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ABSTRACT

The simulation of physical systems requires accurate and robust methods with relatively low

cost and it is still the challenge in many applications of engineering processes, specifically in

multiphase flow systems. Soot formation, distribution of the aerosols in the atmosphere, reac-

tive precipitation, and combustion modeling are some examples of these processes. Computer

simulations of theses systems require a model that can be adapted to that reality. In this

study, a quadrature based method of moments (QBMM) is used to address the problems re-

lated to the reactive multiphase flow systems. First, the log-normal kernel density function is

implemented into the extended quadrature method of moments (Ln-EQMOM). Ln-EQMOM

is verified reconstructing the NDF and calculating the moments of a distribution obtained by

the linear combination of two log-normal distributions. Later, this numerical procedure is used

for problems of aggregation and breakup of fine particles to solve the population balance equa-

tion (PBE). The results are compared to the rigorous solutions reported for the cases under

consideration (Vanni, 2000). Finally, the method is verified using two analytically known prob-

lems (e.g. coalescence and condensation). In comparison to EQMOM with Γ kernel density

function (Yuan et al., 2012), Ln-EQMOM is faster in terms of computations and it preserves

the moments more accurately. Then EQMOM with β kernel density function is implemented

to approximate the solution of the transport equation for the composition probability density

function (PDF) of a passive scalar using the Fokker-Planck model to treat the molecular mixing

term. The results then compared in a similar condition to those obtained with direct numeri-

cal simulation (DNS). The L2 norm of the PDF is reported for two test cases that have been

considered. Later the new approach is introduced to address the problems includes the mix-

ing and reaction. Conditional quadrature method of moments (CQMOM) and using the joint

composition PDF for the mixture fraction and progress variables, it is possible to address the

problems with two consecutive competitive reactions, one reaction and fast reaction, all includ-
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ing the mixing of reactants. direct quadrature method of moments (DQMOM) also expressed

for the joint composition PDF. Results obtained with CQMOM and DQMOM are compared

with each other. Finally, the CQMOM approach for mixing problems was tested considering

two consecutive competitive reactions to verify the implementation and validate the proposed

approach. Coupled mixing-PBE approach was then used to investigate polymer aggregation in

a multi-inlet vortex reactor (MIVR), typically used to perform flash nanoprecipitation for the

production of nanoparticles used in pharmaceutical applications.
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CHAPTER 1. INTRODUCTION

1.1 Background

Multiphase flows are characterized by the simultaneous presence and interaction of two or more

phases (e.g. gas, liquid and solid) in a system. These flows are encountered a multitude of

applications and in nature. Examples are sediment transport in rivers, dispersion of aerosol

in air, soot formation, and volcanic eruptions. Numerous industrial processes also involve

multiphase mixtures. Gas bubble reactors in the chemical industry, transport of oil-water

mixtures in pipes, fluidized bed combustors, and injection of fuel into the chamber of internal

combustion engines are some examples.

In fluidized bed combustors, to have an optimized reaction of particles, an air jet is injected into

the particle bed to make them suspended. In internal combustion engines, the fuel is injected

into the chamber and fuel break into small droplets, which then evaporate and mixed with air.

In soot formation process, soot begins with some precursors. Later, particles form due to the

nucleation of heavy molecules. Particles then experience surface growth. Soot increases the

risk of obstructive pulmonary disease and thus understanding the size and behavior of particles

helps us to prevent such diseases. These examples show some general multiphase systems with

different regimes and characteristics. In most of these applications, to control the final particle

size distribution (PSD), it is necessary to predict the PSD evolution precisely with a reasonable

computational cost.

Another essential aspect of multiphase flows is mixing, which is particularly important in

turbulent flows. Turbulence enhances mixing in many geological and environmental systems.

Turbulent mixing occurs in volcanic eruption columns, magma chambers and hot springs. In

flash nanoprecipitation, as a particular example, the mixing affects the final size and quality
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of particles. Therefore, accurate prediction of mixing is of great importance when simulating

these systems. The spatial and temporal evolution of a passive scalar in a turbulent mixing

process can be described using an evolution equation for the probability distribution function

(PDF) of the system composition (Pope, 2000; Fox, 2003). Solutions of the composition PDF

equation provide a one-point statistical description of the behavior of the scalar composition

field, during its evolution from the unmixed to the mixed state (Broadwell and Breidenthal,

1982; Koochesfahani and Dimotakis, 1986; Mungal and Dimotakis, 1984; Girimaji, 1991; Cremer

et al., 1994; McMurtry and Givi, 1989; Eswaran and Pope, 1988).

The common and most realistic case that happens in chemical industry applications is when

mixing and reaction happens simultaneously. For some reactions, the way in which species are

mixed can affect the final product (Danckwerts, 1958). In general, if chemical reactions are

slow, mixing has no influence on the mean rate. In this case, the reactants will be well mixed

on the smallest scales before the reactions occurs. When the time required for mixing is of the

same order as, or longer than the typical time required for reactions, mixing models must be

included.

In the problems mentioned before, the evolution of the system can be described using an evo-

lution equation for the number density function (NDF) or the composition probability density

function (PDF). These evolution equations, while describing different physical phenomena, have

a similar mathematical structure, which allows general methods to be developed for their so-

lution. Several methods have been developed to this purpose, which are discussed later in this

chapter. We use quadrature-based moment methods (QBMM) to find approximate solutions

of these equations for engineering applications. In QBMM, statistical momentsof the NDF or

PDF are transported, rather than aiming at the exact reconstruction of the distribution. One

of the earliest forms of QBMM is the quadrature method of moments (QMOM), in which the

distribution is approximated by a weighted sum of few Dirac delta functions. Recently an ex-

tended quadrature method of moment (Yuan et al., 2012; Madadi-Kandjani and Passalacqua,

2015) was developed, which uses non-negative kernel density functions (KDF) as a base to

approximate the PDF with a continuous function.
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In the present work, we apply the log-normal kernel density function into an extended quadra-

ture method of moments. Later, in this work, this method is used to address problems related

to the aggregation and breakage of particles. An extended quadrature method of moments

using β kernel density functions (β-EQMOM) is then adopted to approximate solutions of the

evolution equation for univariate and bivariate composition probability distribution functions

(PDF) of a passive scalar for binary and ternary mixing. The Fokker-Planck model is used to

close the micromixing term. In this approach, the conditional scalar dissipation rate (CSDR)

should be provided by the user as an input to the model. Two CSDR based on the β distri-

bution (Fox, 2003) and the CSDR obtained using amplitude mapping closure (Pope, 1991) are

used to approximate the micromixing term. These models will be described in detail later in

this report. These approaches are then applied to multi-inlet vortex reactor (MIVR) to study

mixing and reaction.

1.2 Existing works

In this section, we review previous studies related to the particle size distribution in polydisperse

multiphase systems, turbulent mixing and turbulent reacting flows. Also, we address different

approaches used in these studies.

1.2.1 Solution of PBE

Population balance equations (PBE) are used in several scientific and engineering disciplines

to model complex processes, where the accurate description of the dispersed phase plays an

important role in the prediction of the behavior of the system. The PBE describes the evolution

of the density function associated to a particle population, and considers the various ways in

which particles can either form or disappear from the system. Some examples of this type of

processes are precipitation, crystallization, aerosols, bubbly flows and droplet flows (Randolph

and Larson, 1988; Williams and Loyalka, 1991; Vanni, 2000; Marchisio et al., 2003b,a).

A population balance equation for chemical processes was originally derived in 1964, when two

groups of researchers who studied crystal nucleation and growth, recognized that many prob-

lems involving the change in particulate systems could not be handled within the framework of
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the conventional conservation equations (Randolph and Larson, 1988; Hulburt and Katz, 1964).

Rather than adopting the standard continuum mechanical framework, the model derivation was

based on the alternative Boltzmann-type equation familiar from classical statistical mechanics

(Reyes, 1989; Lasheras et al., 2002; Carrica et al., 1999). Randolph (1964) and Randolph and

Larson (1988), on the other hand, formulated a generic population balance model based on the

generalized continuum mechanical framework. Different methods are proposed in the literature

to solve the PBE. Some of these methods are described in upcoming sections.

1.2.2 Overview on the methods

The main methods for the solution of evolution equations of distribution functions are briefly

summerized in this section. Here we discuss the existing methods and their advantage and

disadvantages.

1.2.2.1 Monte-Carlo Method

The idea behind the Monte-Carlo method (Rosner and Yu, 2001; Lin et al., 2002; Smith and

Matsoukas, 1998; Meimaroglou and Kiparissides, 2007; Zhao et al., 2007; Zhao and Zheng,

2013) is based on random sampling of statistical theory. It generates inputs randomly from

a probability distribution over the domain of possible inputs, and aggregate the results after

preforming computation over the domain. The advantage of this method is that it can deal

with the high dimensional problem in a simple and straightforward manner. However, there

are two drawbacks associated with the Monte-Carlo method. The Monte-Carlo method is most

of the time too expensive in computational cost especially in problems related to aggregation

of particles(Efendiev and Zachariah, 2002; Garcia et al., 1987; Gillespie, 1976; Goodson and

Kraft, 2002; Kruis et al., 2000; Lee and Matsoukas, 2000; Liffman, 1992). Also, it is affected

by statistical noise (Zhao et al., 2009), and the convergence rate of the method is slow (1/
√
N ,

e.g. quadrupling the number of sampled points halves the error, regardless of the number of

dimensions).
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1.2.2.2 Class and sectional methods

Another approach for problems with one internal variable is to discretize the internal coordinate

in bias, called the method of classes. Equations are written for the NDF of the particles inside

each interval of the size discretization (Hounslow et al., 1988; Hounslow, 1990; Kumar and

Ramkrishna, 1996a,b; Puel et al., 2003; Bannari et al., 2008; Becker et al., 2011; Balakin et al.,

2014). At each interval, the NDF is approximated by a polynomial. Zero order polynomials

are used most commonly (Greenberg et al., 1986, 1993). However, there are methods based on

higher order reconstructions in each interval (Alopaeus et al., 2006). The main advantage of

these methods is that they provide the NDF distribution directly while the main disadvantages

are the high computational resources required and the fact that classes must be defined a priori

(Marchisio and Fox, 2005).

1.2.2.3 Method of moments

The method of moments was first developed by Hulburt and Katz (1964); Randolph and Larson

(1988) for the particulate systems. In this approach, transport equations for a finite set of

moments of the NDF are written, leading to a significant reduction of the computational cost

compared to the methods previously mentioned. However, in general, the moment equations

are not closed due to the presence of terms describing phenomena such as growth, aggregation

or nucleation which are function of the NDF or of the particle size. Several approaches are

possible to close the moment equations. The most common are (Falola et al., 2013):

• Assuming the functional form of the particle size distribution is known a priori (Lee, 1983;

Pratsinis, 1988). However, for many particulate processes, the functional forms of the

size distributions are not known a priori (Diemer and Olson, 2002; Falola et al., 2013).

• Moment inversion (Diemer and Olson, 2002; McGraw, 1997).

Of all these approaches, the second approach is the most versatile and includes the quadrature-

based moment method (QBMM). In the next section, we will discuss the different types of this

method.
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1.2.2.4 Quadrature method of moments (QMOM)

In the context of moment methods, the closure model proposed by McGraw (1997) and then it

was extensively applied to the chemical engineering applications (Marchisio et al., 2003b; Wang

et al., 2005a,b; Marchisio and Fox, 2013), generates an entirely new class of methods. This

method based on the idea of approximating the integrals that define the monets of the NDF

with Gaussian quadrature formula, and it is called quadrature method of moments (QMOM). In

this approach, the NDF can be reconstructed as a summation of weighted Dirac delta functions

(or in recently developed branches of this method, the weighted summation of base functions).

In QMOM, by considering the relationship between the QMOM moment closure and point

distribution function (Dette, 1997) a univariate NDF can be approximated with N nodes to be

an N-point distribution function as:

n (ξ;x, t) ≈
N∑
i=1

wiδ (ξ − ξi) , (1.1)

where wi is the i-th quadrature weight, and δ (ξ − ξi) represents the delta function centered at

location ξi (abscissae), uniquely determined by means of a moment inversion algorithm. The

k-th order of moment of a distribution can be expressed as:

Mk =

∫
Ωξ

ξkn (ξ;x, t) dξ. (1.2)

Applying Eq. 1.1 to the definition of the moment equation, Eq. 1.2, the moment equation can

be expressed as:

Mk =

∫
Ωξ

N∑
i=1

wiδ (ξ − ξi) ξkdξ. (1.3)

Since

∫
Ωξ

δ (ξ − ξi) ξkdξ = ξki , (1.4)
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the final form of Eq. 1.3 is:

Mk =

N∑
i=1

wiξ
k
i . (1.5)

Depending on the accuracy, we may need to employ the different number of weights and ab-

scissae for calculating moments. It is worth to notice that a N-node quadrature approximation

of the NDF exactly preserves the 2N moments used to determine the quadrature weights and

abscissae.

1.2.2.5 The extended quadrature method of moments (EQMOM)

The Gaussian quadrature algorithm introduced in Sec. 1.2.2.4 is equivalent to approximating

the univariate NDF by a sum of Dirac delta functions:

n (ξ;x, t) ≈
N∑
i=1

wiδ (ξ − ξi) . (1.6)

The discrete representation of the NDF limits the applicability of the method to cases where a

smooth representation of the NDF is needed. For example, in evaporation problems (Massot

et al., 2010), the value of the NDF for the null internal coordinate is required, which is not

available if the QMOM is used to approximate the NDF. Even with partial solutions in which N

increases dramatically, QMOM is not accurate for N larger than 10 (Gautschi, 2004; McGraw,

1997; Wheeler, 1974). In order to overcome this limitation, Eq. 1.6 can be generalized by

introducing smooth non-negative KDF with a finite (or infinite) support determined by a

parameter σ shared by all the terms and of the basis:

n (ξ;x, t) ≈
N∑
i=1

wiδσ (ξ, ξi) . (1.7)

The value of σ is determined by enforcing the preservation of one additional moment compared

to QMOM. It is necessary to choose different KDF based on the case under consideration.

Three kernel density functions are considered in Yuan et al. (2012), based on the support of

the NDF to be reconstructed as:
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• Gaussian (ξ ∈ ]−∞,+∞[)

δσ (ξ, ξi) ≡
1√

2πσ2
exp

[
−(ξ − ξi)2

2σ2

]
; (1.8)

• Gamma (ξ ∈ [0,+∞[)

δσ (ξ, ξi) ≡
ξλi−1e

ξ/σ

Γ (λi)σλi
, with λi = ξi/σ; (1.9)

• Beta (ξ ∈ [0, 1])

δσ (ξ, ξi) ≡
ξλi−1 (1− ξ)µi−1

B (λi, µi)
, with λi = ξi/σ and µi = (1− ξi) /σ. (1.10)

An optional approach to formulate EQMOM is to choose the KDFs so that orthogonal poly-

nomials are known. This choice allows the reconstructed NDF to be integrated efficiently,

since the recurrence relationship for the orthogonal polynomials is known. Thus a Gaussian

quadrature can be defined for each of the KDFs. These secondary weights and abscissae found

in this way are then used to calculate source terms for the moment equations. Substituting

Eq. 1.7 into the integral of an arbitrary function, the EQMOM closure for the integrals can be

represented as (Yuan et al., 2012):

∫ ∞
0

g (ξ)n (ξ) dξ =

∫ ∞
0

g (ξ)
N∑
α=1

wαδσ (ξ, ξα) dξ =
N∑
α=1

Nα∑
β=1

wαwαβg (ξαβ) . (1.11)

1.2.3 Solution of Fokker-Planck model using Beta-EQMOM

Mixing is an important operation in many engineering applications. Consider a scalar of a

composition initially at two distinct states. These scalars constituent may be differentiated by

different chemical composition, temperature, etc. The ideas of mixing to be discussed in this

section, are related to the processes by which these constituents mixed at the molecular level

to produce a homogeneous state. Molecular mixing models play an especially important role in

describing the evolution of the probability density function of the corresponding scalars. Thus it

is essential for these models to be accurate. As an example, in combustion applications, chemical



9

reactions can only take place when the mixing happens at the molecular level. The term

related to transport in composition space due to molecular mixing (micromixing) in evolution

equation, appears in unclosed form due to the appearance of the conditional expectation at

PDF equation. Evolution equations for such PDFs contain further unknown terms. The

micromixing term involves diffusion coefficients and composition gradients, which stem directly

from the molecular diffusion term in the instantaneous species conservation equations (Meyer

and Jenny, 2013). Since diffusion is important at the small scales of turbulent motion, an

accurate representation of these scales is essential to the determination of the evolution of the

PDF. Closure approximations constructed to represent the micromixing term must satisfy a

number of properties. The most basic requirements are that the approximation leaves the

means of the scalars unchanged, i.e. (Launder and Sandham, 2002):

∆ 〈φ〉 = 〈φ (x, t+ δt)− φ (x, t)〉 = 0. (1.12)

In addition to the general realizability condition for the PDF, fφ (ψ; x, t) ≥ 0, there are ad-

ditional conditions to be imposed depending on the properties of the actual scalars being

considered. For example, mixing should be local in composition space, and mixing rate should

depend on scalar length scales (Fox, 2003; Pope, 2000). a large number of mixing models have

been proposed in literature (Curl, 1963; Villermaux and Devillon, 1972; Villermaux and Falk,

1994; Dopazo, 1994; Pope, 2000; Tsai and Fox, 1994, 1995; Fox, 1992b, 1994, 1992a). Tab. 1.1

compares the properties of six mixing models, the modified Curls (MCD) model (Curl, 1963),

the interaction by exchange with the mean (IEM) model (Villermaux and Devillon, 1972; Viller-

maux and Falk, 1994; Dopazo, 1994), the interaction by exchange with the conditional mean

(IECM) model (Fox, 2003), the Euclidean minimum spanning tree (EMST) model (Subrama-

niam and Pope, 1998), and the Fokker-Planck model (FP) model (Fox, 2003). The properties

of these models will be briefly summarized in the following sections.

1.2.3.1 Modified Curl model

This method is based on the Curl method (Curl, 1963) which is proposed for coalescence and

breakup in a dispersed two-fluid system. In the basic version of the method due to Curl (1963),
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Table 1.1: Desirable properties of molecular mixing models, and characteristics of five mixing

models with respect to these criteria.

No Mixing models MCD IEM IECM EMST FP

1 Conservation of means X X X X X
2 Correct decay of variances X X X X X
3 Localness in composition space – – – X X
4 Bounded in allowable composition space X X X X X
5 Turbulent dispersion consistency – – X – X
6 Relaxation to Gaussian – – – – X
7 Linearity and independence from other scalars X X X – X
8 Differential diffusion – – – – X
9 Dependence on length scales of scalar field – – – – –

10 Dependence on Re, Sc, and Da – – – – –

the new scalar values of the particles are equal to the mean of the two values before mixing.

For the modified Curl model, a few particle pairs are randomly selected from all the particles

in a cell, and their individual compositions are moved toward their mean composition. For pair

of particles denoted by p and q, compositions are changed as

φp,new = φp +
1

2
a (φq − φp)

φq,new = φq +
1

2
a (φp − φq) ,

(1.13)

where a is a random number uniformly distributed in ]0, 1[. For the case of decaying scalar

in homogeneous turbulence, the PDF relaxes to a bell-shaped distribution. Nooren et al.

(1997) developed a version of the model suitable for use in Monte Carlo algorithms employing

particles with unequal weights. However, the effect on the PDF introduces a dependency on

the distribution of particle weights.

1.2.3.2 IEM model

The IEM model is widely employed in chemical-reaction engineering and computational com-

bustion due to its simple form. It assumes linear relaxation of the scalar towards its mean value

(Villermaux and Devillon, 1972; Pope, 2000; Fox, 2003; Choi et al., 2008):

〈
Γ∇2φ′|ψ

〉
=

1

2

εφ
〈φ′2〉

(〈φ〉 − ψ) . (1.14)
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In this model all the scalars mix at the same rate because the differential diffusion is not ac-

counted. The most evident consequence of this is that the shape of the PDF remains unchanged

in absence of mean gradients, such as in case of homogeneous turbulence. Thus the IEM model

cannot represent relaxation of the scalar to a Gaussian form in homogeneous turbulence for an

arbitrary initial condition.

1.2.3.3 IECM model

The IECM model differently from the IEM, allows only to the fluid particles with similar

position and similar velocity to interact, while IEM model makes an unjustifiable assumption

regarding the independence of the scalar mixing term with the velocity field and is inconsistent

with local isotropy. On the other hand, conditioning the scalar mean on velocity is consistent

with local isotropy and hence corrects the deficiency of the IEM model by performing mixing

locally in velocity-physical space.

〈
Γ∇2φ′|V, ψ

〉
=

εφ
2 〈φ′2〉

(〈φ|V〉 − ψ) . (1.15)

The analysis show that IEM and IECM models yield the same behavior for the mean, and

the conditional mean but a different behavior for the variance(Sawford, 2004, 2006; Luhar and

Sawford, 2005; Cassiani et al., 2005).

1.2.3.4 EMST model

The Euclidean Minimum Spanning Tree (EMST) mixing model (Subramaniam and Pope, 1998)

is a complicated particle interaction model, designed to overcome shortcomings of simpler

models such as IEM. EMST is a minimum spanning tree of a set of n points in the plane, where

the weight of the edge between each pair of points is the Euclidean distance between those two

points. In simpler terms, an EMST connects a set of dots using lines such that the total length

of all the lines is minimized and any dot can be reached from any other by following the lines.

EMST model possesses the important property that it is local in composition space. It also

satisfies the mean conservation and variance decay properties. Boundedness of compositions is

preserved by the EMST model. However, this model does not satisfy the independence (the
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evolution of the particle property of one scalar should not depend on the properties or statistics

of any of the other scalars) and linearity (the set of governing equations for the evolution of

scalar fields in turbulence is linear with respect to the scalar fields) properties (Subramaniam

and Pope, 1998; Pope, 2013; Zhao et al., 2016; Cao et al., 2007).

1.2.3.5 Fokker-Planck model

The Fokker-Planck (FP) model is an extension of the IEM model (Fox, 1992b, 1999) to include

the effect of differential diffusion, which occurs when the molecular diffusivity of the scalar fields

are not the same. The idea behind this model is to find the relation between the conditional

scalar Laplacian and the conditional scalar dissipation (Pope, 2000):

〈
Γ∇2φ′|ψ

〉
=

1

2fφ

∂

∂ψ
(〈εφ|ψ〉 fφ) . (1.16)

Unlike the IEM model, implementing the FP model for the micromixing term for the transport

equation, the PDF of the inert scalar relaxes to Gaussian form in homogeneous turbulence for

an arbitrary initial condition (Fox, 2003). Using this method, all scalars remain in the allowable

region as determined by the mixing and chemistry (Fox, 2003).

1.3 Research objectives and approaches

The principal goal of this study is to use quadrature-based moment methods to investigate

problems in polydisperse multiphase systems and turbulent reacting flows. The specific research

objectives that have been addressed in this study are as follows:

• Formulating an extended quadrature method of moments with log-normal kernel density

functions.

• Implementing an extended quadrature method of moments to turbulent mixing problems

using the Fokker-Planck model as a closure for micromixing term.

• Implementing the conditional quadrature method of moments to the turbulent reacting

problems with different mixing models and reaction types.
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• Address the problems with reaction and particle size change.

These specific objects are expressed below in detail.

1.3.1 Implementing the log-normal kernel density function into EQMOM

The evolution of the particle size distribution in polydisperse systems is regulated by the pop-

ulation balance equation (Ramkrishna, 2000). However, the particle size distribution in many

systems and multiphase flows can be represented by a log-normal distribution function. Based

on this consideration, we propose a variant of the extended quadrature method of moments

(Yuan et al., 2012) based on log-normal kernel density functions (Madadi-Kandjani and Pas-

salacqua, 2015). We investigate the property of the method when one or two kernel density

functions are used since in these cases an analytical solution can be found to the reconstruction

problem. We then validate the method against the rigorous solution of a PBE for aggregation

and breakage problems obtained in Vanni (2000), the solution for coalescence and breakup

problems presented in Lage (2011), and for the condensation problem examined in Yuan et al.

(2012). Results for aggregation and breakage problems are compared also to the QMOM results

reported in Marchisio et al. (2003b). The topic is discussed in detail in Chap. 2 of this report.

1.3.2 Solution of Fokker-Planck equation with EQMOM for turbulent mixing

flows

An extended quadrature-based moment method (EQMOM) (Yuan et al., 2012; Chalons et al.,

2010) is used to close the transport equation for the composition PDF. The β kernel density

function is used for EQMOM since the scalar composition is represented by a scalar bounded

between −1 and 1. The direct numerical simulations (DNS) of Eswaran and Pope (1988),

and the amplitude mapping closure (AMC) of Pope (1991) are taken as reference solutions

to establish the accuracy of the FP model in the case of binary mixing. The DNS of Juneja

and Pope (1996) is used to validate the results obtained for ternary mixing. Simulations are

performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox (2003)

and the CSDR from AMC. The shape of the PDF, important in turbulent mixing problems, is

later demonstrated. The topic is discussed in detail in Chap. 3 of this report.
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1.3.3 A quadrature-based CFD model for turbulent reacting flows

In previous studies (Marchisio and Fox, 2005), direct quadrature method of moments (DQ-

MOM) is used to find the solution of the evolution equation of the composition PDF for

reactive mixing flows. In this method the discrete representation of the PDF was used to de-

rive the transport equation for the quadrature weights and weighted abscissae. However, this

method is affected by shortcomings related to the conservation of moments due to the fact

that weights and abscissae are not conserved quantities to transport (Yuan et al., 2012). To

overcome this limitation, we use the conditional quadrature method of moments introduce by

Yuan and Fox (2011) to find the solution of the evolution composition PDF. In this method, a

moment-inversion algorithm based on the adaptive quadrature of conditional composition mo-

ments is used to approximate the continuous distributions. In this study, IEM and FP models

are used to close the micromixing term in the joint composition PDF transport equation.

One of the shortcoming of DQMOM approach is that it introduces correction terms to the

transport equations. CQMOM does not introduce these correction terms, and the optimal

moments (Fox, 2009) are transported directly rather than as weights and weighted abscissas.

Here, different reaction systems are considered and modeled using DQMOM and CQMOM

to compare the statistical errors and computational costs of each method. The CQMOM

formulation results in a robust solution algorithm for the PDF transport equation with a similar

computational cost by avoiding the potentially singular correction terms arising in DQMOM

(Akroyd et al., 2010). The topic is discussed in detail in Chap. 4 of this report.

1.3.4 CQMOM for turbulent mixing coupled to a population balance equation

A conditional quadrature method of moments (CQMOM) was developed in this work to solve

turbulent mixing problems associated with population balance equations (PBE) by approximat-

ing the evolution equation of the composition probability density function (PDF) for the mo-

ments of the PBE. The Interaction-by-Exchange-with-the-Mean (IEM) model was used to close

the PDF evolution equation. The new CQMOM methodology was coupled to a quadrature-

based PBE solver. The two procedures were implemented into the OpenQBMMr framework,
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which leverages the OpenFOAMr CFD toolbox. The CQMOM approach for mixing problems

was first tested considering two consecutive competitive reactions to verify the implementation

and validate the proposed approach. The coupled turbulent mixing-PBE approach was then

used to investigate polymer aggregation in a multi-inlet vortex reactor (MIVR). Results show-

ing the predicted mixture fraction, reactant and product concentration fields are shown. The

topic is described in detail in Chap. 5.

1.4 Accomplishment and future works

Tab. 1.2 presents the completed tasks with objectives.

1.5 Outline

The outline of this report is as follows. In Chap. 2 the formulation and the implementation

of log-normal kernel density function into an extended quadrature method of moments is de-

scribed. In Chap. 3, an extended quadrature method of moments with β kernel density function

is applied to solve the joint composition PDF for a mixing of a univariate passive scalar. The

Fokker-Planck model is used to close the micromixing term for the composition PDF trans-

port equation. In Chap. 4, the new model based on the conditional quadrature method of

moments(CQMOM) and direct quadrature method of moments (DQMOM) for single phase

reacting flows is presented. In Chap. 5, result for coupled mixing-PBE approach to investigate

polymer aggregation in a multi-inlet vortex reactor (MIVR) is presented. Finally in Chap. 6

the summary of the performed work is presented.
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Table 1.2: Accomplishments corresponding to research objectives

Objectives Results Conclusions

LnEQMOM
i) Implementing the log-normal

kernel density function into

EQMOM.

ii) Introducing the adopted Her-

mite quadrature to calculate

secondary quadrature.

iii) Introducing Stieltjes-Wigert

quadrature to calculate sec-

ondary quadrature.

iv) Compare results obtained

with LnEQMOM with ana-

lytical solution for combina-

tion of two log-normal distri-

bution.

v) Implement the LnEQMOM

to the problems with aggre-

gation and breakup for parti-

cles.

vi) Compare the solution of

LnEQMOM with two analyt-

ically known problems (e.g.

coalescence and condensa-

tion).

i) LnEQMOM predicts the zero

order moment and mean par-

ticle size accurately for aggre-

gation and breakup of parti-

cles, using low number of pri-

mary quadrature nodes.

ii) LnEQMOM provides more

accurate results than

QMOM.

iii) Due to the functional form of

the log-normal kernel density

function, it shows some diffi-

culties on reconstructing the

distribution when the distri-

bution is non-zero at ξ → 0.

iv) LnEQMOM is more robust

compare to the Γ EQMOM

due to the structure of the

system of equations it uses

during the numerical proce-

dure.

EQMOM-FP
i) Implementing the β-

EQMOM into joint composi-

tion PDF with Fokker-Planck

closure for micromixing term.

ii) Validate the algorithm for

univariate passive scalar case

in a similar condition to those

obtained by direct numerical

simulations.

i) There is a satisfactory agree-

ment between the results ob-

tained by EQMOM-FP with

those obtained by DNS.

ii) In all the cases under consid-

eration the PDF evolves with

time and finally it relaxes ro

the gaussian distribution at

the mean value.
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Table 1.2: (continued)

Objectives Results Conclusions

EQMOM-FP
iii) Validate the algorithm for

cases with initial three delta

functions and compare the

results to those obtained by

DNS for ternary mixing.

iv) Calculate the steady state so-

lution for joint composition

PDF.

iii) Conditional scalar dissipa-

tion rate has significant ef-

fect on predicting the shape

of the PDF and simple CSDR

provides comparable results

than complicated models.

iv) The steady state solution re-

sults in a β distribution for

the PDF.

DQMOM-IEM
i) Obtain the closure quantities

of DQMOM for mixing with

two competitive consecutive

reactions.

i) In all the cases under con-

sideration DQMOM for joint

composition PDF predicts

the physics of problem in a

fare manner.

ii) DQMOM has some instabili-

ties during the solution.

iii) In DQMOM, transport equa-

tions for weights and abscis-

sae are calculated while they

are not a conservative quan-

tities.

CQMOM model-

ing approach for

mixing and reac-

tion problem

i) Implementation of CQMOM

for mixing and reacting prob-

lem.

i) CQMOM transports con-

served quantities (moments).

ii) It is faster compare to DQ-

MOM running the same cases

in the same machine.
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Table 1.2: (continued)

Objectives Results Conclusions

EQMOM-FP
i) Couple the mixing and

conditional-based PBE for

flash nanoprecepitation

ii) Investigate polymer aggrega-

tion in a multi-inlet vortex re-

actor.

iii) In solving the PBE, chal-

lenging part is the compu-

tational expenses (As an ex-

ample considering 50 poly-

mers and 300 organic parti-

cles, one should solve 15000

equations.)

i) Conditional quadrature-

based population balance

equation is chosen since

using only 8 equations, one

can find the solution of the

PBE for the polymers and

organics.

ii) The mixing weights and ab-

scissae which represent the

environments are as first

solved. These quantities are

then used to find the source

terms for the transported

PBE equations.

iii) This approach doesn’t pro-

vide a correct answer when

the mixture fraction is 0.5

and difference between two

mixture abscissae becomes

zero.
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CHAPTER 2. EXTENDED QUADRATURE-BASED MOMENT

METHOD WITH LOG-NORMAL KERNEL DENSITY FUNCTIONS

This chapter was published as a journal article titled ”An extended quadrature-based mo-

ment method with log-normal kernel density functions” in Chemical Engineering Science with

authors E. Madadi-Kandjani and A. Passalacqua (2015).

Abstract

An extended quadrature method of moments (EQMOM) with log-normal kernel density func-

tions is developed in this work, and applied to the solution of a population balance equation

(PBE) for aggregation and breakup, coalescence, and condensation problems. The cases with

one and two kernel density functions are studied analytically, and the existence of an analytical

solution is shown. A numerical procedure based on the work of Yuan et al. (2012) is adopted

to address cases with a larger number of kernel density functions. Results for the reconstructed

number density function (NDF), the time evolution of the zero-order moment and of the mean

particle size are compared with those obtained from the rigorous solution of the PBE reported

by Vanni (2000) for the cases of aggregation and breakup. A problem concerning coalescence

and one regarding condensation, both with analytical solution, are also examined. The re-

sults obtained with the proposed approach are compared to those provided by EQMOM with

gamma kernel densities. Satisfactory results were obtained for the reconstructed distribution.

Excellent agreement was observed between the rigorous solution and the approximated one for

the time evolution of the total number density and the mean particle size.



20

2.1 Introduction

Numerous environmental, biological, medical, and technological systems involve discrete pop-

ulations of particles, whose properties evolve in space and time due to continuous phenomena,

such as convection and diffusion, and discontinuous phenomena, such as aggregation, breakup,

nucleation, evaporation, coalescence. Notable examples are polymerization processes, disper-

sion of aerosols in the atmosphere, chemical reactions involving precipitation of particles, bubble

column reactors, processes for the production of pharmaceuticals. The evolution of the parti-

cle population in these systems is modeled by means of a population balance equation (PBE)

(Ramkrishna, 2000), which is an integro-differential equation, whose unknown is the number

density function (NDF) associated to the particle population. This NDF depends, in general,

on time, on a set of external coordinates, representing the spatial location, and on a set of

internal coordinates, which characterize the particle properties.

In this work we concentrate on the case of a NDF with only one internal coordinate, representing

the particle size. Numerous methods were developed to solve this type of equation. Hounslow

et al. (1988); Hounslow (1990); Kumar and Ramkrishna (1996a,b); Puel et al. (2003); Bannari

et al. (2008); Becker et al. (2011); Balakin et al. (2014) used the method of classes, which consists

in discretizing the NDF with respect to the internal coordinate using a discrete number of bins

(classes). Zero-order class methods assume a uniform distribution for each bin (Vanni, 2000),

while high-order class methods adopt a pre-defined functional form of the distribution for each

class (Muhr et al., 1996). Bove et al. (2005) developed the parallel parent and daughter class

(PPDC) approach for aggregation and breakup problems. Alopaeus et al. (2006) developed

a high-order moment-conserving class method to overcome the limitations of traditional class

methods (Hounslow et al., 1988; Hounslow, 1990; Kumar and Ramkrishna, 1996a,b), which

conserve only two moments in the discrete solution for the PBE for agglomeration and breakup.

This approach was combined with a reconstruction procedure of the NDF by Alopaeus et al.

(2008).

The method of classes, while intuitive and accurate, is computationally intensive due to the large

number of classes required to properly discretize the NDF (Marchisio et al., 2003b). Rosner
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and Yu (2001); Lin et al. (2002); Smith and Matsoukas (1998); Meimaroglou and Kiparissides

(2007); Zhao et al. (2007); Zhao and Zheng (2013) used Monte Carlo methods to tackle the

PBE. Hulburt and Katz (1964) solved the PBE with the standard method of moments (SMM),

accurately predicting the evolution of the NDF with size-independent growth rate, aggregation

and breakup terms.

A successful approach to find an approximate solution to population balance equations is the

quadrature method of moments (QMOM) proposed by McGraw (1997) for aerosol applications,

and extensively used in typical applications of chemical engineering (Marchisio and Fox, 2013).

In this approach the NDF is represented by a weighted summation of Dirac delta functions,

which is uniquely defined by the set of moments (Gordon, 1968; Wheeler, 1974).

The discrete representation of the NDF was used in the direct quadrature method of moments

(DQMOM) (Marchisio and Fox, 2005) to derive transport equations for the quadrature weights

and abscissae. However, shortcomings related to the conservation of moments affect the DQ-

MOM approach, due to the fact that weights and abscissae are not conserved quantities, as

mentioned in Yuan et al. (2012).

The accuracy of QMOM, DQMOM and PPDC were compared by Silva et al. (2010), who

concluded that QMOM and DQMOM show similar accuracy in the aggregation and breakup

problems considered in their work, while the PPDC approach showed convegence difficulties

and its accuracy was not adequate.

In general, a method relying on a discrete representation of the NDF is also affected by lim-

itations that become particularly relevant in some classes of problems. For example, some

evaporation problems (Fox et al., 2008; Yuan et al., 2012) require the value of the NDF for null

internal coordinate to be known, which is not the case if the QMOM discretization of the NDF

is used. This challenge can only be effectively overcome with methods that rely on a continuous

representation of the distribution function. One of these methods is the entropy maximization

approach (Mead and Papanicolaou, 1984; Tagliani, 1999), which however is ill-posed for certain

classes of problems (Massot et al., 2010; Yuan et al., 2012), and difficult to extend to cases

involving a multivariate NDF (Yuan et al., 2012).
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An alternative method was proposed by Athanassoulis and Gavriliadis (2002), who introduced

the idea of reconstructing the NDF as a finite superposition of kernel density functions. Im-

portant advantages of this approach are that it ensures positivity of the reconstructed NDF,

and it converges to the exact NDF when the number of kernel density functions used in the

reconstruction is increased (Athanassoulis and Gavriliadis, 2002). The approach of Athanas-

soulis and Gavriliadis (2002), however, relies on the solution of a minimization problem, which

only guarantees that some of the low-order moments are exactly preserved (Yuan et al., 2012).

In order to overcome this limitation, Chalons et al. (2010); Yuan et al. (2012) introduced

an extended quadrature method of moments (EQMOM), where continuous non-negative kernel

density functions are used in place of Dirac delta functions, when approximating the NDF. This

allows an approximate continuous distribution function to be determined from the transported

moments. Additionally, the EQMOM procedure ensures that the reconstructed NDF preserves

all the moments used for its reconstruction. The approximated NDF obtained with EQMOM

can then be used to integrate the source terms in the population balance equation in a more

accurate manner (Marchisio and Fox, 2013). Chalons et al. (2010) formulated the method

using Gaussian kernel density functions, while Yuan et al. (2012) used beta and gamma density

functions.

The present work proposes an extended quadrature method of moments using log-normal ker-

nel density functions. Log-normal distribution functions are frequently encountered in many

geological, medical, environmental (Limpert et al., 2001) and industrial (Randolph and Larson,

1988; Petitti et al., 2010; Capecelatro et al., 2014) applications involving particles, bubbles and

droplets. As a consequence, being able to use log-normal kernel density functions may improve

the efficiency of the EQMOM procedure in cases where distributions are nearly log-normal, re-

ducing the number of kernel density functions required to achieve a satisfactory reconstruction.

Additionally, it will be illustrated that the structure of the system of equations to be solved

in the EQMOM procedure is particularly simple when log-normal kernel density functions are

chosen. The cases with one and two kernel density functions are studied analytically. The

existence of a solution to the moment inversion and reconstruction problem is shown for these

cases. The problem of moment realizability is studied for the case with two kernel density
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functions. The proposed procedure is then tested considering cases involving aggregation and

breakup (Vanni, 2000), coalescence and breakup, and condensation (Lage, 2011; Yuan et al.,

2012). The effect of time integration on the accuracy of the steady-state reconstructed distri-

bution was investigated for the cases where the rigorous solution of the PBE was available in

the literature (Vanni, 2000). This was achieved by numerically integrating the NDF obtained

from the rigorous solution of the PBE to compute its moments, and using these moments to

perform the EQMOM reconstruction.

The remainder of the article is structured as follows: Sec. 2.2 briefly summarizes the theory of

population balance equations, while Sec. 2.3 introduces the details of EQMOM and focuses on

formulating the extended quadrature method of moments with log-normal kernel density func-

tions (LnEQMOM). In particular, analytical solutions for the case with one and two quadrature

nodes are discussed, and a numerical solution procedure (Yuan et al., 2012) is illustrated for

the general case with N kernel density functions. Finally, Sec. 2.4 illustrates a verification

study performed on the proposed procedure, presents the results concerning the solution of the

PBE, and discusses the problem of moment realizability for the EQMOM procedure with two

log-normal kernel density functions.

2.2 PBE for aggregation and breakup problem

The population balance equation (Ramkrishna, 2000; Vanni, 2000) accounting for the evolution

of the number density function only due to birth and death of particles can be written as

∂n (ξ,x, t)

∂t
= B̄ (ξ,x, t)− D̄ (ξ,x, t) , (2.1)

where n(ξ,x, t) is the number density function, depending on the single internal coordinate

ξ, while B̄ (ξ,x, t) and D̄ (ξ,x, t) are, respectively, the rate of change of n due to birth and

death. The internal coordinate ξ represents a characteristic dimension of the particle (diameter,

volume, ...). The specific meaning will be clarified for each case. Both these terms are usually

decomposed in the algebraic sum of the contributions due to aggregation and breakup to birth

and death of particles of a given size, leading to

∂n (ξ,x, t)

∂t
= B̄a (ξ,x, t)− D̄a (ξ,x, t) + B̄b (ξ,x, t)− D̄b (ξ,x, t) . (2.2)
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It is worth noting that the internal coordinate ξ represents a characteristic property of the

particle related to its size, such as the particle diameter or its mass. We will consider ξ as

the particle size in the aggregation and breakup problems, while ξ will represent the particle

mass in the two problems concerning coalescence and condensation considered in this work.

According to previous studies (Randolph and Larson, 1988; Marchisio et al., 2003b; Marchisio

and Fox, 2013), these terms can be written in a continuous form for a homogeneous system as:

B̄a (ξ,x, t) =
ξ2

2

∫ ξ

0

β
((
ξ3 − ξ′3

)1/3
, ξ′
)

(ξ3 − ξ′3)2/3
n
((
ξ3 − ξ′3

)1/3
,x, t

)
n
(
ξ′,x, t

)
dξ′, (2.3)

D̄a (ξ, x, t) = n (ξ,x, t)

∫ ∞
0

β
(
ξ, ξ′

)
n
(
ξ′,x, t

)
dξ′, (2.4)

B̄b (ξ,x, t) =

∫ ∞
ξ

a
(
ξ′
)
b
(
ξ|ξ′
)
n
(
ξ′,x, t

)
dξ′, (2.5)

D̄b (ξ,x, t) = a (ξ)n (ξ,x, t) . (2.6)

The aggregation kernel β describes the probability of particles to aggregate, and can be ex-

pressed as a product of the collision frequency and the aggregation efficiency, a (ξ) is the breakup

kernel and b (ξ|ξ′) is the fragmentation distribution function that contains information on the

fragments produced by a breakup event (Marchisio et al., 2003b). The reader interested in how

to derive Eqs. 2.3 – 2.6 can refer to Marchisio et al. (2003b) for further details.

2.3 The extended quadrature method of moments

The solution of the PBE with the extended quadrature method of moments requires moment

transport equations to be obtained from Eq. 2.2. This is achieved by applying of the definition

of the moment of order k of the NDF

Mk(t) =

∫ ∞
0

n (ξ,x, t) ξkdξ (2.7)

to each side of the PBE (Eq. 2.2), leading to

∂Mk (x, t)

∂t
= B̄a

k (x, t)− D̄a
k (x, t) + B̄b

k (x, t)− D̄b
k (x, t) . (2.8)
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The source terms due to birth and death as a consequence of aggregation and breakup phe-

nomena are defined as the moments of the source terms in the original PBE, as follows:

B̄a
k (x, t) =

1

2

∫ ∞
0

n
(
ξ′,x, t

) ∫ ∞
0

β
(
ξ, ξ′

) (
ξ3 + ξ′3

)k/3
n (ξ,x, t) dξdξ′,

D̄a
k (x, t) =

∫ ∞
0

ξkn (ξ,x, t)

∫ ∞
0

β
(
ξ, ξ′

)
n
(
ξ′,x, t

)
dξ′dξ,

B̄b
k (x, t) =

∫ ∞
0

ξk
∫ ∞

0
a
(
ξ′
)
b
(
ξ|ξ′
)
n
(
ξ′,x, t

)
dξ′dξ,

D̄b
k (x, t) =

∫ ∞
0

ξka (ξ)n (ξ,x, t) dξ.

(2.9)

The evaluation of the integrals in Eq. 2.9 requires the knowledge of the NDF, in addition to the

kernel functions a and β. However, the NDF is not known a priori, and has to be approximated

from the transported moments.

Following the procedure described in Yuan et al. (2012), we choose to approximate the NDF

with a weighted sum of non-negative kernel density functions δσ (ξ, ξα)

n (ξ) ≈ pN (ξ) =
N∑
α=1

wαδσ (ξ, ξα) , (2.10)

where wα are the non-negative weights of each kernel density function, ξα are the corresponding

quadrature abscissae, and N is the number of kernel density functions used to approximate the

NDF. Since the particle size is a positive, real number, the support of the kernel density function

δσ is chosen to be the whole real positive axis R+.

The approximation introduced with Eq. 2.10 allows the calculation of the integrals that appear

in the source terms of Eq. 2.9 to be carried out. After substituting the equation for pN(ξ), and

approximating the integrals with quadrature formulae, the following expression is obtained

(Yuan et al., 2012):∫ ∞
0

g (ξ) pN (ξ) dξ =

∫ ∞
0

g (ξ)

N∑
α=1

wαδσ (ξ, ξα) dξ =

N∑
α=1

Nα∑
β=1

wαwαβg (ξαβ) . (2.11)

The N primary weights wα, the corresponding primary abscissae ξα, together with the pa-

rameter σ are determined from the first 2N + 1 integer moments of the NDF, as illustrated

in Sec. 2.3.1. The Nα quantities wαβ and ξαβ, called secondary weights and abscissae, are

computed using the standard Gaussian quadrature formulae for known orthogonal polynomials
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to the kernel NDF. This allows each kernel density function to be evaluated at an arbitrary

number of points, depending on the desired level of accuracy.

Introducing the approximated integrals of the source terms into Eq. 2.9 leads to the following

semi-discrete form of the moment transport equations:

∂Mk

∂t
=

1

2

N∑
α1=1

Nα∑
β1=1

wα1wα1β1

N∑
α2=1

Nα∑
β2=1

wα2wα2β2

(
ξ3
α1β1 + ξ3

α2β2

)k/3
βα1β1α2β2

−
N∑

α1=1

Nα∑
β1=1

ξkα1β1wα1wα1β1

N∑
α2=1

Nα∑
β2=1

wα2wα2β2βα1β1α2β2

+

N∑
α=1

Nα∑
β=1

aαβ b̄
k
αβwαβ −

N∑
α=1

Nα∑
β=1

ξkαβaαβwαβ. (2.12)

2.3.1 The EQMOM numerical procedure

The numerical procedure to solve Eq. 2.12 is illustrated in this section. The starting point

to define the EQMOM numerical solution procedure is to choose the functional form of the

kernel density function. The choice is made based on the support of the NDF that has to

be reconstructed. In other words, if the reconstructed NDF has support R, Gaussian kernel

functions may be used, while if the support is R+
0 , gamma or log-normal kernel functions can

be chosen. Beta kernel functions are suitable to reconstruct an NDF with bounded support

(Yuan et al., 2012). As we mentioned in the introduction, we deal with the log-normal kernel

density function in this work, which we write as

δσ(ξ, µ) =
1

ξσ
√

2π
e−

(ln ξ−µ)2

2σ2 , ξ, σ ∈ R+, µ ∈ R. (2.13)

The integer moment of order k of the log-normal distribution can be found analytically using

the Mellin transform, leading to (Magnus et al., 1966):

Mk (µ, σ) = ekµ+ k2σ2

2 . (2.14)

2.3.2 The one-node case

The case when only one kernel density function is used is trivial, and an analytical solution

can be found for σ. To this purpose, it suffices to consider the first three moments of the NDF
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{M0,M1,M2}, and impose that the moments of the approximated NDF

p1 (ξ) = w1δσ (ξ, ξ1) =
w1

ξσ
√

2π
e−

(ln ξ−ξ1)
2

2σ2 (2.15)

are equal. This leads to the following non-linear system of equations:
M0 = w1

M1 = w1 eξ1+σ2/2

M2 = w1 e2ξ1+2σ2

, (2.16)

which can be solved analytically by setting z = eσ
2/2, and χ1 = eξ1 . Eliminating w1 and ξ1,

and taking the only positive z root leads to:

z =
1

M1

√
M0M2 ⇒ σ2 = 2 ln

(
1

M1

√
M0M2

)
, (2.17)

which is always defined because the moments of the NDF are strictly positive. The complete

solution for the one-node case is then:

w1 = M0

ξ1 = ln
M2

1

M0

√
M0M1

σ =

√
2 ln

(
1

M1

√
M0M2

) . (2.18)

2.3.3 The two-node case

The two-node case is obtained when two kernel density functions are used to approximate the

NDF. Following Chalons et al. (2010), the approximated NDF is written as:

p2 (ξ) = w1δσ (ξ, ξ1) + w2δσ (ξ, ξ2) =
w1

ξσ
√

2π
e−

(ln ξ−ξ1)
2

2σ2 +
w2

ξσ
√

2π
e−

(ln ξ−ξ2)
2

2σ2 . (2.19)

It is worth reminding at this time that the parameter σ is assumed to be the same for both the

kernel density functions, in order to obtain a single non-linear equation for σ, rather than a

system of non-linear equations, which would significantly increase the complexity of the problem

(Chalons et al., 2010; Yuan et al., 2012). The effect of this assumption on the accuracy of the

reconstructed NDF is shown in Sec. 2.4.1.
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The following non-linear system of equations is found imposing that the first five transported

moments are exactly represented by the approximated NDF (Chalons et al., 2010):

M0 = w1 + w2

M1 = w1 eξ1+σ2/2 +w2 eξ2+σ2/2

M2 = w1 e2(ξ1+σ2) +w2 e2(ξ2+σ2)

M3 = w1 e3ξ1+9/2σ2
+w2 e3ξ2+9/2σ2

M4 = w1 e4ξ1+8σ2
+w2 e4ξ2+8σ2

.

(2.20)

Setting

z = eσ
2/2, χ1 = eξ1 , χ2 = eξ2 (2.21)

leads to 

M0 = w1 + w2 = M∗0

M1 = z (w1χ1 + w2χ2) = zM∗1

M2 = z4
(
w1χ

2
1 + w2χ

2
2

)
= z4M∗2

M3 = z9
(
w1χ

3
1 + w2χ

3
2

)
= z9M∗3

M4 = z16
(
w1χ

4
1 + w2χ

4
2

)
= z16M∗4 .

(2.22)

It is immediately apparent that Eq. 2.22, which relates the transported moments Mk to the

moments of the approximated NDF M∗k , shows a simpler structure than the corresponding

system for EQMOM based on gamma kernel densities (Yuan et al., 2012). In particular,

the system of equations in Eq. 2.22 is diagonal, while the one for gamma EQMOM is lower-

triangular, as described in Yuan et al. (2012). This property is also maintained for the cases

with N > 2.

Eliminating w1, ξ1, w2, ξ2 from Eq. 2.22, the following polynomial equation is found:

f(z) = M3
2 z

8 − 2M1M2M3z
6 +

(
M0M

2
3 +M2

1M4

)
z2 −M0M2M4 = 0. (2.23)

Recalling that all the moments of our NDF are positive quantities, the application of Descartes

rule of signs shows that this polynomial equation has a maximum of three positive real roots

and of three negative roots.
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We now show that at least a positive real root σ exists for Eq. 2.23, if the moments are positive.

To this purpose, we observe that the coefficient of the leading power of the polynomial in

Eq. 2.23 is positive because M2 > 0. This implies that limz→+∞ f(z) = +∞. We also note

that f(z = 0) = −M0M2M4 < 0. As a consequence, because f ∈ C0(R), we conclude that at

least one value of z ∈ R+ so that f(z) = 0.

We also observe that, in general, it is not possible to show that such a root is unique, as

discussed before. Only additional constraints on the moment realizability may further limit

the number of real roots. Analytical expressions for the real roots of Eq. 2.23 can be found

by solving Eq. 2.23, and obtaining the corresponding square roots of the result. However, the

complexity of the expressions obtained with this procedure makes them unpractical, and a

numerical solution is favored in this work, as illustrated for the general case in Sec. 2.3.4.

2.3.4 The general case

The general case with N kernel density functions is treated in the same way illustrated for the

two-node case. An equation for z is found imposing that the first 2N + 1 moments are exactly

represented by the approximated NDF, leading to the polynomial expression

J2N(z) = M2N − z(2N)2M∗2N, (2.24)

where

M∗2N =

N∑
α=1

wαχ
2N
α . (2.25)

It is worth noting that the 2N + 1 equations are coupled, since the values of both wα and χα

depend on z. Such system can be solved iteratively as illustrated in Yuan et al. (2012), and

briefly summarized below:

i) Guess σ, and compute the corresponding value of z = eσ
2/2.

ii) Compute M∗k = Mkz
−(2k)2 , k = 0, . . . , 2N− 1 moments, using the guessed value for z.

iii) Apply the Wheeler algorithm (Wheeler, 1974) to the first 2N M∗ moments to obtain the

weights wα and the abscissae χα.
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iv) Compute M∗2N with the new values of weights and abscissae.

v) Construct the J(z) function, and determine z with a bounded numerical root finding

procedure.

vi) Repeat from ii) until |J(z)| < ε, with ε a small value close to machine precision.

Gaussian quadrature formulae with log-normal weight function can be computed with two

approaches, which we briefly summarize in A, referring the interested reader to Weisstein (1998);

Wilck (2001); Gautschi (2004) for further details. We compared the numerical results obtained

with both Hermite and Stieltjes-Wigert quadrature formulae (comparison not reported here),

and we did not find significant differences for the cases discussed in this work. As a consequence,

we used Hermite quadrature to approximate the integrals in the source terms of the PBE. This

choice also makes the numerical procedure more efficient, because the algorithm to compute

Hermite quadrature weights and nodes does not involve the parameter σ, as opposed to the

one for the Stieltjes-Wigert quadrature.

2.4 Results and discussion

2.4.1 Verification of the Ln-EQMOM implementation

We verify the numerical procedure to reconstruct the NDF with LnEQMOM by considering

a distribution obtained as a linear combination of two log-normal distributions with different

parameters µ and σ. The functional form of this distribution is shown in Eq. 2.26

f(x) =
1

2

[
1

xσ1

√
2π

e
− (ln x−µ1)

2

2σ21 +
1

xσ2

√
2π

e
− (ln x−µ2)

2

2σ22

]
, (2.26)

while the values of the parameters used in each case are summarized in Tab. 2.1. The

reconstructed distributions obtained with four-node LnEQMOM are reported in Fig. 2.1. As

expected, the reconstruction obtained in case 1 exactly matches the analytical solution, because

the exact distribution is log-normal. We observe that, in general, the reconstructed distribution

agrees well with the analytical function. However, as it is clear from Fig. 2.1(d), the agreement

deteriorates for increasingly different values of the parameter σ. This is a consequence of
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Table 2.1: Parameters used in the cases concerning the linear combination of two log-normal

distributions.

Case µ1 σ1 µ2 σ2

1 3 0.6 3 0.6

2 1.2 0.6 3 0.6

3 3 0.6 5 0.5

4 3 0.6 1 0.8

the assumption that the kernel density functions used to define the approximated distribution

(Eq. 2.10) share the same value of σ.

We first verify that the moments of the reconstructed distributions match the moments of the

analytical one. To this purpose, we consider the relative error affecting the moments, defined

as

Ei =

∣∣∣∣Mi,analytical −Mi,reconstruction

Mi,analytical

∣∣∣∣ . (2.27)

As shown in Tab. 2.2, the first 2N + 1 moments are preserved by EQMOM with errors of the

order of 1.0 · 10−16 for cases 1 – 3, and with errors of the order of 1.0 · 10−12 for case 4. We

then consider the L2 norm of the difference between the analytical distribution function and

the approximated one, normalized with respect to M0:

d =
||f(ξ)− p(ξ)||2

M0
. (2.28)

As shown in Tab. 2.3, d is between 6.04 · 10−16(N = 4) and 1.90 · 10−13(N = 2) for case 1, when

the analytical distribution is itself log-normal. The error is between 3.90 · 10−14(N = 4) and

2.88 · 10−12(N = 2) in case 2, when σ1 = σ2, with different values of µ1 and µ2. However, a

significantly larger error (order between 10−3 and 10−1) is observed when different values of σ1

and σ2 are chosen. We can also observe that the error increases when the difference between

σ1 and σ2 increases, as expected as a consequence of the assumption that kernel densities share

the same value of σ. Finally, we notice that increasing the number of primary quadrature nodes

from two to four reduces the relative error of one order of magnitude in cases 1 – 3, but only

marginally affects the error in case 4.
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Figure 2.1: Comparison between the analytical and the approximated distribution obtained

with LnEQMOM using four primary quadrature nodes (N = 4) for cases 1-4.
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Table 2.2: Relative error affecting the moments of the reconstructed distribution as a function

of the number of primary nodes N.

Case N = 2 N = 3 N = 4

1 E0 1.34× 10−16 E0 1.41× 10−16 E0 4.36× 10−16

E1 1.48× 10−16 E1 1.48× 10−16 E1 1.47× 10−16

E2 2.74× 10−16 E2 2.74× 10−16 E2 2.74× 10−16

E3 8.88× 10−16 E3 8.88× 10−16 E3 8.88× 10−16

E4 9.64× 10−16 E4 9.64× 10−16 E4 9.64× 10−16

E5 2.03× 10−16 E5 2.03× 10−16

E6 3.56× 10−16 E6 3.56× 10−16

E7 2.18× 10−16

E8 4.12× 10−16

2 E0 1.35× 10−16 E0 1.37× 10−16 E0 4.35× 10−16

E1 1.27× 10−16 E1 1.27× 10−16 E1 1.27× 10−16

E2 2.67× 10−16 E2 2.67× 10−16 E2 2.67× 10−16

E3 8.84× 10−16 E3 8.84× 10−16 E3 8.84× 10−16

E4 9.63× 10−16 E4 9.63× 10−16 E4 9.63× 10−16

E5 2.03× 10−16 E5 2.03× 10−16

E6 1.78× 10−16 E6 1.78× 10−16

E7 2.19× 10−16

E8 4.12× 10−15

3 E0 1.48× 10−16 E0 1.97× 10−16 E0 2.71× 10−16

E1 1.47× 10−16 E1 1.48× 10−16 E1 1.48× 10−16

E2 2.22× 10−16 E2 2.22× 10−16 E2 2.22× 10−16

E3 4.36× 10−16 E3 4.36× 10−16 E3 4.36× 10−16

E4 6.08× 10−16 E4 6.08× 10−16 E4 6.08× 10−16

E5 7.81× 10−16 E5 7.81× 10−16

E6 8.21× 10−16 E6 8.21× 10−16

E7 1.30× 10−16

E8 1.87× 10−16

4 E0 1.34× 10−15 E0 1.40× 10−15 E0 4.36× 10−15

E1 1.28× 10−14 E1 1.28× 10−14 E1 1.27× 10−12

E2 2.66× 10−14 E2 2.66× 10−14 E2 2.66× 10−12

E3 8.81× 10−14 E3 8.81× 10−14 E3 8.81× 10−12

E4 9.61× 10−14 E4 9.61× 10−14 E4 9.61× 10−12

E5 2.02× 10−14 E5 2.02× 10−12

E6 3.56× 10−14 E6 3.56× 10−12

E7 2.19× 10−12

E8 4.12× 10−12
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Table 2.3: Normalized L2 norm of the difference d between the analytical and the approximated

distribution.

Case N = 2 N = 3 N = 4

1 1.90× 10−13 2.21× 10−14 6.04× 10−16

2 2.88× 10−12 3.93× 10−14 3.90× 10−14

3 2.68× 10−2 6.68× 10−3 2.04× 10−3

4 2.76× 10−1 1.10× 10−1 1.07× 10−1

Table 2.4: Cases examined for the aggregation and breakup process.

Case β (ξ, ξ′) a (ξ) b (ξ|ξ′) Mk (t = 0)

5 1

{
0 ξ = 1

0.02 ξ > 1
1, Tab. 2.7 Mk = 1, k = 0, . . . , 6

6 ξ3 + ξ′3

{
0 ξ = 1

0.02ξ3 ξ > 1
1, Tab. 2.7 Mk = 1, k = 0, . . . , 6

7 (ξ + ξ′)3

{
0 ξ = 1

0.1 e0.01ξ3 ξ > 1
1, Tab. 2.7 Mk = 1, k = 0, . . . , 6

8 (ξ + ξ′)2 |ξ2 − ξ′2|

{
0 ξ = 1

0.01ξ6 ξ > 1
2, Tab. 2.7



M0 = 1

M1 = 1.13

M2 = 1.294

M3 = 1.5

M4 = 1.760

M5 = 2.087

M6 = 2.087

9 (ξ + ξ′)3

{
0 ξ < 3

√
5

0.1 e0.01ξ3 ξ ≥ 3
√

5
3, Tab. 2.7 Mk = 1, k = 0, . . . , 6

2.4.2 PBE for aggregation and breakup problems

We discuss in this section the solution of the PBE for aggregation and breakup problems.

We refer to the work of Vanni (2000), who reported the rigorous solution for the aggregation

and breakup problems considered here. In particular, we study the five cases summarized in

Tab. 2.4, where the kernels for aggregation and breakup reported in Tabs. 2.5 and 2.6 were

used, together with the daughter distribution functions listed in Tab. 2.7.

Two types of calculation were performed to investigate the predictive capabilities of LnEQ-

MOM:
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Table 2.5: Aggregation kernels.

Kernel β (ξ, ξ′)

Constant 1

Sum ξ3 + ξ′3

Hydrodynamic (ξ + ξ′)3

Differential force (ξ + ξ′)2 |ξ2 − ξ′2|

Table 2.6: Breakup kernels.

Kernel a (ξ)

Constant 1

Power law ξα

Exponential eδξ
3

Table 2.7: Daughter distribution functions and their moment transforms.

No. Mechanism b (ξ|ξ′) b̄k

1 Symmetric fragmentation

{
2 ξ = ξ′/21/3

0 otherwise
2(3−k)/3ξk

2 Uniform

{
6ξ2/ξ′3 ξ ∈]0, ξ′[

0 otherwise
6ξk/(k + 3)

3 Mass ratio 1 to 4


1 ξ = ξ′

(
1
5

)1/3
1 ξ = ξ′

(
4
5

)1/3
0 otherwise

ξk 4k/3+1
5k/3
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i) The moments of the rigorous NDF reported by Vanni (2000) were computed for each of

the cases considered in this section. Numerical integration of the data extracted from

the figures reported in Vanni (2000) was performed with the trapezoidal rule, in order to

calculate these moments. The computed moments were then used as input to LnEQMOM

to obtain the reconstructed NDF. Results were compared to the rigorous NDF and to the

reconstruction obtained with Gamma EQMOM (Yuan et al., 2012).

ii) The moment transport equations with LnEQMOM closures with the appropriate source

terms, were integrated to obtain the approximate distribution for each of the cases under

consideration, starting from the initial conditions reported in the last column of Tab. 2.4.

This procedure was designed to isolate the error in the NDF reconstruction from the error due

to the approximation in the time integration of the source terms that appear in the PBE. This

is particularly relevant in some of the cases under examination, where the initial condition is

characterized by a uniform NDF, which causes LnEQMOM to degenerate into QMOM, affecting

the accuracy of the integration of the kernels.

Results obtained by integrating the moment equations with LnEQMOM were also compared

to those previously obtained by Marchisio et al. (2003b) using a three-node standard QMOM

procedure. Time integration was performed with a two-stage Runge-Kutta method (RK-2),

until a steady-state solution was achieved. For each case, the particle number density M0, the

mean particle size d43 = M4/M3, and the particle size distribution are reported.

Fig. 2.2 shows the results obtained for case 5 using LnEQMOM to reconstruct the NDF from

the moments of the exact distribution reported in Vanni (2000), as a function of the number

of nodes. LnEQMOM satisfactorily approximates the distribution function for large values of

ξ when N = 1 and N = 2, however when a larger number of primary quadrature nodes is used,

the reconstructed distribution shows oscillations that are not present in the rigorous NDF.

It is worth noting that the cases with N > 2 were obtained forcing the number of primary

quadrature nodes to be constant. However, the adoption of the adaptive Wheeler algorithm

(Yuan and Fox, 2011; Marchisio and Fox, 2013), with realistic adaption criteria, the number of

nodes would likely be automatically reduced, limiting the oscillatory behavior.
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Figure 2.2: Case 5 – Comparison of the reconstructed NDF from the exact moments of the

rigorous solution of the PBE with LnEQMOM and Gamma EQMOM, as a function of the

number of primary quadrature nodes N.

As expected, due to the functional form of the kernel function used in LnEQMOM, the re-

constructed NDF does not tend to the correct limit for ξ → 0+. However, by definition, the

reconstructed NDF has the same moments of the rigorous solution up to order 2N + 1. Finally,

we observe that similar predictions were obtained with Gamma kernel density functions.

Results obtained from the solution of the PBE with LnEQMOM for case 5 are reported in

Fig. 2.3, for t = 200 s. As observed above, the right tail of the distribution is well captured

by the approximate solution. However, important differences are observed for smaller values

of ξ. Both QMOM and LnEQMOM (Fig. 2.3(c) and 2.3(d)) predict the time evolution of the
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Figure 2.3: Case 5 – (a) NDF from the rigorous solution and LnEQMOM, (b) NDF from the

rigorous solution and QMOM, (c) zero-order moment of the NDF, (d) mean particle size d43.

particle number density M0 and of the mean particle size d43 with comparable accuracy.

Results obtained with LnEQMOM and Gamma EQMOM applied to the moments of the rigor-

ous solution for case 6 are reported in Fig. 2.4. In this case, two primary quadrature nodes are

sufficient to obtain an excellent match of the reconstruction with the exact distribution, with

the LnEQMOM results exactly overlapping the curve of the rigorous NDF. The reconstructed

NDF provided by EQMOM with gamma kernel densities for this case is also in good agreement

with the rigorous solution, but it shows larger differences compared to the result obtained with

LnEQMOM. Fig. 2.5 shows the results obtained integrating the moment equations for case 6

in Tab. 2.4, where the sum aggregation kernel was used. The daughter distribution for symmet-

ric fragmentation was adopted. The reconstructed distribution agrees well with the rigorous

solution, however, the height of its peak is slightly overestimated. The time evolution of the

total number density M0 (Fig. 2.5(c)) is in excellent agreement with the rigorous solution, and
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Figure 2.4: Case 6 – Comparison of the reconstructed NDF from the exact moments of the

rigorous solution of the PBE with LnEQMOM and Gamma EQMOM, as a function of the

number of primary quadrature nodes N.
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Figure 2.5: Case 6 – (a) NDF from the rigorous solution and LnEQMOM, (b) NDF from the

rigorous solution and QMOM, (c) zero-order moment of the NDF, (d) mean particle size d43.

with the QMOM prediction. Similar conclusions can be drawn for the time evolution of the

particle mean diameter d43, reported in Fig. 2.5(d).

Results concerning case 7 are reported in Figs. 2.6 and 2.7. The agreement between the recon-

structed distribution obtained from the moments of the rigorous solution of the PBE and the

rigorous solution itself is satisfactory. The tails of the distribution are well reproduced, however

the shape of the central part of the distribution, and the maximum value of the NDF are not

properly captured by the EQMOM procedure. The reconstructed NDF obtained integrating

the moment transport equations (Fig. 2.7(a)) shows poorer agreement with the rigorous solu-

tion, if compared to the NDF reconstructed directly from the moments of the exact NDF. This

may be caused by the accumulation of error during the integration process, in particular at

the initial stages of the simulation, when the uniform initial condition forces the procedure to
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Figure 2.6: Case 7 – Comparison of the reconstructed NDF from the exact moments of the

rigorous solution of the PBE with LnEQMOM and Gamma EQMOM, as a function of the

number of primary quadrature nodes N.
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Figure 2.7: Case 7 – (a) NDF from the rigorous solution and LnEQMOM, (b) NDF from the

rigorous solution and QMOM, (c) zero-order moment of the NDF, (d) mean particle size d43.

rely on the delta function representation of the NDF to integrate the source terms of the PBE.

It is worth reminding that the EQMOM procedure smoothly and automatically degenerates

into QMOM when a continuous reconstruction cannot be determined (Chalons et al., 2010;

Yuan et al., 2012), allowing the calculation to proceed. The time evolution of the zero-order

moment of the NDF (Fig. 2.7(c)), and of the mean diameter d43 (Fig. 2.7(d)) are in excellent

agreement with those reported for the rigorous solution by Marchisio et al. (2003b). Similar

observations to those made for the reconstructed NDF of case 7 apply to case 8, as illustrated

in Figs. 2.8 and 2.9. It is worth to highlight, however, that in this case the time evolution of the

zero-order moment of the NDF (Fig. 2.9(c)) and of d43 (Fig. 2.9(d)) obtained with LnEQMOM

show a significant improvement in comparison to the same quantities predicted by the standard

QMOM procedure. In particular, the results provided by LnEQMOM for these two averaged

quantities are in excellent agreement with those obtained with the rigorous solution of the PBE



43

(Vanni, 2000), while those provided by QMOM (Marchisio et al., 2003b) show a slight under-

estimation of the zero-order moment and an important over-estimation of d43 for t ∈ [0, 4]. The

reader should also notice that the predictions reported for cases 6 – 8 were obtained using two

quadrature nodes for the EQMOM procedure, as opposed to the three quadrature nodes used

in QMOM. As a consequence, EQMOM not only provides a satisfactory reconstruction of the

continuous NDF, and a significant improvement in the prediction of the time evolution of M0

and d43 for cases 7 and 8, but it also allows a reduction of the number of quadrature nodes

to be achieved. This positively impacts the computational cost of the procedure, because the

eigenproblem solved to perform the moment inversion involves a smaller matrix, and can be

treated analytically.

LnEQMOM with N = 3 and N = 4 provides a satisfactory reconstruction of the NDF of case

9 (Fig. 2.10), when the moments of the rigorous NDF are used to perform the reconstruction.

The cases with N = 1 and N = 2 are unable to reproduce the complex shape of the distribution,

which presents three local maxima. As shown in Fig. 2.11, the NDF obtained integrating

the moment equations presents significant differences with respect to the rigorous solution.

However, the time evolution of the zero-order moment (Fig. 2.11(c)) and of the mean particle

size d43 (Fig. 2.11(d)) are in excellent agreement with those obtained by Marchisio et al. (2003b)

for the rigorous solution.

2.4.3 Coalescence problem

We now consider a problem concerning coalescence, for which an analytical solution can be

found. In this case a (t, ξ, ξ′) = ξ+ξ′ (sum kernel) is used, where ξ, the size variable, is volume.

Since only coalescence is considered, no other kernel needs to be defined. The initial condition

for this problem has been reported (Lage, 2011; Yuan et al., 2012) as:

n (0, ξ) = e−ξ . (2.29)

The exact NDF for this problem is known (Gelbard and Seinfeld, 1978) and can be written as:

n (t, ξ) =
e−t−2ξ+ξ e−t

ξ
√

1− e−t
I1

(
2ξ
√

1− e−t
)
, (2.30)
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Figure 2.8: Case 8 – Comparison of the reconstructed NDF from the exact moments of the

rigorous solution of the PBE with LnEQMOM and Gamma EQMOM, as a function of the

number of primary quadrature nodes N.
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Figure 2.9: Case 8 – (a) NDF from the rigorous solution and LnEQMOM, (b) NDF from the

rigorous solution and QMOM, (c) zero-order moment of the NDF, (d) mean particle size d43.
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Figure 2.10: Case 9 – Comparison of the reconstructed NDF from the exact moments of the

rigorous solution of the PBE with LnEQMOM and Gamma EQMOM, as a function of the

number of primary quadrature nodes N.
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Figure 2.11: Case 9 – (a) NDF from the rigorous solution and LnEQMOM, (b) NDF from the

rigorous solution and QMOM, (c) zero-order moment of the NDF, (d) mean particle size d43.
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where I1 is the modified Bessel function. Results were obtained as a function of the number of

primary quadrature nodes. The reconstructed NDF was obtained from the moments of the exact

NDF, without integrating the moment transport equations. Increasing the number of primary

quadrature nodes improves the accuracy of the reconstructed distribution, as illustrated in

Fig. 2.12. The numerical approximation matches the analytical solution, properly predicting

the slope of the tail of the distribution, and its behavior for large values of ξ.

2.4.4 Condensation problem

We consider here the reconstruction of the NDF in a condensation problem, where ξ is chosen

to be particle volume. In this case, the PBE is (Yuan et al., 2012)

∂n (ξ,x, t)

∂t
+

∂

∂ξ
[g (ξ,x, t)n (ξ,x, t)] = 0, (2.31)

and the corresponding moment transport equations are

∂Mk (x, t)

∂t
= − g (ξ,x, t)n (ξ,x, t)) ξk

∣∣∣+∞
0

+

∫ +∞

0
kξk−1g (ξ,x, t)n (ξ,x, t) dξ. (2.32)

We consider the case in which g (t, ξ) = ξ/2, and with initial condition expressed as (Lage,

2011):

n (0, ξ) = 6ξ3 e−ξ . (2.33)

The exact NDF for this problem can be written as (Lage, 2011):

n (t, ξ) =

(
ξ e−t/2

)3
e−ξ e−t/2

6 et/2
. (2.34)

The LnEQMOM reconstruction is only tested considering the exact moments of the analytical

solution for brevity. Fig. 2.13 shows the LnEQMOM reconstruction obtained with an increased

number of primary quadrature nodes. It is clear that increasing the number of the nodes will

lead to more precise results for large values of ξ. However, oscillations appear when a large

number of nodes is used. The reconstructed distribution agrees satisfactorily with the analytical

solution, and the slope of its tail is properly captured by the reconstructed NDF.
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Figure 2.12: Case 10 – Reconstructed distribution as a function of the number of nodes used

in the primary quadrature obtained from the exact moments of the analytical solution.
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Figure 2.13: Case 11 – Reconstructed distribution as a function of the number of nodes used

in the primary quadrature obtained from the exact moments of the analytical solution.
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Table 2.8: Values of σ, σH0 , and σH1 for cases 5 – 9.

Case σ σH0 σH1

5 0.580 0.624 0.612

6 0.600 0.881 0.682

7 0.502 0.836 0.586

8 0.604 0.893 0.672

9 0.355 0.450 0.381

2.4.5 Realizability of transformed moments

The LnEQMOM algorithm will succeed if the transformed moments are realizable. To this

purpose, it is necessary to have an algorithm to check the moment realizability (Shohat and

Tamarkin, 1943; Dette, 1997; Yuan et al., 2012; Vikas et al., 2013a). A set of real values is

a set of moments of a distribution function if the Hankel determinants are non-negative. The

Hankel determinants for our case can be written as (Dette, 1997; Wright, 2007):

∆i,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗i M∗i+1 · · · M∗i+j

M∗i+1 M∗i+2 · · · M∗i+j+1

...
...

. . .
...

M∗i+j M∗i+j+1 · · · M∗i+2j

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.35)

where i = 0, 1, j = 0, . . . ,N − 1. Fig. 2.14 shows the graphs for the target function J(σ) and

the graphs of the Hankel determinants as a function of σ for the case with N = 2 primary

quadrature nodes. The values of the parameter σ which set the target function J to zero are

reported in the first column of Tab. 2.8. We indicate with σH0 and σH1 the values of σ which

set the Hankel determinants H0 and H1 to zero. It is clear from the values reported in

Tab. 2.8 that, for cases 5 to 9,

σ < σH0 ∧ σ < σH1 .

Examining Fig. 2.14, it is evident that both Hankel determinants H0 and H1 are positive for

the value of σ at which J = 0, indicated by the red vertical lines. As a consequence, the set

of moments considered in the reconstruction is realizable for such a value of the parameter

σ. Whether these determinants become negative, the moments will be non-realizable and the

moment inversion procedure will fail. We generally choose the smallest positive value of σ
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which sets our target function to zero, as described in (Yuan et al., 2012), however when such

value leads to non-realizable moments, we search larger values of σ and choose one that ensures

the realizability of the moment set.

2.5 Conclusion

An extended quadrature method of moments with log-normal kernel density function (LnEQ-

MOM) was presented in this study. The analytical solution to the cases with one and two

primary nodes was studied, and a numerical procedure was described for cases involving larger

number of quadrature nodes. The existence of at least one positive real value of the parameter

σ was proven for the case with two primary quadrature nodes.

The proposed numerical approach was tested against cases concerning aggregation and breakup,

coalescence, and condensation problems, demonstrating that LnEQMOM is capable of accu-

rately predicting the time evolution of the zero-order moment and of the mean particle size in all

the cases considered in this work, with results in excellent agreement with those obtained with

the rigorous solution of the PBE, using a relatively low number of primary quadrature nodes

(N = 2 or 3 depending on the case). In particular, LnEQMOM provides more accurate results

for the time evolution of the zero-order moment and of the mean particle size than QMOM for

aggregation and breakup problems with symmetric and uniform daughter distributions (cases

7 and 8). This improvement is achieved using a lower number of primary quadrature nodes

than the standard QMOM procedure.

Overall, satisfactory accuracy was achieved for what concerns the reconstructed number density

function. In particular, LnEQMOM correctly predicts the tails of the NDF in the cases we

considered. However, due to the functional form of the log-normal kernel, the method shows

some difficulties in reconstructing distributions whose value for ξ → 0 is not zero. LnEQMOM

also appeared to be numerically more robust when compared to Gamma EQMOM, due to the

structure of the system of equations used in the numerical procedure.

Some discrepancy was observed between the reconstructed NDF from the moments of the

rigorous solution of the PBE, and the NDF obtained integrating in time the moment transport

equations with LnEQMOM. This discrepancy may be attributed to the propagation of errors
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Figure 2.14: Target function and Hankel determinants for cases 5 – 9 with N = 2.
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in the time-integration procedure, and to the fact that the uniform initial condition required

delta functions to be used in the evaluation of the integrals involved in the source terms of

the PBE. This aspect of the numerical procedure deserves a more in-depth study, in order to

improve its accuracy, and it will be object of future work.
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CHAPTER 3. APPLICATION OF THE FOKKER-PLANCK

MOLECULAR MIXING MODEL TO TURBULENT SCALAR MIXING

USING MOMENT METHODS

This chapter was published as a journal article titled ”Application of the Fokker-Planck molec-

ular mixing model to turbulent scalar mixing using moment methods” in Physics of Fluids

with authors E. Madadi-Kandjani R. O. Fox and A. Passalacqua (2017).

Abstract

An extended quadrature method of moments using the β kernel density function (β-EQMOM) is

used to approximate solutions to the evolution equation for univariate and bivariate composition

probability distribution functions (PDF) of a passive scalar for binary and ternary mixing. The

key element of interest is the molecular mixing term, which is described using the Fokker–

Planck (FP) molecular mixing model. The direct numerical simulations (DNS) of Eswaran &

Pope (Physics of Fluids 31, 506, 1988), and the amplitude mapping closure (AMC) of Pope

(Theoretical and Computational Fluid Dynamics 2, 255, 1991) are taken as reference solutions

to establish the accuracy of the FP model in the case of binary mixing. The DNS of Juneja

& Pope (Physics of Fluids 8, 2161, 1996) are used to validate the results obtained for ternary

mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR)

proposed by Fox (Computational Methods for Turbulent Reacting Flows, Cambridge University

Press, 2003) and the CSDR from AMC. Using scalar moments up to fourth order, the ability of

the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing

problems, is demonstrated. Compared to the widely used assumed β-PDF model (Girimaji,
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Combustion Science & Technology 78, 177 1991), the β-EQMOM solution to the FP model more

accurately describes the initial mixing process with a relatively small increase in computational

cost.

3.1 Introduction

The spatial and temporal evolution of a passive scalar in a turbulent mixing process can be

described using an evolution equation for the probability density function (PDF) of the system

composition (Pope, 2000; Fox, 2003). Solutions of the equation for the composition PDF pro-

vide a one-point statistical description of the behavior of the scalar composition field, during

its evolution from the unmixed to the mixed state (Broadwell and Breidenthal, 1982; Kooches-

fahani and Dimotakis, 1986; Mungal and Dimotakis, 1984; Girimaji, 1991; Cremer et al., 1994;

McMurtry and Givi, 1989; Eswaran and Pope, 1988). Due to the importance of turbulent

mixing in industrial and environmental applications, several methods have been developed to

obtain such solutions.

Before summarizing the most common approaches used to obtain the composition PDF from

its evolution equation, it is worth reminding that the most accurate approach for modeling

turbulent mixing is direct numerical simulation (DNS) (Eswaran and Pope, 1988; O’Brien and

Jiang, 1991; Overholt and Pope, 1996; Yeung et al., 2005, 2002), which consists in directly dis-

cretizing the physical space, and solving the transport equation for the passive scalar along with

the Navier-Stokes equation (Pope, 2000). However, this method is computationally prohibitive

when applied to practical problems, due to the requirements in terms of spatial resolution, which

needs to explicitly resolve the smallest of the Kolmogorov and Batchelor scales. Other strate-

gies include large-eddy simulation, such as those discussed in (Pitsch, 2006; Popov and Pope,

2014; Popov et al., 2015). In the context of PDF methods, which aim at finding approximate

solutions for the evolution equation of the composition PDF, Lagrangian PDF methods Pope

(2000); Fox (2003); Meyer and Jenny (2006); Meyer (2010) are computationally more affordable

than DNS, but still computationally intensive for many practical applications at the industrial

and environmental scales. Stochastic field methods were proposed Valino (1998); Sabelnikov

and Soulard (2005); Jones et al. (2007); Jones and Navarro-Martinez (2007, 2009); Garmory
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et al. (2006); Garmory and Mastorakos (2008); Garmory et al. (2009); Sabelnikov and Soulard

(2006), in which the evolution of the composition PDF is approximated using a set of Eulerian

stochastic fields, defined over the entire computational domain. The spatio-temporal evolution

of these fields is regulated by stochastic partial differential equations (PDEs). A number of

PDEs equal to the product between the number of composition variables, and the number of

stochastic fields need to be solved. For practical applications, Reynolds-averaged Navier-Stokes

(RANS) simulations are particularly attractive to describe turbulent mixing processes due to

their low computational cost. In RANS methods, the evolution equation of the composition

PDF is closed by introducing molecular mixing models, which are defined in terms of one-point

turbulence statistics. As it will be illustrated later, these models typically require the scalar

dissipation rate to be modeled, which may not be a trivial task in general non-homogeneous

problems.

In many applications, a presumed β-PDF model is employed to describe the mixture fraction

(Girimaji, 1991), which requires the solution of two RANS equations: one for the mixture-

fraction mean, and one for its variance. To go beyond the β-PDF model, the Fokker–Planck

(FP) model (Fox, 1992b, 1994, 2003) can be used to close the molecular mixing term in the

composition PDF transport equation. The resulting nonlinear FP equation must then be solved,

which is a nontrivial task.

The Fokker-Planck equation was developed by Fokker (1914) and Planck (Risken, 1989), to de-

scribe the time evolution of the velocity PDF of a particle under the effect of random motions

and drag forces. Kolmogoroff (1931) also obtained the equation independently, while Smolu-

chowski (1916) obtained the equivalent of the Fokker-Planck equation for the particle position

in Brownian motion.

Analytical solutions for FP equations are possible only in a limited set of cases (Risken, 1989).

As a consequence, numerical methods have been developed to find approximate solutions in

cases of general interest. Spencer and Bergman (1993) and Kumar and Narayanan (2006) used

the finite-difference method to directly discretize the spatial and composition spaces. As with

Lagrangian PDF methods, due to the transient nature of mixing problems and to the dimen-

sionality of the composition PDF, this approach still carries a significant computational cost,
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which makes it unattractive for many applications. As a consequence, alternative approaches

have been developed to compute moments of the composition PDF, rather than to capture

its entire evolution. These methods are based on the idea that the quantities of interest in

most applications can be related to the calculated moments. However, when applied to re-

active scalars with nonlinear chemical source terms, integrals with respect to the unknown

composition PDF must be evaluated Fox (2003); Pitsch (2006). For this purpose, an efficient

and accurate method for reconstructing the composition PDF from its moments is required

(Marchisio and Fox, 2013).

In this work, the extended quadrature method of moments (EQMOM) with β kernel density

functions (Yuan et al., 2012) is adopted to approximate solutions to the statistically homoge-

neous composition PDF equation, which is closed using the FP model for molecular mixing.

EQMOM is an extension of the quadrature method of moments (QMOM), initially proposed

by McGraw (1997) for problems involving aerosols, and later applied to chemical engineering

problems by Marchisio et al. (2003b). In the EQMOM approach (Yuan et al., 2012), the com-

position PDF is approximated by a discrete sum of positive kernel density functions (KDF),

instead of the Dirac delta functions used in QMOM. This allows a continuous reconstruction

of the PDF to be obtained from a finite set of integer moments. The choice of the functional

form of the kernel density function is based on the support of the PDF whose moments are to

be reconstructed, and on the explicit knowledge of the recurrence relation of the polynomials

orthogonal to such kernel density function. In particular, if the PDF is defined on the compact

support [0, 1], the β density function is an appropriate choice, while for a PDF defined on the

positive real like, the gamma or log-normal density functions would be adequate.

It is worth noting that, differently from the direct QMOM (Marchisio and Fox, 2005) used

in multi-environment PDF models (Fox, 1998, 2003; Wang and Fox, 2004), which directly

computes the quadrature weights and abscissae associated to the moments of the composition

PDF, EQMOM solves for the moments of the PDF, which are conserved quantities in the

calculation. For spatially inhomogeneous cases, this feature allows a realizable finite-volume

scheme to be formulated, as illustrated in Vikas et al. (2011, 2013b). While we consider

homogeneous problems in this case, a brief discussion of the extension to non-homogeneous
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problems is provided in the conclusions. Hereinafter, the turbulent mixing model resulting

from the application of β-EQMOM to the composition PDF equation, closed with the FP

model, will be referred to as the β-EQMOM-FP model.

The primary objectives of the work are two fold. First, the version of the FP molecular mixing

model proposed by Fox (2003) is validated against DNS for binary (Eswaran and Pope, 1988)

and ternary (Juneja and Pope, 1996) mixing. To the best of our knowledge, this step has not

been previously reported for the FP model. In doing so, we demonstrate that the FP model

for binary mixing is essentially identical to the amplitude mapping closure (AMC) (Pope,

1991), including at very short times, where the β-PDF model yields poor predictions. Second,

the β-EQMOM approach is shown to yield accurate approximations for the composition PDF

equation using as few as four moments (i.e. 〈φ〉, 〈φ2〉, 〈φ3〉, 〈φ4〉) for binary mixing. This result

opens the possibility of applying the β-EQMOM-FP model in practical computational fluid

dynamic (CFD) simulations of complex flows as an alternative to the widely used assumed

β-PDF model. In addition, we demonstrate that the β-EQMOM-FP model can be used for

ternary mixing problems for which assumed PDF models are not available (Fox, 2003).

The remainder of the paper is structured as follows. In Sec. 3.2 the evolution equation for

the composition PDF is reported, and the FP molecular mixing model is summarized. The

β-EQMOM approach is introduced in Sec. 3.4, while the moment transport equations and

the corresponding source terms originating from the equation forthe composition PDF are

presented in Sec. 3.3. The AMC, used as a reference to validate the FP model, is summarized

in Sec. 3.5. Next, the β-EQMOM-FP approach is validated in Sec. 3.6. In particular, Sec. 3.6.3

shows the validation results for the binary mixing cases of Eswaran and Pope (1988) using

the conditional scalar dissipation rate (CSDR) proposed by Fox (2003), and Sec. 3.6.4 presents

the corresponding results obtained using the CSDR from AMC. Section 3.6.5 concludes with

the application of the β-EQMOM-FP approach to the ternary mixing case of Juneja and Pope

(1996).
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3.2 Evolution equation for the composition PDF

The evolution equation of the composition PDF fφ (ψ; x, t) for nonreacting, passive scalars,

assuming constant density, reads (Pope, 2000; Fox, 2003)

∂fφ
∂t︸︷︷︸

rate of change

+ 〈Ui〉
∂fφ
∂xi︸ ︷︷ ︸

convection in physical space
due to the mean velocity

(macromixing)

+
∂

∂xi
(〈ui|ψ〉 fφ)︸ ︷︷ ︸

convection in physical space due to
the scalar conditioned velocity fluctuations

(mesomixing)

=

− ∂

∂ψi

(〈
Γi∇2φ′i|ψ

〉
fφ
)
− ∂

∂ψi

[(
Γi∇2 〈φi〉

)
fφ
]

︸ ︷︷ ︸
transport in composition space

due to the molecular mixing
(micromixing)

, (3.1)

where repeated indices imply summation. The i-th composition variable is denoted by φi, and

its phase-space component by ψi. Fluctuations about the mean are denoted with a prime:

φ′i. In this work, we consider only statistically homogeneous cases for which the convection in

physical space is null. The molecular diffusivity of species i is denoted by Γi. For statistically

homogeneous systems, ∇2 〈φi〉 is null, leaving only the first term on the right-hand side of (5.1).

In order to close this term, a molecular mixing model is needed. Two models will be considered

in this work: the interaction-by-exchange-with-the-mean (IEM) model (Villermaux and Falk,

1994; Dopazo and O’Brien, 1973) and the FP model (Fox, 1992b, 1994, 1999, 2003).

The IEM model is the simplest mixing model as it assumes a linear relaxation of the concen-

tration towards its mean (Fox, 2003; Pope, 2000). The generalized IEM expression for the

conditional diffusion is

〈
Γi∇2φ′i|ψ

〉
=
∑
j,k

1

2
εij
〈
φ′jφ

′
k

〉−1
(〈φk〉 − ψk) (3.2)

where εij =
〈

(ΓiΓj)
1/2∇φ′i · ∇φ′j

〉
is the scalar covariance dissipation rate (SDR) for component

i, j, 〈φi〉 is the scalar mean for component i, and
〈
φ′jφ

′
k

〉−1
is the i, j component of the inverse

covariance matrix of the scalars (Fox, 2003). In applications, it is almost always assumed the

timescales 1/τii =
∑

j εij

〈
φ′jφ

′
i

〉−1
are the same for all components i. Moreover, it is also

assumed that the scalars are independent so that
∑

j εij

〈
φ′jφ

′
k

〉−1
= 0 when i 6= k (Fox, 2003;

Pope, 2000). While the IEM model has been widely used, in its original formulation Dopazo
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and O’Brien (1973), it does not account for differential diffusion (see Richardson and Chen

(2012) for an extension including this effect), and it assumes that all the scalars mix with a

single timescale. As a consequence, in the absence of gradients in the scalar mean, the shape

of the scalar PDF does not evolve with time.

In order to capture the change in shape, Fox (1992b, 1994) introduced the FP molecular

mixing model, as possible solution to the limitations of the IEM model. By observing that

when the Γi are equal, the conditional diffusion can be related to the joint CSDR 〈εij |ψ〉 =〈
(ΓiΓj)

1/2∇φ′i · ∇φ′j |ψ
〉

by (Fox, 2003)

〈
Γi∇2φ′i|ψ

〉
=

1

2fφ

∑
j

∂

∂ψj
(〈εij |ψ〉 fφ) . (3.3)

However, Eq. (3.3) leads to negative diffusion in phase space, as discussed by Pope (2000). To

avoid this problem, in the FP model the conditional diffusion is modeled as (Fox, 2003)

〈
Γi∇2φ′i|ψ

〉
= (cFP + 1)

〈
Γi∇2φ′i|ψ

〉
− cFP

2fφ

∑
j

∂

∂ψj
(〈εij |ψ〉 fφ) (3.4)

where cFP is a positive constant that controls the diffusive relaxation rate for the shape of the

PDF. The generalized IEM model in (5.3) is then used to close the first term on the right-hand

side of Eq. (3.4) (Fox, 2003):

〈
Γi∇2φ′i|ψ

〉
=

(
cFP + 1

2

)∑
j,k

εij
〈
φ′jφ

′
k

〉−1
(〈φk〉 − ψk)−

cFP

2fφ

∑
j

∂

∂ψj
(〈εij |ψ〉 fφ) . (3.5)

This formulation yields the generalized IEM model in the case of cFP = 0. Here, cFP = 10 is

chosen to ensure an accurate reproduction of the results obtained in comparison with AMC

(see Section 3.6.2 for details).

Eliminating the terms representing transport in physical space, the evolution equation for a

univariate composition PDF can be written as

∂fφ
∂t

= R (ψ; t) (3.6)

where fφ = fφ (ψ; t), and R (ψ; t) is the source term due to micromixing. The models for

R (ψ; t) using the IEM and FP models are, respectively,

RIEM (ψ; t) = − ∂

∂ψ

[
εφ

2 〈φ′2〉
(〈φ〉 − ψ) fφ

]
, (3.7)
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RFP (ψ; t) = −cFP + 1

2

∂

∂ψ

[
εφ
〈φ′2〉

(〈φ〉 − ψ) fφ

]
+
cFP

2

∂2

∂ψ2
(〈εφ|ψ〉 fφ) (3.8)

where the SDR εφ is the expected value of the CSDR, which we indicate with 〈εφ|ψ〉. The form

of the CSDR must be provided by the user to close the FP model (Fox, 2003). In Sec. 3.3.1,

we consider two possible closures based on the β PDF (Fox, 2003) and AMC (Pope, 1991).

In the case of a bivariate composition PDF for the mixture-fraction vector ξ with phase-space

vector ζ (Fox, 2003), the statistically homogeneous version of Eq. (5.1) with the mixing term

closed using the FP model yields

∂fξ
∂t

= −cFP + 1

2

2∑
i,j,k=1

∂

∂ζi

[
εij
〈
ξ′jξ
′
k

〉−1
(〈ξk〉 − ζk) fξ

]
+
cFP

2

2∑
i,j=1

∂2

∂ζi∂ζj
(〈εij |ζ1, ζ2〉 fξ) (3.9)

where εij is the expected value of the joint CSDR 〈εij |ζ1, ζ2〉. The components of the inverse

covariance matrix are defined by

〈
ξ′1ξ
′
1

〉−1
=

〈
ξ′22
〉〈

ξ′21
〉 〈
ξ′22
〉
− 〈ξ′1ξ′2〉

2 ,〈
ξ′1ξ
′
2

〉−1
= − 〈ξ′1ξ′2〉〈

ξ′21
〉 〈
ξ′22
〉
− 〈ξ′1ξ′2〉

2 ,

〈
ξ′2ξ
′
2

〉−1
=

〈
ξ′21
〉〈

ξ′21
〉 〈
ξ′22
〉
− 〈ξ′1ξ′2〉

2 .

(3.10)

As in the univariate case, a closure is required for the joint CSDR. Fox (2003) proposed the

following closure:

〈ε11|ζ1, ζ2〉 = αζ1 (1− ζ1 − ζ2)− βζ1ζ2,

〈ε12|ζ1, ζ2〉 = βζ1ζ2,

〈ε22|ζ1, ζ2〉 = γζ2 (1− ζ1 − ζ2)− βζ1ζ2

(3.11)

where

α =
ε11 + ε12

〈ξ1 (1− ξ1 − ξ2)〉
, β =

ε12

〈ξ1ξ2〉
, γ =

ε22 + ε12

〈ξ2 (1− ξ1 − ξ2)〉
. (3.12)

As described in Fox (2003), this closure ensures that the joint PDF found by solving (3.9)

is nonzero only inside the phase-space triangle defined by 0 ≤ ζi and 0 ≤ ζ1 + ζ2 ≤ 1 (i.e.,

the phase-space diffusive flux is null in the direction normal to the boundary). The three SDR

components in (3.12) must be supplied by a separate model for the scalar covariance dissipation

rate. By definition the 2×2 matrix with components εij has to be symmetric and non-negative.
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In Sec. 3.6.5 we relate ξ to the two scalars (φ1, φ2) used in the ternary mixing case of Juneja

and Pope (1996), for which the covariance and the cross SDR (i.e. ε12) are null.

3.3 Transport equations for the moments of the composition PDF

Transport equations for the moments are now obtained for the univariate and bivariate cases

considered in the present work.

3.3.1 Univariate case

The moment of order m of the univariate PDF fφ (ψ; t) is defined as

〈φm〉 (t) =

∫
fφ (ψ; t)ψmdψ. (3.13)

Multiplying both sides of Eq. (3.6) by ψm and integrating with respect to ψ, we obtain∫
ψm

∂fφ
∂t

dψ =

∫
ψmR (ψ; t) dψ. (3.14)

Observing that differentiation and integration commute on the left-hand side of Eq. (3.14), and

indicating with Rm(t) the moment of order m of R(ψ, t)

Rm(t) =

∫
ψmR (ψ; t) dψ, (3.15)

the transport equations for the moments of fφ (ψ; t) are obtained:

∂ 〈φm〉
∂t

= Rm (t) . (3.16)

The expression for the source term obtained from the IEM model is

Rm,IEM (t) =
mεφ

2 〈φ′2〉
(〈
φm−1

〉
〈φ〉 − 〈φm〉

)
(3.17)

where
〈
φ′2
〉

=
〈
φ2
〉
− 〈φ〉2. Note that this expression is closed for the integer moments up to

order m ≥ 0.

The form of the source term Rm,FP for the FP model depends on the choice for the functional

form of the CSDR. As this choice essentially determines the predicted shape of the scalar PDF,
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it is the most important part of the FP model. Based on the β PDF with support [0, 1], Fox

(2003) proposed

〈εφ|ψ〉 = εφ
ψ (1− ψ)

〈φ〉 − 〈φ2〉
, (3.18)

which leads to a source term for the moment transport equations given by

Rm,FP (t) =
cFP + 1

2

mεφ
〈φ′2〉

(〈
φm−1

〉
〈φ〉 − 〈φm〉

)
+
m (m− 1) cFPεφ

(〈
φm−1

〉
− 〈φm〉

)
2 (〈φ〉 − 〈φ2〉)

. (3.19)

It is important to note that (3.19) is closed for the moments up to order m ≥ 0. (The cases

m = 0, 1 are trivial.) In other words, the predicted values of the moments will not depend on

how the scalar PDF is reconstructed from the moments (e.g. using β-EQMOM). The case of

a scalar PDF with support [−1, 1] is treated by applying a linear transformation to map the

support to [0, 1], in which case the numerator of (3.18) is 1 − ψ2 (Fox, 2003). In Sec. 3.5 we

introduce an alternative choice to (3.18) based on the AMC (Pope, 1991).

3.3.2 Bivariate case

The moments of the joint mixture-fraction PDF fξ (ζ; t), in which ζ = (ζ1, ζ2) ∈ Ω = {0 ≤

ζi, 0 ≤ ζ1 + ζ2 ≤ 1}, are defined as

〈ξm1 ξn2 〉 (t) =

∫
Ω
fξ (ζ1, ζ2; t) ζm1 ζ

n
2 dζ1dζ2. (3.20)

Multiplying both sides of Eq. (3.9) by ζm1 ζ
n
2 , and integrating with respect to ζ1 and ζ2, yields

the transport equations for the moments of fξ (ζ1, ζ2; t):

∂ 〈ξm1 ξn2 〉
∂t

= Rmn (t) (3.21)

where Rmn (t) is the moment of the source term

Rmn (t) =

∫
Ω
R (ζ1, ζ2; t) ζm1 ζ

n
2 dζ1dζ2 (3.22)
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For the FP model with the joint CSDR closure in (3.11), this yields

Rmn,FP (t) =
cFP + 1

2
m
(
ε11

〈
ξ′1ξ
′
1

〉−1
+ ε12

〈
ξ′1ξ
′
2

〉−1
) (〈

ξm−1
1 ξn2

〉
〈ξ1〉 − 〈ξm1 ξn2 〉

)
+
cFP + 1

2
m
(
ε11

〈
ξ′1ξ
′
2

〉−1
+ ε12

〈
ξ′2ξ
′
2

〉−1
) (〈

ξm−1
1 ξn2

〉
〈ξ2〉 −

〈
ξm−1

1 ξn+1
2

〉)
+
cFP + 1

2
n
(
ε12

〈
ξ′1ξ
′
1

〉−1
+ ε22

〈
ξ′1ξ
′
2

〉−1
) (〈

ξm1 ξ
n−1
2

〉
〈ξ1〉 −

〈
ξm+1

1 ξn−1
2

〉)
+
cFP + 1

2
n
(
ε12

〈
ξ′1ξ
′
2

〉−1
+ ε22

〈
ξ′2ξ
′
2

〉−1
) (〈

ξm1 ξ
n−1
2

〉
〈ξ2〉 − 〈ξm1 ξn2 〉

)
+
cFP

2
m (m− 1)

[
α
(〈
ξm−1

1 ξn2
〉
− 〈ξm1 ξn2 〉 −

〈
ξm−1

1 ξn+1
2

〉)
− β

〈
ξm−1

1 ξn+1
2

〉]
+
cFP

2
n (n− 1)

[
γ
(〈
ξm1 ξ

n−1
2

〉
−
〈
ξm+1

1 ξn−1
2

〉
− 〈ξm1 ξn2 〉

)
− β

〈
ξm+1

1 ξn−1
2

〉]
+ cFPmnβ 〈ξm1 ξn2 〉 (3.23)

where
〈
ξ′iξ
′
j

〉−1
are the inverse components defined in (3.10). If we denote the maximum

moment order by K (i.e., 0 ≤ n+m ≤ K), it can be observed that (3.23) is closed for the set

of bivariate moments up to order K. Thus, as in the univariate case in (3.19), the FP model

solution for the bivariate moments does not depend on how the joint mixture-fraction PDF is

reconstructed.

If the time scales 1/τi =
∑

j εij

〈
ξ′jξ
′
i

〉−1
are assumed to be equal to τφ, then ε12 = 〈ξ′1ξ′2〉 /τφ

in the standard model. The time scale τφ must then be related to the turbulence time scales

to close the FP model. In this work, we either take τφ directly from the DNS data, or simply

use it as a fixed parameter to rescale the time t in the moment evolution equations.

3.4 Extended quadrature method of moments

The β-EQMOM (Madadi-Kandjani and Passalacqua, 2015; Marchisio and Fox, 2013; Yuan

et al., 2012; Chalons et al., 2010; Nguyen et al., 2016) is used in this study to compute an

approximate solution to the univariate PDF transport equation. In this method, a univariate

PDF is approximated by a weighted sum of non-negative KDFs δσ (ψ,ψi):

f (ψ; t) ≈
N∑
α=1

wαδσ (ψ, 〈φ〉α) (3.24)

where wα and 〈φ〉α are, respectively, the weights and abscissae associated with the Gaussian

quadrature computed from the first 2N transported moments. The right-hand side of Eq. (3.24)
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contains 2N + 1 unknowns: N weights (w1, w2, · · · , wN), N abscissae (〈φ〉1 , 〈φ〉2 , · · · , 〈φ〉N) and

the parameter σ, assumed to be common for all KDFs (Yuan et al., 2012). The value of σ is

determined by enforcing that the last moment of a set with an odd number of moments (a total

of 2N + 1 moments) is preserved by the approximated PDF (Nguyen et al., 2016).

The choice of the KDF depends on the support of the PDF to be reconstructed and on the ease

of computation of the orthogonal polynomials associated with the KDF. Previous works on

the validation of the assumed PDF approach in turbulent mixing (Madnia et al., 1991; Frankel

et al., 1992) compared the β-PDF with the mixture-fraction PDF reconstructed from DNS in

both homogeneous flow and turbulent shear flow. In general, it was found that the assumed

β-PDF gives a reasonable approximation of the mixture-fraction PDF, especially when the

mixture-fraction variance is much less than one. We will then use the β KDF (Yuan et al.,

2012) to formulate the β-EQMOM closures used in this work. In theory, any other KDF with

support [0, 1] could be used for this purpose (Yuan et al., 2012).

The β KDF is defined as

δσ (ψ, 〈φ〉α) =
ψλα−1 (1− ψ)µα−1

B (λα, µα)
, ψ ∈ [0, 1] (3.25)

where λα = 〈φ〉α/σ, µα = (1− 〈φ〉α) /σ, and

B (λα, µα) =

∫ 1

0
θλα−1(1− θ)µα−1dθ (3.26)

represents the beta function.

A linear transformation allows this distribution to be defined on the arbitrary compact support

[a, b] (Hu et al., 2015). The integer moment of order k of the β KDF is

Mk (ψ, σ) =
ψ + (k − 1)σ

1 + (k − 1)σ
Mk−1 for k > 0, (3.27)

with M0 = 1. Thus, the integer moments of the scalar PDF to be approximated as in (3.24)

can be written as 〈
φk
〉

=

N∑
α=1

wαGk (〈φ〉α , σ) (3.28)

where

Gk (〈φ〉α , σ) =


1 if k = 0,

k−1∏
i=0

(
〈φ〉i+iσ

1+iσ

)
if k ≥ 1.

(3.29)
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Eq. (3.28) defines a lower triangular system of equations to find the 2N + 1 unknowns, i.e. N

weights, N abscissae and σ:〈
φk
〉

= χkM
∗
k + χk−1M

∗
k−1 + · · ·+ χ1M

∗
1 (3.30)

where the non-negative coefficients χk depend only on σ, and M∗k =
∑N

α=1wα 〈φ〉
k
α. The

improved version (Nguyen et al., 2016) of the iterative procedure of Yuan et al. (2012) is used

to compute the values of the quadrature weights, abscissae and of the parameter σ from the

2N + 1 transported scalar moments (1, 〈φ〉,
〈
φ2
〉
, . . . ,

〈
φ2N

〉
). Note that fixing N = 1 reduces

β-EQMOM to the assumed β-PDF approximation Girimaji (1991).

As illustrated in Section 3.6.5, the bivariate cases considered in this work are reduced to the

application of the univariate β-EQMOM procedure for each of the scalars, argument of the joint

composition PDF, by means of a linear mapping. This is possible because only the marginal

composition PDFs, and not the joint composition PDF, are reconstructed in the bivariate case

concerning ternary mixing.

3.5 Mapping closure

Mapping closures were initially developed by Kraichnan (1989, 1990) and Chen et al. (1989)

and were applied to model tubulent scalar mixing. Pope (1991) used the same approach to

study the evolution of an inert scalar in isotropic turbulence decaying from a PDF initially

set to be constituted by a double delta function. He compared the results obtained from the

solution of the mapping closure with those obtained from the DNS of Eswaran and Pope (1988),

and demonstrated the agreement between the two models. An analytical expression for the

PDF is (Pope, 1991)

fφ (ψ, t) =
1

2
Σ (t) exp

(
−1

2
η2
[
1− Σ (t)−2

])
(3.31)

where

Σ (t)2 = e2t − 1, η =
√

2Σ (t) erf−1 (ψ) . (3.32)

As pointed out by Pope (1991), the time t enters into (3.31) only through the scalar variance.

In other words, for a fixed scalar variance the shape of the PDF does not depend on t. Similar
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behavior was observed by Eswaran and Pope (1988). In the literature, the AMC in (3.31) is

considered to be the best model for binary mixing in the case of homogeneous turbulence, and

hence it has often been used for validating other molecular mixing models Meyer and Jenny

(2006); Meyer (2010).

Using the AMC, the CSDR can be expressed as (Fox, 2003)

〈εφ|ψ〉AMC = N (t)εφ exp
[
−2
(
erf−1 (2ψ − 1)

)2]
(3.33)

where

N (t) =

{∫ 1

0
exp

[
−2
(
erf−1 (2ψ − 1)

)2]
fφ (ψ; t) dψ

}−1

. (3.34)

The expression for Rm in Eq. (3.16) obtained from the AMC model is

Rm,AMC (t) =
cFP + 1

2

mεφ
〈φ′2〉

(〈
φm−1

〉
〈φ〉 − 〈φm〉

)
+
m (m− 1) cFPεφ

2
NN

N∑
i=1

Ni∑
j=1

wiwij exp
[
−2
(
erf−1 (2ψij − 1)

)2]
ψm−2
ij (3.35)

where NN(t) is found by substituting the quadrature representation of the PDF into Eq. (3.34)

(Yuan et al., 2012):

NN(t) =


N∑
i=1

Ni∑
j=1

wiwij exp
[
−2
(
erf−1 (2ψij − 1)

)2]
−1

(3.36)

with Ni ≥ N+1. The secondary weights wij and abscissae ψij are the Gauss-Jacobi quadrature

corresponding to the β KDF, which can be computed using the methodology described in

Yuan et al. (2012). The value of Ni is chosen large enough that the numerical value of NN

is insensitive to Ni. Compared to (3.19), the choice of the AMC CSDR leads to an unclosed

moment system due to (3.34). We are thus interested to know which choice (3.18) or (3.33)

performs best in the FP model.

3.6 Results and discussion

In order to investigate its capability to capture the known shape of the PDF, and to determine

the required number of KDFs, β-EQMOM is applied first to reconstruct the composition PDF

using the moments from AMC. After establishing this capability, a set of simulations is then
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performed using β-EQMOM-FP to determine the effect of the model constant cFP, in order to

match the AMC PDF. Finally, the β-EQMOM-FP model is validated against the results of the

DNS of binary mixing reported in Eswaran and Pope (1988), and of ternary mixing reported

in Juneja and Pope (1996).

3.6.1 Verification of β-EQMOM

The first step to verify that the β-EQMOM is able to accurately reconstruct the PDF obtained

with AMC in Sec. 3.5, and to determine the number of KDFs required to achieve this result.

The reader should note that this step is of pure numerical interest, and does not involve the FP

closure model, but simply the β-EQMOM procedure. Moments of the AMC PDF are computed

and provided as input to β-EQMOM, and the number N of KDFs is varied to determine its

effect on the shape of the reconstructed PDF. Figure 3.1 shows the results obtained using

from one to four KDFs. It is possible to observe that with N = 1, the agreement at the initial

time is poor, but β-EQMOM closely matches the AMC PDF at later times. As noted earlier,

the latter is expected because both the AMC and the β PDF approach a Gaussian PDF for

large times. Results with N ≥ 2 show that the reconstructed PDFs agree closely with the AMC

PDFs at all times. These results demonstrate that β-EQMOM is capable of reconstructing the

shape of the PDFs of interest in the binary mixing problems given a known set of moments as

input. Moreover, as the difference between N = 2 and 3 is negligible, it is possible to conclude

that for binary mixing only two KDFs are required to accurately reproduce the AMC PDF.

Thus, CFD models for turbulent mixing can make use of the FP model by solving for as few as

four mixture-fraction moments: 〈ξ〉,
〈
ξ2
〉
,
〈
ξ3
〉
,
〈
ξ4
〉
. Compared to the assumed β-PDF model,

the two additional moments are needed to capture the shape of the PDF when the variance is

near its maximum value (i.e., the PDF is close to two Dirac delta functions) as seen in Fig. 3.1.

3.6.2 Choice of the value of the diffusive relaxation rate constant

The constant cFP, which appears in the FP model, controls the diffusive relaxation rate of the

PDF. In this section, we obtain solutions with different values of cFP, and compare the results

with those obtained with the AMC. Figure 3.2 shows that as cFP increases, the distributions



85

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 = 0.94

 = 0.76

 = 0.54

 = 0.38

 = 0.27

(a) N = 1

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 = 0.94

 = 0.76

 = 0.54

 = 0.38

 = 0.27

(b) N = 2

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 = 0.94

 = 0.76

 = 0.54

 = 0.38

 = 0.27

(c) N = 3

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 = 0.94

 = 0.76

 = 0.54

 = 0.38

 = 0.27

(d) N = 4

Figure 3.1: Comparison between the analytical solution obtained with the mapping closures

(Pope, 1991) (solid lines) and the approximated distribution obtained with β-EQMOM (sym-

bols) using different numbers of quadrature nodes N. Each curve represents a fixed value of

scalar variance
〈
φ′2
〉

(t).
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Figure 3.2: Comparison of the PDF found from the β-EQMOM-FP model with different cFP

and variances with the results obtained from the mapping closure model.
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Figure 3.3: Time-evolution of scaled fourth-order central moment κ4 =
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φ′4
〉
/
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φ′2
〉2

using β-

EQMOM-FP with N = 2 at different values of cFP for a symmetric PDF with support [−1, 1].

are comparable to those obtained with AMC. In particular, a value of cFP = 10 or higher

yields results in good agreement with AMC. For smaller values of cFP, the PDF is closer to

that predicted with the IEM model. As cFP fixes the time scale for diffusive relaxation, it is

reminiscent of the “generation time” used in the multiple mapping closure (MMC) as described

by Sundaram et al. (2016). Here, as in MMC, it is necessary to consider two micromixing time

scales: τφ and τφ/cFP. Thus, if the FP model is used for a reactive scalar, a second Damköhler

number will arise to describe the timescale ratio between diffusive relaxation and chemical

reactions. It can be anticipated that this new Damköhler number will better characterize

ignition/extinction phenomena than the one based on integral-scale mixing τφ.

It is worth noting that the moments 〈φ〉 and
〈
φ2
〉

do not depend on cFP. Thus, changing its

value only affects moments of orders higher than two. In general, in order to recover the AMC

PDF, cFP must be set large enough that it no longer affects these higher-order moments. In

fact, if the only requirement were to recover the AMC PDF then we can set cFP = ∞ and

use algebraic expressions for the third- and fourth-order moments. These observations are

confirmed in Fig. 3.3, which shows for large times the scaled fourth-order central moment relaxes

to 3, which is the value for the Gaussian distribution. The curves for different cFP overlap for

values higher than 5. For pure mixing problems like the ones considered in this work, the value

of cFP can be set arbitrarily large. However, when additional physics are included in the PDF
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transport equation, a more precise definition will be needed for fixing its value relative to other

timescales. The theoretical estimates developed for the MMC (Sundaram et al., 2016) may be

helpful in this respect. Nonetheless, as the AMC PDF holds for purely diffusive problems Fox

(1992b, 1994), one cannot link a priori the value of cFP to the turbulence time scales without

considering the length scales of molecular diffusion. For fully developed turbulent flows for

which τφ ∝ k/ε where k is the turbulent kinetic energy and ε its dissipation, if the Schmidt

number is greater than one, then the diffusion time scale would yield cFP ∝ k/
√
εν where ν is

the kinematic viscosity of the fluid.

3.6.3 Validation of β-EQMOM-FP model against DNS of binary mixing

Three cases of mixing in homogeneous isotropic turbulence, with different time evolutions of the

scalar dissipation rate (Figure 3.4), are now considered to validate the β-EQMOM-FP model

against the DNS results of Eswaran and Pope (1988). In these cases, the initial scalar fields are

constituted by two Dirac delta functions, located at points −1 and 1 in composition space, to

represent a binary mixing problem, characterized by the presence of the scalar at two different

states. The time-dependent SDR (εφ(t)) obtained from the DNS Eswaran and Pope (1988),

for the three cases, is provided as input to the β-EQMOM-FP model. The evolution of εφ as

a function of the dimensionless time τ is shown in Fig. 3.4 for the three cases considered here.

The SDR is combined with the moment source term in (3.19) to solve for the closed system of

moments 〈φm〉 for m ∈ {1, 2, 3, 4}. The parameter cFP = 10 was chosen to reproduce the AMC

behavior as described in Section 3.6.2.

Figure 3.5 shows the scalar PDF reported by Eswaran and Pope (1988) compared to the results

obtained using β-EQMOM-FP at different values of the scalar variance Φ, for case 1. Two

KDFs (N = 2) were used to obtain these results. It is apparent that the results provided by

β-EQMOM-FP after the first few time steps differ from those of the DNS (Eswaran and Pope,

1988). This difference, however, can be explained by noting that the initial condition defined

in the DNS simulations (Eswaran and Pope, 1988) is not an exact pair of Dirac delta functions,

due to the difficulties of generating this configuration in a discretized space. However, with

β-EQMOM-FP, as with AMC, it is possible to have an exact initial definition of the scalar
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Figure 3.4: Evolution of the scalar dissipation rate for three test cases as functions of the

dimensionless time from Eswaran and Pope (1988).

PDF. Further advancing the β-EQMOM-FP solution in time shows that the model predicts

the evolution towards the well-mixed condition in reasonable agreement with the DNS results,

and converges towards a Gaussian PDF (Fig. 3.5(e)).

Figures 3.6 and 3.7 show the results obtained for Cases 2 and 3, respectively. In both cases,

the β-EQMOM-FP model satisfactorily predicts the evolution of the PDF, and its relaxation

to a Gaussian distribution, as it is observed in the DNS. The satisfactory performance of the

β-EQMOM-FP model for binary mixing is a direct reflection of its agreement with AMC as

seen in Section 3.6.2. We show next that the quality of the predictions depends on the choice

of the CSDR.

3.6.4 β-EQMOM-FP model of binary mixing with the AMC CSDR

The solution for the three cases considered in Sec. 3.6.3 using the AMC CSDR found by solving

(3.35) is considered here. Two KDFs (N = 2) and eight secondary nodes (Ni = 5) were used to

study the evolution of the PDF with the AMC CSDR. Figure 3.8 shows the results obtained

using the AMC CSDR for Cases 1 and 2. Using the AMC CSDR, the PDF relaxes to a

Gaussian distribution as expected. However, the agreement with the DNS and AMC is not as

good as with the CSDR given in (3.18). It is worth mentioning that increasing the number of
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Figure 3.5: Evolution of scalar PDF for Case 1 at different variances.
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Figure 3.6: Evolution of scalar PDF for Case 2 at different variances.
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Figure 3.7: Evolution of scalar PDF for Case 3 at different variances.
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Figure 3.8: Evolution of scalar PDF using β-EQMOM-FP with AMC CSDR at different vari-

ances.

KDFs does not improve the predicted shape of the PDF. Quadrature methods are accurate for

Ni ≥ 2N + 1 secondary nodes (Yuan et al., 2012) and increasing Ni does not affect the results.

Different values for cFP were tested, and smaller values make the result closer to the IEM model

while values of 10 or higher do not improve the prediction of the PDF. Using AMC CSDR, the

moment transport equations must be closed using the quadrature representation of the PDF.

This increases the cost of computation in the sense that an inversion is required at each time

step to compute the source terms.

3.6.5 Validation of β-EQMOM-FP model against DNS of ternary mixing

In realistic problems, such as in chemical reacting flows, it is not infrequent to have reactants

introduced in more than two inlets. In order to show that the β-EQMOM-FP model is capable

of describing such cases, we consider the ternary mixing problem studied by Juneja and Pope

(1996), who reported the evolution of the joint PDF fφ(ψ1, ψ2; t) of the two scalars. We will

use their results for the marginal PDFs to validate the results obtained with β-EQMOM-FP,

starting from the bivariate mixture-fraction model introduced in Sec. 3.3.2.

Juneja and Pope (1996) considered two scalars with an initial joint PDF constituted by a triple

delta function, corresponding to blobs of fluids at three distinct states. Figure 3.9(b) shows the

bivariate phase space. The three states corresponds to the vertices of an equilateral triangle.
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Figure 3.9: Phase-space transformation between bivariate mixture fraction and two scalars

used for ternary mixing in (Juneja and Pope, 1996). The points P1, P2 and P3 define the affine

mapping between the two spaces.

The initial states have equal probability, and therefore the means 〈φ1〉 and 〈φ2〉 are zero, which

ensures the three-way symmetry of the initial state in composition phase space. The setup is

designed so that the bivariate PDF relaxes to zero for both ψ1 and ψ2. Additionally, the two

scalars are uncorrelated so that 〈φ1φ2〉 = 0 (Juneja and Pope, 1996), and hence the cross SDR

is also zero when written in terms of φ.

In order to solve the problem using the mixture-fraction PDF, the composition phase space ψ

is mapped linearly onto the mixture-fraction phase space ζ, so that the matrix for the joint

CSDR introduced in Fox (2003), defined in terms of ζ, can be used. A graphical representation

of this mapping is illustrated in Fig. 3.9. The linear mapping is defined by the following

linear algebraic equation: ψ1

ψ2

 =

√3
√

3
2

0 3
2


ζ1

ζ2

−

√

3
2

1
2

 . (3.37)

After simplifying, the relationship between the components of ζ and ψ is found:

ψ1 =
√

3

(
ζ1 +

1

2
ζ2 −

1

2

)
ψ2 =

3

2
ζ2 −

1

2

⇐⇒
ζ1 =

√
3

3
ψ1 −

1

3
ψ2 +

1

3

ζ2 =
2

3
ψ2 +

1

3

. (3.38)

Note that using these transformation it is straightforward to write the moments 〈φm1 φn2 〉 in

terms of the moments 〈ξm1 ξn2 〉. Also note that 〈ξ1〉 = 〈ξ2〉 = 1/3, and the mixture-fraction
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variances are
〈
ξ′21
〉

= 1
3

〈
φ2

1

〉
+ 1

9

〈
φ2

2

〉
and

〈
ξ′22
〉

= 4
9

〈
φ2

2

〉
, while the mixture-fraction covariance

〈ξ′1ξ′2〉 = −2
9

〈
φ2

2

〉
is negative for this example.

In order to employ the FP model for the mixture-fraction moments in (3.23), we must relate

the SDR components defined in terms of ξ to those defined in terms of φ by using the second

part of (3.38). The transformed joint scalar dissipation matrix can be written asε11 ε12

ε12 ε22

 =
1

9

3εφ11 + εφ22 −2εφ22

−2εφ22 4εφ22

 =
1

τφ

 〈ξ′21 〉 〈ξ′1ξ′2〉

〈ξ′1ξ′2〉
〈
ξ′22
〉
 (3.39)

where εφ11 =
〈
φ2

1

〉
/τφ and εφ22 =

〈
φ2

2

〉
/τφ are the SDR components for φ, and the scalar

mixing time τφ is found from the DNS. Note that (3.39) implies that
∑

j εij

〈
ξ′jξ
′
k

〉−1
= 1

τφ
δi,k

in (3.9), which is just the single scalar timescale model used in the IEM model Fox (2003).

Univariate moments defined over the space ψ are obtained from the bivariate moments over ζ

by means of Eq. (3.38), leading to

〈φm1 〉 = 3m/2
〈(

ξ′1 +
1

2
ξ′2

)m〉
, 〈φn2 〉 =

(
3

2

)n 〈
ξ′n2
〉
. (3.40)

By expanding the right-hand side of (3.40), the univariate moments needed for β-EQMOM-FP

reconstruction of the two marginal PDFs for φ1 and φ2 can be related to the bivariate moments

of mixture fraction. In this study N = 3 KDFs are used to reconstruct each of the two marginal

PDFs. The number of primary quadrature nodes was chosen to be able to exactly represent

the initial condition, which is constituted by three Dirac delta distributions. As a consequence

of this choice of N, 27 joint mixture-fraction moments up to sixth order are computed:

〈ξ2〉
〈
ξ2

2

〉 〈
ξ3

2

〉 〈
ξ4

2

〉 〈
ξ5

2

〉 〈
ξ6

2

〉
〈ξ1〉 〈ξ1ξ2〉

〈
ξ1ξ

2
2

〉 〈
ξ1ξ

3
2

〉 〈
ξ1ξ

4
2

〉 〈
ξ1ξ

5
2

〉
〈
ξ2

1

〉 〈
ξ2

1ξ2

〉 〈
ξ2

1ξ
2
2

〉 〈
ξ2

1ξ
3
2

〉 〈
ξ2

1ξ
4
2

〉
〈
ξ3

1

〉 〈
ξ3

1ξ2

〉 〈
ξ3

1ξ
2
2

〉 〈
ξ3

1ξ
3
2

〉
〈
ξ4

1

〉 〈
ξ4

1ξ2

〉 〈
ξ4

1ξ
2
2

〉
〈
ξ5

1

〉 〈
ξ5

1ξ2

〉
〈
ξ6

1

〉

(3.41)

The initial conditions for this moment set are easily found from the known bivariate PDF.

Recall from Sec. 3.3.2 that the 27 moment transport equations are closed. Thus, their values
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Figure 3.10: Evolution of marginal scalar PDFs for φ1 at different variances. β-EQMOM-FP

compared to the DNS of Juneja and Pope (1996).

do not depend on how the PDFs are reconstructed from the moments. For the results presented

here, the diffusive relaxation parameter is again cFP = 10.

Figure 3.10 shows the results for the marginal PDFs of φ1 and Figure 3.11 for φ2 obtained

with β-EQMOM-FP, compared to the DNS (Juneja and Pope, 1996). The marginal PDFs are

evolving and finally converge to Gaussian distributions. The marginal PDF of φ2 obtained using

β-EQMOM-FP with unequal initial conditions is in very good agreement with that obtained by

DNS. As the scalar φ2 represents binary mixing with unequal volumes, this result demonstrates

the ability of the FP model to treat such cases. For φ1, β-EQMOM-FP captures the peak

in the middle for the marginal PDF; however, it is not as sharp as the one obtained by the DNS.



97

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(a) Φ = 1

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(b) Φ = 0.9

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(c) Φ = 0.8

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(d) Φ = 0.7

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(e) Φ = 0.6

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(f) Φ = 0.5

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(g) Φ = 0.4

-1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3 EQMOM

DNS

(h) Φ = 0.3

Figure 3.11: Evolution of marginal scalar PDFs for φ2 at different variances. β-EQMOM-FP

compared to the DNS of Juneja and Pope (1996).
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This is a result of the β-EQMOM reconstruction methodology not accounting for the fact that

the marginal PDF is a projection of the bivariate PDF for the correlated variables ξ1 and ξ2.

Thus, in order to improve the reconstruction, it would be necessary to reconstruct the bivariate

mixture-fraction PDF using a method such as CQMOM Cheng (2010); Yuan and Fox (2011).

However, before this can be done in a general way, further work will be needed to extend

CQMOM to bounded convex domains in phase space such as those in Fig. 3.9. Given that

binary mixing required moments up to fourth order, it is likely that a bivariate CQMOM using

fourth-order moments will be successful for most applications, thereby reducing the number of

moments in (3.41) that would have to be computed for ternary mixing.

3.7 Conclusions

For the first time, the extended quadrature method of moments with β KDFs has been ap-

plied to find approximate solutions for the composition PDF using the FP molecular mixing

model (Fox, 1992b, 2003). This approach allows any form of the conditional scalar dissipation

rate 〈εφ|ψ〉 to be used in the calculations. Differently from models relying on a β PDF to

approximate the mixture-fraction PDF, it is able to represent any form of the scalar PDF, due

to its capability of reproducing the moments of arbitrary distributions. For example, here we

have shown that the mixture-fraction PDF can be better captured using moments up to fourth

order.

Two mixing cases were used to validate the β-EQMOM-FP against results obtained with the

DNS (Eswaran and Pope, 1988; Juneja and Pope, 1996). For binary mixing, the initial scalar

PDF is specified as two delta functions at different locations in composition space. Results

show that the β-EQMOM-FP predicts the evolution of scalar PDF in agreement with AMC

(Pope, 1991) and the DNS results in the cases examined. For ternary mixing, the capability of

the β-EQMOM-FP to predict the time evolution of the moments of the bivariate scalar PDF

was demonstrated considering the DNS of Juneja and Pope (1996). Here, the β-EQMOM-FP

approach predicted the evolution of the marginal PDFs towards Gaussian. However, for the

true ternary mixing problem with three delta functions for the univariate PDF, the middle

peak was not as well captured. Nonetheless, the applicability of the β-EQMOM-FP approach
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to solve turbulent mixing problems has been demonstrated for the first time.

Finally, the closure for the conditional scalar dissipation rate in the FP model was shown to

have a strong effect on the predictions, and it was found that the simplest closure produces

the best results. This conclusion was initially verified by reconstructing the PDF obtained

with known moments from the AMC. In this manner, it was demonstrated how the diffusive

relaxation time scale in the FP model affects the solution.

Future work should focus on applying quadrature-based moment methods (QBMM) with the

PDF transport equation to investigate turbulent reacting scalars. In principle, once the PDF

equation has been closed (e.g., using the FP molecular mixing model), its solution can be

approximated using QBMM.

The extension of the proposed approach to non-homogeneous problems can be achieved by

keeping the spatial transport terms in the moment transport equations obtained from (5.1).

These will consist of a diffusion and an advection term, in physical space, for each moment.

The solution of the moment transport equations obtained in this way has to be performed

with a numerical scheme that ensures the realizability of the transported moment set. As

discussed in Vikas et al. (2013b), the discretization of the moment diffusion term does not

present difficulties, if a traditional second-order finite-volume scheme is used. More difficulties

are faced when dealing with the discretization of the moment advection term, which is known

to be problematic Wright (2007), because it may compromise the realizability of the set of

transported moments, when using numerical schemes other than the first order upwind. In

the framework of quadrature-based moment methods, the closure of the advection term can be

achieved using a kinetic-based flux Perthame (1992); Desjardins et al. (2008); Fox et al. (2008).

In these schemes, the PDF reconstructed by means of the quadrature approximation is used

to close the convective term of the moment transport equations, as illustrated in Desjardins

et al. (2008); Fox et al. (2008). These schemes were extended to higher order of discretization in

Vikas et al. (2011); Laurent and Nguyen (2017), where the technical details of the discretization

of the moment transport equations are provided.
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CHAPTER 4. A QUADRATURE-BASED CFD MODEL FOR

SINGLE-PHASE TURBULENT REACTING FLOWS

Abstract

In this study, a new model based on quadrature-based moments method is used to investigate

the single-phase turbulent reacting flows. Transport equation based on the join composition

probability density function is introduced for the mixture fraction and reaction progress vari-

ables as internal coordinates. Later the conditional quadrature method of moments (CQMOM)

(Yuan and Fox, 2011) is used to close the transport equation. Interaction by exchange with

the mean and the Fokker-Planck mixing models are used for the term related to the mixing

in composition space. A numerical procedure is then adopted to address the reaction of two

species in a string. The direct quadrature method of moments (DQMOM) is also employed and

the correction terms related to DQMOM is derived for this problem. The results obtained by

CQMOM with different mixing models and different reaction mechanisms are then compared

to those obtained by DQMOM.

4.1 Introduction

Turbulent reacting flows are an important field of study. Understanding the behavior of these

flows are of great importance. Computational fluid dynamics is one of the convenient tools

to simulate such complex flow. It is the branch of study that expands fast by growing the

power of computers. Turbulent reactive flows mostly happen in engineering applications. For

example, in combustion, where different species start reacting with each other during the burn-

ing process to produce heat and work, it is being used to increase the fuel efficiency and

reduce soot and NOx. Moreover in reacting flows, chemical compositions can be determined
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by turbulent mixing and chemical reactions. In current flow simulations, as an example in

Reynolds-averaged Navier-Stokes (RANS) equations, transport equations are solved for aver-

aged components (Pope, 2000; Fox, 2003). In such models, there is a need to close terms arising

from the fluctuating components. In chemically reacting flows, the chemical source terms that

occur in material and energy balance equations are unclosed (Meyer and Jenny, 2009; Akroyd

et al., 2010) and modeling of these components are necessary.

Large number of models are introduced for chemical source terms in previous studies (Fox,

2003; O’Brien, 1980; Peters, 2000; Poinsot and Veynante, 2005). In this study, to overcome the

closure problem in turbulent transport and chemical reaction, PDF methods are applied. The

advantage of using PDF method is that it provides the entire information on joint composition

PDF. However, there is a need of mixing models for molecular diffusion.

Large number of mixing models have been proposed in literature (Curl, 1963; Villermaux and

Falk, 1994; Tsai and Fox, 1995; Fox, 1992b, 1994; Subramaniam and Pope, 1998; Meyer and

Jenny, 2009). In this study Interaction by exchange with the mean and Fokker-Planck models

are considered to close the molecular diffusion.

Approximation solution of PDF transport equation can be determined using several approaches.

Monte Carlo solution techniques (Lin et al., 2002; Meimaroglou and Kiparissides, 2007; Rosner

and Yu, 2001; Smith and Matsoukas, 1998; Zhao et al., 2007) and method of classes (Balakin

et al., 2014; Bannari et al., 2008; Becker et al., 2011; Hounslow et al., 1988; Hounslow, 1990;

Kumar and Ramkrishna, 1996a,b; Puel et al., 2003) are some examples of those methods.

Although these methods are intuitive and accurate, they are computationally expensive to be

used in large-scale CFD simulations. A sufficiently accurate approach to finding the solution of

the PDF is the quadrature-based moment methods. Quadrature method of moments (QMOM)

is initially proposed by McGraw (1997) for aerosols application and later used by Marchisio et al.

(2003b) for chemical engineering applications. Later direct quadrature method of moments

introduced by Marchisio and Fox (2005) in the context of population balance equation. The

shortcoming of this method is that it uses the discrete representation of the PDF and it does

not guarantee the conservation of moments as the non-conserved quantities of weights and

abscissae are being transported.
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In order to overcome this limitation, we use the conditional quadrature method of moments

introduce by Yuan and Fox (2011). In this method, a moment-inversion algorithm based on the

adaptive quadrature of conditional composition moments is used to approximate the continuous

distributions. It has been shown that this method always yields realizable distribution functions

Yuan and Fox (2011).

The remainder of this chapter is structured as below. In Sec. 4.2 we present the joint com-

position PDF transport equation for turbulent reactive flows. Different reactions such as one

reaction, two competitive consecutive reaction, and fast reactions are considered in this study

and the model is adopted for such reactions. Two mixing models e.g. interaction by exchange

with the mean and Fokker-Planck models are used to close the molecular diffusion term. In

Sec. 4.3, we introduce the new model based on conditional quadrature method of moments.

This method is implemented to turbulent reactive flows to overcome the closure problem in

turbulent transport and chemical reaction terms. In Sec. 4.4 we review the algorithm we use

to compute the mixture fraction and progress variables depending on the reaction type. In

Sec. 4.5, we provide a solution of turbulent reacting flows using the direct quadrature method

of moments. Finally in Sec.4.6 we compare the results obtained by CQMOM with DQMOM

with different mixing models and different reaction types.

4.2 Transported PDF method for turbulent reacting flow

The joint composition transport equation which treats both the velocity and the compositions

as random variables is derived in previous studies (Fox, 2003). The composition PDF evolves

by macromixing (convective transport in real space due to the mean velocity), mesomixing

(convective transport in composition space due to the scalar-conditioned velocity fluctuations),

micromixing (transport in composition space due to the molecular mixing) and chemical reac-

tions. Thus, depending on the problem, we can identify the transport equation with different

micromixing terms and different chemical reaction conditions.To model a problem that involves

mixing, it is possible to define the source terms in two ways. These two types of source term

can lead us to the two transport equations which can be defined as:



119

• Interaction by exchange with the mean (IEM)

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

(4.1)

• Fokker-Planck

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

+
1

2

∂2

∂ξ2
[〈ε | ξ〉 f ] (4.2)

where

L{} =
∂

∂t
+ 〈U〉 ∂

∂x
− ∂

∂x

(
Γt

∂

∂x

)
, (4.3)

ξ is mixture fraction, 〈ξ〉 is mean mixture fraction, f probability density function,
〈
ξ′2
〉

is

variance of the mixture fraction, εξ is dissipation factor, t is time, 〈U〉 is mean velocity and

Γt denotes turbulent diffusivity. If the problem under study also involves the reaction, source

terms for the reaction would be defined in three ways depend on the nature of the reaction.

These three kinds of reaction can be defined as:

• Competitive consecutive reaction

A+B → R

B +R→ S

(4.4)

• Fast competitive consecutive reaction

A+B → R

B +R→ S

(4.5)

• One step reaction

A+B → R (4.6)

where the A and B are the reactants, R is the primary product and S is the bi-product. Thus

chemical source terms can be defined as:

• Competitive consecutive reaction

R1 (ξ, Y1, Y2) = ξstk1cB0

(
1− ξ

1− ξst
− Y1

)(
ξ

ξst
− Y1 − Y2

)
,

R2 (ξ, Y1, Y2) = ξstk2cB0 (Y1 − Y2)

(
ξ

ξst
− Y1 − Y2

)
.

(4.7)
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• Fast competitive consecutive reaction

R (ξ, Y2) = ξstk2cB0h1 (ξ, Y2)h2 (ξ, Y2) . (4.8)

with

h1 (ξ, Y2) =
1− ξ

1− ξst
− Y2

h2 (ξ, Y2) =
ξ − ξst

ξst (1− ξst)
− Y2

(4.9)

It should be mention here that in the limit where k1cB0 → ∞, the first reaction can be

written in terms of Y2 and ξ.

Y1 (ξ, Y2) = min

(
ξ

ξst
− Y2,

1− ξ
1− ξst

)
(4.10)

• one step reaction

R (ξ, Y1) = ξstk1cB0

(
1− ξ

1− ξst
− Y1

)(
ξ

ξst
− Y1

)
. (4.11)

where Y1 denotes progress variable for the first reaction, Y2 progress variable for the second

reaction, ξ mixture fraction, cA0 initial concentration of a reactant A, cB0 initial concentration

of a reactant B, k1 reaction rate constant for the first reaction, k2 reaction rate constant for

the second reaction and the ξst stoichiometric mixture fraction can be described as

ξst =
cA0

cA0 + cB0

. (4.12)

Implementing the reaction source terms, transport equation for different reaction condition

with different micromixing terms can be introduced as:

• IEM mixing with competitive consecutive reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]
− ∂

∂Y1
[R1 (ξ, Y1, Y2) f ]

− ∂

∂Y2
[R2 (ξ, Y1, Y2) f ] (4.13)

• IEM mixing with fast competitive consecutive reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]
− ∂

∂Y2
[R2 (ξ, Y2) f ] (4.14)
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• IEM mixing with one step reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]
− ∂

∂Y1
[R1 (ξ, Y1) f ] (4.15)

• Fokker-Planck mixing with competitive consecutive reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

+
1

2

∂2

∂ξ2
[〈ε | ξ〉 f ]

− ∂

∂Y1
[R1 (ξ, Y1, Y2) f ]− ∂

∂Y2
[R2 (ξ, Y1, Y2) f ] (4.16)

• Fokker-Planck mixing with fast competitive consecutive reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

+
1

2

∂2

∂ξ2
[〈ε | ξ〉 f ]− ∂

∂Y2
[R2 (ξ, Y2) f ] (4.17)

• Fokker-Planck mixing with one step reaction

L{f} = − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

+
1

2

∂2

∂ξ2
[〈ε | ξ〉 f ]− ∂

∂Y1
[R1 (ξ, Y1) f ] (4.18)

4.3 Solution of the turbulent reacting flow using the conditional

quadrature method of moments (CQMOM)

It is convenient to introduce the conditional density functions f (Y2 | ξ, Y1) and f (Y1 | ξ) which

are corresponds to the conditional density function for Y2, given fixed values for the ξ and Y1,

and the conditional density function for Y1, given fixed values for the ξ respectively. Then the

conditional density function related to the mixture fraction and the progress variables can be

expressed as:

f = f (ξ, Y1, Y2) = f (Y2 | ξ, Y1) f (ξ, Y1) = f (Y2 | ξ, Y1) f (Y1 | ξ) f (ξ) . (4.19)

The conditional moments can be expressed using the conditional density functions and can be

defined by

〈
Y j

1

〉
(ξ) ≡

∫
Y j

1 f (Y1 | ξ) dY1 (4.20)
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and

〈
Y j

2

〉
(ξ, Y1) ≡

∫
Y j

2 f (Y2 | ξ, Y1) dY2 (4.21)

Let Mnjk denote the moments of f , where the non-negative integers n,j and k represents the

order for each scalar, e.g. mixture fraction and progress variable one and progress variable two.

Thus the moments in integral form is defined as:

Mnjk (x, t) =

∫∫∫
ξnY j

1 Y
k

2 f (ξ, Y1, Y2; x, t) dξdY1dY2. (4.22)

Using the same definition it is possible to show that:

Mnj0 =

∫∫
ξnY j

1 f (ξ, Y1) dξdY1 =

∫
ξn
〈
Y j

1

〉
(ξ) f (ξ) dξ (4.23)

and

Mnjk =

∫∫
ξnY j

1

〈
Y k

2

〉
(ξ, Y1) f (ξ, Y1) dξdY1 (4.24)

In quadrature-based moment method (QBMM) the scalar distribution function can be repre-

sented by:

f (φ) =
N∑
α=1

wαδ (φ− φα) , (4.25)

where φα = (ξ, Y1, Y2) represent the scalar of interest, wα are the weights. For clarity, we will

assume that only mean values for the conditional scalars are necessary, e.g. we assume that

N2 = N3 = 1. The number of the primary nodes are N1 = 2. This assumption yields to

the fact that the conditional weights becomes unity by definition. We also assume that the

primary moments represent the mixture fraction while the conditional moments are represent

the progress variables, Y1 and Y2. Implementing Eq. 5.15 into Eq. 5.14 can be expressed as:

f (ξ, Y1, Y2) =

N1∑
α=1

wαδ (ξ − ξα) δ (Y1 − Y1;α) δ (Y2 − Y2;α) . (4.26)
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Given the assumptions above, we reconstruct the coefficient matrices for the CQMOM:

V =

 1 1

ξ1 ξ2

 , and R =

w1 0

0 w2

 . (4.27)

Using the coefficient matrices, the set of the equation can be written to find the conditional

moments from the original transported moments. These equations can be expressed as:

VR

Y1;1 Y2;1

Y1;2 Y2;2

 =

M010 M001

M110 M101

 . (4.28)

Y1;1 Y2;1

Y1;2 Y2;2

 =
1

w1w2ξ2 − w1w2ξ1

 w2ξ2 −w2

−w1ξ1 w1


M010 M001

M110 M101

 . (4.29)

In other words we can express the conditional moments as:

Y1;1 =
1

w1 (ξ2 − ξ1)
[ξ2M010 −M110] ,

Y1;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M010 +M110] ,

Y2;1 =
1

w1 (ξ2 − ξ1)
[ξ2M001 −M101] ,

Y2;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M001 +M101] .

(4.30)

In terms of the moments, Eq. 5.16 can be expressed for the assumed case as:

Mnjk =

N1∑
α=1

wαξ
n
αY

j
1;αY

k
2;α. (4.31)

Using the definition for the moments, we can rewrite the transport equations in the form of

moments for each problem. Thus the moments transport equations will be defined as:

• Pure IEM mixing

L{Mn} =
nεξ
〈ξ′2〉

(Mn−1M1 −Mn) . (4.32)

• Pure Fokker-Planck mixing

L{Mn} =
nεξ
〈ξ′2〉

(Mn−1M1 −Mn) +
n (n− 1) εξ

2 (M1 −M2)
(Mn−1 −Mn) . (4.33)
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• IEM mixing with competitive consecutive reaction

L{Mnjk} =
nεξ
〈ξ′2〉

(Mn−1M100 −Mn)

+

N1∑
α=1

wαR1 (ξα, Y1;α, Y2;α)
(
jξnαY

j−1
1;α Y k

2;α

)
+

N1∑
α=1

wαR2 (ξα, Y1;α, Y2;α)
(
kξnαY

j
1;αY

k−1
2;α

)
. (4.34)

• IEM mixing with fast competitive consecutive reaction

L{Mnk} =
nεξ
〈ξ′2〉

(Mn−1M10 −Mn) +

N1∑
α=1

wαR (ξα, Y2,α)
(
kξnαY

k−1
2,α

)
. (4.35)

• IEM mixing with one step reaction

L{Mnj} =
nεξ
〈ξ′2〉

(Mn−1M10 −Mn) +

N1∑
α=1

wαR1 (ξα, Y1,α)
(
jξnαY

j−1
1,α

)
. (4.36)

• Fokker-Planck mixing with competitive consecutive reaction

L{Mnjk} =
nεξ
〈ξ′2〉

(Mn−1M100 −Mn) +
n (n− 1) εξ

2 (M100 −M200)
(Mn−1 −Mn)

+

N1∑
α=1

wαR1 (ξα, Y1;α, Y2;α)
(
jξnαY

j−1
1;α Y k

2;α

)
+

N1∑
α=1

wαR2 (ξα, Y1;α, Y2;α)
(
kξnαY

j
1;αY

k−1
2;α

)
. (4.37)

• Fokker-Planck mixing with fast competitive consecutive reaction

L{Mnk} =
nεξ
〈ξ′2〉

(Mn−1M10 −Mn) +
n (n− 1) εξ

2 (M10 −M20)
(Mn−1 −Mn)

+

N1∑
α=1

wαR (ξα, Y2,α)
(
kξnαY

k−1
2,α

)
. (4.38)

• Fokker-Planck mixing with one step reaction

L{Mnj} =
nεξ
〈ξ′2〉

(Mn−1M10 −Mn) +
n (n− 1) εξ

2 (M10 −M20)
(Mn−1 −Mn)

+

N1∑
α=1

wαR1 (ξα, Y1,α)
(
jξnαY

j−1
1,α

)
. (4.39)
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4.4 CQMOM algorithm and chemical kinetics

Here, we present the procedure we used to implement the CQMOM model. The mixture

fraction is considered to be the primary direction and the progress variable one and progress

variable two are considered to be the conditional directions. Below we describe the algorithm:

• Initialize the number of nodes per each direction ( our problem has three dimensions, e.g.

mixture fraction, progress variable one and progress variable two.

• We consider the two primary nodes and one conditional node for the second and third

direction. Choosing of one node is due to the fact that there is no information and closure

for the cross terms that may appear on the right-hand side of the equation between

mixture fraction and chemical reactions. Also, we are only interested in the mean values

of the progress variables for the first and second reaction.

• We use initial values for the concentrations to calculate the stoichiometric mixture frac-

tion.

• We initialize moments of PDF. Depend on reaction condition, we use set of moments as

it is stated below:

– Pure mixing (one dimension)

M000 M100 M200 M300 (4.40)

– Mixing with competitive consecutive reaction (three dimension)

M000 M010 M001

M100 M110 M101

M200

M300

(4.41)
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– Mixing with fast competitive consecutive reaction (two dimension)

M000 M001

M100 M101

M200

M300

(4.42)

– Mixing with one step reaction (two dimension)

M000 M010

M100 M110

M200

M300

(4.43)

• Invert the moments of the mixture fraction dimension e.g. M000, M100, M200 and M300

using the adaptive Wheeler algorithm to obtain the primary weights, wα, and primary

abscissae, ξα.

• Using the conditional moments of the second direction to find the abscissae of the progress

variable one for the node 1 and node 2:

Y1;1 =
1

w1 (ξ2 − ξ1)
[ξ2M010 −M110] ,

Y1;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M010 +M110] .

(4.44)

• Using the conditional moments of the third direction to find the abscissae of the progress

variable two for the node 1 and node 2:

Y2;1 =
1

w1 (ξ2 − ξ1)
[ξ2M001 −M101] ,

Y2;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M001 +M101] .

(4.45)

This step depends on the problem if we have the third direction or not.

• For fast competitive consecutive reaction, the value for the abscissae of progress variable

one for the node 1 and node 2 will be calculated after solving the transport equations for

the moments of progress variable:

Y1 (ξ, Y2) = min

(
ξ

ξst
− Y2,

1− ξ
1− ξst

)
. (4.46)
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• Solve the transport equations for the moments with the source terms described before for

each problem with the different model for the mixing and different type of reaction.

• Use the mean values for the mixture fraction (M100), progress variable one (M010) and

progress variable two (M001) to calculate the concentration using the equations below

(for pure mixing there is no concentration included in calculations):

– Mixing with competitive consecutive reaction

cA = cA0 [1− ξ − (1− ξst)Y1] ,

cB = cB0 [ξ − ξst (Y1 + Y2)] ,

cR = cB0ξst (Y1 − Y2) ,

cS = cB0ξstY2.

(4.47)

– Mixing with fast competitive consecutive reaction

cA = cA0 [1− ξ − (1− ξst)Y1] ,

cB = cB0 [ξ − ξst (Y1 + Y2)] ,

cR = cB0ξst (Y1 − Y2) ,

cS = cB0ξstY2.

(4.48)

– Mixing with one step reaction

cA = cA0 [1− ξ − (1− ξst)Y1] ,

cB = cB0 [ξ − ξst (Y1)] ,

cR = cB0ξstY1.

(4.49)

• Use the current values of the moments for the next time step and implement the same

procedure for the next step until the end of the simulation.

4.5 Solution of the turbulent reacting flow using the direct quadrature

method of moments (DQMOM)

In order to compare the results obtained by CQMOM and DQMOM, we follow the path pre-

sented before in Fox (2003). Here we only consider the evolution equation for joint composition
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PDF for three scalar, ξ, Y1 and Y2 with IEM model and two competitive consecutive reaction

which is defined in Eq. 4.13. Thus the PDF can be approximated as:

f (ξ, Y1, Y2) =

N∑
α=1

wαδ (ξ − ξα) δ (Y1 − Y1,α) δ (Y2 − Y2,α) , (4.50)

We begin derivation of the DQMOM by implementing the Eq. 4.50 into the Eq. 4.13. We

assume that

∂wα
∂t

+ 〈U〉 ∂wα
∂x
− ∂

∂x

(
Γt
∂wα
∂x

)
= aα

∂wα 〈ξ〉α
∂t

+ 〈U〉
∂wα 〈ξ〉α

∂x
− ∂

∂x

(
Γt
∂wα 〈ξ〉α

∂x

)
= b1α

∂wα 〈Y1〉α
∂t

+ 〈U〉
∂wα 〈Y1〉α

∂x
− ∂

∂x

(
Γt
∂wα 〈Y1〉α

∂x

)
= b2α

∂wα 〈Y2〉α
∂t

+ 〈U〉
∂wα 〈Y2〉α

∂x
− ∂

∂x

(
Γt
∂wα 〈Y2〉α

∂x

)
= b3α

(4.51)

Inserting Eq. 4.50 into 4.13 and using Eq. 4.51 and some trivial algebra we have
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N∑
α=1

δ (ξ − ξα) δ (Y1 − Y1,α) δ (Y2 − Y2,α) aα

−
N∑
α=1

δ(1) (ξ − ξα) δ (Y1 − Y1,α) δ (Y2 − Y2,α) [b1α − ξαaα]

−
N∑
α=1

δ (ξ − ξα) δ(1) (Y1 − Y1,α) δ (Y2 − Y2,α) [b2α − Y1,αaα]

−
N∑
α=1

δ (ξ − ξα) δ (Y1 − Y1,α) δ(1) (Y2 − Y2,α) [b3α − Y2,αaα]

= Rm + 2

N∑
α=1

δ(1) (ξ − ξα) δ(1) (Y1 − Y1,α) δ (Y2 − Y2,α)wαc12α

+ 2

N∑
α=1

δ(1) (ξ − ξα) δ (Y1 − Y1,α) δ(1) (Y2 − Y2,α)wαc13α

+ 2
N∑
α=1

δ (ξ − ξα) δ(1) (Y1 − Y1,α) δ(1) (Y2 − Y2,α)wαc23α

+
N∑
α=1

δ(2) (ξ − ξα) δ (Y1 − Y1,α) δ (Y2 − Y2,α)wαc11α

+
N∑
α=1

δ (ξ − ξα) δ(2) (Y1 − Y1,α) δ (Y2 − Y2,α)wαc22α

+
N∑
α=1

δ (ξ − ξα) δ (Y1 − Y1,α) δ(2) (Y2 − Y2,α)wαc33α, (4.52)

where

c11α = Γt
∂ξα
∂x

∂ξα
∂x

, c22α = Γt
∂Y1,α

∂x

∂Y1,α

∂x
, c33α = Γt

∂Y2,α

∂x

∂Y2,α

∂x

c12α = Γt
∂ξα
∂x

∂Y1,α

∂x
, c13α = Γt

∂ξα
∂x

∂Y2,α

∂x
, c23α = Γt

∂Y1,α

∂x

∂Y2,α

∂x
.

(4.53)

If we write the integer moments of the joint PDF, and considering that the derivatives of delta

function is defined as (Pope, 2000)

∫
δ(m) (x− s) g (x) dx = (−1)m g(m) (s) (4.54)

where g(m) (s) is the mth derivative of the g (x), yields to
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N∑
α=1

(1− n− j − k) ξnαY
j

1,αY
k

2,αaα +
N∑
α=1

nξn−1
α Y j

1,αY
k

2,αb1α

+
N∑
α=1

jξnαY
j−1

1,α Y k
2,αb2α +

N∑
α=1

kξnαY
j

1,αY
k−1

2,α b3α

= Rm + 2
N∑
α=1

njξn−1
α Y j−1

1,α Y k
2,αwαc12α + 2

N∑
α=1

nkξn−1
α Y j

1,αY
k−1

2,α wαc13α

+ 2

N∑
α=1

jkξnαY
j−1

1,α Y k−1
2,α wαc23α +

N∑
α=1

n (n− 1) ξn−2
α Y j

1,αY
k

2,αwαc11α

+

N∑
α=1

j (j − 1) ξnαY
j−2

1,α Y k
2,αwαc22α +

N∑
α=1

k (k − 1) ξnαY
j

1,αY
k−2

2,α wαc33α,

(4.55)

where the moments of the source terms can be represented as

Rm =

N∑
α=1

nεξ
〈ξ′2〉

wα (〈ξ〉 − ξα) ξn−1
α Y j

1,αY
k

2,α

+
N∑
α=1

jwαR1ξ
n
αY

j−1
1,α Y k

2,α +
N∑
α=1

kwαR2ξ
n
αY

j
1,αY

k−1
2,α . (4.56)

As it is mentioned before, we consider two primary nodes in mixture fraction direction and

only one node for each progress variable. Thus we need to find the solution for the moment set

as below:

M000 M010 M001

M100 M110 M101

M200

M300

(4.57)

In order to find the solution for unknown parameters in the above equations, we first consider

the part which only contains the information related to the mixture fraction. Thus we have a

linear system of the form

A1α1 = β1, (4.58)
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where

αT
1 =

[
a1 a2 b11 b12

]
=

 a

b1


T

, (4.59)

and

A1 =



1 1 0 0

0 0 1 1

−〈ξ〉21 −〈ξ〉22 2 〈ξ〉1 2 〈ξ〉2

−2 〈ξ〉31 −2 〈ξ〉32 3 〈ξ〉21 3 〈ξ〉22


. (4.60)

The right hand side of Eq. 4.58 can be written as

β1 = A2Wc1 + A3Wr, (4.61)

where

W = diag (w1, w2) , (4.62)

c1
T =

[
c111 c112

]
, (4.63)

A2 =



0 0

0 0

2 2

6 〈ξ〉1 6 〈ξ〉2


, (4.64)

A3 =



0 0

1 1

2 〈ξ〉1 2 〈ξ〉2

3 〈ξ〉21 3 〈ξ〉22


, (4.65)
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and

r1 =

 εξ
〈ξ′2〉 (〈ξ〉 − 〈ξ〉1)

εξ
〈ξ′2〉 (〈ξ〉 − 〈ξ〉2)

 =

r11

r12

 . (4.66)

If we assume a = 0, then we have

b11 = w1r11 +
w1c111 + w2c112

〈ξ〉1 − 〈ξ〉2
,

b12 = w2r12 +
w1c111 + w2c112

〈ξ〉2 − 〈ξ〉1
.

(4.67)

With known values for the four parameters related to the mixture fraction, a1,a2,b11 and b12,

we use the other four linear system of equations to obtain the remaining unknown parameters,

Thus we can write the system of equations as

A4α2 = β2, (4.68)

where

A4 =



1 1 0 0

〈ξ〉1 〈ξ〉2 0 0

0 0 1 1

0 0 〈ξ〉1 〈ξ〉2


, (4.69)

αT
2 =

[
b21 b22 b31 b32

]
=

b2

b3


T

. (4.70)

The right hand side of Eq. 4.68 can be written as

β2 = A5Wc2 + A6Wc3 −A7α1 + r, (4.71)

where

c2
T =

[
c121 c122

]
, (4.72)
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c3
T =

[
c131 c132

]
, (4.73)

A5 =



0 0

2 2

0 0

0 0


, (4.74)

A6 =



0 0

0 0

0 0

2 2


, (4.75)

A7 =



0 0 0 0

−〈ξ〉1 〈Y1〉1 −〈ξ〉2 〈Y1〉2 〈Y1〉1 〈Y1〉2

0 0 0 0

−〈ξ〉1 〈Y2〉1 −〈ξ〉2 〈Y2〉2 〈Y2〉1 〈Y2〉2


, (4.76)

and

r =



w1R21 + w2R22

w1 〈ξ〉1R21 + w2 〈ξ〉2R22

w1R31 + w2R32

w1 〈ξ〉1R31 + w2 〈ξ〉2R32


=



r21

r22

r31

r32


=

r2

r3

 . (4.77)

Finally we can obtain the terms as

b21 = w1r21 +
2w1c121 + 2w2c122 − 〈Y1〉1 b11 − 〈Y1〉2 b12

〈ξ〉1 − 〈ξ〉2
,

b22 = w2r22 +
2w1c121 + 2w2c122 − 〈Y1〉1 b11 − 〈Y1〉2 b12

〈ξ〉2 − 〈ξ〉1
,

b31 = w1r31 +
2w1c131 + 2w2c132 − 〈Y2〉1 b11 − 〈Y2〉2 b12

〈ξ〉1 − 〈ξ〉2
,

b32 = w2r32 +
2w1c131 + 2w2c132 − 〈Y2〉1 b11 − 〈Y2〉2 b12

〈ξ〉2 − 〈ξ〉1
,

(4.78)
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4.6 Results and discussion

In this section, we propose a test case similar to those proposed by Akroyd et al. (2010). It

is a one-dimensional reactive mixing problem where two species A and B are initialized at the

right and left of a string respectively. The two species start to mix and react and produce the

R product and S bi-product

A+B
k1−→ R

B +R
k2−→ S

(4.79)

Reaction system can be considered as a competitive consecutive in which the first reaction

happens between A and B and produces R with reaction rate constant of k1. Then in regions

where the mixing is slow relative to the second reaction, the product R in a parallel reaction,

reacts with B and produces S with reaction rate constant of k2. In chemical engineering

application usually, the first reaction is assumed to be faster than the second one. Fig. 4.1

shows the configuration of the problem under investigation.

Figure 4.1: The schematic of one dimensional reactive mixing problem

In this study we assume k1 = 5.0 × 106 m3/kmol s and k2 = 1.8 × 103 m3/kmol s. Initial

concentration of species A and B are 2.97 mol/m3 and 2.86 mol/m3 respectively. Fluxes

are imposed to be zero at walls (Neumann conditions). Initial condition for two streams are

presented at Tab. 4.1.

Fig. 4.2 shows the evolution of species concentration. As it is shown the almost 5 seconds

B reacts with A. After the species B are reacted, the concentration of species A diffuse and

become homogeneous in the system. Also, this figure shows that most production of R happens
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Table 4.1: Initial condition for N = 2.

Variable A B Variable A B

w1 1 0 Y1;1 0 0

w2 0 1 Y1;2 0 0

ξ1 0 0 Y2;1 0 0

ξ2 1 1 Y2;2 0 0

(a) (b)

(c) (d)

Figure 4.2: CQMOM-IEM – (a) concentration of species A, (b) concentration of species B, (c)

concentration of species R, (d) concentration of species S.

in the middle. Maximum production of bi-product S happens near to B stream and after there

is a sufficient R produced and still B is present in the system.

Fig. 4.3 shows the evolution of mixture fraction, the variance of mixture fraction and two

progress variables. As it is shown in Fig. 4.3(a), two species are starting to mix and relaxes to

the average mixture fraction of 0.5. The variance of the mixture fraction is high at initial time

steps in the middle of the stream where two species mostly meet each other. Also since the

first reaction is faster than the second one, the progress variable one relaxes to a higher value

than the one for the second progress variable.
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(a) (b)

(c) (d)

Figure 4.3: CQMOM-IEM – (a) mean mixture fraction, (b) mean mixture fraction variance,

(c) progress variable one, (d) progress variable two.

Fig. 4.4 and Fig. 4.5 show similar results obtained by FP model for micromixing. However

since the FP model includes the effect of differential diffusion, homogeneous results for Y1 and

Y2 have %1.9 and %4 difference respectively.

Fig. 4.6 and Fig. 4.7 shows the results obtained using the DQMOM-IEM. The same behav-

ior is predicted by the DQMOM-IEM in consistent to those observed by CQMOM-IEM and

CQMOM-FP. However DQMOM-IEM predicts the production of R less than CQMOM those

predicted by CQMOM.

In chemical engineering applications, the competitive consecutive reactions are studied in t0he

limit where k1cB0 → ∞. In this limit, the first reaction progress variable can be written in

terms of ξ and Y2 which is shown at Eq. 4.10. Fig. 4.8 show the concentration of reactant and

products for fast reactions using the IEM model. As it is shown in this figure, at the early time

steps, high production of R happens in the middle where A and B contacts with each other.

In this case, the amount of bi-product S is less and most of produced at the side near to B.
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(a) (b)

(c) (d)

Figure 4.4: CQMOM-FP – (a) concentration of species A, (b) concentration of species B, (c)

concentration of species R, (d) concentration of species S.

(a) (b)

(c) (d)

Figure 4.5: CQMOM-FP – (a) mean mixture fraction, (b) mean mixture fraction variance, (c)

progress variable one, (d) progress variable two.
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(a) (b)

(c) (d)

Figure 4.6: DQMOM-IEM – (a) concentration of species A, (b) concentration of species B, (c)

concentration of species R, (d) concentration of species S.

(a) (b)

(c) (d)

Figure 4.7: DQMOM-IEM – (a) mean mixture fraction, (b) mean mixture fraction variance,

(c) progress variable one, (d) progress variable two.
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(a) (b)

(c) (d)

Figure 4.8: CQMOM-IEM fast reaction – (a) concentration of species A, (b) concentration of

species B, (c) concentration of species R, (d) concentration of species S.

Similar behavior is obtained for the fast reaction modeled by CQMOM-FP and the results are

consistent with those obtained by CQMOM-IEM model.

4.7 Conclusion

In this study, CQMOM approach is introduced for the turbulent reacting flows. The joint

composition PDF for the mixture fraction and progress variables of two parallel reactions is

introduced. Interaction by exchange with the mean (IEM) and Fokker-Planck (FP) with β

distribution are considered for the micromixing term. The transport equation for the moments

of PDF is introduced for the cases with competitive consecutive reactions and fast reactions.

Analytical closure terms of DQMOM-IEM method for specified joint composition PDF is also

derived and reported. As it is stated before (Akroyd et al., 2010; Tsai and Fox, 1994), in this

method the diffusion term may cause a loss of boundedness.

The numerical behavior of CQMOM-IEM, CQMOM-FP and DQMOM-IEM are presented for

different reaction and mixing models. The results present satisfactory agreement between the
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(a) (b)

(c) (d)

Figure 4.9: CQMOM-IEM fast reaction – (a) mean mixture fraction, (b) mean mixture fraction

variance, (c) progress variable one, (d) progress variable two.

(a) (b)

(c) (d)

Figure 4.10: CQMOM-FP fast reaction – (a) concentration of species A, (b) concentration of

species B, (c) concentration of species R, (d) concentration of species S.
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(a) (b)

(c) (d)

Figure 4.11: CQMOM-FP fast reaction – (a) mean mixture fraction, (b) mean mixture fraction

variance, (c) progress variable one, (d) progress variable two.

methods. Different quantities obtained by CQMOM and DQMOM were reported at final time

step. Finally, the efficiency of algorithms is reported. CQMOM compare to DQMOM is faster

according to the time of simulations obtained in the same condition. The advantage of using

CQMOM is that it conserves a larger number of moments than DQMOM, by definition. In

DQMOM, transport equations for weights and abscissae are solved which are non-conserved

quantities while in CQMOM, moments are transported.
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CHAPTER 5. A QUADRATURE-BASED CFD MODEL FOR

TURBULENT REACTING FLOWS COUPLED WITH POPULATION

BALANCE

Abstract

A comprehensive model based on conditional quadrature method of moments (CQMOM) was

developed to solve turbulent mixing problems associated with population balance equations

(PBE) by approximating the evolution equation of the composition probability density func-

tion (PDF) for the moments of the PBE. The well-established Interaction-by-Exchange-with-

the-Mean (IEM) model was used to close the PDF evolution equation. The new CQMOM

methodology was coupled to a quadrature-based PBE solver for univariate problems, which

relies on the extended quadrature method of moments (EQMOM). The two procedures were

implemented into the OpenQBMM R© framework, which leverages the OpenFOAM R© CFD tool-

box. The CQMOM approach for mixing problems was first tested considering two consecutive

competitive reactions to verify the implementation and validate the proposed approach. The

coupled turbulent mixing-PBE approach was then used to investigate polymer aggregation in

a multi-inlet vortex reactor (MIVR), typically used to perform flash nanoprecipitation for the

production of nanoparticles used in pharmaceutical applications. Results showing the pre-

dicted mixture fraction, reactant and product concentration fields and the polymer particle

size distribution are shown.

5.1 Introduction

Modeling of turbulent mixing and reacting flows is relevant to many engineering applications.

Examples of such applications are the spreading of contaminants in the atmosphere (Meyer and
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Jenny, 2013), and optimizing the fuel efficiency at internal combustion engines (Raman and

Pitsch, 2007; Wang and Kim, 2015; Stollinger and Heinz, 2010). Moreover, in reacting flows,

chemical compositions can be determined by turbulent mixing and chemical reactions. For this

purpose, the statistical methods are often used. In Reynolds-averaged Navier-Stokes (RANS)

simulations, transport equations of statistically averaged quantities like mean flow velocity are

solved (Fox, 2003; Pope, 2000). While dealing with reactive flows, the reaction source terms in

these simulations are not closed (Meyer and Jenny, 2009). To overcome the closure problem in

turbulent transport and chemical reaction, PDF methods are applied. The advantage of using

PDF method is that it provides the entire information on joint composition PDF. However,

there is a need of mixing models for molecular diffusion. Large number of mixing models have

been proposed in literature (Curl, 1963; Villermaux and Falk, 1994; Tsai and Fox, 1995; Fox,

1992b, 1994; Subramaniam and Pope, 1998; Meyer and Jenny, 2009). In this study, we use

interaction by exchange with the mean (IEM) model due to its simple form. In this model all

the scalars mix at the same rate (Fox, 2003).

Approximate solution of a composition PDF can be determined using several approaches, in-

cluding the method of classes (Balakin et al., 2014; Bannari et al., 2008; Becker et al., 2011;

Hounslow et al., 1988; Hounslow, 1990; Kumar and Ramkrishna, 1996a,b; Puel et al., 2003). It

consists in discretizing the PDF with respect to internal coordinate into a discrete number of

classes. Depend on the order of pre-defined form of the distribution it is called zero-order class

methods (Vanni, 2000) or high-order class methods Muhr et al. (1996). Although this method is

intuitive and accurate, it is computationally expensive due to a large number of classes required

to properly capture the PDF. Lin et al. (2002); Meimaroglou and Kiparissides (2007); Rosner

and Yu (2001); Smith and Matsoukas (1998); Zhao et al. (2007) used Monte Carlo methods to

solve the PDF transport equation, which however present challenges in term of computational

cost for practical applications. A successful and sufficiently accurate approach to finding the

approximate solution of composition PDF transport equation is the quadrature method of mo-

ments (QMOM) proposed by (McGraw, 1997) for aerosol applications and extensively applied

to chemical engineering application (Marchisio et al., 2003b; Marchisio and Fox, 2013). In this

approach, the PDF is represented by a weighted summation of Dirac delta functions, which is
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defined by a set of moments (Wheeler, 1974).

In direct quadrature method of moments (DQMOM) the discrete representation of the PDF

was used (Marchisio and Fox, 2005) to derive the transport equation for the quadrature weights

and abscissae. However, this method is affected by shortcomings related to the conservation of

moments due to the fact that weights and abscissae are not conserved quantities to transport

(Yuan et al., 2012).

In order to overcome this limitation, we use the conditional quadrature method of moments

introduce by Yuan and Fox (2011). In this method, a moment-inversion algorithm based on the

adaptive quadrature of conditional composition moments is used to approximate the continuous

distributions. It has been shown that this method always yields realizable distribution functions

Yuan and Fox (2011).

One of the methods to produce nanoparticles is flash nanoprecipitation (FNP) which requires

fast mixing (Johnson and Prud’homme, 2003). For aggregation of particles during FNP process,

the particle size distribution has to be as narrow as possible due to constraints on the desired

PSD for the product. This requires good mixing to take place at the micro scale. Rapid

micromixing increases the stability of nanoparticles (Cheng, 2010; Liu et al., 2008). High

mixing rates can be achieved in confined impinging jet (CIJ) reactors. They are constituted

by a cylindrical chamber, where two inlet streams collide each other and create an impinging

plane. This is the region characterized by fast production and dissipation of turbulent kinetic

energy (Gavi et al., 2007). Mixing in the CIJ can be in the order of milliseconds, but CIJ

mixers are limited by the requirement of equal momenta of two streams.

To overcome the limitations of the confined impinging jets (CIJ) reactors, recently a multi-

inlet vortex reactor is developed (Cheng, 2010; Cheng and Fox, 2010; Cheng et al., 2010; Liu

et al., 2015, 2016). The idea behind the MIVR is that the momentum from each inlet drives

the micromixing. The MIVR achieves fast mixing by inducing turbulent swirling flow from

four inlet streams. The inlet streams may have different momenta, unlike the CIJ reactors.

To investigate the mixing, reaction, and aggregation process, a computational fluid dynamics

(CFD) model is developed based on the quadrature-based moment method (QBMM) and tested

at MIVR.
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The present work proposes the new model based on conditional quadrature method of moments

to solve the joint composition PDF. Two models are introduced. First, the model for the

problems related to mixing and two competitive consecutive reactions and second a model for

problems related to aggregation of nanoparticles are introduced. The proposed procedure is

then applied to the MIVR.

The remainder of this paper is structured as below. In Sec. 5.2 we present the composition

PDF evolution equation and closure models we solve using the QBMM. In Sec. 5.3 we introduce

the model based on conditional quadrature method of moments for turbulent reacting flow. In

Sec. 5.4, we present the algorithm used to solve the problems related to turbulent mixing and

reacting flows. Consecutive competitive reactions are considered and their effect is included

by solving the composition PDF for progress variables of each reaction. Later, in Sec. 5.5,

we introduce the univariate population balance transport equation for flash nanoprecipitation

process to describe the polymer aggregation phenomena. In Sec. 5.6, we describe an algorithm

to investigate the aggregation of nanoparticles. Finally in Sec. 5.7, 5.8, 5.9, and 5.10, we apply

the introduced models to predict the mixing and reaction field and particle size distribution

inside the MIVR.

5.2 Transported PDF method for turbulent reacting flow

The evolution of joint composition PDF f (ψ; x, t) was obtained by Fox (2003) and it can be

described as:

∂f

∂t︸︷︷︸
rate of change

+ 〈Ui〉
∂f

∂xi︸ ︷︷ ︸
convection in physical space

due to the mean velocity
(macromixing)

− ∂

∂xi
(〈ui | ψ〉 f)︸ ︷︷ ︸

convection in physical space due to
the scalar conditioned velocity fluctuations

(mesomixing)

=

− ∂

∂ψi

[(
Γi∇2φ′i | ψ

)
f
]
− ∂

∂ψi

[(
Γi∇2 〈φi〉+ Si (ψ)

)
f
]

︸ ︷︷ ︸
transport in composition space due

to the molecular mixing and reaction
(micromixing)

. (5.1)
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The mesomixing term can be closed using a gradient-diffusion model (Fox, 2003):

〈ui | ψ〉 = −Γt
f

∂f

∂xi
. (5.2)

Chemical kinetics are assumed to be closed and the only remaining unclosed term in Eq. 5.1 is

the one related to micromixing. A molecular mixing model able of estimating the passive scalar

changes is needed to close the related term. In this study, we use the interaction by exchange

with the mean (IEM) model to close the micromixing. The IEM model is the simplest model

in chemical-reaction engineering and computational combustion (Villermaux and Falk, 1994;

Dopazo and O’Brien, 1973). It assumes a linear relaxation of the concentration towards its

mean (Fox, 2003; Pope, 2000; Choi et al., 2008) and reads:

〈
Γ∇2φ′i|ψ

〉
=

εφi
2
〈
φ′2i
〉 (〈φi〉 − ψi) . (5.3)

In our study, we consider a PDF of three internal coordinates, i.e. mixture fraction, progress

variable one and two. Thus we can rewrite the Eq. 5.1 as:

∂f

∂t
+ 〈U〉 ∂f

∂x
− ∂f

∂x

(
Γt
∂f

∂x

)
= − ∂

∂ξ

[(
εξ
〈ξ′2〉

(〈ξ〉 − ξ) + S (ξ)

)
f

]
− ∂

∂Y1

[(
εY1〈
Y ′21

〉 (〈Y1〉 − Y1) + S (Y1)

)
f

]

− ∂

∂Y2

[(
εY2〈
Y ′22

〉 (〈Y2〉 − Y2) + S (Y2)

)
f

]
, (5.4)

where ξ, Y1 and Y2 are mixture fraction, progress variable one and progress variable two re-

spectively, 〈·〉 is mean of scalar, f (ξ, Y1, Y2; x, t) probability density function,
〈
·′2
〉

is variance

of the scalar, ε is dissipation factor, t is time, 〈U〉 is mean velocity and Γt denotes turbulent

diffusivity. In this study we consider the consecutive competitive reaction:

A+B → R

B +R→ S,

(5.5)
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where the A and B are the reactants, R is the primary product and S is the bi-product. Thus

chemical source terms can be defined as:

R1 (ξ, Y1, Y2) = ξstk1cB0

(
1− ξ

1− ξst
− Y1

)(
ξ

ξst
− Y1 − Y2

)
,

R2 (ξ, Y1, Y2) = ξstk2cB0 (Y1 − Y2)

(
ξ

ξst
− Y1 − Y2

)
,

(5.6)

where cA0 denotes initial concentration of a reactant A, cB0 initial concentration of a reactant

B, k1 reaction rate constant for the first reaction and k2 reaction rate constant for the second

reaction. The ξst stoichiometric mixture fraction can also be described as:

ξst =
cA0

cA0 + cB0

. (5.7)

Implementing the reaction source terms, transport equation finally can be written as:

∂f

∂t
+ 〈U〉 ∂f

∂x
− ∂

∂x

(
Γt
∂f

∂x

)
= − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

− ∂

∂Y1

[
εY1〈
Y ′21

〉 (〈Y1〉 − Y1) +R1 (ξ, Y1, Y2) f

]

− ∂

∂Y2

[
εY2〈
Y ′22

〉 (〈Y2〉 − Y2) +R2 (ξ, Y1, Y2) f

]
. (5.8)

5.3 Solution of the turbulent reacting flow using the conditional

quadrature method of moments (CQMOM)

It is convenient to introduce the conditional density functions f (Y2 | ξ, Y1) and f (Y1 | ξ) which

are corresponds to the conditional density function for Y2, given fixed values for the ξ and Y1,

and the conditional density function for Y1, given fixed values for the ξ respectively. Then the

conditional density function related to the mixture fraction and the progress variables can be

expressed as:

f = f (ξ, Y1, Y2) = f (Y2 | ξ, Y1) f (ξ, Y1) = f (Y2 | ξ, Y1) f (Y1 | ξ) f (ξ) . (5.9)
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The conditional moments can be expressed using the conditional density functions and can be

defined by

〈
Y j

1

〉
(ξ) ≡

∫
Y j

1 f (Y1 | ξ) dY1 (5.10)

and

〈
Y k

2

〉
(ξ, Y1) ≡

∫
Y k

2 f (Y2 | ξ, Y1) dY2 (5.11)

Let Mnjk denote the moments of f , where the non-negative integers n,j and k represents the

order for each scalar, e.g. mixture fraction and progress variable one and progress variable two.

Thus the moments of joint composition PDF in integral form are defined as:

Mnjk (x, t) =

∫∫∫
ξnY j

1 Y
k

2 f (ξ, Y1, Y2; x, t) dξdY1dY2. (5.12)

Using the same definition it is possible to show that:

Mnj0 =

∫∫
ξnY j

1 f (ξ, Y1) dξdY1 =

∫
ξn
〈
Y j

1

〉
(ξ) f (ξ) dξ (5.13)

and

Mnjk =

∫∫
ξnY j

1

〈
Y k

2

〉
(ξ, Y1) f (ξ, Y1) dξdY1 (5.14)

In quadrature-based moment method (QBMM) the scalar distribution function can be repre-

sented by:

f (φ) =

N∑
α=1

wαδ (φ− φα) , (5.15)

where φα = (ξ, Y1, Y2) represent the scalar of interest and wα are the weights. To simplify the

problem, we will assume that only mean values for the conditional scalars are necessary, e.g.

we assume that N2 = N3 = 1. The number of the primary nodes are N1 = 2. This assumption

yields to the fact that the conditional weights becomes unity by definition. We also assume

that the primary moments represent the mixture fraction while the conditional moments are
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representing the progress variables, Y1 and Y2. Implementing Eq. 5.15 into Eq. 5.14, f can be

expressed as:

f (ξ, Y1, Y2) =

N1∑
α=1

wαδ (ξ − ξα) δ (Y1 − Y1;α) δ (Y2 − Y2;α) . (5.16)

Given the assumptions above, we reconstruct the coefficient matrices for the CQMOM (Yuan

and Fox, 2011):

V =

 1 1

ξ1 ξ2

 , and R =

w1 0

0 w2

 . (5.17)

Using the coefficient matrices, the set of equation can be written to find the conditional moments

from the original transported moments. These equations can be expressed as:

VR

Y1;1 Y2;1

Y1;2 Y2;2

 =

M010 M001

M110 M101

 . (5.18)

Y1;1 Y2;1

Y1;2 Y2;2

 =
1

w1w2ξ2 − w1w2ξ1

 w2ξ2 −w2

−w1ξ1 w1


M010 M001

M110 M101

 . (5.19)

In other words we can express the conditional moments as:

Y1;1 =
1

w1 (ξ2 − ξ1)
[ξ2M010 −M110] ,

Y1;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M010 +M110] ,

Y2;1 =
1

w1 (ξ2 − ξ1)
[ξ2M001 −M101] ,

Y2;2 =
1

w2 (ξ2 − ξ1)
[−ξ1M001 +M101] .

(5.20)

In terms of the quadrature, Eq. 5.16 can be expressed for the assumed case as:

Mnjk =

N1∑
α=1

wαξ
n
αY

j
1;αY

k
2;α. (5.21)

Using the definition for the moments, we can rewrite the transport equations in the form of

moments. Then transport equations for the integer moments will be defined as:
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∂Mnjk

∂t
+ 〈U〉

∂Mnjk

∂x
− ∂

∂x

(
Γt
∂Mnjk

∂x

)
=

nεξ
〈ξ′2〉

(Mn−1jkM100 −Mnjk)

+

N1∑
α=1

wαR1 (ξα, Y1;α, Y2;α)
(
jξnαY

j−1
1;α Y k

2;α

)
+

N1∑
α=1

wαR2 (ξα, Y1;α, Y2;α)
(
kξnαY

j
1;αY

k−1
2;α

)
. (5.22)

Using the scale similarity:

εξ
〈ξ′2〉

= Cξ
ε

k
(5.23)

with Cξ ≈ 2, we can rewrite transport equation for moments as:

∂Mnjk

∂t
+ 〈U〉

∂Mnjk

∂x
− ∂

∂x

(
Γt
∂Mnjk

∂x

)
= nCξ

ε

k
(Mn−1jkM100 −Mnjk)

+

N1∑
α=1

wαR1 (ξα, Y1;α, Y2;α)
(
jξnαY

j−1
1;α Y k

2;α

)
+

N1∑
α=1

wαR2 (ξα, Y1;α, Y2;α)
(
kξnαY

j
1;αY

k−1
2;α

)
. (5.24)

Turbulent diffusivity Γt is defined as

Γt =
Cµ
ScT

k2

ε
, (5.25)

with Cµ = 0.09 and ScT = 0.7.

5.4 CQMOM algorithm and chemical kinetics

Here, we present the procedure we used to implement the CQMOM model. The mixture

fraction is considered to be the primary direction and the progress variable one and progress

variable two are considered to be the conditional directions. Below are the steps we follow to

solve the problem:

• We initialize the number of nodes per each direction.
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• We consider the two primary node and one conditional node for the second and third

direction. Choosing of one node is due to the fact that there is no information and

closure for the cross terms that may appear at the right hand side of the equation between

mixture fraction and chemical kinetics. Also we are only interested in the mean values of

the progress variables for the first and second reaction.

• We use initial values for the concentrations to calculate the stoichiometric mixture frac-

tion.

• We initialize moments of PDF.

M000 M010 M001

M100 M110 M101

M200

M300

(5.26)

• We invert the moments of the mixture fraction e.g. M000, M100, M200 and M300 using

the Wheeler (1974) algorithm to obtain the primary weights, pα, and primary abscissae,

ξα.

• Using the conditional moments of second and third direction, we find the abscissae of the

progress variables for the node 1 and node 2.

• Using the mean values for the mixture fraction (M100), progress variable one (M010) and

progress variable two (M001) we calculate the concentration using the equations below:

cA = cA0 [1− ξ − (1− ξst)Y1] ,

cB = cB0 [ξ − ξst (Y1 + Y2)] ,

cR = cB0ξst (Y1 − Y2) ,

cS = cB0ξstY2.

(5.27)

• We use the current values of the moments for the next time step and implement the same

procedure for the next step until the end of the simulation.
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5.5 Population balance equation

A univariate population balance equation is used in this study for the flash nanoprecipitation

process to describe the aggregation phenomena. The number density f represents the number

of nanoparticles per unit volume. Due to the nature of FNP process, breakage rarely happens

and thus it is neglected in this study. The evolution equation for the population of polymers

during mixing process is then represented as

∂f

∂t
+ 〈U〉 ∂f

∂x
− ∂

∂x

(
Γt
∂f

∂x

)
= − ∂

∂ξ

[
εξ
〈ξ′2〉

(〈ξ〉 − ξ) f
]

− ∂

∂ 〈m〉

[
εξ
〈ξ′2〉

(〈m〉 −m) +R (ξ,m) f

]
(5.28)

where f (ξ, L; x, t) represents the jpoint composition PDF of mixture fraction and PBE, m is

the moment vector for PBE, Γt is the turbulent diffusivity and 〈U〉 is the mean velocity. It

should be mentioned that the IEM model used the same mixing time scale for all components of

PDF. R (ξ,m) = dm/dt is change of moments in PBE given mixture fraction and it is described

as

R (ξ,m) =
L2

2

∫ L

0

β
((
L3 − λ3

)1/3
, λ
)

(L3 − λ3)2/3
f
((
L3 − λ3

)1/3
; x, t

)
f (λ; x, t) dλ︸ ︷︷ ︸

birth of particles due to aggregation

−f (L; x, t)

∫ ∞
0

β (L, λ) f (λ; x, t) dλ︸ ︷︷ ︸
death of particles due to aggregation

. (5.29)

β (p, i) is the kernel describing aggregation between two particles. In previous studies (Cheng

and Fox, 2010; Cheng et al., 2010), details about the aggregation kernel is well described. Here

we use three types of aggregation kernel:

• Free coupling

βfree1,1 = 4πΘp (D1 +D1)
(
Rcoll1 +Rcoll1

)
(5.30)

• Unimer insertion

βinsp,1 = 4πθpA
ins
1,p

(
Rcollp +Rcollp

) (
Rcollp +Rcorp +Rcoll1

)
(Dp +D1)Dins

p,1

(Dp +D1)Rcorp +
(
Rcollp +Rcoll1

)
Dins
p,1

(5.31)
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Table 5.1: Parameters used at aggregation kernel β.

Functions Formula

Θ Heaviside function

Dp Diffusion rate = kBT/ (6πηsRp)

Rp Diffusion radius = (pNAv)vA + pNvB
B v1/3

Rcollp Collision radius = (pNAv)1/3

Rcorp Corona radius = NvB
B i(1−vB)/2v1/3

Ains1,p Efficiency factor = exp
(
−α (1, 0) i1/2p

)
, α : constant

Afus1,p Efficiency factor = exp
(
−α (1, 0) max

(
p1/2, i1/2

)
min (p, i)

)
, α : constant

Parameters

kB Boltzmann constant

T Temperature

ηs solvent viscosity

vc unit volume of organic molecule

v unit volume of polymer monomer

NA, NB unit number of monomers in A block or B block

vA, vB Flory exponent

cp initial polymer concentration

ccor corona polymer concentration

• Aggregation fusion

βfusp,i = 4πθpA
fus
1,p

(
Rcollp +Rcolli

) (
Rcollp +Rcorp +Rcolli +Rcori

)
(Dp +Di)D

fus
p,i

(Dp +Di)
(
Rcorp +Rcori

)
+
(
Rcollp +Rcolli

)
Dfus
p,i

(5.32)

We describe the parameters shown in aggregation kernel in Tab. 5.1.

Finally applying the moment definition, we can write the source terms as

R (ξ,m) =
1

2

N∑
i=1

wi

N∑
j=1

wj
(
L3
i + L3

j

)k/3
β (Li, Lj)

−
N∑
i=1

wiL
k
i

N∑
j=1

wjβ (Li, Lj) , (5.33)

where Li and Lj are the particles with different sizes in the same environment. Transport

equations for mixture fraction can be written as

∂Mk

∂t
+ 〈U〉 ∂Mk

∂x
− ∂

∂x

(
Γt
∂Mk

∂x

)
=

kεξ
〈ξ′2〉

(Mk−1M1 −Mk) , (5.34)
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and conditional moments of PBE can be described as

∂ 〈m〉
∂t

+ 〈U〉 ∂ 〈m〉
∂x

− ∂

∂x

(
Γt
∂ 〈m〉
∂x

)
= 〈R (ξ,m)〉 , (5.35)

∂ 〈ξm〉
∂t

+ 〈U〉 ∂ 〈ξm〉
∂x

− ∂

∂x

(
Γt
∂ξ 〈m〉
∂x

)
=

εξ
〈ξ′2〉

(〈ξ〉 〈m〉 − 〈ξm〉) + 〈ξR (ξ,m)〉 . (5.36)

Source terms at Eq. 5.35 and Eq. 5.36 are defined as

〈R (ξ,m)〉 =
2∑

α=1

pαR (ξ,m)

〈ξR (ξ,m)〉 =
2∑

α=1

pαξαR (ξ,m) (5.37)

5.6 Algorithm to solve aggregation in multi-inlet vortex reactor

A sequential workflow is used to investigate the aggregation of nano-particles inside MIVR

contains three parts. First we the velocity, 〈U〉 and turbulence fields, k and ε are first obtained

by solving the steady state flow field. Later, the mean mixture fraction is obtained by solving

the transport equations of mixture fraction moments. Finally, particle size distribution is

obtained by solving the population balance equation (PBE) using an extended quadrature

method of moments. We assume that particles have small Stokes number and do not affect

the fluid motion. Also, the flash nanoprecipitation does not significantly affect mixing. Once

we obtained the moments of mixture fraction, we solve two sets of equations to obtain the

moments of PBE in each environment from the conditional moments. Thus we have

〈m〉 = p1m1 + p2m2

〈ξm〉 = p1ξ1m1 + p2ξ2m2, (5.38)

where m1 and m2 are the moment vector of PBE in each environment. Solving this set of

equations we have
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Figure 5.1: Geometry of the mixing chamber. All dimensions are reported in mm.

m1 =
〈m〉 ξ2 − 〈ξm〉
p1 (ξ2 − ξ1)

m2 =
〈ξm〉 − 〈m〉 ξ1

p2 (ξ2 − ξ1)
, (5.39)

Once we obtained the PBE moments in each environment, we invert them and find the weights

and abscissae related to particle sizes. To solve the PBE moments in each environment, we

will use an extended quadrature method of moments with log-normal kernel density function

(LnEQMOM) Madadi-Kandjani and Passalacqua (2015). We use pbeTransportFoam a solver

based on OpenQBMM R© framework, which leverages the OpenFOAM R© CFD toolbox.

5.7 Case setup

Fig. 5.1 shows the simulation geometry. The vortex reactor has four inlets attached tangen-

tially to the main circular chamber. The reactor outlet is perpendicular to the main chamber.

Dimensions of vortex reactor are four identical inlet channels with width w = 1.19 mm and

height H = 1.78 mm, the radius of mixing chamber is R = 3.13 mm and the outlet radius of

r = 0.7 mm. The inlet streams have equal velocities. Two opposing streams contain solvent

and the other two are non-solvent.
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Figure 5.2: Three plates definition where the results are reported.

There are three plates defined to report the results which are located in the middle of the

chamber top quarter and bottom quarter. These plates are shown in Fig. 5.2.

5.8 Fluid field

In order to obtain the concentration fields inside the MIVR, we first solve the flow field to

obtain the velocity and turbulence fields. Flow rates are all equal in four streams in this study.

We define the Reynolds number Rej in terms of characteristic inlet velocity Uj by

Rej =
dhUj
ν

, (5.40)

where dh is the hydraulic diameter of the inlet channel and ν is the kinematic viscosity of

fluid. In this study we assume Uj = 0.1670 m s−1 which results Rej = 240. The velocity and

turbulence fields are first obtained by solving the k − ε model with a wall function. The flow

field is solved using simpleFoam which is a solver from an open source software OpenFOAM R©.

In previous studies, the LES results were used to determine the accuracy of k − ε predictions

(Cheng, 2010).

Fig. 5.3 shows the solution obtained using this setup. As shown, MIVR generates swirling flow

with higher turbulent intensity in the center of the mixing chamber. Most of the interactions

happen in the center of the chamber and thus it is the place where the turbulent kinetic energy



157

(a) (b) (c)

Figure 5.3: Steady state solution of the (a) velocity, (b) turbulent kinetic and (c) turbulent

dissipation of the flow.
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(k) and turbulent dissipation (ε) is higher. It is also the place where the mixing and reaction

mostly happen. The values of k and ε are higher at the intersection of the outlet and the

main chamber where the flow strikes with the wall while it makes the transition from a big

chamber to the small volume of the outlet. When the stream velocities are increased, the Rej

will increase. This increases the turbulent flow area and provides a more homogeneous mixing

flow.

5.9 Mixing in multi-inlet vortex reactor

The mixture fraction represents the mixing progress. Initially, two opposing streams are A and

the other two opposing streams are B. The streams have equal velocities as it is addressed in

Sec. 5.8. We assume that the streams containing B have a mixture fraction of 〈ξ〉 = 1 and

the other two opposing streams with A have mixture fraction 〈ξ〉 = 0. Fig. 5.4 shows the

concentration of A and B species and the mean mixture fraction inside the system. As mixing

proceed, in the equal feed ratio case which we are studying here, mixture fraction tends toward

the complete mixing where 〈ξ〉 = 0.5. In this case, 〈ξ〉 = 0.5 when the mixing simulation is

fully converged. In flash nanoprecipitation processes 〈ξ〉 is key since the solvent and non-solvent

should reach a specific ratio to precipitate. This will be discussed later in Sec. 5.11.

Fig. 5.5 shows the converged mixing solution for the case under study.

Generally, the large scale mixing are mainly influenced by the geometry of the reactor and

small scale mixing are determined by the energy dissipation and viscosity. In this study, the

mean mixture fraction can be written as

〈ξ〉 = M100, (5.41)

while the mixture fraction variance in the form of moments can be written as

〈
ξ′2
〉

= M200 −M2
100. (5.42)

Fig. 5.6 shows the mean and variance of the mixture fraction in the different height of the mixing

chamber. Mean mixture fraction is mostly homogeneous in the middle of mixing chamber, while
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(a) (b) (c)

Figure 5.4: Steady state solution of the (a) concentration A, (b) concentration B and (c)

mixture fraction.
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Figure 5.5: Mixture fraction obtained from mixing of two environments shown inside the cham-

ber, reaching a steady state at mixture fraction equal to 0.5.

in the quarter bottom and quarter top, there a slight variation from the mean. At the middle of

the chamber,
〈
ξ′2
〉

is nearly zero, which indicates the mixing mostly affected by the small-scale

segregation in these areas. Near to inlet streams, the mixture fraction variance is high which

indicates the mixing mostly is affected by the large scale segregation.

5.10 Reaction in multi-inlet vortex reactor

In order to obtain the concentration fields inside the MIVR, we first solve the flow field to obtain

the velocity and turbulence fields. Later we use these values to solve the moment transport

equations for the joint composition PDF to obtain the mean values for the mixture fraction,

M100, reaction progress variable one, M010, and reaction progress variable two, M001. Later we

use Eq. 5.27 to calculate the concentration of reactants and product and bi-product during the

process.

Fig. 5.7 shows the concentration of the species obtained during the competitive consecutive

inside the reaction chamber. Two opposing inlet streams contain species A and the two other
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(a) (b)

Figure 5.6: The (a) mixture fraction and (b) variance inside the mixing chamber shown in three

plates, middle (m), top quarter (q2t) and bottom quarter (q2b).

Figure 5.7: The concentration of four species for competitive consecutive reaction.
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inlets contain species B. Initially, the reactor is filled up with A. Once the B is injected into

the chamber, they start reacting and produce R and S. Since the rate of reaction, k1, is higher

for the first reaction, mostly the main product R appears in the system, while the parallel

reaction which produces bi-product, S, happens when the R meets the B and A is not present.

Fig. 5.8 and Fig. 5.9 show the concentration of each species at the middle plate of chamber

and the middle slice at the outlet. It shows the rapid reaction between A and B. Middle

of the reaction chamber is the place where the product, R and bi-product, S have a higher

concentration. The product R forms rapidly in the reaction zone and moves toward the exit,

while the bi-product S forms more slowly. As it is discussed previously, the concentration of

R is higher due to the high reaction rate of the first reaction compare to the parallel reaction

which is almost O
(
103
)
. The byproduct S is produced due to the presence of R and B when

A is absent due to the mixing limitation.

5.11 Aggregation in multi-inlet vortex reactor

A bivariate PBE is implemented for the FNP process to describe the aggregation of the polymers

and organics. Due to the nature of the FNP process breakage rarely occurs and thus is neglected

in this study. The two environments are solved as passive scalars. In the FNP process, both the

polymer and organics are dissolved in the solvent. The boundary conditions for scalars in solvent

and solvent are as below. m(0, 0)1 is set to be one, while m(k = 1−4, l = 0)1 = pini/(pini+qini),

and m(k = 0, l = 1)1 = qini/(pini + qini). Other moments are defined to be zero at the

boundaries. The initial concentration of polymer is pini = 5.583mol/m3 and that of organics is

qini = 49.496mol/m3. When the mixture fraction changes 0.1 < ξ < 0.4, in environment 1 and

2, aggregation starts. We look into the properties of moments field rather than the particle

sizes distribution since moments themselves represents important statics such as number density

and particle mean size. Averaged values and contour plots of moments related to the number

density and aggregates sizes are shown in Fig. 5.10 and Fig. 5.11. The m(0, 0) representing

the total number density of the aggregates is equal to a normalized value of 1 in environment

1, where all the polymers and organics were dissolved initially. It decreases from 1 toward the

mean 〈m(0, 0) = ξ1m(0, 0)1 + ξ2m(0, 0)2〉. Inside the chamber it has diffferent distribution due
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(a) (b)

(c) (d)

Figure 5.8: Steady state solution of the (a) concentration A, (b) concentration B, (c) concen-

tration R and (d) concentration S.
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(a) (b) (c) (d)

Figure 5.9: Steady state solution of the (a) concentration A, (b) concentration B, (c) concen-

tration R and (d) concentration S.

to different mixing levels.

5.12 Conclusion

This study addresses comprehensive models for turbulent reactive flows and flash nanoprecipi-

tation. Conditional quadrature method of moments approach was introduced for the turbulent

reacting flows. The transport equation for the moments of PDF was described for the mixing

and consecutive competitive reactions. Initially, the model is used for the problems encounter

with mixing. Later the model is validated for the problems where the reaction of species

happens along mixing. The solvers for the mixing and reaction problems uses OpenQBMM R©

structure which leverage from an open source software OpenFOAM R©. The new model was also

introduced for flash nanoprecipitation. The model combines a PBE with aggregation of species

and scalar mixing models. CQMOM is efficient in reducing the number of moments required

to model the system.

The approach was applied to the CFD simulation of multi-inlet vortex reactor. First, the simple

mixing was considered and the mixture fraction and concentration of each species for mixing
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(a) (b)

(c) (d)

Figure 5.10: Steady state solution of the weighted population balance equation of (a) 〈M10〉
and (b) 〈M01〉, and weighted mixture population balance equation of (c) 〈M10〉 and (d) 〈M01〉.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Steady state solution of the weighted population balance equation of (a) 〈M00〉,
(b) 〈M10〉, (c) 〈M01〉 and weighted mixture population balance equation of (d) 〈M00〉 (e) 〈M10〉
and (f) 〈M01〉.
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were reported at the MIVR. Later the consecutive competitive reaction besides the mixing was

considered to take into account the effect of it. Simulation results show the consistency on

physics of the phenomena. Finally, in the CFD simulation results for flash nanoprecipitation,

different aggregation zones, and particle size distribution are accounted.

The ability of the CFD to quantify and predict mixing and consecutive competitive reaction is

quite striking. It demonstrates that the CFD simulations can be used to optimize the design

and functionality of the MIVR.
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CHAPTER 6. SUMMARY

The objective of this thesis is to use quadrature-based moment method in multiphase systems

and turbulent reacting flows. Simulation of physical systems require a robust and accurate

methods with optimized cost. While well-established methods like direct numerical simula-

tions (DNS) provides accurate results, they are often expensive from the computational cost

to be applied to a large-scale system and thus there is a need to use models beside averaged

transport equations. The idea behind quadrature-based moment methods (QBMM) is to trans-

port moments of the PDF. While quadrature method of moments uses Dirac delta functions as

the basis function, recently established approach, an extended quadrature method of moments

(EQMOM) uses smooth non-negative kernel density functions as a base function to represent

more complex PDFs with few nodes.

In this study, first, the new approach base on the log-normal kernel density function (KDF)

for the extended quadrature method of moments (EQMOM) is presented. The approach is

implemented to the population balance equation where the population of particles can be de-

scribed as a number density function (NDF). Later the approach is tested and validated for the

problems with aggregation and breakup of the particles. The basic idea of using the log-normal

KDF is due the physical observation in experimental and numerical studies which report that

the size distribution of particles in fluids tends to be log-normal. We verified the numerical

procedure to reconstruct the NDF using LnEQMOM by considering a distribution obtained as

a linear combination of two log-normal distributions with different mean and variance. The re-

sults show good agreement with the analytical function. We discussed the solution of the PBE

for aggregation and breakup problems. Two types of calculation were performed to investigate

the predictive capabilities of Ln-EQMOM. First, the moments of the rigorous NDF reported

by Vanni (2000) were computed for each of the cases considered. The computed moments were
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then used as input to Ln-EQMOM to obtain the reconstructed NDF. Results were compared

to the rigorous NDF and to the reconstruction obtained with γ-EQMOM (Yuan et al., 2012).

Later the moment transport equations for Ln-EQMOM closures with the appropriate source

terms were integrated to obtain the approximate distribution for each of the cases under con-

sideration, starting from the initial conditions. Ln-EQMOM provides more accurate results

for the time evolution of the zero-order moment and of the mean particle size than QMOM

for aggregation and breakup problems. This improvement is achieved using a lower number of

primary quadrature nodes than the standard QMOM procedure. Ln-EQMOM also appeared to

be numerically more robust when compared to γ-EQMOM, due to the structure of the system

of equations used in the numerical procedure.

As another approach in this study, the EQMOM with β kernel density function was applied to

find an approximate solution of the Fokker-Planck turbulent mixing model. Two form of the

conditional scalar dissipation 〈ε|φ〉 are used to approximate the transported PDF of any arbi-

trary distribution. Three cases were examined to validate the EQMOM-FP against the results

obtained with the DNS of Eswaran and Pope (1988). Later, the capability of the EQMOM-FP

to predict the time evolution of a bivariate joint scalar PDF was demonstrated considering

the cases studied by Juneja and Pope (1996). In these cases, the EQMOM-FP approach pre-

dicted the evolution of the marginal PDFs towards Gaussian, showing the capability of the

approach of being applied to solve mixing problems. In both test cases, results obtained by the

EQMOM-FP are in good agreement with the DNS results in the cases examined. Finally, the

EQMOM-FP approach was examined against results obtained with the mapping closures (MC)

approach. Results reveal the EQMOM-FP predicts the reconstruction of PDF in agreement

with the MC results.

It is possible to formulate the problem with a joint composition PDF where the PDF includes

information on both mixing and reaction of the scalar together. In this way, the higher number

of internal coordinates will be considered according to the nature of the reaction. In this project

three different reaction models, competitive consecutive, one reaction and fast reaction with

both IEM and FP mixing were considered. Initially, correction terms of direct quadrature

method of moments which is well studied in Fox (2003) are derived from the joint composition
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PDF. Later, a new model based on conditional quadrature method of moments is used to

solve the transport equation for the joint composition PDF. The advantage of CQMOM based

model to the DQMOM is that it conserves a larger number of moments. Also, in DQMOM,

transport equations are written for non-conserved quantities while in CQMOM the transport

equations are written for the moments which are the conserved quantities. Also, CQMOM does

not have the singularities introduced at the problem because of the correction terms added to

the transport equation. In this study, the reaction system is written in terms of reaction

progress variables and the mixture fraction. Then the joint composition PDF is introduced

for mixture fraction and progress variables as internal coordinates and the quadrature based

moments method were applied to close the transport equation. A string is initialized with

two species and the evolution of the scalars are studied. The concentration of species is then

reported. Finally, the two model for the mixing for different reaction systems provides the

similar conclusion and they are in agreement with the results obtained with DQMOM. In all

the cases most of the S produced near to the stream B where there is a high probability of

presence for B and R. Also in all cases, the mixture fraction tend to be a homogeneous mixture.

Since the rate of the first reaction is higher than the second reaction, the progress variable for

the first reaction is higher in value than the one for the second reaction.
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APPENDIX A. NUMERICAL APPROXIMATION OF INTEGRALS IN

THE PBE

We briefly summarize here the procedures to approximate the integrals that appear in the

source terms of the PBE.

A.1 Gauss-Hermite quadrature

The first approach to perform the numerical integration of the source terms using known

Gaussian quadrature formulae is to rely on a change of variable to reduce the quadrature

problem to the well known case of Gaussian-Hermite quadrature (Gautschi, 2004). We illustrate

the procedure considering the integral∫ ∞
0

g (ξ) δσ (ξ, µ) dξ =

∫ ∞
0

g (ξ)
1

ξσ
√

2π
e−

(ln ξ−µ)2

2σ2 dξ. (A.1)

We set

(ln ξ − µ)2

2σ2
= s2 ⇒ ξ = eσs

√
2+µ, (A.2)

and so we can write the differential of ξ as

dξ =
√

2σ eσs
√

2+µ ds. (A.3)

Thus, the original integral becomes∫ ∞
−∞

g
(

e
√

2σs+µ
)

e−s
2 √

2σ e
√

2σs+µ

e
√

2σs+µ σ
√

2π
ds =

1√
π

∫ ∞
−∞

g
(

e
√

2σs+µ
)

e−s
2

ds, (A.4)

which can be approximated using standard Gauss-Hermite formula (Gautschi, 2004).

A.2 Gauss-Stieltjes-Wigert quadrature

The quadrature formula obtained in A.1 is exact for polynomials of ψ = lnx. A quadrature

formula exact for polynomials of x is obtained considering the Stieltjes-Wigert polynomials
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(Weisstein, 1998; Wilck, 2001), which are orthogonal to the log-normal distribution. The

three-term recurrence relation that defines these polynomials is (Wilck, 2001):

P−1 = 0, P0 = 1, Pi+1 = (x− ai)Pi − biPi−1, i = 1, 2, . . . , (A.5)

where

a0 = η, ai = η2i−1
[(
η2 + 1

)
η2i − 1

]
,

b0 = 0, bi = η6i−4(η2i − 1),

η = eσ
2/2 .

(A.6)

The values of the quadrature weights and abscissae for both the approaches are found by solving

an eigenvalue problem as explained in Wilf (1962); Golub and Welsch (1969); Dette (1997).

We illustrate the procedure considering the integral∫ ∞
0

g (ξ) δσ (ξ, µ) dξ =

∫ ∞
0

g (ξ)
1

ξσ
√

2π
e−

(ln ξ−µ)2

2σ2 dξ. (A.7)

We set

ln ξ − µ = ln s⇒ ξ = s eµ,

and so we can write the differential of ξ as

dξ = eµ ds. (A.8)

Thus the original integral becomes

∫ ∞
0

g (s eµ) e−
ln2 s
2σ2 eµ

s eµ σ
√

2π
ds =

∫ ∞
0

g (s eµ)w (s) ds, (A.9)

with

w (s) =
e−

ln2 s
2σ2

sσ
√

2π
. (A.10)
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