schmidt number, the Sherwood number expression of Gupalo and Ryazantsev (1972) depends

not only on Péclet number and Damköhler number, but also explicitly on the Schmidt number.

However, theoretical solutions have the limitations for solving mass transfer on a sphere

in a two-phase flow over a wide range of Péclet number, especially at high Reynolds number

or high Péclet number. Experimental and numerical approaches have been used to study

mass transfer from a sphere at high Reynolds number (Clift et al. (1978)). Based on the

experimental and numerical data obtained from the case of fast surface reaction (concentration

is zero on the particle surface), several Sherwood number correlations have been proposed,

such as Sh = 1 + [1 + 1/PeD] 1/3Re0.41
D Sc1/3 from Clift et al. (1978) for mass transfer from a

rigid sphere. It is worth noting that existing Sherwood number correlations for high Reynolds

number (Clift et al. (1978); Incropera et al. (2006)) are only a function of the Reynolds and

Schmidt numbers, but not the Damköhler number. In other words, chemical reaction does not

affect the Sherwood number in these correlations for large Damköhler number.

The use of these correlations (Clift et al. (1978); Incropera et al. (2006)) for the mass trans-

fer problems where Damköhler number is low may be not appropriate. This motivates us to

use particle–resolved direct numerical simulation (PR-DNS), which is a first-principles method

that solves for the instantaneous three–dimensional velocity and scalar fields representing the

flow, heat and mass transfer around each particle. Several researchers have successfully simu-

lated heat and mass transfer from a single sphere or multiple spheres in gas-solid flow. Two-

dimensional PR-DNS studies (Yu et al. (2006); Feng and Michaelides (2009)) simulating gas–

solid flow in an infinite channel with an isothermal particle have been reported. Deen et al.

(2012) and Tavassoli et al. (2013) used three-dimensional PR–DNS with inflow/outflow bound-

ary conditions to simulate forced convective heat transfer from a sphere at high particle

Reynolds number up to 100. Deen et al. (2014) also used a PR-DNS approach to study coupled

heat and mass transfer on particles with fast chemical reaction on the particle surface (zero

concentration on the particle surface) in a dense liquid-solid flow at high particle Reynolds

number (up to 240). Zhang et al. (2008) and Ren et al. (2013) performed simulations of a flow
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past a cylinder with constant heat flux on the cylinder surface. Luo et al. (2016) implemented

different type of boundary conditions on the cylinder surface to simulate heat transfer from a

cylinder. However, the PR-DNS approach has not been used to study mass transfer in reacting

gas-solid flow.

In this chapter, the PR-DNS approach developed in Chapter 7 is extended to account for

mass transfer on the surface of a sphere with chemical reaction. Using the extended PR-DNS

solver, steady flow past a sphere with the first-order surface chemical reaction in a gas-solid

flow (Sc ≤ 1) is investigated. The rest of the paper is organized as follows. In Section 10.2,

the mass transfer problem in a gas–solid flow is described and the assumptions to simplify this

mass transfer problem are discussed. In Section 10.3, 1D and 2D analytical solutions for this

mass transfer problem are given and the 1D analytical solution is validated by comparing it

with the 2D analytical solution. In Section 10.4, the PR-DNS approach to solve this mass

transfer problem is briefly described. In Section 10.5, the PR-DNS data are compared with

2D analytical solutions for low and high Reynolds numbers. The dependence of mass flux and

average Sherwood number on Damköhler number is also given. Finally, the principal findings

are summarized in Section 10.6.

10.2 Problem statement

We consider gas-solid mass transfer in a uniform flow past a fixed non-porous spherical

particle with surface chemical reaction as shown in Fig. 10.1. The velocity and concentration

in the far field U∞ and CA,∞ are assumed to be uniform. The gas-solid flow is characterized

by the Reynolds number (ReD = U∞D/νf , D is the particle diameter and νf is the fluid-phase

kinematic viscosity), the Schmidt number (Sc = νf/DbA, DbA is the diffusion coefficient of

specie A in the fluid phase) that is considered to be smaller than unity (gas phase) or the

Péclet number (PeD = DU/DbA), and the Damköhler number (Da = ksR/DbA). We only

consider the first-order surface chemical reaction which is represented by the reaction rate

constant ks.

The assumptions made to simplify this mass transfer problem are similar to Taylor (1963b)

and Gupalo and Ryazantsev (1972), namely: (i) decoupling of mass transfer from heat transfer,
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Figure 10.1: Schematic of a steady flow with a uniform velocity U∞ and concentration CA,∞

through a fixed non-porous particle (the radii R) with the chemical surface reaction rate con-
stant ks. The spherical coordinate (r and θ) is used to analyze the mass transfer problem.

(ii) neglect of radiation and free convection, (iii) first-order chemical reaction on the particle

surface and neglect of pore diffusion inside the particle, (iv) particle properties such as the

diameter and density are constant, and (v) steady-state flow. Based on these assumptions, the

velocity u (x, t) and specie A concentration field CA(x, t) obey the following mass, momentum,

and convection-diffusion equations:

∂ui

∂xi
= 0, (10.1)

∂ui

∂t
+ Si = − 1

ρf
gi + νf

∂2ui

∂xj∂xj
, (10.2)

and

∂CA

∂t
+ SCA

= DbA
∂2CA

∂xj∂xj
, (10.3)

respectively. Here ρf is the fluid-phase density, gi is the body force (e.g., hydrostatic pressure

gradient or acceleration due to gravity), and Si = ∂(uiuj)/∂xj is the convection term (SCA
=

∂(ujCA)/∂xj is the convection term in the convection-diffusion equation). It is also worth

noting that since the steady-state flow is assumed, the unsteady term on the left-hand side of

Eq. 10.3 becomes zero for the sufficient time. In other words, the mass gain from the sphere
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is balanced by the mass loss in the convective flow if the mass transfer occurs from fluid phase

to solid phase.

The boundary conditions for the particle associated with the equations are as follows. Due

to the consumption of mass at the particle surface, the first-order chemical reaction boundary

condition at the particle surface (also see Taylor (1963b); Gupalo and Ryazantsev (1972)) is

DbA
∂CA

∂r
|r=R = ksCAs, (10.4)

where CAs is the surface concentration. In this mass transfer problem, since the specie A

cannot penetrate the solid surface, the mass flux normal to the surface must be consumed

at the surface by the first-order chemical reaction. Based on the flux boundary condition in

Eq. 10.4, the non-dimensional flux boundary condition can be derived as

∂ĈA

∂r̂
|r̂=1 = DaĈAs, (10.5)

where Da = ksR/DbA is the Damköhler number, ĈAs = ĈA|r̂=1 = CA/CA,∞ is the non-

dimensional surface concentration, and r̂ = r/R is the non-dimensional radial coordinate. If

the surface chemical reaction is fast relative to mixing (no molecules of specie A at the sphere

surface, Da → ∞), then the flux boundary condition at the sphere surface reduces to ĈAs = 0.

This kind of boundary condition is analogous to the isothermal boundary condition for the heat

transfer problem in Chapter 7. If ∂ĈA/∂r̂|r̂=1 = 0 (Da → 0), then this implies that reaction

rate controls the spatial variation of surface concentration.

10.3 Analytical solution

In order to solve this mass transfer problem, the 3D mass transfer problem can be simplified

into a 1D homogeneous problem or 2D axisymmetric problem to obtain an analytical solution

in Stokes flow or at low Reynolds number. The analytical solution can be derived since the

velocity field in Stokes flow (or Oseen’s velocity field) is know from the stream function. There

exist several works that discuss the 2D analytical solutions, but the 1D analytical solution is not

discussed because it seems to be an oversimplification. We show that it is reasonable for very
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low Péclet number (near the conduction limits). For completeness, we show 1D homogeneous

problem in Stokes flow since this analytical solution is useful for understanding the mass transfer

problem.

10.3.1 1D and 2D Analytical solutions

The 3D mass transfer problem is simplified to a 1D homogeneous problem to obtain an

analytical solution in Stokes flow. Note that in order to obtain the 1D analytical solution, the

1D analytical velocity field in Stokes flow needs to be used. Since the velocity field solution of

Stokes flow is a function of the radical direction and angular direction as shown in Fig. 10.1, we

only use the velocity field solution in Stokes flow at θ = 0 for the 1D analytical solution. This is

of course a gross oversimplification and its validity can be examined. The 1D analytical solution

for the concentration field in non-dimensional form (see detailed derivation in Appendix N) is:

ĈA (r̂) =
1 +Da

´ r̂
1 e

ReDScW(r′)dr′

1 +Da
´∞

1 eReDScW(r′)dr′
, (10.6)

where the weight function W is

W (r̂) =
1

8r̂2
+

3

4
ln r̂ − 1

2
r̂ − 2

ReDSc
ln r̂ +

3

8
. (10.7)

The 1D analytical solution for the concentration field is a function of the Péclet number (PeD =

ReDSc) and the Damköhler number. Although the 1D analytical solution was derived using

the velocity field for Stokes flow along the symmetric line U(r, θ = 0), we expect that the

1D solution can only be used for low Péclet number. This is because the spherical symmetry

assumption that was used to simplify the 3D mass transfer problem into a 1D problem is valid

only in the diffusion limit (negligible fluid inertia case, low Péclet number) as Eq. 10.8 that is

the steady-state non-dimensional concentration equation derived from Eq. 10.3 as

∂
(
ÛjĈA

)

∂x̂j
=

1

PeD

∂2ĈA

∂x̂j∂x̂j
. (10.8)

If low Péclet number is far less than unity, the effect of the convection term on the left-hand

side of the above equation can be neglected. In other words, the velocity distribution does not
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affect the concentration field much.

The 3D mass transfer problem can be more accurately approached by the analysis of a

2D axisymmetric mass transfer problem (Taylor (1963a); Gupalo and Ryazantsev (1972)) since

the velocity distributions in Stokes flow or in Oseen’s solution (Proudman and Pearson (1957);

Clift et al. (1978)) in spherical coordinates are known to be axisymmetric. Note that although

Oseen’s solution is a function of Reynolds number, the flow is still a creeping flow, or low

Reynolds number with Reynolds number far less than unity. The 2D steady-state axisym-

metric convection-diffusion equation describing the 2D mass transfer problem in axisymmetric

spherical coordinates in non-dimensional form is

Ûr
∂ĈA

∂r̂
+
Ûθ

r̂

∂ĈA

∂θ
=

1

PeD

[
1

r̂2

∂

∂r̂

(
r̂2∂ĈA

∂r̂

)
+

1

r̂2 sin θ

∂

∂θ

(
sin θ

∂ĈA

∂θ

)]
, (10.9)

where θ is the angular coordinate from the uniform velocity direction (see Fig. 10.1), Ûr and

Ûθ are the non-dimensional velocity in radial and angular directions, respectively. The cor-

responding boundary conditions for the 2D steady-state axisymmetric mass transfer prob-

lems are the far field boundary condition ĈA (∞, θ) = 1 and the flux boundary condition
(
∂ĈA/∂r̂

)
r̂=1

= DaĈA (1, θ). The analytical solutions for concentration or temperature fields

based on the velocity field in Stokes flow (Acrivos and Taylor (1962); Bell et al. (2013)) and

Oseen’s velocity solution (Hartunian and Liu (1963); Taylor (1963a); Gupalo and Ryazantsev

(1972)) have been derived using the matched asymptotic expansions approach. Since the ana-

lytical solutions for concentration field derived in Stokes flow is a special case for that derived

from Oseen’s velocity solution, we only focus on the 2D analytical solutions obtained based on

Oseen’s velocity solution (Taylor (1963a); Gupalo and Ryazantsev (1972)).

Using the matched asymptotic expansions approach, Gupalo and Ryazantsev (1972) ob-

tained the analytical solution for concentration field and average Sherwood number correlation

with the first-order surface chemical reaction. The expression for the Sherwood number corre-

lation obtained from Gupalo and Ryazantsev (1972) is

Sh = 2
[
q +

1

2
q2(Peg + Peg

2 ln Peg +
1

2
qPe3

g ln Peg) +
1

2
q2Q (q,Sc) Pe2

g +O
(
Pe3

g

)]
, (10.10)



227

where q = Da/(Da+ 1) , Peg = PeD/2, and

Q (q,Sc) =
1

2
q− 119

80
+0.577216− 3

32
(2 − q)−1+

1

2
Sc2− 1

4
Sc− 1

2
(Sc − 2) (Sc + 1)2 ln

(
1 + Sc−1

)
.

Note that this Sherwood number depends on the Da through q. The average Sherwood number

correlation is obtained from the definition of

Shold =

ˆ 1

−1

(
∂ĈA

∂r̂
|r̂=1

)
d cos θ. (10.11)

However, in this definition, the effect of concentration difference (CAs − C∞) which drives

the mass flux at the particle surface was neglected. Truly speaking, this integral calculation is

analogous to an average mass flux not “Sherwood number”. In the following section, we carefully

derive a expression to compute average Sherwood number in this mass transfer problem.

10.3.2 Average Sherwood number

The local Sherwood number based on particle diameter is defined as follows:

Sh =
hm,locD

DbA
, (10.12)

where hm,loc is the local mass transfer coefficient (SI units:m/s). The local mass transfer

coefficient can be obtained from the local mass flux at the particle surface JA as

hm,loc = JA/ (CAs − CA,∞) = DbA
∂CA

∂r
|r=R/ (CAs − CA,∞) . (10.13)

Then the average Sherwood number for a sphere can be written in non-dimensional form as

Sh =
hmD

DbA
=
D
´ 1

−1 hm,locd cos θ

DbA
= − D

4πR2

ˆ π

0

∂CA

∂r
|r=R

(CAs − CA,∞)
2πR2 sin θdθ = −

ˆ π

0

∂ĈA

∂r̂
|r̂=1

(
ĈA|r̂=1 − 1

) sin θdθ.

(10.14)

Compared to the definition of the average Sherwood number in Eq. 10.14, the average Sherwood

number expressions of Taylor (1963a) and Gupalo and Ryazantsev (1972) (see Eq.10.11) do



228

not consider the effect of concentration difference between the far field and the surface in the

denominator.

Based on the above definition in Eq. 10.14 and the 1D analytical solution in Eq. 10.6, the

average Sherwood number obtained from 1D homogeneous analytical solution can be calculated

as

Sh = −
ˆ π

0

∂ĈA

∂r̂
|r̂=1

ĈA|r̂=1 − 1
sin θdθ =

− 2Da

1 +Da
´∞

1 eReDScW(r′)dr′

1

1 +Da
´∞

1 eReDScW(r′)dr′
− 1

=
2

´∞
1 eReDScW(r′)dr′

.

(10.15)

This expression for the 1D approximation shows that the average Sherwood number is indepen-

dent of Da and only depends on the Péclet number in Stokes flow. We compare the analytical

solutions for the concentration fields and Sherwood numbers in the following section.

10.3.3 Comparison of 1D and 2D analytical solution

We compare the 1D analytical solution with the 2D analytical solutions of Gupalo and Ryazantsev

(1972) for verifying the valid range of 1D analytical solution. Figure 10.2 shows a comparison

of the concentration fields from the 1D and 2D analytical solutions in Stokes flow for two values

of the Damköhler number. In the 1D mass transfer problem, the solution only depends on the

radial location r (due to θ = 0). Fig. 10.2 shows that the concentration profile in the 1D

analytical solution (red line) has a good agreement with the 2D analytical solution at several

different angles (blue lines) at Da = 100 and Da = 0.1 with the average relative error of 2%.

This result shows that the axisymmetric mass transfer problem can be well approximated by

a spherically symmetric 1D formulation for Stokes flow when the flow has negligible inertia.

The reason of this good approximation results from the small Péclet number. If Péclet number

is small (for this case Péclet number is equal to 0.0007) the convection term in the left-hand

side of Eq. 10.8 is negligible. Therefore, the 1D analytical solution in gas-solid flow becomes a

solution of pure diffusion problem.

In addition, the Damköhler number Da has a large effect on the concentration fields. For

large Da, the concentration at the particle surface is almost equal to zero as shown in Fig.

10.2(a). This tells us that at large Da the chemical reaction is fast and the problem is diffusion-
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(a) (b)

Figure 10.2: Variation of the concentrations obtained from 1D and 2D analytical solutions with
the non-dimensional radial location r/R at ReD = 0.001 and Sc = 0.7 for (a) Da = 100 and
(b) Da = 0.1. The red line represents the 1D homogeneous analytical solution in Eq. 10.15
and the blue lines represent the 2D analytical solutions of the concentrations obtained from
Gupalo and Ryazantsev (1972) for different angles.

rate-controlled. For small Da, Fig. 10.2(b) shows that the concentration at the particle surface

tends to the far-field concentration CA,∞, which corresponds to a reaction-rate-controlled prob-

lem.

However, we find that in Stokes flow, the Sherwood number does not depend on the Damköh-

ler number Da because the effect of CAs−CA,∞ cancels out the dependence in the denominator.

Table 10.1 shows the average Sherwood number obtained from 1D and 2D analytical solutions

by varying the Damköhler number Da. The values in the second column of Table 10.1 repre-

sents that the average Sherwood number Sh that is computed by considering the concentration

difference in Eq. 10.15, while the values in the third column represent the normalized mass

flux that is defined as

J̄Da

J̄Da→∞
=

´

As
DbA

∂CA (Da)

∂r
|r=RdA

´

As
DbA

∂CA (Da → ∞)

∂r
|r=RdA

, (10.16)

where As is the surface area of the sphere, J̄Da→∞ is the mass flux at Da → ∞. This normalized

mass flux is proportional to the average Sherwood number Shold in Eq. 10.15 that does not
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include the effect of the concentration difference. For the 1D mass transfer problem, with

increasing Da the average Sherwood number Sh does not vary while the mass flux J̄Da increases

and converges to the value of J̄Da→∞ = 2. Even for the 2D analytical solution, we observe

the same behavior as shown in the fourth and fifth column of Table 10.1. This implies that

although the mass flux (see Eq. 10.16) varies significantly with Da, the Sherwood number

always remains the same in Stokes flow. It also tells us that the Sherwood number correlations

obtained from Taylor (1963a) and Gupalo and Ryazantsev (1972) represent the average mass

flux but not the computation of the average Sherwood number.

Table 10.1: Variation of average Sherwood number and average mass flux with Da in Stokes
flow at ReD = 0.001 and Sc = 0.7. The average Sherwood numbers Sh from 1D analytical
solution and 2D analytical solution are computed in Eq. 10.2 and Eq. 10.14, respectively. The
normalized average mass flux J̄Da/J̄Da→∞ is obtained in Eq. 10.16.

Da 1D Sh 1D J̄Da/J̄Da→∞ 2D Sh 2D J̄Da/J̄Da→∞

100 2.0061 0.9921 2.0003 0.9905

1 2.0061 0.5054 2.0003 0.5001

0.01 2.0061 0.0099 2.0003 0.0099

Table 10.1 also indicates that the average Sherwood number computed from 1D analytical

solution (the second column) is almost same as that computed from 2D analytical solution in

Eq. 10.16 (the fourth column). Therefore, the spherically symmetric assumption for the 3D

mass transfer problem holds at low Péclet number (less than 0.01) . However, the 1D and 2D

analytical solutions are only valid for low Reynolds number (less than unity). The study of

the mass transfer problem at high Reynolds number relies on numerical solutions. In the next

section, we use the PR-DNS approach to first validate our PR-DNS results and then investigate

the effect of surface chemical reaction on the concentration field and the Sherwood number at

high Reynolds number.

10.4 PR-DNS approach

The gas-solid mass transfer problem can be solved using a fully finite-difference (FFD)

PR-DNS that has been developed in Chapter 7. We extend the scalar solver (see Chapter 7)

to account for mass transfer on the surface of particles with the first-order surface chemical
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reaction. The hydrodynamic and scalar solver based on the FFD formulation were parallelized

in order to simulate gas-solid flow in a large computational domain with high-resolution. The

PR-DNS hydrodynamic and scalar solvers are now briefly described.

The mass, momentum and scalar transport equations to solve the constant-density flow are

∂ui

∂xi
= 0, (10.17)

∂ui

∂t
+ Si = − 1

ρf
gi + νf

∂2ui

∂x2
j

+ Isfu,i, (10.18)

and

∂φ

∂t
+ Sφ = Γφ

∂2φ

∂xj∂xj
+ Isfφ, (10.19)

where Is is the solid indicator function (Is = 1 for points lying in the solid phase), fu,i and fφ are

the additional immersed boundary (IB) direct forcing terms that are nonzero only in the solid

phase. The complete details about the direct IB forcing can be found elsewhere (Tenneti et al.

(2013, 2011)). The IB forcing accounts for the presence of the solid particles in the domain by

ensuring that the no-slip and no-penetration boundary conditions is satisfied on each particle

surface. In order to simulate gas-solid mass transfer, the scalar transport equation (φ = CA

and Γ = DbA) is solved with a mass flux boundary condition at the surface of the sphere (see

Eq. 10.4).

The key to obtaining the correct PR-DNS results is to impose the boundary condition

correctly at the particle surface using the IB forcing. The no-slip and no-penetration bound-

ary conditions are imposed by forcing the desired velocity to be particle velocity (ud =

up) (Tenneti et al. (2011)). Similarly, Tenneti et al. (2013) imposed the isothermal bound-

ary condition by forcing the desired temperature T d = Tp to the particle temperature Tp. It is

worthwhile to note that these boundary conditions are Dirichlet boundary conditions. For the

mass transfer problem described in the previous section, the boundary condition in Eq. 10.4 is

a flux boundary condition. In order to obtain the desired scalar value, we treat the boundary

in the following way
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Cd
As = Cn+1

As =
1

Da

(
∂CA

∂r
|r=R

)n

, (10.20)

where (∂CA/∂r|r=R)n is obtained from the interpolation on the particle surface at the nth time

step as

(
∂CA

∂r
|r=R

)n

=
1

1 +Da△r
Cn

A,i, (10.21)

where Cn
A,i is obtained from interpolating the outside layer and △r is the grid size. This

boundary condition strictly validity for steady flows and not for time-dependent solution of

unsteady flow. Zhang et al. (2008) also use a similar method to impose the flux boundary

condition using an immersed-boundary method. The details on numerical scheme can be found

in Chapter 7.

10.5 Results and discussion

Before comparing PR-DNS data with existing analytical solutions or correlations, we sum-

marize the existing data for gas-solid mass transfer from a sphere. Figure 10.3 shows the valid

region of the analytical solutions or Sherwood number correlations for gas-solid mass trans-

fer in terms of the Reynolds number, the Péclet number and the Damköhler number. The

1D analytical solution we derived in the previous section (represented by blue box) are ob-

tained for PeD ≈ 0 while the 2D analytical solutions are limited for ReD < 1, PeD < 1 and

no restriction for Damköhler number 0 < Da < ∞. The Sherwood number correlation of

Gupalo and Ryazantsev (1972) (represented by red box) that were developed with considering

the Damköhler number (0 < Da < ∞) is limited for ReD < 1 and PeD < 1 whereas the average

Sherwood number correlations (represented by green box) that were developed based on the

experimental and numerical data for ReD > 1 are not a function of the Damköhler number

or assume Da → ∞ . Large Da corresponds to the zero concentration on the particle surface

whereas small Da results in the non-zero concentration on the particle surface as the red double

arrows of Fig. 10.3 shows. The PR-DNS has no such limitation and can simulate the low and

high Reynolds number cases with 0 < Da < ∞ as shown in the following sections.
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Figure 10.3: Summary of the valid region of existing analytical solutions and Sherwood number
correlations for the mass transfer from a sphere in terms of the Reynolds number ReD, the
Péclet number PeD, and the Damköhler number Da. The blue dashed box represents the 1D
analytical solution derived from this work and the red dashed box represents the 2D analytical
solution of Gupalo and Ryazantsev (1972). The green dashed box represents the Sherwood
number correlations (not a function of the Damköhler number) obtained from experimental
and numerical data which assume the fast reactions on the particle surface. CAs represent the
concentration of the particle surface. The dash-dotted lines is the reference lines.

10.5.1 Low Reynolds number case

In this section, the uniform flow past a sphere with mass transfer in a open field using PR-

DNS at particle Reynolds number of 0.1 and Schmidt number of 0.7 is simulated. The length of

the computational domain is L/D = 20 in all directions in order to avoid any boundary effects

arising from a finite computational domain. A spherical particle is located in the center of the

computational domain. In order to validate our PR-DNS results, we first need to match Oseen’s

velocity field at this Reynolds number, and then compare the concentration field obtained from

PR-DNS with the 2D analytical solution of Gupalo and Ryazantsev (1972).

First, the inlet uniform velocity is set to be unity (the blue solid line) as shown in Figure 10.4.

We set the location of center of the particle at the origin (x/R = 0). The figure shows that

due to the limited domain length, the velocity profile cannot match Oseen’s velocity field (the

red dotted line) (Clift et al. (1978)). In order to match Oseen’s solution, instead of setting an
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uniform velocity in the inlet of the domain (x/R = −20) we use Oseen’s solution at x/R = −20

as the inlet velocity profile. For this inlet condition the velocity profile obtained from PR-DNS

(the black solid line in Fig. 10.4) matches the Oseen’s velocity field with a maximum relative

error of 3%. The error results from the different slope of the velocity at the inlet. We also

observe a velocity difference between PR-DNS data and Oseen’s solution at the exit of the

domain (x/R = 20). This results from that the fact that we use Neumann boundary conditions

(∂ux/∂x = 0) at the exit of the domain, which cannot capture the slope of Oseen’s velocity. The

difference can be reduced by increasing the length of the domain. However, due to limitations

in computational resources, we only used L/D = 20 as the largest domain in our simulations.

Figure 10.4: Comparison of the centreline velocity profile obtained from PR-DNS data and
Oseen’s velocity solutions (Clift et al. (1978)) for flow past the spherical particle at ReD = 0.1.
The red dotted line represents the Oseen’s velocity solution. The blue solid line and the black
solid line represent the centreline velocity profile obtained from PR-DNS data velocity solution
using an uniform velocity and Oseen’s velocity solution in the inlet of the domain, respectively.
The location of the center of the particle is at the origin x/R = 0.

Once the velocity field from PR-DNS approximately matches the Oseen’s velocity solution,

the concentration field is simulated. We compare PR-DNS data with 2D analytical solutions at

Da = 100 to see the effect of Da on the concentration field and Sherwood number. Figure 10.5

shows the comparison of the concentration field from PR-DNS data with the 2D analytical

solution at Da = 100. The concentration profile at the centreline obtained from PR-DNS

matches well with the 2D analytical solution over the entire line. The difference between PR-
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DNS data and the 2D analytical solution is only close to the particle surface, which the surface

concentration ĈAs from PR-DNS is about 0.01862 but is about 0.01019 from the 2D analytical

solution. This difference may result from the implement of boundary condition for the particle

surface. The mean concentration on the particle surface from PR-DNS is higher than that

of the 2D analytical solutions. For the 2D analytical solution or 3D PR-DNS data, average

Sherwood number does not vary with Da for small Reynolds number case. We also compare

average Sherwood number between the 2D and 3D solutions. The average Sherwood number

from the PR-DNS data (about 1.95) is lower than the analytical solution (about 2.01). The

discrepancy between the PR-DNS results and 2D analytical solution is still being investigated.

Figure 10.5: Comparison of the non-dimensional centreline concentration profile between PR-
DNS data and 2D analytical solutions of Gupalo and Ryazantsev (1972) at ReD = 0.1 and
Sc = 0.7 for Da = 100. The solid line represents the concentration profile from the 2D
analytical solutions. The dashed line represents the centreline concentration profile obtained
from PR-DNS data. The location of the center of the particle is set to be x/R = 0.

10.5.2 High Reynolds number case

Current theories for mass transfer are restricted to low Reynolds number where analytical

expressions for the velocity field are available. We extend our PR-DNS study to higher Reynolds
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numbers of 20 and 100. Figure 10.6 shows variation of concentrations along the centreline of

the sphere for Reynolds numbers of 20 and 100 at Da = 100. Unlike the low Reynolds number

case, the concentration along the centreline (y/D = 0 and z/D = 0) does not change in the

upstream. For the region close to the sphere surface we observe that the concentration drops

quickly to the surface concentration. Compared to the case for ReD = 20, the concentration

falls more rapidly is higher for ReD = 100 as shown in Fig. 10.6.

Figure 10.6: Variation of the non-dimensional concentrations along the centreline (y/D = 0
and z/D = 0) at ReD = 20 and 100 for Sc = 0.7 and Da = 100. The solid line represents the
case at ReD = 20 and the dashed line represents the case at ReD = 100. The sphere is located
at x/R = 0.

Based on the PR-DNS data, we can answer the question if the surface chemical reaction

has a significant influence on the Sherwood number of a sphere. The computation of average

Sherwood number in our PR-DNS approach is defined as

Sh =
hmD

DbA
= − D

As

ˆ

As

∂CA

∂r |r=R

CA,s − CA,∞
dA, (10.22)

where As is the surface area of sphere. Figure 10.7 shows a comparison of average Sherwood

number obtained from PR-DNS data and existing Sherwood number correlations for a sphere.

In this figure, the PR-DNS data obtained from the case of Da = 1 (the squares) and Da =

100 (the circles) are close to the Whitaker’s correlation (Incropera et al. (2006), Sh = 2 +
[
0.4Re1/2

D + 0.06Re2/3
D

]
Sc0.4 × [µ/µs]1/4) and Clift’s correlation (Clift et al. (1978), Sh = 1 +
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[1 + 1/PeD] 1/3Re0.41
D Sc1/3, 1 ≤ ReD ≤ 400 and 0.25 ≤ Sc ≤ 100). Note that these Sherwood

number correlations do not account for surface chemical reaction or the effect of the Damköhler

number. For low Reynolds number, the 2D analytical solution of Gupalo and Ryazantsev (1972)

at Da = 100 (the triangles) is close to these correlations. In this comparison, for high Da we do

not find much difference between the PR-DNS data and existing Sherwood number correlations

even though we consider surface chemical reaction. This may imply that for high Da, CFD

simulations can still use the existing Sherwood number correlations to compute the gas-solid

mass transfer. However, for low Da the average Sherwood number from PR-DNS represented by

the squares is higher compared to that for high Da. These differences of the average Sherwood

number result from the non-zero surface concentration such as CAs = 0.71 for Da = 1 and

ReD = 20. Therefore, the difference of the concentration between the particle surface and

far field in Eq. 10.22 plays an important role in determining the magnitude of the average

Sherwood number.

In the absence of surface chemical reaction, a high Sherwood number indicates high mass

transfer. However, for this mass transfer problem where the surface concentration changes

with surface reaction rate, the Sherwood number may not be a good measure of mass transfer

between the gas and solid phases. Mass flux is a more direct measure of mass transfer since

it does not consider the concentration difference between particle surface and far field. Figure

10.8 shows the variation of the normalized mass flux (see Eq. 10.16) at two Péclet numbers.

The normalized mass flux represented by the symbols increases Da with increasing the Péclet

number. This finding is similar to the behavior of mass flux obtained from the analytical

solution of Gupalo and Ryazantsev (1972) at low Péclet number. This indicates that high Da

enhances mass transfer in this gas-solid flow. In addition, the normalized mass flux tends to

unity for large Da, which corresponds to fast chemical reaction on the particle surface. The

PR-DNS data over a range of Péclet number (> 20) need to be provided to see the effect of

low Da on Sherwood number in future work.
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Figure 10.7: Comparison of average Sherwood number between the existing Sherwood number
correlations and the PR-DNS data for different Reynolds numbers at Sc = 0.7. The squares
and circles represent the PR-DNS data obtained at Da = 1 and Da = 100, respectively.
The solid line and dash line represent the Clift et al. (1978)’s correlation and the Whitaker’s
correlation (Incropera et al. (2006)) for a rigid sphere, respectively. The triangles represent
the Sherwood number correlation from the 2D analytical solution of Gupalo and Ryazantsev
(1972) in Eq. 10.14 at Da = 100.

10.6 Conclusion

Mass transfer in a steady flow past a sphere with a first-order surface chemical reaction

was studied using PR-DNS for Reynolds numbers up to 100. The PR-DNS scalar solver was

extended to simulate the mass transfer problem by implementing a boundary condition of the

third kind to account for the consumption of species at the surface due to surface reaction. A 1D

analytical solution to simplify this mass transfer problem was obtained based on the velocity

field in Stokes flow. The 1D analytical solution matches well with published 2D analytical

solutions in the literature for the concentration and Sherwood number at low Péclet number

(PeD < 0.01). The concentration profile in a low Reynolds number case from PR-DNS is found

to be close to the analytical solution of Gupalo and Ryazantsev (1972) in low Reynolds number

flow. The PR-DNS results for low Reynolds number (ReD = 0.1) matched well with the 2D
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Figure 10.8: Variation of the normalized mass flux with Da in Eq. 10.16 obtained from PR-
DNS data at two Péclet numbers at Sc = 0.7. The up-triangles and down-triangles represent
the PR-DNS data obtained at PeD = 14 and PeD = 70, respectively.

analytical solution except on the particle surface. The PR-DNS results for higher Reynolds

numbers were used to compare the average Sherwood number from simulation with published

correlations in the literature that do not account for surface chemical reaction. We found

that for high Da the Sherwood number is close to these existing Sherwood number correlation

whereas for low Da the Sherwood number is much higher than the current Sherwood number

correlation. However, both 2D analytical solution and PR-DNS data showed that high Da did

correspond to higher mass flux in this mass transfer problem. An improved Sherwood number

in terms of Da needs to be developed over a wide range of Péclet number in gas-solid flow.
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CHAPTER 11. CONCLUSION

In this thesis, the critical challenges in developing improved models for reacting gas–solid

flow have been addressed using particle-resolved direct numerical simulation (PR-DNS). Re-

acting gas–solid flows are an important class of multiphase flows that are frequently occurred

in nature and engineering applications. These gas–solid flows are often associated with heat

and mass transfer, and chemical reactions in both gas phase and solid phase. Understanding

the physical mechanisms of momentum, kinetic energy, heat and mass transfer, and chemi-

cal reaction between the gas phase and the solid particles is a crucial step in the industrial

process. In industrial process of the design and optimization, device-scale multiphase com-

putational fluid dynamics (CFD) simulations of reacting gas–solid flow are increasingly being

used. The device-scale CFD simulations need accurate mathematical models for the inter-

phase transfer phenomena. In order to precisely develop models for device-scale CFD simula-

tions, PR-DNS simulations of reacting gas-solid flow problems can provide the time-dependent

three-dimensional velocity, temperature and species mass fraction fields based on the extended

Navier-Stokes equations obeying exact boundary conditions at each particle’s surface. These

simulations give unprecedented insight and improved understanding of flow, mixing and re-

action in the interior of particle-laden flows, and provide data on statistics such as average

reaction rates and the scalar-velocity covariance for model development. Multiphase react-

ing flow modeling efforts can greatly benefit from quantitative information regarding velocity,

temperature and species mass fraction fields for model development and validation.

In this thesis, the specific objectives related to reacting gas–solid flow problems were studied

using PR-DNS approach, such as quantification of the interphase heat and mass transfer, model

development for gas–phase velocity and temperature fluctuations, quantification of wall effect

on flow and heat transfer in gas–solid flow. The PR-DNS approach was developed to account for
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heat and mass transfer in reacting gas–solid flow, and were validated by a suite of test cases.

Using the PR-DNS data, the improved models for device-scale CFD simulations of reacting

gas–solid flow were proposed. The new model predictions were also compared with previous

standard model predictions to assess the improvement in model performance.

The Particle–resolved Uncontaminated–fluid Reconcilable Immersed Boundary Method (Tenneti et al.

(2011)) (PUReIBM) has been extended to investigate heat transfer in fixed periodic assemblies

and freely evolving suspension of monodisperse spherical particles. This PR-DNS approach is

based on the pseudo-spectral (PS) scheme that is used to solve governing equations in Fourier

space rather than in physical space. The extension of PUReIBM to solve for heat transfer

problem was validated by a suite of test cases such as heat transfer in fully–developed duct

flow. Numerical convergence and the validity of the thermal similarity condition in flow past

random assemblies and freely evolving suspension of particles and was verified.

PS PR–DNS simulations of gas–solid heat transfer in steady flow through a homogeneous

fixed assembly of particles have been used to quantify and model the unclosed terms in the

average fluid temperature equation of two–fluid equations. The unclosed terms including av-

erage gas–solid heat transfer, average conduction in the fluid phase, and temperature–velocity

covariance in gas–solid flow were quantified and modeled using PS PR-DNS data. These mod-

els were validated over a wide range of mean slip Reynolds numbers and volume fractions and

can be directly implemented in current CFD simulations of gas–solid heat transfer. The mod-

eling efforts for transported PDF approach for two-phase flow have been also discussed and the

mixing time scale that appears in the existing closure models is quantified using PS PR-DNS

data. In addition, the assumptions underlying the continuum formulation of multiphase flow

theory was also verified using PS PR-DNS data. A criterion that ensures the validity of the lo-

cal homogeneity assumption or scale separation was developed by using a characteristic length

scale that defines the scale of inhomogeneity of the average bulk fluid temperature.

A fully finite-difference (FFD) scheme of PR-DNS methodology was also developed based

on PUReIBM to account for walls and various boundary conditions. The hydrodynamic and

scalar solvers of FFD PR-DNS were parallelized and validated by a suite of test cases including

fully–developed duct flow, flow past simple cubic (SC) particle arrangement, flow past a sphere
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in open field, and developing duct flow with and without a single particle using inflow and

outflow boundary conditions. The FFD PR-DNS data obtained from these test cases has a

good agreement with analytical solutions, existing numerical and experimental results.

Using FFD PR-DNS, a detailed comparison between numerical and experimental data in

the same setup is performed. The validation with numerical and experimental approaches were

given for the cases of pure laminar duct flow, flow past a single sphere and a train of five

particles in a duct. Comparisons of the entire velocity fields showed a good agreement between

the numerical and experimental data. It was also found that number of spheres and spacing

does not affect the wake length behind the train of spheres but has the effect on the wake

between two neighbor spheres and the wall boundary layer growth. To study the wall effect

on hydrodynamics and heat transfer, a flow past a particle assembly with heat transfer in a

square duct was simulated using FFD PR-DNS. The effect entrance length and the wall effect

on flow and heat transfer were quantified. The effect of walls on fixed bed of particles will be

analysis further in the future work.

Using FFD PR-DNS, the validation of the assumption of the isothermal particle used in

model development is expected to be checked. Before performing simulations of transient heat

transfer in a fixed bed of particle, the FFD PR-DNS approach is first extended to account

for time-dependent solid-phase temperature. The simulation of transient heat transfer from a

sphere is performed. The sphere temperature is assumed to be uniform inside sphere and is

dependent of time. It is found that even though the solid temperature changes, average Nusselt

number goes to a steady value in a short time compared with the flow and interphase heat

transfer time scale. The existing experimental data (Di Blasi and Branca (2003); Di Blasi et al.

(2013)) confirms that in the initial stage of biomass fast pyrolysis the steady-state Nusselt

number can be obtained. Future studies on transient heat transfer in a fixed bed of particles

will validate the assumption of the isothermal particle.

For the mass transfer problem, steady flow past a sphere for low and high Reynolds number

at low Schmidt number (less than 1) was simulated with a first–order chemical reaction as

the boundary condition at the sphere surface. The FFD PR-DNS results were compared with

2D analytical solution for Sherwood number in low Reynolds number flow. The FFD PR-
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DNS results for higher Reynolds numbers were used to compare the average Sherwood number

correlation from simulation with published correlations in the literature that do not account

for surface chemical reaction. This PR-DNS of mass transfer is the initial step to study the

coupling of heat and mass transfer in reacting gas-solid flow.

The improved understanding of the reacting gas–solid flow will result in better models and

simulation methodologies for interphase heat and mass transfer. The improved models will

directly impact device-scale CFD simulation of heat and mass transfer in such fluidized beds

and riser. The high-fidelity simulation methodologies such as PR-DNS approach will provide

a reliable database to guide the design of industrial reactors.
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CHAPTER 12. FUTURE WORK

In this chapter, the proposed future works and their speific plans are listed in Tables 12.1-

12.2. In future work, several questions in a reacting gas–solid flow need to be answered:

1. Is heat transfer models developed based on PR-DNS data with assuming isothermal

particles valid if the particle temperature varies in time?

2. What is the wall effect on drag force and heat transfer of particles in gas–solid heat

transfer?

3. What is the effect of particle clustering on heat transfer models?

4. How should the unclosed momentum transfer term due to the interphase mass transfer

be modeled?

5. What is the effect of coupling heat and mass transfer in reacting gas–solid flow?

6. What is the effect of mass transfer in reacting gas–solid flow when accounting for intra-

particle phenomena?

7. What is the connection of PR-DNS setup to fluidized bed experiments?

These questions lead to the following works that will be expected to be answered in near future.

The specific objectives to answer these questions are discussed below.

The first four questions arise from model development for the unclosed terms in TF and

transported PDF approaches (see model development in Table 12.2). As discussed in Chapter 1,

the first question can be answered by studying the effect of the transient heat transfer in a fixed

bed of particles. It expected that the Nusselt number will reach a steady value after a short
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Table 12.1: Future plans to be completed.

Future works Objectives Specific plans

Code
development

Extend FFD
PR-DNS to
account for
variable density in
a reacting
gas–solid flow

1. Code implement of a variable density FFD
PR-DNS formulation
2. Test cases for variable density solver: (1)
Rayleigh Benard natural convection, (2) natural
convection of a circular cylinder or a sphere

Couple heat and
mass transfer with
a simple chemical
reaction at a
particle surface
using FFD
PR-DNS

1. Couple of heat and mass transfer at the surface
particle with a simple chemical reaction
2. Test cases: dependence of mass transfer on the
surface temperature of a particle with two scalar
φ={cPT , Yα} using third type boundary condition

Flow physics

Extend mass
transfer problem
to account for flow
in porous particles

1. Implement the appropriate boundary conditions
on the particle surface and couple the solution of
diffusion equation for the concentration field inside
porous particle with the gas-phase concentration
through the interphase
2. Test case : flow past one biomass particle with
chemical reaction

Build connection
of PR-DNS setup
to fluidized bed
experiments

1. Update the discrete element method (DEM)
solver in the PR-DNS approach to perform a
fluidized bed simulation with a large number of
particles
2. Implement the improved heat and mass models
into the TF CFD simulation and compare the
results with experimental data

time compared with interphase heat transfer time scale. In that case it can be concluded that

the heat transfer models developed in Chapters 3 and 4 are still valid.

The second question arises from the fact that the walls of reactors affect heat transfer on

particles. One has to modify heat transfer models to account for the effect of walls. In the

hydrodynamic problem, in order to account for the wall effect on the drag force of a particle,

the standard drag model is modified by adding an extra term that is a function of the distance

between the particle center and the wall (Zeng et al. (2005)). Analogously, the Nusselt number

correlation that is used in the average interphase heat transfer model can be modified using
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Table 12.2: Future plans to be completed.

Future works Objectives Specific plans

Study the effect of
transient heat
transfer on a fixed
particle assembly

Simulate transient heat transfer on the fixed
particle beds with inflow/outflow boundary
condition using FFD PR-DNS and quantify
Nusselt number in time

Model
development

Study the effect of
the wall on heat
transfer in
gas-solid flow

1. Develop a modified Nusselt number correlation
for a single particle to account for wall effect
2. Perform the simulations of flow past a fixed bed
of particles in a duct or channel with varying the
distance between the wall and the center of the
fixed beds of particles
3. Develop a modified Nusselt number correlation
for fixed bed of particles to account for wall effect

Study the effect of
particle clustering
on heat transfer

1.Perform the simulations of flow past a cluster of
particles over a range of Reynolds numbers and
solid volume fractions and particle pair correlation
2. Develop a Nusselt number correlation to
account for heat transfer on particle clustering and
homogeneous particle bed

the same approach. In future work (see flow physics in Table 12.1), the first step would be to

develop a modified Nusselt number correlation for a single particle that account for the wall

effect. Then the Nusselt number correlation would be developed based on data obtained from

flow past a fixed bed of particles in a duct or channel. The preliminary results for the effect

of walls on a sphere in a duct flow are reported in Chapter 7. In future work, FFD PR-DNS

of flow past a fixed particle assembly in a square duct or channel can be performed by varying

the distance between the center of fixed bed of particles and the wall. By comparing with the

FFD PR-DNS data obtained from the flow past a fixed particle assembly in fully–developed

flow without walls, the wall effect on particles will be seen clearly.

The third question is relevant to improve Nusselt number correlation by accounting for

particle clustering. The current drag models and Nusselt number correlations in fixed beds

or porous media were developed based on the homogeneous particle configurations. However,

Mehrabadi et al. (2016) have shown that the mean drag force obtained from the cluster of par-

ticles is different from that obtained from homogeneous particle configuration. The difference
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results from the particle pair correlation. In future work, PR-DNS of flow past a cluster of

particles can be performed over a range of Reynolds number, solid volume fraction, and particle

pair correlation. Then using the PR-DNS data, an improved Nusselt number correlation that

accounts for particle clustering can be developed.

The answer to the fourth question is unknown since there are very few quantitative studies

on source term due to interphase mass transfer. This source term can result from the blowing

effect where the mass of particles is ejected to the fluid phase at a high speed. This type of the

blowing effect may be considered as an extra mass transfer. In other words, by modifying the

Sherwood number correlation, this effect may be taken care of.

The last three questions arise from how to convert the ideal PR-DNS simulation into the

realistic PR-DNS simulation (see flow physics in Table 12.1). More physical phenomena need

to be considered in the PR-DNS approach. In order to answer the fifth question, FFD PR-DNS

is first used to explore the parameter space in the mass transfer problem of flow past a sphere

and fixed bed of particles. This can provide PR-DNS data to model the mass transfer problem.

Secondly, heat transfer will be coupled with mass transfer in reacting gas–solid flow, extending

the preliminary decoupled results in Chapter 10. Two specific objectives will be studied for the

coupling between heat and mass transfer problem. One is to impose a simple chemical reaction

on the particle surface (see Table 12.1). The reaction rate for this chemical reaction will depend

on the local temperature and species mass fraction. Therefore, the mass transfer will depend

on the heat transfer at the surface of particles. The other objective is to account for the effect

of variable density in the coupling of heat and mass transfer. In order to account for the effect

of density variation, a variable-density version of this FFD PR-DNS code need to be developed

based on the current frame work of the FFD PR-DNS approach. This extended solver will be

tested in several problems such as the natural convection problem (see code development in

Table 12.1).

The sixth question arises from the assumption that pore diffusion and volumetric chemical

reactions inside the particle are neglected in Chapter 10 since the particle is considered as

a non-porous medium. In order to check the effect of pore diffusion on mass transfer, the

particle will be assumed to be a porous medium and the diffusion equation governing the
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concentration in the porous particle will be solved. In mass transfer to a porous particle,

the Thiele modulus that is defined as the ratio of volumetric chemical reaction rate constant

to the diffusion inside porous particles will be introduced to determine if the concentration

distribution inside particle is uniform. With appropriate boundary conditions on the interface

between solid and gas phases, PR-DNS of this mass transfer problem can be solved to provide

data that can determine validate if pore diffusion is important in biomass fast pyrolysis.

The last question arises from the challenging question about how to interpret the PR-DNS

data with data from experiments in fluidized beds. Although a detailed comparison between

experiments and simulations were performed in Chapter 8, this laboratory-scale simulation

cannot be easily extended to industrial-scale simulation due to the current computational ca-

pability. In addition, once the motion of particle is accounted it is hard to set up the same

conditions for experiments and simulations. For instance, Tang et al. (2016) performed the

PR-DNS of a small fluidized bed and compare the PR-DNS data with the experimental data

obtained from the same pseudo-2D experimental setup. This kind of detailed comparison re-

veals a good agreement with respect to the time-averaged particle motion and velocity profiles

in a statistical sense. Even if the setup of experiments and simulations are the same, there

still exist discrepancies that may result from the choice of particle-particle collision model

and particle-wall collision model. TF CFD simulation is an alternative way to perform the

device-level simulation while the PR-DNS approach provides the detailed data to develop the

statistical closure models in the microscale. These microscale models can be used in TF CFD

simulation. Therefore, the current PR-DNS setups mostly describe statistics in a representative

small subdomain of the fluidized bed experiments.
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APPENDIX A. REGIME OF APPLICABILITY OF THE

ASSUMPTIONS

The assumptions employed in this work and their regime of validity are discussed in this

section. The use of a fixed bed setup for gas–solid flows is justified if the configuration of the

particles changes very slowly compared to the time it takes to attain mean momentum balance.

The time scale over which the particle configuration changes depends on ReΘ = DΘ1/2/νf ,

which is the Reynolds number based on the particle fluctuating velocity that is characterized

by the particle granular temperature Θ. The particle granular temperature Θ is a measure

of the variance in the particle velocities and is defined as Θ = 1/3 〈v′′ · v′′〉, where v′′ is the

fluctuation in the particle velocity defined with respect to the mean particle velocity. Particle–

resolved simulations of freely evolving suspensions (Tenneti et al. (2010)) and recent high–speed

imaging of particles (Cocco et al. (2010)) show that this value of ReΘ is O (1) for high Stokes

number particles that are characteristic of gas–solid flows (e.g., coal particles in air). This

indicates that the particle configuration changes slowly relative to fluid time scales.

An important simplification made in this work is the use of a uniform temperature for the

particles. The extent of variation of the temperature inside a particle is governed by the Biot

number (Bi), which is defined as Bi = hD/ks. In this definition h is the convection heat transfer

coefficient between the particle and the fluid, and ks is the thermal conductivity of the solid.

For many gas–solid systems the thermal conductivity of the solid is greater than that of the

gas by more than an order of magnitude (e.g. air–coal, air–Ferrous oxide, air–fused silica) and

results in a Biot number that is less than 0.1. The small Biot number encountered in many

practical gas–solid systems suggests a lumped capacitance model for the particle temperature,

where the spatial variation of temperature inside the particle can be neglected.

In addition to the assumption of uniform temperature of the particle, we also assume that
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this uniform temperature is constant in time i.e., we assume the particles are isothermal. This

simplification follows from the observation that the thermal response time of the particles is

large compared to the time it takes for the fluid to travel a distance equal to the particle

diameter. The thermal response time of the particle τtp ∼ mcps/hAs, where As is the surface

area, m is the mass and cps is the specific heat of the particle, respectively. The time taken by

the fluid to travel over a particle τf ∼ D/ |〈W〉|, where 〈W〉 is the mean slip velocity between

the particle and the fluid. The ratio of these time scales

τtp

τf
∼
(
ρpCps

ρfCpf

)(
RemPr

Nu

)
,

where ρp is the density of the particle, ρf is the density of the fluid, Cpf is the specific heat of

the fluid and Nu is the Nusselt number. Experimental studies (Gunn (1978)) of heat transfer

in gas–solid systems reveal that the ratio RemPr/Nu∼ O (1). For gas–solid flows the ratio of

the density of the particles to the density of the fluid density is very high (∼ O
(
103
)
). Due

to the high thermal inertia of the particles the thermal response time of the particles is about

three orders of magnitude larger than the convective time scale of the fluid. Hence, the uniform

temperature of a particle can be assumed to be constant in time. In addition to the assumption

of a uniform and constant particle temperature, we also assume that all particles in the bed

are maintained at the same temperature. The assumption that the particles equilibriate to the

same surface temperature is consistent with earlier works (Gunn (1978); Acrivos et al. (1980)).

Neglecting viscous dissipation, radiation and free convection effects limits the gas–solid

systems to which our simulation methodology applies. Viscous heating becomes important in

flows with Mach numbers comparable or greater than unity and since we are concerned with

subsonic flows, viscous dissipation is neglected in this work. Free convection is quantified by

the Grashof number, which is defined as

Gr =
gβ (Tf − Ts)D3

ν2
f

, (A.1)

where Tf is the free stream temperature, Ts is the temperature of the solid surface, and β is

the volumetric thermal expansion coefficient (β = 1/Tf for gases). Free convection effects can

be neglected if Gr/Re2
m < 1. For each Reynolds number, this constraint imposes an upper
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limit on the particle diameter above which free convection effects cannot be neglected. For

a given value of Tf/Ts, the upper limit on the particle diameter D increases with increasing

Reynolds number. If a typical value of 5 is taken for the fluid to solid temperature ratio (i.e.

Tf/Ts = 5), and air is assumed to be the fluid under terrestrial conditions (g = 9.81 m/s2),

then for a Reynolds number Rem = 1 the particle diameter has to be less than 150µm for

negligible free convection. This restriction on the particle diameter becomes less severe as the

Reynolds number increases.

For an isolated particle at Ts with emissivity equal to one, and surrounded by fluid at Tf ,

the ratio of radiation to forced convection heat transfer can be expressed as

q̂rc =
qrad

qconv
=
σ(Tf + Ts)(T 2

f + T 2
s )

hfs
=
σD(Tf + Ts)(T 2

f + T 2
s )

Nukf
,

where σ = 5.67 × 10−8 W/m2·K4 is the Stefan–Boltzmann constant. Assuming air to be

the surrounding fluid at Tf = 1000K (kf = 0.060 W/m·K) and the particle temperature

Ts = 300K, for Stokes flow (i.e. Nu ≈ 2) the ratio of radiation to forced convection heat

transfer increases linearly with particle diameter from 0.66 × 10−4 to 0.66 × 10−2, for particle

diameter in the range 1 to 100 microns. While this estimate is valid in the Stokes flow regime,

with increasing Reynolds number the higher value of average Nusselt number reduces the ratio

of radiation to forced convection heat transfer, thus relaxing the restriction on particle diameter.

These estimates of the relative importance of forced convection to free convection and radiation

heat transfer show that the restriction on particle diameter is most severe in the Stokes flow

regime, and is progressively less restrictive with increasing Reynolds number. Therefore, the

assumptions used in this work are indeed applicable and relevant to practical gas–solid systems.
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APPENDIX B. COMPUTATION OF AVERAGE GAS-SOLID HEAT

TRANSFER AND FLUID-PHASE AXIAL CONDUCTION

While in internal forced convection in a pipe flow (Incropera et al. (2006)) the heat flux

vector at the pipe wall is perpendicular to the solid surface and always lies in the cross-sectional

plane for pipes of constant cross-section, in gas–solid heat transfer there exists a component

of the local interphase heat flux vector along the streamwise direction. This is due to the

fact that the interphase normal at the particle surface changes direction in gas–solid flow with

changing axial location. For quantifying the unclosed terms using PR–DNS, it turns out to

be convenient to distinguish between two components of the local interphase heat flux: (i)

the component along the streamwise or axial direction, which is denoted the out-of-plane local

interphase heat flux, and (ii) the component of the local interphase heat flux normal to the

streamwise direction, or the in-plane local interphase heat flux (see Fig. B.1).

fAext
fA∂ ||e

| |q φ

q φ
⊥

q φ x

y
z

intA∂

Figure B.1: Sketch of physical domain with a particle intersecting the cross-sectional plane (y-z
plane) normal to the streamwise direction. The cross-sectional area occupied by fluid is denoted
Af . The exterior boundary of the fluid phase in the plane is denoted ∂Aext

f . The boundary
between the fluid phase and solid phase is denoted ∂Aint. The normal vector e|| denotes the

streamwise direction. qφ
|| and qφ

⊥ are the in-plane and out-of-plane heat fluxes, respectively.

In order to quantify the local interphase heat flux, the PR–DNS instantaneous non-dimensional
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fluid temperature equation

∂φ

∂t
+
∂(ujφ)

∂xj
= −

∂qφ
j

∂xj
, (B.1)

is integrated over Af , which denotes the portion of the cross-sectional area that is occupied by

fluid, in the y − z plane perpendicular to the streamwise direction. For steady flow we obtain

the following equation:

ρfcpf

A

ˆ

Af

∂(ujφ)

∂xj
dA =

1

A

ˆ

Af

−
∂qφ

j

∂xj
dA. (B.2)

The divergence term on the right hand side of Eq. B.2 is first expressed in terms of the out-

of-plane and in-plane components of the heat flux vector qφ = qφ
||e|| + qφ

⊥e⊥, and then the

divergence theorem is used in the y-z plane for the in–plane component to obtain:

1

A

ˆ

Af

∂qφ
j

∂xj
dA

︸ ︷︷ ︸
=

1

A

ˆ

Af

∂qφ
||

∂x||
dA

︸ ︷︷ ︸
+

1

A

˛

∂Aext
f

qφ
j,⊥ · n(ext)

j,⊥ dl

︸ ︷︷ ︸
− 1

A

˛

∂Aint

qφ
j,⊥ · n(s)

j,⊥dl

︸ ︷︷ ︸

RHS I II III

, (B.3)

where l is the perimeter of circles formed by the intersection of particles in the cross-sectional

plane, qφ
j,⊥ is the in-plane interphase heat flux, and n

(s)
j,⊥ is the in-plane component of the

outward unit normal vector on the surface of particles. Note that since the heat flux is defined

in terms of the non–dimensional temperature φ, its units are W/(m2-K). Term I represents the

streamwise gradient of out-of-plane heat flux in the cross-sectional plane. Term II represents

the net conduction of heat flux into this plane from exterior boundaries of the fluid phase at

the domain boundary, while Term III represents in-plane interphase heat transfer from particle

to fluid. Term II is equal to zero due to periodic boundary conditions on the non–dimensional

temperature field φ in the y and z directions. Term III is defined as the volumetric heat transfer

rate per unit temperature difference corresponding to the in-plane local interphase heat flux

q
′′′

⊥ (x||;ω) =
1

A

˛

∂Aint

qφ
j,⊥ · n(s)

j,⊥dl, (B.4)

where the unit for q
′′′

⊥ (x||;ω) is W/(m3-K), and this quantity is specific to the realization ω

that corresponds to a particular configuration of particles.
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Term I can be decomposed into an axial conduction term and the axial (out-of-plane)

contribution to the interphase heat flux using the indicator function in the fluid phase If as

follows:

1

A

ˆ

Af

∂qφ
||

∂x||
dA =

1

A

ˆ

A
If

∂qφ
||

∂x||
dA =

1

A

ˆ

A

∂Ifq
φ
||

∂x||
dA+

1

A

ˆ

A
qφ

||

∂If

∂x||
dA. (B.5)

The first term on the RHS of the above equation is the axial conduction in the fluid phase (this

is quantified and modeled in Part 2 of this two–part series). We define the axial conduction in

the fluid phase at axial location x|| for realization ω as

q
′′′

cond(x||;ω) =
1

A

ˆ

A

∂Ifq
φ
||

∂x||
dA. (B.6)

The second term on the RHS of Eq. B.5 is the volumetric heat transfer rate corresponding to

the out-of-plane local interphase heat flux qφ
|| :

q
′′′

|| (x||;ω) =
1

A

ˆ

A
qφ

||

∂If

∂x||
dA. (B.7)

It is clearly seen that due to the presence of particles, Term I includes the axial conduction in

the fluid phase and the out-of-plane local interphase heat flux. The latter does not appear in

single-phase flow.

Combining the in-plane and out-of-plane local interphase heat flux, we define the local

volumetric interphase heat transfer rate q
′′′

φ (x||;ω) at axial location x|| in realization ω as

q
′′′

φ (x||;ω) = q
′′′

|| (x||;ω) + q
′′′

⊥ (x||;ω). (B.8)

Using the definition of ensemble-average in Eq. 3.8, the average gas–solid heat transfer from

PR–DNS corresponding to q
′′′

φ

(
x‖;ω

)
is

〈q′′′

φ 〉
(
x‖

)
=

ˆ

ω∈Ω
q

′′′

φ

(
x‖;ω

)
dPω. (B.9)

Similarly, we also define average fluid–phase axial conduction at axial location x|| corresponding

to the local axial conduction in the fluid phase q
′′′

cond

(
x‖;ω

)
as

〈q′′′

cond〉
(
x‖

)
=

ˆ

ω∈Ω
q

′′′

cond

(
x‖;ω

)
dPω ≈ 1

M

M∑

ω=1

q
′′′

cond

(
x‖;ω

)
. (B.10)
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Note that the average fluid–phase axial conduction at axial location x|| can also be estimated

using M realizations from PR-DNS data. In order to compare with the volumetric mean of

average gas–solid heat transfer (see Ch. 3)

〈q′′′

φ 〉 =
1

L

ˆ L

0
〈q′′′

φ 〉
(
x‖

)
dx||, (B.11)

the volumetric mean of the axial conduction in the fluid phase is defined as

〈q′′′

cond〉 =
1

L

ˆ L

0
〈q′′′

cond〉
(
x‖

)
dx||, (B.12)

where L is the length of the computational domain.

In the cross-sectional plane at every axial location x|| we define the local convective heat

transfer coefficient h(x||;ω) corresponding to heat transfer between fluid and particles follow-

ing Bird et al. (2002):

Aq
′′′

φ (x||;ω) = h(x||;ω)P (x||;ω)φm(x||;ω), (B.13)

where P (x||;ω) is the perimeter formed by cutting the particles in the cross-sectional plane,

A is the cross-sectional area, and the non–dimensional bulk temperature φm(x||;ω). The left

hand side term in Eq. B.13 represents the heat transfer rate per unit length of interface in the

cross-sectional plane and its units are W/(m-K).

Based on the local convective heat transfer coefficient h(x||;ω) at axial location x|| a local

Nusselt number can be defined. The local Nusselt number at axial location x|| for realization

ω is:

Nu(x||;ω) =
h(x||;ω)D

kf
=

Aq
′′′

φ (x||;ω)

kfP (x||;ω)φm(x||;ω)
D. (B.14)

The local Nusselt number can then used to calculate an average Nusselt number at axial

location x||, where in this context we use the term average to mean an ensemble–average over

different particle configurations:

〈
Nu(x||)

〉
M

=
1

M

M∑

ω=1

Nu(x||;ω). (B.15)

Similarly, the ensemble-average non–dimensional bulk fluid temperature 〈φm(x||)〉 at each axial

location can also be estimated using M realizations as:

〈φm(x||)〉M =
1

M

M∑

ω=1

φm(x||;ω). (B.16)
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For the case of thermally fully developed flow past a homogeneous fixed particle assembly,

the Nusselt number is homogeneous in the streamwise direction. Therefore, the average Nusselt

number 〈Nu〉 can be estimated by integrating Eq. B.15 over the axial length of the box:

〈Nu〉 ∼= {Nu}M,V =
1

L

ˆ L

0

〈
Nu(x||)

〉
M
dx||, (B.17)

where {Nu}V,M denotes an estimate to the expectation 〈Nu〉.

In the context of establishing grid convergence with respect to a single configuration of

particles for thermally fully developed flow past a fixed assembly of particles, it is useful to

define a volume–averaged Nusselt number for that realization:

{Nu}V (ω) =
1

L

ˆ L

0
Nu(x||;ω)dx||. (B.18)
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APPENDIX C. AVERAGE GAS–SOLID HEAT TRANSFER IN THE

TWO–FLUID MODEL

We derive the expression for the average volumetric interphase heat transfer rate in the two–

fluid model (Eq. 3.28) for monodisperse spherical particles. Consider a cubical control volume of

side L in which there is steady unidirectional flow in the x|| direction past N spherical particles

each of diameter D, with average fluid temperature
〈
T (f)

〉
and average solid temperature

〈
T (s)

〉
. The average volumetric interphase heat transfer rate q

′′′

T F in the domain is given by

V q
′′′

T F = Ash̄
(〈
T (s)

〉
−
〈
T (f)

〉)
, (C.1)

where As = NπD2 is the total surface area of particles, V = L3 is the volume of this domain,

and h̄ is the average heat transfer coefficient. In the above equation, the ratio of particle surface

area to domain volume can be written in terms of the of solid volume fraction εs and particle

diameter as:

As

V
=
NπD2

L3
=
NπD3

6L3

6

D
=

6εs

D
. (C.2)

Based on the definition of the Nusselt number Num = h̄D/kf , the average volumetric interphase

heat transfer rate in the two–fluid model is obtained as

q
′′′

T F =
6εskf Num

D2

(〈
T (s)

〉
−
〈
T (f)

〉)
, (C.3)

with units W/m3. In this expression the difference between average fluid temperature and

average solid temperature is used to compute the average volumetric interphase heat transfer

rate. Note that since the two–fluid model for the average volumetric interphase heat transfer

rate q
′′′

T F is defined in terms of temperature difference, its units are different from that of q
′′′

φ .

However, Bird et al. (2002) uses the difference between bulk fluid temperature and average

solid temperature to compute the average gas–solid heat transfer in a fixed bed of particles. In
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the following Appendix, we will show how an improved consistent two–fluid model to compute

average volumetric interphase heat transfer is developed based on bulk fluid temperature.
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APPENDIX D. IMPROVED MODEL FOR AVERAGE VOLUMETRIC

INTERPHASE HEAT TRANSFER RATE

The expression for the average volumetric interphase heat transfer rate in the two–fluid

model derived in Appendix C assumes local homogeneity of the average fluid and solid temper-

ature fields. Here we derive an extension of that model that is applicable to a spatially inho-

mogeneous average fluid temperature field, such as encountered in the gas–solid heat transfer

problem simulated by PR–DNS in this work.

We begin with Eq. B.13 that relates the local volumetric interphase heat transfer rate

q
′′′

φ (x||;ω) at an axial location x|| for realization ω with φm(x||;ω), which is the non–dimensional

difference between the bulk fluid temperature and the particle surface temperature. Taking the

ensemble–average of Eq. B.13 results in

〈
q

′′′

φ

〉
(x||) = 〈h〉 (x||)

〈P 〉 (x||)

A
〈φm〉 (x||), (D.1)

where 〈q′′′

φ 〉(x‖) (cf. Eq. 3.8) is the average volumetric interphase heat transfer rate per unit

temperature difference. We define the inhomogeneous average heat transfer coefficient 〈h〉 (x||)

to be

〈h〉 (x||) ≡
A
〈
q

′′′

φ

〉
(x||)

〈P 〉 (x||) 〈φm〉 (x||)
. (D.2)

Note that in general the average of a product of random variables is not equal to the product of

the averages, unless the random variables are uncorrelated. Here we are not assuming that the

variables on the right hand side of Eq. B.13 are uncorrelated, but we are assuming in the above

expression that the dependence of φm(x||;ω) and P (x||;ω) on the particle configuration can be

expressed as a dependence on the average solid volume fraction εs, and any correlation of the

three right hand side terms can be captured in the definition of the inhomogeneous average

heat transfer coefficient 〈h〉 (x||) in Eq. D.2. It should however be noted that this model cannot
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capture the dependence of the inhomogeneous average heat transfer coefficient on clustered

arrangements of homogeneous particle fields where the volumetric interphase heat transfer rate

could depend on the pair correlation function of the particles.

Now although the average volumetric interphase heat transfer rate
〈
q

′′′

φ

〉
(x||) and 〈φm〉 (x||)

are inhomogeneous in x|| for the gas–solid flow problem considered in this work, the particle

configuration is statistically homogeneous. Therefore, the average perimeter 〈P 〉 (x||) does not

depend on x||. An simple expression for the average perimeter 〈P 〉 in terms of the average solid

volume fraction is now derived.

Figure D.1: Sketch of computation of the average perimeter corresponding to the intersection
of the y − z plane located at x||. The sphere radius is R and R⊥ is the radius of the circle
formed by the intersection of the y − z plane with the sphere. The axial coordinate of the
sphere center is Xc and a random variable uniformly distributed in (−R,R) is X = Xc − x||.
The normal vector e|| denotes the streamwise direction.

We need to calculate the average perimeter corresponding to the intersection of the y-z plane

located at x|| with a random assembly of monodisperse spheres as shown in Fig. D.1. Since

the particle field is statistically homogeneous, the y-z plane intersects spheres at various axial

locations, and the axial locations reckoned from their respective sphere centers are distributed

with equal probability in (−R,R), where R is the sphere radius. In other words, if the axial

coordinate of the sphere center is Xc and the y-z plane is located at x||, then X = Xc − x|| is

a random variable uniformly distributed in (−R,R). If the radius of the circle formed by the

intersection of the y-z plane with the sphere is R⊥, then

〈P 〉 = 〈N〉
ˆ −R

+R
2πR⊥ fXdx, (D.3)

where 〈N〉 is the average number of spheres in the volume A×D (A being the cross-sectional

area of the plane and D being the sphere diameter), fX = 1/2R, and the integration limits
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correspond to the traversal of a sphere from just touching the plane with Xc = x|| − R to

Xc = x|| + R. Noting that R⊥ = R sin θ =
√
R2 −X2 the above integral can be simplified to

yield

〈P 〉 = 2π〈N〉Rπ
4

=
π2〈N〉D

4
. (D.4)

Substituting 〈N〉 = nAD, where n is the number density that is related to the average solid

volume fraction by εs = nπD3/6, results in the following expression for 〈P 〉/A:

〈P 〉
A

=
6πεs

4D
, (D.5)

which is close to the geometrical factor in the original two–fluid model. This leads to the final

expression for the inhomogeneous average volumetric heat transfer rate

〈
q

′′′

φ

〉
(x||) = 〈h〉 (x||)

6πεs

4D
〈φm〉 (x||). (D.6)

This expression differs from the standard two–fluid model (Eq. 3.28) in two respects. One is

that it allows for an inhomogeneous average bulk fluid temperature field, and the other is that

the temperature difference is between the average bulk fluid temperature and the average solid

temperature. In order for this to be usable in a two–fluid model, we first need to relate the

average bulk fluid temperature to the average fluid temperature. This is easily accomplished by

Eq. 3.17 that relates the steady average fluid temperature to the average bulk fluid temperature

as 〈φ(f)〉(x||) = 〈θ(f)〉〈φm(x||)〉. Now we also assume that the flow is locally fully thermally

developed, in which case the heat transfer coefficient 〈h〉 (x||) is independent of x|| and can

be written in terms of the homogeneous average Nusselt number as 〈h〉 = kf 〈Nu〉/D. The

resulting expression is a consistent two–fluid model in terms of the average fluid temperature

that allows for its inhomogeneous variation:

〈
q

′′′

φ

〉
(x||) =

6πεskf 〈Nu〉
4D2

〈φ(f)〉(x||)

〈θ(f)〉 . (D.7)

Now although the above expression is in terms of the inhomogeneous average fluid temper-

ature, the two–fluid model assumes that the average fluid temperature is locally homogeneous.

Therefore, we recast our model in terms of quantities that are spatially averaged over the

domain length L to obtain the following consistent two–fluid model:

q
′′′

cT F −model =
6πεskf Nu

4D2
〈
θ(f)

〉
(〈
T (s)

〉
−
〈
T (f)

〉)
, (D.8)
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using the expression for the average non–dimensional fluid temperature as

〈
T (f)

〉
− 〈T (s)〉

〈Tm,in〉 − 〈T (s)〉 ≡ 1

L

ˆ L

0
〈φ(f)〉(x||) dx|| =

1

L

ˆ L

0

〈
T (f)

〉
(x||) − 〈T (s)〉

〈Tm,in〉 − 〈T (s)〉 dx||, (D.9)

where the volumetric mean of average fluid temperature is

〈T (f)〉 =
1

L

ˆ L

0
〈T (f)〉(x||) dx||. (D.10)

Since 〈T (f)〉 varies significantly along x|| in many cases, the two–fluid definition of 〈T (f)〉 in

Eq. 3.28 is appropriately modified using Eq. D.10. Therefore, when we compare q
′′′

T F with PR–

DNS data in Section 3.6, we use the following two–fluid model with average Nusselt number

from PR–DNS as

q
′′′

T F =
6εskf Nu

D2

(〈
T (s)

〉
−
〈
T (f)

〉)
. (D.11)

Note that the units of q
′′′

cT F −model are W/m3 whereas the units of
〈
q

′′′

φ

〉
are W/(m3-K). In

order to compare PR–DNS data with q
′′′

cT F −model and q
′′′

T F , we introduce the average volumetric

interphase heat transfer rate from PR–DNS q
′′′

DNS :

q
′′′

DNS =
1

L

ˆ L

0
q

′′′

DNS(x||) dx|| =
1

L

ˆ L

0

(
〈Tm,in〉 − 〈T (s)〉

)
〈q′′′

φ 〉(x||) dx||, (D.12)

since q
′′′

DNS can be directly extracted from PR–DNS and its unit is W/m3. Note that the

overbar in all the above equations can be dropped if the average fluid temperature satisfies the

criterion of local homogeneity.
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APPENDIX E. IMPLIED MODEL FOR EFFECTIVE THERMAL

DIFFUSIVITY

The model for average bulk fluid temperature allows us to the scaling of effective thermal

diffusivity with Péclet number. We derive an model for effective thermal diffusivity based on

the exponential decay model for the average bulk fluid temperature as follows.

We have shown that αP T is a function of decay length scale, scaled fluid temperature,

and solid volume fraction in Eq. 4.46. Based on this expression, the non-dimensional effective

thermal diffusivity can be written as

αP T + αf

αf
=

DPr

λνf

〈
Ifu

′′(f)
‖ θ

〉

(1 − εs)
〈
θ(f)

〉 + 1 (E.1)

=
D

λ

PeD

D (1 − εs)2

〈
Ifu

′′(f)
‖ θ

〉

| 〈W〉 |
〈
θ(f)

〉 + 1 (E.2)

=
4

6πεs 〈Nu〉
Pe2

D

(1 − εs)2

〈
Ifu

′′(f)
‖ θ

〉

| 〈W〉 |
〈
θ(f)

〉 + 1., (E.3)

where 〈Nu〉 is the average Nusselt number that is computed from our Nusselt number corre-

lation in Sun et al. (2015) as

〈Nu〉 =
[
−0.46 + 1.77(1 − εs) + 0.69(1 − εs)2

]
/(1−εs)3+

[
1.37 − 2.4(1 − εs) + 1.2(1 − εs)2

]
Re0.7Pr1/3.

(E.4)

In the above expression, since C1 =
〈
Ifu

′′(f)
‖ θ

〉
/| 〈W〉 |

〈
θ(f)

〉
is not sensitive to Péclet number

at a fixed solid volume fraction as shown in figure E.1 (also see discussions in Section 5.3), the

non-dimensional effective diffusivity only depends on Péclet number and the decay length scale

D/λ for a fixed solid volume fraction.

Therefore, the effective thermal diffusivity can be further simplified as

αP T + αf

αf
=

C1C3

C2

(
C4 + C5Re0.7

m Pr1/3
)Pe2

D + 1, (E.5)
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Figure E.1: Variation of
〈
Ifu

′′(f)
‖ θ

〉
normalized by mean slip velocity | 〈W〉 | and the average

scaled fluid temperature
〈
θ(f)

〉
with Péclet number at solid volume fraction of 0.1. The symbols

represent
〈
Ifu

′′(f)
‖ θ

〉
/| 〈W〉 |

〈
θ(f)

〉
obtained using 5 realizations, respectively. The error bars

indicate 95% confidence intervals.

where C2 = εs (1 − εs), C3 = 4/6π, C4 =
[
−0.46 + 1.77(1 − εs) + 0.69(1 − εs)2

]
/(1 − εs)3,

C5 = 1.37 − 2.4(1 − εs) + 1.2(1 − εs)2. The coefficients C1 − C5 are only a function of solid

volume fraction. For a fixed solid volume fraction (εs = 0.1), we compare this derived expression

with PR-DNS data as shown in figure 4.10. The values in our this derived model represented

by the red solid line at Pr = 0.7 are very close to our PR-DNS data that are obtained from the

cases for different Prandtl number. This good agreement with PR-DNS data implies that the

effective thermal diffusivity indeed has PeD
2 scaling but may contain the boundary layer effect

through the expression for the average Nusselt number.
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APPENDIX F. PTHF FROM WAKE SCALING ANALYSIS

The unconditional ensemble-averaged PTHF
〈
Ifu

′′(f)
‖ T ′′(f)

〉
is calculated from the wake

scaling analysis as the particle number density np times an integral over the probability density

function (pdf) of the conditionally averaged particle position f :

〈
Ifu

′′(f)
‖ T ′′(f)

〉
= np

ˆ Lw

0

ˆ ˆ

f(x‖, y, z) dx‖dydz, (F.1)

where np = 〈Np〉/V is the particle number density defined as the ratio of the average number

of particles 〈Np〉 to the volume of the domain V , and Lw is the length of the wake that

represents the velocity contour surrounding the particle where the value of the conditionally

ensemble-averaged velocity reaches | 〈W〉 | (note that since the particles are stationary, the

mean slip velocity is equal to the unconditionally averaged fluid velocity). Note that the full

length of the far wake is not attained in the computational domain as shown in Fig. 4.11(a)

due to hydrodynamic interactions with neighbor particles (note that the two-point velocity

correlation has decayed to zero within the computational domain, indicating that the domain

is large enough for this to not be an artifact of periodicity). For Pr < 1, the integral in

Eq. F.1 can be analyzed in three regions: (a) the near-wake region x‖ < aPea < aRea, (b)

the intermediate overlap region aPea < x‖ < aRea, and (c) the far-wake region aRea < x‖.

In the near-wake and intermediate overlap regions, since the integral over y and z in Eq. F.1

is dominated by a region of O
(
a2
)

where the fluid velocity disturbance is near U‖O (CD) (see

Eq. 4.51) we can replace the integral over dy dz with a2. In the far-wake region, there would be

some spreading of the momentum wake and one should use rW M = a
(
x‖/aRea

)1/2
in Eq. 4.50.

Therefore, the ensemble-averaged PTHF can be expressed as

np

ˆ Lw

0
fdx‖dydz = np

[
a2

ˆ aP ea

0
fNdx‖ + a2

ˆ aRea

aP ea

fIdx‖ +

ˆ Lw

aRea

fF r
2
W Mdx‖

]
, (F.2)



266

where fN , fI , and fF are the functions for the near-wake, intermediate, and far-wake regions

based on the expressions in Eqs. 4.51 and 4.53 as

fI ≈ 4h

ρf cpfU‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖, (F.3)

and

fF ≈ 4h

ρfcpfU‖

aPea

x‖
(Ts − 〈Tm〉)

CDU‖aRea

x‖
. (F.4)

Then the PTHF in the three regions can be computed as

〈
Ifu

′′(f)
‖ T ′′(f)

〉
N

= B1npa
2

ˆ aP ea

0

4h

ρfcpfU‖
(Ts − 〈Tm〉)CDU‖dx‖

= B1npa
3 4 〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea, (F.5)

in the near-wake region x‖ < aPea < aRea, as

〈
Ifu

′′(f)
‖ T ′′(f)

〉
I

= B2npa
2

ˆ aRea

aP ea

4h

ρf cpfU‖

aPea

x‖
(Ts − 〈Tm〉)CDU‖dx‖

= B2npa
2 4 〈Nu〉αf

D
(Ts − 〈Tm〉)CD

ˆ aRea

aP ea

aPea

x‖
dx‖

= B2npa
3 4 〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea ln

(
1

Pr

)
(F.6)

in the intermediate region aPea < x‖ < aRea, and as

〈
Ifu

′′(f)
‖ T ′′(f)

〉
F

= B3npa
2

ˆ Lw

aRea

4h

ρfcpfU‖

aPea

x‖
(Ts − 〈Tm〉)

CDU‖aRea

x‖

(
x‖

aRea

)
dx‖

= B3npa
2 4 〈Nu〉αf

D
(Ts − 〈Tm〉)CDaPea

ˆ Lw

aRea

1

x‖
dx‖

= B3npa
3 4 〈Nu〉αf

D
(Ts − 〈Tm〉)CDPea ln

(
Lw

aRea

)
. (F.7)

in the far-wake region aRea < x‖, where in Eqs. F.5–F.7. Thus, the complete expression for

the PTHF is
〈
Ifu

′′(f)
‖ T ′′(f)

〉
= Pea

[
k2 ln

(
1

Pr

)
+ k3 ln

(
Lw

aRea

)
+ k1

]
, (F.8)

where k1, k2, and k3 are undetermined coefficients that arise from the constants B1 − B3 and

the uncertainty in the limits of integration of the overlap region. Note that the coefficients are

not precisely known and their relative magnitude will determine whether or not the logarithmic
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dependence on Pr is a dominant contribution in the expression. pseudo–turbulent thermal

diffusivity αP T can be obtained based on the PTHF as

αP T = −
〈
Ifu

′′(f)
‖ T ′′(f)

〉 (
x‖

)/ ∂ 〈IfT 〉
∂x‖

=
〈
Ifu

′′(f)
‖ T ′′(f)

〉/ (Ts − 〈Tm〉)
D/λ

, (F.9)

where the coefficient λ (see Eq. 4.27) is

1

λ
=

4PeD

6πεs 〈Nu〉 =
8Pea

6πεs 〈Nu〉 . (F.10)

Using the specific expressions for the velocity (cf. Eq. 4.51) and temperature fluctuations (cf.

Eq. 4.53) in the three regions, we obtain the effective thermal diffusivity as

αP T + αf

αf
= npa

3 1

αf

D

λ

4 〈Nu〉αf

D
CDPea

[
B2 ln

(
1

Pr

)
+B3 ln

(
Lw

aRea

)
+B1

]
+ 1

=
a3Np

V

D

λ

4 〈Nu〉
D

CDPea

[
B2 ln

(
1

Pr

)
+B3 ln

(
Lw

aRea

)
+B1

]
+ 1

= 0.065Pe2
D

[
B2 ln

(
1

Pr

)
+B3 ln

(
Lw

aRea

)
+B1

]
+ 1. (F.11)

where the number density is np = 〈Np〉/V = 3εs/(4πa3) and the drag coefficient can be

obtained from the normalized average drag force for the case of Reynolds number of 100 and

solid volume fraction of 0.1 (〈F 〉 = 6.7 and U‖ = | 〈W〉 | ) as

CD =
〈F 〉 3πµfD| 〈W〉 | (1 − εs)

ρfU
2
‖πa

2
=

12 〈F 〉 (1 − εs)2

Rem
= 0.65. (F.12)

Note that since hydrodynamic interactions with neighbor particles cause the velocity to decay

before achieving a far-wake behavior, ln (Lw/aRea) is not present in practice.

The wake analysis of the scaling of the effective thermal diffusivity with Péclet number in

Eq. F.11 is compared with PR-DNS data in Fig. 4.10. With assuming B1 = 1, B2 = 1 and the

neglect of ln (Lw/aRea) in Eq. F.11, the results obtained from the wake scaling analysis over a

range of 0.01 < Pr < 0.7 agree very well with the PR-DNS data. The Pe2
D scaling itself comes

from there being a wake and from realizing that decay length is the scaling to use for mean

temperature gradient. Therefore, this analysis of the hydrodynamic and thermal wakes behind

the particle gives a physical explanation for the existence of a Pe2
D scaling in effective thermal

diffusivity in the regime of high Reynolds number and low Prandtl number.
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APPENDIX G. DERIVATION OF THE FLUID-PHASE AXIAL

CONDUCTION MODEL

The standard model ofBenyahia et al. (2012) for the fluid phase axial conduction term

∂ 〈Ifqj〉 /∂xj in the two-fluid approach is

∂

∂xj
〈Ifqj〉 = −εfkf

∂2〈T (f)〉
∂xj∂xj

. (G.1)

In the case of single-phase turbulence this term would not require closure in the average tem-

perature equation because the operations of differentiation and averaging in single-phase flows

commute, leading to the exact relation ∂ 〈qj〉 /∂xj = −k∂2〈T 〉/∂xj∂xj . However, in two-phase

flows this is a modeling assumption because differentiation of terms such as Ifqj that involve

the indicator function results in additional terms.

We prefer to develop the average conduction model in terms of non-dimensional temperature

φ, which represents the difference between the fluid and solid temperature non-dimensionalized

by a reference temperature scale (Tm,in − Ts), because this avoids any spurious dependence of

the modeled terms on the choice of reference temperature. We begin by expanding the average

conduction term in Eq. 4.1 written in terms of the non-dimensional temperature φ as:

∂

∂xj

〈
Ifq

φ
j

〉
=

∂

∂xj

〈
−Ifkf

∂φ

∂xj

〉

=
∂

∂xj

〈
−kf

∂Ifφ

∂xj
+ kfφ

∂If

∂xj

〉
(xj)

= −kf
∂2 〈Ifφ〉
∂xj∂xj

+ kf
∂

∂xj

〈
φ
∂If

∂xj

〉
, (G.2)

where in the last expression it is assumed that the fluid thermal conductivity kf is constant. The

second term on the right hand side of Eq. G.2 is zero because of continuity of the temperature

field at the gas-solid interface. Substituting the definition for the phasic average of φ from
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Eq. 4.2 into the first term on the right hand side of Eq. G.2, and noting that εf is a constant

due to statistical homogeneity of the particle field in the problem considered in this work,

results in the standard model for average conduction in the fluid phase:

∂

∂xj

〈
Ifq

φ
j

〉
= −kfεf

∂2
〈
φ(f)

〉

∂xj∂xj
. (G.3)

Recalling that in our problem setup there is no average heat flux in the cross-stream directions

due to periodicity, results in the standard model for average axial conduction in the fluid phase:

∂

∂x‖

〈
Ifq

φ
‖

〉
= −kfεf

∂2
〈
φ(f)

〉

∂x‖∂x‖
. (G.4)

Equivalently, this model can be written in terms of the average heat flux in the fluid phase as:

〈
Ifq

φ
‖

〉
= −kf

〈
If
∂φ

∂x‖

〉
= −kf

〈
∂Ifφ

∂x‖

〉
= −kfεf

∂
〈
φ(f)

〉

∂x‖
, (G.5)

where εf is assumed constant due to the statistical homogeneity of the particle field.

We would like to evaluate this model using PR-DNS data. Both expressions (Eq. G.4

and G.5) involve taking derivatives of
〈
φ(f)

〉
, which is a phasic average that must be estimated

from a finite number of PR-DNS realizations. Therefore, we first examine the effect of statistical

variability in
〈
φ(f)

〉
(arising from a finite number of realizations) on the average heat flux in

the fluid phase. Figure G.1 shows the variation of average non-dimensional fluid temperature

and its gradient from PR-DNS data for Rem = 100 and εs = 0.4.

As the left panel (Fig. G.1(a)) shows, the gradient of the non-dimensional average fluid

temperature −D∂ 〈Ifφ〉 /∂x‖ denoted by blue open circles (I, bottom left) using 5 MIS has high

fluctuations even though the average non-dimensional fluid temperature
〈
φ(f)

〉
(top left) has

relatively small variation with axial location. With a large number of MIS (50) the fluctuation

of −D∂ 〈Ifφ〉 /∂x‖ is reduced as shown in the bottom right panel (Fig. G.1(b)) by the blue

open circle (I). This is because the variation of the average non-dimensional fluid temperature
〈
φ(f)

〉
(top right panel, Fig. G.1(b)) with 50 MIS is much lower than the one using 5 MIS.

However, small fluctuations in the gradient of the average fluid temperature still remain.

The left panel (bottom left, Fig. G.1(a)) also shows that the axial variation of the average

non-dimensional fluid-phase temperature gradient −D
〈
If∂φ/∂x‖

〉
(denoted by red open cir-

cles (II)) has high fluctuations using 5 MIS. According to Eq. G.5, −D
〈
If∂φ/∂x‖

〉
(II) should
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(a) 5 MIS (b) 50 MIS

Figure G.1: Variation of average non-dimensional fluid temperature
〈
φ(f)

〉
and normalized

temperature gradient in the fluid phase from PR-DNS data using (a) 5 MIS and (b) 50 MIS at
Rem = 100 and εs = 0.4. The white open circles are average non-dimensional fluid temperature.
The blue open circles (I) represent −D∂ 〈Ifφ〉 /∂x‖ and the red open circles (II) represent

−D
〈
If∂φ/∂x‖

〉
(see Eq. G.2). Error bars in both panels represent 95% confidence intervals

inferred from (a) 5 MIS and (b) 50 MIS, respectively. For clarity, only half error bars for the
blue and red open circles are shown in this figure.

be equal to −D∂ 〈Ifφ〉 /∂x‖ (I). However, in the bottom left panel, the difference between

−D∂ 〈Ifφ〉 /∂x‖ (I) and −D
〈
If∂φ/∂x‖

〉
(II) can be seen clearly if only a few realizations (5

MIS) are simulated. This difference arises from two sources. One is that there is always statis-

tical variability in averaging the non-dimensional fluid-phase temperature gradient If∂φ/∂x‖

from a finite number of realizations. Note that the variation of the average non-dimensional

fluid-phase temperature gradient using 50 MIS is much smaller compared to the one obtained

from 5 MIS. Correspondingly, the difference between −D∂ 〈Ifφ〉 /∂x‖ (I) and −D
〈
If∂φ/∂x‖

〉

(II) due to statistical variability also becomes smaller for a large number of realizations (50
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MIS), as shown in the bottom right panel (Fig. G.1(b)). The average relative error between

−D
〈
If∂φ/∂x‖

〉
and −D∂ 〈Ifφ〉 /∂x‖ is less than 15% using 50 MIS. The other reason for the

difference between (I) and (II) is that, as shown above, statistical variability in
〈
φ(f)

〉
arising

from a finite number of realization results in small scale spatial variation. Taking derivatives

of
〈
φ(f)

〉
amplifies these variations. Thus, using PR-DNS data, we verify that the average

non-dimensional fluid-phase temperature gradient −D
〈
If∂φ/∂x‖

〉
can be approximated by

−D∂ 〈Ifφ〉 /∂x‖ in a fixed homogeneous particle assembly. However, it should be noted that

since fluctuations in the average temperature gradient exist, these will result in more noise in

the second derivative of average temperature.
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APPENDIX H. STATISTICAL REPRESENTATION OF TWO-PHASE

FLOW

The statistical representation of a two-phase flow using the Eulerian-Eulerian (EE) ap-

proach is present. In the EE approach, the two-phase flow is represented as a random field

(Drew (1983)). Fundamental events and corresponding probabilities associated with a two-

phase flow in the EE framework are briefly described as follows. More details can be found in

Pai and Subramaniam (2009).

H.1 Random-field representation

In order to consider a realization ω of a two-phase flow with two distinct phases, the indicator

function for the EE description Iβ (x, t) is introduced. Let the two-phase flow be composed of

a carrier phase (such as gas phase) and a dispersed phase (such as solid phase). The indicator

function Iβ (x, t) for the βth phase at a single space-time location in a single realization is

defined as

Iβ (x, t) =





1 if x is in phase β at time t,

0 if x is not in phase β at time t,

(H.1)

In two-phase flow, the phase indicator functions satisfy the relation

∑

β={f,s}

Iβ (x, t) = 1, (H.2)

where β = {f, s}, and f represents the carrier phase and s represents the dispersed phase.

In each realization, the instantaneous two-phase velocity field U (x, t), the instantaneous

composition field φ (x, t) and the thermodynamic mass density field ρ (φ), which are defined
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in all phases, are vector fields defined at every location x in physical space. The mass density

ρ only depend on the set of compositions φ(x, t) (details can be found in Pope (1985)), where

the set of compositions containing the species

φα =





Yα, α = 1, ...n − 1

cpT, α = n

(H.3)

and the enthalpy

φα = cpT, α = n

provides a complete description of the thermo-chemical properties of the carrier-phase mixture.

The events can be used to characterize the state of a two-phase flow at a single space-time

location (x, t), and each leads to different probabilities. A complete Eulerian single-point joint

probability density function (PDF) description of the two-phase flow will require the event

E1 = [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ) , Iβ(x, t) = 1] , (H.4)

where U(x, t) and φ(x, t) are random variables, V and ψ are the sample space variable cor-

responding to the random variable U(x, t) and φ(x, t). Corresponding to the joint event E1,

two marginal events are

E2 = [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ)] , (H.5)

and

E
(β)
3 = [Iβ(x, t) = 1] . (H.6)

There are two important conditional events

E4 = [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ) |Iβ = 1] , (H.7)

and

E5 = [Iβ(x, t) = 1|U = V,φ = ψ] . (H.8)
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where E4 is the event that U(x, t) belongs to (V ,V + dV) and φ(x, t) belongs to (ψ,ψ + dψ)

conditional on the presence of phase β at location x, while E5 is the event that the location x

is occupied by phase β conditional on U = V,φ = ψ at the same location.

Based on these above events, the probabilities corresponding to each of the above events

are

P [E2] = P [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ)] = fUφ(V,ψ;x, t)dVdψ, (H.9)

P [E5] = P [Iβ(x, t) = 1|U = V,φ = ψ] = pβ(x, t |V,ψ ), (H.10)

P [E1] = P [Iβ(x, t) = 1|U = V,φ = ψ]P [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ)]

= pβ(x, t |V ,ψ )fUφdV dψ, (H.11)

P
[
E

(β)
3

]
=

¨

P [Iβ = 1 |U = V ,φ = ψ ] fUφdV dψ =

¨

pβfUφdV dψ = αβ(x, t),

(H.12)

P [E4] = P [U(x, t) ∈ (V ,V + dV) ,φ(x, t) ∈ (ψ,ψ + dψ) |Iβ = 1]

=
pβfUφ

αβ(x, t)
dV dψ, (H.13)

where pβ is a phase probability function, αβ ∈ [0, 1] is a probability mass function in phase β.

H.2 Random-field statistical representation

Analogous to the single-phase PDF, in order to account for the mass in two-phase flow it is

necessary to work with mass-weighted or Favre quantities. The Favre fine-grained mass density

of U (x, t) and φ (x, t) conditional on phase β at location x and time t is defined as
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F ′
Uφ|Iβ

= ρ (φ) Iβ (x, t) δ (U (x, t) − V) δ (φ (x, t) −ψ) . (H.14)

The expectation of F ′
Uφ|Iβ

defines the Favre mass density conditional on phaseβ :

F
Uφ|Iβ

(V,ψ,x, t) =
〈

F ′
Uφ|Iβ

〉
. (H.15)

where the angled bracket 〈·〉 represents an expectation over all possible realizations in the

V − ψ space. There is a useful connection between the Favre mass density conditional on

phaseβ F
Uφ|Iβ

and the PDF fUφ or density-weighted PDF f̃
Uφ|Iβ

as

F
Uφ|Iβ

= 〈ρ (φ) Iβ (x, t) δ (U (x, t) − V) δ (φ (x, t) −ψ)〉

=

ˆ

δ
(
V′ − V

)
δ
(
ψ′ −ψ

) 〈
ρ (φ) Iβ

∣∣U = V′,φ = ψ′
〉
fUφ

(
V′,ψ′

)
dV′dψ′

= 〈ρ (φ) Iβ |V,ψ 〉 fUφ (V,ψ)

= 〈ρIβ〉 f̃
Uφ|Iβ

(V,ψ) . (H.16)

Note that the integration of F
Uφ|Iβ

over all velocity-composition space results in

ˆ

V

ˆ

ψ

F
Uφ|Iβ

(V,ψ,x, t) dVdψ = 〈ρIβ〉 (x, t) . (H.17)

The relationship between the mass density and the mass-weighted phasic velocity PDF is given

by F
Uφ|Iβ

= 〈ρIβ〉 f̃
Uφ|Iβ

. Density-weighted means can be defined as

〈
˜Q (U,φ)

〉
(x, t) =

1

〈ρIβ〉

ˆ

V

ˆ

ψ

Q (V,ψ) F
Uφ|Iβ

dVdψ =

ˆ

V

ˆ

ψ

Q (V,ψ) f̃
Uφ|Iβ

dVdψ.

(H.18)
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APPENDIX I. DERIVATION OF PDF TRANSPORT EQUATION

USING THE DELTA FUNCTION APPROACH

The object of this Appendix is to derive the phase-conditioned single-point velocity-composition

joint PDF transport equation for Favre mass density PDF FUφ|Iβ
. Pai and Subramaniam

(2009) have used the delta function method to derive the a phase-conditioned single-point

velocity PDF. Following the similar procedure, a phase-conditioned velocity-composition PDF

transport equation can be derived. Although the transport equation for the two-phase PDF can

be obtained from the PDF f ′
Uφ|Iβ

(see Appendix H), it is necessary to work with mass-weighted

quantities. Based on the instantaneous continuity equation

∂ρ

∂t
+
∂ρUj

∂xj
= 0, (I.1)

the momentum equation

ρ
DUi

Dt
= ρAi, (I.2)

and the composition equation

ρ
Dφα

Dt
= ρΘα, (I.3)

where A is the acceleration

ρAi(x, t) =
∂τji

∂xj
− ∂p

∂xi
+ ρgi, (I.4)

and Θ is the rate of change of composition that is composed of a diffusion and a reaction source

term
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ρΘα(x, t) = −∂Jα
i

∂xi
+ ρSα, (I.5)

the transport equation for the fine-grained mass density F ′
Uφ|Iβ

can be derived from two ex-

pressions of F ′
Uφ|Iβ

. The first expressions forms the substantial derivative of F ′
Uφ|Iβ

as

DF ′
Uφ|Iβ

Dt
=
∂F ′

Uφ|Iβ

∂t
+ Uk

∂F ′
Uφ|Iβ

∂xk
. (I.6)

Using chain rule, the second term in the right-hand side of Eq. I.6 becomes

Uk

∂F ′
Uφ|Iβ

∂xk
=
∂UkF ′

Uφ|Iβ

∂xk
− F ′

Uφ|Iβ

∂Uk

∂xk
= Vk

∂F ′
Uφ|Iβ

∂xk
− F ′

Uφ|Iβ

∂Uk

∂xk
. (I.7)

Eq. I.6 can be rewritten as

DF ′
Uφ|Iβ

Dt
=
∂F ′

Uφ|Iβ

∂t
+ Vk

∂F ′
Uφ|Iβ

∂xk
− F ′

Uφ|Iβ

∂Uk

∂xk
. (I.8)

The second expression forming the substantial derivative of F ′
Uφ|Iβ

can be obtained from

chain rules as

DF ′
Uφ|Iβ

Dt
=
∂F ′

Uφ|Iβ

∂Vk

DUk

Dt
+
∂F ′

Uφ|Iβ

∂ψα

Dφα

Dt
+
∂F ′

Uφ|Iβ

∂ρIβ

DρIβ

Dt
. (I.9)

The first term of Eq. I.9 can be written using Appendix H.6-8 of Pope (2000) as

∂F ′
Uφ|Iβ

∂Uk

DUk

Dt
= − ∂

∂Vk

[(
DUk

Dt

)
F ′
Uφ|Iβ

]
. (I.10)

The third term of Eq. I.9 is expressed based on the definition of the fine-grained mass density

F ′
Uφ|Iβ

as

∂F ′
Uφ|Iβ

∂ρIβ

DρIβ

Dt
= δ(Uk(x, t) − Vk)δ(φα(x, t) − ψα)

DρIβ

Dt
=

F ′
Uφ|Iβ

ρIβ

DρIβ

Dt
. (I.11)

The second term of Eq. I.9 can be expressed using the sifting of property of the delta function

(δ(1)(x− a) = −δ(1)(a− x)) and Dρ(φα)/Dt = 0 as
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∂F ′
Uφ|Iβ

∂φα

Dφα

Dt
=

∂

∂φα
ρ(φα)Iβ(x, t)δ(Uk(x, t) − Vk)δ(φα(x, t) − ψα)

Dφα

Dt

=
F ′
Uφ|Iβ

ρ(φα)

∂ρ(φα)

∂φα

Dφα

Dt
+ ρ(φα)

[
∂

∂φα
Iβ(x, t)δ(Uk(x, t) − Vk)δ(φα(x, t) − ψα)

]
Dφα

Dt

=
F ′
Uφ|Iβ

ρ(φα)

Dρ(φα)

Dt
+ ρ(φα)Iβ(x, t)δ(Uk(x, t) − Vk)δ(1)(φα(x, t) − ψα)

Dφα

Dt

= 0 − ρ(φα)Iβ(x, t)δ(Uk(x, t) − Vk)δ(1)(ψα − φα(x, t))
Dφα

Dt

= −ρ(φα)Iβ(x, t)δ(Uk(x, t) − Vk)
∂

∂ψα
δ(ψα − φα(x, t))

Dφα

Dt

= −
∂F ′

Uφ|Iβ

∂ψα

Dφα

Dt

= − ∂

∂ψα

[(
Dφα

Dt

)
F ′
Uφ|Iβ

]
. (I.12)

Thus, the transport equation for the fine-grained mass density can be written as

∂F ′
Uφ|Iβ

∂t
+ Vk

∂F ′
Uφ|Iβ

∂xk
= − ∂

∂Vk

[(
∂Uk

∂t
+ Uj

∂Uk

∂xj

)
F ′
Uφ|Iβ

]

− ∂

∂ψα

[(
∂φα

∂t
+ Uj

∂φα

∂xj

)
F ′
Uφ|Iβ

]

+
F ′
Uφ|Iβ

ρIβ

(
∂ρIβ

∂t
+
∂ρIβUk

∂xk

)
. (I.13)

Using the topological equation by Drew (1983) as

∂Iβ

∂t
+ U

(I)
k

∂Iβ

∂xk
= 0 (I.14)

(U (I)
k is the velocity of the phasic interface), the final fine-grained mass density equation be-

comes

∂F ′
Uφ|Iβ

∂t
+ Vk

∂F ′
Uφ|Iβ

∂xk
= − ∂

∂Vk

[(
∂Uk

∂t
+ Uj

∂Uk

∂xj

)
F ′
Uφ|Iβ

]

− ∂

∂ψα

[(
∂φα

∂t
+ Uj

∂φα

∂xj

)
F ′
Uφ|Iβ

]

+
F ′
Uφ|Iβ

ρIβ

[
ρ(Uk − U

(I)
k )

∂Iβ

∂xk

]
. (I.15)
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Taking the expectation of Eq. I.15, it becomes

∂
〈
F ′
Uφ|Iβ

〉

∂t
+ Vk

∂
〈

F ′
Uφ|Iβ

〉

∂xk
= − ∂

∂Vk

〈
DUk

Dt
F ′
Uφ|Iβ

〉

− ∂

∂ψα

〈
Dφα

Dt
F ′
Uφ|Iβ

〉

+

〈F ′
Uφ|Iβ

ρIβ

[
ρ(Uk − U

(I)
k )

∂Iβ

∂xk

]〉
. (I.16)

Therefore, the phase-conditioned single-point velocity-composition joint PDF transport equa-

tion is obtained as

∂FUφ|Iβ

∂t
+ Vk

∂FUφ|Iβ

∂xk
= − ∂

∂Vk

[〈
ρIβ

DUk

Dt
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]

− ∂

∂ψα

[〈
ρIβ

Dφα

Dt
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]

+
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉 . (I.17)
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APPENDIX J. DERIVATION OF PDF TRANSPORT EQUATION

USING TEST FUNCTION METHOD

In order to guarantee the derivation of the PDF transport equation correctly using delta

function method, we also derive the phase-conditioned PDF transport equation using test

function method that is used to derive the single-point PDF transport equation for single-

phase flow by Pope (1985). The governing equations used to derive for the phase-conditioned

single-point PDF transport equation are the same as the instantaneous equations in Appendix

I. The test function method is to equate two independent expression for the material derivative

of the test function Q(U, φ).

With the aid of the continuity equation

∂ρ

∂t
+
∂ρUj

∂xj
= 0, (J.1)

the first expression for two-phase flow based on the material derivative is written as

ρ
DIβQ

Dt
= ρ

(
∂IβQ

∂t
+ Uj

∂IβQ

∂xj

)

=
∂ρIβQ

∂t
− IβQ

∂ρ

∂t
+
∂ρIβQUj

∂xj
− IβQ

∂ρUj

∂xj

=
∂ρIβQ

∂t
+
∂ρIβQUj

∂xj
. (J.2)

Then the expectation of the first expression is
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〈
ρ(φ)

DIβQ(U,φ)

Dt

〉
=

〈
∂ρIβQ

∂t
+
∂ρIβQUk

∂xk

〉

=
∂

∂t

¨

ρ(ψ)Q(V,ψ) 〈Iβ |V,ψ 〉 fUφdVdψ

+
∂

∂xk

¨

ρ(ψ)VkQ(V,ψ) 〈Iβ |V,ψ 〉 fUφdVdψ

=

¨

Q(V,ψ)
{
ρ(ψ)

∂ 〈Iβ |V,ψ 〉 fUφ

∂t
+ ρ(ψ)Vk

∂ 〈Iβ |V,ψ 〉 fUφ

∂xk

}
dVdψ.

(J.3)

The second expression is obtained using chain rules

DIβQ(U,φ)

Dt
= Iβ

DQ(U,φ)

Dt
+Q(U,φ)

DIβ

Dt
= Iβ

∂Q(U,φ)

∂Uk

DUk

Dt
+Iβ

∂Q(U,φ)

∂φα

Dφα

Dt
+Q(U,φ)

DIβ

Dt
.

(J.4)

Then the expectation of the above expression is

〈
ρ(φ)

DIβQ(U,φ)

Dt

〉
=
〈
ρ(φ)Iβ

∂Q(U,φ)

∂Uk
Ak

〉
+
〈
ρ(φ)Iβ

∂Q(U,φ)

∂φα
Θα

〉
+
〈
ρ(φ)Q(U,φ)

DIβ

Dt

〉
.

(J.5)

The first term on the right-hand side of Eq. J.5 is

〈
ρ(φ)Iβ

∂Q(U,φ)

∂Uk
Ak

〉
=

¨ 〈
ρ(φ)Iβ

∂Q(U,φ)

∂Uk
Ak |V,ψ

〉
fUφdVdψ

=

¨

ρ(ψ)
∂Q(V ,ψ)

∂Vk
〈IβAk |V,ψ 〉 fUφdVdψ. (J.6)

It can be written further as

〈
ρ(φ)Iβ

∂Q(U,φ)

∂Uk
Ak

〉
=

¨

∂

∂Vk
[ρ(ψ)Q(V ,ψ) 〈IβAk |V,ψ 〉 fUφ] dVdψ

−
¨

Q(V ,ψ)
∂ρ(ψ) 〈IβAk |V,ψ 〉 fUφ

∂Vk
dVdψ, (J.7)

where the first term is
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¨

∂

∂Vk
[ρ(ψ)Q(V ,ψ) 〈IβAk |V,ψ 〉 fUφ] dVdψ = 0. (J.8)

The second term on the right-hand side of Eq. J.5 is rewritten as

〈
ρ(φ)Iβ

∂Q(U,φ)

∂ψα
Θα

〉
= −

¨

Q(V ,ψ)
∂ρ(ψ) 〈IβΘα |V,ψ 〉 fUφ

∂ψα
dVdψ. (J.9)

The third term on the right-hand side of Eq. J.5 is rewritten as

〈
ρ(φ)Q(U,φ)

DIβ

Dt

〉
=

¨ 〈
ρ(φ)Q(U,φ)

(
Uk − U

(I)
k

) ∂Iβ

∂xk
|V,ψ

〉
fUφdVdψ

=

¨

ρ(ψ)Q(V ,ψ)
〈(
Uk − U

(I)
k

) ∂Iβ

∂xk
|V,ψ

〉
fUφdVdψ. (J.10)

By substituting the second expression in Eq. J.5 into the first expression Eq. J.3, we obtain

¨

Q(V,ψ)
{
∂ 〈ρ(φ)Iβ |V,ψ 〉 fUφ

∂t
+ Vk

∂ 〈ρ(φ)Iβ |V,ψ 〉 fUφ

∂xk

∂

∂Vk
[〈ρ(φ)IβAk |V,ψ 〉 fUφ] +

∂

∂ψα
[〈ρ(φ)IβΘα |V,ψ 〉 fUφ]

−
〈
ρ(φ)

(
Uk − U

(I)
k

) ∂Iβ

∂xk
|V,ψ

〉
fUφ

}
dVdψ = 0. (J.11)

Since these terms in the braces {} are independent of Q, we obtain the phase-conditioned

single-point velocity-composition joint PDF transport equation with the relation F
Uφ|Iβ

=

〈ρ (φ) Iβ |V,ψ 〉 fUφ as

∂F
Uφ|Iβ

∂t
+ Vk

∂F
Uφ|Iβ

∂xk
= − ∂

∂Vk

[
〈ρIβAk |V,ψ 〉

F
Uφ|Iβ

〈ρIβ |V,ψ 〉

]

− ∂

∂ψα

[
〈ρIβΘα |V,ψ 〉

F
Uφ|Iβ

〈ρIβ |V,ψ 〉

]

+
〈
ρ
(
Uk − U

(I)
k

) ∂Iβ

∂xk
|V,ψ

〉 F
Uφ|Iβ

〈ρIβ |V,ψ 〉 . (J.12)

The above PDF transport equation is the same as the one derived from delta function method.
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APPENDIX K. PHASE-CONDITIONED SINGLE-POINT

COMPOSITION PDF TRANSPORT EQUATION

Since Pai and Subramaniam (2009, 2012) have already discussed the first and third term on

the right-hand side of Eq. J.12, we will only focus on the second term related to the compositions

on the right-hand side of Eq. J.12 in this Appendix. The main difference between single-phase

and two-phase flows is that in the two-phase flow the interphase transfer term appear in the

PDF transport equation. Understanding the effect of the interphase transfer term in two-phase

flow will allow us to develop closure model for the interphase transfer term in the PDF transport

equation.

The phase-conditioned single-point velocity-composition joint PDF transport equation have

been derived in Appendices I and J as

∂FUφ|Iβ

∂t
+ Vk

∂FUφ|Iβ

∂xk
= − ∂

∂Vk

[〈
ρIβ

DUk

Dt
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]

− ∂

∂ψα

[〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]

+
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉 , (K.1)

where Favre mass density is defined as FUφ|Iβ
(V ,ψ,x, t) = 〈ρ(φ)Iβ(x, t)δ(U(x, t) − V)δ(φ(x, t) −ψ)〉 .

The phase-conditioned single-point composition PDF transport equation can be obtained by

the integral of the above equation over the velocity sample space as

ˆ

∂FUφ|Iβ

∂t
dV = −

ˆ

∂

∂ψα

[〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]
dV

+

ˆ

Vk

∂FUφ|Iβ

∂xk
dV +

ˆ 〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉dV. (K.2)
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Then the unsteady term becomes

ˆ

∂FUφ|Iβ

∂t
dV =

∂
[
´

FUφ|Iβ
dV
]

∂t
=
∂
[´

〈ρ(φ)Iβ(x, t)δ(U(x, t) − V)δ(φ(x, t) −ψ)〉 dV
]

∂t
=
∂Fφ|Iβ

∂t
.

(K.3)

The second term on the left-hand side of Eq. K.2 is rewritten as

ˆ

Vk

∂FUφ|Iβ

∂xk
dV =

∂
´

VkFUφ|Iβ
dV

∂xk
=
∂ 〈Uk |ψ 〉 Fφ|Iβ

∂xk
=
∂

[〈
Ũ

(β)
k

〉
Fφ|Iβ

]

∂xk
+
∂
[
〈uk |ψ 〉 Fφ|Iβ

]

∂xk
.

(K.4)

The first term on the right-hand side of Eq. K.2 is rewritten as

ˆ

∂

∂ψα

[〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉

]
dV

=

ˆ

∂

∂ψα

[〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|V,ψ

〉
fUφ

]
dV

=
∂

∂ψα

[ˆ 〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|V,ψ

〉
fUφdV

]

=
∂

∂ψα

[〈(
−∂IβJ

α
i

∂xi
+ Jα

i

∂Iβ

∂xi
+ IβρSα

)
|ψ
〉
fφ

]
. (K.5)

Note that Fφ|Iβ
(ψ,x, t) = 〈ρ(φ)Iβ |ψ 〉 fφ.

The last term on the right-hand side of Eq. K.2 becomes

ˆ 〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉dV

=

ˆ 〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉
fUφdV

=
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|ψ
〉
fφ. (K.6)

Finally, combining all the terms, we obtain
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∂Fφ|Iβ

∂t
+
∂

[〈
Ũ

(β)
k

〉
Fφ|Iβ

]

∂xk
+
∂
[
〈uk |ψ 〉 Fφ|Iβ

]

∂xk
= − ∂

∂ψα

[〈
−∂IβJ

α
i

∂xi
|ψ
〉 Fφ|Iβ

〈ρIβ |ψ 〉

]

− ∂

∂ψα

[〈
Jα

i

∂Iβ

∂xi
|ψ
〉 Fφ|Iβ

〈ρIβ |ψ 〉

]

− ∂

∂ψα

[
〈IβρSα |ψ 〉

Fφ|Iβ

〈ρIβ |ψ 〉

]

+
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|ψ
〉 Fφ|Iβ

〈ρIβ |ψ 〉 .

(K.7)
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APPENDIX L. TRANSPORT EQUATION FOR SCALAR VARIANCE

In order to see the evolution of the scalar variance in a gas-solid flow, a transport equation for

scalar variance need to be established. In this Appendix, we derive scalar-variance transport

equation from the phase-conditioned single-point velocity-composition joint PDF transport

equation obtained in Appendices I and J as

∂FUφ|Iβ

∂t
+ Vk

∂FUφ|Iβ

∂xk
= − ∂

∂Vk

[
〈ρIβAk |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

− ∂

∂ψα

[
〈ρIβΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

+
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉 , (L.1)

where the Favre mass density function conditional on phase β is

FUφ|Iβ
(V,ψ,x, t) = 〈ρIβ(x, t)δ(U(x, t) − V)δ(φ(x, t) −ψ)〉 , (L.2)

ρAk and ρΘα in the above equation are defined as

ρAk(x, t) =
∂τjk

∂xj
− ∂p

∂xk
+ ρgk, (L.3)

and

ρΘα(x, t) = −∂Jα
i

∂xi
+ ρSα, (L.4)

respectively. A scalar-covariance transport equation can be derived first as follows. The deriva-

tion of the transport equation for scalar covariance is similar to the one for the Reynolds stress

in Pai and Subramaniam (2009). In order to derive the equation for scalar covariance, we
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multiply the PDF transport equation in Eq. L.1 by ψ
′′(β)
η ψ

′′(β)
γ , where scalar fluctuation is

φ
′′(β)
γ = φγ −

〈
φ̃

(β)
γ

〉
and the Favre-averaged scalar is

〈
φ̃

(β)
γ

〉
=

〈ρIβφγ〉
〈ρIβ〉 , (L.5)

and then integrate the equation over the velocity-composition space. Here, the Favre-averaged

scalar covariance is defined as

Φ̃(β)
γη =

〈
ρIβφ

′′(β)
γ φ

′′(β)
η

〉

〈ρIβ〉 =

ˆ ˆ

ψ′′(β)
η ψ′′(β)

γ FUφ|Iβ
dVdψ. (L.6)

After multiplying the PDF transport equation in Eq. L.1 by ψ′′(β)
η ψ

′′(β)
γ , we obtain

ψ′′(β)
η ψ′′(β)

γ

∂FUφ|Iβ

∂t
+ ψ′′(β)

η ψ′′(β)
γ Vk

∂FUφ|Iβ

∂xk
= −ψ′′(β)

η ψ′′(β)
γ

∂

∂Vk

[
〈IβρAk |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

−ψ′′(β)
η ψ′′(β)

γ

∂

∂ψα

[
〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

+ψ′′(β)
η ψ′′(β)

γ

〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉 FUφ|Iβ

〈ρIβ |V,ψ 〉 .

(L.7)

The above equation can be simplified as follows:

1. The first term on the left-hand side of Eq. L.7 is decomposed into two terms

ψ′′(β)
η ψ′′(β)

γ

∂FUφ|Iβ

∂t
=
∂ψ

′′(β)
η ψ

′′(β)
γ FUφ|Iβ

∂t
− FUφ|Iβ

∂ψ
′′(β)
η ψ

′′(β)
γ

∂t
, (L.8)

where the last term can be simplified to

FUφ|Iβ

∂ψ
′′(β)
η ψ

′′(β)
γ

∂t
= FUφ|Iβ

∂

∂t

[(
ψ(β)

γ −
〈
φ̃

(β)
γ

〉)(
ψ(β)

η −
〈
φ̃

(β)
η

〉)]

= FUφ|Iβ


−ψ(β)

η

∂

〈
φ̃

(β)
γ

〉

∂t
− ψ(β)

γ

∂

〈
φ̃

(β)
η

〉

∂t
+
∂

〈
φ̃

(β)
γ

〉〈
φ̃

(β)
η

〉

∂t


 .(L.9)

Note that the integral of this term over ψ space is equal to zero.
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2. The second term on the left-hand side of Eq. L.7 is also decomposed into two terms

ψ′′(β)
η ψ′′(β)

γ Vk

∂FUφ|Iβ

∂xk
=
∂ψ

′′(β)
η ψ

′′(β)
γ VkFUφ|Iβ

∂xk
− VkFUφ|Iβ

∂ψ
′′(β)
η ψ

′′(β)
γ

∂xk
. (L.10)

The last term of the above equation can be written as

VkFUφ|Iβ

∂ψ
′′(β)
η ψ

′′(β)
γ

∂xk
= VkFUφ|Iβ

(
ψ′′(β)

η

∂ψ
′′(β)
γ

∂xk
+ ψ′′(β)

γ

∂ψ
′′(β)
η

∂xk

)

= −VkFUφ|Iβ


ψ

′′(β)
η

∂

〈
φ̃

(β)
γ

〉

∂xk
+ ψ′′(β)

γ

∂

〈
φ̃

(β)
η

〉

∂xk


 . (L.11)

3. The first term on the right-hand side of Eq. L.7 can be rewritten as

ψ′′(β)
η ψ′′(β)

γ

∂

∂Vk

[
〈IβρAk |V ,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]
=

∂

∂Vk

[
ψ′′(β)

η ψ′′(β)
γ 〈IβρAk |V ,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]

−
[
〈IβρAk |V ,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]
∂

∂Vk

[
ψ′′(β)

η ψ′′(β)
γ

]
.

(L.12)

Note that the first term on the right-hand side of the above equation is equal to zero.

4. The second term on the right-hand side of Eq. L.7 can be derived as

ψ′′(β)
η ψ′′(β)

γ

∂

∂ψα

[
〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

=
∂

∂ψα

[
ψ′′(β)

η ψ′′(β)
γ 〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]
(L.13)

−
[
〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]
∂

∂ψα

[
ψ′′(β)

η ψ′′(β)
γ

]

=
∂

∂ψα

[
ψ′′(β)

η ψ′′(β)
γ 〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]

−
[
ψ′′(β)

η 〈IβρΘγ |V,ψ 〉 + ψ′′(β)
γ 〈IβρΘη |V,ψ 〉

] FUφ|Iβ

〈ρIβ |V,ψ 〉 . (L.14)

5. The last term on the right-hand side of Eq. L.7 can be written as a source term

〈
S(β)

ρ |V,ψ
〉

=
〈
ρ(Uk − U

(I)
k )

∂Iβ

∂xk
|V,ψ

〉
. (L.15)
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Substituting all above terms into Eq. L.7, we obtain

∂ψ
′′(β)
η ψ

′′(β)
γ FUφ|Iβ

∂t
− FUφ|Iβ


−ψ′′(β)

η

∂

〈
φ̃

(β)
γ

〉

∂t
− ψ′′(β)

γ

∂

〈
φ̃

(β)
η

〉

∂t
+
∂

〈
φ̃

(β)
γ

〉〈
φ̃

(β)
η

〉

∂t




+
∂ψ

′′(β)
η ψ

′′(β)
γ VkFUφ|Iβ

∂xk
+ VkFUφ|Iβ


ψ

′′(β)
η

∂

〈
φ̃

(β)
γ

〉

∂xk
+ ψ′′(β)

γ

∂

〈
φ̃

(β)
η

〉

∂xk




=
∂

∂ψα

[
ψ′′(β)

η ψ′′(β)
γ 〈IβρΘα |V,ψ 〉

FUφ|Iβ

〈ρIβ |V,ψ 〉

]

−
[
ψ′′(β)

η 〈IβρΘγ |V,ψ 〉 + ψ′′(β)
γ 〈IβρΘη |V,ψ 〉

] FUφ|Iβ

〈ρIβ |V,ψ 〉

+ψ′′(β)
η ψ′′(β)

γ

〈
S(β)

ρ |V,ψ
〉 FUφ|Iβ

〈ρIβ |V,ψ 〉 . (L.16)

By integrating the above equation over velocity-composition space, we can obtain the scalar

covariance equation as follows. The integral of the third term on the left-hand side of Eq. L.16

is

¨

∂ψ
′′(β)
η ψ

′′(β)
γ VkFUφ|Iβ

∂xk
dVdψ =

∂

∂xk

{ˆ
Vk

[ˆ
ψ′′(β)

η ψ′′(β)
γ FUφ|Iβ

dψ
]
dV

}

=
∂

∂xk

{ˆ
Vk

〈
ρIβφ

′′(β)
η φ′′(β)

γ |V
〉
dV

}

=
∂

∂xk

{ˆ 〈(
u

(β)
k +

〈
Ũ

(β)
k

〉)
ρIβφ

′′(β)
η φ′′(β)

γ |V
〉

dV

}

=
∂

∂xk

[〈
ρIβu

(β)
k φ′′(β)

η φ′′(β)
γ

〉
+
〈
ρIβφ

′′(β)
η φ′′(β)

γ

〉〈
Ũ

(β)
k

〉]
.

(L.17)

The integration of the fourth term on the left-hand side of Eq. L.16 becomes
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¨

Vk


ψ

′′(β)
η

∂

〈
φ̃

(β)
γ

〉

∂xk
+ ψ′′(β)

γ

∂

〈
φ̃

(β)
η

〉

∂xk


FUφ|Iβ

dVdψ

=

ˆ

Vk





ψ

′′(β)
η

∂

〈
φ̃

(β)
γ

〉

∂xk
+ ψ′′(β)

γ

∂

〈
φ̃

(β)
η

〉

∂xk


FUφ|Iβ

dψ


 dV

=

ˆ

Vk



〈
ρIβφ

′′(β)
η |V

〉 ∂
〈
φ̃

(β)
γ

〉

∂xk
+
〈
ρIβφ

′′(β)
γ |V

〉 ∂
〈
φ̃

(β)
η

〉

∂xk


dV

=
〈
ρIβu

(β)
k φ′′(β)

η

〉 ∂
〈
φ̃

(β)
γ

〉

∂xk
+
〈
ρIβu

(β)
k φ′′(β)

γ

〉 ∂
〈
φ̃

(β)
η

〉

∂xk
. (L.18)

The integral of the first term on the right-hand side of Eq. L.16 is equal to zero. The integral

of the second term on the right-hand side of Eq. L.16 is

¨

[
ψ′′(β)

η 〈IβρΘγ |V,ψ 〉
FUφ|Iβ

〈ρIβ |V,ψ 〉 + ψ′′(β)
γ 〈IβρΘη |V,ψ 〉

FUφ|Iβ

〈ρIβ |V ,ψ 〉

]
dVdψ

=
〈
IβρΘγφ

′′(β)
η

〉
+
〈
IβρΘηφ

′′(β)
γ

〉

=

〈(
−∂Jγ

i

∂xi
+ ρSγ

)
Iβφ

′′(β)
η

〉
+

〈(
−∂Jη

i

∂xi
+ ρSη

)
Iβφ

′′(β)
γ

〉
. (L.19)

And the terms the right-hand side of the above equation can be further written as

〈(
−∂Jγ

i

∂xi
+ ρSγ

)
Iβφ

′′(β)
η

〉
=

〈
−φ′′(β)

η

∂IβJ
γ
i

∂xi
+ φ′′(β)

η Jγ
i

∂Iβ

∂xi
+ ρIβφ

′′(β)
η Sγ

〉
. (L.20)

Therefore, final expression for the scalar-covariance transport equation is
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∂

∂t

[
〈ρIβ〉 Φ(β)

γη

]
+

∂

∂xk

[
〈ρIβ〉 Φ(β)

γη

〈
Ũ

(β)
k

〉]
+

∂

∂xk

〈
ρIβu

(β)
k φ′′(β)

η φ′′(β)
γ

〉

= −
〈
ρIβu

(β)
k φ′′(β)

η

〉 ∂
〈
φ̃

(β)
γ

〉

∂xk
−
〈
ρIβu

(β)
k φ′′(β)

γ

〉 ∂
〈
φ̃

(β)
η

〉

∂xk

+

〈
−φ′′(β)

η

∂IβJ
λ
i

∂xi
+ φ′′(β)

η Jλ
i

∂Iβ

∂xi
+ ρIβφ

′′(β)
η Sλ

〉

+

〈
−φ′′(β)

γ

∂IβJ
η
i

∂xi
+ φ′′(β)

γ Jη
i

∂Iβ

∂xi
+ ρIβφ

′′(β)
γ Sη

〉

+
〈
φ′′(β)

η φ′′(β)
γ S(β)

ρ

〉
(L.21)

Then the scalar-variance transport equation is obtained by using φ′′(β)
η = φ

′′(β)
γ = φ

′′(β)
α as

∂

∂t

[
〈ρIβ〉 Φ(β)

αα

]
+

∂

∂xk

[
〈ρIβ〉 Φ(β)

αα

〈
Ũ

(β)
k

〉]
+

∂

∂xk

〈
ρIβu

(β)
k φ′′(β)

α φ′′(β)
α

〉

= −2
〈
ρIβu

(β)
k φ′′(β)

α

〉 ∂
〈
φ̃

(β)
α

〉

∂xk

+2
〈

−φ′′(β)
α

∂IβJ
α
i

∂xi
+ φ′′(β)

α Jα
i

∂Iβ

∂xi
+ ρIβφ

′′(β)
α Sα

〉

+
〈
φ′′(β)

α φ′′(β)
α S(β)

ρ

〉
. (L.22)

Note that the second term on the right-hand side of Eq. L.22 can be further simplified for

the case of flow past a homogeneous fixed particle bed with heat transfer. In this gas-

solid heat transfer problem, the scalar variable is non-dimensional fluid temperature φα =

(T − Ts) / (〈Tm,in〉 − Ts) for β = f (see details in Chapters 3 and 4). The assumptions made

for this heat transfer problem are (i) no chemical reaction source/sink Sα, (ii) neglect of radia-

tion and free convection (iii) no mass transfer at the interface S(β)
ρ , (iv) a steady flow, and (v)

constant density. Thus, the second term on the right-hand side of Eq. L.22 is expanded to

〈
φ′′(β)

α

∂IβJ
α
i

∂xi

〉
=

〈
∂Iβφ

′′(β)
α Jα

i

∂xi

〉
−
〈
IβJ

α
i

∂φ
′′(β)
α

∂xi

〉
. (L.23)

The first term on the right-hand side of the above expression can be further written as
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〈
∂Iβφ

′′(β)
α Jα

i

∂xi

〉
= −Γ(β)

α

〈
∂Iβφ

′′(β)
α

∂φ
′′(β)
α

∂xi

∂xi

〉

= −Γ(β)
α

〈
∂Iβ

1
2

∂φ
′′(β)
α φ

′′(β)
α

∂xi

∂xi

〉

= −1

2
Γ(β)

α

〈∂
[

∂Iβφ
′′(β)
α φ

′′(β)
α

∂xi
− φ

′′(β)
α φ

′′(β)
α

∂Iβ

∂xi

]

∂xi

〉

= −1

2
Γ(β)

α

〈
∂2
[
Iβφ

′′(β)
α φ

′′(β)
α

]

∂xi∂xi

〉
, (L.24)

where Γ(β)
α is the molecular diffusivity in phase β. Note that in the derivation of the above

equation, due to the definition of φα = (T − Ts) / (〈Tm,in〉 − Ts) the non-dimensional fluid

temperature at the interphase is equal to zero, which results in
〈
φ

′′(β)
α φ

′′(β)
α ∂Iβ/∂xi

〉
= 0.

The second term on the right-hand side of the expression (Eq. L.23) can be further written

as

〈
IβJ

α
i

∂φ
′′(β)
α

∂xi

〉
= −Γ(β)

α

〈
Iβ
∂φ

(β)
α

∂xi

∂φ
′′(β)
α

∂xi

〉

= −Γ(β)
α

〈
Iβ
∂φ

′′(β)
α

∂xi

∂φ
′′(β)
α

∂xi

〉
− Γ(β)

α

〈
Iβ

∂
〈
φ

(β)
α

〉

∂xi

∂φ
′′(β)
α

∂xi

〉

= −Γ(β)
α

〈
Iβ
∂φ

′′(β)
α

∂xi

∂φ
′′(β)
α

∂xi

〉
− Γ(β)

α

∂
〈
φ

(β)
α

〉

∂xi

〈
Iβ
∂φ

′′(β)
α

∂xi

〉

= −Γ(β)
α

〈
Iβ
∂φ

′′(β)
α

∂xi

∂φ
′′(β)
α

∂xi

〉
. (L.25)

Note that for the same reason, the term
〈
Iβ∂φ

′′(β)
α /∂xi

〉
is zero in the above derivation. There-

fore, the second term on the right-hand side of Eq. L.22 contains the scalar dissipation and

mixing terms. If assuming a constant-density steady flow, the steady scalar-variance transport

equation becomes
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〈
Ũ

(β)
k

〉
∂

∂xk

[
ρ 〈Iβ〉 Φ̃(β)

αα

]
= −2ρ

〈
Iβu

(β)
k φ′′(β)

α

〉 ∂
〈
φ

(β)
α

〉

∂xk
− ρ

∂

∂xk

〈
Iβu

(β)
k φ′′(β)

α φ′′(β)
α

〉

+Γ(β)
α

∂2
〈
Iβφ

′′(β)
α φ

′′(β)
α

〉

∂xk∂xk
− 2Γ(β)

α

〈
Iβ
∂φ

′′(β)
α

∂xk

∂φ
′′(β)
α

∂xk

〉

+2
〈
φ′′(β)

α Jα
k

∂Iβ

∂xk

〉
. (L.26)
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APPENDIX M. PARALLELIZATION OF FFD PR-DNS APPROACH

Development of a parallel solver for our FFD PR-DNS from scratch is a nontrivial task,

since it involves many subtasks including efficiency of parallelization and decomposition tech-

niques for parallel algorithms. In our parallel implementation, the hydrodynamic and scalar

solvers are parallelized using the open-source Portable, Extensible Toolkit for Scientific Compu-

tation (PETSc) software. PETSc is widely used for large-scale simulations because it has many

efficient matrix solution options. We use three-dimensional domain decomposition to paral-

lelize our computational domain that is discretized using a uniform Cartesian grid as shown

in Fig. M.1. PETSc provides excellent parallel management of uniform grids. In the example

shown in Fig. M.1, the computational domain is decomposed into 64 subdomains such that

each subdomain is handled by one processor. Each subdomain has ghost cell layers at each box

face between two processors. The advantage of the 3D domain decomposition is that it allows

us to simulate efficiently the computational domain with a large cross-section area.

Figure M.1: Schematic plot of the 3D decomposition domain in FFD PR-DNS simulation.
Each small box is handled by a processor in parallel simulation. Ghost cells are used to deal
with the communication between neighbor processor.
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The parallel performance of the FFD PR-DNS solver can be assessed in scale-up tests. In

the FFD PR-DNS, since a singular matrix is assembled based on the above Poisson equation,

solving this ill-posed matrix costs 70% − 80% of CPU time in each time step. Therefore,

the parallel performance of the solver depends mostly on the time taken to solve the Poisson

equation in Eq. 7.9 that arises in the two-step fractional step method. In Eq. 7.9, u∗
i is the

intermediate fluid velocity at the half time step, and ϕ is the correction to the pressure that

ensures the final fluid velocity field is solenoidal. Three test cases are simulated to assess the

performance of the parallel FFD PR-DNS solver. All the test cases are simulated using the

CyEnce cluster at Iowa State University that was funded by an NSF-MRI grant. The first test

case involves solving a model 3D Poisson equation that has an analytic solution. This equation

is

∇2φ = − sin(2πx) sin(2πy) sin(2πz) (M.1)

with the periodic boundary condition 0 ≤ x, y, z ≤ 1. The analytical solution for this simple

Poisson equation is:

φ =
1

12π2
sin(2πx) sin(2πy) sin(2πz). (M.2)

Figure M.2 shows the accuracy of the numerical solution to Eq. M.1 by comparing its error

with respect to the analytical solution in Eq. M.2. The error is defined as

ξ =

[
1

N

N∑

i=1

(φi,num − φi,ana)2

]1/2

, (M.3)

where φi,num is the numerical solution obtained from Eq. M.1 and φi,ana is the analytical

solution in Eq. M.2. With reducing grid size the error decays to single precision machine error.

The parallel solver is thus validated by comparing the numerical solution with the analytical

solution.

Figure M.3 shows the efficiency of solving the 3D Poisson equation in Eq. M.1 using a

parallel implementation. The parallel efficiency is defined as t1/ptp, where t1 is the time taken

to complete one time step using a single processor for a serial run and tp is the time taken to

complete one time step in each processor for parallel run with p number of processors. This case
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Figure M.2: Error (L2-norm) between numerical solution and analytical solution in solving the
3D Poisson equation in Eq. M.1 with periodic boundary conditions in all three directions. The
error ξ is defined in Eq. M.3 and ∆x is the grid spacing.

is scaled up to 1600 processors. It shows even using 1600 processors the efficiency of solving

Poisson equation is still above 60%. This shows that solving the Poisson equation using PETSc

has a good parallel performance.

The second test case is to check the time needed to solve the Poisson equation in Eq. 7.9

and the total time for run one time step using weak scaling. Weak scaling is defined as how

the solution time varies with the number of processors for a fixed problem size per processor.

Weak scaling was chosen instead of strong scaling to test the parallel efficiency when simulating

a long pencil domain that represents a long riser. This simulation is planned in the near

future. The test case that has been chosen to assess the performance of the FFD PR-DNS

hydrodynamic solver is a periodic duct flow. The metric to assess the performance of our

parallel solver is the speedup in weak scaling, which is defined as pt1/tp. The ideal speedup for

weak scaling results when the time for communication between processors is zero. However, in

a real simulation the time for communication between processors is nonzero since the processors

need to communicate the variable such as velocity and scalar in the ghost cells. Figure M.4
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Figure M.3: Parallel efficiency of solving the model 3D Poisson equation. The scale-up is up
to 1600 processors.

shows the speedup of solving the Poisson equation and all equations in the FFD PR-DNS

hydrodynamic solver. In this test case we are able to successfully scale the FFD PR-DNS

solver to 500 processors. The speedup for solving all equations in the FFD PR-DNS (denoted

by up-triangle) and solving Poisson equation (denoted by down-triangle) for one timestep is

close to 300 using 512 processors, which shows that the efficiency is a little below 60%. This

performance implies that even though the communication increases with increasing number of

processors, the efficiency is still about 60% with 500 processors. Finally, the third test case is a

flow past a fixed sphere in an open field which is a benchmark accuracy test for any numerical

simulation approach has been shown in Section 7.4.3.

Figure M.4: Parallel speedup in solving the Poisson equation (triangle down) and total time
(triangle up) in the weak scaling test: each processor is assigned 323 grid nodes. The solid line
represents the ideal speedup when the time for communication between processors is zero.
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APPENDIX N. 1D ANALYTICAL SOLUTION FOR MASS TRANSFER

ON A NON-POROUS SPHERE

The mass transfer in a steady flow past a non-porous sphere with the first-order surface

chemical reaction is governed by the momentum equation and convection-diffusion equation.

In Stokes flow, this 3D mass transfer problem can be simplified into 1D homogeneous problem.

Since the velocity field is known in Stokes flow, the convection-diffusion equation only needs

to be solved with appropriate boundary conditions. Therefore, in a spherical coordinate, this

mass transfer problem in a steady-state condition is simplified to

U (r)
dCA

dr
= DbA

(
d2CA

dr2
+

2

r

∂CA

∂r

)
, (N.1)

with the far field and the flux boundary conditions

CA(r = ∞) = CA,∞, (N.2)

DbA
dCA

dr
|r=R = ksCAs. (N.3)

Where r is the radial direction, the velocity distribution U(r) in Stokes flow is chosen as

U(r) = −U∞

(
R3

2r3
− 3R

2r
+ 1

)
. (N.4)

Note that the velocity field U(r, θ = 0) (θ is the angular direction) is assumed in this 1D

analysis. Since the concentration C (r) only depends the r direction, this 1D convection-

diffusion equation Eq. N.1 becomes a ordinary differential equation (ODE). For convenience,

the above equations and boundary conditions are rewritten as the non-dimensional equations

as
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Û(r̂)
dĈA

dr̂
=

2

ReSc

(
d2ĈA

dr̂2
+

2

r̂

∂ĈA

∂r̂

)
, (N.5)

with the far field and the flux boundary conditions

ĈA(r̂ = ∞) = 1, (N.6)

and

dĈA

dr̂
|r̂=1 = DaĈAs, (N.7)

where Re = 2RU∞/νf is Reynolds number, Sc = νf/DbA is the Schmit number, Da = ksR/DbA

is the Damkohler number, ĈAs = CAs/CA,∞ is the surface concentration, and r̂ = r/R is the

radii of the sphere, ĈAs = ĈA(r̂ = 1) is the surface concentration , the velocity distribution

U(r) in Stokes flow is

Û(r̂) =
U(r)

U∞
= −

(
1

2r̂3
− 3

2r̂
+ 1

)
. (N.8)

The non-dimensional convection-diffusion equation can be solved using variable separation

as follows. Let

fA (r̂) =
dĈA

dr̂
, (N.9)

then the equation Eq. N.5 can be written as

[
ReSc

2
Û(r̂) − 2

r̂

]
fA (r̂) =

dfA (r̂)

dr̂
. (N.10)

Using the velocity field in Stokes flow Û(r̂), the expression for fA (r̂) is obtained by integrating

Eq. N.10 over r̂ as follows

ln
fA(r̂)

fA(r̂ = 1)
= ReScW (r̂) , (N.11)

where the weight function W is

W (r̂) =
1

8r̂2
+

3

4
ln r̂ − 1

2
r̂ − 2

ReSc
ln r̂ +

3

8
. (N.12)
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Thus, the expression for the concentration ĈA(r̂) can be obtained by integrating Eq. N.11 with

fA(r̂) = dĈA/dr̂ over r̂ as

ĈA (r̂) − ĈA (r̂ = 1) = fA(r̂ = 1)

ˆ r̂

1
eReScW(r′)dr′. (N.13)

Using the boundary conditions in Eqs. N.7 and N.6, the surface concentration ĈA,s = ĈA(r̂ = 1)

can be written as

ĈA(r̂ = 1) = (1 +Da

ˆ ∞

1
eReScW(r′)dr′)−1, (N.14)

Therefore, by substituting Eq. N.14 into N.13, the 1D analytical solution for the concentration

field with the first-order surface chemical reaction is

ĈA (r̂) =
1 +Da

´ r̂
1 e

ReScW(r′)dr′

1 +Da
´∞

1 eReScW(r′)dr′
. (N.15)
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